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Chapter 1

Introduction and preliminaries

1.1 Introduction

This work is a development within the field of data mining and data visu-
alization. Thus, in order to analyze and explore data, we study some graph
decomposition methods. Our work consists in the search for relationships
between items on data to identify co-occurrence patterns through the con-
struction and decomposition of graphs, the so-called Gaifman graph and its
variations. Throughout this thesis we argue the usefulness of Gaifman graphs
on first-order relational structures as an exploratory data analysis tool, we
provide the theory that supports our work and we explain the algorithmics
implemented.

As a definition of data mining we have: “data mining is the process of
discovering patterns in large data sets involving methods at the intersection
of machine learning, statistics, and database systems. It is the analysis step
of the knowledge discovery in databases process” E] In turn, the basic flow
of steps that compose the KDD process are selection, preprocessing, trans-
formation, data mining and integration/evaluation [17].

On the other hand, “data visualization is the presentation of data in a pic-
torial or graphical format, and a data visualization tool is the software that
generates this presentation. Data visualization provides users with intuitive
means to interactively explore and analyze data, enabling them to effectively
identify interesting patterns, infer correlations and causalities, and supports
sense-making activities” [7]. As examples of data visualization we have Pyra-

! https://en.wikipedia.org/wiki/Data_mining
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midViz |23] or arulesViz [20] that aim at explaining visually frequent patterns
or association rules.

Highly frequent co-occurrences of data items are often of interest in data
analysis, and they have been a target for several sorts of data mining frame-
works for decades now, on all types of data. Despite the large amount of ex-
isting literature, current notions do not really reach end users, mainly due to
the difficulty of finding explanatory schematic descriptions. In fact, one of the
main setbacks is that, mathematically speaking, the results of these notions
of data analysis are in spaces of great dimensionality, and their reductions to
the 2D or 3D frames available so far almost never offer a sufficient interpre-
tation. However, graphic descriptions add greatly to the interpretability of
the results of the data analysis in many fields. Through this work we demon-
strate that our approach is convenient in the analysis of data, specifically in
the analysis of medical diagnostic data.

We propose the use of Gaifman graphs and the application of a decom-
position mechanism on them based on the so-called 2-structures to obtain a
hierarchical co-occurrence visualization.

The structure of the thesis is as follows. In this chapter we provide a
general view of preliminaries and the notation used.

In Chapter 2] based on the intuition that the results of this decomposition
could be related to the closure space obtained from the so-called modular
implications and clan implications, we develop their relationship where we
introduce the construction of this set of implications and we explain the
decomposition graph as a variant of the closure space associated to this set.
This provides a fundamental study of the process behind our proposal, by
explaining how graph decompositions fit a specific view of closure spaces,
allowing us to connect our approach to more standard tools in Data Analysis,
such as closure and implication mining.

In the next chapter, Chapter [3| we show the algorithm developed by us
to get the corresponding graph decomposition, the theorems that support
our algorithms and we give the details of the software implementation. Also
we comment on a couple of related algorithms, showing by examples the
differences with our algorithm.

Chapter [4] is a compendium of some of the decomposition results applied
on Gaifman graph variations from different datasets using different param-
eters. While in Chapter [5| we show the result of applying the 2-structure
decomposition method on different Gaifman graph variants of a medical di-
agnostic dataset.



Finally, in Chapter [6] we talk about the profit of applying this method but
also we talk about restrictions that we found and some of possible expansions
that can be made or considered.

1.1.1 Publications

Throughout the development of this thesis we have had some publications.
There are references to them in most of the chapters of this thesis. We list
them below.

e Decomposition of quantitative Gaifman graphs as a data analysis tool,
Advances in Intelligent Data Analysis XVII - 17th International Sym-
posium, IDA 2018, ’s-Hertogenbosch, The Netherlands [5].

o A graphical tool for the interpretation of medical data, ACM Celebra-
tion of Women in Computing: womEncourage 2019, Rome, Italy [34].

e Hierarchical visualization of co-occurrence patterns on diagnostic data,
32nd IEEE International Symposium on Computer-Based Medical Sys-
tems, CBMS 2019, Cordoba, Spain [6]. Obtained the Best-student pa-
per award.

e An extended version that includes both previous papers was invited
to a special issue of the Computational Intelligence Journal with the
name: Co-occurrence patterns in diagnostic data [27).

There is an additional publication, which in fact was our first publica-
tion, however because the focused changed through its development, it is not
reference in any of the chapters. This publication is:

e Relative entailment among probabilistic implications, Logical methods
in Computer Science, February 2019 [2].

Additionally, we have another publication that right now is in a submis-
sion process to a journal: Hierarchical visualization of co-occurrence patterns
as clans in generalized Gaifman graphs [4]. It contains the theory behind the
connection of modular decomposition and its generalization, clan decompo-
sition, to closure and implication mining, that is, the results related to the
Chapter



Meanwhile, in [5] we expose the bases of our approach, we first apply it
on a Titanic dataset as a way to encourage its use, the decomposition results
are shown in the present chapter as motivation.

In the rest of the publications, we show the results of working with varia-
tions of Gaifman graphs from more elaborated datasets, such as the medical
diagnostic dataset among others. All these results are shown in Chapters
and | To be precise, in [6] we show some results of working with linear and
exponential Gaifman graph variants, while, in [34] we add the analysis of the
shortest path Gaifman graph variant. There is an additional contribution,
K-means Gaifman graph variant, which has not been sent for publication yet
but whose results of applying it on the medical diagnostic dataset are also
shown in Chapter [3}

1.2 General preliminaries

Throughout this work we call universe, denoted as U, some fixed set of atomic
elements or items. An itemset is a subset of the universe. To represent subsets
of items we use capital letters, and to represent single items we use lower case
letters.

Let X and Y be two sets, if X is a subset of Y, denoted as X C Y, each
element of X is also an element of Y, they can even be the same sets. To
denote the subset X cannot be equal to Y, that is, X is a proper subset of
Y, weuse X CY.

For practicality, in order to represent the union of X,Y, we use the jux-
taposition XY.

We say that two sets overlap if neither is a subset of the other, but they
are not disjoint. That is:

Definition 1.1. X and Y overlap if the three sets X NY, X \ Y, and Y \ X
are not empty.

1.3 Implications and partial implications

Association mining [8] is a method of data analysis. It studies the relation
between two itemsets, this relation is commonly called partial implication.
To select interesting partial implications, constraints on various association
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quality measures are used, most of the times constraints on their confidence
and on their support.

Definition 1.2. The support of an itemset X in a dataset D is the number
of transactions that contain X in the dataset, Dx, divided by the cardinality
of the dataset, n: Sp(X) = Bx.

n

From a dataset D, the universe U will be conformed by those items in the
transactions, when we work with transactional databases, or will be conform
by all possible attribute values, when we work with relational databases; we
will go in detail latter in Section [I.5] Let X, Y C U be two itemsets, by
definition we may deduce that Sp(X) < Sp(Y) when Y C X. The support
of the rule X — Y in a dataset D, is again the number of transactions where
XY appear together in the dataset, Dxy, divided by the cardinality of the
dataset: Sp(X —Y) = Sp(XY) = Bxx,

Definition 1.3. The confidence of a rule X — Y in a dataset D is defined

as: Cp(X —=Y) = —Sgéé%),

An implication is a rule with confidence equal to 1, denoted as X = Y.
Implications are directly related to conjunctions of Horn clauses, so they have
a closure space associated. A Horn clause, in fact a definite Horn clause, is
a clause disjunction of possibly negated propositional variables, with exactly
one non-negated variable. We represent Horn formulas in implicational form
by grouping together into a single expression X = Y all the Horn clauses
with the same set X of negated attributes, each contributing their positive
attribute to Y. For sets of items X, Y and Z, Z satisfies the implication
X =Y, denoted as Z = X =Y, if either X € Z or XY C Z.

For a set of implications B:

e 7 |=Bmeans Z = Ng(X = Y).
e B= X = Y means for every Z |= B we have Z = X = Y.

The connection of classical implications and closure spaces runs as follows:
Given B a set of implications, the closure X of a set X is the largest set Y such
that B logically entails X = Y; whereas, if we are given a closure operator,
we can axiomatize it by the set of implications {X = Y : Y C X, X C U}
or, equivalently, any set of implications that entails exactly this set. Thus
BE X =Y ifand only if Y C X.
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A set is a closed set if it coincides with its closure, and the closure space is
the family of all the closed sets. The fact, well-known in logic and knowledge
representation, that Horn theories are exactly those closed under bitwise
intersection of propositional models leads to a strong connection with closure
spaces, where closure under intersection always holds [13] [21]. A basic fact
from the theory of closure spaces is that the closure operator is characterized
by three properties:

e Extensivity: X C X

e Idempotency: X = X
e Monotonicity:if X CY then X CY

For references and supporting facts of all our claims so far, see the dis-
cussions in [41] or its early version https://arxiv.org/abs/1411.6432v2.

