

Adapting robot behavior
to user preferences in assistive

scenarios

Gerard Canal Camprodon

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del r e p o s i t o r i i n s t i t u c i o n a l
UPCommons (http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX
(h t t p : / / w w w . t d x . c a t /) ha estat autoritzada pels titulars dels drets de propietat intel·lectual
únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza
la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc
aliè al servei UPCommons o TDX. No s’autoritza la presentació del seu contingut en una finestra
o marc aliè a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentació
de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom
de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
únicamente para usos privados enmarcados en actividades de investigación y docencia. No
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the i n s t i t u t i o n a l r e p o s i t o r y UPCommons
(http://upcommons.upc.edu/tesis) and the cooperative repository TDX (http://www.tdx.cat/?locale-
attribute=en) has been authorized by the titular of the intellectual property rights only for private
uses placed in investigation and teaching activities. Reproduction with lucrative aims is not
authorized neither its spreading nor availability from a site foreign to the UPCommons service.
Introducing its content in a window or frame foreign to the UPCommons service is not authorized
(framing). These rights affect to the presentation summary of the thesis as well as to its contents.
In the using or citation of parts of the thesis it’s obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Doctoral Programme

AUTOMATIC CONTROL, ROBOTICS AND COMPUTER VISION

Ph.D. Thesis

ADAPTING ROBOT BEHAVIOR

TO USER PREFERENCES

IN ASSISTIVE SCENARIOS

Gerard Canal Camprodon

Advisors:
Guillem Alenyà and Carme Torras

Barcelona, January 2020

Adapting robot behavior to user preferences in assistive scenarios

A thesis submitted to the Universitat Politècnica de Catalunya
to obtain the degree of Doctor of Philosophy

Doctoral programme:
Automatic Control, Robotics and Computer Vision

This thesis was completed at:
Institut de Robòtica i Informàtica Industrial, CSIC-UPC

Thesis advisors:
Guillem Alenyà and Carme Torras

Dissertation Committee:
Cecilio Angulo (Universitat Politècnica de Catalunya)
Yiannis Demiris (Imperial College London)
Dongheui Lee (Technische Universität München)

c© 2020 Gerard Canal Camprodon

To my grandma, l’àvia Carme

“Emotions wouldn’t be much of an asset for a bathtub-cleaning robot. But if the robot is
reminding me to take my meds or helping me put the groceries away, I will want

a little more personal interaction, with the sort of feedback that lets me know
not just whether it’s understanding me but how it’s understanding me.”

– Rodney Brooks

ADAPTING ROBOT BEHAVIOR TO USER PREFERENCES
IN ASSISTIVE SCENARIOS

Gerard Canal Camprodon

Abstract

Robotic assistants have inspired numerous books and science fiction movies. In the real
world, these kinds of devices are a growing need amongst the elderly, who will continue requir-
ing more assistance. While life expectancy is increasing, life quality is not necessarily doing so.
Thus, we may find ourselves and our loved ones being dependent and needing another person
to perform the most basic tasks, which has a strong psychological impact. Accordingly, assistive
robots may be the definitive tool to give more quality of life by empowering dependent people
and extending their independent living.

Assisting users to perform daily activities requires adapting to them and their needs, as they
might not be able to adapt to the robot. This thesis tackles adaptation and personalization
issues through user preferences. We focus on physical tasks that involve close contact, as these
present interesting challenges, and are of great importance for the user. Therefore, three tasks
are mainly used throughout the thesis: assistive feeding, shoe fitting, and jacket dressing. We
first describe a framework for robot behavior adaptation that illustrates how robots should be
personalized for and by end-users or their assistants. Using this framework, non-technical
users determine how the robot should behave. Experimental evaluation on the framework
demonstrates its usefulness. Therefore, we build the behavior adaptation upon it. Then, we
define the concept of preference for assistive robotics scenarios and establish a taxonomy, which
includes hierarchies and groups of preferences, grounding definitions and concepts. We then
show how the preferences in the taxonomy are used with AI planning systems to adapt the robot
behavior to the preferences of the user obtained from simple questions. Our algorithms allow for
long-term adaptations as well as to cope with misinferred user models, as demonstrated in the
experimental evaluation. We further integrate the methods with low-level motion primitives that
provide a more robust adaptation and behavior while lowering the number of needed actions
and demonstrations. Moreover, we perform a deeper analysis of planning and preferences with
the introduction of new algorithms to provide preference suggestions in planning domains. We
show how the suggestions maximize the plan reward, improving the chances of task success. The
thesis then concludes with a user study that evaluates the use of the preferences in the three
real assistive robotics scenarios. The experiments show a clear understanding of the preferences
by users, who were able to assess the impact of their preferences on the robot’s behavior.

In summary, we provide tools and algorithms to design the robotic assistants of the future.
Assistants that should be able to adapt to the assisted user needs and preferences, just as human
assistants do nowadays.

Keywords: Robot behavior adaptation, Physically Assistive Robots, Robot personalization, Plan-
ning for robot adaptation, Robotics.

v

Resum

Els assistents robòtics han inspirat nombrosos llibres i pel·lícules de ciència-ficció al llarg de
la història. Però tornant al món real, aquest tipus de dispositius s’estan tornant una necessitat
per a una societat que envelleix a un ritme ràpid i que, per tant, requerirà més i més assistència.
Mentre l’esperança de vida augmenta, la qualitat de vida no necessàriament ho fa. Per tant,
ens podem trobar a nosaltres mateixos i als nostres estimats en una situació de dependència,
necessitant una altra persona per poder fer les tasques més bàsiques, cosa que té un gran
impacte psicològic. En conseqüència, els robots assistencials poden ser l’eina definitiva per
proporcionar una millor qualitat de vida empoderant els usuaris i allargant la seva capacitat de
viure independentment.

L’assistència a persones per realitzar tasques diàries requereix adaptar-se a elles i les seves
necessitats, donat que aquests usuaris no poden adaptar-se al robot. En aquesta tesi, abordem el
problema de l’adaptació i la personalització d’un robot mitjançant preferències de l’usuari. Ens
centrem en tasques físiques, que involucren contacte amb la persona, per les seves dificultats
i importància per a l’usuari. Per aquest motiu, la tesi utilitzarà principalment tres tasques
com a exemple: donar menjar, posar una sabata i vestir una jaqueta. Comencem definint un
marc (framework) per a la personalització del comportament del robot que defineix com s’han
de personalitzar els robots per usuaris i pels seus assistents. Amb aquest marc, usuaris sense
coneixements tècnics són capaços de definir com s’ha de comportar el robot. Una avaluació
experimental del framework en demostra la seva utilitat. Per tant, l’adaptació del comportament
presentada en la tesi es construeix sobre aquest framework. Posteriorment definim el concepte
de preferència per a robots assistencials i establim una taxonomia que inclou jerarquies i grups
de preferències, els quals fonamenten les definicions i conceptes. Després mostrem com les
preferències de la taxonomia s’utilitzen amb sistemes planificadors amb IA per adaptar el com-
portament del robot a les preferències de l’usuari, que s’obtenen mitjançant preguntes simples.
Els nostres algorismes permeten l’adaptació a llarg termini, així com fer front a models d’usuari
mal inferits, tal com es mostra en l’avaluació experimental. Aquests mètodes són integrats
amb primitives a baix nivell que proporcionen una adaptació i comportament més robusts a la
mateixa vegada que disminueixen el nombre d’accions i demostracions necessàries. També fem
una anàlisi més profunda de l’ús de les preferències amb planificadors amb la introducció de
nous algorismes per fer suggeriments de preferències en dominis de planificació. Aquí mostrem
com els suggeriments maximitzen la recompensa del pla, millorant les probabilitats d’èxit de la
tasca. La tesi conclou amb un estudi amb usuaris que avalua l’ús de les preferències en les tres
tasques assistencials. Els experiments demostren un clar enteniment de les preferències per part
dels usuaris, que van ser capaços de discernir quan les seves preferències eren utilitzades.

En resum, proporcionem eines i algorismes per dissenyar els assistents robòtics del futur.
Uns assistents que haurien de ser capaços d’adaptar-se a les preferències i necessitats de l’usuari
que assisteixen, tal com els assistents humans fan avui en dia.

vii

Acknowledgements

I would like to start by expressing my heartfelt gratitude and appreciation to my advisors,
Dr. Guillem Alenyà and Prof. Carme Torras. For granting me the opportunity to work with
them in this thesis about the most exciting and breakthrough topics. Also for their constant
support, patience, understanding, dedication, and knowledge. I believe PhD. advisors are key in
the success of any thesis, and mines have been the best advisors I could have ever wished for.

They also gave me the chance of visiting King’s College London for three months. There,
I was supervised by Dr. Michael Cashmore and Dr. Daniele Magazzeni, to whom I express my
appreciation. I felt at home even when I was far, being one of the team. They also contributed
to my learning and helped me grow as a researcher, for which I am very thankful.

Likewise, I thank my parents, Maria Àngels and Josep Maria, for all their love and support.
For everything they’ve done over all these years to make me reach any goal I wanted. But also
the rest of the family, to my grandmas Carme and Conxita, to all my cousins, aunts and uncles,
and to those who are not around but are still present.

But apart from academic advisors and family, I’ve been very fortunate to be surrounded by
lots of valuable people who supported me. Starting with all the people at IRI, especially my
colleagues from D19. We spent many hours there (a lot!) with many different feelings. Albert,
Aleks, Antonio, Víctor, Alejandros, and the passing ones. You’ve been the best rubber ducks (for
code-debugging) I could have had! Thanks for listening to me and my complaints. I also owe a
huge thanks to Sergi and Adrià, without your help and patience this would have been extremely
difficult, if not impossible. Further, acknowledge the administrative staff who were essential to
sort out the lots of academic bureaucracy. My most special thanks are for Víctor Vílchez. He is
not only one of the best friends anyone can have but has also been a pillar for me during the
thesis. I don’t think I would have made it without his help in preparing documentation, asking
for grants, proofreading my texts and papers, listening to me for many hours and feeding me
breadsticks when I was stressed. I can’t be thankful enough for being there in the past, the
present and probably the future. Besides, I thank Laia for being a really good friend, Maria
for being the first awesome student I supervised, Kiko and the indoor lunch crew for the great
moments, and also Anaís Garrell for all her help and support (plus the Australian adventures!).

Furthermore, I want to thank all the people I met in London in late 2018. Starting with my
friends at KCL: Diego, Parisa, Senka, Xavi, Yani, and the others, and to the people from the nice
Catalan community in London. You all made it very easy to stay abroad, with many experiences
I will never forget. Back to Barcelona, I want to thank my friend Daniel Pérez for always having
a good advice, and to Cristina García for helping me keep my sanity, as well as to the many
PhD-related Twitter accounts who always gave me a smile with their realistic irony and online
support (@CientificoenEsp, @PHDcomics, @AcademicsSay, @ithinkwellHugh. . .).

Doing a PhD. is quite time-consuming, but I found the best escape in dancing. Thus, I thank
with all my heart my Salsa and Bachata buddies, whom I met by pure chance but became the
greatest friends. Especially to Diana, but also to Mel, Santi, Cèlia, Elena, Daria, and many
others. Thanks for all the dances, happiness, and the healthy and much-needed disconnection.

Last, but not least, I would like to thank my good and lovely friends Roger and Cristina for
everything they have done for many years, and for many more to come. In summary, to all of
you with whom I crossed paths over the years, thank you too for leading me to this and helping
me learn, grow and become a better person every day.

A totes i a tots: infinites gràcies!

ix

x

This work has been partially supported by the following doctoral grants:

2016FI_B 00660 FI-DGR (Ministry of Economy and Knowledge of the Government of Catalonia).

FPU15/00504 FPU: Formación de Profesorado Universitario (Spanish Ministry of Education, Culture, and Sport).

EST17/00371 Estancias Breves (FPU): Mobility grant (Spanish Ministry of Education, Culture, and Sport).

This thesis has also been partially supported by the research projects:

PCIN-2015-147 I-DRESS: Assistive interactive robotic system for support in dressing (ERA-Net CHIST-ERA project).

201350E102 MANIPlus: Manipulación robotizada de objetos deformables (Consejo Superior de Investigaciones
Científicas - CSIC).

H2020-ICT-2016-1-731761 IMAGINE: Robots understanding their actions by imagining their effects (European
Commission).

ERC-2016-ADG-741930 CLOTHILDE: Cloth manipulation learning from demonstration (European Research
Council).

Contents

Abstract v

Resum vii

Acknowledgements ix

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 4
1.3 Considered scenarios . 5

1.3.1 Assistive feeding . 6
1.3.2 Shoe fitting . 8
1.3.3 Assisted jacket dressing . 9

1.4 Outline . 12

2 Personal assistive robots for non-technical users 15
2.1 Introduction . 15
2.2 Related work . 16
2.3 The FUTE Personalization Framework . 17
2.4 Experimental assessment: User-Centered Feeding Assistance 18

2.4.1 The Robot Feeding Process . 19
2.4.2 Feeding personalization . 20
2.4.3 Teaching Modes: Unassisted vs. Compliant Reproduction 23
2.4.4 Parameter extraction from the learned trajectories 24

2.5 Summary . 26

3 Defining preferences for assistive scenarios 27
3.1 Introduction . 27
3.2 Related work . 29
3.3 A Taxonomy of preferences for Assistive Human-Robot Interaction 31
3.4 Preference definition examples . 35
3.5 Summary . 37

4 Planning techniques for robot behavior adaptation 39
4.1 Introduction . 39
4.2 Related work . 40
4.3 User-oriented task planning . 42

4.3.1 Domain definition . 46
4.3.2 Fuzzy user model extraction . 50
4.3.3 Initial model refinement . 52
4.3.4 Improvement based on user feedback . 53

4.4 Experimental evaluation . 55
4.4.1 Experimental feasibility assessment . 58

4.5 Summary . 60

xi

xii CONTENTS

5 Joining high-level actions with low-level skills 63
5.1 Introduction . 63
5.2 Related work . 64
5.3 Planning for the next step . 65
5.4 Learned motions . 68
5.5 Combining high-level Symbolic Task Planning with low-level Motion Planning . . 68

5.5.1 High-level state transitions: the shoe fitting example 70
5.6 Experimental evaluation . 71

5.6.1 Experiment 1: Failure recovery after task completion 71
5.6.2 Experiment 2: Talking to the user when needed 72
5.6.3 Experiment 3: Speed modulation . 73

5.7 Summary . 73

6 Preference suggestions for improved performance 75
6.1 Introduction . 75
6.2 Related work . 76
6.3 ROSPlan extension to RDDL . 79

6.3.1 Background on planning under uncertainty 80
6.3.2 System Description . 81
6.3.3 Online Planning and Execution with RDDL Planners 83

6.4 Preferences to guide action selection through the reward function 85
6.5 Motivation behind providing predicate suggestions 86

6.5.1 Planning with preferences and limitations 87
6.6 Providing suggestions . 88

6.6.1 The Plan Space Tree . 88
6.6.2 Max-reward traversal . 89
6.6.3 Suggesting changes to known predicates 91

6.7 Experimental evaluation . 92
6.7.1 Definition of the domains and preferences 93
6.7.2 Effect of the SoPS algorithm . 95
6.7.3 Improvements by allowing changes with SoPS-change 98
6.7.4 Finding superfluous suggestions . 99

6.8 Summary . 101

7 Evaluating the use of preferences through HRI 103
7.1 Introduction . 103
7.2 Related work . 104
7.3 Methodology . 107

7.3.1 Scenarios . 107
7.3.2 Material . 109
7.3.3 Participants . 110
7.3.4 Procedure . 110

7.4 Results . 111
7.4.1 Preference guessing . 111
7.4.2 Pleasantness of the interaction . 114

CONTENTS xiii

7.4.3 Differential behavior . 115
7.4.4 Potential usefulness of Assistive Robotics 115

7.5 Summary . 118

8 Conclusions 121
8.1 Future work . 124

A List of publications 127

B Safety in adaptive Physically Assistive Robots 129
B.1 Safety strategies . 129
B.2 Safety analysis for autonomous user feeding . 130

B.2.1 Force limitation for unexpected contacts 130
B.2.2 Passive safety evaluation . 131

C ROSPlan’s Probabilistic Planning evaluation 135
C.1 Example System and Scenario . 135

C.1.1 Print-fetching domain . 137
C.2 Experiments . 138

C.2.1 Results . 139
C.3 Discussion . 142

D Questionnaire used for the HRI evaluation 143

Acronyms 151

Glossary 153

Bibliography 157

Figures

1.1 Examples of different feeding strategies from CNA training videos. 3
1.2 An example of robotic assistive feeding. 6
1.3 An example of robotic shoe fitting. 8
1.4 An example of robotic jacket dressing. 10
1.5 Graphical outline of the thesis. 12

2.1 Assistive personalized feeding application example. 16
2.2 The FUTE process. 18
2.3 Example of a feeding execution for the case of a user with reduced mobility. . . . 19
2.4 Representation of the feeding setup with the trajectory Cartesian coordinate axes. 20
2.5 Comparison between similar and different example trajectories. The thicker line

is the mean trajectory, and the surrounding lines are the mean ± standard devi-
ation. The shaded regions denote the part of the trajectory in which the food is
consumed, corresponding to the steps shown in Figures 2.3b-2.3d. 22

2.6 Mean trajectories generated from a default trajectory with different stiffness val-
ues. The lower the stiffness, the most docile the robot behavior is. Observe the
oscillations introduced when the trajectory is perturbed. 23

2.7 Learned trajectories for the spoon and fork experiments, where the gravity com-
pensation mode was used for re-teaching the trajectories. 25

3.1 Graphical example of decision-making and configuration preferences 28
3.2 Preference taxonomy for assistive physical Human-Robot Interaction 32
3.3 Physically Asstistive Robot (PAR) application examples 35

4.1 Shoe-fitting example. 40
4.2 System flow representation. 45
4.3 Example of shoe-fitting action failures for the insertFootInShoe action. . . . 49
4.4 Fuzzy Inference System used to obtain the initial user model, as well as its im-

provement using feedback. 51
4.5 Evolution of the rewards and plan lengths using different method combinations.

The inferred user model is [quick, not verbose], but the simulator behaves as a
[slow, verbose] user. 56

4.6 Evolution of the rewards and plan lengths using different method combinations.
The inferred user model and behavior is [quick, verbose], but in iteration 27 the
behavior changes to be [quick, not verbose]. 57

4.7 Experimental setup with the robot, a user and the ceiling camera. 59
4.8 Example of the execution of the three movement actions. The current location of

the foot is obtained with a ceiling-mounted RGB-D sensor (see Figure 4.7). 60

5.1 By providing demonstrations of a task in several situations, the robot is able to
generalize to a wide range of new situations. 68

5.2 Two-level planning architecture. 69
5.3 Example of action transitions in the shoe-fitting task. Orange nodes represent

robot motion actions, while yellow nodes correspond to interaction actions. . . . 70

xv

xvi FIGURES

5.4 Kinesthetic teaching requires repetitions of demonstrations to cope with variabil-
ity and be able to adapt to changes. 71

5.5 Example of error state management with the high-level task planner in a non-
demonstrated situation. 72

5.6 Example of user moving the foot. This will trigger an ask action to stop the
movement, and may also produce a speed change. 73

6.1 ROSPlan’s Knowledge Base interface. 81
6.2 ROSPlan’s system architecture. 84
6.3 Example of a Plan Space Tree. Each node ai represents an action of the tree.

Nodes labeled as goal are leaves whose branch is a complete plan to the goal. . . 89
6.4 Results with different set-ups for the feeding domain 96
6.5 Results with different set-ups for the jacket dressing domain 97
6.6 Results with different set-ups for the shoe-fitting domain 98
6.7 Results for the feeding domain allowing changes 99
6.8 Results for the shoe-fitting domain allowing changes 100
6.9 Results for the jacket dressing domain allowing changes 100
6.10 Results with the different domains including superfluous predicates 101

7.1 Setup used for the experiments in the three tasks. 108
7.2 Users participating in the experiment. 112
7.3 Results of guessed preference trial per task. The 0 represents doubt/no prefer-

ences, 1 represents in the first trial and 2 in the second one. 113
7.4 Results of the pleasantness when using preferences. Observe that 4 and 5 are the

dominant answers overall. The results improve with an increase of agreement
answers when only the successfully guessed state is taken into account, meaning
that the use of preferences increases the task pleasantness. 115

7.5 Results of behavior difference per task with and without preferences. Note that
when preferences are present, the users agree on an observed behavior difference,
while when no preferences are present the users get more confused. 116

7.6 Answers for the improvement of the preferences and the perceived helpfulness of
the assistive tasks. 117

B.1 Comparison of the force for the four setups in the perpendicular axis. 131
B.2 Successful execution of the feeding task . 132
B.3 Force in the y-axis (perpendicular to the user) of the impact between the user

face and the spoon (t = 2s) and the user retaining the spoon (t ∈ 15..25s) 133

C.1 The scenario in which we test the proposed system is an office environment. A
mobile robot, the TurtleBot 21 is used for the print-fetching service. When the
robot gets a request for fetching prints, it decides from which printer to collect
them. Since it is not equipped with an arm, it asks a random nearby person to
put prints on it, and delivers them to the user. 135

C.2 Map layouts of the proposed scenario description. 136

FIGURES xvii

C.3 Fragment of the RDDL domain for the print-fetching scenario, showing the robot_at
state fluent, goto_waypoint action fluent and cpfs that describes the transition of
the state fluent. 137

C.4 Fragment of the PDDL domain for the print-fetching scenario, showing the goto_waypoint
action. 138

C.5 Experimental results, showing mean values with standard deviations of the robot
travel distance, test execution time and planning time for the first 3 experiments. 140

C.6 Experimental results, showing the distribution of the first printer selected across
all plans by each planner in Experiment 4. In each experiment, 500 tests were
made in simulation. 141

Tables

3.1 Example of Aunt Mery’s global (task independent) preferences. 36
3.2 Examples of Aunt Mery’s preferences for the jacket dressing task. 36
3.3 Examples of Aunt Mery’s preferences for the shoe fitting task. 37
3.4 Examples of Aunt Mery’s preferences for the feeding task. 37

7.1 Frequencies of the 5-point Likert scale for the pleasantness of interaction. Con-
sidering all results. 114

7.2 Frequencies of the 5-point Likert scale for the pleasantness of interaction. Only
correctly guessed state when preferences were present are considered. 114

7.3 Descriptive statistics for the pleasantness. OP are the results only considering
the cases where preferences were present. NP are the cases where preferences
were not present. SGP are the results when there were preferences and the users
correctly guessed in which trial. 114

7.4 Frequencies of the 5-point Likert scale for the difference of behavior. Only when
no preferences were applied . 116

7.5 Frequencies of the 5-point Likert scale for the difference of behavior. Only when
preferences were present regardless of user’s guess. 116

7.6 Descriptive statistics for the behavior difference. OP are the results only consider-
ing the cases where preferences were present. NP are the cases where preferences
were not present. SGP are the results when there were preferences and the users
correctly guessed in which trial. 117

7.7 Results of the Almere model analysis. 118

B.1 Force limits for trajectories of insertion and extraction of the cutlery inside mouth. 130

C.1 Prior probabilities of events in the experimental setup. 139
C.2 Experimental setups. 139

xix

1
Introduction

In the current aging world, the lack of care professionals such as nurses and caregivers [1, 2]

will deem assistive devices necessary for many individuals to live a dignified life. Therefore,

assistive robots will be key in the next health care revolution. However, research on assistive

robotics poses several challenges, both technical and ethical, given the closeness of the robots

to the human users and the many safety concerns this can raise [3].

People with reduced mobility tend to find themselves needing the help of another in order

to do the most basic tasks. Hence, performing Activities of Daily Living (ADLs) such as eating,

dressing, grooming or cleaning up can become very challenging. Intelligent robotic systems

have proven useful in these situations by performing the helping task and, so, removing the

constraint of constant attention from another person.

Nowadays, these assistive devices and technologies are getting common and some commer-

cial products are starting to be available. However, the deployment of robots able to physically

interact with a person in an assistive manner is still challenging. Apart from aspects such as

design and control, an assistive robot should be able to adapt to the specific user needs and

preferences in order to effectively assist a human user. And, rather than performing a generic

action suitable for anyone, forcing the user to adapt to the robot, it is the robot who should

modify its behavior taking into account the user and the situation; just as a human carer would

do. This empowering of disabled people is crucial [4], and can be attained by providing more

autonomy, intimacy and better quality of life. Nevertheless, this does not imply the substitution

of the caregiver, as personal contact is also very important. Contrarily, we think the robots should

rely on the caregiver to personalize their behavior to the disabled person’s preferences and

needs. Thus, this robot behavior adaptation comes through the definition of user preferences

for the task such that the robot can act in the user’s desired way.

While rehabilitation robotics has received more attention from the research community in

the past, the field is going towards the development of autonomous assistive systems to be

2 Introduction

employed by non-technical users. The Assistive Robotics field is an area of growing interest

where robots are used as a tool to help caregivers and nurses to improve the assistance. Socially

Assistive Robots (SAR) [5] are robots that provide assistance by means of social interaction to

guide processes of rehabilitation, learning and convalescence. On the other hand, Physically

Assistive Robots (PAR) are the ones providing assistance by means of physical interaction,

helping users to perform activities such as eating, dressing and grooming [6,7].

However, the potential users of these systems, caregivers or disabled and older adults them-

selves, may find it difficult to manipulate or configure the system. Thus, natural interfaces, as

well as suitable adaptation mechanisms, must be developed to ease robot instruction and involve

users in the task.

This thesis analyzes this adaptation of assistive robots to user preferences. Given that health

care assistance is often related to close-contact interactions, the thesis will focus on the case of

the Physically Assistive Robot. Firstly, an Assistive Robot Personalization methodology will be

presented, to then define the possible preferences to be applied in such kind of robotic tasks.

We will then propose some algorithms for robot behavior adaptation through symbolic task

planning techniques, combining them with low-level adaptive movements. All the proposed

methods have been evaluated experimentally involving real robots, and a final user study will

conclude the thesis.

1.1 Motivation

The main motivation of this Ph.D. thesis is to provide methodologies to adapt the behavior of

an assistive robot to the user it is helping. For example, there is expected a 34% increase in

the number of stroke events in Europe [8], which may lead to many people in direct need of

assistance to live. Such loss of independence to perform ADLs [9] results in a great impact

on the patient’s psychological wellbeing, with feelings of burden and guilt to those close to

them [10, 11]. Thus, robots capable of physically assisting users in order to enable them to

perform such tasks without the need of another human may have a considerable impact on

the modern society [4]. Still, to successfully empower the users and ease the employment of

robotic systems, such mechanical assistants should be able to cope with user disabilities and

preferences, just as human caregivers do.

There are hundreds of ways of assisting a person to perform Activities of Daily Living (ADLs),

along with other subtleties that human caregivers take into account. Caregivers, knowing

the users and interacting with them, adapt the assistance to suit every individual’s needs and

preferences effectively making the task more pleasant for the patients. A clear example of this

can be seen in Figure 1.1. As it can be observed in the pictures, extracted from Certified Nursing

1.1 Motivation 3

(a) Feeding a laying person (Ari-
zona Medical Training Institute1)

(b) Feeding a sitting person (EK
Medical Learning Center2)

(c) Feeding reduced mobility (BR
Nursing School3)

(d) Feeding laterally (American
Red Cross4)

(e) Assisting handover self-feed
(Perspektivy5)

(f) Assistive feeding when mouth
can’t be closed (Perspektivy5)

Figure 1.1: Examples of different feeding strategies from CNA training videos.

Assistant (CNA) training videos, there are many different ways of doing a simple task such as

feeding a person. The strategy will depend on the condition and capabilities of the users, but

their preferences will also determine the strategy and play an important role in the success of

the task. Accordingly, a robot should not try to perform the task in a general way, but to take

each individual as a unique person who has special capabilities, tastes and feelings, therefore

providing personalized assistance. For example, a robot should not treat a person that trusts

and fully accepts the robot in the same manner as a user that expresses some concerns.

While we believe these assistive robots cannot supply the same as human contact does,

we look at them as smart appliances that must act in a highly autonomous manner. But, as

no person is identical and each of us has our own needs, what may work for some user may

be disliking for another one. Thus, an increase on task variability implies the need for robot

adaptation. However, the fact of considering physical interactions between the human and

the robot introduces a new set of requirements in terms of robot action execution, and thus,

also in terms of user preferences. Therefore, we strongly believe this robot personalization

is essential in order to prevent rejection and foster the use of such devices. Ultimately, we

hope the approaches proposed in this thesis will help users with reduced autonomy to empower

themselves, having the robot as a tool for their own independence.
1Extracted from: youtu.be/aCIKmu4jIWg 4Extracted from: youtu.be/XvMX76BvAoM
2Extracted from: youtu.be/E1vd1O-LgWI 5Extracted from: youtu.be/m4o5u7x4qys
3Extracted from: youtu.be/j_D8g2ngVWs

https://youtu.be/aCIKmu4jIWg
https://youtu.be/XvMX76BvAoM
https://youtu.be/E1vd1O-LgWI
https://youtu.be/m4o5u7x4qys
https://youtu.be/j_D8g2ngVWs

4 Introduction

1.2 Contributions

The main goal of this thesis is to advance in the field of autonomous robot personalization

and behavior adaptation, making emphasis on physically assistive scenarios. We intend to

develop methods to autonomously modify the robot’s performance to match the expectations,

preferences, and needs of the assisted user. To achieve it, this thesis has combined methods

of robotics and AI to adapt the behavior of the robot to user preferences. Below the list of

contributions:

1. We have proposed a framework for robot personalization along with some trajectory

personalization strategies [6]. The framework defines the personalization steps and its

relations, and it is intended to allow non-technical users such as nurses and caregivers to

re-adapt the robot behavior in terms of robot positions and trajectories. We demonstrate

its use in a feeding scenario, but its applicability is shown over all the thesis.

2. A methodological characterization of preferences for assistive robotics tasks. For this, we

define a taxonomy [12] with different kinds of preferences and their uses. We show how

this taxonomy is wide enough to consider user limitations, and how those can be expressed

as preferences over the task.

3. We have proposed an algorithm for robot behavior adaptation using probabilistic symbolic

task planning [13]. The method defines a user model by means of simple user answers

to task-unrelated questions that are fed to a Fuzzy Inference System to be translated into

specific preferences. Then the user feedback and the task performance are used to update

the costs and probabilities of the task model, resulting in a long-term adaptation of the

robot behavior to the user, able to cope with wrongly inferred models.

4. We have further improved the adaptation methods by adding low-level controllers [14]

able to adapt online to the user movements. We demonstrate how joining such motion

primitives with task planners is beneficial for both, as less physical demonstrations are

needed to teach the task (the planner manages the errors at the logical level), while

less symbolic actions need to be defined (as the low-level control can cope with small

movements).

5. We have extended the ROSPlan framework for symbolic task planning in robotics [15].

Our extension makes the framework able to handle probabilistic planning solvers and

domains. This allows the users to use the PPDDL and RDDL languages for probabilistic

planning. ROSPlan has a considerable user base, so we believe that this is a valuable

1.3 Considered scenarios 5

contribution for the AI planning and robotics communities, together with the previous

contribution.

6. We developed a new algorithm for making suggestions in planning [16]. We define what

we call suggestible predicates, which we ground to preferences in the thesis. The method

allows suggesting preference values that would improve the performance of the task. The

algorithm uses the already known preferences, and even allows for suggestions to change

some preference values.

7. An analysis towards adding more safety in Physically Assistive Robot [17], where we

considered unavoidable impacts. Impact forces between the robot and the user were

analyzed to assess whether they were harmful, as well as proposing some safety strategies

based on compliant robot controllers and force limitation by monitoring.

8. A Human-Robot Interaction study on the use of preferences for Physically Assistive Robotics

tasks [18]. In it, we evaluate whether users can discern when their preferences are used in

a real assistive robotics task without any prior knowledge of the task or the robot behavior.

This contributes to demonstrating that preferences are a successful manner for guiding the

robot action selection.

1.3 Considered scenarios

This thesis mainly considers the addition of preferences to guide the behavior of Physically

Assistive Robots (PAR) while providing help to users in need. Although many different Activities

of Daily Living (ADLs) could be considered, we have focused on three main scenarios, whose

challenges and particularities will be analyzed in this section.

Two of the considered scenarios have been taken from the research projects I-DRESS6 and

CLOTHILDE7. These are shoe fitting and assisted dressing of a coat or jacket. A third scenario

we have considered is the one of assistive feeding, which is a very basic need of the target users.

This scenario is used in the HuMoUR project8.

Although many other scenarios could also be considered, we believe the selected ones are

crucial for the needs of people and are realistic enough to avoid any potential harm to human

users. These tasks are complex to solve and, to concentrate on the use of preferences to adapt

the robot behavior, some assumptions will be made to simplify the execution. Other scenarios,

6I-DRESS: Assistive interactive robotic system for support in dressing (i-dress-project.eu)
7CLOTHILDE: Cloth manipulation learning from demonstration (clothilde.iri.upc.edu)
8HuMoUR: Markerless 3D human motion understanding for adaptive robot behavior

(iri.upc.edu/project/show/193)

https://i-dress-project.eu/
https://clothilde.iri.upc.edu
https://www.iri.upc.edu/project/show/193

6 Introduction

albeit still very important, may pose serious issues in terms of safety. An example of this kind of

task would be shaving, which involves the use of sharp tools against the user’s skin. Combing is

another example of a potentially harmful task, where the comb could tear the user’s scalp or be

uncomfortable.

1.3.1 Assistive feeding

One of the most basic activities any human or animal needs to do is eating, which is at the base

of Maslow’s hierarchy of needs [19].The inability to eat or consume nutrients would result in

certain death. Therefore, feeding assistance is essential for those unable to do it by themselves.

Even though humans can assist others to eat without many concerns, feeding is a repetitive

task that can last for some time. Moreover, eating usually has other social implications for

humans, being a social act of sharing, speaking and enjoying food together as it happens in

different cultures. Thus, when assisting to feed a user, it stops being a shared social act to

become a task of assistance, exposing such dependence on another person. This tends to impact

the psychological wellbeing of the assisted individuals, who can sometimes feel that they bother

their caregivers and may feel useless, which can lead to depressive symptoms [11].

Accordingly, feeding assistance may have a great impact on the lives of dependent people,

providing a tool for empowering them by making them able to feed themselves autonomously

without the need of a second person. A user being fed by a robot is depicted in Figure 1.2.

Figure 1.2: An example of robotic assistive feeding.

1.3 Considered scenarios 7

Challenges

Assistive feeding with a robot involves many elements that could result in potential dangers for

the user. Therefore, the following challenges can be found:

- Cutlery insertion: Feeding requires to insert the food, which is usually attached to some

piece of cutlery, inside of the user’s mouth.

- Potentially harmful tools: The act of eating requires many sharp tools such as knives or

forks, which could tear the skin of the user and cause serious injuries. And, as they need

to be inserted in the user’s mouth, this makes it easier to have potential impacts with the

tool.

- Sudden movements: Due to the items above, a sudden movement, be it voluntary or

spasmodic, may hinder the task.

- Precision: The food must be inserted in the user’s mouth. Failure to do so in a precise

manner may cause food spilling or harm the user.

- Forces: Potential unavoidable impacts should exert the least possible forces while keeping

the required precision. Similarly, forces should not be applied when the feeding utensil is

retained by the user.

- Food perception: Needed to detect the food to get and how much food is left.

- Food manipulation: Getting food from a plate requires some dexterity, as well as semantic

knowledge on cutlery and how to use it. It also requires strategies on how to group and

scoop different kinds of food, and strategies to insert the food in the user’s mouth.

Considerations and assumptions

Given the extreme complexity of the assistive feeding tasks, some simplifications will be consid-

ered in order to research the application of preferences. Firstly, we will usually limit the used

cutlery to a single spoon9. This choice is motivated by the spoon being the least harmful tool,

although it requires a more complex feeding strategy as spoons are usually scooped inside the

mouth to release the food. The use of a spoon also limits the kind of food to be used, which will

be yogurt and cream-like foods. This kind of food makes for an easier strategy for spoon filling

but is more prone to have food spilled so orientations must be taken into account.

9Some of the experiments will use a fork to show utensil adaptation, but otherwise a spoon will be the assumed
setup over all the thesis.

8 Introduction

Moreover, we will not consider the possibility of having sudden or spasmodic movements,

so we will assume a fixed head position. This option would require the ability to predict such

movements and reacting accordingly. Although interesting, it falls out of the scope of this thesis.

Still, these considerations will not hinder the addition of preferences to the task and adapt

the behavior of the robot to the specific user needs in such an important task as feeding oneself.

1.3.2 Shoe fitting

Some older adults and people with reduced mobility may find very difficult to put their shoes

on by themselves. This happens because self-fitting a shoe requires some mobility as well as

flexibility in order to reach the foot with the hands.

Moreover, shoe fitting is essential to provide movement autonomy for people who can walk

by themselves (with or without the help of other support tools), but need to wear shoes to do

so. Therefore, the inability to self-fit a shoe may provoke the user to wait for an assistant to

help them perform the task before they can walk and move autonomously. However, shoe fitting

is not only useful for people able to walk but also to protect the feet against cold and other

potential harms.

Accordingly, helping a dependent user to fit a shoe without the need of an external person

would greatly improve their autonomy, and an autonomous robot could be the perfect tool to

do so. An example of assistive shoe fitting by a robot is shown in Figure 1.3.

Challenges

Shoe fitting is a challenging task per se. The main challenges being:

Figure 1.3: An example of robotic shoe fitting.

1.3 Considered scenarios 9

- Shoe type: A key factor for shoe fitting is the shoe type. Shoes may be of many different

kinds and shapes, with different levels of flexibility and different fitting strategies.

- Precision: An imprecise fitting may leave some toes outside of the shoe, resulting in a

harmful and uncomfortable situation.

- Forces: Shoe fitting requires some amount of force to successfully push the shoe until the

end and provide a complete fit. However, too much force could be dangerous for the user

or make him/her feel uncomfortable. It could also provoke an unwanted movement in the

user’s foot.

- User movement: The user may move the foot while the robot is performing the task. This

means that the robot movement may fail to meet the foot. Even worse, the robot may

collide with the user due to these unexpected movements.

Considerations and assumptions

Given the presented challenges, some considerations need to be made in order to safely tackle

the scenario. First of all, we have fixed the shoe type. We have selected to fit CrocsTM-like shoes,

which are easy to fit. They are a kind of slippers, which do not have the problem of needing

to fit the heel of the shoe, easing the task and the robot movement. In this manner, the task

can be performed with a single-arm robot. Moreover, this kind of shoes are lace-less. Tying the

shoelaces would require a level of dexterity and precision that poses a big research topic, and is

out of the scope of this thesis.

This shoe type also reduces the needed amount of force to fit the shoe, as the heel does

not have to be fixed. This also affects the precision, as the design of this shoe allows for easier

insertion.

This scenario is a crucial one, and it is a good setting to develop different preferences to

adapt the robot behavior. With the considerations defined above along with the use of compliant

controllers, the task can be performed in a safe manner.

1.3.3 Assisted jacket dressing

Dressing capacity is another crucial need of any human being. Dressing protects us from the

weather’s harshness and also used for modesty, in order to comply with society’s code of decency.

Therefore, a need for assistance for dressing may imply not only a loss of independence when

users need to wait for help to get dressed and leave the house but also as a loss of privacy, as

they may need to get dressed and undressed in front of other people.

10 Introduction

Figure 1.4: An example of robotic jacket dressing.

People with upper-limb mobility issues tend to find difficult to dress by themselves. Dressing,

in general, requires at least some arm mobility in order to handle the clothes and fit them. But

in the specific case of dressing the upper-body, this is even more clear as arms need to be moved

in some specific poses to successfully fit a particular garment.

There are two main kinds of upper-body garments. One consists of T-shirt like clothes, which

only have openings for the head and the arms. This kind of clothes is more limited in the ways

they can be fit, as there are not many possibilities. The others are open shirts or jackets that

close at the front with buttons or zippers. In this second case, there are more options to fit the

garment. One could start with one arm or the other, or both together. The needed movements

and abilities of the user are also different depending on how has the task started.

Therefore, we will focus on the case of jackets and shirts that provide many different ways

of dressing the user, being these ways constrained by his/her own abilities and preferences.

Figure 1.4 shows an example of jacket dressing with the help of a robot.

Challenges

Similarly to the shoe fitting case, many challenges are observed in the jacket dressing task.

- Deformable garments: Clothes are flexible objects and highly deformable. For this

reason, it is difficult to perform state estimation, grasping, and manipulation; being those

big open research topics.

- Need for bi-manual manipulation: While some kind of shoes can be fitted with a single

hand, fitting a jacket requires at least two hands to correctly hold and fit the garment to

the user.

1.3 Considered scenarios 11

- Need for user collaboration: It is essential to have a small amount of collaboration in

terms of small movements in order to dress the jacket. Otherwise, the user’s arms would

need to be moved externally, making the task more complex.

- Related limbs: Fitting one arm depends on how has the other been fitted. In a dependency

scenario like this one, the insertion order of the sleeves may matter, as one arm can have

more mobility than another, or moving one arm can be harmful or difficult for the user.

Therefore, there are different strategies based on the user’s abilities and limitations.

- Forces: Although assisted jacket dressing does not require pushing forces against the user,

the garment may get stuck while fitting, which may cause indirect forces applied to the

user or undesired movements of the user’s hands. Given that the limbs are related, this

can cause dangerous situations when fitting one sleeve having the other one stuck.

- Precision: The sleeves opening must be precisely approached to the hands of the user to

start the fitting. Failure to do so could cause the sleeve to get stuck in the arm, although

this situation should not be as severe as in the shoe case.

Considerations and assumptions

Due to the number of research challenges present in this scenario, some assumptions have been

made. To start with, we will consider the initial state to have the garment correctly grasped.

This allows an abstraction from the grasping and garment detection tasks, which are research

challenges on their own, and out of the scope of the thesis.

The garment to be fitted has been selected to be a jacket, against other clothes such as T-

shirts. This is mainly due to jacket dressing being less intrusive, and therefore less dangerous

for test subjects. A T-shirt dressing scenario would include movements that sometimes are close

to the head or other vital parts. Moreover, T-shirts are more complex to fit and easier to misfit

or get stuck. Lower limb clothes, such as trousers, have not been considered due to the extra

challenges they involve. Some examples are the need for lifting the person when seated or

resting on a bed, and the possibility for the user to lose balance if putting on the trousers while

standing. Therefore, jacket dressing can be performed more safely and will serve as a good

testbed for the proposed algorithms.

Finally, dressing a jacket allows for many different preferences to be added, as well as

different strategies and constraints between the actions to be performed by the robot. For

instance, fitting a sleeve constraints how can the other sleeve be fitted, as moving the garment

would force the already fitted hand.

12 Introduction

1.4 Outline

Robot

Trajectory
adaptation

Chapter 2

Behavior
Adaptation

Chapter 4

User
Model

Chapter 4

Preferences
Chapter 3

HRI
Chapter 7

Preference suggestions
Chapter 6

Two-level
adaptation

Chapter 5

User

Figure 1.5: Graphical outline of the thesis.

The thesis has been organized as follows. Figure 1.5 shows a graphical outline.

- Chapter 2 presents the FUTE framework for at-home robot personalization and show its

applicability in adapting the robot trajectories in a feeding task.

- Chapter 3 is devoted to define what can be considered as preferences for Physically As-

sistive Robots. It introduces a taxonomy of preferences that provides a wide definition

and classification of them and shows how can those be integrated with the personalization

framework. Some examples of its applicability are described with a use-case and puts

them in the context of the FUTE framework.

- Chapter 4 proposes algorithms for behavior adaptation of the robot in a planning environ-

ment. The method creates a user model with a Fuzzy Inference System and uses it to guide

the planner to select the best actions for the user. Such actions are chosen by the planner

depending on some preferences extracted from the taxonomy defined in Chapter 3. After

each task execution, the outcome of the task is used along with the feedback from the user

to re-balance the task. For it, the action-outcome probabilities and the preference-related

1.4 Outline 13

costs are updated to favor the observations of the execution. We evaluate the methods in

a shoe-fitting task, both with simulated and real experiments.

- Chapter 5 demonstrates how the use of the planning techniques can be joined with “smart”

low-level controllers for more efficient and robust task design. We show its applicability to

a shoe-fitting scenario and demonstrate how some robustness arises when this approach

is used, which can solve untaught situations. We also argue how this union of concepts al-

lows for easier demonstrations and domain description, lowering the system’s complexity.

This is linked with all the steps of the FUTE framework.

- Chapter 6 introduces a novel algorithm for providing suggestions in planning. To do

so, an extension to the ROSPlan framework has been proposed to ease the use of more

expressive language like RDDL. This allows us to express a richer reward function that

involves the preferences and the actions to provide the suggestions. Such suggestions are

predicates that improve the total task performance when available. This task performance

is measured in terms of the total reward of the plan. We show how this method can be

used to provide preference suggestions even when some preferences are already grounded,

and even provide change suggestions to the user. The system is evaluated in simulated

experiments in three Physically Assistive Robotics tasks.

- Chapter 7 analyzes the use of the preferences proposed in Chapter 3 and the other adap-

tation methods through task planning in a user study. We evaluate the user’s ability to

determine in which executions their own chosen preferences are used, and whether they

can distinguish the changes in the robot’s behavior produced by such preferences. The

study gives insights on the impact of said preferences in the assistive robotics tasks, and

show promising results on the use of behavior adaptation for effective assistance.

- Chapter 8 provides the conclusions to this thesis with some of the future work and direc-

tions of the research proposed in the thesis.

Appendices

- Appendix A presents the list of academic publications resulting of this thesis.

- Appendix B analyzes some safety strategies for physical Human-Robot Interaction.

- Appendix C shows some experiments to support the use of probabilistic planning in robotics

using the ROSPlan extensions described in Chapter 6.

- Appendix D transcribes the questionnaire used to evaluate the user study performed in

Chapter 7.

2
Personal assistive robots for non-technical users

This chapter presents a robot behavior personalization framework focused on assistive tasks.

The framework defines a three-step methodology to guide the development of adaptive and

personalized assistive tasks, and more specifically the physical ones. A demonstration of the

framework’s use is provided in the context of feeding assistance, showing how physical adapta-

tions can be performed by untrained users.

This work has been published in [6].

2.1 Introduction

Robot adaptation is especially useful in cases of users in need of assistance. Such users, with their

own limitations, are usually unable of controlling or adapting a robot to suit their needs. And

this vulnerability may hinder the use of such assistive devices, making them unusable. However,

it is not clear how the process of personalization should be performed. We envisage the robot

acquisition process as the robot being built, programmed, and shipped to a hypothetical user’s

home. However, personalizing the robot at building time or programming time is hard and

costly, and the users may not still know their actual needs. But doing it at home may not be

viable for dependent and possibly non-technical users.

In this chapter, we propose a novel Robot Personalization framework named FUTE (detailed

in Section 2.3), that takes into account the user and allows concrete adaptation of generic pre-

trained skills. In our framework, the robot is pre-trained at the factory with a set of abilities.

Afterward, when it arrives at the user’s home, a non-expert teacher (the user itself or a caregiver)

must have the freedom to adapt such skills to his/her preferences, or even teach the robot new

ones.

Second, we explore how to perform this training by using Learning-by-Demonstration tech-

niques combined with a compliant robot controller [20]. We propose two interaction strategies:

16 Personal assistive robots for non-technical users

the teacher intervening in the robot motion, and the demonstration of a completely new trajec-

tory.

In the third place, we test the applicability of the proposed FUTE framework in an assistive

task consisting of feeding a person. As feeding can be very complex, we focus on a specific

aspect: how the robot approaches the cutlery to feed the person (see Figure 2.1). We will show

how our system can extract the relevant aspects of the feeding task. Observe that, depending

on the mobility and preferences of the user, the robot must wait with the food at some distance

or introduce the food inside the mouth. Moreover, the feeding motion has to be adapted to the

kind of food, for example, yogurt or fries as seen in Figure 2.1b.

(a) Caregiver personalizing a spoon feeding skill. (b) A user eating from a fork.

Figure 2.1: Assistive personalized feeding application example.

2.2 Related work

Personalized Human-Robot Interaction has been studied in different works and fields. In educa-

tion, it has been applied to Socially Assistive Robot (SAR) tutors that support the teaching task

[21–23]. Baraka and Veloso [24] define three user models to adapt the luminous interactions

between a robot and the user over time, learning the model parameters from user feedback.

Personalized collaboration is shown in Fiore et al. [25], where an object manipulation task is

performed jointly by the robot and the user whose preferences are taken into account. Abdo

et al. [26] predict user preferences to tidy up objects in containers using collaborative filtering

based on crowdsourced data and the observations of current dispositions or by querying the

user. Although this strategy seems good for the tidying up task, it would not suit to capture

the user preferences in an interaction context such as ours. Chernova and Veloso [27] present

the Confidence-Based Autonomy (CBA) algorithm, which enables the agent to request demon-

strations from a human teacher, and allows him to correct further mistakes with additional

demonstrations. The idea is similar to the User Tailoring one, though they apply it to improve

2.3 The FUTE Personalization Framework 17

the policy rather than to adapt a well-learned task to a specific user. A framework to learn and

generalize complex tasks from unstructured demonstrations is proposed in Niekum et al. [28].

The method is able to recognize repeated instances of skills and generalize them to new settings.

Similarly, learning from demonstration has been used by Lawitzky et al. [29] to provide physical

robotic assistance such as object maneuvering.

In addition, more in the scope of this thesis, personalized dressing assistance is performed

by Gao et al. [30], where a user’s movement space is modelled and used to put on a sleeveless

jacket. Similarly, Klee [31] assist a user to place a hat in a collaborative way by means of asking

the user to reposition itself when some user specific constraints do not hold. However, the

personalization they propose consists in adapting to the user state or pose, but do not allow the

user to modify the way in which the assistance will be carried out.

Moreover, we will apply the personalized interaction to the feeding scenario. Assistive

feeding devices have been around for a while, mainly due to the evident need that some

individuals have. Devices such as SECOM’s MySpoon [32, 33] or the Handy 1 [34], among

others, can provide significant help to allow people with upper limb disabilities to eat in a more

autonomous manner.

Nonetheless, these systems lack the ability to adapt to the needs of each specific user. And,

in cases of people with disabilities, this is a key factor for the system to be actually helpful in

different kinds of environment, in which there is a handful of ways of assisting in the eating

task, as often pointed out by long-term care nurses.

2.3 The FUTE Personalization Framework

We present a three-phase framework, the “FUTE framework”, to design and develop, among

others, the kind of adaptive assistive applications described in Section 1.3. The three phases are

called “Factory setting”, “User Tailoring” and “Execution tuning”. They are depicted in Figure 2.2

and described as:

1. Factory setting: the robot is provided with the skills needed to perform the assistive task

in a generic way. This would suit either the design of a new robot or the enhancement of

an existing platform to carry out a new task.

2. User Tailoring (the focus of this thesis): This second phase takes place in the user’s home.

The robot performs a nominal skill, but personalization is encouraged in order to adapt

its behavior to the user needs. In this phase, the robot should acquire, as automatically

as possible, information about how the task has to be done for the user at hand while it

performs the task in the generic way. This personalization may be done by the user or

18 Personal assistive robots for non-technical users

by an external agent (such as a carer), and it could be either explicit or implicit. In the

feeding example, this could consist in the selection of the feeding point, it being either

inside or outside the mouth. The data in our implementation include the proprioceptive

robot perception as well as 3D images from a camera located at the hand of the robot

(Figure 2.1).

3. Execution tuning: In this last phase, the robot performs the task designed in the first

phase but taking into account the personalization introduced in the second one. In the

feeding example, the 6D pose of the user can be computed using an RGBD camera and

a face detection algorithm, and the robot trajectories adapted to the current pose of the

user. If the user is not satisfied with the robot behavior, the User Tailoring phase can be

repeated to further adapt the robot’s behavior.

2.4 Experimental assessment: User-Centered Feeding As-

sistance

To build intuition, we illustrate the different aspects of our framework using the robot feeding

application. Eating is one of the most basic physiological needs all human beings have, appear-

ing at the base of Maslow’s hierarchy of needs [19]. However, some people with disabilities

may not be able to do it by themselves, requiring the help of an external agent (usually a

human carer), who will feed them taking into account their needs and capacities. An example

of the complete robotic feeding process is shown in Figure 2.3. To illustrate this, in the following

experiments we tackle two example use-cases in which different personalizations can be applied:

- U1: a person with very limited upper body mobility will require the caregiver to do all the

feeding action. Figure 2.3 exemplifies this case, where the user does not move the neck.

- U2: a different patient with upper limb disabilities may be able to move and eat the food

by himself when it is close enough.

Factory setting User Tailoring Execution tuning

Figure 2.2: The FUTE process.

2.4 Experimental assessment: User-Centered Feeding Assistance 19

(a) Initial position (b) Feeding pose (c) Food ingestion (d) Move away (e) End of feeding

Figure 2.3: Example of a feeding execution for the case of a user with reduced mobility.

The following experiments focus mainly on the evaluation of the robotic system. Therefore,

the user was just instructed to act as described in the two use cases and was there only to obtain

a more realistic situation to analyze the robot trajectories. For an evaluation with real users

refer to Chapter 7.

2.4.1 The Robot Feeding Process

Algorithm 2.1: Feeding execution

1 graspFeedingUtensil() // Grasp a spoon or a fork.

2 repeat
3 pickUpFoodFromPlate()
4 userPose := getHumanPoseFromPerception()
5 moveToInitialPosition(userPose, initialPose)
6 moveUtensilToFeedingPose(userPose, feedingPoint) // Approach the food

7 waitForFoodConsumption()
8 moveAwayFromUser(userPose)
9 until feedingIsComplete() // User has had enough food or plate is empty

Five steps can be identified for the adaptive feeding application (see Algorithm 2.1). In the

context of the proposed framework, steps between lines 1 and 3 would be provided to the robot

during the factory training phase, while steps between lines 6 and 8 would be personalized at

home. Thus, the complete execution is the outcome of joining the already known steps (at the

factory phase) with the personalized ones, resulting in a successful feeding action for a specific

person. The “initialPose” (line 5) and “feedingPoint” (feeding moment of the trajectory,

line line 6) parameters are obtained during the User Tailoring phase, as seen in Algorithm 2.2.

Note that in execution, the user can move freely. A vision system comprised of a low range RGBD

sensor is used to compute their pose, and the robot motion is updated accordingly to obtain the

desired feeding movement. The vision system is also used to detect the moment in which the

user bites the food in the “waitForFoodConsumption” step (line 7).

20 Personal assistive robots for non-technical users

y

x

z

Figure 2.4: Representation of the feeding setup with the trajectory Cartesian coordinate axes.

In this chapter, we will just focus on the steps involving the user (lines 6, 7 and 8 from

Algorithm 2.1), and how they can be personalized to different users1.

The feeding setup used in the experiments can be seen in Figure 2.1a and Figure 2.1b, and

the coordinate axes at the robot’s end-effector are shown in Figure 2.4. In it, the y Cartesian axis

represents the frontal distance to the user, the x axis corresponds to the horizontal displacement

and the z to the vertical one (the feeding height).

2.4.2 Feeding personalization

The User Tailoring strategy for feeding is shown in Algorithm 2.2. It comprises the recording of

N sample trajectories (line 4) including the approaching motion, waiting for the user to start the

consumption, and a receding motion. The N trajectories are then used to learn a Probabilistic

Movement Primitive (ProMP) [35,36] of the feeding movement (line 19). ProMPs are movement

primitives that encode the time-varying variance of a set of trajectories. The state vector yt is

defined as

yt =

 qt

q̇t

 = ΦT
t w + εy, (2.1)

where Φt = [φt, φ̇t] is the time-dependent basis matrix, w is the weight vector and εy ∼ N(0,Σy)

is Gaussian noise. The trajectories can then be represented as a mean trajectory and its variance,

each time point being represented as µt ± σt. New trajectories can be sampled from the

distribution, and via points are defined using the conditioning operator. We have used the

ProMP formalism because, apart from the trajectory itself, as will be seen in Section 2.4.4, it also

provides insights of the particularities of the task by means of the variance along the trajectory.

We would like to assess the impact of variations in the demonstrated trajectories, to provide

1A video showing the process regarding the personalized feeding task can be found at www.iri.upc.edu/
groups/perception/frameworkFUTE.

www.iri.upc.edu/groups/perception/frameworkFUTE
www.iri.upc.edu/groups/perception/frameworkFUTE

2.4 Experimental assessment: User-Centered Feeding Assistance 21

hints to the caregiver demonstrating the task about how similar the N demonstrations should

be. The next experiment tackles use-case U1: introducing the food inside the mouth of the user.

It involves demonstrations using two different feeding paths with a mannequin as user: the first

one in which the carer tried to perform the same trajectory 5 times, and the second set in which

the 5 trajectories had different approaching movements (but with the same feeding point). The

results are shown in Figure 2.5.

Comparing Figures 2.5a and 2.5b it can be seen that the shape of both mean trajectories is

quite alike, both reaching the same feeding position (shaded area, corresponding to the steps

from Figures 2.3b to 2.3d). As a consequence, apparently there is no need to have several

similar trajectories in order to have a good average feeding movement. However, we observe

different variances. In Figure 2.5a variance is almost constant during the whole trajectory, while

in Figure 2.5b variances in the approaching and receding movements are larger, but smaller in

the feeding point. Observe that obtaining this information is crucial, as the robot should act

carefully while feeding the user (lower variance) whereas approaching and receding can exhibit

a more careless behavior (larger variance). Thus, we conclude that showing some variability in

the demonstrated trajectories is important.

Algorithm 2.2: User tailoring strategy

1 demonstrations := ∅ // Will store the new recorded trajectories

2 feedingPoints := ∅ // Time points of each feeding trajectory

3 initialPoses := ∅ // Face pose at the start of each trajectory

4 forall i ∈ {1..N} do
5 if unassistedTraining then // Set one of the two personalization modes

6 SetRobot(gravityCompensationMode)
7 else
8 SetRobot(ReproduceFactoryTrajectory, stiffness)

9 initialPoses := append(getUserFacialPose())
10 newTrajectory := ∅
11 while robotMoving do // Store approaching trajectory

12 addPoints(newTrajectory)

13 waitForFoodConsumption() // Wait until user starts eating

14 feedingPoints := append(currentTrajectoryPoint)
15 while robotMoving do // Store receding trajectory

16 addPoints(newTrajectory)

17 demonstrations := append(newTrajectory)

18 referenceFeedingPoint := alignToFeedingPoint(demonstrations, feedingPoints)
19 personalizedTrajectory := RecomputeProMP(demonstrations)
20 return <personalizedTrajectory, referenceFeedingPoint, avg(initialPoses)>

22 Personal assistive robots for non-technical users

15 30 45 60

0.5

0.6

0.7

0.8

M
e

te
rs

Pose x

Trajectory point
15 30 45 60

-0.5

-0.4

-0.3

Pose y

Trajectory point
15 30 45 60

-0.05

0

0.05

0.1

0.15
Pose z

Trajectory point

15 30 45 60

-0.2

-0.1

0

0.1

R
a

d
ia

n
ts

Orientation x

Trajectory point
15 30 45 60

0.6

0.65

0.7

0.75

Orientation y

Trajectory point
15 30 45 60

-0.15

-0.1

-0.05

0

0.05

Orientation z

Trajectory point

Mean Trajectory Mean Trajectory ± sd Feeding moment

(a) Similar trajectories.

15 30 45 60 75

0.5

0.6

0.7

0.8

M
e

te
rs

Pose x

Trajectory point
15 30 45 60 75

-0.5

-0.4

-0.3

Pose y

Trajectory point
15 30 45 60 75

-0.05

0

0.05

0.1

0.15
Pose z

Trajectory point

15 30 45 60 75

-0.2

-0.1

0

0.1

R
a

d
ia

n
ts

Orientation x

Trajectory point
15 30 45 60 75

0.6

0.65

0.7

0.75

Orientation y

Trajectory point
15 30 45 60 75

-0.15

-0.1

-0.05

0

0.05

Orientation z

Trajectory point

Mean Trajectory Mean Trajectory ± sd Feeding moment

(b) Different trajectories.

Figure 2.5: Comparison between similar and different example trajectories. The thicker line is
the mean trajectory, and the surrounding lines are the mean ± standard deviation. The shaded
regions denote the part of the trajectory in which the food is consumed, corresponding to the
steps shown in Figures 2.3b-2.3d.

2.4 Experimental assessment: User-Centered Feeding Assistance 23

10 20 30 40 50

0.685

0.69

0.695

0.7

0.705

M
e

te
rs

Pose x

Trajectory point
10 20 30 40 50

-0.32

-0.3

-0.28

-0.26

-0.24

Pose y

Trajectory point
10 20 30 40 50

0

0.02

0.04

0.06

0.08

0.1

Pose z

Trajectory point

Stiffness 0.5 Stiffness 1.0 Stiffness 4.0

Mean

Figure 2.6: Mean trajectories generated from a default trajectory with different stiffness values.
The lower the stiffness, the most docile the robot behavior is. Observe the oscillations introduced
when the trajectory is perturbed.

2.4.3 Teaching Modes: Unassisted vs. Compliant Reproduction

Two teaching modes have been defined (Algorithm 2.2 lines 5–8). The first one is unassisted, the

robot only compensates gravity and the caregiver has to start from scratch each demonstration

handling the robot and freely performing a feeding trajectory. This allows the user to discard

the factory settings and re-teach the whole movement. In the second one, the robot executes a

generic feeding trajectory –which was recorded in the factory setting phase– using a compliant

controller [20] that uses a stiffness factor to determine the arm’s stiffness degree.

The next experiment is designed to assess the effect of the stiffness factor. Hence, we

repeated the executions with different stiffness values for the same trajectory where the care-

giver personalized the motion so that the feeding occurred further away from the person (a

mannequin was used in this experiment to avoid noise induced by involuntary movements and

ease the comparison). Here we tackle use-case U2: the trajectory is modified to end outside of

the mouth, for instance for patients some mobility. The results are shown in Figure 2.6.

The intuition says that starting from scratch at every demonstration is harder, whereas if the

robot reproduces the movement in a docile manner the user only has to physically perturb the

execution in some parts and teaching becomes easy. However, as it can be seen in Figure 2.6,

this second approach introduces oscillations of about half a centimeter in the resulting trajectory,

not only in the y axis (the approaching direction) but also in x and z. With low stiffness values

the oscillations tend to be higher as the robot reacts to slighter perturbations as when it tries to

go on with the trajectory and return to the original path and the user holds it again. In contrast,

higher stiffness makes it harder for the user to modify the trajectory, resulting in less oscillations

but more physical effort for the user.

24 Personal assistive robots for non-technical users

2.4.4 Parameter extraction from the learned trajectories

In the next experiment, the modifications that the caregiver can introduce to personalize the

feeding process are (see Algorithm 2.2, lines 9, 17 and 18): the initial pose, the motion shape,

and the feeding point (inside the mouth for use-case U1 or just approaching the food for use-case

U2).

We show how these parameters can be extracted during the User Tailoring phase. First,

the feeding point is computed by recording the distance to the face in which the movement is

stopped to feed the person. Second, the motion learning process captures the particularities of

the task. We exemplify this fact by observing variances of the ProMP trajectory related to two

different utensils: when a spoon is used the orientation is more restricted, while a fork allows

for more flexibility.

In this experiment, the re-teaching has been carried out with the robot holding a spoon with

yogurt and also with a fork pinching a french fry. Five trajectories were recorded in order to

generate the ProMP for each case. A human user was used here as test subject (not a mannequin)

because the insertion orientation was relevant (see Figure 2.1). With this experiment, we can

observe how the particularities of the task are integrated into the ProMP. Figures 2.7a and 2.7b

show the trained trajectories for each Cartesian coordinate and the rotations around each axis,

displaying the mean trajectory and its variance. The figures clearly show the moment in which

the utensil is near the mouth (as seen in the shaded regions), because the variance of the

movement narrows at that stage. This is, in fact, a representation of the flexibility of the

movement, since the critical parts that need more precision are less flexible.

In addition, this variance effect can also be seen in the orientation plots, in which the spoon’s

sample orientation variances are narrower at the beginning of the trajectory to avoid spilling the

content, while the move away part has wider variances as the food has already been taken. The

fork trajectory has less restrictive orientations because there is less danger of dropping food, as

clearly seen in the orientation around the y axis.

Moreover, this gives us insights on how the variance in the trajectory points provided by

the ProMP could also be used to control the compliance (stiffness degree) of the robot during

the trajectory execution phase. This way, the robot would be more docile to external forces in

moments of high variance, corresponding to points of the path that have been taught in non

precise ways, and more rigid in low variance points. Thus, the robot would not react to external

forces while introducing the spoon in the mouth, avoiding any possible harm to the user due to

accidental robot perturbations. Note this should not be applied in the joints interacting with the

user, allowing for docile movement with the mouth but being stiff in external joints such as the

elbow.

2.4 Experimental assessment: User-Centered Feeding Assistance 25

15 30 45 60 75

0.76

0.78

0.8

0.82

0.84

0.86
M

e
te

rs

Pose x

Trajectory point
15 30 45 60 75

-0.15

-0.1

-0.05

0

0.05

0.1

Pose y

Trajectory point
15 30 45 60 75

-0.05

0

0.05

0.1

Pose z

Trajectory point

15 30 45 60 75

-0.2

-0.1

0

0.1

R
a

d
ia

n
ts

Orientation x

Trajectory point
15 30 45 60 75

0.6

0.7

0.8

0.9

Orientation y

Trajectory point
15 30 45 60 75

-0.4

-0.3

-0.2

-0.1

0

Orientation z

Trajectory point

Mean Trajectory Mean Trajectory ± sd Feeding moment

(a) Spoon feeding re-teached ProMP.

5 10 15 20 25 30

0.76

0.78

0.8

0.82

0.84

0.86

M
e
te

rs

Pose x

Trajectory point
5 10 15 20 25 30

-0.15

-0.1

-0.05

0

0.05

0.1

Pose y

Trajectory point
5 10 15 20 25 30

-0.05

0

0.05

0.1

Pose z

Trajectory point

5 10 15 20 25 30

-0.2

-0.1

0

0.1

R
a
d
ia

n
ts

Orientation x

Trajectory point
5 10 15 20 25 30

0.6

0.7

0.8

0.9

Orientation y

Trajectory point
5 10 15 20 25 30

-0.4

-0.3

-0.2

-0.1

0

Orientation z

Trajectory point

Mean Trajectory Mean Trajectory ± sd Feeding moment

(b) Fork feeding re-teached Cartesian ProMP.

Figure 2.7: Learned trajectories for the spoon and fork experiments, where the gravity
compensation mode was used for re-teaching the trajectories.

26 Personal assistive robots for non-technical users

2.5 Summary

In this chapter, we presented the FUTE robot personalization framework consisting of three

phases: Factory setting, User Tailoring, and Execution tuning. This framework has been devised

to help the implementation of assistive applications by allowing easy adaptation of the assistive

robot performance to specific users, given the fact that all of them are different and have their

own special needs. Furthermore, it allows non-expert users to conduct the robot adaptation just

by guiding the robot behavior.

Then, we tested this framework in a feeding application where a human caregiver can

re-teach the feeding movement the robot has to perform, by physically modifying an already

learned trajectory or by teaching it from scratch. This allows the person to teach the feeding

point and distance so it can be either inside or near the mouth. Moreover, we demonstrate how

the use of kinesthetic teaching to learn Movement Primitives, such as the Probabilistic Movement

Primitives (ProMPs), is an appropriate choice for these kinds of assistive applications. These

primitives are able to learn particularities of the task such as the feeding moment as well as the

flexibility of each part of the trajectory.

In this chapter, we have explored the personalization of trajectories, which can be considered

low-level adaptations. In the following chapters the focus will be set in the semantic adaptation

to specific preferences of the user, which we can consider to be high-level adaptations of the

robot.

3
Defining preferences for assistive scenarios

The FUTE framework, presented in the previous chapter, defines a methodology to create per-

sonalized robotic assistants at home and demonstrated its application using the feeding task as

a case study, where the robot is adapted in the low-level trajectories. Although effective, further

adaptation is essential for successfully assisting dependent users. We believe these adaptations

must also consider more abstract concepts such as the ones of user preferences during the

personalization phases. However, this concept of user preferences can be quite broad and thus it

needs to be narrowed down to the case of robots that assists people in the performance of their

ADLs.

In this chapter, we define the concept of preferences for assistive robotics tasks. We do so by

defining a taxonomy of user preferences for assistive scenarios, including physical interactions.

The preferences we consider here are those that may be used to improve robot decision-making

algorithms. The taxonomy categorizes the preferences based on their semantics and possible

uses. We propose the categorization in two levels of application (global and specific) as well as

two types (primary and modifier). Examples of real preference classifications are presented in

the three assistive tasks defined in Section 1.3: assisted feeding, shoe fitting, and jacket dressing.

This work has been published in [12].

3.1 Introduction

Given the number of manners in which assistance can be provided, there is a need for defining

what can determine how the robot performs the task. We believe that user preferences are a

good tool to do so, as knowing what does a person wants or likes allows humans to behave

in accordance and in an acceptable way for the patient. Hence, robots should be able to use

preferences to adapt to their actions. However, the idea of preference may be too fuzzy and

wide for being useful to drive the robot’s behavior, and some grounding of the concepts is

28 Defining preferences for assistive scenarios

needed. Thus, in order for a robot to successfully use preferences, they should be appropriately

defined, structured and categorized.

In this chapter we answer the question of “how can we define and classify preferences?”

in the context of Physically Assistive Robots by defining a taxonomy of user preferences for

Human-Robot Interaction applications1, putting special emphasis on physically assistive scenar-

ios in which the inclusion of these preferences will make a difference. The taxonomy will ease

the definition and classification of the preferences which, written in non-technical language,

facilitate the inclusion of caregivers in the loop of assistive application design. Moreover, the

taxonomy will also be useful to implement preference-based applications that take into account

the different categories. This customization of the applications will allow the adaptation of the

robot’s autonomy from a simple tool to a shared-autonomy system or a fully autonomous robotic

assistant.

When taking into account possible contacts between the person and the robot, we have

identified two loops in the execution of actions: a higher-level decision-making in terms of

finding a sequence of symbolic actions to be performed, and a lower-level one to execute these

actions of the task. We observe that preference specification in the former has received more

attention from the community, while the latter is less explored as it requires the grounding of

the involved symbols. In the presented taxonomy, this has been translated into preferences that

permit guiding action selection (named decision-making preferences) and those that define how

the selected operators are executed (named configuration preferences).

bareFoot shoeInserted shoeFitted

Informed

insert2

insert1

insert3

in
fo

rm

release1

release2

insert2

insert1

insert3

Figure 3.1: Graphical example of decision-making (blue) and configuration preferences (yellow):
in this action-sequence flow for the shoe-fitting task, represented as a FSA where the arrows
represent the actions executed to change the state, decision-making preferences aid to choose
among alternative paths, while the configuration ones help to tune action parameters.

1The taxonomy could also be used to define preferences in a more generic assistance scenario with a human
caregiver and a patient, but in this thesis we are mainly focused in the HRI scenario.

3.2 Related work 29

In Figure 3.1 we exemplify different states in the shoe fitting task along with some state

transition actions. For the sake of simplicity of the example, we can imagine that the robot has

only three shoe insertion actions and two shoe release operations available, and it can inform

the user before inserting the shoe using any of the three available actions. The selection of the

action to be performed (whether it has to inform or which insertion should it use) is based on the

decision-making preferences (marked in blue), while the configuration preferences define how

–with which parameters– the selected action is to be performed (depicted in yellow). Therefore,

decision-making happens before the action execution, while configuration affects the action

while it is being executed. A resulting action sequence example in this scenario is [insert1,

release1], but the robot may also inform before doing the same execution, thus resulting in

an action sequence of the form [inform, insert1, release1].

3.2 Related work

Preferences are a central problem in decision making. As an example, a comprehensive survey

that reviews the different alternatives for modeling and using preferences in Artificial Intelli-

gence was published by Pigozzi et al. [37].

Preferences in planning

The planning community has focused on the use of preferences in different manners. For

instance, Preference-Based Planning (PBP) [38] is an extension of classical planning where a

criterion is provided to select one plan among other valid plans based on user preferences.

Hierarchical Task Networks (HTNs) have been also used to encode user preferences [39]. In

HTNs, a hierarchy of non-primitive actions is provided along with a set of methods to decompose

them into primitive actions. The manual construction of HTNs indirectly encodes the user

preferences, but is complex, error prone, and preferences are not always explicitly stated.

Unfortunately, these works do not consider particular problems that appear in robotics and

physical interaction.

The Planning Domain Description Language (PDDL) is often used to describe planning

domains. PDDL3 [40] was the first version to define the preference construct, which allows

to describe three types of preferences. The temporally extended preferences consist in desirable

temporal relationships, the precondition preferences are atemporal formulae that should hold

true in the state in which an action is to be performed, and the simple –also called goal–

preferences are conditions that should hold in the final state. Sohrabi et al. [41] address the

generation of preferred plans by extending the PDDL3 language to handle preferences over

30 Defining preferences for assistive scenarios

HTN constructs, supporting desires on how the tasks are decomposed.

Son and Pontelli [42] divide the preferences in different categories: preferences about a state

define the preferred properties to hold in a state; preferences about an action describe actions

that are preferred; preferences about a trajectory define preferred properties over sequences of

actions; finally, multi-dimensional preferences consist in a set of preferences and an ordering

among them. The authors introduce the language PP for planning preferences specification

and subdivide the preferences in basic desires, atomic preferences and general preferences.

Although this categorization is suitable for planning and other problem solving tasks, we find

it is not sufficient to define a set of preferences for physical interactions [43]. In our case, we

propose a hierarchical taxonomy in which preferences are categorized by function and type.

Taxonomies in Human-Robot Interaction

Taxonomies allow the description and classification of concepts involved in a domain, organized

in a structured manner. In robotics, their usefulness has been demonstrated by the different tax-

onomies that have been proposed in the literature, with some of them related to the interaction

and its social aspects.

A taxonomy for Human-Robot Interaction was proposed by Yanco and Drury [44] that allows

to express elements such as: the social nature of the task, its type, the robot morphology and

the interaction roles between teams of humans and robots. The taxonomy, however, does not

include elements related to the preferences of the user but rather focuses on the interaction

scenario.

Krauss and Arbanowski [45] build a social preference ontology to tackle typical issues of

recommender systems, such as the cold start and the sparsity problems. The ontology represents

topics the user is interested in along with a numerical score, and is filled up with information

mined from social networks. Being task-specific, these ontologies do not suit our assistive

robotics scenario as they lack the semantics specific to the personal satisfaction domain.

Bastemeijer et al. [46] define a taxonomy of the concepts patients value in health care based

on a thorough literature review of several studies. They define three top-level categories: patient

and personal context, the characteristics of the professional and the interaction between the

patient and the professional. The key elements inside these categories are: uniqueness, auton-

omy, compassion, professionalism, responsiveness, partnership and empowerment. Although

the elements they define could well suit our scenario, their concepts relate to general health

care and patient’s feelings, while our proposal is focused on defining key aspects of the behavior

of the (robotic) assistant in the physical assistance environment.

A framework for levels of autonomy (LoA) is proposed alongside with a 10-point taxonomy

in [47]. The taxonomy specifies each level of autonomy from the perspective of the human-robot

3.3 A Taxonomy of preferences for Assistive Human-Robot Interaction 31

interactions and the roles they play, and divides the HRI variables in robot-related, social, and

human-related. We can link this definition of LoA to our proposal of preference categorization,

as the set of values of the preferences can be used to determine the resulting LoA: from “shared

control with human initiative” or “shared control with robot initiative” to “full autonomy”.

Regarding social aspects of interaction, Peng et al. [48] propose a hierarchical taxonomy for

robotic dance. Shim and Arkin [49] define a taxonomy of robot deception for HRI contexts.

Wiltshire et al. [50] propose a taxonomy of social signals from an interdisciplinary point of

view. They categorize five social cues that can be extracted to predict social signals. However,

although they may look similar in some aspects, their taxonomy is presented to categorize the

human behavior’s rather than the robot’s as we intend in our proposal.

Fong et al. [51] present a taxonomy of design methods, system components and applica-

tions for socially interactive robots, but preferences were not yet included. There exist other

general robotics ontologies, such as KnowRob [52], which provide robots with knowledge of

the environment, the actions, the tasks and mathematical concepts, and may be extended with

information about preferences.

The concept of preference tends to be quite application-specific, as the reviewed works

show. Though there are taxonomies for social robotics, they are still not enough to categorize

the user preferences regarding the robot’s behavior, which we are dealing with in this work.

More specifically, we define the preferences for assistive tasks in robotics, taking inspiration

from the commented works such as [51], and directly including the Big Five personality traits

ontology [53] where personality is described based on five traits: extraversion, agreeableness,

conscientiousness, neuroticism and openness.

3.3 A Taxonomy of preferences for Assistive Human-Robot

Interaction

In this section, we present a hierarchical taxonomy of user preference categories designed for

Human-Robot Interaction applications, with emphasis on assistive scenarios where the robot

aids users facing difficulties to perform Activities of Daily Living (ADLs). The taxonomy has been

developed based on previous experiences, intuition and comments from health care providers

and potential users, and motivated by the need to classify preferences in order to use them. To

maintain generality, we do not distinguish between preferences and user constraints (such as

mobility issues), as the latter can be expressed as a preference. For instance, a user who cannot

move the right arm will “prefer” not to use this arm. Encoding impairments as preferences

allows us to present a less limited taxonomy as there is no need to separate similar preferences

32 Defining preferences for assistive scenarios

and impairments in different categories. The proposed taxonomy has been designed with the

main goal of describing preferences that are useful for an autonomous system to make decisions

in an assistive scenario, either physical or social. Although it is not necessarily complete and

may be extended, we believe it’s general and representative enough to cover a broad range of

assistive tasks and scenarios, if not all.

Preference

Decision-Making

Communication

Information
providing

When
needed

Randomly

Always

Information
obtaining

Petitions

Contextual

Task

Cognitive Motor

Right arm
impairment

Left-handed

Personal
tastes

Environment

Moment

Morning

Afternoon

Night

Company

Caregiver

Family
member

None

Location

Kitchen

Dining room

Bedroom

Bathroom

Configuration

Physical

Proxemic Temporal Speed

Slow

Medium

Quick

Force

Social
behavior

Extraversion

Agreeableness

Conscientiousness

Neuroticism

OpennessLegend:
DM preferences
Primary preferences Modifier preferences

C preferences

Figure 3.2: Preference taxonomy for assistive physical Human-Robot Interaction.

To begin with, we define two types of preferences: the primary preferences and the modifier

ones. The former are preferences that are directly applicable, while the latter are used to

accompany the primary preferences and modify them, effectively conditioning their applicability.

The proposed taxonomy is divided into two main category groups: the decision-making and

the configuration preferences (Figure 3.2). The Decision-making (DM) preferences are those that

help the robot to choose between the different actions that it can execute at a given moment,

provided that they all lead to the final goal (see left branch of Figure 3.2). DM preferences are in

turn divided into two categories, which are again subdivided into more fine-grained preference

types:

- Communication preferences regulate the desired amount of different kinds of interaction

with the robot. They are subdivided as:

– Information providing: whether the robot should inform regarding each performed

action or should omit unimportant information. It relates to the verbosity of the robot.

– Information obtaining: define if the user prefers the robot to inquire about missing

information or either it should try to infer it from other sources.

3.3 A Taxonomy of preferences for Assistive Human-Robot Interaction 33

– Petitions: state if the robot should ask the user to perform some action (such as

repositioning himself to ease the solution of a task) or if the robot should risk to

accomplish the task without bothering the user, provided that no safety issue can

arise at any moment.

- Contextual preferences define how the robot’s behavior may change depending on the

execution context, it being defined as the user’s environment, place and time. We define

four subcategories:

– Task: state preferences that have implications about the task that is being performed.