Definition 1.4. X is a strong closure if, for all other closures Y, X and
Y do not overlap. That s, either X and Y are disjoint, or a subset of one
another.

1.4 Graphs

A graph is a structure determined by a set of vertices and a set of edges. It
could be a directed graph or an undirected graph. An undirected graph G is
described by a set of vertices V and a set of edges £ that define a symmetric
relation on the vertices, that is, let x,y € V, if (z,y) € &, thus (y,z) € £.

The complement graph G’ of a graph G, is a graph defined on the same
set of vertices where the edges are determined by those pair of vertices that
are not adjacent in G.

Definition 1.5. In a graph G = {V,E}, two vertices x,y € V are adjacent
if (x,y) € €.

P, is the graph consisting of a path on 4 vertices with 3 edges; its comple-
ment is also Py [9]. As an example, Figure shows two different P, graphs
in one of them we make explicit its complement showing that it is also a Pj.


https://arxiv.org/abs/1411.6432v2
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Figure 1.1: Example: P4 graphs.

1.5 Gaifman graphs of relational structures

The theory of Gaifman graphs was developed in the 1980’s; it is a quite
natural theoretical construction that can be applied to any relational struc-
ture [24]. A relational structure consists of a domain and a set of relations.
As we know, relational databases, often composed of multiple relations (or:
“tables”), have been a key figure in the theory and practice of Computation
for decades. It is possible to construct its associated Gaifman graph, since
the conceptual essence of the relational database model [24] is the first order
relational structure.

Given a first order relational structure {R;};c; where the values that
appear in the tuples of the relations R; come from a fixed universe U, its
corresponding Gaifman graph has the elements of U as vertices, and the edges
(x,y), for x # y, are determined exactly when x and y appear together in
some tuple t € R; for some R;.

Thus, it could be applied directly on relational dataset where the relations
R; will be the tables in the database, the tuples t € R; will be those rows
in the tables and the set of vertices & will be determined by all possible
attribute values, and the edge (z,y) will be determined exactly when the
attribute values x and y appear together in some row.

Example 1.6. Let us consider a very small relational dataset on the universe
U = {ag, a1, by, by, by, b3} conformed by the tuples:
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Figure 1.2: Graph of Example [I.6} Standard Gaifman graph and its natural
completion.

to: apbo
t1: agh;
ty i agby
t3: agpbs
ty: arbg
ts : apb;
te: aibs

The Gaifman graph that represents its co-occurrences is shown in the left
of Figure According to the definition, the vertices are all the possible
attribute values and the edges link pair of attributes values that appear
together in some row. An alternative drawing, that will fit the 2-structure-
based approach described shortly, is the natural completion of the Gaifman
graph, shown in the right of Figure [1.2l Extending the definition of natural
completion of a graph to Gaifman graph we have:

Definition 1.7. The natural completion of a Gaifman graph G is the Gaif-
man graph plus an equivalence relation among its absent edges, getting a
complete graph with two equivalences classes: the items that sometimes ap-
pear together in some tuple of some R; are joined by an edge in one equiva-
lence class, while the items that never appear together are joined by edges in
another equivalence class.
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In most of our examples we use solid lines to join items that appear
together while the items that never appear together are joined by broken
lines.

We also may extend, in a natural way, the construction of the Gaifman
graph from a transactional dataset. Transactional datasets, also known as
“market-basket datasets” [25], consist of a sequence of transactions, each of
which consists, in turn, of a set of items. Then, the Gaifman graph from
a transactional dataset will have as set of vertices U all the possible items
found in the transactions, and the edge (z,y) will be determined exactly
when the items x and y appear together in some transaction.

If we want to see a transactional dataset as a relational dataset, each
item will be an attribute with binary values: the presence or absence of it
in the original transaction. In most practical cases, those zeros representing
absence of an item abound, yet we are only interested in items being jointly
present, so the zeros are not informative. This is the reason of using the
Gaifman graph transactional construction as we have just described.

Example 1.8. Let us consider a very small dataset, quite similar to that
shown in our work (5], on the universe U = {a,b,c,d,e} conformed by the
transactions:

t1: abc
to:  ae
t3: acd
ty: de

The Gaifman graph that represents its information is shown in left of
Figure

According to the definition, each vertex of the graph represents an item,
and edges link pairs that appear together in some transaction. Its natural
completion Gaifman graph variant is shown in center of Figure [1.3] where
items that sometimes appear together are joined by solid lines, while items
that never appear together are joined by broken lines, again, leading to a
complete graph with two classes of edges.

Gaifman graphs record co-occurrence (or lack of it) among every pair of
attribute values, or items, of the universe U, but there are cases where it is
useful to have quantitative information about the co-occurrences. We will
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Figure 1.3: Graph of Example [I.8 Standard Gaifman graph, its natural
completion and the labeled variant.

propose, in Chapter [3] several natural ideas to enhance their symbolic capa-
bilities through different ways of considering this quantitative information.
As a first approach, we have its labeled variation.

Definition 1.9. The labeled Gaifman graph variation of a Gaifman graph,
1s a graph where the edges are labeled according to the multiplicity of the
items that they connect, that is, according to the number of transactions that
contain the pair of items linked by the edge.

The right of Figure[L.3|shows the labeled Gaifman graph variant of the Ex-
ample[L.8 In an intuitive way we represent the different labels with different
colors. In this way, some pairs do not appear together and the corresponding
edges are labeled with zero and represented by dashed edges, those pairs that
appear together exactly once are labeled 1 and represented by black lines,
and the pair that appears two times is labeled 2 and represented by a gray
line.

Hence, a clique in a standard Gaifman graph would group items that, pair-
wise, appear together somewhere in the relational structure: co-occurrence
patterns; a clique in its complement would reveal an incompatibility pattern.
Of course, finding maximal cliques is NP-complete; but there are less de-
manding ways to study graphs that identify efficiently both sorts of patterns
in a recursive decomposition: namely, the modular decomposition and its
generalization, the decomposition of 2-structures.
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1.6 Modular decomposition

The modular decomposition was first described in the 1960’s by Gallai [18]E];
it has been rediscovered many times and described under many different
names, for a survey see [19] and [31J}] The modular decomposition of a
graph is a process that consists of decomposing the graph into sets of vertices,
nowadays called modules.

Definition 1.10. Given a graph, a set X of vertices is a module if, for each
vertex z ¢ X, either every member of X is connected with z or every member
of X is not connected with z.

Note that the set of all vertices is a module. Also, each vertex by itself
and the empty set are vacuously modules, commonly called trivial modules;
we will systematically ignore the empty module.

As an intuition, we consider the presence or absence of an edge as the
way one vertex sees another. Thus, we will often resort to expressions like
“a vertex sees in a different way two other vertices” when it is connected to
one of them and disconnected from the other one; or, in the same case, we
may say that “one vertex can distinguish between other two vertices”.

Proposition 1.11. Permuting absence and presence of all edges leaves the
same set of modules.

That is, a graph and its complement have the same modules. The previous
proposition comes from the fact that the permutation of the edges, to connect
those disconnected edges and disconnect those connected edges, does not
change the ways vertices distinguish each other; that is, we give the same
interpretation to a graph and to its complement.

Let M be a module and x, y be elements in M, by definition every z ¢ M
may not distinguish between them. Thus, if z may distinguish between them,
z must be in M:

Proposition 1.12. Let x and y be elements of a module M: if item z sees
in a different way x and y then, necessarily, z € M.

Proposition 1.13. Let X and Y be overlapping sets, if both are modules,
then also X NY, X\ Y, and Y \ X are modules.

2An English translation is available as [26]
3See also https://en.wikipedia.org/wiki/Modular_decomposition
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Let X and Y be modules, thus every z ¢ X may not distinguish the
elements of X and every z ¢ Y may not distinguish the elements of Y. If
X NY # (0, those elements in the intersection cannot be distinguish by any
z ¢ X and also by any z ¢ Y, that is, they cannot be distinguish by any
z ¢ XNY, thus, X NY is a module. X \ Y is equal to the x € X such
that x ¢ X NY, since X is a module the only z that could distinguish the
elements of X \ Y are those z € X NY. Suppose X \ Y is not a module thus,
there is z € X NY that may distinguish two arbitrary xg,z; € X \ Y thus
(z,20) # (2,21). Asz € Y and Y is a module, for all of the remaining z; € Y
(20, 2;) = (7o, 2) and also (1, 2;) = (21, 2). Thus, will be exist z; ¢ X such
that (z;,x0) # (2i, 1), contradicting the fact that X is a module.Therefore,
X \'Y is a module. The same for Y\ X.