They may define general user constraints (such as limited right arm mobility) or

simple preferences such as how is more comfortable to scoop the spoon when eating.

They may be subdivided in:

∗ Cognitive preferences related to cognitive disabilities of the user.

∗ Motor constraints of the user which may limit the task.

∗ Personal tastes are other personal needs and desires.

– Environment: preferences regarding the execution setting. They are mainly modifier

preferences (see Figure 3.2) that accompany primary preferences and limit their

application range. We propose a subdivision in three categories:

∗ Moment: define the time of the day in which the task is executed, thus pref-

erences may vary depending on, for instance, whether the task is performed in

the morning or at night as the state of the person may be different regarding

tiredness and mood.

∗ Company: preferences concerning the personal elements that are in the environ-

ment. User preferences with the robot may be different when a caregiver is also

assisting the user in contrast to when a family member is doing so. Besides, the

preferences will be others when the user is alone with the robot, given that he

may need more support in that case.

∗ Location: the preferences related to the location where the user is situated. User

preferences may change depending on where the task is being executed. For

instance, it may not be the same to fit a shoe while seating on the bed than

fitting a slipper while resting on the coach.

On the other hand, configuration (C) preferences (see right branch of Figure 3.2) are those

preferences that define how an action is to be performed. They are used to tune the parameters

of the actions rather than choosing the action sequence that is going to be executed to solve the

task. Configuration preferences are also divided into two categories:

34 Defining preferences for assistive scenarios

- Physical preferences define the physical properties of the (physical) actions. These include:

– Proxemic: relate to the spatial requirements of the user, the robot and the task.

– Temporal: define temporal requirements of the user and the task. For instance, the

user may prefer to not have the foot lifted for more than one minute.

– Speed: specify how quick or slow the user wants the robot to move. This relates

to the feeling of safety, as the user may get scared if the robot makes sudden fast

movements, but may also get impatient when the movements are too slow.

– Force: some tasks, such as shoe fitting, require pressure against some body parts. The

applied force may be limited based on user desires and abilities.

- Social behavior preferences somehow characterize the robot’s personality. Following the

definition of [51], here we link our taxonomy with the Big Five personality trait taxon-

omy [53] which describes personality in terms of five traits (extraversion, agreeableness,

conscientiousness, neuroticism and openness). With these preferences, the user can define

personality-based items. Other elements that could be included as social behavior prefer-

ences are the kind of voice, tone, formality level, prose and detail level of the interactive

acts.

The proposed taxonomy allows us to define user preferences for Human-Robot Interaction

tasks, and more specifically, for Physically Assistive Robots (PAR) to help older adults and

handicapped people. However, future assistive robots should be able to perform more than one

assistive task. Thus, there is a lot of redundancy when instantiating the preference taxonomy

for every specific task. For instance, a user who prefers the robot to move slowly while fitting a

shoe will probably prefer it to be slow when dressing a jacket. Or he may have reduced mobility

in his right arm, which implies that the user will need special assistance to perform any activity

involving this arm. To solve this redundancy, and to ease the description of the preferences, we

propose to define them in a two-level manner:

- Global preferences, are those that are applicable to most tasks. They define generic user

preferences and personal constraints which may be used in any setup.

- Specific preferences define activity-related preferences. They only apply to certain cases

and during the execution of specific tasks.

Note that we do not restrict the possibility of specific preferences including elements that are

already present in the global preferences, and they may even be in conflict by stating opposing

elements. We tackle this by setting an importance level in which specific preferences take over

3.4 Preference definition examples 35

(a) Feeding assistance. (b) Jacket dressing assistance. (c) Shoe fitting assistance.

Figure 3.3: Physically Assistive Robot (PAR) application examples.

the global preferences when a conflict arises. In this way, a specific preference of the same kind

of a global preference overrides it, allowing the user to have task-specific tastes without the need

of repeating a general desire for every task.

Given that PAR are actually touching the human users, safety-related preferences are not

taken into consideration. We believe that a Physically Assistive Robot must be safe out-of-the-

box, and the user shouldn’t be able to modify the safety level. Though strict, this restriction

leads to the development of intrinsically safe systems which must not try to perform any action

that may potentially hurt a person cohabiting the robot’s environment.

3.4 Preference definition examples

This section illustrates how the taxonomy can be instantiated for the different Physically Assis-

tive tasks as the ones shown in Figure 3.3, consisting in feeding, jacket dressing and shoe fitting.

To do so, we will define a fictional persona [54] and instantiate her preferences:

— Aunt Mery is an 80 years old granny who lives alone. Although she’s healthy, she is suffering

from lower back pain and recovering from a fracture in her right arm. Due to these issues,

she needs help to carry out some ADLs such as putting shoes on, dressing a jacket to go to the

therapist or eating. Thus, a Physically Assistive Robot will help her to maintain some autonomy

while she is recovering.

Table 3.1 shows the global preferences, which are applicable to any task. Tables 3.2, 3.3

and 3.4 show the (specific) preferences for the jacket dressing, shoe fitting and feeding tasks,

respectively. The “textual definition” column represents what Aunt Mery would say to describe

each preference. The specific preferences that override a global preference are marked with an

36 Defining preferences for assistive scenarios

asterisk (*). Note that when two specific preferences collide due to an additional modifier pref-

erence, the modified preference precedes the other ones, provided that the modifying condition

holds. For instance, Mery prefers to eat slowly in the morning, though a medium velocity (global

preference, Table 3.1) is better for any other time of the day (Table 3.4). Also, she cannot wait

for more than thirty seconds with the foot lifted when she is alone, but she can hold it up for a

minute when there’s a family member helping her (Table 3.3). When dressing a coat, a normal

force is fine during most of the task (Table 3.2), however she prefers the robot to apply less force

when the injured right arm is being dressed. Nevertheless, she prefers to start with the left foot

when fitting a shoe (Table 3.3), but the right arm is chosen when dressing a jacket (Table 3.2).

The tables demonstrate how, even though some assistive tasks may look similar, the taxonomy

allows to freely define different preferences regarding the same task-depending aspects.

Category Primary Modifier Textual definition

Speed Medium
“I generally don’t want the robot to move

fast nor slow”
Information
Providing

Always “I prefer that the robot talks to me”

Petitions Minimum
“I prefer the robot to assist me without

bothering”
Social

Behavior
Informal and funny “I like robots that make jokes”

Social
Behavior

Formal and polite not(Company/None)
“I want the robot to be polite when I am

not alone”

Table 3.1: Example of Aunt Mery’s global (task independent) preferences.

Category Primary Modifier Textual definition

Motor

Right arm first
“The right arm is injured so it’s easier to

put it first”

Both arms together Company/Caregiver
“With the help of the caregiver it’s easier

to put on both arms together”

Lateral trajectory
“I like it more when the jacket dressing is

started from one side”

Start position low
“The robot should start from a low

position for easier dressing”

Force
Low Moment/Putting the right sleeve

“The injured arm can’t take much
pressure”

Normal
“I prefer the robot not to use too much

force when dressing me”

Table 3.2: Examples of Aunt Mery’s preferences for the jacket dressing task.

3.5 Summary 37

Category Primary Modifier Textual definition

Speed Slow* Moment/Night
“I prefer to fit the shoe slower at night as I

am more tired”

Motor
Left foot first

“It’s more comfortable to put on the left
foot first”

Straight foot
“I don’t feel comfortable with the foot

turned”

Left approach
“It’s better if the robot approaches for the

left”

Petitions Sometimes* Company/Caregiver
“The Caregiver helps me understand the

robot and how to reposition myself”
Information
providing

None* Company/Caregiver
“The caregiver already gives me enough

information”

Temporal
30 sec. lifted

“I can’t hold the foot lifted for much time
when I’m alone”

1 min. lifted Company/Family member
“They help me hold on with the lifted

foot”

Table 3.3: Examples of Aunt Mery’s preferences for the shoe fitting task.

Category Primary Modifier Textual definition

Speed Slow* Moment/Morning “I like to take my breakfast calmly”
Motor/

Proxemic
Outside feed

“I can’t move the spoon but I don’t need
the robot to insert it in my mouth”

Motor
Straight scooping

“I don’t want the robot to move much
when I’m biting the spoon”

Left-side approach Location/Kitchen
“I’m more comfortable when the robot is

in the left side”

Right-side approach Location/Dining room
“In the dining room I feel better when the

robot is in my right side”
Personal

tastes
Low temperature “I prefer to wait until the food is cooler”

Information
providing

High* Company/None
“I feel more accompanied when the robot

talks while eating alone”
Information
obtaining

Only when needed
“I don’t like to answer questions while

eating”

Cognitive Remind after lunch pills Moment/Afternoon
“I don’t want to forget to take my

medicine”

Table 3.4: Examples of Aunt Mery’s preferences for the feeding task.

3.5 Summary

In this chapter, we have presented a taxonomy of preferences for assistive scenarios. The

taxonomy allows categorizing the preferences the user may have regarding the behavior of

the assistant during the task that is to be carried out. The preferences are first divided into the

decision-making and configuration categories, depending on whether they are used to choose

38 Defining preferences for assistive scenarios

which action to perform or configure the action that is being executed. Moreover, some of

the preferences, called “modifier preferences”, are used to modify the applicability of other

preferences. Finally, redundancies in the expression of the preferences are avoided with the

definition of global preferences and task-specific preferences. The taxonomy can be useful

to define user preferences in a structured way, which can then be used for assistive robotics

applications, and more specifically, for those entailing physical interaction. We have exemplified

the use of the taxonomy with a user persona whose preferences have been explicitly defined for

the tasks of feeding and dressing.

With the proposed taxonomy, have defined what is considered as a preference, and it allows

for richer adaptation during the User Tailoring and Execution tuning phases of the FUTE frame-

work defined in Chapter 2. The taxonomy would be instantiated with the user preferences

during the User Tailoring, while the Execution tuning would use them to modify the user

behavior.

4
Planning techniques for robot behavior adaptation

Having defined in the previous chapter the kind of preferences we will consider, we will now

focus on how can such preferences be used to model the user and modify the robot behavior

to suit such preferences, adapting to the user over time even when the user preferences were

misinterpreted.

Towards this goal, we propose a method to perform behavior adaptation to the user pref-

erences, using symbolic task planning. A user model is built from the user’s answers to simple

questions with a Fuzzy Inference System (FIS), and it is then integrated into the planning do-

main. We describe an adaptation method based on both the user satisfaction and the execution

outcome, depending on which penalizations are applied to the planner’s rules. We demonstrate

the application of the adaptation method in a simple shoe-fitting scenario, with experiments

performed in a simulated user environment. The results show quick behavior adaptation, even

when the user behavior changes, as well as robustness to a wrong inference of the initial user

model. Finally, some insights in a non-simulated real-world shoe-fitting setup are also provided.

This work has been published in [13].

4.1 Introduction

The adaptation of the robot behavior to a user requires to know some details of the user to which

they adapt to. Then those details must be used to guide the robot actions to those that best suit

the user. Therefore, many challenges are involved in the adaptation process as the user may not

be able to assess which are their preferences or needs and, even if it does, those preferences may

be over or underestimated. This means that the robot does not only need to behave according to

the preferences but also re-adapt them in case of an imprecise setting of the values. Moreover,

how to acquire and use such user preferences still remains an open question.

In this chapter, we propose a method to obtain the actions preferred by the user to then

40 Planning techniques for robot behavior adaptation

Figure 4.1: Shoe-fitting example.

drive an off-the-shelf planner towards the plan that best suits him/her. To do so, we follow

the FUTE (Factory setting, User Tailoring, Execution tuning) framework approach for assistive

robotic applications (see Section 2.3) in which there is an initial phase, called Factory setting,

where the robot is configured for a general user. Then, once the robot is to assist a particular

person, the User Tailoring process is performed in order to adapt the robot behavior to that

specific user. Finally, the robot assists the user by performing an Execution tuning using the

adapted parameters to perform the task in the user preferred manner. The framework has been

used to develop a behavior adaptation method based on stochastic planning, which has been

exemplified with a shoe-fitting domain, such as the one shown in Figure 4.1, in which the user

is able to determine the interaction level as well as the speed of the actions. The preferences

are obtained from the answers to indirectly-related questions and the system evolves to the final

user model based on the outcome of the actions while they are performed. We will consider

preferences of the “information obtaining” type and the robot motion speed type, as defined in

the taxonomy of user preferences in assistive scenarios from Section 3.3. The method has been

tested with simulated users to provide a constant behavior to which the method adapts, and its

deployment on a real robot has been assessed.

4.2 Related work

Robot behavior personalization and adaptation is an interesting topic which is gaining lots of

attention from the research community. And personalization can make a difference for the

users, specially in the case of assistive scenarios, where robots help people with disabilities or

age-related issues [55]. In close-contact applications such as feeding or dressing, taking into

account the needs and abilities of the user is essential for the success of the task.

4.2 Related work 41

There are different works that tackle dressing scenarios similar to the one we propose. Gao

et al. [30] tackle the problem of assisting a user to put on a sleeveless jacket with the help of

a Baxter robot. They model the user’s movement space using Gaussian Mixture Models, the

user pose being obtained by means of a depth camera. The model is used to dress the user

taking into account their movement capabilities. Later on, they proposed an online iterative

path optimisation method [56]. By means of vision and force estimation, they find the optimal

personalized path to help a user to put on a jacket.

Similarly, Chance et al. [7,57] use a Baxter robot to put on a sleeve of a jacket to a wooden

mannequin. They analyze combinations of user pose and clothing types to detect dressing errors

such as cloth snagging and use force sensors and an Inertial Measurement Unit (IMU) installed

in the end-effector of the robot. Moreover, speech recognition is employed to enable the user to

correct the end-effector trajectory, which is planned for different arm positions.

Yamazaki et al. [58] develop a procedure to help disabled users to put on trousers. Visual

information is used to recognize the trousers state, while force sensing is also employed to detect

failures. The system is able to adapt to leg differences by using different trajectory segments and

fitting them to the current user.

Tamei et al. [59] use reinforcement learning to dress a mannequin with a shirt by means of

a dual-arm robot. They adapt to different person postures, and represent the state using the

topological relation between the garment and the user. The system is able to modify the arms

motion to insert the shirt in the mannequin’s head.

Another dressing example is the one by Klee et al. [31], in which a robot assists the user to

put on a hat. This is performed in a collaborative manner by taking turns when moving. The

robot learns the user’s limitations as constraints, which are used to personalize the repositioning

requests to the user. The dressing task is represented as a sequence of robot goal poses with

respect to the user. The robot tries to fulfill the goals, asking the user to reposition him/herself

when the motion planning fails.

In our approach, we are interested in viewing the dressing task from a higher-level perspec-

tive, in which there are different actions available to fulfill the task, and the user’s preferences

are taken into account to choose one action instead of another, while in the case of [30] and [31],

they model the user capabilities to adapt the robot’s movement rather than using preferences.

Our approach uses a planner to choose the most suitable action for the user. Planning with

preferences has been slightly explored in different scenarios. The Human Aware Task Planner

(HATP), by Alili et al. [60], is able to define plans in environments in which other agents,

such as humans, are present. It performs plans that take into account the state and capacities

of the other agents and anticipates their actions. The plans should also satisfy social rules,

which are implemented as penalties to the agent’s behavior. The Hierarchical Agent based Task

42 Planning techniques for robot behavior adaptation

Planner [61, 62] is a Hierarchical Task Network (HTN) planner that treats the different agents

in the environment as first-class entities in the domain representation language. Moreover, it

is able to split the final solution into different subsolutions for the different agents. Fiore et

al. [25] propose a system able to execute collaborative tasks with a user taking into account

the preferences of the human partner by providing three different operation modalities: one in

which the human plans and asks the robot for single tasks, another where the robot computes

a plan to fulfill the joint goal with the human, and one in which the robot is able to adapt the

plans to the human actions by proactively executing actions towards the goal. The method is

evaluated in an object manipulation scenario. However, these approaches are designed to work

in a collaborative task solving scenario which does not suit the assistive tasks we are planning

to tackle. Moreover, their notion of user preference is related to allowing the human to take the

lead or leave the reasoning to the robot, while in our case the preferences are related to how

the user prefers the task to be done in terms of the chosen actions.

Castellano et al. [63] explore how the task context, the social context and their interdepen-

dencies can be used to predict the affective state of the user and the quality of the interaction.

They show that the task context along with social context-based features are better than turn-

based features to predict social engagement and affective states of the user. In our work, we

distinguish between interaction actions, which may relate to the social context, and task actions,

related to their game context, as we believe the addition of the interaction can improve the task

actions’ performance.

We propose an adaptation mechanism that takes into account user feedback to tune the

system. Other similar examples are mainly related to reinforcement learning, such as Thomaz

and Breazeal [64], in which reward signals from users are used to provide feedback about past

actions as well as to guide the future ones. In the TAMER framework by Knox and Stone [65],

the human trainer interactively shapes the agent’s policy by providing reinforcement signals. A

different approach is the one by Griffith et al. [66], in which the policy is shaped directly by

human feedback rather than using such feedback as a shaping reward.

4.3 User-oriented task planning

Assistive tasks such as shoe-fitting tend to be complex (see Section 1.3). Apart from the usual

uncertainties that are found in all kinds of robotic applications, such as noisy perceptions and

inaccurate actions, these tasks usually involve physical contact with a human who will probably

be unfamiliar with the robot. Moreover, as they are intended for users in need of assistance,

such users may have some difficulties due to mobility, age or cognitive impairments. Therefore,

simple reactive techniques are not enough to handle all the involved uncertainties in a safe

4.3 User-oriented task planning 43

manner. Note that the user behavior cannot be accurately predicted and this may introduce

multiple sources of error in the interaction. That is why symbolic planning techniques are useful

in this kind of environments as they provide an appropriate abstraction of the task.

A planner is used to obtain a sequence of actions to drive the system from an initial state

to a goal state in which the task is completed or some criterion is satisfied. For instance, there

will be applications in which the running time needs to be minimized, others will rather use the

minimum number of actions or will try to maximize a target function.

In the case we present, the goal of the planner is to balance the satisfaction of the user

and obtain the shortest possible plan, with maximum acquired reward. We aim to obtain a

plan that selects the action that will best suit the person, and takes into account their needs and

preferences.

A planning problem can be formulated as a Markov Decision Process (MDP), which is defined

by a five tuple 〈S,A, P,R, γ〉 where

- S: set of discrete states.

- A: set of actions that can be performed.

- P (s′|s, a): transition function computing the probability of obtaining a new state s′ when

action a is executed in state s.

- R : S ×A→ R: the reward function.

- γ ∈ [0, 1): discount factor for future rewards degradation.

With this representation, the planner finds a policy π : S → A that maximizes a value function

(sum of expected rewards) for a given state.

There are two main families of symbolic planners: deterministic planners, in which the

actions can yield one unique outcome; and stochastic planners, able to handle non-deterministic

actions where different outcomes can happen with a certain probability. In this work, we use

a probabilistic planner because we consider that each action can lead to different results. The

probability associated with each one of the different outcomes encodes naturally the uncertainty

of each action (see a formal example below).

More precisely, we will define the problem domain using a set of Noisy Indeterministic Deictic

rules (NID) [67]. Briefly, each NID rule models one action execution in a given state, and can

lead to different next states, each one with a different associated probability P ro . Each NID rule

is defined by its preconditions, which are the predicates that must be satisfied in the state in

order to apply the rule, and its effects, which are the changes that are applied to the state, each

of them with an associated probability. An example of NID rule is:

44 Planning techniques for robot behavior adaptation

Action: approachFoot(F - foot)

Preconditions:

- not(reachableFoot(F))

- shoeInGripper(S - shoe)

- not footMoving(F)

- inWorkingSpace(F)

Effects:

- reachableFoot(F) (Pos = 0.80)

-- (Successful outcome)

- footMoving(F) (Po2 = 0.15)

- not(inWorkingSpace(F)) (Po3 = 0.05)

Note that an action of the domain can be represented by many Noisy Indeterministic Deictic

rules (NID) rules while each rule can only represent one action. For instance, the action

approachFoot may be defined by different NID rules with different outcomes, although each

one of the rules is only linked to a single action - the approachFoot one.

We want to clearly separate the action outcomes and the user model. As explained before, ac-

tion outcomes are modeled by NID rules representing the probabilities of the different expected

outcomes of each action.

In addition, we propose to include the user preferences as a part of the planning domain

in the form of expected behavior of the robot (see Section 4.3.1). For example, the ones we

have used in the experiments and extracted from the taxonomy of Section 3.3: maximum

expected velocity and degree of verbal interaction (Section 4.4). Note that, although we will

focus on speed and verbal feedback preferences, other preferences such as maximum force,

preferred approach direction or non-verbal communications could also be included. However,

the acquisition of such preferences by the robot should be easy and natural for the user. Thus,

rather than trying to obtain the actual preferences directly, we propose to ask simple and

apparently unrelated questions to the user. Taking inspiration from the Numerical Pain Rating

Scale (NPRS), which is one of the most common pain assessment scales used in nursery [68], we

believe it is easier for the user to express preferences by means of a numerical score. Therefore,

we also use numerical scores to assess the user state and preferences:

- From 0 to 10, how confident do you feel with the robot?

- From 0 to 5, how comfortable are you now?

The answers are used to infer preferences such as the speed of the robot and the interaction

level. This is achieved by the addition of a Fuzzy Inference System (FIS) to transform the user

answers to planning domain predicates, as shown in Figure 4.4. Moreover, a similar method is

used to obtain a feedback value after each robot interaction, which is used as a scoring method

4.3 User-oriented task planning 45

User Model

Planner Action
Execution

User Input
(FIS)

FeedbackInitial

Planning
Operators

Provides

Modifies

Is reflected as

World

Figure 4.2: System flow representation. Notice the action execution loop from Planning
Operators - Planner - Action Execution - World, which goes to User Input once the task is
completed to adapt the Planning Operators based on the user feedback.

employed to refine the preferences and adapt to possible biases. In this case, we ask the user

about their satisfaction score (from 0 to 10) with the overall interaction, and use it as the input

to another FIS that provides the feedback value.

Although it has been shown that performance rating, similar to the one we are using with the

satisfaction, is influenced by the user’s empathy and trust [69,70], in this chapter we are using

the FIS only as an example of the inputs that can be fed to the adaptation system. However,

a more sophisticated FIS could also be employed, as well as other methods that provide a

numerical feedback measure. For instance, the satisfaction value obtained from the user could

be weighted by the perceived confidence and trust of the user in the system to overcome this

confidence and trust bias. User acceptance, measured using methods such as the one by Heerink

et al. [71], would be another useful metric to balance the user feedback.

A system representation is depicted in Figure 4.2. The process is also shown in Algorithm 4.1,

where lines 1-8 consist in the initial refinement of the planning operators, lines 9-14 are the

execution of the task, and lines 15-21 are the update of the planning operators based on the

outcome of the task and the user’s satisfaction.

The following sections describe the details of these methods. For illustration and better

understanding, we will use the shoe-fitting task to exemplify the used methodology.

46 Planning techniques for robot behavior adaptation

Algorithm 4.1: Preference-based task personalization

– Initialization –
1 userInfo := getUserInfo()
2 userPreferencesPredicates := FIS(userInfo) // Section 4.3.2

3 planningDomain := add(userPreferencesPredicates)
4 forall r ∈ {ruleset} do
5 if satisfiesUserModel(r) then
6 updateSatisfyingRule(r) // Use Equations 4.1 and 4.3

7 else
8 updateNonSatisfyingRule(r) // Use Equations 4.2 and 4.4

– Task execution –
9 repeat

10 nextRule := getSuitableRule(ruleset) // Planning step

11 success := executeAction(nextRule)
12 usedRules := append(nextRule)
13 removeUnsuccessfulRules(ruleset) // Force exploration

14 until taskIsComplete()
– Update outcome probabilities based on experience –

15 forall r ∈ {usedRules} do
16 updateRuleProbabilities(r) // Use Equation 4.5

– Update the executed rules based on user feedback –
17 userSatisfaction := getUserSatisfaction()
18 userFeedback := FIS(userSatisfaction)
19 forall r ∈ {usedRules} do
20 if ruleWasSuccessful(r) then
21 updatePenalizations(r, userFeedback) // Use Equation 4.6

4.3.1 Domain definition

We propose to add preference-related predicates directly into the planning domain in order to

guide the planner towards the user’s preferred sequence of actions.

Then, the actions are defined so that those actions not complying with the user model are

penalized and thus are less likely to be chosen. This approach does not impede the planner to

choose any action but will guide the action selection using the associated costs. Thus, all the

reasoning is leveraged to the planner, which is not constrained to select any action. To achieve

this behavior, each NID rule has an extra cost associated to the compliance of the rule with the

current user model. For this reason, each action has an associated rule for each combination of

user preference predicates, all of them including its own execution cost (fixed penalization for

the execution of the action), user model penalizations and stochastic outcomes when needed.

4.3 User-oriented task planning 47

Note that with this definition, there are multiple paths to transform the world from the initial

state to the goal state. However, as the planner is set up to minimize the cost (which could also

be seen as maximizing the reward), those actions complying with the user model will result in

a lower penalization and will be favored by the planner.

We use the shoe-fitting scenario (Section 1.3.2) to explain and test the method. For this

shoe-fitting domain, we have used similar actions as the ones in Figure 3.1. Thus, we have

defined three movement actions:

- approachFoot: The robot approaches the person’s foot with the shoe in the gripper.

Possible failures are that the user moves away if he/she is disturbed by the sudden robot

motion, or moving the foot aside in a hard-to-reach position if he/she gets tired because

the robot takes too long. The corresponding NID rule has been shown in the example in

Section 4.3.

- insertFootInShoe: The robot inserts the shoe in the foot. The action will fail if the

foot is moving, the foot is in an incorrect pose or the person has put the foot aside. In the

latter case, the robot will have to approach the foot again. An example of NID rule for this

action is:

Action: insertFootInShoe(F - foot, S - shoe)

Preconditions:

- reachableFoot(F)

- shoeInGripper(S)

- not(footMoving(F))

- bareFoot(F)

- correctPose(F)

Effects:

- shoeInFoot(S, F) & not(bareFoot(F)) (Pos = 0.850)

-- (Successful outcome)

- not(footInCorrectPose(F)) (Po2 = 0.0625)

- footMoving(F) (Po3 = 0.0625)

- not(inWorkingSpace(F)) & not(reachableFoot(F)) (Po4 = 0.0250)

- releaseShoe: The robot releases the shoe, which has already been placed in the foot.

We assume this action does not fail (though it may result more or less pleasant to the user

depending on its execution). A NID rule that represents the release action is:

Action: releaseShoe(S - shoe)

Preconditions:

- shoeInGripper(S)

- not(footMoving(F))

- shoeInFoot(S - shoe, F)

48 Planning techniques for robot behavior adaptation

Effects:

- not(shoeInHand(S)) (Pos = 1.0)

-- (Successful outcome)

We have also defined two interaction actions:

- informUser: The robot informs the user about the next action that will be performed.

We expect less failures if the user knows in advance the robot intentions, but the overall

task will last longer. The action can be represented with the following NID rule is:

Action: inform

Preconditions:

- not(informedUser)

- not(askedUser)

Effects:

- informedUser (Pos = 1.0)

-- (Successful outcome)

- askUser: The robot asks the user to do something when the current state is not the

expected one. For instance, the robot can ask the user to stop moving the foot or to set the

foot in the working area. The corresponding NID rule is:

Action: askUser(F - foot)

Preconditions:

- not(askedUser)

- or(not(inWorkingSpace(F)),

footMoving(F),

not(footInCorrectPose(F)))

Effects:

- askedUser (Pos = 1.0)

-- (Successful outcome)

Examples of wrong action outcomes are depicted in Figure 4.3. All the actions can be executed

either in a quick, intermediate or slow speed, and information may have been given to the user

or not before every action execution. The user model predicates are the speed modifier sm ∈
{quick, slow, intermediate}, while the verbosity (information providing) is defined as vm ∈
{verbose, not verbose}. These modifiers relate to the preferences of the user as described in

the taxonomy of Chapter 3. So, there are six rules per action, one for each combination of sm

and vm. In case of an action failure, the robot uses the askUser action to obtain the missing

condition, so it may ask the user to reposition or reorient the foot if the action failed for this

reason. Other task-related predicates are used to define the state of the environment. Examples

4.3 User-oriented task planning 49

(a) The user moves the foot away from the robot
(resulting outcome is footMoving(right)).

(b) The user has put the foot aside (resulting
outcome: (not reachableFoot(right))).

Figure 4.3: Example of shoe-fitting action failures for the insertFootInShoe action.

of these predicates are: reachableFoot(F), footMoving(F), inWorkingSpace(F), shoeInGripper(S)

and shoeInFoot(S, F).

In this chapter, we focus on planning with high-level symbolic actions, similar to the ones

defined in other frameworks such as the high-level operations in ARMAR-X [72]; or similar to

the non-primitive tasks of the HTN planning framework [73]. Therefore, we will assume that

the robot already knows how to perform such actions. These low-level smart actions are learned

beforehand (in the Factory setting phase of the FUTE framework) using a learning framework

such as the ones presented in [74–77]. Note that these smart low-level actions are able to

interact with the environment, for instance using the foot as reference to modify the learned

trajectory.

Once the planner issues an action, the low-level controller executes it, handling elements

such as perception and robot motion. The trajectories are taught kinesthetically, as in Chapter 2.

The perception is implemented using an RGB-D sensor such as a KinectTM sensor, from which

a 3D point cloud is obtained and processed to obtain the foot’s location and build the symbolic

state.

A typical execution scenario would start with the robot holding the shoe and the user seated

in front, as shown in Figure 4.1. Then, if the user was defined as vm = verbose the robot will tell

the user that it is going to approach the shoe to the foot. Then, it will start the approachFoot

action. If the user model specifies so, an utterance informing the insertion will follow, and the

insertFootInShoe action will be executed afterwards. Finally, the releaseShoe action will

be performed, having informed the user beforehand if required. Therefore, movement actions

are interleaved with interactive actions in the plan. The resulting plan sequence is

1: approachFoot(F)

50 Planning techniques for robot behavior adaptation

2: insertFootInShoe(F)

3: releaseShoe(F)

in the non-informative case, and

1: informUser

2: approachFoot(F)

3: informUser

4: insertFootInShoe(F)

5: informUser

6: releaseShoe(F)

when the user is to be informed. Note that, after adaptation, the system may use informing

actions only before one conflicting action, avoiding the utterance prior to the execution of the

rest of actions. In case of failure, the askUser action is performed to interact with the user and

return the system to a known state, suitable to continue with the plan execution:

1: informUser

2: approachFoot(F)

-- Failure: User moves the foot away

3: askUser(approach)

4: informUser

5: approachFoot(F)

6: informUser

7: insertFootInShoe(F)

8: informUser

9: releaseShoe(F)

4.3.2 Fuzzy user model extraction

As already introduced, we use two simple questions in order to obtain the user traits as an

example of how the required initial information can be obtained. This step corresponds to

the link between User Input and User Model in Figure 4.2, and is shown in lines 1-3 from

Algorithm 4.1. The answer to the questions is fed to a Mamdani-like Fuzzy Inference System

(FIS) [78] built using a simple fuzzy library [79]. The proposed inference system consists of a

rule block that outputs the predicates relative to the inferred preferred speed of the actions as

well as whether the robot should inform the user before every action execution or not (preferred

verbosity).

Another FIS is used to obtain the feedback value, corresponding to the link between User

Input and Planning Operators in Figure 4.2. The feedback computation is also shown in lines 15

and 18 from Algorithm 4.1. In this case, the user is asked about his/her satisfaction with

the executed task, also in a value between 0 and 10. The satisfaction, along with the initial

4.3 User-oriented task planning 51

confidence value, provides the feedback score which is used to update the penalizations of the

rules.

The linguistic variables have been defined as follows. The ranges of the variables can be seen

in Figure 4.4 along with the Fuzzy Inference Systems.

- Confidence (Input, [0, 10]): Includes the terms “very unconfident”, “unconfident”, “confi-

dent”, and “very confident”.

- Comfortability (Input, [0, 5]): Includes the terms “none”, “low” and “high”.

- Satisfaction (Input, [0, 10]): Includes the terms “very unsatisfied”, “unsatisfied”, “slightly

satisfied”, “satisfied” and “very satisfied”.

- Speed (Output, [0, 15]): Includes the terms “slow”, “intermediate” and “quick”.

- Verbosity (Output, [0, 1]): Includes the terms “yes” and “no”.

- Feedback (Output, [−5, 5]): Includes the terms “worst”, “bad”, “neutral”, “good” and “best”.

Comfortability Confidence Satisfaction

Rule Block 1
(initial update)

Rule Block 2
(feedback update)

Verbosity FeedbackSpeed

D
eg

re
e

of
 m

em
be

rs
hi

p None Low High

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Very_unconfident

0 1 2 3 4 5 6 7 8 9 10

Unconfident Confident

Very_confident

0 1 2 3 4 5 6 7 8 9 10

Very_unsatisfied

Unsatisfied
Slightly
satisfied Satisfied

Very_satisfied

0 5 10 15

Slow Intermediate Quick

0 0.2 0.4 0.6 0.8 1

No Yes

-5 0 5

Worst
Bad

Neutral
Good

Best

D
eg

re
e

of
 m

em
be

rs
hi

p

D
eg

re
e

of
 m

em
be

rs
hi

p

D
eg

re
e

of
 m

em
be

rs
hi

p

D
eg

re
e

of
 m

em
be

rs
hi

p

D
eg

re
e

of
 m

em
be

rs
hi

p

Figure 4.4: Fuzzy Inference System used to obtain the initial user model, as well as its
improvement using feedback.

52 Planning techniques for robot behavior adaptation

4.3.3 Initial model refinement

Once the predicates conforming the initial user model are defined, all the rules’ specifications

are refined to favor more those complying with the user model. Here we are in the step

from User Model to Planning Operators in Figure 4.2. The Planning Operators from the figure

correspond to the NID rules defined in Section 4.3.1. The initial refinement corresponds to the

block comprising lines 4 to 8 in Algorithm 4.1 Building on the intuition that the rules satisfying

the user preferences will be more likely to succeed, we increase the probability of the successful

outcome of those rules, at the same time that we decrease the one of the rest of rules. For each

rule r, the probability of the successful outcome P ros (the one that allows the planner to advance

towards the goal1) is updated as follows. For the rules that satisfy the user model predicates,

we increment it as

P ros = P ros +
1− P ros
K

, (4.1)

while probabilities of the rules not complying with the user model are decreased as

P ros = P ros −
P ros
K
. (4.2)

This update sets the value of P ros between [1
K , 1] when increasing the probability and between

[0, (K−1)K] when it is decreased, where K acts as a scaling factor. The idea is to increase more

the lower probabilities that satisfy the user model, while only slightly increasing those which

were already high. As a counterpart, the same principle is applied when the probabilities are

decreased. We have used a value of K = 3 in all the performed experiments. After the update

of P ros , the probabilities of the rest of the outcomes are also tuned so they sum up to one. This

is achieved by applying the opposite equation to the other outcomes. That is, in the cases in

which we applied Equation 4.1 to P ros , we apply Equation 4.2 to the other rule’s outcomes, and

vice-versa.

Similarly, we update the penalizations applied to all the rules based on the user model.

Each rule has, apart from the fixed execution cost, a speed penalization and an interaction

penalization. These penalizations are applied when a NID rule not satisfying the user model is

executed. Thus, we aim to increase the cost of the rules whose penalization condition is satisfied

by the current user model, and lower it in the other cases. For instance, in the shoe-fitting

scenario, the approachFootwith the [quick, verbose] modifiers will imply a penalization when

the user model is defined as vm = (not verbose), and another one when the user model is either

sm = slow or sm = intermediate. Be Rrc the penalization of type c of the rule r, we update it

1For simplicity, we consider only one successful outcome, though it can be easily extended to several successful
outcomes.

4.3 User-oriented task planning 53

as follows. When the rule is not adequate for the current user model, we update the costs2 that

satisfy the user model as

Rrc = min(Rmax,max(Rmin, R
r
c − C)). (4.3)

To keep the cost balanced, the opposite is applied for the rules satisfying the user model (note

that in this case, penalizations will not be applied since the user model is satisfied):

Rrc = min(Rmax,max(Rmin, R
r
c + C)). (4.4)

Rmin and Rmax are used to maintain the costs in a reasonable range, avoiding the degeneration

of the system in the long term. C is a fixed constant value used as update factor.

4.3.4 Improvement based on user feedback

With the proposed problem definition, the system is able to provide plans that comply with the

specified user model. Nevertheless, the user model may not be properly determined. Given that

the preferences are specified by the user him/herself, they may not be accurate. For instance,

imagine fitting a shoe to a user who specifies that the robot should move quickly, but he/she is

not confident enough with the robot, so when the robot moves quickly he/she gets scared and

puts the foot aside. Moreover, the user may change his/her behavior with respect to the robot

with the use, as his/her confidence will increase when he/she is accustomed to the robot. Thus,

adaptation is needed to cope with these user model deviations.

The adaptation is performed in a similar manner to the initial refinement, but it is carried out

each time the task is completed. However, some distinctions are taken into account at this point.

We believe that the users’ satisfaction can not be measured only by the outcome of the actions.

Thus, a failed action does not imply that the action was not suitable for the user in the same way

a successful action does not indicate that it was the best for that user. For this reason, we will

update the probabilities based on the expected outcome, while the penalizations will be updated

based on the feedback obtained from the user, them being related to the user preferences. This

favors actions that follow the user model even though they have low probability of success,

allowing for more exploration towards the user model. In case the user preferences were not

correctly established, the adaptation procedure will modify the penalizations, along with the

probabilities, towards the correct behavior. This rule update based on user feedback corresponds

to the lines 15 to 21 in Algorithm 4.1.

2We define costs as negative rewards, thus subtracting to the previous cost we are worsening it.

54 Planning techniques for robot behavior adaptation

Outcome probability update based on executed actions

For the probability update, we use the decreasing m-estimate as defined by [80]. We update the

probability of the ith outcome of rule r, P ri as

P ri =
p+ m√

p+n
P ri,0

p+ n+ m√
p+n

, (4.5)

where p is the number of positive examples (number of times i was the execution outcome), n

the number of negative examples (number of times i was not the execution outcome) and P ri,0
is the prior or initial probability (defined in the Factory setting phase of the FUTE framework).

Rule penalization update based on user feedback

The feedback is then used to update every rule r that was successfully applied during the task

execution. We only use the rules that were successfully applied because the feedback value is

the score of the whole execution rather than that of individual actions. Therefore, a positive

score would diminish the cost of those rules that failed, which would not lead the system to the

user preferred behavior.

The penalization update for each cost c of the rule r is computed as

Rrc = min(Rmax,max(Rmin, R
r
c + C

1

f
)), (4.6)

where f is the feedback value represented as the user’s task score in the range [−5, 5]. In case

the user feedback is negative, the costs will be worsened and this will lead the system to explore

beyond the current user model. Otherwise, the current rule definition will be updated as it

satisfies the user, and successful rules will have more chances to be applied.

After the feedback update step, all the costs are normalized in order to keep balance and

avoid the degenerated case in which all the rules of the system have the minimum cost3.

Therefore, for each action we normalize each kind of cost of its rules so they always sum up

to the same. Thus, decreasing a cost for one rule increases those of the other rules of the same

action.

While the task is being carried out, the planner is used after each action execution to build

a new plan to go from the current state to the goal one, which will compute a recovery plan if

the action failed. Therefore, when an action fails and the system recovers to a previous state,

the planner will suggest the same action rule again. And, if the action failed due to the user not

3This would happen if the user changes his/her behavior from the adapted model, always providing a positive
feedback score.

4.4 Experimental evaluation 55

being satisfied with it, it is likely to fail again. This is solved by removing the failed rule from

the set of available rules after 3 failed execution attempts. The removal of the rule forces the

system to explore other options. The rules are removed only during the task execution, and are

re-added to the set after the task has been finished, just before the update of the probabilities

and penalizations.

In this work we use 3 attempts arbitrarily, following the next rationale: one failed attempt

might have been caused by the robot or some other element. Two failed attempts are more

suspicious, but can still be due to the robot. After a third attempt it may simply be concluded

that the action is not adequate for the user and it is time to explore other options. In the general

case, the number of attempts can be selected differently, or computed on-line depending on the

past experiences. However, note that with 3 attempts, 18 failures in the same action would be

necessary in order to completely remove one action, which would lead to an unsolvable planning

problem. In such case we would consider that the task cannot be completed.

4.4 Experimental evaluation

The proposed adaptation method has been evaluated through simulated experiments using the

same shoe-fitting scenario, and qualitatively assessed in real robot experiments. In them, we

define a simulated user with an associated ground-truth user model as well as an inferred

user model (which may differ from the real one). The simulated user’s behavior consists in

accepting only those actions that coincide with the ground-truth model. Otherwise the action

fails. Obviously, in a real scenario the action may not fail even if it is not exactly the one the user

was expecting. However, for the sake of clarity, we use this simulated user behavior because the

adaptation mechanism is better observed. Therefore, a simulator inferred as [quick, verbose],

but whose ground-truth real model is [slow, verbose], will only allow slow actions that have

informed the user beforehand. With this, we can easily test how the behavior of the robot

adapts to match the user.

To avoid bias due to the randomness in the plan executions, we have executed each simulated

experiment 15 times, and the results shown in this section are the average of all the executions.

In order to assess the effect of the different steps of the method, shown in Figure 4.2 and

explained in the previous section, each experiment has been executed with different combina-

tions of them. Therefore, we start with single methods, the first being to use only the decreasing

m-estimate [80] to adapt the probabilities based only on the outcomes of the actions. Similarly,

the second one uses the feedback update from Section 4.3.4 (Rule penalization update based

on user feedback), adapting the user model by means of decreasing the penalization of the

successful rules. Then we combine two steps, applying the initial refinement from Section 4.3.3

56 Planning techniques for robot behavior adaptation

along with the decreasing m-estimate, and the decreasing m-estimate with the feedback update.

Finally, we evaluate the full method consisting in the combination of the initial refinement, the

decreasing m-estimate and the feedback update.

When the user model is correct, all the actions succeed and the robot finishes the task

with the minimum number of actions. To show how the method successfully adapts to the

user behavior, we will show the degenerated case in which the simulator’s ground-truth user

model is the opposite to the initial inferred one. Figure 4.5 shows the results of a user who

behaves as [slow, verbose], but whose inferred model from the initial questions was defined as

[quick, not verbose]. The comparison between different method combinations is also displayed.

The figure shows the rewards obtained and the length of the plan at each iteration. As it can

be seen, all the methods start with a low reward and a long plan, as the system is behaving

to suit a different type of user. However, they quickly improve with few iterations, drastically

reducing the plan length. Note that this is a degenerated case, and all the actions fail if they

are not exactly those of the ground-truth user model. In a normal house set-up, the user would

accept some actions even if they are not exactly the ones matching their exact preferences.

The methods combining the decreasing m-estimate and the feedback update are the ones that

20 40 60 80

Iteration

-250

-200

-150

-100

-50

R
e
w

a
rd

20 40 60 80

Iteration

10

20

30

40

50

60

70

80

90

100

P
la

n
 l
e
n
g
th

Decreasing m-estimate

Feedback update

Initial refinement + decreasing m-estimate

Decreasing m-estimate + feedback update

Full method

Wrongly inferred user model

Figure 4.5: Evolution of the rewards and plan lengths using different method combinations. The
inferred user model is [quick, not verbose], but the simulator behaves as a [slow, verbose] user.

4.4 Experimental evaluation 57

20 40 60 80

Iteration

-25

-20

-15

-10

-5

R
e
w

a
rd

20 40 60 80

Iteration

5

10

15

20

25

30

P
la

n
 l
e
n
g
th

Decreasing m-estimate

Feedback update

Initial refinement + decreasing m-estimate

Decreasing m-estimate + feedback update

Full method

Change in user behavior

Figure 4.6: Evolution of the rewards and plan lengths using different method combinations. The
inferred user model and behavior is [quick, verbose], but in iteration 27 the behavior changes
to be [quick, not verbose].

converge faster and reach the optimum number of actions in the plan, as well as being more

stable. Given that the inferred model is not the correct one, the method not including the

initial refinement performs slightly better, as it can be also seen in the plan length plot. But, if

only the feedback update is used, the method gets stuck. Given that the probabilities are not

modified, the planner’s best option is to go on with the actions that comply with the inferred user

model, as they lead to less penalizations. Nevertheless, when the success probabilities of those

actions are decreased, the planner has better gain when choosing actions that do not satisfy

the inferred model. When only using the decreasing m-estimate (with and without the initial

refinement)4, the method is slower to converge to the preferred solution, and is less stable,

oscillating around the preferred solution. Therefore, the combination of the feedback update

with the decreasing m-estimate are appropriate to converge to the preferred solution, with few

iterations and reaching a constant minimum number of actions in the plan. The most similar

cases are the full method and the one not using the initial update. In the reward plot, it can be

seen how they perform almost equally well, although when checking the plan length, it is clear

4Note that the feedback update modifies the reward, thus the reward plots of the methods using it keep improving
its reward because of this.

58 Planning techniques for robot behavior adaptation

that the method not using the initial update converges faster than the full method. Again, this

is due to the initial method making the algorithm keep the initial inferred model, leading to a

slower convergence to the correct model, but making it more robust when the user model has

been correctly inferred.

Figure 4.6 shows an example of adaptation when the user suddenly changes his/her behav-

ior. In this case, the user was behaving as [quick, verbose], and his/her model was correctly

inferred. Thus, the planner by domain definition is able to find the preferred plan since the

beginning. However, around iteration 27, the user starts to behave as [quick, not verbose] as

it gets used to the robot, and thus every action fails. When this happens the system needs to

readapt, as there is a drop in the reward and the plan length increases. In this case, the methods

involving the feedback update and the decreasing m-estimate are the only ones able to cope

with the change and converge to the new solution. Note that after the change, the preferred

plan is shortened as there are no informative actions.

Although our proposed method shows correct adaptation, the initial refinement may be

counterproductive in cases in which the user model was not correctly inferred, slowing the

convergence to the real user model. However, in the cases where the user model was properly

inferred, the initial refinement helps to lead the planner towards the preferred goal and avoids

the system to wrongly adapt to an erroneous new model due to occasional action failures.

4.4.1 Experimental feasibility assessment

In this section we show the feasibility of the proposed approach in a real assistive robotics

scenario. To do so, we present an experimental setup with a real robot. The setup is shown in

Figure 4.7. The experiment presented in this section is meant to demonstrate the usefulness of

the proposed approach and evaluate the system. Therefore, the person was instructed to perform

some motions to obtain a more realistic scenario for the evaluation. Refer to Chapter 7 for a user-

centered evaluation. The robot is a 7 degrees of freedom Barrett R© WAM Arm and a KinectTM

camera mounted on the ceiling is used for perception. The software has been developed using

the Robot Operating System (ROS) [81]. For the informative actions, the text-to-speech is

performed using the hmi_robin ROS node5 from the Institute for Robotics at Johannes Kepler

University.

The environment state is obtained by processing the point cloud retrieved from the RGB-D

camera. Given the presented setup (see Figure 4.7), the point-cloud P is first split to remove

the ground points, thus obtaining a new point-cloud P ′ = {p ∈ P |py ≤ tg} for a threshold tg

representing the distance from the camera to the ground. The resulting point-cloud P ′ is further

5ROS package hmi_robin: wiki.ros.org/hmi_robin

http://wiki.ros.org/hmi_robin

4.4 Experimental evaluation 59

Figure 4.7: Experimental setup with the robot, a user and the ceiling camera.

divided in two smaller clouds, P ′h = {p ∈ P ′|py ≥ th}, corresponding to the human space, and

P ′r = {p ∈ P ′|py < th} corresponding to the region where the robot moves, for a threshold th

representing the distance between the corner of the image and the end of the human space.

Then, we perform a simple blob segmentation to obtain the user’s leg point-cloud and define the

extreme region of the blob as the foot tip. The shoe position, as assumed to be grasped by the

robot, is defined by the Tool Center Point (TCP) pose of the robot’s end effector and is used to

filter out the shoe detection.

The user is seated near the robot and lifts the foot as a signal to start the shoe-fitting

task. The robot has already the shoe in its end-effector6 and has been taught the task via

kinesthetic reproduction. In the first execution, the user is asked about his/her confidence and

comfortability (Section 4.3) and the initial refinement is performed. Then, the planner is called

to obtain the next action to execute based on the perceived state, and the execution of the

action is carried out. Each action can be either a robot motion, including the foot perception

to accomplish a part of the task, or a verbal interaction, to make request or to inform the user.

Once finished, the state is recomputed and the planner is called again, until the shoe has been

fit. When the shoe-fitting has been completed, the user’s satisfaction is asked and the feedback

modification is then performed in order to refine the domain for the next executions. Figure 4.8

6Shoe grasping is out of the scope of the thesis.

60 Planning techniques for robot behavior adaptation

(a) Approach action, to get closer
to the foot.

(b) Insert shoe action, using an
elaborated wrist rotation (see
supplementary video).

(c) Release action, to move away.

Figure 4.8: Example of the execution of the three movement actions. The current location of
the foot is obtained with a ceiling-mounted RGB-D sensor (see Figure 4.7).

shows the robot executing the three shoe-fitting task actions7.

As seen in the video, the proposed method shows a robust behavior of the robot in which

the planner is able to adapt to the changes in user preferences and to unexpected situations.

We show how the robot asks the user to put the foot forward when it is not in sight, and how

it speaks only when needed, e.g. when the informative behavior is not specified in the user

state. These decisions are made by the planner. Moreover, the video also shows how the robot

changes its behavior in the short term in order to fulfill the task, by exploring different speed

alternatives, when a failure occurs in the current situation. However, the video cannot show the

long-term adaptation of the rewards. Moreover, the robot moves slowly to ensure safety as well

as due to non-optimized computations (vision, trajectory generation and planning).

4.5 Summary

In this chapter, we have defined a method to guide a planner to choose the preferred actions

by the user. The user model is included in the planning domain as predicates and the actions’

associated costs depend on them, the most costly actions being those that do not satisfy the user

model. Moreover, we use a stochastic planner with NID rules that contemplate the possibility of

different action outcomes and failures. The initial user model is inferred by asking two simple

questions to the user, related to his/her confidence and comfortability. A Fuzzy Inference System

(FIS) is then used to translate the answers to planning predicates.

In order to make the planner adapt to user behavior change and to cope with wrongly

inferred user models, each rule’s probabilities and costs are updated. First, an initial refinement

7A video demonstration of the shoe fitting task showing the robot adaptation to the user can be found at
www.iri.upc.edu/groups/perception/plannedBehaviorAdaptation

http://www.iri.upc.edu/groups/perception/plannedBehaviorAdaptation

4.5 Summary 61

is performed to favor the inferred user model. Then, after each task completion, the satisfaction

of the user is used to refine each rule cost, and the outcome of each action is used to refine

the success’ probabilities. This defines a separation between the user model and the action

outcomes, as the user delight should not be measured only by the success of the actions, which

may fail due to events unrelated to the users’ preferences.

Moreover, the system is able to plan with task-related actions as well as with interaction

actions, asking the user to move when needed and informing him/her regarding the next action

when this increases the success rate of the action.

We have shown how the system can adapt to user behavior changes, as well as how the use

of feedback to update the action costs with the decreasing m-estimate produces a more stable

behavior and faster convergence to the preferred solution.

The proposed method uses some preferences from the taxonomy described in Chapter 3 and

introduces a way for preference elicitation from the user while using the adaptation framework

presented in Chapter 2. We have shown how the Factory setting phase is used to set the default

parameters, and how the User Tailoring and Execution tuning phases of the FUTE feed each

other back. While the methods presented in this chapter allow for better adaptation, there are

still some gaps to be filled on how to further improve the adaptation by taking advantage of

low-level adaptations and also how to improve the use of known preferences before adapting to

the user changes. These topics will be further analyzed in the following chapters, where “smart”

controllers able to adapt to user movements will be joined with our planning approach to ease

the definition of assistive skills, and a novel preference suggestion algorithm will be presented.

5
Joining high-level actions with low-level skills

For a safe and successful daily living assistance, far from the highly controlled environment

of a factory, robots should be able to adapt to ever-changing situations. Programming such a

robot is a tedious process that requires expert knowledge. An alternative is to rely on a high-

level planner, but the generic symbolic representations used are not well suited to particular

robot executions. Contrarily, motion primitives encode robot motions in a way that can be

easily adapted to different situations. In this chapter, we present a combined framework that

exploits the advantages of both approaches. The number of required symbolic states is reduced,

as motion primitives provide “smart actions” that take the current state and cope online with

variations. Symbolic actions can include interactions (e.g., ask and inform) that are difficult to

demonstrate. We show that the proposed framework can adapt to the user preferences (in terms

of robot speed and robot verbosity), can readjust the trajectories based on the user movements,

and can handle unforeseen situations. Experiments are performed in the shoe-dressing scenario.

This scenario is particularly interesting because it involves a sufficient number of actions, and

the human-robot interaction requires the handling of user preferences and unexpected reactions.

This work has been done in collaboration with IDIAP1 as part of the I-DRESS project.

It has been published in [14].

5.1 Introduction

Physical Human-Robot Interaction (pHRI) is a special case of HRI in which safety becomes a

central issue due to the possibility of potentially causing harm to a human user2. Therefore,

Physically Assistive Robot need to be equipped with two basic skills: compliant control to ensure

safe motion, and planning taking the user into consideration to foresee possible problems and

1www.idiap.ch
2See Appendix B for more details on safety for Physically Assistive Robots.

https://www.idiap.ch/en

64 Joining high-level actions with low-level skills

deviations in the execution of the task.

Accordingly, adaptive interaction is a key element for the success and acceptance of assistive

robots. Some of the challenges that need to be solved are how to transfer such skills to robots

in an easy manner, and how to enable robots to cope with user reactions and other issues that

may happen during the task, ensuring a robust and safe behavior. In this chapter, we jointly

tackle both issues. First of all, we improve the use of learning by kinesthetic demonstration

approach to teach the robot “smart” low-level movement primitives, so that it can track the

user state and move accordingly. Then, following the adaptation introduced in the previous

chapter, a stochastic symbolic planner is used to obtain the sequence of actions to complete

the task. If instead, the high-level task planner were used without the low-level primitives,

a higher action granularity and more implementation effort would be needed, and tackling

the whole problem with the low-level primitives without task planning would require a larger

number of demonstrations. Thus, the main advantages of the proposed joint approach are a

reduced number of easier demonstrations and less symbolic actions with better error handling

and robustness.

As an example, we will use the shoe-fitting scenario again (see Section 1.3.2), where a

robotic arm has to put a shoe on a user’s foot. We will use the same fitting actions for the robot,

adding shoe grasping. The full set of actions are shoe grasping, approaching the foot, fitting

the shoe, and releasing it. Though simple, the task involves physical contact with the user’s

foot, which may be harmful. Accordingly, the robot must take this into account, know how the

user may behave and suitably adapt its actions to fulfill the task successfully, recovering from

inappropriate situations when needed.

5.2 Related work

Service robots in general, and the assistive ones specifically, must perform complex tasks with

many particularities. Therefore, joining a high-level symbolic task planner with appropriate

low-level motion primitives simplifies the task.

There are many works in literature that address task and motion planning, in a consecutive

or integrated way, but most of them focus on the manipulation of still objects, while in our case,

we are physically interacting with a person that may move freely.

Gravot et al. [82] present a collaborative cooking task with a robot in which a symbolic

HTN planner uses cooking recipes to guide the performance of the task and decomposes them

into primitive actions, which may be sensing, making specific movements, planning motion or

interaction.

Other authors address motion planning as a geometrical problem. De Silva et al. [83]

5.3 Planning for the next step 65

propose an interleaved interface to perform symbolic task planning and geometric planning. The

geometric planner is used to compute possible grasps and object locations, taking into account

geometric constraints. The symbolic planner is an HTN, and symbolic tasks are related to their

Geometric Task Planner’s tasks, for which they propose an interleaved backtracking algorithm.

The authors apply it in the context of pick-and-place tasks, including human handovers. In a

similar manner, Srivastava et al. [84] first compute a task plan using a symbolic planner, and

then search the instantiations of the pose references used in the plan by means of a motion plan-

ner. When such instantiations are not found, partial solutions are identified and extended using

the task planner. Another example is the one by Ferrer-Mestres et al. [85], where they integrate

task and motion planning together, addressing the symbolic and geometrical components of the

task simultaneously. Furthermore, Bidot et al. [86] present an hybrid task-and-motion planning

approach in which task planning is coupled with motion planning and geometric reasoning. Lee

et al. [87] combine probabilistic activity grammars with low-level motion primitives to learn

tasks with reusable structures. Kinesthetic teaching has also been used to learn how to execute

structured tasks, such as in the framework presented by Caccavale et al. [77].

The adaptive component is essential to solve our kind of tasks in an efficient manner, as well

as the use of learning by demonstration to simplify the teaching of the movements. Assistive

dressing, the problem we are focusing on in this chapter, has also received some attention from

the community. Some of the works devoted to assistive dressing have already been mentioned

in Section 4.2, such as the ones by Yamazaki et al. [58], Gao et al. [30, 56], Klee et al. [31],

and Chance et al. [7, 57]. These works present interesting approaches to model the user space

and capabilities, but lack the ability to demonstrate the task in an easy manner that produces

smoother movements and shows a nice adaptability to the user movements.

5.3 Planning for the next step

As seen in the previous chapter, physical Human-Robot Interaction tasks such as the ones defined

in Section 1.3 are appropriate to be tackled from a task planning point of view. Since the robot

is in contact with a user, single reactive behaviors may not be enough to deal with user actions

in the long-term horizon of the task. Therefore, it is important to have a plan of the robot’s

actions that should be performed, solving plan deviations as soon as they occur.

A task planning problem Π = 〈S,A, T, s0, g〉 is defined by the set of discrete states S, the set

A of actions that modify the state, the state transition function T : S × A → S, the initial state

s0 ∈ S and the goal state g ∈ S. A solution to this problem is an action sequence that starts

from s0 that modifies the state using actions in A to end up in g. Each state is described by a

set of logic predicates, and each action ai ∈ A; ai = {pai , eai} is composed of the preconditions

66 Joining high-level actions with low-level skills

pai ∈ S, predicates that must be true in order to perform the action, and the effects eai ∈ S,

which define how the state changes after the execution of the action. Such state is obtained

from the internal (known) robot state, but also from a visual system tracking both the user and

other objects related to the task.

Since HRI domains are highly non-deterministic as the user is not a controlled agent, the

computed plan should consider unexpected effects. For this reason, we rely on a stochastic

representation, which allows the definition of a domain in which actions can yield stochastic

effects. In this case, the actions’ effects eai are not just a unique set but many possible sets of

outcomes with an associated probability πj of happening:

eai =

π1 : e1ai

π2 : e2ai
...

πn : enai

.

As mentioned in Section 4.3, this kind of problems are usually represented formally as a

Markov Decision Process (MDP) 〈S,A, P,R, γ〉, where P (s′|s, a) defines the probability of going

from state s to s′ when performing action a, andR : S×A→ R is the reward function associating

a score to each action. Then, the planner is set up to find an action sequence that maximizes the

reward (or, equivalently, minimizes the cost), while taking into account the probability of each

action’s outcomes. An application example of this type of planning applied to robotized surface

cleaning is provided in [80].

Therefore, we can define the actions so that their possible outcomes are based on user

reactions, and the planner will compute a plan by considering the probabilities of each effect.

As a result, actions that may produce inconvenient outcomes will be less likely to be selected.

Each symbolic action ai corresponds to one low-level movement primitive (i.e. physical

action). In this chapter we will use the method from [75] to learn the motion primitives. These

movement primitives are self-adapting motions that can track entities of interest for the task,

such as the foot in a shoe-fitting scenario.

Once the plan P = [ai, aj , . . . , ak] has been computed, each action is sequentially carried

out. However, there may be cases in which an action produces a non-satisfactory outcome. In

such cases, replanning is needed in order to find a new sequence of actions P that brings from

the current system’s state to the goal state g, and the new plan will be executed.

When interacting with human users, and more specifically when assisting them in a physical

manner, it is important to interact with the user, and make clear what the robot is doing. For

this reason, we define two interaction actions: inform and ask. The inform action is used

5.3 Planning for the next step 67

to provide verbal information to the person before the execution of each movement to avoid

misunderstandings or unexpected situations due to the user misinformation about the robot

behavior. The ask action is used to obtain user’s collaboration in cases in which the task cannot

be completed. For instance, in the shoe-fitting scenario, the robot would ask the user to put

back the foot, when he/she has moved it to an unreachable position, or to avoid moving it when

trying to perform a physical contact.

Not less important while interacting with human users, is to adapt to the specific user the

robot is assisting. There are no two equal individuals, so the robot should not assist all the users

in the same way, but adapt to their preferences and needs. Following our taxonomy of user

preferences in assistive scenarios as defined in Section 3.3, in this chapter we will still consider

two kinds of preferences: the velocity of movements, and the verbosity level.

Performing the task too slowly may result in user fatigue, and doing it too fast may scare the

person. Similarly, a too verbose robot may irritate the user, and a non-informative robot may

confuse and scare the user. To cope with these dilemmas, we have defined three speed levels

α ∈ {slow, medium, quick}, and two verbosity levels β ∈ {verbose, ¬verbose}. Although a

more complex verbosity configuration could be used, we believe two levels are enough for the

shoe-fitting task and the explanation of the proposed methods would not benefit from a more

complex setup. Building on the concepts presented in Section 4.3, a user model u = {αu, βu} has

been added to the planner by means of the predicates α and β. Each action’s reward Ri depends

on this user model, penalizing such actions that violate it. For completeness, we define a generic

reward penalization equations from Sections 4.3.3 and 4.3.4 in a more compact manner:

Ri = Rd − Pα · (αi 6= αu)− Pβ · (βi 6= βu), (5.1)

where Rd is the default action’s reward, Pα is the penalty for not following the user’s model

speed αu in the current action ai executed with speed αi. Similarly, Pβ is the penalty for a

wrong verbosity βu. This way, the planner not only computes a plan to solve the task, but also

does it while satisfying the user preferences.

With the explained approach, the robot is able to compute a plan from s0 to g that complies

with the user model. Moreover, when an unexpected behavior arises, the plan is recomputed and

its execution is resumed from the new state. This means that the system is able to recover from

errors, repeating previous actions when needed in order to return to a previous state or even

starting over the task if required. For instance, in a case in which the shoe-fitting is incorrect,

the robot would re-grasp the shoe and start the task if far from the foot, or retry the insertion if

the foot is close enough.

68 Joining high-level actions with low-level skills

Figure 5.1: By providing demonstrations of a task in several situations, the robot is able to
generalize to a wide range of new situations.

5.4 Learned motions

The robot movement is taught by kinesthetically teaching the robot as shown in Figure 5.1. In

this chapter, we will use the method presented by Pignat and Calinon [75] where a Hidden

Semi-Markov Model (HSMM) is learned by maximizing the likelihood of the demonstration

data. The HSMM decomposes the skill into a discrete sequence of spatial distributions. The

model encodes the positions of the end-effector, the velocity and orientation of the robot from

different coordinate axes. Then, optimal control is used to synthesize the motion of the robot.

The use of this kind of trajectory learning and controller allows for compliant movement

of the robot and low-level adaptation to moving targets. The method is able to encode both

the position of the end-effector and a moving target such as the foot and learn the motion

considering both reference frames, which makes it possible to adapt to changes online while

still following the learned trajectory.

5.5 Combining high-level Symbolic Task Planning with

low-level Motion Planning

In the previous sections we have defined both system levels and given insights on how they are

related. The proposed architecture is depicted in Figure 5.2. The symbolic planner’s actions have

a direct correspondence with the low-level motion primitives. The high-level planner computes

5.5 Combining high-level Symbolic Task Planning with low-level Motion Planning 69

the sequence of actions. Then, the low-level primitives, previously learned by demonstration,

are executed.

The strength of this approach is to overcome the limitations of using the two levels separately.

Although the same task could be tackled from both points of view, the necessary efforts are

highly reduced by the union of both.

On the one hand, performing the full task with the sensorimotor motion primitives would

require several demonstrations of all the possible events that may happen throughout the task.

This results in the need of designing such demonstrations in a thorough manner, taking into

account every case in the scenario.

On the other hand, using a symbolic planner to perform the same task would require to

split each of the actions in subactions, obtaining a finer granularity. This not only introduces an

overhead in the plan computation (as the domain will have many more actions and outcomes),

but also requires the design of the domain such that all the possible outcomes of each action are

properly defined. Moreover, this also needs us to implement the control and movements of each

action in the robot, be it by demonstration or with another technique.

Therefore, by using both approaches together, we obtain a simpler and more efficient plan-

ning domain which is easier to design, implement and debug. Such approach requires only few

demonstrations of the full task. Typically, the demonstrations take the form of simple atomic

movements instead of complete movements. Moreover, such structure facilitates the addition

of verbal interactions and the handling of errors by means of replanning. It provides a way to

link high-level actions to low-level control commands, facilitating the modulation of low-level

actions and the gradual acquisition of complex skills.

High-level task planning

Pre: pai ∈ S

Post:

π1 : e1ai

∈ S
. . .

πn : enai
∈ S

ai

. . .

Pre: paj
∈ S

Post:

π1 : e1aj

∈ S
. . .

πn : enaj
∈ S

aj

s0 ⊇ pai
s ⊇ eai

s ⊇ paj

Low-level motion planning

mi mj

Figure 5.2: Two-level planning architecture.

70 Joining high-level actions with low-level skills

Given that the learned motions are adaptable and they do not depend on fixed start and end

positions, they are always chainable provided that the high-level actions are also chainable.

5.5.1 High-level state transitions: the shoe fitting example

In order to demonstrate the advantages of the architecture, we show in Figure 5.3 some of the

action transitions that are possible in the shoe-fitting task, following up with the same action

definitions as in the previous chapters. As it is clearly seen in the graph, the structure of the

transitions between actions is quite complex, despite the task requires a low number of actions.

Therefore, teaching all the possible transitions by demonstration would result in a tiresome –if

not unfeasible– work due to the large number of demonstrations that would be needed. This

can be observed in Figure 5.4, were several demonstrations with varied shoe positions and

orientations are performed to teach the shoe grasping action. Moreover, the use of the planner

permits an easy inclusion of interactive actions such as informing and asking the user, which

would have been much harder using a different approach. Thus, the use of the task planner in

the high-level loop allows to reuse simple low-level movement primitives, and diminishes the

number of demonstrations to just a few demonstrations for each high-level action.

Inform
approach

shoe

Approach
shoe

Inform
grasp
shoe

Grasp
shoe

Inform
take

shoe back

Take
shoe
back

Inform
approach

foot

Approach
foot

Ask put
foot back

Inform
insert
shoe

Insert
shoe

Ask
not

move

Ask
orient
foot

Release
shoe

Inform
release
shoe

Goal
achieved

Figure 5.3: Example of action transitions in the shoe-fitting task. Orange nodes represent robot
motion actions, while yellow nodes correspond to interaction actions.

5.6 Experimental evaluation 71

Figure 5.4: Kinesthetic teaching requires repetitions of demonstrations to cope with variability
and be able to adapt to changes.

5.6 Experimental evaluation

The proposed two-level architecture has been implemented using a Rethink Robotics’ Baxter

robot, in a shoe-fitting application. We have used an RGB camera to detect the shoe and the

foot of the user. To simplify the perception, augmented reality markers attached to the shoe

and the ankle have been used. This allows keeping the symbolic state updated based on real

observations.

This section reviews some of the experiments, more details and a visual demonstration

of them can be seen in the video3. The purpose of these experiments is to demonstrate the

feasibility, usefulness, and features of the proposed approach. They have been performed by a

single user who was instructed to act in some designed ways for the sake of the demonstration in

a more realistic scenario. For instance, the user was asked to make some action fail or move the

foot in some moments. For a user evaluation on the tasks used in the thesis refer to Chapter 7.

5.6.1 Experiment 1: Failure recovery after task completion

To demonstrate how the proposed approach is able to cope with non-demonstrated events, we

show an experiment in which the user removes the correctly fitted shoe from the foot, as shown

in Figure 5.5. The user removes the shoe after the fitting, resulting in an incorrect fit (red

node). Once the perception system has updated the state of the environment, the planner is

able to detect the situation, and recompute a plan to solve the task by grasping the shoe again.

Then, the planner decides to fit the shoe if the foot is still close, or to take it back and approach

3See the video at www.iri.upc.edu/groups/perception/twoLevelDressing

www.iri.upc.edu/groups/perception/twoLevelDressing

72 Joining high-level actions with low-level skills

the foot again in case the user has moved the foot away. Notice that all the high-level actions

and low-level primitives used in this scenario are the same ones that were implemented for the

original task. For instance, the shoe grasping action is used either to get the shoe from the

user or to pick it up from the foot after the bad positioning of the shoe. Several kinesthetic

demonstrations of the situation would have been needed to obtain the same behavior without

the high-level task planner.

Shoe is
wrongly
fitted

Fit shoe Release shoeApproach foot

Take back shoe

. . .

Figure 5.5: Example of error state management with the high-level task planner in a non-
demonstrated situation.

5.6.2 Experiment 2: Talking to the user when needed

Here we show how the interaction works. As already introduced, the robot has two interactive

actions: ask and inform.

In a normal execution, the robot may be completely silent, or inform the user if it is defined

in the user model. The interesting part is when the execution does not go as expected. When

fitting the shoe, the user may become tired or scared, resulting in him/her removing the foot

from the robot’s working space. Then, in order to complete the task, the robot must ask the

user to put the foot back in the fitting space, or it may ask him/her to reduce the motion of

the foot for a correct and safe fit, as shown in Figure 5.6. Another case may be one where

an action keeps failing because of different user reactions. In such case, the robot informs the

user about the actions it is performing. With this, the robot may gain user’s trust and avoid

misunderstandings during completion of the task, even when the model of the user does not

take speech into account.

5.7 Summary 73

Figure 5.6: Example of user moving the foot. This will trigger an ask action to stop the
movement, and may also produce a speed change.

5.6.3 Experiment 3: Speed modulation

As already stated, there are many reasons to modify the speed of the actions, among other

aspects of the task. In a first case, the robot makes a sudden quick movement that scares the

user, as seen in Figure 5.6. In this situation, the user performs a reflex action that moves away

the foot, preventing the task to be accomplished. In another case, the robot moves too slowly

resulting in fatigue that causes the user to remove the foot from the robot’s working space. Such

cases are tackled by the high-level planner, which takes into account the speed of the actions

and the user model to compute a scaling parameter for the low-level primitives.

5.7 Summary

In this chapter, we have further expanded the methods explained in the previous chapter by

adding “smart” low-level primitives able to adapt to the user online while the robot is moving.

We have joined them with planning methods in a two-level approach to develop assistive robotics

applications. In the high-level, the task planner computes a sequence of actions that will bring

the robot to the completion of the task. The low-level reproduces the actions, which are learned

by demonstration beforehand, in such a way that they are able to adapt to the current situation

by tracking entities of interest for the task.

The proposed approach reduces the number of demonstrations that are needed to implement

the task in the robot and makes them simpler and easier to teach. It also lowers the number

of symbolic actions that are needed, as well as diminishes the number of replanning attempts.

Moreover, it provides better error handling, resulting in a more robust and safe4 task execution.
4For more details about safety refer to Appendix B.

6
Preference suggestions for improved performance

We have shown how smart motion primitives can be used along with the symbolic task planning

to improve the adaptation of the robot in assistive tasks, along with adding robustness and

easier development. User model adaptation was also explored in Chapter 4 where the taxonomy

presented in Chapter 3 was used. However, the preferences described in the taxonomy can be

further exploited, as well as the elicitation of new preferences. To this end, this chapter will

present the SoPS algorithm to provide suggestions of predicates of a planning problem. We will

apply the algorithms to the specific case of planning with user preferences for assistive scenarios,

exploiting the preference taxonomy and showing how suggesting preferences can improve task

performance in the solution of a planning problem.

This work has been published in [15,16]

6.1 Introduction

Artificial Intelligence Planning has proved useful to solve many problems in Robotics and Com-

puter Science. Planning systems were traditionally handled by experts in the field, but this trend

is now changing as technology evolves and gets closer to lay users. Therefore, as robots and

complex decision-making systems enter our homes, a need for communication and explanation

of the reasons behind the system’s decisions arises.

Suggestions are an example of this kind of communication. A non-expert user may not

know all the possible configurations the system may have. Hence, the system itself may suggest

potential configurations that can improve its performance. Going even further, it can suggest

configurations that can pair with the user-provided one and still improve the system’s outcome.

Such suggestions can also be used for explanation purposes. In this case, the system could

use suggestions that improve the performance to explain why the performance of the system

was not good. Or it can use such elements to show why a specific configuration is better than a

76 Preference suggestions for improved performance

different one, which would perform worse.

In this chapter, we analyze the case of providing suggestions for predicates in planning do-

mains. Suggestions are predicate assignments that improve the plan reward, such as preferences

over the task execution. As an example, such predicates can be the desired speed in a robotics

task. We propose two algorithms capable of providing suggestions. The first one finds out

values for unassigned predicates that produce better plans; the second one proposes reasonable

changes to already assigned predicates by suggesting values close to the current ones. To do

so, our algorithms process a portion of the Space of Plans in search of the best assignment of

values to predicates. This subset of the Space of Plans is expressed as a new Plan Space Tree

structure that provides a compact representation very convenient for searching and traversing.

Then, we demonstrate the ability of the methods proposed to improve the reward obtained by

the planner, even when low-performance configurations are initially provided. The methods are

evaluated in the three assistive robotics tasks defined in Section 1.3 (shoe-fitting, user feeding

and assisted dressing), where the suggestions relate to user preferences that the planner uses to

guide the search.

The development of the suggestion methods presented in this chapter required a more

standardized approach to task planning with robots. ROSPlan [88] is a framework for task

planning in the Robot Operating System (ROS). It simplifies the use of different planners by

providing an interface to them and parsing their outputs, as well as having an integrated action

dispatcher. ROSPlan has become a standard tool for AI planning in robotics, and we decided

to adopt its use for the remainder of this thesis. However, ROSPlan lacked support for any

kind of probabilistic planners and, given that probabilistic planning is very useful for handling

uncertainty in planning tasks to be carried out by robots, we will first extend ROSPlan to handle

such kinds of problems. Moreover, the PPDDL-based approach used beforehand will result

insufficient to handle the kind of expressivity we need for our suggestions approach. Therefore,

we explored the use of RDDL, which is the standard language for probabilistic planning as it

was used in the last editions of the International Probabilistic Planning Competition (IPPC) and

most adopted by the community. Therefore, our extension will also integrate the use of RDDL

apart from PPDDL.

6.2 Related work

Our proposed work is closely related to and inspired by different topics. We build on top of

the concept of planning “excuses” [89], which are defined as the changes needed in the state

to find a solution when no plan could be found. This concept was explored by Martínez et

al. [90] to guide a human teacher when no plan was found. These excuses were also used to

6.2 Related work 77

find alternative models to explain unexpected states. Similarly, we seek the predicates that can

improve the planning performance and provide them as suggestions to the user.

Therefore, our proposed methods are related to the concept of human-aware task planning

and human-in-the-loop planning, where the planner takes into account both the human and the

robot’s actions and abilities to improve task performance. Alami et al. [91] proposed a scheme

to integrate humans in the robot control architecture. In it, the abilities and constraints from the

users, their needs and their preferences are taken into account in the planning process. Cirillo et

al. [92] proposed a planner able to take into account forecasted human actions that constrain the

planner allocation of tasks to the robot, but also create new robot goals. Sekmen and Challa [93]

developed a Bayesian Learning algorithm for a robot to model the behaviors and preferences of

people. The model is updated based on continuous interactions with the users, which is then

used to predict the expected user actions. The authors consider user preferences regarding the

scheduling of user tasks and personal customs such as drinking patterns. Young Kwon and Hong

Suh [94] predict exogenous events due to human intervention and create plans proactively that

improve Human-Robot Interactions. Their method can select when is the best time to perform

proactive actions, which results in better interaction and a reduced task execution time. Other

examples include the Hierarchical Agent-based Task Planner (HATP) [62], where agents are

taken into account as first-class entities and user-defined social rules describe the acceptable

behaviors of the agents, allowing the creation of plans that take the user safety and comfort into

consideration. Fiore, Clodic and Alami [25] presented a system designed to consider human

preferences in Human-Robot Collaboration tasks. In it, the robot can assume different roles and

plan the actions for the human, to which it suggests which actions to perform, and also acts

as a human assistant. Chakraboti et al. [95] show how to project robot intentions during plan

executions to assist Human-Robot Interactions using an augmented reality system. The proposed

system can reduce the ambiguity over possible plans during task execution and plan generation.

In this system, the robot can combine the plan cost with the ability to reveal intentions to

improve interaction and task performance. These works mainly assume that the values of the

user preferences are known. Contrarily, in this work we use the concept of suggestions to assess

how could the task performance be improved when there are unassigned predicates such as

preferences by including a user in the planning process to assign values to such predicates.

Our algorithms are based on analyzing the Space of Plans in search of general predicate sug-

gestions, that is, predicates that are missing but that knowing them would help producing better

plans. In this paper, we use the example of preference predicates in assistive scenarios. This

could also be seen as a preference elicitation process, where we obtain preference suggestions

based on already known values. Das et al. [96] propose a method for eliciting preferences from

a human expert while planning. Their approach uses Hierarchical Task Network (HTN) planning

78 Preference suggestions for improved performance

to identify when and where the expert guidance will be useful and seek expert preferences to

improve the planner decisions. In our case, we similarly suggest user preferences based on the

planner reward function without the need of recurring to the human expert during the planning

process. However, in our approach, the expert is the one generating the reward function that

uses the preferences. Search in the space of possible plans has been also used by Kim et al. [97]

to learn to infer final plans in Human Team Planning. Similar plan trees are used by Shmaryahu

et al. [98] for network penetration testing.

The use of preferences to guide search has been investigated by other authors too. PDDL3

[99] explicitly integrated preferences in the language. They are represented as conditions that

do not need to be true to achieve a goal or precondition, but achieving them is desirable. In

contrast, we do not use preferences as conditions but we see them as predicates that guide the

search by modifying the associated costs and rewards. Sohrabi and McIlraith review Preference-

Based Planning (PBP) in [38], where preferences are used to distinguish plans by the quality

and argue for the need for reasoning over preferences when generating a plan, obtaining the

most-preferred plan. More examples of uses of preferences include another method proposed

by Sohrabi, Baier and McIlraith [100], which generates preferred explanations for the observed

behavior of the system. A survey on preference-based Reinforcement Learning by Wirth et al.

[101] reviews works using preference-based reward functions obtained from experts, and a

Monte Carlo Tree Search algorithm using preferences to guide search can be found in [102].

Preferences are also used to guide search in BDI agents by Visser et al. [103]. Behnke et al.

[104] present the interaction between the user and the planner as a process to determine user

preferences towards the plan. Another Reinforcement Learning algorithm that benefits from the

use of preferences is presented by Pinsler et al. [105]. Their method learns the reward functions

from the robot and human perspectives (user preferences).

Finally, we also found inspiration from the Explainable AI (XAI) and Explainable AI Planning

(XAIP) communities. In XAIP [106], the goal is to present the user with explanatory answers

to questions regarding action selection, action alternation, efficiency or affordability of the

proposed plans. One way of answering such questions is by proposing alternative plans, by

replanning from a user-provided state. We find our algorithms closely related to XAIP in the

sense that our Space of Plans representation can be used for providing explanations, but the

provided suggestions to predicates can also be helpful to present alternative solutions to the

user. Measures like plan explicability and predictability can be computed as described by Zhang

et al. [107]. Such measures can be used to proactively choose plans that are easier to explain.

Another example by Eifler et al. [108] propose an analysis for explaining the space of possible

plans by using plan properties. These properties are boolean functions that capture the aspects

of the plan the user cares about.

6.3 ROSPlan extension to RDDL 79

Even though there has been a lot of research involving preferences, we believe our proposed

method is novel in the use of suggestions for improving task performance for planning and

decision making, and the use of preferences is a good example of it.