A main interest of the notion of module is that all the vertices of a module
can be collapsed into a single vertex without ambiguity with respect to how
to connect it to the rest of the vertices: the new vertex gets connected to y if
all the members of the module were connected to y, and remains disconnected
if all the members were disconnected. Clearly, the definition given of module
is what is needed for this process to be applied without hesitation about
whether the new vertex should or should not be connected to some external
vertex y. More generally, the same considerations apply if we consider two
disjoint modules:

Proposition 1.14. If XY are disjoint modules then either Vx € XVy €
Y,(z,y) €€ orVe e XVy €Y, (x,y) ¢ &

Nothing forbids modules to intersect each other; in that case, though,
collapsing one module into a single vertex may affect the other. In order
to avoid side effects, it is customary to restrict oneself to so-called strong
modules 18] (see also [26]).

Definition 1.15. A module M is a strong module of a graph if it does not
overlap any other module; that is, for all other modules M’ of the graph,
either M N M' =0 or they are subsets of one another.

Since strong modules can be proper subsets of other modules, we can
obtain a hierarchical decomposition of the graph, commonly called decom-
posable set family [29], that can be pictured in a tree-like form. These facts
have been studied in a very wide bibliography, see [19] and the references
there.
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Figure 1.4: Graph of Example [I.6} Standard graph decomposition and its
natural completion decomposition.

Given a graph, we can focus on its maximal strong modules; it is known
that each vertex belongs to exactly one of them [19]. Thus, one or more
(or even all) of these maximal strong modules can be collapsed into a single
vertex.

Definition 1.16. The coarsest quotient graph of a given graph G is obtained
by collapsing all the mazximal strong modules of G.

Then, a tree-like structure arises from the fact that each of these mod-
ules, taken as a set of vertices, is actually a subgraph that can be recursively
decomposed, in turn, into maximal strong modules, generating views of sub-
sequent internal structures given by their respective coarsest quotient graphs.
We display the decomposition tree while labeling each node (a strong mod-
ule) with its corresponding coarsest quotient graph, and connect visually
each collapsed vertex to the subtree decomposing the corresponding module.
Of course, the root of the tree is the coarsest quotient of the whole graph.

Let us see some examples of the modular decomposition method applica-
tion.

The modular decomposition of the standard Gaifman graph in the left
of Figure for the Example [I.6] is shown in Figure And also, the

decomposition of its natural completion is shown in Figure [I.4]
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As a generality, boxes corresponds to sets that are strong modules, and
dots within them to subsets that are also strong modules. All along the whole
decomposition, trivial (single-item) modules are indicated by a link to the
vertex they consist of, represented with an elliptic node; nontrivial ones are
linked instead to a new box describing the internal structure of the module,
in terms of the strong modules it has again as proper subsets.

At the rightmost box, three of the b values are connected by broken lines,
which means that they never co-occur together: indeed, as different values
of the same attribute, no row can have two of them. In the other box, the
top node is a condensed version of the module formed by by, b1, and by, and
it is connected with solid lines to both ag and a;, meaning that all the ways
of pairing one of the a’s with one of these b’s do appear in the data. Like the
attribute values b;, the values a; do not appear together in any row and, if we
are decomposing a natural completion, they appear connected by a broken
line. More interestingly, we could have expected to see the attribute value
b3 in the same module of the rest of the values b;; however, the fact that
it appears in the higher module points out to us that, unlike the other b;
values, there is not any co-occurrence of b3 with a;. Of course, there are no
co-occurrences of b3 with the other b;’s either. That is, the items by, by, and
by “behave equally”: all are connected to ag and a; and all are disconnected
to bs; this is why they conform a module. But b3 cannot join them since it
“behaves differently” with respect to ag and aq, as it co-occurs with ag in the
data but not with a;.

The modular decomposition of the standard Gaifman graph in the left of
Figure [1.3] for the Example [L.8] is displayed in the left Figure [I.5] Also, the
decomposition of its natural completion is shown in right of Figure [I.5]

One can see, in the top of the figure, the root of the tree collapsing
the maximal strong modules a and one nontrivial maximal strong module
conformed by {b, ¢, d,e}: all vertices not in the module (that is, vertex a)
are connected to each vertex inside of the module through edges with the
same color, by solid lines. Any other candidate turns out not to be a strong
module. For instance, any set including a and b but excluding e is not a
module, as e distinguishes between a and b; then, any set including b and
e must including ¢ and d. We end up including all the vertices, that is,
becoming a trivial module. Analogous reasoning applies if we start by pairing
a with any other vertex.

That is the way this decomposition tells us, in the particular case of our
very small Example[1.8] that item a in our given relation does not distinguish
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Figure 1.5: Graph of Example [I.8 Standard graph decomposition and its
natural completion decomposition.

all the others, in the sense that it shares some tuple with each one of the
rest, while the others do not offer any specific pattern in this respect.

The type of the strong modules is determined by the way the members of
its coarsest quotient are connected. To maintain consistency, for some notions
we will be using terminology corresponding to the theory of 2-structures
(Section . Given a graph if all of its vertices are connected, or if all of its
vertices are disconnected, we say that it is complete, otherwise it is primitive.
As an alternative definition, a graph is primitive if, for any two vertices in
the graph, there is a third one that is connected with just one of them. By
convention, graphs of size 1 or 2 are considered complete.

This, if the coarsest quotient graph of a strong module is a complete
graph, the strong module is a complete module, otherwise it is a primitive
module. For example, in Figure the module conformed by {b, ¢, d, e} is a
primitive module since the edges are not in the same equivalence class, while
in the top of the figure we find a complete clan having just one edge.

On the basis of the definition of module, we can state (see [19]):

Proposition 1.17. Primitive graphs (and thus also their complements) al-
ways have induced Py subgraphs [37]. Hence, for a primitive module, its cor-
responding coarsest quotient graph consists of at least four mazimal strong
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Figure 1.6: Example: A graph and its modular decomposition.

modules

Among other terms, primitive modules are sometimes called neighbor-
hood modules. Modular decomposition theory distinguishes fully discon-
nected complete graphs (or “parallel]” modules) and fully connected ones (or
“series” modules), leading to often duplicated arguments and definitions be-
cause both cases fulfill the same role. Indeed, recall from Proposition [1.11
that presence or absence of edges can be swapped with no change in the
modular structure: that’s why fully connected and fully disconnected mod-
ules are treated similarly here. Hence, we prefer the view of naming them
both “complete”.

The decomposition of the Gaifman graphs in Figure shown in Fig-
ure [[.4] shows two modules. One of them a primitive module conformed by
{ao, a1, b3}, where we may see the implied Py, both for the initial standard
graph (solid lines) and for its complement (broken lines). The other module
is a complete module conformed by the items {by, b1, by }.

The right of the Figure shows the decomposition Gaifman graph of
the natural completion Gaifman graph variant in the center of the Figure|1.3|
It shows the implied P, in its primitive module, both for the initial standard
graph and for its complement.

Another example is that one on Figure[1.6] it shows the original standard
graph (connected and disconnected vertices) and its modular decomposition.
It is easy to check that {a,b,c} conforms a module: both d and e are con-

4See also https://en.wikipedia.org/wiki/Cograph
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nected to each of them. The other possible nontrivial modules are {a, b, ¢, d},
{a,b,c,e}, {d, e}, {a,b}, {a,c}, and {b, c}; they are not strong: each of them
intersects others. Instead, {a,b,c} is a strong module as it does not over-
lap any other module. The root is the fully connected coarsest quotient
graph where {a, b, ¢}, the single nontrivial maximal strong module, has been
collapsed to a single vertex. Each of the three vertices {{a, b, c}, d, e} is con-
nected to the module they represent: two are maximal strong but trivial
ones, and the largest one decomposes itself again into three trivial modules.

Now, let us see the result of applying it on a famous, and relatively
small dataset often used for teaching introductory data analysis courses: the
Titanic dataset. Among several existing incarnations of the Titanic dataset,
we employ a very simple one, prepared by Radford Neal in http://www.cs.
toronto.edu/~delve/data/titanic/desc.html that, for each of the 2201
people on board the well-known ship, records the traveling class (1st class,
2nd class, 3rd class, crew member), age (discretized into adult or child),
sex (female or male), and whether or not the person survived. Its modular
decomposition is depicted in Figure [1.7]

The modules sex and survival are clear and intuitive, as they are differ-
ent possible values for the same attribute, they never appear together, but
happen to have the same set of neighbors. Likewise, one might expect a
module with four alternative values of traveling class, namely, 1st, 2nd, 3rd
or crew. However, the closest such module is a complete, fully disconnected
graph that only includes actual passenger classes that, of course never appear
together. Instead, the value crew appears in the parent ages module, a small
primitive graph where, of course, being an adult is into compatible with be-
ing a child, and both are compatible with all the traveling classes, however,
crew co-occurs only with adult. Thus we are told that, of course, the crew
included no children, a fact that we might overlook in a non-systematic anal-
ysis. That is, even if the traveling classes and the crew item are employed
as values in the same column, the data tell us, through our decomposition
procedure, that they have different semantics.

This small primitive graph is actually P, (Proposition , its coarsest
quotient graph collapses four maximal strong modules, thus they must be
the 4-vertex path. We will be seeing P, often again below.


http://www.cs.toronto.edu/~delve/data/titanic/desc.html
http://www.cs.toronto.edu/~delve/data/titanic/desc.html
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Figure 1.7: Modular decomposition: Titanic dataset graph.

1.7 2-structures and clan decomposition

According to the type of analysis that we would like to do, we can work with
different variations of the Gaifman graphs since there are cases where it is
useful to have quantitative information about the co-occurrences.

For a previous example, Example [1.8, we may see its labeled Gaifman
graph variation in the right of Figure [I.3] As a result we have a graph with
three classes of edges. While the notion of modular decomposition [1§] is
enough to be applied on standard Gaifman graphs, and even on their natural
completion, it is insufficient to handle adequately other variations of Gaifman
graphs. Therefore, we will work with a more general notion, 2-structures and
their clans [16], that naturally generalize modular decompositions to more
than two equivalence classes of edges.

The 2-structure concept can be studied in a number of ways; for exam-
ple, somewhat unrelated to our study, a notion of “region” gives rise to a
connection with Petri nets [3].

Definition 1.18. A 2-structure consists of a finite not empty set of vertices
U, called domain, and an equivalence relation € C (U x U) x (U x U)).

In specific, we work with a special kind of 2-structures, the so called
symmetric 2-structures [16] where all the equivalence classes are symmetric.
An equivalence class is symmetric if all of its edges are symmetric, that is,
the equivalence class & on a set U is symmetric if for all z,y € U : (z,y) €
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& < (y,x) € &. Since in the 2-structures that we use the edges represent co-
occurrences, is the same to say that x co-occurs with y than y co-occurs with
x. Then, the equivalence classes of co-occurrences are symmetric equivalence
classes. Hence, in the following when we talk about 2-structures we will be
referring to symmetric 2-structures.

To visualize the graph we will employ the common, very graphical and
intuitive representation of coloring in the same way edges belonging to the
same equivalence class. Extending the distinguish concept, we will say that
a node x distinguishes nodes y and z if the edge (x,y) € & and the edge
(x,2) € &, being &; # &;. Alternatively, as in modules, we say that y and =
“are seen in a different way” by z.

For a 2-structure given by a set of vertices U, let X be a nonempty subset
of the domain U, the induced substructure by X is defined as a 2-structure
obtained from the original one by the restriction of the equivalence relation
on the subset X, that is from the original 2-structure we only take those
edges involving the nodes in X.

The notion now corresponding to a module is called a clan, for each
z ¢ X, z may not distinguish the elements of X. Formally:

Definition 1.19. Given a 2-structure defined on U, a set of vertices X CU
is a clan if, for all z ¢ X and arbitrary different nodes x,y € X, the edge
from z to x is in the same equivalence class than the edge from z to y.

Again, as in modules, there are some trivial clans, those clans are: the
empty set, the singleton elements of the domain and the domain by itself.
Strong clans allow us to decompose a 2-structure into a tree-like form.

Definition 1.20. A clan C is a strong clan of a 2-structure if it does not
overlap any other clan.

It is easy to see that, if two strong clans are disjoint, then all the edges
between the elements of the clans are in the same equivalence class. Let X
and Y be two disjoint sets of vertices, we may define an edge &; between X
and Y, X)Y C U, like (X,Y) € & if {(z,y) € & :Vx € X,Vy € Y}. Thus,
two clans are connected, in the sense that all the respective pairs of vertices
(one from each clan) are.

Similarly to strong modules, the strong clans provide us with a decompos-
able set family that can be pictured in a tree-like form, by displaying every
strong clan as a child of the smallest strong clan that properly contains it.
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Thus, as with modules, strong clans can be collapsed into single vertices
without any ambiguity about how the 2-structure looks like after the col-
lapse. The corresponding notion of coarsest quotient 2-structure follows by
the same procedure as with modules:

Definition 1.21. The coarsest quotient of a 2-structure is obtained by col-
lapsing all the mazimal strong clans.

According to the internal 2-structure of a clan, it could be classified as
a complete clan or as a primitive clan. In a complete clan all the edges
are in the same equivalence class while in a primitive clan there are nothing
but trivial clans. Originally, strong clans were called prime clans. However,
in the context of modular decompositions, the adjective prime has received
other usages in the literature (as use it to denote primitive clans), we have
deemed better to avoid that adjective.

If the 2-structure is not symmetric, thus akin to a directed graph, it
may exhibit a third basic component in its tree decomposition, linear 2-
structures [16]. As we previously said, we only work with undirected graphs,
since the equivalence classes described by the edges in Gaifman graphs are
symmetric, so this component does not appear in our work. Mathematical
theorems supporting all our claims on 2-structures are provided in [16].

1.8 Gaifman graphs as 2-structures

We have already indicated that it is possible to see a Gaifman graph as a 2-
structure by its natural completion, Definition [I.7], where all the absent edges
will be in the same equivalence class while the existing edges will belong to
the other equivalence class. In this way we get a complete graph with two
equivalence classes.

Taking the example of the Titanic dataset, the Figure shows the de-
composition of its natural completion Gaifman graph, where broken edges
represent pairs of items that never appear together in any transaction, whereas
solid lines join items that appear together in at least one transaction.

Thus, in the case of the natural completion Gaifman graph variant we
have a 2-structure, while in the cases of the labeled Gaifman graph variant
to have all the edges labeled by their multiplicity produce many equivalence
classes and leads to many multiplicities so, often, no nontrivial clan shows
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Figure 1.8: Clan decomposition: Titanic dataset natural completion graph.

up. In order to avoid it, we apply the following discretization methods (some
of them introduced in our early works [5], [6], [34]).

As first discretization method we have the thresholded Gaifman graph
variant. In the thresholded Gaifman graph variant we may assign a lower
threshold or/and an upper threshold. The resulting Gaifman graph is a 2-
structure with two equivalence classes: one of them for the labeled edges
that satisfy the thresholds, and the other one, for the labeled edges below
the lower threshold or/and over the upper threshold. If the label of the edge
is below than the lower threshold, is consider that the linked vertices co-occur
not enough. While, if the label of the edge is over than the upper threshold,
is consider that the linked vertices are out of the range.

For the following discretizations we need some notation. Let U be the
domain of a 2-structure, let x,y be vertices on it and let ¢, , be the label for
the vertices x and y. That is, ¢, , denotes the quantity of co-occurrences of
x and y. Let 7 represent the equivalence class &;.

In the linear Gaifman graph variant the edge (x,y) is in the equivalence
class &, (z,y) € &, if and only if i = [¢,,/n], being n the assigned interval
size.

For the exponential version of the Gaifman graph we explored several
formulas to determined the most precise one, that is a formula where we are
not losing information, since in one of our versions we were losing the edges
with just one co-occurrence. So, in our final version, the edge (z,y) is in the
equivalence class &;, (z,y) € &, if and only if i = [logy(c,,, +1)].

In the shortest path variant of the Gaifman graph, the edge (z,y) is in
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the equivalence class &;, (z,y) € &, if and only if 7 is the minimum distance
between the vertices x and y in the standard Gaifman graph version.

We may combine the linear, exponential and shortest path Gaifman graph
variants with the thresholded variant. In these cases we do not get just two
equivalence classes as in the cases of the regular version of the thresholded
variant, instead we just “disconnect” those values that are out of the thresh-
old being able to get isolated vertices and more than one connex component.
Thus, to combine the thresholded variant with the rest of the Gaifman graph
variants does not change the equivalence classes defined on the edges with
labels that do not fall out of the threshold.