6.3 ROSPlan extension to RDDL

Planning for robotics means planning in dynamic and uncertain domains, in which the outcomes

of actions can have a reasonable chance of failure, or non-deterministic effects, for example

in complex manipulation tasks and navigation in crowded spaces. Probabilistic planning is

an approach to plan under uncertainty, commonly meaning planning with probabilistic action

effects. A probabilistic planner tries to maximize the probability of success of a plan. This

section presents a standardized integration of probabilistic planners into ROSPlan that allows

for reasoning with non-deterministic effects and is agnostic to the probabilistic planner used.

In many domains it is possible to ignore the probabilistic nature of the environment by

generating deterministic plans, and replanning when they fail during execution. However, for

some problems it is advantageous to consider the probabilities: for example when there is more

than one path to the goal and those paths have different associated rewards and probabilities of

success, or the state-space includes dead-end states. Given different paths to a goal, the paths

with higher associated rewards might counterintuitively be those that are longer, or otherwise

the cost structure might be far from obvious. These kinds of problems are termed probabilistically

interesting [109]. Robotics domains are often probabilistically interesting. For example, an

autonomous robot in a dynamic environment can easily move into a state from which it does

not have the capability to recover by itself, requiring human intervention. Therefore, robots

are often expected to follow the slower, safer paths to the goal to avoid failure. However, by

reasoning over the probabilities during planning, more efficient solutions can be found.

The Relational Dynamic Influence Diagram Language (RDDL) is a stochastic domain descrip-

tion language for probabilistic planning. The International Probabilistic Planning Competition

(IPPC) uses RDDL [110] for probabilistic planning problems. RDDL is well-suited to describing

probabilistically interesting problems, using a dynamic Bayes net formalism [111], as opposed

to the effects-based (P)PDDL. Subsequently, both the first and second-place entries in the 2012

IPPC were planners that actively reasoned with probabilities: PROST [112] and Glutton [113].

The ROSPlan framework [88] provides a standard approach for planning in the Robot

Operating System (ROS). Until now, one drawback of ROSPlan is that it has been limited to

deterministic and contingent planning, using PDDL2.1 [114], and is not suitable for probabilistic

planning. The main contributions of this extension are: (i) A standardized integration of

RDDL and ROSPlan, enabling the straightforward application of the probabilistic planning in

80 Preference suggestions for improved performance

robotic domains using ROS. (ii) A demonstration of a mobile robot autonomously generating

and executing probabilistic plans using this integration in an extensible RDDL domain. We

extend ROSPlan to handle RDDL semantics, produce RDDL problem instances, and interface

with any RDDL planner that can be used with the RDDLSim server used in the IPPC. In addition,

we extend the action interface of ROSPlan, which handles the execution of discrete actions,

to reason with non-deterministic effects. To enable distinction between deterministic and non-

deterministic effects, we identify two kinds of propositions: sensed, whose truth value can be

sensed by the agent during execution, and so can be included within a probabilistic effect; and

non-sensed, which can only produce deterministic effects.1

6.3.1 Background on planning under uncertainty

There are numerous approaches addressing uncertainty in the planning and execution process

e.g. conformant planning [115], contingent planning [116] or replanning [117]. Other ap-

proaches use machine-learning techniques to decrease uncertainty in the planning problem, e.g.

[118] learn probabilistic action models and [119] remove uncertainty in state prior to planning

by making predictions based on initially known data. Also, there is work on building architec-

tures that involve reactive components to cope with uncertainties in robotics domains [120].

ROSPlan has been used to perform planning for control of multiple-robot systems running with

ROS [88,121]. However, all of these works focus on purely deterministic planning.

Furthermore, probabilistic planning is a standard approach for planning with uncertainty

in robotics. An overview of approaches to probabilistic planning is provided in [122]. The

most common approach to planning with uncertainties in robotics is modelling the task as

a Markov Decision Process (MDP), optionally a Partially Observable Markov Decision Process

(POMDP). In contrast to deterministic planning, notably the PDDL2.1 [114] formalism used so

far with ROSPlan [88], robotics scenarios must often cope with exogenous and uncontrollable

events [123], which can be easily modelled as POMDPs [124]. Solutions to the MDPs for robotics

can form policies with finite horizon [125], adopt a satisficing approach [126], or maximize the

probability of reaching a goal state [90]. RDDL [110] is well-suited for modelling problems of

this kind. It is a dynamic Bayes net formalism, allowing for unrestricted concurrency. This is

an essential component in robotics applications, in which the agent must execute the plan in

a physical environment. For example, in multi-robot navigation scenarios in which motion is

stochastic from the perspective of the planning model.

Atrash and Koenig [127] note that POMDP planning policy graph solutions are similar to

the finite-state machines normally used for control. As a result, it has been applied successfully

1The source code of the elements described in this section can be found in the main ROSPlan repository, available at
github.com/KCL-Planning/ROSPlan

https://github.com/KCL-Planning/ROSPlan

6.3 ROSPlan extension to RDDL 81

Figure 6.1: ROSPlan’s Knowledge Base interface. The RDDL services are highlighted.

in many robotic use cases featuring uncertainty, such as robotic exploration missions [128];

or those with action outcomes that are inherently non-deterministic, such as manipulation

problems [129], Human-Robot Interaction [130] and Physically Assistive Robot [13]. The office

setting is a common environment for autonomous service robots, and can exhibit these kinds of

uncertainty. Examples are collaborative robots servicing human indoor environments [131] and

an office-guide robot for social studies [132].

6.3.2 System Description

In order to include the ability of planning with probabilistic domains within the ROSPlan frame-

work, we have designed and implemented a new Knowledge Base and problem generator that

are able to handle probabilistic planning problems written in RDDL.

RDDL Knowledge Base

The Knowledge Base (KB) in ROSPlan stores the current model of the environment. It is an

interface for updating and fetching a PDDL model in ROS, and primarily consists of a set of

ROS services forming this interface. These services are used by many other components of

ROSPlan, most of which require state or domain information, such as problem generation and

plan execution and validation.

The integration of RDDL with the ROSPlan KB adheres to the existing interface for two

reasons: to preserve compatibility with systems already using ROSPlan, and to allow for the

interchange of RDDL and PDDL KBs. Therefore, the RDDL KB translates the RDDL domain and

82 Preference suggestions for improved performance

problems to PDDL-like structures. Given that RDDL is more expressive than PDDL, the RDDL

KB also extends the interface with new ROS services providing RDDL-specific functionality.

Figure 6.1 shows the extended KB interface.

To process the RDDL domain into a PDDL-like structure, action-fluents are mapped to PDDL

operators, and state-action constraints (also called action-preconditions in newer versions) are

encoded as PDDL preconditions in the following way:

1. The constraints are searched to find those of the form action-fluent→ (formula).

2. When found, the right hand side is encoded as an action precondition.

We assume the formula only includes conjunctions of state fluents. This is due to a current

limitation of ROSPlan, which does not support quantified or disjunctive conditions in PDDL.

Action effects are obtained from conditional probability functions (cpfs). This block describes

how each fluent changes at each time step, determined by the current state and actions. In

order to obtain the effects of an operator, the cpfs block is processed for each action fluent. In

this processing, the state-fluent of the conditional probability formula is added to the effects

of the action when the action fluent appears in the formula, be it alone, inside a quantified

expression or along with other expressions (in such case the rest of state fluents are ignored).

In the special case of an if-then-else formula, the effect is added when the action fluent appears

in the condition of the if clause and the value of the clause is true. In case the value is false, the

negated proposition will be added as an effect.

As a new feature, probabilistic effects are also considered and added to the Knowledge Base.

We only consider probabilistic effects to be of the RDDL’s Bernoulli distribution and Discrete

distribution types. Stochastic effects are processed in a similar way to non-probabilistic ones,

but when the result of the cpf expression is probabilistic, the effect is added to a new effect list

with an associated probability formula.

In addition, assignment effects will be considered similarly to the propositional effects, and

they are translated either to constant assignment or to increase and decrease clauses. An

assignment effect will be added when there is an if-then-else clause including the action fluent

in the condition. The value of the if clause will be added as an assignment effect when it is either

a constant value or has the form fluent ± expression (which will be translated to an increase

or decrease of the fluent value). Other cases are not considered.

In order to provide information on exogenous effects, a new operator named exogenous is

created. This operator has as its effects all the exogenous effects that may happen but are not

related to any specific action-fluent. Effects of this kind are otherwise considered in the same

way as the effects of other operators. Finally, the reward function is fully instantiated and

represented as a PDDL metric function, with the metric set to be maximized. In the case where

6.3 ROSPlan extension to RDDL 83

there is a state-fluent named “goal”, its expression from the cpfs block will be included as the

PDDL goal.

Although some assumptions are made, such as the conjunctive-only preconditions, it should

be noted that these assumptions apply only to the RDDL domain file, which will not be modified

when loaded into the KB. Instead, it is passed entirely to the planner. Therefore, although some

elements of the domain may be unknown by the KB, the problem is entirely captured, and the

planner will still provide correct plans.

Problem Generation

The ROSPlan Problem Interface node is used to generate a problem instance. It fetches the

domain details and current state through service calls to a Knowledge Base node and publishes

a PDDL problem instance as a string, or writes it to file. To be able to use a planner with a RDDL

input, a RDDL Problem interface has been implemented.

The generation of the RDDL problem requires checking operator effects to find which pred-

icates change due to some operators (the state fluents) and which are static for the planning

problem (called non-fluents). Additionally, the planning horizon and the discount factor are set

by default, or from RDDL-specific services in the KB. A feature of this approach is that as the KB

interface is common for both RDDL and PDDL, ROSPlan can generate problems independently

of the which KB is used. Thus, a RDDL instance file can be generated from a PDDL instance and

vice versa. The requirement is that that both domains share the same structure (i.e., operators

and predicates). Therefore, it is now very simple to have both deterministic and probabilistic

planners running together, for example, for plan checking and validation or in a planning system

composed of both stochastic and deterministic planners.

6.3.3 Online Planning and Execution with RDDL Planners

ROSPlan provides two plan dispatchers: the simple plan dispatcher for non-temporal, sequential

plans, and the Esterel plan dispatcher for temporal plans with concurrency. Both dispatchers

require as input a complete plan produced offline. For stochastic plan execution with RDDL,

a third plan dispatcher was designed and implemented that allows the use of online planners

(Figure 6.2: Nodes Planner Interface and RDDL Plan Dispatch). The online plan dispatcher

interleaves plan execution and computation, removing the need of computing an offline plan

and replanning when an action fails.

The online dispatcher uses the RDDL Client/Server protocol, also used by the competition

server for the IPPC. In each round, the dispatcher obtains the world’s state from the Knowledge

Base and sends it to the planner, which returns the actions to be executed in the next time step.

84 Preference suggestions for improved performance

This process is repeated until the planner has reached the horizon defined in the instance file,

in which case the planning process can be repeated when the task is not yet finished. With

this dispatcher, any RDDL planner that uses the RDDL Client/Server protocol can be used with

ROSPlan with no extra effort. Moreover, an offline stochastic planning mode is also supported

in which the RDDLSim software [110] is used to simulate a run of the task, and the actions are

dispatched as in the case of a deterministic planner, replanning when an action fails to execute.

This approach allows to use any IPPC-like RDDL planner available.

Action Execution with Non-deterministic Effects

A robotic system interacting with the real world must keep the symbolic state of the task up

to date, based on its sensory inputs. This means updating the Knowledge Base at a fixed rate

such that the state is updated before each action is planned and executed. This is crucial in

probabilistic planning, as with non-deterministic action outcomes it is not possible to assume

that the effects of each action can be applied to the state. Instead, sensing is required to deter-

mine which outcome occurred. Therefore, we implemented a new sensing interface (Figure 6.2:

Sensing Interface) that allows the definition of “sensed predicates and functions”, which are those

action dispatch

RDDL Plan
Dispatch

action feedback

Planner
Interface

problem instance

Problem
Interface

Knowledge
Base

query_state

state/*

domain/*

problem_path

domain_path

update
IPPC Server Connection

Sensing
Interface

sensor_configuration

robot

Figure 6.2: The system architecture used in our scenario. ROS nodes are represented by ovals,
and implement the ROSPlan interfaces. Message and service topics are represented by solid
boxes, parameters by dotted boxes.

6.4 Preferences to guide action selection through the reward function 85

whose values are obtained from sensor data.

The sensing interface automatically obtains the sensor data, processes it based on a minimal

code definition, and updates the Knowledge Base accordingly at a fixed rate. At the same time,

the KB is updated to include the information regarding which propositions are sensed or not,

such that effects on the sensed propositions are not automatically applied when an action is

executed. The sensed predicates are defined in a configuration file in which is specified: (1) the

predicate label; (2) the parameters of the predicate which can be instantiated, and those which

are fixed; (3) the sensor containing the required data, expressed as a ROS topic or service; (4)

the message type of the data; (5) a single line of code whose result will be the value assigned to

the predicate in the KB.

Here we show an example of this configuration for a predicate:

1. topics:

2. docked:

3. params:

4. - kenny

5. topic: /mobile_base/sensors/core

6. msg_type: kobuki_msgs/SensorState

7. operation: msg.charger != msg.DISCHARGING

This configuration shows (line 3) the name of the predicate, docked; (lines 3 and 4) that the

single parameter of the predicate is fixed, so that this configuration is sensing the value of the

proposition (docked kenny); (lines 5 and 6) the ROS topic to which the sensing interface

will subscribe and the message type; and (line 7) a single line of code that returns a Boolean

result to be assigned to the proposition. If a more complex processing needs to be done, the

interface can be linked with another file containing the implementation for each predicate, in

which any kind of program can be defined in order to process the sensor data.

Further discussion on the use of probabilistic planning in robotics domains along with an

experimental evaluation can be found in Appendix C.

6.4 Preferences to guide action selection through the

reward function

RDDL allows the definition of rich reward functions. Such reward function is computed at each

time-step to provide an immediate value to the metric function that is being optimized. In the

case of the reward, the goal of the planner is to maximize its value. Therefore, actions that lead

to states providing more reward will be favored. This allows the use of suggestible predicates

to appear along with actions in the reward function, such that when the suggestible predicate is

86 Preference suggestions for improved performance

present with a specific action, it will provide positive or negative reward. This will encourage or

penalize the use of the action.

In RDDL, we can do this by defining an if-then-else reward function. The function will has a

case for each action and related preference value with the form

if (action ∧ (preference_name == @preference_value)) then R,

where R is the value that is obtained when the action is executed and the preference_name

predicate is present and has the @preference_value.

To ease the description of such predicates in the reward function, we defined a rule-based

format that consists on the action, the preference application and the immediate reward value

R. This is then formatted and added to the domain automatically. As an example, one could

define:

getFood, ((?speed ∼= p_speed) ∧ (p_speed ∼= @tl_unknown)) | ((?force ∼= p_force) ∧
(p_force ∼= @tl_unknown)), -15,

which specifies that the action getFood receives a penalization with a value of 15 when either

the speed or force preferences are not unknown and they have a different value than the one

provided by the preference. Another example for the jacket dressing task is:

approachBothArms, (p_motor_rightarm == @high) ∧ (p_motor_leftarm == @high), 20,

which describes that the approachBothArms action is rewarded when the user’s arms mobility

is defined as high. This will then be converted to:

if (exists_{?speed: t_threelevel, ?force: t_threelevel} [approachBothArms(?speed,

?force) ∧ ((p_motor_rightarm == @high) ∧ (p_motor_leftarm == @high))]) then 202

Consequently, this process simplifies the definition of the reward function, which can become

long and complex. Note that in our approach, we expect an expert in the domain to define the

rules that will be compiled into the reward function to successfully lead the planner to choose

those actions that receive more reward thanks to the preferences.

6.5 Motivation behind providing predicate suggestions

There are not many examples in classical planning where the initial state can be modified at

will before starting the task. In classical planning, the planner tries to modify the state using

the available actions and operators. However, some elements of the task may be modified when

facing the real world. A clear example of it may be that of robotics and, more specifically, col-

laborative and assistive robotics where humans take part in the planning process, as considered

in this thesis.
2t_threelevel is defined as an enumerable type with three levels: @high, @medium and @low.

6.5 Motivation behind providing predicate suggestions 87

In such a context where human help can be used, the system or robot can benefit from

human interactions and provide information relevant to the task. Therefore, given a state that

is not ideal, it can suggest changes or additions to the initial state that may lead to a better

performance in the task. These suggestions could be obtained either by questioning the user,

asking for a change, or just guessing the state of some unknown predicate, knowing that such

information may improve the execution performance.

A clear example, which is the focus of this thesis, is the one of preference and user limitations

in an assistive robotics task.

6.5.1 Planning with preferences and limitations

First, we want to ground the definition of preference in the case of our planning domains.

Although we will use the same concept of preference as in the previous chapters, here we will

define them more formally. Therefore, we will consider the preferences as defined in Chapter 3.

Thus, the preferences are used either to guide the action selection process or to modify how a

specific action is executed (as a parameter to the action). Preferences in planning can be defined

as soft goals and conditions as in PDDL3 [99], or can be related to plan ordering [38].

For completeness, we define again the task planning problem following the notation from

Section 5.3.

Definition 6.1. A task planning problem Π = 〈S,A, T, s0, g〉 is defined by a set of discrete states

S, a set of actions A, a state transition function T : S × A → S, an initial state s0 ∈ S and a

goal state g ∈ S. Each state s ∈ S is an assignment of values to predicates, and each action

ai ∈ A; ai = {pai , eai} is composed of the preconditions pai ∈ S and the effects eai ∈ S.

For more generality, in this chapter we will denote the preference predicates as suggestible

predicates. We define a suggestible predicate or preference as a predicate that is assigned a

certain value, appears along with a certain action in the plan and produces some reward when

it is present in the state. Such suggestible predicates do not affect the possibility to reach the goal

but affect how the goal is reached and which actions are selected. They are used to guide the

search and, instead of being conditions that must hold or identifying a plan as most-preferred,

they are predicates that may or may not hold and as a consequence produce different rewards

or costs. A suggestible predicate is formally defined as follows.

Definition 6.2. A suggestible predicate p ∈ S is a predicate such that there is no action ai ∈ A
in which p ∈ eai or p ∈ pai and p /∈ g, but it can be that p appears in R, where R is a reward or

metric function to be maximized.

As seen in the previous chapters, these preferences may include but are not limited to, the

robot’s movement speed, proxemics and verbosity.

88 Preference suggestions for improved performance

6.6 Providing suggestions

In this section, we propose the Space of Plans Suggestions (SoPS) algorithm to provide sugges-

tions to a set of predicates P ⊆ S.

Definition 6.3. A suggestion q = {(p, v) | p ∈ S, v ∈ Domain(p)} is a set of value assignments

to predicates such that the reward increases when planning using them.

Definition 6.4. A Space of Plans is a set of valid action sequences that bring the system from an

initial state s0 to a goal state g.

The algorithm analyzes a subset of the Space of Plans to provide the suggestions. The

algorithm’s goal is to determine which predicates have more impact on the reward, to suggest

those first. Therefore, it needs as an input a subset of the Space of Plans corresponding to the

plans obtained by combining the different suggestible predicates and obtaining a plan with them,

along with their associated plan reward.

This subset of the Space of Plans is compiled as a tree for efficient suggestion search.

6.6.1 The Plan Space Tree

The Space of Plans is compiled into a tree data structure where each branch is a complete plan,

similar to the policy trees used in contingent planning [133]. Therefore, all the plans with a

common prefix or starting sequence of actions begin at the root node and branch when the

plans differ. Accordingly, all the leaves of the tree are actions that produce a goal state.

Each node of the tree keeps a list with the set of suggestible predicates that produced the

plan, along with the plan reward. This information is kept at each node for all the plans that

reach the node. Moreover, the maximum reachable reward is kept for efficient retrieval of the

maximum reachable reward from the node’s branch. An example of a Plan Space Tree is shown

in Figure 6.3. As it can be observed, each node stores the matrix of predicates for all the plans

that go through it, and the index to the maximum reward node. For instance, for the a1 node,

maxRa1 = max(maxRa4 ,maxRa5 ,maxRa6).

This representation provides a compact and efficient data structure on which we can perform

the search.

In order to populate the tree, the subset of the Space of Plans is generated by executing

the planner with changing conditions in the problem file. Therefore, for all the combinations

of suggestible predicates, we generate one or more plans (depending on whether stochastic

planners are being used). Then, the list of plans is traversed to build the tree, adding new

action nodes when there are new branches. When the action node already exists in the tree, the

suggestible predicates of the plan along with their associated rewards are added to the node.

6.6 Providing suggestions 89

goal

goalgoalgoal (...)(...)(...) (...)

root
[p1, p2, p3, ...]

MaxR

a1
[p1, p2, p3, ...]

MaxR

a2
[p1, p2, p3, ...]

MaxR

a3
[p1, p2, p3, ...]

MaxR

a9
[p1, p2, p3, ...]

MaxR

a8
[p1, p2, p3, ...]

MaxR

a7
[p1, p2, p3, ...]

MaxR

a6
[p1, p2, p3, ...]

MaxR

a5
[p1, p2, p3, ...]

MaxR

a4
[p1, p2, p3, ...]

MaxR

a10
[p1, p2, p3, ...]

MaxR

a11
[p1, p2, p3, ...]

MaxR

a12
[p1, p2, p3, ...]

MaxR

a13
[p1, p2, p3, ...]

MaxR

a14
[p1, p2, p3, ...]

MaxR

a15
[p1, p2, p3, ...]

MaxR

a16
[p1, p2, p3, ...]

MaxR

Figure 6.3: Example of a Plan Space Tree. Each node ai represents an action of the tree. Nodes
labeled as goal are leaves whose branch is a complete plan to the goal.

6.6.2 Max-reward traversal

The SoPS algorithm (see Algorithm 6.1) performs a maximum reward traversal of the Plan

Space Tree to obtain a set of suggestions to unknown suggestible predicates that improve the

plan reward. For this reason, the already known predicates belonging to the suggestible set S are

fixed along the tree. To this end, all the branches belonging to plans generated with predicates

whose value is different to the fixed one are pruned, and their rewards discarded, keeping only

the branches belonging to unknown predicates.

To start, the algorithm searches for the promising nodes in the tree (see the GETPROMIS-

INGNODES procedure). A promising node is a node of the tree such that it is a child with a

maximum reachable reward.

Definition 6.5. A promising node m is a node in the Plan Space Tree such that m ∈ Cn and

@ai ∈ Cn, ai.MaxR ≥ m.MaxR, where Cn is the set of children of the node n and ai.MaxR is

the reward associated to a node ai.

90 Preference suggestions for improved performance

Algorithm 6.1: SoPS algorithm
Input: Plan Space Tree t
Output: Set of suggestions P
1 procedure GETSUGGESTIONS(t)
2 D := GetPromisingNodes(t)
3 m := []
4 forall di ∈ D do
5 m.add(computeMetric(di))

6 return ComputeNodeSuggestion(Dmax(m))

7 procedure GETPROMISINGNODES(t)
8 children := getMaxRewardChildren(t) // Children with max. reward

9 d := []
10 forall cmax ∈ children do
11 forall c ∈ getChildren(t) s.t. c 6= cmax do
12 c_diffs := computeDiffs(cmax, c)
13 if not empty(c_diffs) then
14 d.add(c_diffs)

15 d.join(GetPromisingNodes(cmax))

16 return d

17 procedure COMPUTENODESUGGESTION(d)
18 s = sum_cols(d) // Sums the columns

19 return {i | si = max(s)}

For each of those nodes, we compute a Boolean difference matrix Dn (line 12) such that

Dn
i,j = (pi,m 6= pi,j) ∀i ∈ P, j ∈ Cn \ {m}, (6.1)

where m denotes the child with maximum achievable reward, P is the set of suggestible predi-

cates.With Dn we can compute a set of candidate suggestions for each node n (see GETSUGGES-

TIONS procedure). To do so, we flatten the matrix into a vector d where dnj =
∑

iD
n
i,j . With d,

we can obtain the set of suggestions u (see COMPUTENODESUGGESTION procedure) as

u = arg max
j

dj . (6.2)

Therefore, the candidate suggestions are the predicates belonging to the maximal child whose

values are more different in comparison with its siblings. Those are the predicates which have

more impact on the difference of reward, and the ones that make this reward maximal.

Along with the candidate suggestion, a significance metric is computed for all the promising

6.6 Providing suggestions 91

nodes (line 5). This metric is an indicator of how different is the maximum reward child of the

node in contrast with the other children. We propose the following metric f , which computes

the average reward difference between the child with maximum reward m and the rest:

f(n) =

∑
i rmax − ri
N − 1

= rmax −
∑
{i∈C|i6=m} ri

N − 1
, (6.3)

where rmax is the maximum reward of all the children of the node n, and ri are the other child

rewards.

The rationale behind the metric in Equation 6.3 is that child plans that have a greater average

reward difference are better candidates at showing which suggestible predicates can make more

difference. Subsequently, the output suggestions are the candidate suggestions of the node

with the highest metric. Note that in case of a tie in Equation 6.2, more than one predicate

will be suggested. Moreover, along with the predicate that makes the difference, the algorithm

provides an assignment to each of the suggested predicates, which are the values assigned to

the predicates in the selected node.

The proposed SoPS algorithm (Algorithm 6.1) can be executed iteratively in order to obtain

new suggestions until all the suggestible set has been determined. To do so, the values of

the known suggestible predicates3 can be fixed beforehand. More specifically, the algorithm

goes over the tree pruning the branches or discarding those that do not satisfy with the fixed

predicates. The fixed predicates are then also taken into account in Equation 6.1, where the

fixed predicates are ignored in the computation of the differences matrix.

6.6.3 Suggesting changes to known predicates

Once we are able to provide suggestions to unknown predicates, we can go a step further and

propose changes to some of the fixed (already defined) suggestible predicates. This would

provide further improvement of the plan performance, at the cost of slightly modifying the

user-defined values.

However, the system shall not completely ignore the defined predicates, as they may be

given a specific value for a reason. Therefore, we propose to only modify the predicates when

the received suggestion’s value is close to the defined value. The notion of closeness can be left

to the user to be defined. In the case of an ordinal set of values for a predicate, this closeness

can just be the arithmetic difference and a defined value of maximum acceptable difference for

a change.

Definition 6.6. A change c is a suggestion such that c = {(p, v) | p ∈ S, v, v′ ∈ Dom(p), (p, v′) ∈
3Predicates can be known because they are provided to the algorithm or because they were obtained as

suggestions in a previous execution.

92 Preference suggestions for improved performance

D, sim(v, v′) ≤ T}, where D is the set of predefined predicates, sim is a similarity function, and

T a user-defined threshold.

Algorithm 6.2: SoPS-change algorithm
Input: Plan Space Tree t
Input: Predefined set D
Output: Set of suggestions allowing changes P
1 P = []
2 s := GetSuggestions(t)
3 forall si ∈ s do
4 if predicate(si) ∈ D then
5 if (value(si) 6= value(Dsi)) ∧ (sim(value(si), value(Dsi)) ≤ T) then
6 P.add(si)
7 D.remove(predicate(si))
8 else
9 t.fixPredicate(Dsi) // Prunes the branches not satisfying Dsi

10 return SoPS-change(t, D) // Recursive call

11 else
12 P.add(si)

13 return P

The proposed method for changes is the following. First, we obtain the suggestions from

the whole Plan Space Tree, ignoring the predefined predicates. If the suggestions are new,

we add them to the set. Otherwise, the predefined predicate will take the suggested value if

the similarity between the values is close enough, as defined above. Algorithm 6.2 shows the

variation of the method including changes.

6.7 Experimental evaluation

To evaluate the proposed algorithms, we have designed three domains in which preferences can

play an important role in the decision process and modify the plan to be executed. The domains

relate to assistive robotics scenarios, consisting of assistive feeding, shoe-fitting, and assisted

jacket dressing.

As described in Section 6.4, the domains have been written in the RDDL language [110].

RDDL allows for richer reward function definitions, suitable for the integration of suggestible

predicates as defined above. As a plan solver, we have used the PROST planner [112] has been

used to compute the Space of Plans and to execute all the experiments4. PROST is a RDDL-based
4The source code of the proposed algorithms can be found in github.com/gerardcanal/SoPS

https://github.com/gerardcanal/SoPS

6.7 Experimental evaluation 93

probabilistic planning framework with many different search configurations, originally based on

the UCT algorithm [134]. It is a state-of-the-art planner that won the latest IPPC competitions,

and we decided to use it due to its good performance. The default IPPC2014 configuration was

used for the experiments presented in this section. The experiments have been run using the

ROSPlan framework with the RDDL extension described in Section 6.3.

6.7.1 Definition of the domains and preferences

Next we describe the implemented domains and preference options. The domains have been

defined such that there are many equivalent actions and many different paths to the same goal.

The preferences and suggestible predicates define the final obtained reward and thus guide the

planner towards choosing the actions that comply with them. For more details on the definition

of preferences refer to Section 3.3. For a demonstration of how do the preferences apply to the

three scenarios used in the thesis refer to the supplementary video5.

Feeding task

The feeding task completes when the user has been fed (at least N spoonfuls completed). It

contains the following actions:

- Get Foot: uses the cutlery to get the food.

- Approach straight: approaches to the user frontally.

- Approach from below: approaches the user from below (less intrusively).

- Approach from the side: approaches sideways, being always visible but not frontally.

- Feed straight: feeds the user by moving in a straight line and exiting in the same way.

- Feed scooping: feeds the user and performs a scooping action when exiting to ensure

emptying of the food.

- Wait for user feeding: waits for the user to get the food.

- Move away: retires the robot back to the starting position.

The preferences involved in this task are the head mobility, head proxemics (closeness of the

robot to the user), movement speed, applied force, feeding cadence and robot verbosity.

5The video demonstration on the use of the preferences for action selection in the assistive robotics scenarios can
be found at youtu.be/mVvnigdPJPQ

https://youtu.be/mVvnigdPJPQ

94 Preference suggestions for improved performance

Shoe-fitting task

The shoe-fitting task is completed when both feet have a fitted shoe and the robot’s gripper is

empty. It includes the following actions:

- Request foot reachable: requests the user to move the foot closer.

- Request foot visible: requests the user to put the foot in the robot’s sight.

- Grasp shoe: it grasps the shoe (from the user, as a handover).

- Approach from top: it approaches the user’s foot from the top.

- Approach left: it approaches the user from the left side.

- Approach right: approaches the shoe from the right-hand side.

- Approach from below: approaches the user from the below.

- Insert straight: inserts the shoe in a straight movement, without forcing the ankle.

- Insert curved: shoe insertion forcing a bit the ankle to fit correctly the heel.

- Insert right/left: inserts from the side following the foot’s shape.

- Release simple: releases the shoe and moves away.

- Release push: it pushes the shoe a bit before releasing it to ensure fit.

The preferences involved in this task are the foot mobility (for each foot), leg mobility (for

each leg), the speed, applied force, verbosity and requests (defines whether requests to the user

should be done or not).

Jacket dressing task

The jacket dressing task is completed when both sleeves have been fitted until the shoulder and

the robot’s grippers are empty. It consists in the following actions:

- Approach single-arm frontal: it approaches a sleeve to a single arm from the front

(visible to the user).

- Approach single-arm rear: it approaches the sleeve to the arm from behind (more

comfortable as less movement is involved).

- Approach arm side: it approaches a sleeve from the side.

6.7 Experimental evaluation 95

- Approach both arms: approaches both sleeves together from behind.

- Insert sleeve from the front: inserts the sleeve in a frontal manner (doing so makes it

impossible to insert the other sleeve frontally).

- Insert sleeve straight: inserts a sleeve from the side, with the stretched arm.

- Insert both sleeves: inserts both sleeves together from behind.

- Drag forearm frontal: drags the sleeve in the forearm from the front.

- Drag forearm straight: drags the forearm sideways.

- Drag both forearms: drags both forearms together.

- Drag upper arm: drags an upper arm.

- Drag both upper arms: drags both upper arms together.

- Release: Drags the cloth to the shoulders and releases the garment.

The preferences involved in this task are the arm mobility (for each arm), the speed, the

applied force, verbosity and the torso proxemics (how close should the robot go to the user’s

torso).

6.7.2 Effect of the SoPS algorithm

To demonstrate the effectiveness of the SoPS algorithm, we have compared the obtained sug-

gestions against random preference value assignments, which represent user-provided values.

Note that in a real robot scenario the user would provide these preference values. However, in

the experiment of this section, these user-provided (fixed) values will be obtained from previous

executions of the algorithm or set at random. To do so, we run the algorithm with random

sets of fixed preference predicates, starting with sets of size 0 (without any known predicates)

and adding one predicate each time until all the suggestible predicates are known. Thus,

the algorithm returns suggestions to the yet unassigned suggestible predicates. Each obtained

suggestion is then fixed (and assumed known), and new suggestions are further requested until

all the suggestible predicates have been assigned. In this case, the predicates known beforehand

(the random sample) were fixed in the Plan Space Tree and the affected branches were pruned-

out. Therefore, those predicates are not taken into account by the algorithm.

For each step (new suggestion obtained), we have created 50 sets of random samples of

predicates. Afterward, the SoPS algorithm was used to obtain suggestions for the unknown

96 Preference suggestions for improved performance

predicates, getting one suggestion at each step until the total number of suggestible predicates

was reached.

After computing each suggestion, the planner was used to obtain a new plan, and its final

reward was stored. Given that the PROST planner uses stochastic methods and its solution is

not deterministic, each plan was computed 20 times. This value was experimentally defined as

the number of executions that provided a sufficient number of plans to capture the variability

of the obtainable plans for each configuration of the presented scenarios. The results shown in

this section are the average of all the 1000 executions (including both the 20 repeated planning

attempts and the 50 random samples).

Figure 6.4 shows the results obtained using the explained procedure for the feeding domain.

In this domain, we consider 6 possible preferences or predicates (detailed in Section 6.7.1).

The SoPS line (in blue) shows the mean reward that can be obtained when no preferences are

known (0 known predicates), and the reward that can be obtained when the most promising

preferences are determined (up to 6).

As it can be observed, the use of the SoPS algorithm highly improves the obtainable reward

in all the cases. This is because, even when random fixed predicates don’t give much reward,

the algorithm finds suggestions for the other predicates that can improve the total reward. The

fact that the initial reward (first point in every line) increases as more predicates are known can

Figure 6.4: Results with different set-ups for the feeding domain. Observe how the suggestions
provide better rewards in all the cases, even when the system starts with random fixed values
for the suggestible predicates.

6.7 Experimental evaluation 97

Figure 6.5: Results with different set-ups for the jacket dressing domain. In this case, there is
some correlation between some predicates, but the algorithm still produces an improved reward.

be explained because having an extra predicate increments the initial reward (as the suggestible

predicates provide extra reward). Note that, as 6 predicates are the maximum, SoPS cannot be

applied in the “random 6” case and thus only the mean reward is depicted.

A similar result is can be seen for the jacket dressing domain in Figure 6.5. Interestingly,

a plateau is found between the second and third predicates for the SoPS (blue line). This is a

result of two predicates that were suggested together due to being tightly coupled predicates

that provide the reward when they are together. In the evaluation, we keep only one of the

suggested predicates at each step for easier comparison. Therefore, when obtaining the third

predicate the algorithm provides two suggestions. After fixing the first one (predicate 3), the

algorithm returns the second suggestion for predicate 4 (which was already suggested in the

previous iteration). Therefore, the reward of both predicates is obtained when the second one

is suggested.

Finally, Figure 6.6 shows the same behavior regarding the random pre-assignment of pred-

icates and the algorithm, but plateaus can be observed at the end of the assignments. This is

due to the superfluous predicates present in the domain. These superfluous predicates do not

increase the reward. Therefore, those are obtained as a suggestion once the useful predicates

have been already suggested. A more detailed analysis of the superfluous predicates can be

found in Section 6.7.4.

98 Preference suggestions for improved performance

Figure 6.6: Results with different set-ups for the shoe-fitting domain. This domain has some
predicates that do not improve the reward, and those are suggested at the end when the
maximum reward has been obtained.

6.7.3 Improvements by allowing changes with SoPS-change

A new experiment has been performed to analyze the effects of allowing changes in fixed

suggestible predicates with the SoPS-change algorithm. These changes are suggestions to al-

ready assigned predicates keeping into account the current value. The SoPS-change experiment

will be performed, as in the previous section, generating random assignments for the value

of the preferences. However, this time changes will be allowed if the suggested predicate

was already assigned. In general, any change can be allowed by specifying enough distance

as a parameter. Given that our domains include physical scenarios, we believe big changes

should not be allowed. Therefore, for this experiment suggested changes are only accepted

when the suggestion obtained is at distance one from the assigned value, so bigger changes are

not allowed. In case there is a suggested change that can not be accepted, we fix that preference

to the already assigned value and continue with the following suggestions.

Figure 6.7 shows the maximum obtainable reward for the feeding case when preference val-

ues are fixed, starting with N preassigned predicates (horizontal axis) and using the suggested

predicates from the algorithms to assign the rest. The figure compares the changes approach to

the standard SoPS version. In both cases, the reward values are obtained from the tree, and they

represent the maximum obtainable reward as stated in the Plan Space Tree. Therefore, no new

6.7 Experimental evaluation 99

plans are computed this time. Observe that, as in the previous section, the higher the number

of random fixed predicates the lower the reward is. But, when changes are allowed, the reward

decay is much slower. Notice this happens even in a conservative approach in which only small

changes are allowed (so when the suggestion is highly different from the fixed predicate, the

suggestion is ignored). The same behavior can be observed for the other domains, in Figure 6.9

and Figure 6.8.

6.7.4 Finding superfluous suggestions

The results obtained from the shoe-fitting domain in Figure 6.6 show that predicates that do

not provide much reward get suggested at the end (as the most promising ones are suggested

earlier). To confirm this and analyze its implications, we performed another experiment where

more suggestible predicates that do not help to increase the reward were added. We call refer

to these suggestible predicates as superfluous predicates.

To this end, we have run the same experimental set-up of Section 6.7.2 with slightly modified

domains. In them, we added two predicates which are not taken into account in the reward

function, but allow them to be suggested, being added to the Plan Space Tree. Later we have

executed the SoPS algorithm in them, the results of which are shown in Figure 6.10.

Figure 6.7: Results for the feeding domain allowing changes. As the number of fixed predicates
increases, the reward decreases (as they may not be optimal). Suggesting changes close to the
fixed predicates allows to improve the obtained reward.

100 Preference suggestions for improved performance

Figure 6.8: Results for the shoe-fitting domain allowing changes. This domain shows a similar
trend, successfully improving the obtained reward with the suggested changes.

Figure 6.9: Results for the jacket dressing domain allowing changes. Change suggestions to the
fixed values with a distance of one are enough to improve the final reward.

6.8 Summary 101

Figure 6.10: Results with the different domains including superfluous predicates. Our method
is able to maximize the reward ignoring the predicates not providing more reward, which are
suggested at the end.

As it can be seen, the reward function tends to saturate around the last predicates, while

keeping the same shape as in the previous experiment. In the case of the shoe-fitting, it is

clear that there are many superfluous predicates. The feeding case also shows a third potential

superfluous or less-useful predicate, while the jacket dressing shows that most of the predicates

are useful. Slight variations of the tails of the reward plots are due to the stochasticity of the

results (which are again an average of all the plan executions).

Consequently, it can be seen that the SoPS algorithm can also be used to determine whether

there are superfluous predicates in a domain, which can be used to decrease the size of the

search space. However, it can be seen that superfluous predicates can’t usually be detected while

obtaining the suggestions, but only when all the suggestible predicates have been obtained.

Even so, the computation of all the suggestions is efficient and quick enough to be possible to

pre-compute the superfluous predicates beforehand.

6.8 Summary

In this work, we have presented an algorithm to provide suggestions for assigning values to

predicates in planning domains. We have defined the concept of suggestible predicates, which

102 Preference suggestions for improved performance

are those predicates that help the planner by guiding the search and providing more reward

under some circumstances. To do so, we extended ROSPlan to be able to handle stochastic

planners and languages such as RDDL. Then, we have proposed the SoPS algorithm that uses a

Plan Space Tree built from a pre-computed subset of the Space of Plans. The algorithm traverses

the tree to obtain suggestions for predicates such that the final plan reward is maximized. A

variation of this algorithm that suggests changes to already assigned predicates has also been

proposed. These changes are considered taking into account the current assigned value of the

predicate.