When we work with linear and exponential Gaifman graph variants, the
threshold is on the multiplicities of the edges. Whereas, that for the shortest
path Gaifman graph variant the threshold is on the path length between
the vertices, that is, we are only interested in those paths whose lengths are
within the thresholds.

Let us see an example.

Example 1.22. In the left of Figure[1.9 s the labeled Gaifman graph variant
of some data. Assume for the linear Gaifman graph variant we assign 10 as
interval size then, the resulting graph is shown in the right of Figure[1.9 As
one can see it has three different equivalence classes, while, the exponential
Gaifman graph variation, left of Figure has five equivalence classes,
and wn the shortest path Gaifman graph variation there are four equivalence
classes. In this example, we can see how the edges may belong to different
equivalence classes according to the Gaifman graph variant used.

For example, in the linear variation the edges (b,d) and (c,e) are in the
same equivalence class, while in the exponential variant they are in different
equivalence classes. Another example are the edges (b,c) and (b,e), they are
in the same equivalence class in the linear and in the exponential Gaifman
graph variants, while in the shortest path variant they are in different equiv-
alence classes since the size path to go from b to ¢ is 2 and the size path to
go from b to e is 3.

The Figure[I.11) shows the thresholded Gaifman graph variant for the stan-
dard and linear Gaifman graphs and the Figure shows the thresholded
variant for the exponential and the shortest path Gaifman graphs. We give the
same threshold to the standard, linear and exponential Gaifman graph varia-
tions in order to more easily compare the graphs, being 5 the lower threshold
and 15 the upper threshold. For the shortest path Gaifman graph variation
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Figure 1.9: Graph of Example[1.22; Labeled and linear Gaifman graph vari-
ations.

oy

Figure 1.10: Graph of Example Exponential and shortest path Gaifman
graph variations.
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Figure 1.11: Graph of Example [1.22}] Threshold variations for labeled and
linear Gaifman graphs.

Figure 1.12: Graph of Example [1.22; Threshold variations for exponential
and shortest path Gaifman graphs.

we will give one as lower threshold and 4 as upper threshold, keeping just
those vertices with 2 and 3 as path size, right of Figure[1.13

As another discretization method, we have the K-means [40] clustering,
it is a method commonly used in data mining, whose objective is to partition
a set of n values in k clusters. In this case, the quantity of cluster will be
the quantity of equivalence classes & and each c,, will belong to the cluster
1 whose centroid is closer. The resulting Gaifman graph is a 2-structure with
k equivalence classes.

There are efficient heuristics that are commonly used and quickly converge
to a local optimum following an iterative refinement approach to solve the
K-means problem that, in the general case, is computationally difficult (NP-
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hard). However, in the specific case of our application to work with just one
dimension is enough, that is not NP-hard.

To implement this method we use the CkMeans. 1d.dp [40] approach adapted
to python | The library solves the K-means problem using the Wang and
Song’s algorithm for one dimension.

Different to linear and exponential Gaifman graph variants, when we
combine the K-means Gaifman graph variant with the thresholded variant
the equivalence classes defined on the edges could change since the centroids
may get different values, examples are shown in Section [5.6]

Shttps://gist.github.com/drewda/1299198
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Chapter 2

Clan Decomposition versus
Closure Spaces

2.1 Introduction

In this chapter we connect modular decomposition and its generalization, clan
decomposition, to more standard tools in Data Analysis, such as closure and
implication mining. We provide a fundamental study of the process behind
the application of graph decomposition, and we explain how the modular de-
compositions, and the more general clan decompositions, fit a specific partial
view of a closure space that corresponds to so-called modular implications
and clan implications respectively.

In order to provide an explanation in a constructive way, and following
the structure of this thesis, we will work with modular decomposition at first
and then with clan decomposition. We based the general structure of our
proposal on the scheme of Figure [2.1]

Thus, in the Section we show the procedure that we propose to get
the set of implications that describes a graph, modular implications. 1t is
represented in the general scheme by the arrow from Gaifman graph to Im-
plications set. We develop the theory behind the connection of modules and
closures, and behind the connection of strong modules and strong closures,
we prove that they are the same sets, these are represented by the double ar-
rows in the general scheme. We also argue the relations between the modular
decomposition and the closure space lattice. For the arrow from Implications
set to Gaifman graph, we give an algorithm to reconstruct the graph from

31
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Figure 2.1: General scheme of module-closure approach.

the set of modular implications in Section and also, we give some con-
straints that must be satisfied to ensure that given implications set describes
a graph.

In Section we extend some of the results to clans and we suggest why
some other results are not extended.

Finally, in Section [2.4] we argue that it is possible to go from the modular
decomposition to the closure space lattice, and viceversa. It is important to
point out that it is not enough to work only with the strong closure space,
even though the strong closures and the strong modules are the same sets we
need all the lattice to know the type of each strong module, and strong clan,
as we prove in Section [2.2] and Section These analyses are represented
in the general scheme by the arrows in the bottom of Figure [2.1

2.2 Closures from modules

Given a graph, it is possible to describe the conditions for a subgraph being
a module in the form of a set of implications. As we already indicate, in
Proposition [I.12} if z and y are elements of any module M and z sees them
in a different way, then z € M. Taking vertices as propositional variables
and subgraphs as models, this is equivalent to: M |= zy = 2. As we said in
the preliminaries, M = xy = z , if either xy € M or zyz C M, since by
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the premise z € M and y € M, zy C M, thus zyz C M being z € M.

In this way, we have the set subgraph module described by a set of im-
plications M, thus the closure Ty of the set zy is the largest set Z such that
MEzy=Z.

Following this idea, given a graph, we generate a set of implications from
it. We call this set of implications the modular implications of the graph. In
each implication, the antecedent will be conformed by a pair of vertices in
the graph, and the consequent will be conformed by those vertices that see
the vertices of the antecedent in different ways.

Given a graph G and a vertex x in it, to denote the immediate neighbors
of z in G we use Ng(z) and we define the distinguishing set of a pair of
vertices x, y as:

Dg(z,y) = Ng(z) \ Ng(y)) U (Ng(y) \ Ng(2)) \ {z,y}.

That is, the set Dg gathers together all the vertices that see one given
pair of vertices, x and y, in different ways. It is neccesary to remove explic-
itly  and y from the distinguish set since, in the case they are connected,
the absence of self-edges would make each of them qualify to distinguish
themselves from the other, whereas the definition of module only searches
for distinguishing vertices outside the module.

We construct the set of modular implications as follows:

Definition 2.1. Let G be a graph and let x and y be two different vertices
in it, the corresponding modular implication is xy = Dg(z,y). The set of
modular implications for G is formed by the modular implication correspond-
ing to every pair of different vertices, x,y for which the right-hand side is
nonempty, that is Dg(x,y) # 0.

We can state the following:

Proposition 2.2. Let G be a graph and let x and y be two different vertices
in it, in the corresponding modular implication xy = Z we have z € Z if

and only if z ¢ {x,y} and z is connected to exactly one of x, y. Therefore,
{z,y} is a module (of size 2) if and only if Z = ).

The proof follows directly from the definitions.

Example 2.3. Let us get the set of modular implications from the graph in

left of Figure[2.5:
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Figure 2.2: Graph of Example 2.3} A graph, its closure lattice and its mod-
ular decomposition.

ad = be bd = ac cd = ab
ae = be be = ac ce = ab

The pairs {a,b}, {a,c}, {b,c}, {d,e}, are size-2 modules and would lead
to empty right-hand sides in their modular implications; accordingly, these
implications are discarded. Thus, ab, ac, bc and de are closed sets.

In the center of the Figure we find the closure space lattice described
by the modular implications obtained from the graph, we mark in bold those
closed sets that do not overlap any other closed set (strong closures, as appear

in Definition . We show the decomposition of the graph in the right of

Figure[2.9
The main result of this section is:

Theorem 2.4. The modules of a graph and the closures defined by its set of
modular implications are the same sets.

Proof. (Closures are modules.) Let X be a closure, and suppose that there
is some y that can distinguish two arbitrary different z1, x5 € X, with y &
{x1,22}; one of the modular implications will be x1z5 = Y with y € Y # ().
As X is a closure, it must satisfy all the modular implications, and both
antecedents are in X, thus y € X. Hence, no y outside X may distinguish
two elements inside X, which is the definition of module.

(Modules are closures.) Let X be a module. It suffices to show that it
satisfies all the modular implications: let z129 = Y be one of them. If either
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x1 ¢ X or xo ¢ X, then X satisfies the implication by failing the antecedent.
If 1,25 € X then, since X is a module, no item outside X can distinguish
them; but, according to Proposition [2.2] Y is the set of items that distinguish
them, hence Y C X and X satisfies the modular implication. O

Corollary 2.5. Strong modules and strong closures are the same sets.

In the following, and until explicitly indicated otherwise, whenever we
talk about closures, we are referring to the closures described by the set of
modular implications.

By Theorem and Corollary we have that modules and closures,
strong or not, are the same sets. As we have seen, the type of the module is
also important in our visualization of co-occurrence patters. Thus, we would
like to be able to know the type of each module, primitive or complete, by
using just the information in the closure lattice.

Following this idea, the next theorem shows us that the type of a strong
module is given by the immediate closure subsets of its corresponding strong
closure into the lattice. The immediate closure subsets of a set X are those Y
below X in the closure lattice such that no intermediate set 7, Y C Z C X,
is closed.

Theorem 2.6. The type of the coarsest quotient graph of a module is prim-
itive if and only if the immediate closure subsets of its corresponding closure
in the closure lattice are strong closures and they are more than three.

Proof. Let M be a module. By Corollary [2.5 its corresponding closure in
the closure lattice is also M. Let us suppose its coarsest quotient graph
collapses the maximal strong modules M; (i € I for some index set ).

(=) Let M be a primitive module, that is its corresponding coarsest
quotient graph is primitive; we have to prove that there is not any union of
M;’s closure subset F such that M; ¢ F C M. F must be a union of M;
since, by the premise, M, are strong closures so F does not overlap any of
them. But if F includes at least two M;, by definition of primitive there
must be at least one other M; distinguishing them; thus F could not be a
closure.

(<) We have to prove that if the immediate closures M; of a strong
closure M are strong closures and more than three, then M is a primitive
module. Let J C I be the index set of a proper subset of the modules M,
consisting of at least two of them (we can guarantee this possibility by the
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Figure 2.3: Graph of Example[2.7} A graph with a primitive module into its
tree decomposition.

premise). Suppose that all the remaining M,’s, i ¢ J, cannot distinguish
between them, so | J e M must be a closure; this would contradict the fact
that all the M,’s are immediate closed subsets of M. Thus, for arbitrary
J C I, there must be at least one M;, i ¢ J, that may distinguish between
some of them so that no such (J;c; M; is a module. Subsets that are not
in the form [ J ;M are not modules either because each M; being a strong
module means that no module overlaps any of them. Thus, M is a primitive
module. O

Let us see some examples to illustrate both cases:

Example 2.7. In the left of Figure is a graph (known as the “gem graph”)
with a primitive quotient graph into its decomposition. By Proposition (1.1
a primitive quotient graph of 4 vertices must be indeed P,. We get from it
the following set of modular implications:

ab= ¢ ae = be be = a de = ¢
ac = bd bc=d cd = a
ad = b bd = ac ce = ad

This implication set generates the closure lattice in the center of Fig-
ure |2.5.  The node abcde has two children, by Theorem its respective
module in the decomposition tree is complete, we may see this in the right
of Figure (2.5, The node abcd has four strong closures as children, thus by
Theorem|2.0, its equivalent strong module into the decomposition is primitive
as we may see in the decomposition tree.
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Figure 2.4: Graph of Example A graph with complete modules into its
tree decomposition.

Example 2.8. In Figure there is an example of a graph with only com-
plete quotient graphs into its decomposition. From the left of Figure we
get the set of modular implications:

ac=b ae = b bd = ce cd = abe
ad = ce bc = a be = a de = abc

With ab and ce closed sets. At the center of Figure we have the closure
space lattice from this set of implications. As we can see, the closed set
abcde has two children so its respective quotient graph in the decomposition
15 a complete module. The closed set abce has three children overlapping,
by the Theorem we may deduce its respective coarsest quotient graph in
the decomposition is complete as we can see in the right of Figure[2.] The
last closed set in the closure lattice is ab, it has two children so its respective
quotient graph is a complete module as we may see in the decomposition tree.

As we can see in the previous example, Example [2.8] there is an alterna-
tion on the equivalence classes in the complete modules, we may generalized
it in the following proposition.

Proposition 2.9. For a complete module M, if one of the elements M,
i its coarsest quotient is a complete module too, the edges in the coarsest
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quotient graph of one of them are a clique while the edges in the other coarsest
quotient graph are disconnected.

Proof. Assume that it is not true, that is, both the edges of the coarsest
quotient graph of M and the edges of thee coarsest quotient graph of M; are
the same. Thus, for arbitrary M’ in the coarsest quotient of M;, it may not
distinguish the remaining elements in the coarsest quotient of M; from the
remaining elements in the coarsest quotient of M, making M\ M,;UM;\ M’ a
module but it is not possible since the coarsest quotient contains the maximal
strong modules. O

2.2.1 Graph reconstruction from module implications

In this section we show that from the set of modular implications of a graph

G defined on the vertices U= {vy,...,v,} it is possible to construct a graph
G, with exactly the same decomposition taking just those implications which
left part is in the form vvy, vovs, ..., Vy_10, .

As Proposition [I.11] states, permuting absence and presence of all edges
does not change the ways vertices distinguish each other, and therefore, leaves
the same set of modules, thus we give the same interpretation to a graph
and to its complement. Following our algorithm we may reconstruct the
original graph or its complement, for our purpose it is irrelevant since we are
interested on its decomposition and this will be the same in both cases.

Before to explain our algorithm to construct the graph we have the fol-
lowing propositions.

Proposition 2.10. Let Z = Dg(x,y), if we have the module implications
xy = Z we know (x, z) # (y,2) for all z € Z. Also we know, (z,w) = (y,w)
for allw e U\Z

The idea to reconstruct the graph is to take from the set of modular im-
plications a reduced number of implications, we show that those implications
give us enough information about the relations between the all edges of the
graph, and based on this information we reconstruct the graph.

Thus, using the Algorithm [1| we construct a connex graph G’ from G,
whose vertices are all possible edges from the graph G and the edges deter-
mine similarities between the edges on the linked vertices, in this way once
a type of edge is assigned on the graph G,, we may deduce the type for the
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remaining edges. The order of the edges is related to the first two levels of
the SE-tree [36].

Algorithm 1 To construct a connex graph G’ on the set of vertices deter-
mined by the edges of a graph G
Input: Set of modular implications of G.
Output: G’ = (Ug,Eg), with binary labeling on its edges.
Let Ug be an empty set.
Let £ be an empty set.
for all j =2,n do
Add vyv; to Ug
if 2 < j then
Add (v1v,_1,v1v;) to Eg in the following way
if v; € Z, such that v;_;v; = Z then
Label the edge (v1vj_1,v1v;) with 0
else
Label the edge (v1v;_1,v1v;) with 1
end if
for alli=2,7 —1do
Add V;Vj to Z/{g/
Add (v;—1v;,v;v5) to Eg in the following way
if v; € Z, such that v;_1v; = Z then
Label the edge (v;—1v;, v;v;) with 0
else
Label the edge (v;_1v;,v;v;) with 1
end if
end for
end if
end for

For the Algorithm [1], it is possible to determine when two edges are dif-
ferent following the Proposition [2.10} In this way, two given edges, v;v;, and
vjvg, of G, are in different equivalence classes if for the implication v;v; = Z,
v € 4.

The Algorithm [I] constructs a connex graph since given two vertices on
it there is a path that connects them, the Algorithm 2| gives us this path. In
fact, the length of the path that connects the edge vjvy to vy,v, is (I — 1) +
(p—k)+(m—1) where p > k, while if p = k, the length of the path is [l —m)|.
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Algorithm 2 To give the path that connects two vertices v;v;, and vp,v, in
the graph g/ = (UQl,gg/)
Input: Two vertices vjv, € Ug and v,v, € Ug, where £ < p, without
losing generality:.
Output: The set of vertices that conform the path that connects the
vertices vy and v,,v,
Let Path be an empty set
if Kk == p then
if [ < m then
for all : =1 tom do
Add v;v, to Path
end for
else
for all i =m to [ do
Add v;v, to Path
end for
end if
else
for alli=1[to 1 do
Add v;v, to Path
end for
for alli=k+1 to p do
Add vyv; to Path
end for
for all i =2 to m do
Add v;v, to Path
end for
end if
Return Path

Example 2.11. Let us apply the Algorithm 1| on the following set of impli-
cations gotten from the graph of Figure 5:

ab = cd ae = bd be = ac de = a
ac = be bc = de cd=e
ad = b bd = ¢ ce = ad

Following the Algorithm |1 we get the connex graph Ggp = (Ugr,Egk),
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Figure 2.5: Graph of Example 2.11} Initial graph.

where Ugg = {ab, ac, b, ad, bd, cd, ae, be, ce,de}. Let gray lines be the edges
for type 1 and let dotted lines be the edges for type 0.