The algorithms were evaluated with three assistive robotics domains in which the suggestible

predicates are preferences of the user to define the robot’s behavior. Results show that using

the values selected by the algorithms improves more the reward in comparison with a random

selection of the values when computing new plans.

The methods proposed in this chapter can be used in many other domains apart from

the already shown here. The algorithms can also be used for plan explainability and other

Explainable AI set-ups. We believe the suggestions provided by our algorithms could also be

used to explain a non-expert user why the planner took an action or another, as well as to help

the user in selecting the best configuration based on their needs, explaining that assigning a

specific value to a predicate can lead to better plans. Although some more work can be done in

this direction, we believe these algorithms can be a good tool for providing plan explanations,

as well as powerful algorithms to analyze the Space of Plans.

Moreover, the algorithms presented here can be used to elicit unknown user preferences. An

initial elicitation method was presented in Chapter 4, where a Fuzzy Inference System was used

to get the values of the preference predicates. The user model presented may work well with

a few predicates, but when the number of predicates grows the number of user questions does

too. The methods presented in this chapter can then be used to refine the model obtained by

the FIS, ultimately leading to a better adaptation and task performance.

7
Evaluating the use of preferences through HRI

Until now, we have defined a personalization framework and also defined the potential pref-

erences that can be applied to Physically Assistive Robotics tasks (Chapters 2 and 3), and

studied how to integrate such preferences in an autonomous manner by means of AI Planners

(Chapters 4 and 5). Having implemented autonomous robots able to assist users in different

ways based on preferences, there is a question to be solved which is whether the users are

able to understand when their preferences are employed and to assess and distinguish between

different robot behaviors produced by different preferences. We will answer the question in this

chapter, where we perform a Human-Robot Interaction study to evaluate the use of preferences.

The experiments have been performed with real users performing the three tasks defined in

Section 1.3 with a real robot.

This work has been published in [18].

7.1 Introduction

The success of any Assistive Robotics task depends on the interaction with the user. User

collaboration is key to have satisfactory assistance, and preferences should play an important

role to achieve this collaboration. If the user feels comfortable and safe, the trust in the robotic

system will increase, which will lead to overall increased satisfaction. The ability to adapt to

users should increase their satisfaction, and the best manner of assessing the impact of the

adaptation is by trying it with real users.

This is even clearer in the case of physical Human-Robot Interaction, where the interaction is

one of its main elements. When touching users with a robot, its behavior must be clear, legible

and understandable by the user at any moment. Failure to do so may result in rejection of the

complexity of use or fatal outcomes such as user harm. This thesis focuses on the behavior

adaptation of the robot and the user. We defined a framework for robot adaptation (Chapter 2),

104 Evaluating the use of preferences through HRI

a taxonomy of possible preferences (Chapter 3), and analyzed different methods of adaptation

by the use of task planners (Chapters 4 and 5). Finally, we showed how could these preferences

be suggested to improve the performance of the tasks (Chapter 6). However, the part of the

user interaction has been left out to focus on how to create robust behaviors and adaptations.

Therefore, we are now ready to proceed with a user evaluation to assess whether the use of the

preferences as we have envisaged in this thesis is correct and leads to better interaction.

In that direction, this chapter presents a user study that evaluates if users can identify in

which executions of the assistive tasks the robot is using their chosen preferences, without

previous examples. We also consider whether the tasks fulfilling the user’s preferences are found

more pleasant and whether the able users see potential benefits for dependent users. Finally,

the Almere model [135] has been used to evaluate the robot acceptance. For this purpose, the

three assistive tasks described in Section 1.3 have been considered. Two robot arms have been

used to assist the users in performing the tasks in a fully autonomous manner. The users have

experienced each task two times, answering a questionnaire of their experience after each task.

The following sections will detail the used experimental methodology, evaluation measures, and

experiment results.

7.2 Related work

Physically Assistive Robots require a proper interaction with the assisted user to successfully

complete the task. Given the importance of such kind of applications, many works intend to

solve some or part of the assistive tasks. Silva et al. [136] propose a modular robotic arm for

assisted feeding. Vila et al. [17] (see Appendix B) assume that impacts may occur accidentally

and analyze impact forces and safety measures for robot-assisted feeding. A taxonomy of

manipulation strategies for feeding is presented by Bhattacharjee et al. [137]. To do so, they

created a dataset of food manipulation. Following up, bite acquisition is further studied by

Gallenberger et al. [138], where adaptive strategies select the manipulation primitive to use

with each food item. A user study with 25 participants was performed in which users had to

determine how easy was to bite off the fork when the robot presented the food.

In a similar scenario to the jacket dressing that we consider in this thesis, a hospital gown is

dressed by Erickson et al. [139], where a deep recurrent model is used to predict the garment

forces applied to the user. This is further applied for improving the robot’s control, using only

haptic and kinematic data from the robot’s end-effector. Zhang et al. [140] propose a tracking

method based on Bayesian Networks in latent spaces to fuse robot pose and force for camera-less

estimation of user postures while dressing. They applied it to the dressing of a sleeveless jacket.

The system is evaluated with able-bodied users who had some of the movements restricted by

7.2 Related work 105

braces to simulate user limitations.

Most of these works focus on the independent living of the users by providing more au-

tonomy. However, such autonomy can also be seen as the control the users have over the

robots as described by Lee and Riek [141]. Moreover, Chien et al. [142] show that providing

customized designs and settings, as well as positive experiences, can improve the acceptance

and use of assistive robots by older adults. To this end, the use of preferences may have a

great impact on the autonomy that Physically Assistive Robot provide. Therefore, other authors

have also focused on the need for personalization and adaptation for better user assistance.

Kapusta et al. [143] present a task optimization of robot-assisted dressing, TOORAD, where a

plan is generated for both the person and the robot, by using a simulation model including

geometry and kinematics of the human, the robot, and the environment. This helps to provide

personalized plans for users. A study with six participants with physical disabilities, with the

system successfully assisting four of them. The authors state the need for variation on the forms

of assistance, which we try to assess in this chapter.

Moreover, personalization and user preferences in HRI has also been widely acknowledged

in a broader range of topics. Tapus et al. [144] developed a Socially Assistive Robot (SAR)

to assist, encourage and interact with post-stroke patients in rehabilitation. The personality

of the robot is modified to match the user’s one, modifying elements such as the levels of

extroversion and introversion. They also modify robot proxemics and speed and vocal content,

similarly to some of our proposed preferences. The authors demonstrate that users prefer

the robot that has an adapted behavior to match their personality, leading to improved task

performance. Moro et al. [145] propose a behavior personalization method for SAR consisting

of the combination of Learning from Demonstration and Reinforcement Learning (RL). In it,

the caregivers demonstrate different behaviors for the robot, which are used to learn general

behaviors. Then, RL is used to obtain a policy that selects the most appropriate behavior given

the user’s cognitive level. Preferences for hand-overs are analyzed by Cakmak et al. [146], where

robot and object configurations are adapted to the user preferences that relate to the position

and orientation of the object. Lee et al. [147] carried out a long-term field experiment with

a snack delivery robot. Participants interacted with the robot over two months and the robot

adapted their social interactions. The robot was able to remember the user’s favorite snacks,

usage patterns and robot behaviors. Results showed an increase in rapport with the robot and

the users and increased participants’ cooperation. Learning of user preferences based on ratings

is performed in [24], where preferences are learned from user ratings over time. Three models of

users are defined, which integrate preference profiles. They show its applicability in preferences

over light animations in a mobile robot. Chevalier et al. [148] designed a personalized HRI

environment for individuals with autism spectrum disorder. The user’s personality (introversion

106 Evaluating the use of preferences through HRI

and extroversion) is used to create a model that predicts user preferences by Cruz-Maya and

Tapus [149]. The user evaluation performed shows that the behaviors generated by the model

were more preferred by the users. Preferences for social interaction parameters such as distance

and speeds are evaluated by Rossi et al. [150], where comfortable stopping distance is evaluated

against human pose and user personality. The authors state the importance of learning the

preferences in order to adapt the robot behavior, which would foster acceptance by the users

and safety feelings. User preferences for robot motion planning are learned by Wilde et al. [151].

User path ranking is used to learn user constraints regarding the task, obtianing the preferred

path for the user. Similarly, Hayes et al. [152] learn user preferences over continued interaction

to improve navigation tasks. Preferences for service robots are studied by Torres et al. [153],

where a preference reasoning is proposed. Preferences over service robotics scenarios such as

object placement and user tastes are used to interact with the user.

In addition to all this, assistive robotics has the problem of acceptance. Society is still

reluctant to accept social robots for domestic purposes, as analyzed by de Graaf et al. [154].

The authors state that it is vital to include opinion of future users in order to adapt the robots

to their preferences. A long-term acceptance study with older adults was performed by Piasek

and Wieczorowska-Tobis [155], where high acceptance was demonstrated by users in need of

social assistance, with this user segment being open to facilitating technologies. Another study

in the same direction was performed by Smarr et al. [156]. In it, twenty-one older adults

completed questionnaires regarding their preferences and openness to assistive robotics. The

results show a preference for instrumental tasks such as housekeeping or medication reminders

but were less open to receiving assistance in tasks such as shaving or hairdressing. A similar

analysis is performed by Deutsch et al. [157], where a qualitative study with thirty cognitively-

able individuals. Results show many opportunities for home robots, and some user needs that

feel threatened by the inclusion of such devices. However, the current generation shift may

lead to inconclusive results when experimenting with current older adults. To this end, Gessl,

Schlögl and Mevenkamp [158] study the perceptions and acceptance of future older adults. The

study spans 188 users from 20 to 60 years of age, where they found correlations between age,

gender and personality with technology acceptance. The authors state that personality plays a

significant role in the acceptance of assistive robotics technologies, which we believe strengthens

the need for personalized and preference-based robotic behaviors. Other similar studies like the

one by Biswas et al. [159] try to assess whether older adults are different from young users

when interacting with robots, in order to understand how communication preferences change

by age. Results show similar preferences for the older people and under 21 samples than the

middle group aged from 22 to 64 in elements such as preferring speech over a tablet use.

Although many important works have focused on the use of preferences, we are not aware

7.3 Methodology 107

of any of them analyzing how well can the users assess the correct use of their own preferences,

which is what we study in this chapter. We believe this is a key factor to increase user acceptance

and improve the overall interaction and assistance.

7.3 Methodology

While it may seem apparent that preferences and adaptation can improve a Physically Assistive

Robotics task, there are not many experiments proving so. However, the design of a system able

to modify its behavior based on user preferences does not imply such a system to be adaptive

and consistent with the preferences, as this is a subjective measure of the user. And, although

the user may be able to distinguish the behaviors while comparing them, this would not usually

be the desired case for assistive robotics at homes, where the system should be more plug-and-

play and managed by non-technical users, without the need of knowing how are the different

preferences translated to actual robot behaviors.

Therefore, the main purpose of this study is to determine whether a user can identify when

the robot’s behavior is guided by his/her own selection of preferences, given our system and

setup. We also want to know if the preferences give a feeling of better assistance. Finally, we

want to find out if the behaviors produced by different preferences are observed as different by

the users, to see not only whether the user can see when their preferences are used, but also

when they’re not and the different behavior is observed.

Given this, our hypotheses are: (H1) the preferences modify the behavior of the robot in an

expectable way, (H2) the interaction with the robot is more pleasant when preferences are used,

and (H3) different preferences will produce clearly different robot behaviors identifiable by the

user (regardless of their beliefs about the use of their preferences).

Accordingly, the input parameters will be the chosen preferences by the user. These will

be fed into a task planner that will choose the different actions to be executed based on the

preferences provided.

The following subsections will detail the setup, scenarios and experimental methodology.

7.3.1 Scenarios

We have used the three Physically Assistive Robotics tasks defined in Section 1.3 to be carried

out by the participants. In what follows, we detail how the tasks have been used to evaluate

the use of the preferences along with a description of the preference values that the user could

choose per each task. The preferences are the ones used over all the thesis, and extracted

from the taxonomy defined in Section 3.3. The actions in the domain are the ones defined in

108 Evaluating the use of preferences through HRI

Section 6.7.1. Examples of the setups for the different tasks are shown in Figure 7.1.

- Assistive feeding: The robot feeds the user one spoonful. The spoon is empty for the

experiments. The task-related preference is the proximity, which states whether the user

wants the robot to be close, far or at intermediate distance. This is used by the planner to

decide whether to use an action that inserts the spoon in the user’s mouth, or another one

that lets the user get the food while the robot waits. More details on the task can be found

in Section 1.3.1.

- Shoe fitting: The robot approaches a shoe to the user, who prepares the foot in front of

it, and the shoe is fitted. Then, the robot releases the shoe and the task is finished. The

preference to be chosen relates to the movement of the right foot, which could be either

nothing, a bit or a lot/normal movement. Users were allowed to freely simulate an ankle

injury that prevented them to move the foot. The robot behavior changed in the way the

shoe was fitted, and in the amount of force that was applied against the foot. More details

on the task can be found in Section 1.3.2.

- Jacket (open sleeved garment) dressing: The robot has the garment grasped with two

arms, and it dresses the user. Possible behaviors are starting with one arm or the other,

or inserting both together. This could be done in each part of the task, be it the sleeve

insertion, lower arm dragging or upper-arm dressing. In this task, the user could choose

how much the right arm could be moved, again simulating injury if desired. The possible

values were no movement, a bit or normal movement. This preference guided the behavior

of the robot by starting for the right arm or using actions that would not affect the arm

movement, either by forcing the user to move or by stretching the arm with the garment.

More details on the task can be found in Section 1.3.3.

As already mentioned, these tasks are widely addressed by the PAR community, given that

(a) Assistive feeding setup (b) Shoe fitting setup (c) Sleeved garment dressing
setup

Figure 7.1: Setup used for the experiments in the three tasks.

7.3 Methodology 109

they have a potentially high impact on the dependent users’ lives as they represent some of the

most basic needs without which a human cannot live with dignity, while still being safe enough

to prevent user harm.

Given that we are only focused on the behavior changes observed by the users, we have

safely implemented the tasks by compromising some elements in favor of safety. Therefore,

we have implemented trajectories learned kinesthetically in joint space to prevent any poten-

tial misbehavior or unexpected movement of the robot due to sensor faults, misdetections or

potential singularities in the inverse kinematics that could harm the user.

We believe that, although this may hinder a bit the experience of the users, it does not

impede them the assessment of the behavior of the robot neither the ability to discern the cases

in which the preferences are being used, while still being able to participate in the task and

experience the assistance first-hand in a safe environment.

Apart from the task-related preferences, the user could choose two additional preferences

for each task (but with the possibility of providing different values per each task). We decided

to use the same two preferences to simplify the user’s task. These preferences are:

- Robot speed: defines the speed at which the robot moves, using fuzzy terms. The

options were slow, intermediate or fast. No demonstration of the speeds was performed

beforehand, so it was based only on user intuition.

- Robot verbosity: specifies whether the robot should speak or not. In our scenarios,

speaking relates to informing the user before each task was being performed. An example

of speech is: "I am approaching your right hand". Possible values for the preference are

sometimes, always or never. As this is a preference and not a constraint, the robot may

decide to speak even in cases when the preference was not to speak. For instance, it may

speak to inform the users that it will not insert the food into their mouth but instead wait

for them to get the food while the robot stays still.

The tasks have been implemented in the robot and behaviors have been designed for each of

them. The decision making is performed using task planning, and the preferences are used in the

same way as described in Chapter 4 and using the ROSPlan extension described in Section 6.3.

During the tasks, the robot was acting in a fully autonomous way without external interventions.

7.3.2 Material

The experiments were carried out using two Barrett WAM R© robotic arms. The feeding and shoe

fitting tasks were using only one arm, while the jacket dressing task employed both of them.

Additionally, each user was given a single-use spoon for the feeding task. This task also

needed a table, a plate, and a chair. No food was supplied to the users, both for health and

110 Evaluating the use of preferences through HRI

safety reasons. The shoe-fitting task required a shoe, which was chosen to be a CrocsTM-like

shoe, and a stool to sit the person in. Finally, the jacket dressing task was using a big size

sleeved shirt that would fit all the users and was wide enough to prevent harm by the garment

getting stuck while fitting.

7.3.3 Participants

Thirty participants volunteered to take part in the experiments. All of them were healthy,

cognitively-aware, and able-bodied adults. Even though those users are no the target population

for our applications, we believe the state of the Physically Assistive Robotics systems are not

mature enough to be used with potential end-users. We needed some part of flexibility from

the user as well as full cognitive capacities to understand the task, the test and what was their

role in the experiment, which was to focus on the robot’s behavior and see whether there were

changes and their preferences were used.

Such experimentation in a care home may have been a source of stress for the patients

and may have led to inconclusive results if the goal of the task was not understood, apart from

possibly generating false expectations to the patients of such care homes. The fact that nowadays

we are still far to see real Physically Assistive Robots helping real users made us shift the focus

to younger users who may need one of these robots in the future [158]. Thus, we believe this

chose of participants does not harm the experiment but helps to understand how potential future

users see this kind of systems, and whether the preferences are well understood. Therefore, we

specifically targeted the study to healthy people from 20 to 40 years. Those are users who

are more familiarized with technology and personalization of devices such as smartphones and,

thus, able to understand the goals of the experiment.

7.3.4 Procedure

The experiments were conducted at IRI’s Perception and Manipulation lab1. The study was

designed as a within-subject experiment in which the participants were exposed to different

conditions of the same task. The work presented in this chapter has been approved by the Ethical

Committee of the Spanish Council of Scientific Research (CSIC) in report number 025/2019.

Each user started the experiment by learning about the purpose of the study and the tasks

to be performed. After learning about the experiment procedure they signed the participant

consent form. Then, they were asked about their preferences for the robot behavior, and this

was done before each task was executed. All the tasks were performed two times by each

participant. In each of them, one execution would use the user’s preferences to guide the robot’s

1www.iri.upc.edu/research/perception

https://www.iri.upc.edu/research/perception

7.4 Results 111

behavior, and the other execution would use explicitly different preferences to the ones selected.

There was also a control task for each user in which the chosen preferences were not used, and

both executions of the task were using the same set of preferences. This control task should

show no perceived differences in the robot’s behavior. The user did not know in which run

would the preferences be used and was only told that it may be that there were used in the

first execution, the second, all of them or none. After each task, the user would answer some

questions regarding the task, to state where the preferences were used (where options were in

the first run, in the second, or dubious).

In order to balance the executions, the following strategy was used. Three possible cases

were defined for each task:

- CASE A: The task will be executed two times without preferences.

- CASE B: First execution will use the preferences, the second won’t.

- CASE C: First execution will not use the preferences, the second execution will.

Then, we allocated the cases to the tasks such that each user was experimenting the three cases

(one per each task) and balancing between tasks. Therefore, the first user would start with the

tasks following cases A, B, and C, the next one would experiment cases B, C and A, and so on.

This way, all the tasks were allocated the different cases for different users. Therefore, it was

not possible that one task was always executed without preferences, neither that it included

preferences in the same order in all the executions.

At the end of the three tasks, the users completed the survey by answering a randomized

set of questions from the Almere model [135]. The full questionnaire used to survey the users

during the experiments is reproduced in Appendix D.

7.4 Results

Thirty users (86% self-identified as male) aged between 20 and 39 (mean of 26) years old

participated in the experiment. Images of some participating users performing each task can be

seen in Figure 7.2. For a more detailed example refer to the video demonstration2.

7.4.1 Preference guessing

The first question the users faced after each task had been executed two times was to tell in

which of the trials they believed their preferences had been used. Their options were that the
2The video demonstration showing different users performing the three assistive tasks can be found at

www.iri.upc.edu/groups/perception/assistivePreferencesEvaluation

http://www.iri.upc.edu/groups/perception/assistivePreferencesEvaluation

112 Evaluating the use of preferences through HRI

(a) User feeding example.

(b) Fitting a shoe to a user.

(c) Dressing of a sleeved garment.

Figure 7.2: Users participating in the experiment.

preferences were used in the first trial, in the second or they were not sure (i.e no difference

found).

The results are shown in Figure 7.3. As it can be seen, there were 66.67% of correct guesses

for the feeding task, 80% for the shoe task and 70% for the jacket dressing. If joined together,

the total amounts to 72.22% of successful guesses in the trial where the preferences were used.

As it can be seen in the plots, most of the cases were successfully identified. The most

misguessed case was the one in which no preferences were involved. The observed behavior

of the users was that sometimes, even when they were displaying a clear doubt, they were

selecting trial 1 or trial 2. Asked after the test, they state that they thought that one of the two

trials had to involve preferences as they were asked in the beginning and that they may have not

noticed something during the task execution. Even with it, all the cases were correctly identified,

being the feeding task the most difficult one. We attribute this to the fact that being the most

7.4 Results 113

dangerous task, the differences in speed and movements were not that much distinguishable.

To assess significance, we performed a Chi-squared test on the correctly guessed results with a

confidence level of 95%, obtaining a p-value of 0.006 < 0.05.

(a) Guesses for the feeding task (b) Guesses for the shoe fitting task.

(c) Guesses for the jacket dressing task. (d) Combined guesses for all the tasks.

Figure 7.3: Results of guessed preference trial per task. The 0 represents doubt/no preferences,
1 represents in the first trial and 2 in the second one.

114 Evaluating the use of preferences through HRI

FEEDING SHOE JACKET ALL
5 20.00% 23.33% 36.67% 26.67%
4 43.33% 33.33% 36.67% 37.78%
3 20.00% 30.00% 26.67% 25.56%
2 6.67% 10.00% 0.00% 5.56%
1 10.00% 3.33% 0.00% 4.44%

Table 7.1: Frequencies of the 5-point Likert
scale for the pleasantness of interaction.
Considering all results.

FEEDING SHOE JACKET ALL
5 40.00% 43.75% 56.25% 46.81%
4 20.00% 25.00% 37.50% 27.66%
3 26.67% 18.75% 6.25% 17.02%
2 6.67% 12.50% 0.00% 6.38%
1 6.67% 0.00% 0.00% 2.13%

Table 7.2: Frequencies of the 5-point Likert
scale for the pleasantness of interaction.
Only correctly guessed state when prefer-
ences were present are considered.

FEEDING SHOE JACKET ALL
OP NP SGP OP NP SGP OP NP SGP OP NP SGP

MEAN 3.85 3 3.8 3.8 3.3 4 4.4 3.5 4.5 4.02 3.27 4.11
MEDIAN 4 3.5 4 4 3 4 4.5 3 5 4 3 4
MODE 4 4 5 5 3 5 5 3 5 5 3 5

Table 7.3: Descriptive statistics for the pleasantness. OP are the results only considering the
cases where preferences were present. NP are the cases where preferences were not present.
SGP are the results when there were preferences and the users correctly guessed in which trial.

7.4.2 Pleasantness of the interaction

After each task, the users were also asked about the pleasantness of the interaction when

preferences were present. When no preferences were available, the users tended to answer

either a low score or middle score to express neutrality.

Figure 7.4a and Table 7.1 show the results obtained for the pleasantness of the interaction

considering all the answers, while Figure 7.4b and Table 7.2 show only the answers in the

cases where the preferences were successfully identified (and there were preferences). It can be

observed that the pleasantness levels increase when the preferences are correctly identified, as

when taking into consideration all the answers there are more low scores, while considering only

the guessed results the good scores (values 4 and 5) are more present. The effect is less clear

in the feeding task, but there is still a clear increase in the pleasantness. These results would

support our hypothesis H2, where the use of user preferences leads to a more pleasant task.

Table 7.3 provides further descriptive statistics on the obtained Likert-scale responses, showing

that the results were higher in the cases where preferences were present. also supporting that

when preferences are not present the overall pleasantness is lower. A Chi-squared significance

test gives us confidence in the results, obtaining a p-value < 0.05 both for the aggregated results

of all the tasks and for the shoe fitting and jacket tasks independently.

7.4 Results 115

7.4.3 Differential behavior

Our last hypothesis was that the use of preferences would lead to clearly different robot behav-

iors, independently of the chosen preferences. To assess this, we asked the users about whether

the behavior was assessed as different using a 5-point Likert scale question. We would expect

high scores for cases with preferences, while the cases in which preferences were not present

should show disagreement. Figure 7.5 and Tables 7.4–7.5 show a comparison of the obtained

results when preferences are not present and when they are applied. As it can be seen, there’s

much more confusion (a score of 3) and disagreement when preferences were not used, while

the use of preferences shows more agreement in the difference of behaviors between the first

and second trial. Similarly, Table 7.6 shows the same trend, where cases using preferences

were identified as having a clearly different behavior. In this question, there is no difference

regarding the correct guessing of the use of the preferences. A Chi-squared test for this question

also showed significance for the shoe-fitting, jacket dressing and aggregated results, for which

we can consider our hypothesis accepted.

7.4.4 Potential usefulness of Assistive Robotics

Our targeted users did not require this kind of assistance, but everyone can relate or think of

cases in which PAR may be of use. Therefore, we asked them about their beliefs on the potential

uses of these assistive robotics tasks.

(a) Pleasantness answers (b) Pleasantness answers considering only suc-
cessfully guessed state (with preferences)

Figure 7.4: Results of the pleasantness when using preferences. Observe that 4 and 5 are the
dominant answers overall. The results improve with an increase of agreement answers when
only the successfully guessed state is taken into account, meaning that the use of preferences
increases the task pleasantness.

116 Evaluating the use of preferences through HRI

(a) Behavior difference when preferences are not
present

(b) Behavior difference when preferences are
present (independent of correct guess)

Figure 7.5: Results of behavior difference per task with and without preferences. Note that
when preferences are present, the users agree on an observed behavior difference, while when
no preferences are present the users get more confused.

FEEDING SHOE JACKET ALL
5 20.00% 0.00% 20.00% 13.33%
4 20.00% 10.00% 20.00% 16.67%
3 20.00% 50.00% 30.00% 33.33%
2 10.00% 20.00% 10.00% 13.33%
1 30.00% 20.00% 20.00% 23.33%

Table 7.4: Frequencies of the 5-point Likert
scale for the difference of behavior. Only
when no preferences were applied

FEEDING SHOE JACKET ALL
5 15.00% 30.00% 30.00% 25.00%
4 45.00% 40.00% 50.00% 45.00%
3 20.00% 25.00% 20.00% 21.67%
2 20.00% 0.00% 0.00% 6.67%
1 0.00% 5.00% 0.00% 1.67%

Table 7.5: Frequencies of the 5-point Likert
scale for the difference of behavior. Only
when preferences were present regardless of
user’s guess.

The collected answers are summarized in Figure 7.6. Both charts show a clear opinion

in favor of the use of Physically Assistive Robots to help dependent people. Even though

our experiment was using a prototype and some user adaptation was removed, most of the

users agreed that the use of preferences such as the ones proposed in this thesis can improve

the assistance for those in need. In a more general question, they also confirmed that those

applications can be helpful for dependent users. As it can be seen in Figure 7.6a, the majority

of the users agreed that the preferences improve the assistance. Similar results are observed in

the helpfulness, where users also confirmed that these tasks can provide effective assistance to

users in need.

Finally, we have used the Almere model [135] to get further insights into the acceptance of

this kind of robots. Even though the model was designed for older adult users, we wanted to

see whether we may get some insights into the potential future acceptance of assistive robotics

7.4 Results 117

arms among older adults and other dependent users. Therefore, our users also answered the

questions from the Almere model. The questions were provided randomized and adapted to the

experiment at hand, appealing to their imagination in some questions, where they were told

to put themselves in the role of a dependent user. The Social Presence (SP) construct was not

included in the questionnaire given that there was no conversation between the robot and the

user.

The obtained results are summarized in Table 7.7. Even though not all the constructs

provided reliable answers, we believe they give us good insights into what the users think

about the system. Above all, we want to notice the constructs as Anxiety (ANX - evoking

anxious reactions) which shows the lowest scores. The Attitude Towards Technology (ATT)

shows positive feelings about the applicability of the technology, being the one with the highest

score. Trust and Intention To Use (ITU) show a wider range of opinions, while the Perceived

Usefulness (PU) and Perceived Adaptivity (PAD) give insights of good acceptance of the system

and perception of a useful and adaptive system, which is even enjoyable (PENJ).

FEEDING SHOE JACKET ALL
OP NP SGP OP NP SGP OP NP SGP OP NP SGP

MEAN 3.55 2.9 3.6 3.9 2.5 4.19 4.1 3.1 4.19 3.85 2.83 4
MEDIAN 4 3 4 4 3 4 4 3 4 4 3 4
MODE 4 1 4 4 3 4 4 3 4 4 3 4

Table 7.6: Descriptive statistics for the behavior difference. OP are the results only considering
the cases where preferences were present. NP are the cases where preferences were not present.
SGP are the results when there were preferences and the users correctly guessed in which trial.

(a) Perceived improvement of the assistance of
dependent people by the use of preferences

(b) Perceived helpfulness of the applications for
dependent people

Figure 7.6: Answers for the improvement of the preferences and the perceived helpfulness of
the assistive tasks.

118 Evaluating the use of preferences through HRI

Construct Mean ± SD Alpha Construct Mean ± SD Alpha

ANX 2.71 ± 0.85 0.72 PEOU 3.81 ± 0.56 0.46
ATT 4.33 ± 0.54 0.68 PS 3.02 ± 0.74 0.64
FC 3.51 ± 0.74 0.31 PU 3.99 ± 0.59 0.55
ITU 3.02 ± 1.08 0.91 SI 3.87 ± 0.64 0
PAD 4.08 ± 0.44 0.20 Trust 3.42 ± 1.05 0.78
PENJ 3.92 ± 0.70 0.77

Table 7.7: Results of the Almere model [135] analysis.

7.5 Summary

Physically Assistive Robots may have a huge impact on future society and home care for depen-

dent people. In this chapter, we have carried out a user evaluation with thirty healthy subjects

in order to assess the effect of the use of preferences to modify the behavior of the robot. Our

experiment intended to determine whether the users were able to assess when a robot was using

their chosen preferences in an assistive task and when it was not. Moreover, we evaluated the

impact of such preferences in the perceived pleasantness of the task, and also the opinions on

future usability of the proposed assistive tasks.

The obtained results allow us to confirm that most users are able to determine when their

preferences are being used, meaning preferences are self-explanatory even when the users did

not have any previous experience to compare with. We have also observed that in the absence

of preferences, some users may try to assess that there were preferences even when there were

not. And even in that case, the results show a clear understanding of the use of the preferences

by the robot. When it comes to pleasantness, we can conclude that the use of preferences led

to a more pleasant sensation for the users. Furthermore, the users show clear agreement in that

applications such as feeding, shoe fitting, and dressing assistance will be helpful for dependent

users, and preferences and personalization will improve this assistance. Finally, regarding the

acceptance, we can’t have conclusive results given that our system was a prototype and our

users were not end-users, but our preliminary results on the topic show that the users can trust

the system without having much anxiety over it. The system was intuitive and easy to use, for

which most of the users would use a system like this in case of need.

Given the obtained results, we can confirm our hypothesis and conclude that our use of

preferences for physically assistive tasks modify the behavior of the robot in an expectable and

legible manner and that doing so results in a better experience for the user. We have also

observed that different preferences produce clearly different behaviors, as expressed by the

users. We have gotten important insights on how the preferences can play a role in physical

7.5 Summary 119

assistance. However, we believe this study should not end up here, and a follow-up would

be helpful to get further intuition by extending it to users with some kind of disability or

dependency degree, but still with full cognitive capacities in order to understand the goals of the

study. For this, a more complete system would be needed, with full vision capacities to interact

and adapt to the user and safe control strategies to prevent any harm.

This chapter has wrapped up the methods explained over all the chapters in a final user

evaluation. In it, we have seen how the Execution tuning step of the FUTE framework of Chap-

ter 2 successfully adapts a pre-trained robot to the current user while performing a Physically

Assistive Robotics task. We have seen how the preferences of the taxonomy defined in Chapter 3

are employed in this personalization scenario, and applied the planning techniques for robot

behavior adaptation explained in Chapters 4 and 5. Furthermore, we have done so by using the

ROSPlan extensions detailed in Chapter 6 and Appendix C.

8
Conclusions

This thesis has been devoted to robot behavior adaptation and personalization to a user. And

more specifically, to adapt the actions of Physically Assistive Robots while helping users perform

their Activities of Daily Living. A video demonstration of the robot performing the three assistive

scenarios is provided as supplementary material1.

Assistive Robotics has the potential of greatly improving the lives of many patients around

the world. In the current global context, with an aging workforce, a lack of nurses [1,2] and the

expectancy of an increase in stroke cases in Europe and the rest of the world [8], such assistive

devices will be more needed than ever. Still, there are extra advantages to the rise of such devices

apart from helping this potentially depleted healthcare workforce. We strongly believe this has

many benefits for the users, which is what drove this thesis since its beginning. As described

by Williams et al. [10], dependent patients that suffered a loss of independence may have a

great psychological impact due to their condition: loss of self-worth and self-identity, feelings

of burden and guilt. Similarly, Boström et al. [11] found an association between depressive

symptoms and the lack of independence in the tasks of transfer and dressing. Therefore, the

possibility of providing such users in need with a device able to help them regain their autonomy

and independence would greatly impact their well-being.

The overall contributions of the thesis can be summarized as follows:

1. The definition in Chapter 2 of a methodology for robot behavior adaptation and per-

sonalization, which we called FUTE. The framework defines how and when we should

personalize robots, considering that non-technical users such as healthcare professionals

will be the ones readapting the robot. The framework was then used to define the kind

of preferences that would be involved in assistive tasks. This was done in Chapter 3 by

the description of the preference taxonomy. This categorization permits defining any kind

1The demonstration video can be found at youtu.be/uiKl2Q1PzOk, and examples of behavior adaptation can be
seen at youtu.be/mVvnigdPJPQ

https://youtu.be/uiKl2Q1PzOk
https://youtu.be/mVvnigdPJPQ

122 Conclusions

of preference. We argue that user limitations may also be included there in the form of

preference, thus resulting in a comprehensive and complete classification of preferences

and needs. This is important as it grounds the concepts and definitions and lets us establish

a common language to speak about preferences. The applicability of the preferences has

been analyzed, both in Chapter 3 but also in the rest of the thesis where the defined

preferences have been successfully used to alter the robot behavior. Chapter 7 confirms

that the selection of preferences is descriptive enough for the users to recognize when

their selected preferences are being used, provides a better experience, and improves the

performance of the system.

2. The development of planning techniques for behavior adaptation. We have shown how

the use of task planners is convenient for assistive robotics tasks. Given the inherently

dangerous nature of these tasks, planning how the task will be performed is rather essen-

tial and more robust than a reactive behavior (which is also needed). Moreover, the use

of such techniques allows us to define different behaviors and combine them. We have

exploited the use of planners and joined them with the defined preferences. Therefore,

we can define different equivalent actions with different performances and let the planner

choose which is the most suitable one. This has been done in Chapter 4 by linking the

action outcomes and costs with the preferences acquired from a user model. The model

is filled by a Fuzzy Inference System, which is the result of asking two simple unrelated

questions to the user. We also show how these costs and outcome probabilities can be

used to re-adapt the behavior to changes in the user. This is helpful in two ways: first, it

allows the system to cope with wrongly inferred user models and secondly, it is flexible

to changes in the user’s behavior, adapting to it again. Therefore, the method works

effectively for long-term adaptation to the user. We further develop this in Chapter 5,

where the algorithms are combined with low-level reactive controllers that adapt online

to user movements. We show how this approach results in easier teaching of the robot

with fewer demonstrations needed, and that the symbolic description is also easier, with a

lower number of actions and symbolic states. These methods provide the robustness that

physically assistive domains need as well as seamless user adaptations.

3. An extension of the ROSPlan framework for probabilistic planners and the introduction of

suggestible planning predicates. ROSPlan’s extension allows the use of more languages

and paradigms with robotic environments in an easy and familiar manner, which we

believe is a contribution to both the robotics and AI planning communities. With it, we

were able to use RDDL for richer task definitions. RDDL allowed us to define reward

functions that depend on the previously described preferences. Such preferences are then

123

linked to actions by value, resulting in the planner selecting the actions that comply with

each preference’s value. With these methods, Chapter 6 defined the SoPS algorithms to

provide suggestions of planning predicates (represented as preferences). The algorithms

perform a systematic analysis of a subset of the space of plans and can manage partial

assignments of the preferences. Thus, this allows the system to suggest new preferences

based on the values of the already known preferences, and those suggestions would result

in improved task performance. Furthermore, we believe the proposed algorithms can be

useful for the XAI and XAIP communities, as the suggestions and plan space tree definition

can be used for plan explanation. This also complements the FIS initialization proposed in

Chapter 3, as the FIS method would not scale well for many more preferences.

4. A novel HRI study on assistive robotics and preferences. To the best of our knowledge,

this is the first one involving assistive robotics and user preferences to modify the robot’s

behavior. In the study, described in Chapter 7, we revealed that the users can successfully

identify the changes in the robot behavior. Moreover, they can do it without previous

interactions with the assistive execution of the robot and using only their own intuition.

This confirms that the methods developed during the thesis can be used for behavior

adaptation in assistive robotics scenarios and that and that we are developing the definitive

tools for the caregivers of the future.

Overall, this thesis has analyzed the whole process of behavior adaptation with assistive

robots, from the description of the personalization process and definition of preferences to the

use of Artificial Intelligence techniques for the acquisition of the preferences and the personal-

ized action selection. Our approach has been to define a reward function (or total plan cost)

such that it depends on the preferences, those being linked to the available actions. Then, we

leave all the reasoning to the solver, usually a planner, which then decides how to account for the

preferences. This novel approach doesn’t directly define preferences as soft goals but integrates

them into the domain and metric function definition. This makes the planner try to optimize

such function, as it would usually do, and doing so it also optimizes the use of the preferences.

Therefore, our algorithms do not require a planner that is compatible with PDDL3. Instead, this

thesis has included standard PDDL, PPDDL, and RDDL throughout.

Finally, the main theme of the thesis has been evaluated in a real robot environment with real

users in three different assistive scenarios: assistive feeding, shoe-fitting and, jacket dressing,

while exploring other aspects such as safety (Appendix B) and applicability of AI planning

paradigms (Appendix C).

124 Conclusions

8.1 Future work

This thesis has studied the personalization of assistive robots from its definition to its implemen-

tation. Nevertheless, there is still much room for improvement and research directions to follow

to be able to integrate this kind of device into society. Some of the potential future extensions

of this thesis are:

- Preference elicitation and inference: There is still much room for improvement in

the acquisition of the preferences. The FIS proposed in Chapter 4 is one manner of

doing so. Other possible techniques include preference mining from user data and using

recommender systems techniques such as collaborative filtering as done in [26]. The

main problem of such approaches is data acquisition, as well as generalization. Other

approaches include the use of games for probing the users, assessing their behavior in

front of the robot and checking their limitations without the users noticing. We believe

approaches like this would work better than plainly asking for the preferences as, probably,

not even the users will know their preferences regarding the behavior of the robot.

- System evaluation by potential users: We evaluated the use of preferences in Chapter 7

with promising results. However, as discussed in the chapter, we believe these autonomous

assistive systems are not ready nor safe enough for testing with real dependent users.

Therefore, we leave it for future work and hope to see advances in this direction soon, as

that will be the final test to assess their usability. This does not only apply to the users,

but also to caregivers and non-technical professionals who should be able to provide the

adaptation. Chapter 2 presented our personalization framework and argued that non-

technical users should be able to kinesthetically re-teach the behaviors, but a thorough

user analysis with healthcare professionals should be performed. This was out of the

scope of this thesis, which was focused on the autonomous adaptation of the robot.

- Benchmarking and evaluation: Regarding the evaluation, we believe that the commu-

nity should also focus on the development of benchmarks and objective evaluation tools.

Although user studies provide insightful conclusions, we advocate for the creation of

methodologies that allow the objective analysis and comparison of approaches for robot

behavior adaptation to the user as well as the effectiveness of the assistance provided to

the user. Through standardization of competitions, this would promote fair research and

advances in such topics.