The possible reconstructed graph are shown in Figure [2.7. As G, is a
graph, we just have connected and disconnected vertices, to reconstruct the
graph let us assign a type of edge to the initial vertex ab.

Thus, assume the edge (a,b) is a solid line, that is a and b are connected.
As we may see in Figure (a,c) and (a,d) are the same type than (a,b),
while (b, c) is not, thus b and c are disconnected, and a is connected with c
and d. We also know that (a,d) is different than (a,e) and (b,d), thus a and
e are disconnected, and also, b and d are disconnected. We know (b,d) and
(c,d) are different, thus, c and d are connected. While, (a,e) is the same type
than (b, e) thus, b and e are disconnected. Also, we have that (b, e) is different
from (c,e) being ¢ and e connected. At the same time (c,e) is different from
(d,e), thus d and e are disconnected. The resulting graph is shown in the left
of Figure[2.7,

If we had started by assuming that the edge (a,b) does not exist, follow-
ing the constraints described in Figure [2.6, we get the graph in the right of

Figure[2.7]

Now, assume we have some modular implications set, to determine if it
describes a graph G, by making an argument similar to the previously one,
we need to be able to construct a connex graph G’. Intuitively, this will
result in having a sequence from one edge to another, that is, we will have a
sequence in the left side of the implications. Following this idea is probably
that these sequence of edges describe a spanning tree Gg defined on the set
of vertices of G.
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Figure 2.6: Graph of Example [2.11; Resulting using Algorithm [1| on the
graph of Figure [2.5]

D () C D
Co( 0‘0

Figure 2.7: Graph of Example [2.11; Reconstructed graph.
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2.3 Closures from clans

Given a 2-structure (Definition is possible to obtain the implications set
that describes it. In this section we describe the procedure that we propose
to obtain them and some found results from these implications.

According to clan definition, let x,y be elements of any clan C, if there is
z such that sees in a different way = and y, that is the edges (z, z) and (z,y)
are in different equivalence classes, so z € C; equivalent to C = zy = z.

Based on it we generate a set of implications from a 2-structure that
we call clan implications, whose left side will be a pair of vertices and their
right side will be conform by those vertices that see them (the left side) in
a different way. If there is not any vertex that may distinguish them, no
implications are generated and they will conform a closed set.

Once we obtained the set of implications it is possible to know the asso-
ciated closure space lattice, finding those sets that involve the elements that
are in the implications.

Formally, given a 2-structure G and a vertex x in it, we denote by &; g(z)
the set of vertices connected with x by edges belonging to the equivalence
class & in G, and define the “distinguishing set” of a pair of vertices x, y, as
follows:

Dg(z,y) = | J(Eig(2) \ Eig() U (Eig ) \ Eng(@)) \ {2, y}

)

This set collects together all the vertices that see one given pair in different
ways. For example, for different 7, j, assume the edge that connects z with
x is in the equivalence class &; and the edge that connects z with y is in
the equivalence class &£;. Thus, z will be in & g(x) \ &g(y) and also in
£:0(y) \ Exg(x).

We construct the set of clan implications as follows:

Definition 2.12. Let G be a 2-structure and let x and y be different vertices
in it, the corresponding clan implication is xy = Dg(z,y). The set of clan
implications for G is conformed by the clan implications corresponding to
every pair of different vertices, for which the right-hand side is nonempty:

Dg(l’,y) 7é 0.

From the definition of clan we can state the following:
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Figure 2.8: Graph of Example [2.14} Initial 2-structure, its closure lattice and
its clan decomposition.
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Proposition 2.13. Let G be a 2-structure and let x and y be different vertices
i it, in the corresponding clan implication vy = Z we have z € Z if and
only if z ¢ {x,y} and z is connected to each of x, y by inequivalent edges.
Therefore, {x,y} is a clan (of size 2) if and only if Z = 0.

Let us see an example of getting the set of clan implications from a graph
and the closure space described by it. In an illustrative way we colored
differently the different equivalence classes.

Example 2.14. From the left of Figure we obtain the following set of
clan tmplications:

ab = ¢ ae = cd be = cd
ac=b bc = a cd = abe
ad = ce bd = ce ce = abd

The pair {d, e} is a size-2 clan and lead to empty right-hand side in its
clan implication. Thus, de is a closed set. In the center of Figure[2.8 we find
the closure space lattice described by the clan implications set and the clan
decomposition tree is in the right oof Figure[2.8

We may extend Theorem [2.4] and Theorem [2.6] to clans in a natural way:

Theorem 2.15. 1. Clans and closures from the graph implications are
the same sets. Implying as well that strong clans and strong closures
are the same sets.
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2. The type of a clan is primitive if and only if its immediate closures
subsets of its corresponding strong closure in the closure lattice are
strong and they are more than two.

Proof. 1. (Closures are clans.) Let X be a closure, and suppose that there
is some y that can distinguish two arbitrary x,xzo € X; one of the clan
implications will be 179 = Y with y € Y # (). As X is a closure, it must
satisfy all the clan implications, and both antecedents are in X, thus y € X.
Hence, no y outside X may distinguish two elements inside X, which is the
definition of clan.

1. (Clans are closures.) Let X be a clan. It suffices to show that it
satisfies all the clan implications: let 129 = Y be one of them. If either
x1 ¢ X or xo ¢ X, then X satisfies the implication by failing the antecedent.
If 21,25 € X then, since X is a clan, no item outside X can distinguish them;
but, according to Proposition[2.13] Y is the set of items that distinguish them,
hence Y C X and X satisfies the clan implication.

2.(=) Let C be a clan by the first part of this theorem, we may state
that its corresponding closure in the closure lattice is also C, let us suppose
its coarsest quotient graph collapses the maximal strong clans C;. Let C be a
primitive clan, that is its corresponding coarsest quotient graph is primitive;
we have to prove that there is not any closed subset F such that C; C F C C.
Assume there is such and F.

F must be a union of C; since, by the premise, C; are strong closures
so F does not overlap any of them. Also, F includes at least two of them.
By definition of primitive, there must be at least one other C; distinguishing
them; we can pick y ¢ F in the distinguishing clan and z; and x5 in the
distinguished ones inside F: then F fails the clan implication 25, = Y and
is not a closure.

2.(«=) We have to prove that if the immediate closures C;, with i € I for
some index set I, of a strong closure C are strong closures and more than
two, then C is a primitive clan. Let J C I be the index set of a proper
subset of the clans C;, consisting of at least two of them (we can guarantee
this possibility by the premise).

Suppose that all the remaining C;’s, i ¢ J, cannot distinguish between
them, so J i ;C; must be a closure; this would contradict the fact that all
the C;’s are immediate closed subsets of C. Thus, for arbitrary J C I, there
must be at least one C;, i ¢ J, that may distinguish between some of them
so that no such (J;c;C; is a clan. Subsets that are not in the form (J;c;C;
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are not clans either because each C; being a strong clan means that no clan

overlaps any of them. Thus, M is a primitive clan.
]

The difference between Theorem 2.6l and Theorem 2.15]is the number of
strong nodes that are required. When we work with more than two equiva-
lence classes is possible to have a primitive node with just three internal nodes
as we can see in the primitive clan of Figure , conformed by {a, b, c}: the
possible unions of two of their internal items are not closed sets because we
will have the clan implication that involves the third one in the right side.

Also the Proposition is extended to clans in a natural way:

Proposition 2.16. For a complete clan C, if one of the elements C,, in its
coarsest quotient is a complete module too, the edges in the coarsest quotient
graph of one of them are in the equivalence class &; while the edges in the
other coarsest quotient graph are in the equivalence class &;, being &; # E;.

Proof. Assume that it is not true, that is, both the edges of coarsest quotient
graph of C and the edges of coarsest quotient graph of C, are in the same
equivalence class. Thus, for arbitrary C’ in the coarsest quotient of C,,, C' may
not distinguish the remaining elements in the coarsest quotient of C,, from
the remaining elements in the coarsest quotient of C, making C\ C, UC,, \ C’
a clan but it is not possible since the coarsest quotient contains the maximal
strong clans. O]

2.4 Decomposition tree and closure lattice

It is possible to construct the clan decomposition tree directly from the clo-
sure space defined by the implications obtained from the initial 2-structure,
and viceversa.

If we take from the closure space just the strong closures, they would be
the same sets than the strong clans by Theorem and the types of the
clans are also obtained using Theorem [2.15 To give the internal 2-structures
of each clan is a more complicated task since we do not have information that
allows us to determine the equivalence class for every edge, unless we were
working just with two equivalence classes. Yet, it is possible to determine
the type of each strong clan.