- Safety: Another key point in assistive robotics is safety. Chapter 5 added some robustness

to the adaptation which is linked with safety, and an initial analysis was developed in

8.1 Future work 125

Appendix B. Adapting to the user in a safe manner is a must, even when user’s own

preferences are in conflict with that. Moreover, behavior adaptation could also be used to

provide a safer performance rather than only using the preferences. And apart from that,

a general analysis and definition of procedures for safety in Physically Assistive Robots will

bring these robots closer helping users at their homes.

- Adaptive compliance: Linked to safety, an extra level of adaptation would be the one

of compliance. Modifying the stiffness factor of the robot during the development of the

task would add an extra layer of adaptation and safety. For now, we modified the stiffness

factor based on user preferences for entire tasks (see Chapter 7), but doing so during a

trajectory could be a good improvement.

- Better communication between low and high-levels: Chapter 5 showed the benefits

of having synergies between low-level adaptations and high-level ones (during planning).

However, we believe such integration could be further analyzed. For instance, sharing the

probability values computed for the low-level trajectory in the high-level planner, or even

using the likelihood of a generated movement primitive to assess the chances of the action

succeeding. This would then allow the learning of such events at both levels, simplifying,

even more, the development of the robotic task.

- Computer vision: We have not tackled the computer vision methods in this thesis but

used already available software or built simple segmentation-based algorithms to get the

needed information. However, visual sensing is an essential part of the assistive process

as the person needs to be correctly identified. Furthermore, user reactions should be

considered in order to react to them and better adapt the system. As an example, the

feedback input from the user in Chapter 4 could be combined with user sensing. Thus,

emotion recognition and affective computing techniques would be really helpful in assis-

tive domains. Moreover, specific algorithms for each assistive task should be developed to

have a final and robust system.

- Natural interaction: Similarly, the use of Natural Language Processing (NLP) techniques

would greatly improve the interaction. We are used to interacting by means of speech

and gestures, and having such an interface would help the use of the system. And not

only speech but detecting sounds of approval, denial or groans as non-verbal audible cues

would complement emotion recognition techniques to detect the user response to the

system. Besides, other non-verbal cues such as gestures provide a natural interaction with

the user [160] and would effectively complete an assistive system.

126 Conclusions

We hope that the research performed around this doctoral thesis will help foster the advances

in assistive robotics, and we expect to see such devices helping people and improving our society

in the near future. Nonetheless, there is still a long way to go and research to perform in this

direction, and we are longing to see many improvements soon.

A
List of publications

This section details the complete list of accepted and submitted publications since the beginning
of the PhD:

Journals

1. G. CANAL, G. ALENYÀ AND C. TORRAS, “Adapting robot task planning to user preferences:
an assistive shoe dressing example”, Autonomous Robots, vol. 43, pp. 1343–1356, August
2019. Published online in 2018.

2. G. CANAL, C. TORRAS AND G. ALENYÀ, “SoPS: Generating predicate Suggestions based on
the Space of Plans. A planning with preferences example”, Submitted, 2020.

3. G. CANAL, C. TORRAS AND G. ALENYÀ, “Are preferences useful for better assistance? – A
Physically Assistive Robotics user study”, Submitted, 2019.

Conferences

4. G. CANAL, G. ALENYÀ AND C. TORRAS, “Personalization Framework for Adaptive Robotic
Feeding Assistance”, in International Conference on Social Robotics (ICSR), pp. 22–31,
Springer International Publishing, November 2016.

5. G. CANAL, G. ALENYÀ AND C. TORRAS, “A taxonomy of preferences for physically assistive
robots”, in IEEE International Symposium on Robot and Human Interactive Communication
(RO-MAN), pp. 292–297, August 2017.

6. G. CANAL, E. PIGNAT, G. ALENYÀ, S. CALINON AND C. TORRAS, “Joining high-level sym-
bolic planning with low-level motion primitives in adaptive HRI: application to dressing
assistance”, in IEEE International Conference on Robotics and Automation (ICRA), pp. 3273–
3278, May 2018.

7. G. CANAL, M. CASHMORE, S. KRIVIĆ, G. ALENYÀ, D. MAGAZZENI AND C. TORRAS, “Prob-
abilistic Planning for Robotics with ROSPlan”, in Towards Autonomous Robotic Systems,
pp. 236–250, Springer International Publishing, July 2019.

128 List of publications

Workshops

8. M. VILA, G. CANAL AND G. ALENYÀ, “Towards safety in Physically Assistive Robots: eating
assistance”, in Robots for Assisted Living Workshop at the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), October 2018.

B
Safety in adaptive Physically Assistive Robots

The inclusion of home robotics poses many research and ethical challenges, being this more clear
in the case of Physically Assistive Robots where there may be close contact in highly sensitive
areas of the body. Thus, when having such physical contacts, potential user harm is much more
probable, so safety must be taken into account.

Therefore, safety is one of the base elements to build trust in robots. Accordingly, safety
should be the main focus of research in the PAR community. In this appendix, we will focus
on the safety aspects of a physically assistive task such as helping a user to eat autonomously.
We propose safety measures in two ways. The first one is preventive, monitoring the user and
ensuring to perform the actions in safe moments. The second one is focused on recovering
from unavoidable issues such as impacts, stopping the robot before it can harm anybody and
recovering from that in order to finish the task.

Part of this appendix was presented in [17].

B.1 Safety strategies

Given that safety is essential in any interaction task involving direct contact with a user, we have
defined two main safety strategies to prevent the undesired collisions which may occur. Taking
inspiration of other automation fields, we consider the passive and active safety options for PAR.

- Passive safety are traditionally measures used to minimize harm in case of an abnormal
event. Here, we can consider two kinds of safety. The completely passive safety which
is achieved by using a compliant robot controller such as [75, 161]. In it, the control
signal based on the position error is minimal and in case of impact low forces will be
applied. However, after the impact the position error is still present so the robot will
continuously try to apply some force to try to reach the desired destination. Note that using
this controller exists a trade-off between compliance and movement precision. Another
kind is the partially passive safety, where the maximum contact force is limited. To do so,
a force sensor (mounted between the robot end-effector and the gripper) can be used to
obtain force and torque values at the end-effector, which can be used to detect unwanted
contacts and react when the maximum force is exceeded.

- Active safety tries to prevent abnormal situations or accidents. This includes attention
mechanisms where the robot will only proceed when it has the user’s attention, or when
the user is in the correct position to achieve the task. It also involves elements such as

130 Safety in adaptive Physically Assistive Robots

Minimum value [N] Maximum value [N]
Enter mouth -1.5 4
Exit mouth -7.1 4.5

Table B.1: Force limits for trajectories of insertion and extraction of the cutlery inside mouth.

user tracking for better adaptation, and planning of the actions to perform, which can
prevent dangerous situations. The inclusion of user preferences and robot personalization
could also be considered as active safety, as they can prevent abnormal situations caused
by unexpected robot behavior from the user.

The following sections will describe how the two safety protocols can be used to prevent
undesired collisions, focusing in the feeding task.

B.2 Safety analysis for autonomous user feeding

Having the a human user in the loop, as in the case of physical Human-Robot Interaction,
necessarily involves potentially unexpected movements or reactions. These can ultimately result
in unintended collisions with the user, resulting in potential harm or discomfort.

From the tasks proposed in Section 1.3, the feeding one is the most sensible to unintended
collisions as it is inherently invasive due to the insertion of the cutlery in the user’s mouth [162].
Furthermore, the proximity of the end-effector of the robot to the head of the person makes it
necessary to add extra safety measures. Therefore, we will use this task as an study example of
other safety measures.

The feeding interaction for the study will develop as follows. Once the spoon is loaded with
food, the robot waits for the user’s attention to approach the mouth. Then, the robot moves to
a pre-feeding position (around 20 cm in front of the mouth). The robot then waits for the user
to open his mouth while he/she is looking directly to the spoon. When this occurs, the robot
feeds the user, goes back and starts the process again. The loading of the spoon is done using a
pre-programmed motion as it has no influence on the safety.

The attention detection has been done by detecting the a forward head orientation using the
OpenFace [163] library. The mouth opening detection has been done by processing the facial
landmarks obtained with the OpenPose library [164].

B.2.1 Force limitation for unexpected contacts

In order to stop the robot in an appropriate fashion, force thresholds in the direction of the
contact have been set for the potentially harmful situations. In the feeding scenario those are:
the cutlery insertion into the mouth where low forces are expected, and the mouth exit where
force is inherently part of the task. Table B.1 shows the defined thresholds for these situations.

When a force limit is exceeded the robot remains one second in the waiting position that
consists on gravity compensation. When finished, if the spoon is full, the robot will move to the
pre-feeding position and wait for the mouth opening. Alternatively, the robot will go back and
re-start the feeding process again.

B.2 Safety analysis for autonomous user feeding 131

B.2.2 Passive safety evaluation

In order to evaluate the safety measures, two experiments have been performed. The first one
has been used to analyze the safety of the system and thus they have been carried out without
real users. The second one involves real users in a controlled scenario.

In the following experiments, the passive measure was achieved reproducing a pre-learned
trajectory and reproduced in a compliant mode, without including the tracking and low-level
adaptation explained above. This was done for better evaluation of the active safety measures.

Completely passive vs. partially passive safety

To perform this experiment a picture of a person opening the mouth has been fixed on a wood
panel. This wood panel is strong enough to support the robot’s force without moving or bending.

This experiment consists on the robot moving towards the picture with the same movement
that it performs when entering the user’s mouth. However, in this experiment the robot will
impact with the wood panel.

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

−30

−25

−20

−15

−10

−5

0

Time [s]

F o
rc

e
[N

]

Completely passive safety
Complete and partial passive safety
Partially passive safety
Nothing

Figure B.1: Comparison of the force for the four setups in the perpendicular axis.

This experiment was performed by combining different setups including completely passive
safety (compliant control) and partially passive safety by force limitation. The impact forces
registered in the axis perpendicular to the user’s mouth are shown in Figure B.1. As it can be
observed, the setups without a compliant controller decrease similarly and have the same impact
force which is −5.8N . The partially passive safety by force limitation setup has an increase of
force after its peak and remains in −1.6N as it enters the waiting position. On the other hand,
the force in the setup without any passive security continues decreasing. The compliance setup

132 Safety in adaptive Physically Assistive Robots

Figure B.2: Successful execution of the feeding task

decreases slower reaching a peak of −5.1N . After this peak it remains in −4N as it is trying to
reach the desired position. Finally, the compliance and force limited setup (complete and partial
passive safety) has the slowest decrease reaching a peak of −4.8N . After 0.2s of applying a force
between −4.8N and −4.5N , the force increases up to −1.6N and remains there as the robot has
entered the waiting position.

With this results it is clear that both safety strategies offer a safe task performance as the
peak forces never reach harmful levels. Therefore, setups with at least some degree of passive
safety can be used.

However, during the majority of the experiments conducted with passive security there was
food spilling and thus, the task could not be finished properly.

Passive safety offers a safer operation as the robot reaches lower forces. However, the
difference of peak forces between the compliant and force limited is only of 1N , so it is not a
determining factor. On the other hand, passive security does not increase the applied force over
time which can discomfort the user. Moreover, there exist a great difference between compliant
and non-compliant setups as the ones with compliance have less precision which causes food
spilling.

Pilot user study on feeding safety

A prototype of the application was tested in 104 executions with 10 able-bodied participants.
Each user was asked to perform some specific tests with anomalies and some free-form tests. An
example of a successful execution can be observed in Figure B.2.

With the pilot study, we evaluate the different safety strategies available. First of all, we
evaluate some preventive (active) safety. To do so, users were asked to look at a side and turn
the head to compute the average reaction time of the robot to a change in the visual state of
the user. In the head orientation experiment, we had an average reaction time of 0.46 seconds,
with all the users’ movement detected correctly.

Then, the mouth openness detection was assessed in a similar way. In this case, the average
response time was 0.44 seconds, although some users were not correctly detected by the face

B.2 Safety analysis for autonomous user feeding 133

0 5 10 15 20 25 30

−5

0

5

Time [s]

F o
rc

e
[N

]

Figure B.3: Force in the y-axis (perpendicular to the user) of the impact between the user face
and the spoon (t = 2s) and the user retaining the spoon (t ∈ 15..25s)

landmarking library, which highlights the importance of having the low-level safety exposed
above.

Finally, users agreed to perform tests to assess the forces involved in contacts occurred while
feeding. We performed an impact experiment and also a spoon retention one. In the first one,
the robot was impacting with the user’s face when entering the mouth. In the second, the user
retained the spoon with their bite, not letting the robot perform the exiting motion. Note that
the users were free to move away from the robot in case they felt threatened or potential harm
was involved.

An example trace of the forces involved in this experiment is in Figure B.3. The first element
is the impact, shown around the second 2 of the execution. In this case, the force reaches the
−4.5N . Then, the robot remains in pre-feeding position and performs the motion again, this
time entering the mouth (second 15). Around second 17, the robot tries to leave the mouth but
feels the user retention so it enters the waiting position to avoid any harm, and retries until a
successful exit motion can be performed (second 25). The higher peak in this case is of 5.7N
when trying to leave the mouth.

After the experiments, the users were surveyed and all of them agreed in stating that the
impacting and retaining forces were not harmful, and that they felt comfortable during the
experiment. Therefore, this safety measures guarantee that in the case of an unavoidable impact,
although not pleasant, it will not be harmful for the user. Moreover, it is also safe for the user to
retain the spoon or even move it while it is inside the mouth.

C
ROSPlan’s Probabilistic Planning evaluation

This appendix extends Section 6.3 with an evaluation on the use of probabilistic planning in
robotics domains. Hence, we demonstrate the usability of the proposed extension for probabilis-
tic domains. We provide a comparison of the performance of the probabilistic and deterministic
options on the same problem under different conditions followed by a discussion on the observed
results. Note that this appendix does not intend to conclude whether any planning approach is
better but rather to provide insights on when one may be more suitable than others.

The ROSPlan extension has been tested in a mobile robotics scenario where we have defined
a challenging print-fetching domain where the robot is used as a service robot for fetching printed
documents in an office (Figure C.1). HRI supplements the lack of manipulation abilities of the
used robot, thus allowing it to perform this task. A real-world evaluation is carried out in an
environment with high uncertainty.

This evaluation is part of the work presented in [15].

Figure C.1: The scenario in which we test the proposed system is an office environment. A
mobile robot, the TurtleBot 21 is used for the print-fetching service. When the robot gets a
request for fetching prints, it decides from which printer to collect them. Since it is not equipped
with an arm, it asks a random nearby person to put prints on it, and delivers them to the user.

C.1 Example System and Scenario

We have used the RDDL nodes in our example scenario, using the system architecture shown in
Figure 6.2. In this system, the RDDL Knowledge Base loads the RDDL domain and initial state.
The Problem Interface requests the domain and state information to generate a RDDL problem
instance. The Planner Interface and RDDL Plan Dispatch communicate through the IPPC server

1www.turtlebot.com

https://www.turtlebot.com/

136 ROSPlan’s Probabilistic Planning evaluation

P3

P1

P2

Kitchen

Prof. Office

PhD
Area

(a) The layout of office environment where the robot is
operating. The corridor is marked with the green color
and printers are marked with yellow boxes. The orange
boxes denote potential goal destinations.

P2

P3

P1

(b) A screenshot of the visualization tool RViz
taken while performing experiments. It shows
the map of the corridor and a green line
indicating the robot’s current path.

Figure C.2: Map layouts of the proposed scenario description.

interface, as described above, suggesting and dispatching actions. The sensing interface is also
being used to instantiate the predicates based on sensor data and update the state accordingly.

To demonstrate the effectiveness of the developed framework, we have tested it in a scenario
in which a mobile robot fetches printed documents in a large office building. This scenario
involves a high degree of uncertainty, since the environment is dynamic and humans can ob-
struct the corridors and printers. The scenario also involves human-robot interaction, which is
intrinsically uncertain.

Scenario description

The robot operates in a single-floor office environment with 16 offices shown in Figure C.2.
There are three printers distributed along the corridor. The robot can trigger printing on any of
these printers when a request is made. Since the mobile robot is not equipped with an arm, the
robot can request human assistance to place the papers onto its tray. There are many employees
working in this area, and the corridor is usually dynamic. The robot relies on the fact that
someone will pass by and assist the robot upon request. However, it can happen that there is no
one at the printer and the robot has to wait or go to another printer. Once the documents are
on the carrier, the robot brings them to the person who made request. It is important to note
that printers can be occupied, in which case the robot will have to wait. Moreover, the robot
will know whether there is somebody there to assist or if the printer is busy until it has arrived
to the printer. Figure C.1 shows an example of the scenario.

This scenario could be well-suited to be modeled as a Partially Observable Markov Decision
Process (POMDP), as there are fluents that cannot be known until observed, such as the presence
or absence of people near the printer. Also, it could be modeled as an Stochastic Shortest Path
(SSP) problem, given that the scenario is goal-oriented in that the robot has to deliver the
printed papers to a specific location. However, given the lack of available out-of-the-box solvers

C.1 Example System and Scenario 137

for both POMDPs and SSPs, we have modeled the problem as an MDP where a positive reward
is given only once the goal is reached.

C.1.1 Print-fetching domain

In order to run the scenario on both PDDL and RDDL planners, a domain model has to be written
in each language2. A fragment of the RDDL domain is shown in Figure C.3 and a fragment of the
PDDL domain for the task is shown in Figure C.4. These figures show the goto_waypoint action
and demonstrate the differences between the ways in which the domains are used to model
the same action. In the RDDL domain the cpfs used to describe the effects of the action fluents
are distributed throughout the domain description. Care must be taken to ensure that the state
transition in both domains remains identical, with the exception of probabilistic effects. While
the RDDLSim software used to run the IPPC includes an automatic translation from RDDL to a
subset of PPDDL, to properly determinize the domain we performed this translation by hand. In
future work we intend to investigate the prospect of using the Knowledge Base to perform this
determinization automatically.

// State fluents
robot_at(robot, waypoint): { state-fluent, bool, default = false };
docked(robot): { state-fluent, bool, default = false };
visited(waypoint): { state-fluent, bool, default = false };

// Action fluents
goto_waypoint(robot, waypoint, waypoint): { action-fluent, bool, default = false };

cpfs {
robot_at’(?r, ?w) =
if (exists_{?w1: waypoint} (goto_waypoint(?r, ?w1, ?w))) then true
else if (exists_{?w1: waypoint} (goto_waypoint(?r, ?w, ?w1))) then false
else robot_at(?r, ?w);

visited’(?w) =
visited(?w) | (exists_{?r:robot, ?w1: waypoint} [goto_waypoint(?r, ?w1, ?w)]);

asked_load’(?r) =
if (exists_{?wf: waypoint, ?wt: waypoint} [goto_waypoint(?r, ?wf, ?wt)]) then false
else if (ask_load(?r)) then true
else asked_load(?r);

asked_unload’(?r) =
if (exists_{?wf: waypoint, ?wt: waypoint} [goto_waypoint(?r, ?wf, ?wt)]) then false
else if (ask_unload(?r)) then true
else asked_unload(?r);

}

Figure C.3: Fragment of the RDDL domain for the print-fetching scenario, showing the robot_at
state fluent, goto_waypoint action fluent and cpfs that describes the transition of the state fluent.

2Both PDDL and RDDL domains can be found here: github.com/m312z/KCL-Turtlebot/tree/master/domains

https://github.com/m312z/KCL-Turtlebot/tree/master/domains

138 ROSPlan’s Probabilistic Planning evaluation

(:action goto_waypoint
:parameters (?v - robot ?from ?to - waypoint)
:precondition (and

(robot_at ?v ?from)
(localised ?v)
(undocked ?v))

:effect (and
(not (robot_at ?v ?from)) (robot_at ?v ?to)
(increase (total-cost) (distance ?from ?to))))

Figure C.4: Fragment of the PDDL domain for the print-fetching scenario, showing the
goto_waypoint action.

RDDL domain description

The print-fetching domain in RDDL is made of seven action fluents: one for moving (goto_waypoint),
two actions for interacting with the user and asking him/her to load or take the printed papers,
two for waiting for the user to do it, and the ones for docking and undocking the robot to
the charging station. A fluent named goal is used to specify the goal condition, such that the
final reward is given only once the goal is reached, thus simulating a goal-oriented MDP. In
the print-fetching domain the goal is to deliver the printed papers to a specific location. The
domain has two stochastic fluents, both sampled from a Bernoulli distribution. One represents
whether there is somebody to help the robot in one location, and the second specifies whether a
printer is being used or not, being the parameter of the Bernoulli distribution dependant on the
location. Finally, the reward function provides a positive reward when the goal is reached and
the robot is docked, and then some penalizations, considered as costs, for moving (weighted
by the distance of the moving action), waiting in a printer where there is nobody to help, and
waiting in a printer which is busy.

C.2 Experiments

In our experiments we used a mobile robot (TurtleBot 2). The robot is equipped with a Kinect
sensor which is used for both mapping and navigation [165]. Experiments were run in a real-
world office environment where people were performing their regular daily activities. Therefore,
corridors were crowded and the robot had to avoid obstacles while performing the task. All
actions used in the scenario were implemented, apart for the detection of paper placement and
human presence perception, which were simulated. An implementation of these actions is not
in the scope of this evaluation.

We tested the system architecture shown in Figure 6.2 using the probabilistic planner PROST [112]
and compared with the default ROSPlan system using the PDDL2.1 planner Metric-FF [166].
The goal for both planners is to deliver the printed papers in the shortest time. There were
two sources of uncertainty in the scenario whose prior probabilities were modeled in the RDDL
domain: (1) the presence of people near the printer and (2) the occupancy of the printer. The
values are given in Table C.1. When using the deterministic planner (Metric-FF), the system
replanned in the case of an action failure.

C.2 Experiments 139

C.2.1 Results

We performed three different real-world robotic experiments which represented three situa-
tions obtained by sampling the events of person near the printer and occupancy of the printer.
These experiments are described in Table C.2. For each experiment we applied both planning
approaches in five executions. A fourth experiment has been simulated.

As a measure of effectiveness we compare total time of execution, time of planning and
robot travel distance. To measure execution time, we measure from the start of planning until
the robot completes the task. To measure planning time: (1) in the case of Metric-FF replanning
can be performed several times, so the total planning time is the sum of these planning episodes;
(2) in the case of PROST, planning is performed before each action is taken so total planning
time is the sum of the time to produce each action. The travel distance is the length of the path
that the robot traveled.

Printer Events Probability of the event
P1 Occupancy 0.5
P1 Nearby person 0.9
P2 Occupancy 0.2
P2 Nearby person 0.4
P3 Occupancy 0.8
P3 Nearby person 0.5

Table C.1: Prior probabilities of events in the experimental setup. The same values are used in
the problem definition of RDDL.

Experiments Start position Delivery goal Printer Printers occupancy Nearby person
P1 free yes

1 Prof. Office PhD Area P2 free no
P3 free no
P1 free yes

2 PhD Area Kitchen P2 free yes
P3 busy yes
P1 busy yes

3 Docking station Prof. Office P2 free no
P3 busy yes

Table C.2: Experimental setups. For each setup and planning approach we run 5 tests.

The results of all three experiments are shown in Figure C.5. Experiment 1 demonstrates
the advantage of probabilistic planning. In this set up, the robot can only succeed in printer P1,
though when only the traveled distance is considered, P3 would be the best option. In order to
minimize the expected duration of the plan, the Metric-FF planner chose to visit printers P2 and
P3 without taking probabilities of events into account. As these printers were empty, the plan
execution failed and replanning was performed both times, to finally succeed when visiting P1.
On average, the Metric-FF planner had to replan 4 times in each test run of this experiment. In
contrast, the probabilistic approach attempted to use printer P1 first3.

3A video demonstration of this setup can be found in youtu.be/aozTz4Ex7PI

https://youtu.be/aozTz4Ex7PI

140 ROSPlan’s Probabilistic Planning evaluation

PDDL RDDL
40

50

60

70

80

90

100

Distance [m]

PDDL RDDL
200

250

300

350

400

450
Execution time [s]

PDDL RDDL

2

4

6

8

10

12

14 Planning time [s]

(a) Experiment 1

PDDL RDDL
25

30

35

40

45 Distance [m]

PDDL RDDL

140

160

180

200

220

240

260 Execution time [s]

PDDL RDDL
0

2

4

6

8

10

12

14 Planning time [s]

(b) Experiment 2

PDDL RDDL
20
25
30
35
40
45
50
55
60
65 Distance [m]

PDDL RDDL
200

250

300

350

Execution time [s]

PDDL RDDL
0

2

4

6

8

10

12

14 Planning time [s]

(c) Experiment 3

Figure C.5: Experimental results, showing mean values with standard deviations of the robot
travel distance, test execution time and planning time for the first 3 experiments. In each
experiment, 5 tests were performed for each approach.

Experiment 2 shows a simple case where conditions are optimal for a deterministic planner
(no unexpected effects). In this case, P1 and P2 are the best option to select. As expected, the
Metric-FF planner did not have to replan at all, as the best solution was the one selected in the
first attempt. Therefore, it exhibits a shorter planning and execution time than the probabilistic

C.2 Experiments 141

planning approach. The distance is still approximately the same, because only in one case did
PROST not find the optimal solution.

Experiment 3 shows a case where the available printers are busy, therefore forcing the robot
to either wait for the printer to become available or to try another printer. In this case, we
simulate the printer to be busy for one action execution. Therefore the printer will become
available if the robot waits until a timeout and checks again, or if the robot goes to another
location and comes back to a visited printer which was busy. The observed behavior for the
deterministic planner in this case was to visit the closest printer P1, which was busy, then visit
printer P2, which was empty, the printer P3, which is also busy, to finally succeed at P1. In
contrast, the stochastic planner went to printer P1, waited for it until timeout, and then waited
again, obtaining the papers in this second step. This behavior was obtained due to the planner
having the certainty of eventually having someone to help at printer P1, though there was
uncertainty of succeeding if other printers were visited.

The standard deviation (σ) in distance and execution time is small for PDDL, and large for
RDDL. This is because the deterministic planner always chooses the plan that is optimal in time
and distance, and in fact the σ comes only from real-world execution. The variance seen in PDDL
is due to the navigation system and person interaction. In contrast, PROST produces different
plans depending upon the probabilities of events, which can vary greatly in execution time and
distance traveled. The σ in planning time is greater for the PDDL planner. This is due to the
impact of the replanning attempts.

Experiment 4

P3
11.4%

P2
22.6%

P1
66.0%

RDDL
P1 & P3

0.0%

P2
100.0%

PDDL

Figure C.6: Experimental results, showing the distribution of the first printer selected across all
plans by each planner in Experiment 4. In each experiment, 500 tests were made in simulation.

A final simulated experiment has been performed to further show the effects of the prob-
abilities in the planning scenario we proposed. The setup for this experiment was the robot
starting at the PhD Area, and the delivery goal was the Professor’s office. For this experiment,
500 executions with both the deterministic planner and the stochastic one are carried out, and
we take into account only the action of the plan that shows the first chosen printer. As it can be
seen in the results from Figure C.5, the deterministic planner always chose to go to P2, which
is the one providing shortest travel distance. In contrast, the stochastic planner has different
choices, leading to a distribution that resembles the one shown in Table C.1, selecting to visit
most of the times P1, then P2 and finally P3. Therefore, given that P2 is less likely to have
people around to help the robot, the deterministic planner is more prone to fail in such setup.

142 ROSPlan’s Probabilistic Planning evaluation

C.3 Discussion

The focus of this appendix was to describe a use-case for the integration of probabilistic planning
into ROSPlan (Section 6.3), and to demonstrate the execution of probabilistic plans in real-time
robotics scenarios. This has involved the implementation of RDDL models into the ROSPlan KB,
and an online dispatcher that uses the RDDL Client/Server protocol.

This appendix is not intended to make a comparison of deterministic vs. probabilistic
approaches. Our experiments show that both approaches have advantages, and a more thor-
ough discussion can be found in [109]. Many factors determine which planning approach is
better suited to the domain and problem. For example, whether the domain is probabilistically
interesting and whether probabilities are known. Also, whether or not it is necessary to have an
optimal plan, or that from a given initial state the same plan is always generated for execution.

Although the use of a probabilistic planner may result in shorter paths and faster plan
execution, from the perspective of domain modeling we found it was more intuitive to use
an action-oriented language. Another element to take into account is that, while the handling
of uncertainties by means of probabilistic planning can be useful in robotics and real-world
scenarios, those probabilities must be coherent with the real-world. Such probabilities are often
hard to obtain or estimate, and will usually need some kind of learning or adaptation to the real
world.

D
Questionnaire used for the HRI evaluation

Following we reproduce the questionnaire that was presented to the users for the evaluation
performed in Chapter 7.

Demographics

1. Gender (To which gender identity do you mostly identify?)

� Male

� Female

� Other (Specify)

2. Age [Numerical value]

Assistive feeding

3. The robot was using my preferences in the...

� First trial

� Second trial

� I am not sure

4. The interaction with the robot was more pleasant when it was using the preferences

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

5. The behavior of the robot was significantly different between both trials

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

6. This application would be helpful for dependant people

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

144 Questionnaire used for the HRI evaluation

7. The use of the preferences in this application would significantly improve the assistance of
dependant people

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

Shoe fitting

8. The robot was using my preferences in the...

� First trial

� Second trial

� I am not sure

9. The interaction with the robot was more pleasant when it was using the preferences

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

10. The behavior of the robot was significantly different between both trials

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

11. This application would be helpful for dependant people

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

12. The use of the preferences in this application would significantly improve the assistance of
dependant people

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

Jacket dressing

13. The robot was using my preferences in the...

� First trial

� Second trial

� I am not sure

14. The interaction with the robot was more pleasant when it was using the preferences

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

145

15. The behavior of the robot was significantly different between both trials

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

16. This application would be helpful for dependant people

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

17. The use of the preferences in this application would significantly improve the assistance of
dependant people

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

General - Almere Model1

In the following questions, when “the robot” is mentioned, imagine a final robotic product able to
assist the user in the same way you have experienced. Notice the used robot is a prototype.

Anxiety (ANX)

18. If I should use the robot, I would be afraid to make mistakes with it

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

19. If I should use the robot, I would be afraid to break something

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

20. I find the robot scary

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

21. I find the robot intimidating

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

1Note that questions related to the Almere model [135] were presented to the users section-less and randomized.

146 Questionnaire used for the HRI evaluation

Attitude Towards Technology (ATT)

22. I think it’s a good idea to use the robot (in general)

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

23. I think it’s a good idea to use the robot (for people who may need it)

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

24. The robot would make life more interesting (of people in need/dependant people)

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

25. It’s good to make use of the robot

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

Facilitating Conditions (FC)

26. I have everything I need to use the robot

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

27. I know enough of the robot to make good use of it

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

Intention to Use (ITU)
Assume the case in which you would need assistance to perform the task activities -feeding,

dressing, shoe fitting-.

28. I think I would use the robot during the next few days

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

29. I’m certain to use the robot during the next few days

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

147

30. I plan to use the robot during the next few days

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

Perceived Adaptivity (PAD)

31. I think the robot can be adaptive to what I (may) need

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

32. I think the robot will only do what I need at that particular moment

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

33. I think the robot will/could help me when I consider it to be necessary

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

Perceived Enjoyment (PENJ)

34. I enjoy the robot talking to me (in case it talked)

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

35. I enjoy doing things with the robot

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

36. I find the robot enjoyable

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

37. I find the robot fascinating

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

38. I find the robot boring

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

148 Questionnaire used for the HRI evaluation

Perceived Ease of Use (PEOU)

39. I think I will know quickly how to use the robot

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

40. I find the robot easy to use

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

41. I think I can use the robot without any help

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

42. I think I can use the robot when there is someone around to help me

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

43. I think I can use the robot when I have a good manual

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

Perceived Sociability (PS)

44. I consider the robot a pleasant conversational partner

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

45. I find the robot pleasant to interact with

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

46. I feel the robot understands me

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

47. I think the robot is nice

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

149

Perceived Usefulness (PU)
Assume the case in which you would need assistance to perform the task activities -feeding,

dressing, shoe fitting-.

48. I think the robot is useful to me (if I needed assistance to perform the tasks)

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

49. It would be convenient for me to have the robot

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

50. I think the robot can help me with many things

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

Social Influence (SI)
Assume the case in which you would need assistance to perform the task activities -feeding,

dressing, shoe fitting-.

51. I think the caregivers would like me using the robot

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

52. I think it would give a good impression if I should use the robot

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

Trust

53. I would trust the robot if it gave me advice

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

54. I would follow the advice the robot gives me

1 2 3 4 5

Strongly disagree ◦ ◦ ◦ ◦ ◦ Strongly agree

Acronyms

ADLs Activities of Daily Living. 1, 2, 5, 27, 31, 35, 121, 154, Glossary: Acitivities of Daily Living

AI Artificial Intelligence. 4, 29, 78, 102, 123, 152–154

CNA Certified Nursing Assistant. 2, 3

FIS Fuzzy Inference System. 4, 12, 39, 44, 45, 50, 51, 60, 102, 122–124

FSA Finite State Automaton. 28

FUTE Factory setting, User Tailoring, Execution tuning. 12, 13, 15–17, 26, 27, 38, 40, 49, 54,
61, 119, 121, see Section 2.3

HRI Human-Robot Interaction. 5, 16, 28, 30, 31, 34, 63, 66, 77, 81, 103, 105, 123, 135, 143,
153, Glossary: Human-Robot Interaction

HSMM Hidden Semi-Markov Model. 68

HTN Hierarchical Task Network. 29, 30, 42, 49, 64, 65, 77

IMU Inertial Measurement Unit. 41

IPPC International Probabilistic Planning Competition. 76, 79, 80, 83, 84, 93, 135, 137

KB Knowledge Base. Usually used to refer ROSPlan’s component. 81–85, 135, 137, 142

MDP Markov Decision Process. 43, 66, 80, 136–138, 151, 154, see Section 4.3

NID Noisy Indeterministic Deictic rules. 43, 44, 46–48, 52, 60

NPRS Numerical Pain Rating Scale. 44

PAR Physically Assistive Robot. 2, 5, 12, 13, 28, 34, 35, 63, 81, 103–105, 107, 108, 110, 115,
116, 118, 119, 121, 125, 129, 153, Glossary: Physically Assistive Robot

PBP Preference-Based Planning. 29, 78, Glossary: Preference-Based Planning

PDDL Planning Domain Description Language. 29, 78–83, 87, 123, 137, 138, 141, 154

pHRI Physical Human-Robot Interaction. 13, 32, 63, 65, 103, 130, Glossary: Physical Human-
Robot Interaction

POMDP Partially Observable Markov Decision Process. 80, 136, 137, 154

PPDDL Probabilistic Planning Domain Description Language. 4, 76, 123, 137, 154

ProMP Probabilistic Movement Primitive. 20, 24–26

152 Acronyms

RDDL Relational Dynamic Influence Diagram Language. 4, 13, 76, 79–86, 92, 93, 102, 122,
123, 135, 137–139, 141, 142, 154

RL Reinforcement Learning. 78, 105

ROS Robot Operating System. 58, 76, 79–82, 84, 85, 154

SAR Socially Assistive Robot. 2, 16, 105, Glossary: Socially Assistive Robot

SSP Stochastic Shortest Path. 136, 137

XAI Explainable AI. 78, 102, 123, 152

XAIP Explainable AI Planning. 78, 123

Glossary

Acitivities of Daily Living Any of a number of routine tasks and functions a person must be
able to perform in order to maintain independence. (Oxford Dictionary) Those include daily
self-care activities such as bathing, dressing, personal hygiene, grooming, toileting and
continence, and feeding, among others. 1, 2, 5, 31, 121, 151, 154, Acronym: ADLs

Compliant robot control Robot controller that allows external perturbations while still fol-
lowing the intended trajectory. These kind of controllers are suitable for tasks involving
humans as the human can alter the robot trajectory, and harmful forces against the user
are not applied in case of collisions. Example controllers are [20,75]. 5, 9, 15, 23, 24, 63,
68, 125, 129, 131

Conformant planning Type of planning under uncertainty without the possibility of observing
the state (no sensing actions are available). A solution to the conformant planning problem
is a sequence of actions from the initial state to the goal one. A solution is predicted to
lead to the goal state regardless of the outcomes of the nondeterministic actions, or from
which initial state the execution began. 80

Contingent planning Type of planning under uncertainty where the agent does not have com-
plete information of the world but it has sensors to observe the environment (sensing
actions). The plan is usually represented as a decision tree where each node is a set of
states, and at each step different actions are performed under different circumstances. 79,
80

Deterministic planning Type of planning where the actions have single effect that is expected
to happen always. 79, 80, 83, 84, 86, 135, 138, 140–142, Task planning usually refers to
deterministic planning. Also denoted as classical planning

Human-Robot Interaction Branch of research in robotics that studies the interactions between
humans and robots. It is a multidisciplinary field that involves Human-Computer Inter-
action (HCI), robotics, Artificial Intelligence and social sciences such as psychology and
sociology. 5, 16, 28, 30, 31, 34, 77, 81, 103, 151, Acronym: HRI

Motion Planning Branch of robotics that focuses in the problem of robot movement and po-
sitioning. A solution to the motion planning problem consists of a sequence of valid
robot configurations that moves the robot from one position to a different target one,
typically avoiding potential obstacles. 41, 64, 65, 68, 106, related terms are: path planning,
geometric planning, robot navigation

Physical Human-Robot Interaction Branch of research in HRI that focus on interactions where
the robot has physical contact with a human, be it in assistive or any other robot-related
task. Physically Assistive Robot (PAR) can be considered as a subset of it. 151, Acronym:
pHRI

154 Glossary

Physically Assistive Robot Robotic system designed to provide physical assistance to the per-
son in need. The typical assistance would be to help the user to perform Activities of Daily
Living (ADLs) in an an independent and autonomous manner, with the help of the robot.
Physical tasks involve physical contact between the robot and the user. Examples of tasks
include feeding, dressing, grooming, combing or shaving. 2, 5, 12, 28, 34, 35, 63, 81,
104, 105, 110, 116, 118, 121, 125, 129, 151, 153, Acronym: PAR

Preference-Based Planning Type of planning that focuses on the generation of plans that sat-
isfy user preferences over the plans. Plans are ranked by quality based on the user
preferences, and the plan satisfying more preferences is usually considered the best one.
29, 30, 78, 151, Acronym: PBP

Probabilistic planning Type of planning under uncertainty where the actions may have differ-
ent effects based on some probabilities, and exogenous effects may also be present. They
are usually represented as an MDP or a POMDP. 4, 13, 40, 43, 60, 64, 76, 79–81, 83–85,
88, 92, 93, 102, 122, 135, 139–142, also known as: stochastic planning

Replanning Strategy for planning under uncertainty where a classical deterministic planner is
used to compute a plan, and the plan is recomputed every time the plan fails or it is no
longer valid. 73, 78–80, 83, 84, 138, 139, 141

ROSPlan A modular framework that provides a collection of tools for Artificial Intelligence
Planning in a ROS system. ROSPlan has a variety of nodes which encapsulate planning,
problem generation, and plan execution. It possesses a simple interface, and links to
common ROS libraries. 4, 13, 76, 79–84, 93, 102, 109, 119, 122, 135, 138, 142, 151, see
ROSPlan’s website

Socially Assistive Robot Robotic system designed to provide assistance to human users, con-
straining that assistance to be through non-physical social interaction. SAR focus on
achieving specific convalescence, rehabilitation, training, or education goals by addressing
social rather than physical interaction [5,167]. 2, 16, 105, 152, Acronym: SAR

Spasmodic movement Movement caused by, subject to, or in the nature of a sudden involun-
tary muscular contraction or convulsive movement (Oxford Dictionary). 7, 8

Task planning Branch of Artificial Intelligence involved in problem solving. The goal of a
planning algorithm is to find a plan, which is a sequence of actions from an initial state to
a goal state. Planning problems are defined formally in languages such as PDDL, PPDDL
or RDDL. Planning problems are defined with a domain file where the applicable actions
are defined. Such action definitions include preconditions for its application and effects of
use. A problem file describes the initial symbolic state of the environment and the desired
goal or target state. A planning algorithm will try to find a plan to change the state of the
environment from the initial state to the goal one by using the defined actions. 2, 4, 5,
12, 13, 29, 30, 39–41, 43–47, 49, 50, 52–55, 57–61, 63–65, 68, 70, 72, 73, 75–80, 84,
86–88, 96, 103, 104, 109, 119, 122, 123, 135, 139–142, 152–155, generally also denoted
as: Symbolic (Task) planning, AI planning, Automated planning and scheduling. A formal
definition can be found in Section 5.3

https://kcl-planning.github.io/ROSPlan

Glossary 155

Temporal planning Type of planning where the duration of the actions is taken into consider-
ation in order to find a sequence of actions. Actions may be temporally overlapping and
concurrent. 83

Bibliography

[1] K. M. Daniel and C. Y. Smith, “Present and future needs for nurses”, Journal of Applied
Biobehavioral Research, vol. 23, no. 1, 2018.

[2] M. Marć, A. Bartosiewicz, J. Burzyńska, Z. Chmiel, and P. Januszewicz, “A nursing
shortage – a prospect of global and local policies”, International Nursing Review, vol. 66,
no. 1, pp. 9–16, 2019.

[3] C. Torras, “Assistive robotics: Research challenges and ethics education initiatives”,
Dilemata, no. 30, pp. 63–77, 2019.

[4] T. L. Chen, M. Ciocarlie, S. Cousins, P. M. Grice, K. Hawkins, K. Hsiao, C. C. Kemp, C. H.
King, D. A. Lazewatsky, A. E. Leeper, H. Nguyen, A. Paepcke, C. Pantofaru, W. D. Smart,
and L. Takayama, “Robots for humanity: using assistive robotics to empower people with
disabilities”, IEEE Robotics Automation Magazine, vol. 20, no. 1, pp. 30–39, 2013.

[5] D. Feil-Seifer and M. J. Matarić, “Defining socially assistive robotics”, in 9th International
Conference on Rehabilitation Robotics, pp. 465–468, June 2005.

[6] G. Canal, G. Alenyà, and C. Torras, “Personalization Framework for Adaptive Robotic
Feeding Assistance”, in International Conference on Social Robotics (ICSR), pp. 22–31,
Springer International Publishing, November 2016.

[7] G. Chance, A. Camilleri, B. Winstone, P. Caleb-Solly, and S. Dogramadzi, “An assistive
robot to support dressing – strategies for planning and error handling”, in 6th IEEE
International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 774–
780, June 2016.

[8] E. Stevens, E. Emmett, Y. Wang, C. McKevitt, and C. Wolfe, The Burden of Stroke in Europe.
Stroke Alliance for Europe, 5 2017.

[9] M. A. Gignac and C. Cott, “A conceptual model of independence and dependence for
adults with chronic physical illness and disability”, Social Science & Medicine, vol. 47,
pp. 739–753, 9 1998.

[10] A. M. Williams, G. Christopher, and E. Jenkinson, “The psychological impact of
dependency in adults with chronic fatigue syndrome/myalgic encephalomyelitis: A
qualitative exploration”, Health Psychology, 2016.

[11] G. Boström, M. Conradsson, E. Rosendahl, P. Nordström, Y. Gustafson, and H. Littbrand,
“Functional capacity and dependency in transfer and dressing are associated with
depressive symptoms in older people”, Clinical interventions in aging, vol. 9, p. 249, 2014.

[12] G. Canal, G. Alenyà, and C. Torras, “A taxonomy of preferences for physically assistive
robots”, in IEEE International Symposium on Robot and Human Interactive Communication
(RO-MAN), pp. 292–297, August 2017.

[13] G. Canal, G. Alenyà, and C. Torras, “Adapting robot task planning to user preferences: an
assistive shoe dressing example”, Autonomous Robots, vol. 43, pp. 1343–1356, Aug 2019.

158 BIBLIOGRAPHY

[14] G. Canal, E. Pignat, G. Alenyà, S. Calinon, and C. Torras, “Joining high-level symbolic
planning with low-level motion primitives in adaptive HRI: application to dressing
assistance”, in IEEE International Conference on Robotics and Automation (ICRA),
pp. 3273–3278, May 2018.

[15] G. Canal, M. Cashmore, S. Krivić, G. Alenyà, D. Magazzeni, and C. Torras, “Probabilistic
Planning for Robotics with ROSPlan”, in Towards Autonomous Robotic Systems, pp. 236–
250, Springer International Publishing, 2019.

[16] G. Canal, C. Torras, and G. Alenyà, “SoPS: Generating predicate Suggestions based on
the Space of Plans. A planning with preferences example”, Submitted, 2020.

[17] M. Vila, G. Canal, and G. Alenyà, “Towards safety in Physically Assistive Robots:
eating assistance”, in Robots for Assisted Living Workshop at the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), October 2018.

[18] G. Canal, C. Torras, and G. Alenyà, “Are preferences useful for better assistance? – A
Physically Assistive Robotics user study”, Submitted, 2019.

[19] A. H. Maslow, “A theory of human motivation”, Psychological Review, vol. 50, no. 4,
pp. 370–396, 1943.

[20] A. Colomé, D. Pardo, G. Alenyà, and C. Torras, “External force estimation during
compliant robot manipulation”, in IEEE International Conference on Robotics and
Automation (ICRA), pp. 3535–3540, 2013.

[21] C. Clabaugh, G. Ragusa, F. Sha, and M. Matarić, “Designing a socially assistive robot
for personalized number concepts learning in preschool children”, in 2015 Joint IEEE
International Conference on Development and Learning and Epigenetic Robotics (ICDL-
EpiRob), pp. 314–319, Aug 2015.

[22] J. Greczek, E. Short, C. Clabaugh, K. Swift-Spong, and M. J. Matarić, “Socially assistive
robotics for personalized education for children”, in AAAI Fall Symposium on Artificial
Intelligence and Human-Robot Interaction, 2014.

[23] D. Leyzberg, S. Spaulding, and B. Scassellati, “Personalizing robot tutors to individuals’
learning differences”, in ACM/IEEE International Conference on Human-Robot Interaction
(HRI), pp. 423–430, ACM, 2014.

[24] K. Baraka and M. Veloso, “Adaptive interaction of persistent robots to user temporal
preferences”, in Social Robotics, pp. 61–71, Springer International Publishing, 2015.

[25] M. Fiore, A. Clodic, and R. Alami, “On planning and task achievement modalities for
human-robot collaboration”, in Experimental Robotics: The 14th International Symposium
on Experimental Robotics, pp. 293–306, Springer International Publishing, 2016.

[26] N. Abdo, C. Stachniss, L. Spinello, and W. Burgard, “Robot, organize my shelves! Tidying
up objects by predicting user preferences”, in IEEE International Conference on Robotics
and Automation (ICRA), pp. 1557–1564, 2015.

BIBLIOGRAPHY 159

[27] S. Chernova and M. Veloso, “Interactive policy learning through confidence-based
autonomy”, Journal of Artificial Intelligence Research, vol. 34, pp. 1–25, 2009.

[28] S. Niekum, S. Osentoski, G. Konidaris, and A. G. Barto, “Learning and generalization
of complex tasks from unstructured demonstrations”, in International Conference on
Intelligent Robots and Systems (IROS), pp. 5239–5246, IEEE, 2012.

[29] M. Lawitzky, J. R. Medina, D. Lee, and S. Hirche, “Feedback motion planning and
learning from demonstration in physical robotic assistance: differences and synergies”,
in IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3646–3652,
IEEE, 2012.

[30] Y. Gao, H. J. Chang, and Y. Demiris, “User modelling for personalised dressing assistance
by humanoid robots”, in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1840–1845, 2015.

[31] S. D. Klee, B. Q. Ferreira, R. Silva, J. P. Costeira, F. S. Melo, and M. Veloso, “Personalized
assistance for dressing users”, in Social Robotics, pp. 359–369, Springer International
Publishing, 2015.

[32] W. K. Song, W. J. Song, Y. Kim, and J. Kim, “Usability test of KNRC self-feeding robot”, in
International Conference on Rehabilitation Robotics, pp. 1–5, 2013.

[33] X. Zhang, X. Wang, B. Wang, T. Sugi, and M. Nakamura, “Real-time control strategy for
emg-drive meal assistance robot — my spoon”, in International Conference on Control,
Automation and Systems, pp. 800–803, Oct 2008.

[34] M. Topping, “An Overview of the Development of Handy 1, a Rehabilitation Robot to
Assist the Severely Disabled”, Intelligent and Robotic Systems, vol. 34, no. 3, pp. 253–263,
2002.

[35] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic movement primitives”,
in Advances in Neural Information Processing Systems (NIPS), 2013.

[36] A. Colomé, G. Neumann, J. Peters, and C. Torras, “Dimensionality reduction for
probabilistic movement primitives”, in IEEE-RAS International Conference on Humanoid
Robots, pp. 794–800, 2014.

[37] G. Pigozzi, A. Tsoukiàs, and P. Viappiani, “Preferences in artificial intelligence”, Annals of
Mathematics and Artificial Intelligence, vol. 77, pp. 361–401, 2016.

[38] J. A. Baier and S. McIlraith, “Planning with preferences”, AI Magazine, vol. 29, no. 4,
pp. 25–36, 2008.

[39] N. Li, W. Cushing, S. Kambhampati, and S. Yoon, “Learning Probabilistic Hierarchical Task
Networks as Probabilistic Context-Free Grammars to Capture User Preferences”, ACM
Transactions on Intelligent Systems and Technology, vol. 5, pp. 1–32, 4 2014.

160 BIBLIOGRAPHY

[40] A. E. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos, “Deterministic planning
in the fifth international planning competition: PDDL3 and experimental evaluation of
the planners”, Artificial Intelligence, vol. 173, no. 5–6, pp. 619 – 668, 2009.

[41] S. Sohrabi, J. A. Baier, and S. A. McIlraith, “HTN planning with preferences”, in
International Joint Conference on Artificial Intelligence (IJCAI), pp. 1790–1797, 2009.

[42] T. C. Son and E. Pontelli, “Planning with preferences using logic programming”, Theory
and Practice of Logic Programming, vol. 6, pp. 559–607, 9 2006.

[43] B. D. Argall and A. G. Billard, “A survey of Tactile Human–Robot Interactions”, Robotics
and Autonomous Systems, vol. 58, no. 10, pp. 1159–1176, 2010.

[44] H. Yanco and J. Drury, “Classifying human-robot interaction: an updated taxonomy”, in
IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2841–2846,
IEEE, 2004.

[45] C. Krauss and S. Arbanowski, “Social Preference Ontologies for Enriching User and Item
Data in Recommendation Systems”, in IEEE International Conference on Data Mining
Workshop (ICDMW 2014), pp. 365–372, 2014.

[46] C. M. Bastemeijer, L. Voogt, J. P. van Ewijk, and J. A. Hazelzet, “What do patient values
and preferences mean? A taxonomy based on a systematic review of qualitative papers”,
Patient Education and Counseling, 12 2016.

[47] J. M. Beer, A. D. Fisk, and W. A. Rogers, “Toward a Framework for Levels of Robot
Autonomy in Human-Robot Interaction”, Journal of Human-Robot Interaction, vol. 3,
no. 2, p. 74, 2014.

[48] H. Peng, C. Zhou, H. Hu, F. Chao, and J. Li, “Robotic dance in social robotics - A
taxonomy”, IEEE Transactions on Human-Machine Systems, vol. 45, no. 3, pp. 281–293,
2015.

[49] J. Shim and R. C. Arkin, “A Taxonomy of Robot Deception and Its Benefits in HRI”, in
IEEE International Conference on Systems, Man, and Cybernetics, pp. 2328–2335, IEEE, 10
2013.

[50] T. J. Wiltshire, E. J. C. Lobato, J. Velez, F. G. Jentsch, and S. M. Fiore, “An interdisciplinary
taxonomy of social cues and signals in the service of engineering robotic social
intelligence”, in Unmanned Systems Technology XVI, vol. 9084, 6 2014.

[51] T. Fong, I. Nourbakhsh, and K. Dautenhahn, “A survey of socially interactive robots”,
Robotics and Autonomous Systems, vol. 42, no. 3-4, pp. 143–166, 2003.

[52] M. Tenorth and M. Beetz, “KnowRob: A knowledge processing infrastructure for
cognition-enabled robots”, The International Journal of Robotics Research, vol. 32, no. 5,
pp. 566–590, 2013.

BIBLIOGRAPHY 161

[53] O. P. John and S. Srivastava, “The big five trait taxonomy: History, measurement, and
theoretical perspectives”, Handbook of personality: Theory and research, vol. 2, no. 1999,
pp. 102–138, 1999.

[54] C. LeRouge, J. Ma, S. Sneha, and K. Tolle, “User profiles and personas in the design
and development of consumer health technologies”, International Journal of Medical
Informatics, vol. 82, no. 11, pp. e251 – e268, 2013.

[55] H. Robinson, B. MacDonald, and E. Broadbent, “The role of healthcare robots for older
people at home: A review”, International Journal of Social Robotics, vol. 6, no. 4, pp. 575–
591, 2014.

[56] Y. Gao, H. J. Chang, and Y. Demiris, “Iterative path optimisation for personalised dressing
assistance using vision and force information”, in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4398–4403, Oct 2016.

[57] G. Chance, A. Jevtić, P. Caleb-Solly, and S. Dogramadzi, “A quantitative analysis of
dressing dynamics for robotic dressing assistance”, Frontiers in Robotics and AI, vol. 4,
2017.

[58] K. Yamazaki, R. Oya, K. Nagahama, K. Okada, and M. Inaba, “Bottom dressing by a life-
sized humanoid robot provided failure detection and recovery functions”, in IEEE/SICE
International Symposium on System Integration, pp. 564–570, Dec 2014.

[59] T. Tamei, T. Matsubara, A. Rai, and T. Shibata, “Reinforcement learning of clothing
assistance with a dual-arm robot”, in 11th IEEE-RAS International Conference on
Humanoid Robots (Humanoids), pp. 733–738, IEEE, 2011.

[60] S. Alili, M. Warnier, M. Ali, and R. Alami, “Planning and plan-execution for human-robot
cooperative task achievement”, in 19th International Conference on Automated Planning
and Scheduling (ICAPS), pp. 19–23, 2009.

[61] R. Lallement, L. De Silva, and R. Alami, “Hatp: An htn planner for robotics”, in 2nd ICAPS
Workshop on Planning and Robotics, 2014.

[62] L. de Silva, R. Lallement, and R. Alami, “The hatp hierarchical planner: Formalisation
and an initial study of its usability and practicality”, in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 6465–6472, September 2015.

[63] G. Castellano, I. Leite, and A. Paiva, “Detecting perceived quality of interaction with a
robot using contextual features”, Autonomous Robots, pp. 1–17, 2016.

[64] A. L. Thomaz and C. Breazeal, “Reinforcement learning with human teachers: Evidence
of feedback and guidance with implications for learning performance”, in Proceedings of
the 21st National Conference on Artificial Intelligence - Volume 1, AAAI’06, pp. 1000–1005,
AAAI Press, 2006.

[65] W. B. Knox and P. Stone, “Interactively shaping agents via human reinforcement: The
tamer framework”, in The Fifth International Conference on Knowledge Capture, September
2009.

162 BIBLIOGRAPHY

[66] S. Griffith, K. Subramanian, J. Scholz, C. Isbell, and A. L. Thomaz, “Policy shaping:
Integrating human feedback with reinforcement learning”, in Advances in Neural
Information Processing Systems 26, pp. 2625–2633, 2013.

[67] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning symbolic models of
stochastic domains”, Journal of Artificial Intelligence Research, vol. 29, pp. 309–352, 2007.

[68] E. McLafferty and A. Farley, “Assessing pain in patients”, Nursing Standard, vol. 22, no. 25,
pp. 42–46, 2008.

[69] B. Kühnlenz, S. Sosnowski, M. Buß, D. Wollherr, K. Kühnlenz, and M. Buss, “Increasing
Helpfulness towards a Robot by Emotional Adaption to the User”, International Journal
of Social Robotics, vol. 5, no. 4, pp. 457–476, 2013.

[70] B. M. Muir, “Trust between humans and machines, and the design of decision aids”,
International Journal of Man-Machine Studies, vol. 27, no. 5, pp. 527 – 539, 1987.

[71] M. Heerink, B. Krose, V. Evers, and B. Wielinga, “Measuring acceptance of an assistive
social robot: a suggested toolkit”, in The 18th IEEE International Symposium on Robot and
Human Interactive Communication (RO-MAN), pp. 528–533, Sept 2009.

[72] N. Vahrenkamp, M. Wächter, M. Kröhnert, K. Welke, and T. Asfour, “The robot software
framework armarx”, Information Technology, vol. 57, no. 2, pp. 99–111, 2015.

[73] K. Erol, J. Hendler, and D. S. Nau, “HTN planning: Complexity and expressivity”, in AAAI,
vol. 94, pp. 1123–1128, 1994.

[74] L. Rozo, S. Calinon, D. G. Caldwell, P. Jimenez, and C. Torras, “Learning physical
collaborative robot behaviors from human demonstrations”, IEEE Transactions on
Robotics, vol. 32, no. 3, pp. 513–527, 2016.

[75] E. Pignat and S. Calinon, “Learning adaptive dressing assistance from human
demonstration”, Robotics and Autonomous Systems, vol. 93, pp. 61–75, 2017.

[76] A. Pervez and D. Lee, “Learning task-parameterized dynamic movement primitives using
mixture of gmms”, Intelligent Service Robotics, vol. 11, pp. 61–78, Jan 2018.

[77] R. Caccavale, M. Saveriano, A. Finzi, and D. Lee, “Kinesthetic teaching and attentional
supervision of structured tasks in human–robot interaction”, Autonomous Robots, vol. 43,
pp. 1291–1307, Aug 2019.

[78] E. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic
controller”, International Journal of Man-Machine Studies, vol. 7, no. 1, pp. 1 – 13, 1975.

[79] J. Rada-Vilela, “fuzzylite: a fuzzy logic control library”, 2014. Accessed 14 Aug 2019.

[80] D. Martínez, G. Alenyà, and C. Torras, “Planning robot manipulation to clean planar
surfaces”, Engineering Applications of Artificial Intelligence, vol. 39, pp. 23 – 32, 2015.

BIBLIOGRAPHY 163

[81] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng,
“Ros: an open-source robot operating system”, in ICRA workshop on open source software,
vol. 3, p. 5, 2009.

[82] F. Gravot, A. Haneda, K. Okada, and M. Inaba, “Cooking for humanoid robot, a task that
needs symbolic and geometric reasonings”, in IEEE International Conference on Robotics
and Automation (ICRA), pp. 462–467, 2006.

[83] L. de Silva, A. K. Pandey, and R. Alami, “An interface for interleaved symbolic-geometric
planning and backtracking”, in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 232–239, 2013.

[84] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel, “Combined task
and motion planning through an extensible planner-independent interface layer”, in IEEE
International Conference on Robotics and Automation (ICRA), pp. 639–646, 2014.

[85] J. Ferrer-Mestres, G. Frances, and H. Geffner, “Planning with state constraints and its
application to combined task and motion planning”, in Workshop on Planning and Robotics
(PLANROB), pp. 13–22, 2015.

[86] J. Bidot, L. Karlsson, F. Lagriffoul, and A. Saffiotti, “Geometric backtracking for combined
task and motion planning in robotic systems”, Artificial Intelligence, vol. 247, pp. 229 –
265, 2017.

[87] K. Lee, Y. Su, T.-K. Kim, and Y. Demiris, “A syntactic approach to robot imitation learning
using probabilistic activity grammars”, Robotics and Autonomous Systems, vol. 61, no. 12,
pp. 1323–1334, 2013.

[88] M. Cashmore, M. Fox, D. Long, D. Magazzeni, B. Ridder, A. Carrera, N. Palomeras,
N. Hurtos, and M. Carreras, “Rosplan: Planning in the robot operating system”, in
International Conference on Automated Planning and Scheduling (ICAPS), 2015.

[89] M. Göbelbecker, T. Keller, P. Eyerich, M. Brenner, and B. Nebel, “Coming up with good
excuses: What to do when no plan can be found”, in Proceedings of the International
Conference on International Conference on Automated Planning and Scheduling (ICAPS),
ICAPS’10, pp. 81–88, AAAI Press, 2010.

[90] D. Martínez, G. Alenyà, and C. Torras, “Relational reinforcement learning with guided
demonstrations”, Artificial Intelligence, vol. 247, pp. 295–312, 2017.

[91] R. Alami, A. Clodic, V. Montreuil, E. A. Sisbot, and R. Chatila, “Toward human-aware
robot task planning”, in AAAI spring symposium, pp. 39–46, 2006.

[92] M. Cirillo, L. Karlsson, and A. Saffiotti, “Human-aware task planning: An application to
mobile robots”, ACM Transactions on Intelligent Systems and Technology (TIST), vol. 1,
no. 2, p. 15, 2010.

[93] A. Sekmen and P. Challa, “Assessment of adaptive human–robot interactions”, Knowledge-
Based Systems, vol. 42, pp. 49 – 59, 2013.

164 BIBLIOGRAPHY

[94] W. Y. Kwon and I. H. Suh, “Planning of proactive behaviors for human–robot cooperative
tasks under uncertainty”, Knowledge-Based Systems, vol. 72, pp. 81 – 95, 2014.

[95] T. Chakraborti, S. Sreedharan, A. Kulkarni, and S. Kambhampati, “Projection-aware
task planning and execution for human-in-the-loop operation of robots in a mixed-
reality workspace”, in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 4476–4482, IEEE, 2018.

[96] M. Das, P. Odom, M. R. Islam, J. R. J. Doppa, D. Roth, and S. Natarajan, “Planning with
actively eliciting preferences”, Knowledge-Based Systems, vol. 165, pp. 219 – 227, 2019.

[97] J. Kim, M. E. Woicik, M. C. Gombolay, S.-H. Son, and J. A. Shah, “Learning to infer final
plans in human team planning”, in Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI-18, pp. 4771–4779, 7 2018.

[98] D. Shmaryahu, G. Shani, J. Hoffmann, and M. Steinmetz, “Constructing plan trees
for simulated penetration testing”, in The 26th international conference on automated
planning and scheduling, vol. 121, 2016.

[99] A. Gerevini and D. Long, “Plan constraints and preferences in pddl3”, tech. rep., 2005.

[100] S. Sohrabi, J. A. Baier, and S. A. McIlraith, “Preferred explanations: Theory and
generation via planning”, in Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011.

[101] C. Wirth, R. Akrour, G. Neumann, and J. Fürnkranz, “A survey of preference-based
reinforcement learning methods”, The Journal of Machine Learning Research, vol. 18,
no. 1, pp. 4945–4990, 2017.

[102] T. Joppen, C. Wirth, and J. Fürnkranz, “Preference-based monte carlo tree search”, in KI
2018: Advances in Artificial Intelligence, pp. 327–340, Springer International Publishing,
2018.

[103] S. Visser, J. Thangarajah, J. Harland, and F. Dignum, “Preference-based reasoning in bdi
agent systems”, Autonomous Agents and Multi-Agent Systems, vol. 30, pp. 291–330, Mar
2016.

[104] G. Behnke, B. Leichtmann, P. Bercher, D. Höller, V. Nitsch, M. Baumann, and S. Biundo,
“Help me make a dinner! challenges when assisting humans in action planning”,
in Proceedings of the International Conference on Companion Technology, Ulm, vol. 11,
p. 2017, 2017.

[105] R. Pinsler, R. Akrour, T. Osa, J. Peters, and G. Neumann, “Sample and feedback efficient
hierarchical reinforcement learning from human preferences”, in 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 596–601, IEEE, 2018.

[106] M. Fox, D. Long, and D. Magazzeni, “Explainable planning”, CoRR, vol. abs/1709.10256,
2017.

BIBLIOGRAPHY 165

[107] Y. Zhang, S. Sreedharan, A. Kulkarni, T. Chakraborti, H. H. Zhuo, and S. Kambhampati,
“Plan explicability and predictability for robot task planning”, in 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 1313–1320, IEEE, 2017.

[108] R. Eifler, M. Cashmore, J. Hoffmann, D. Magazzeni, and M. Steinmetz, “Explaining
the space of plans through plan-property dependencies”, in ICAPS-19 Workshop on
Explainable Planning, 2019.

[109] I. Little and S. Thiebaux, “Probabilistic planning vs replanning”, in ICAPS Workshop on
Planning Competitions: Past, Present, and Future, 2007.

[110] S. Sanner, “Relational Dynamic Influence Diagram Language (RDDL): Language
Description.” Online: users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf, 2010.

[111] T. Dean and K. Kanazawa, “A model for reasoning about persistence and causation”,
Computational intelligence, vol. 5, no. 2, pp. 142–150, 1989.

[112] T. Keller and P. Eyerich, “PROST: Probabilistic planning based on UCT.”, in International
Conference on Automated Planning and Scheduling (ICAPS), 2012.

[113] A. Kolobov, P. Dai, M. Mausam, and D. S. Weld, “Reverse iterative deepening for finite-
horizon MDPs with large branching factors”, in International Conference on Automated
Planning and Scheduling (ICAPS), 2012.

[114] M. Fox and D. Long, “PDDL2.1: An extension to PDDL for expressing temporal planning
domains”, Journal of Artificial Intelligence Research, vol. 20, pp. 61–124, 2003.

[115] B. D. Smith, K. Rajan, and N. Muscettola, “Knowledge acquisition for the onboard planner
of an autonomous spacecraft”, in EKAW, 1997.

[116] R. P. Bonasso, R. J. Firby, E. Gat, D. Kortenkamp, D. P. Miller, and M. G. Slack,
“Experiences with an architecture for intelligent, reactive agents”, Journal of Experimental
& Theoretical Artificial Intelligence, vol. 9, no. 2-3, pp. 237–256, 1997.

[117] S. W. Yoon, A. Fern, and R. Givan, “FF-Replan: A baseline for probabilistic planning.”,
in International Conference on Automated Planning and Scheduling (ICAPS), pp. 352–359,
2007.

[118] S. J. Celorrio, F. Fernández, and D. Borrajo, “The PELA architecture: Integrating planning
and learning to improve execution”, in AAAI, 2008.

[119] S. Krivic, M. Cashmore, D. Magazzeni, B. Ridder, S. Szedmak, and J. Piater, “Decreasing
Uncertainty in Planning with State Prediction”, in International Joint Conference on
Artificial Intelligence (IJCAI), pp. 2032–2038, 8 2017.

[120] L. Iocchi, L. Jeanpierre, M. T. Lázaro, and A.-I. Mouaddib, “A practical framework for
robust decision-theoretic planning and execution for service robots”, in International
Conference on Automated Planning and Scheduling (ICAPS), pp. 486–494, 2016.

https://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf

166 BIBLIOGRAPHY

[121] R. D. Buksz, M. Cashmore, B. Krarup, D. Magazzeni, and B. C. Ridder, “Strategic-
tactical planning for autonomous underwater vehicles over long horizons”, in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2018.

[122] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and Practice. Elsevier,
2004.

[123] D. Martínez, G. Alenyà, T. Ribeiro, K. Inoue, and C. Torras, “Relational reinforcement
learning for planning with exogenous effects”, Journal of Machine Learning Research,
vol. 18, no. 1, pp. 2689–2732, 2017.

[124] M. L. Littman, “Markov games as a framework for multi-agent reinforcement learning”,
in International Conference on Machine Learning (ICML), pp. 157–163, 1994.

[125] C. Boutilier, T. Dean, and S. Hanks, “Decision-theoretic planning: Structural assumptions
and computational leverage”, Journal of Artificial Intelligence Research, vol. 11, pp. 1–94,
1999.

[126] N. Kushmerick, S. Hanks, and D. S. Weld, “An algorithm for probabilistic planning”,
Artificial Intelligence, vol. 76, no. 1-2, pp. 239–286, 1995.

[127] A. Atrash and S. Koenig, “Probabilistic planning for behavior-based robots”, in FLAIRS,
pp. 531–535, 2001.

[128] T. Smith and R. Simmons, Probabilistic planning for robotic exploration. PhD thesis,
Carnegie Mellon University, The Robotics Institute, 2007.

[129] K. Hsiao, L. P. Kaelbling, and T. Lozano-Perez, “Grasping POMDPs”, in IEEE International
Conference on Robotics and Automation (ICRA), pp. 4685–4692, 2007.

[130] J. Hoey, A. Von Bertoldi, P. Poupart, and A. Mihailidis, “Assisting persons with dementia
during handwashing using a partially observable markov decision process”, Vision
Systems, vol. 65, p. 66, 2007.

[131] M. Veloso, J. Biswas, B. Coltin, S. Rosenthal, T. Kollar, C. Mericli, M. Samadi, S. Brandão,
and R. Ventura, “Cobots: Collaborative robots servicing multi-floor buildings”, in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5446–
5447, 2012.

[132] E. Pacchierotti, H. I. Christensen, and P. Jensfelt, “Design of an office-guide robot for
social interaction studies”, in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 4965–4970, 2006.

[133] J. Hoffmann and R. Brafman, “Contingent planning via heuristic forward search with
implicit belief states”, in Proceedings of the 2005 International Conference on Planning and
Scheduling (ICAPS), vol. 2005, 2005.

[134] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning”, in European Conference
on Machine Learning (ECML), pp. 282–293, Springer, 2006.

BIBLIOGRAPHY 167

[135] M. Heerink, B. Kröse, V. Evers, and B. Wielinga, “Assessing Acceptance of Assistive Social
Agent Technology by Older Adults: the Almere Model”, International Journal of Social
Robotics, vol. 2, pp. 361–375, Dec 2010.

[136] C. Silva, J. Vongkulbhisal, M. Marques, J. P. Costeira, and M. Veloso, “Feedbot - a robotic
arm for autonomous assisted feeding”, in Progress in Artificial Intelligence, pp. 486–497,
Springer International Publishing, 2017.

[137] T. Bhattacharjee, G. Lee, H. Song, and S. S. Srinivasa, “Towards robotic feeding: Role of
haptics in fork-based food manipulation”, IEEE Robotics and Automation Letters, vol. 4,
no. 2, pp. 1485–1492, 2019.

[138] D. Gallenberger, T. Bhattacharjee, Y. Kim, and S. S. Srinivasa, “Transfer depends
on acquisition: Analyzing manipulation strategies for robotic feeding”, in 2019 14th
ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 267–276,
IEEE, 2019.

[139] Z. Erickson, H. M. Clever, G. Turk, C. K. Liu, and C. C. Kemp, “Deep haptic model
predictive control for robot-assisted dressing”, in 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1–8, May 2018.

[140] F. Zhang, A. Cully, and Y. Demiris, “Probabilistic real-time user posture tracking for
personalized robot-assisted dressing”, IEEE Transactions on Robotics, pp. 1–16, 2019.

[141] H. R. Lee and L. D. Riek, “Reframing assistive robots to promote successful aging”, ACM
Transactions on Human-Robot Interaction, vol. 7, pp. 11:1–11:23, May 2018.

[142] S.-E. Chien, L. Chu, H.-H. Lee, C.-C. Yang, F.-H. Lin, P.-L. Yang, T.-M. Wang, and S.-L. Yeh,
“Age difference in perceived ease of use, curiosity, and implicit negative attitude toward
robots”, ACM Trans. Hum.-Robot Interact., vol. 8, pp. 9:1–9:19, June 2019.

[143] A. Kapusta, Z. Erickson, H. M. Clever, W. Yu, C. K. Liu, G. Turk, and C. C.
Kemp, “Personalized collaborative plans for robot-assisted dressing via optimization and
simulation”, Autonomous Robots, Jun 2019.

[144] A. Tapus, C. Ţăpuş, and M. J. Matarić, “User—robot personality matching and assistive
robot behavior adaptation for post-stroke rehabilitation therapy”, Intelligent Service
Robotics, vol. 1, p. 169, Feb 2008.

[145] C. Moro, G. Nejat, and A. Mihailidis, “Learning and personalizing socially assistive
robot behaviors to aid with activities of daily living”, ACM Transactions on Human-Robot
Interaction, vol. 7, pp. 15:1–15:25, Oct. 2018.

[146] M. Cakmak, S. S. Srinivasa, M. K. Lee, J. Forlizzi, and S. Kiesler, “Human preferences
for robot-human hand-over configurations”, in 2011 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 1986–1993, September 2011.

[147] M. K. Lee, J. Forlizzi, S. Kiesler, P. Rybski, J. Antanitis, and S. Savetsila, “Personalization
in hri: A longitudinal field experiment”, in 2012 7th ACM/IEEE International Conference
on Human-Robot Interaction (HRI), pp. 319–326, 2012.

168 BIBLIOGRAPHY

[148] P. Chevalier, J.-C. Martin, B. Isableu, C. Bazile, and A. Tapus, “Impact of sensory
preferences of individuals with autism on the recognition of emotions expressed by two
robots, an avatar, and a human”, Autonomous Robots, vol. 41, no. 3, pp. 613–635, 2017.

[149] A. Cruz-Maya and A. Tapus, “Learning users’ and personality-gender preferences in close
human-robot interaction”, in 2017 26th IEEE International Symposium on Robot and
Human Interactive Communication (RO-MAN), pp. 791–798, August 2017.

[150] S. Rossi, M. Staffa, L. Bove, R. Capasso, and G. Ercolano, “User’s personality and
activity influence on hri comfortable distances”, in Social Robotics, pp. 167–177, Springer
International Publishing, 2017.

[151] N. Wilde, D. Kulić, and S. L. Smith, “Learning user preferences in robot motion planning
through interaction”, in 2018 IEEE International Conference on Robotics and Automation
(ICRA), pp. 619–626, May 2018.

[152] C. J. Hayes, M. Marge, E. Stump, C. Bonial, C. Voss, and S. G. Hill, “Towards learning
user preferences for remote robot navigation”, in Proceedings of the RSS 2018 Workshop
on Models and Representations for Human-Robot Communication, 2018.

[153] I. Torres, N. Hernández, A. Rodríguez, G. Fuentes, and L. A. Pineda, “Reasoning with
preferences in service robots”, Journal of Intelligent & Fuzzy Systems, vol. 36, no. 5,
pp. 5105–5114, 2019.

[154] M. M. de Graaf, S. Ben Allouch, and J. A. van Dijk, “Why would i use this in my home? a
model of domestic social robot acceptance”, Human–Computer Interaction, vol. 34, no. 2,
pp. 115–173, 2019.

[155] J. Piasek and K. Wieczorowska-Tobis, “Acceptance and long-term use of a social robot
by elderly users in a domestic environment”, in 2018 11th International Conference on
Human System Interaction (HSI), pp. 478–482, IEEE, 2018.

[156] C.-A. Smarr, A. Prakash, J. M. Beer, T. L. Mitzner, C. C. Kemp, and W. A. Rogers, “Older
adults’ preferences for and acceptance of robot assistance for everyday living tasks”,
Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 56, no. 1,
pp. 153–157, 2012.

[157] I. Deutsch, H. Erel, M. Paz, G. Hoffman, and O. Zuckerman, “Home robotic devices
for older adults: Opportunities and concerns”, Computers in Human Behavior, vol. 98,
pp. 122 – 133, 2019.

[158] A. Gessl, S. Schlögl, and N. Mevenkamp, “On the perceptions and acceptance of
artificially intelligent robotics and the psychology of the future elderly”, Behaviour &
Information Technology, pp. 1–20, 2019.

[159] M. Biswas, M. Romeo, A. Cangelosi, and R. B. Jones, “Are older people any different from
younger people in the way they want to interact with robots? scenario based survey”,
Journal on Multimodal User Interfaces, Jul 2019.

BIBLIOGRAPHY 169

[160] G. Canal, S. Escalera, and C. Angulo, “A real-time Human-Robot Interaction system based
on gestures for assistive scenarios”, Computer Vision and Image Understanding, vol. 149,
pp. 65–77, 2016. Special issue on Assistive Computer Vision and Robotics - “Assistive
Solutions for Mobility, Communication and HMI”.

[161] A. Colomé, A. Planells, and C. Torras, “A friction-model-based framework for
reinforcement learning of robotic tasks in non-rigid environments”, in IEEE International
Conference on Robotics and Automation (ICRA), pp. 5649–5654, 2015.

[162] I. Naotunna, C. J. Perera, C. Sandaruwan, R. A. R. C. Gopura, and T. D. Lalitharatne,
“Meal assistance robots: A review on current status, challenges and future directions”, in
IEEE/SICE International Symposium on System Integration (SII), pp. 211–216, Dec 2015.

[163] T. Baltrusaitis, A. Zadeh, Y. C. Lim, and L. Morency, “Openface 2.0: Facial behavior
analysis toolkit”, in 2018 13th IEEE International Conference on Automatic Face Gesture
Recognition (FG 2018), pp. 59–66, May 2018.

[164] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose estimation
using part affinity fields”, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 7291–7299, 2017.

[165] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with
rao-blackwellized particle filters”, IEEE Transactions on Robotics, vol. 23, no. 1, pp. 34–46,
2007.

[166] J. Hoffmann, “The Metric-FF planning system: Translating “ignoring delete lists” to
numeric state variables”, Journal of Artificial Intelligence Research, vol. 20, pp. 291–341,
2003.

[167] M. J. Matarić, J. Eriksson, D. J. Feil-Seifer, and C. J. Winstein, “Socially assistive robotics
for post-stroke rehabilitation”, Journal of NeuroEngineering and Rehabilitation, vol. 4,
no. 1, p. 5, 2007.

	Abstract
	Resum
	Acknowledgements
	Contents
	Figures
	Tables
	Introduction
	Motivation
	Contributions
	Considered scenarios
	Assistive feeding
	Shoe fitting
	Assisted jacket dressing

	Outline

	Personal assistive robots for non-technical users
	Introduction
	Related work
	The FUTE Personalization Framework
	Experimental assessment: User-Centered Feeding Assistance
	The Robot Feeding Process
	Feeding personalization
	Teaching Modes: Unassisted vs. Compliant Reproduction
	Parameter extraction from the learned trajectories

	Summary

	Defining preferences for assistive scenarios
	Introduction
	Related work
	A Taxonomy of preferences for Assistive Human-Robot Interaction
	Preference definition examples
	Summary

	Planning techniques for robot behavior adaptation
	Introduction
	Related work
	User-oriented task planning
	Domain definition
	Fuzzy user model extraction
	Initial model refinement
	Improvement based on user feedback

	Experimental evaluation
	Experimental feasibility assessment

	Summary

	Joining high-level actions with low-level skills
	Introduction
	Related work
	Planning for the next step
	Learned motions
	Combining high-level Symbolic Task Planning with low-level Motion Planning
	High-level state transitions: the shoe fitting example

	Experimental evaluation
	Experiment 1: Failure recovery after task completion
	Experiment 2: Talking to the user when needed
	Experiment 3: Speed modulation

	Summary

	Preference suggestions for improved performance
	Introduction
	Related work
	ROSPlan extension to RDDL
	Background on planning under uncertainty
	System Description
	Online Planning and Execution with RDDL Planners

	Preferences to guide action selection through the reward function
	Motivation behind providing predicate suggestions
	Planning with preferences and limitations

	Providing suggestions
	The Plan Space Tree
	Max-reward traversal
	Suggesting changes to known predicates

	Experimental evaluation
	Definition of the domains and preferences
	Effect of the SoPS algorithm
	Improvements by allowing changes with SoPS-change
	Finding superfluous suggestions

	Summary

	Evaluating the use of preferences through HRI
	Introduction
	Related work
	Methodology
	Scenarios
	Material
	Participants
	Procedure

	Results
	Preference guessing
	Pleasantness of the interaction
	Differential behavior
	Potential usefulness of Assistive Robotics

	Summary

	Conclusions
	Future work

	List of publications
	Safety in adaptive Physically Assistive Robots
	Safety strategies
	Safety analysis for autonomous user feeding
	Force limitation for unexpected contacts
	Passive safety evaluation

	ROSPlan's Probabilistic Planning evaluation
	Example System and Scenario
	Print-fetching domain

	Experiments
	Results

	Discussion

	Questionnaire used for the HRI evaluation
	Acronyms
	Glossary
	Bibliography