Thus, the Algorithm |3 describes the procedure to get the clan decompo-
sition tree from the closure lattice.
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Algorithm 3 Algorithm to obtain the clan decomposition tree from a closure
space lattice.

1: Input: Closure space lattice S of the closure implications described by

the 2-structure G.

2: Output: Strong clan decomposition tree of the 2-structure G.

3: Let Child(X) be the set of immediate closures subsets of X.

4: for all X closure in S do

5. if X is a strong closure then

6: X is a strong clan in the decomposition tree.

7: if C'hild(X) are strong closures and more than two then
8: The clan X is primitive.

9: The coarsest quotient of X is C'hild(X).

10: else

11: The clan X is complete.

12: The coarsest quotient of X is C'hild(Child(X)).

13: end if

14:  end if

15: end for

Figure 2.9: Graph of Examples and Clan decomposition of a 2-
structure and its closure space lattice.
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Figure 2.10: Graph of Example 2.17} Clan decomposition of a 2-structure
from the closure space lattice of Figure [2.9]

Example 2.17. Let us apply the Algorithm [3 to the closure space lattice in
right of Figure [2.9. We have abcde as strong closure, thus abede is a strong
clan in the decomposition tree. As Child(abede) = {abd,d,e} and are all
of them strong closures and more than two, abcde is a primitive clan and
its coarsest quotient is conform by {abd,d,e}. Then, we have abd as strong
closure, thus abc is a strong clan in the decomposition tree. As C'hild(abc) =
{ac,ab,bc} are not strong closures, abc is a complete clan and its coarsest
quotient is conform by a,c,b (Child(Child(abc))), which in turn are strong
closure thus strong clans too. The result is shown in Figure[2.10

Again by the Theorem if we take the strong clans in the decompo-
sition, they would be the same sets than the strong closures in the lattice.
And based on the type of each strong clan and its maximal strong clans in its
coarsest quotient we may get all the closures in the lattice. The Algorithm
describes this procedure.

Example 2.18. Let us apply the Algorithm[f to the clan decomposition tree
in left of Figure [2.9. We have the strong clan abcde, thus it is a strong
closure in the closure lattice, since abcde is a primitive clan its children in
the closure lattice are the elements in the coarsest quotient of abcde, those
are abe, d and e. Then, we have abc as strong clan, being abc a strong closure
in the closure lattice. As abc is a complete clan, the children of abc in the
closure lattice will be the possible pair combinations of the elements in the
coarsest quotient of abe (line 8 on the Algorithm . The coarsest quotient



49

Algorithm 4 Algorithm to obtain the closure space lattice from a clan
decomposition tree.

1: Input: Strong clan decomposition tree of the 2-structure G.

2: Output: Closure space lattice S of the closure implications set described

by the 2-structure G .

3: for all X strong clan in the decomposition tree do

4: X is a strong closure in the closure space lattice.

5. if X is primitive or its coarsest quotient has two elements then

6: The child of X in the closure space lattice are those elements in the
coarsest quotient of X.

7. else

8: Add the power set of the coarsest quotient of X to the children of
X in the closure space lattice.

9: for all X; in the coarsest quotient of X do

10: Add X; to the children of its corresponding sets in the power set.

11: end for

12:  end if

13: end for

of abe is {a, b, c}, thus the children of abc in the closure lattice will be ab, ac
and be. Also (following the line 11) we add a as child of ab and ac, we add b
as child of ab and bc and we add ¢ as child of ac and bc. Getting as a result
the closure lattice of the right in Figure[2.9.



Chapter 3

Algorithms and
implementations

3.1 Introduction

This chapter is focused on discussing our decomposition algorithm that we
explain in Section [3.2] It involves the implementation of complementary al-
gorithms like pack and split functions, and the use of the Union-Find data
structurd'} we also give the theorems that support our algorithms and, in
order to illustrate each step of the main algorithm, we show a detailed ex-
ample.

Of course, our algorithm is not the first decomposition algorithm devel-
oped, in Section we comment on a couple of related algorithms, we use
some examples to see in a general way the differences with our algorithm.

Finally, in Section [3.4, we will describe the implementation of a data
analysis tool based on our approach, that is divided into three phases: the
construction of the graph from the dataset, the application of the 2-structure
decomposition method and the visualization of the strong clan decomposition
tree.

! https://en.wikipedia.org/wiki/Disjoint-set_data_structure

20
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3.2 Decomposition algorithm

Over the years several algorithms have been developed to perform modular
decomposition and clan decomposition methods. Our algorithm is an incre-
mental algorithm, that means the vertices of the 2-structure are added one
by one, and every time a vertex is added we get a strong clan decomposition
tree. Therefore, we describe our algorithm by focusing on the effect of adding
one more vertex to an existing clan decomposition tree, starting at the root.

By comparing the root clan with the new vertex, we may classify the
nodes in the coarsest quotient of the root clan into three lists: the list of
nodes “visible with the color of the clanﬂ’, the list of “other visible nodes”
and the list of the so-called “nonvisible nodes”. More precisely:

e The list of nodes visible as the color of the clan will contain those nodes
whose edges to the new vertex are in the same equivalence class than
the internal edges of the clan; it can be nonempty only when the root
clan is complete.

e The list of visible nodes will contain those nodes in the coarsest quotient
of the clan for which an edge can be determined from the new vertex,
that is: let Y; be one of the strong clans in the coarsest quotient of the
current clan and let x be the new vertex, if all the edges from x to the
elements in the coarsest quotient of Y; are in the same equivalence class
then we can define an edge from x to Y;. To determine the existence
of this edge we use the Union-Find structure, it is explained in detail
in the Subsection [3.2.11

e Conversely, the list of nonvisible nodes will contain all those nodes in
the coarsest quotient of the clan whose internal elements are seen in
different ways by the new vertex, thus we may not assign a single edge
color from the new vertex to these nodes; when we are in this case, our
algorithm uses the split function from the Algorithm [6] it is explained
in detail in the Subsection 3.2.3]

2We call color of the clan the equivalence class of the edges in a complete clan.
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3.2.1 Union-Find structure

We use the Union-Find data structurd’] to get the defined edges between
vertices, between clans and between vertices and clans. In fact, to implement
these functions we rely directly on the pseudocode that appears in [10].

The edges between vertices are initialized according to the original 2-
structure. Let x and y be two vertices in the graph, the function Find
returns the equivalence class for the edge that connects them. Thus edges
in the same equivalence class will be return the same value for the function
Find.

In this way, when a new clan is obtained, the edges to it from the ver-
tices not involved in the clan (if they exist) are generated using the MakeSet
function and using the Union function those edges are added to their corre-
sponding equivalence class determined by the Find function.

So, to know if an edge is defined it is enough to call Find function with
the edge as parameter, which is really useful.

Complexity:

We implement the Union-Find structure using the union-by-rank heuristic
with a running time of O(mlogn), where m is the number of MakeSet, Union
and Find operations and n is the number of MakeSet operations [10].

3.2.2 Pack function

The pack function is executed in order to determine the edges to a clan. It is
applied once a clan is gotten or a new element is added to an existing clan.
The purpose of this is to help us to obtain in a linear process the lists of
“visible with the color of the clan nodes”, the list of “other visible nodes”
and the list of the so-called “nonvisible nodes”. We use the Algorithm [5| for
this function.

Complexity:

Let n be the total number of vertices of the 2-structure G, let k£ be the
total number of vertices in the clan C' and let |CQ¢| be the total number of
elements in the coarsest quotient of C', the algorithm takes time (n — k) x

3 https://en.wikipedia.org/wiki/Disjoint-set_data_structure


https://en.wikipedia.org/wiki/Disjoint-set_data_structure
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|CQc|. That is because the step for in line 5 takes |Vg_¢| times, as Vi is
the list of vertices in G not in C' its length is n — k thus the for is executed
n — k times, and the step while in line 10 takes at most |CQ¢| times.

The worst case for the coarsest quotient is to have just single items, that
is |CQc¢| = k, in this way, the algorithm takes (n — k) x k = nk — k? times,
where k£ < n.

Algorithm 5 Algorithm to pack a clan of a 2-structure
1: Input: A 2-structure G and a clan C on it.
2: Output: The edges from/to the clan C using the Union-Find data struc-
ture.

3: Let C'Q¢ be the list of elements into the coarsest quotient of C.
4: Let Vg_c be the list of vertices in G not in C.
5. for all v in V5_¢ do

6: InitialEdge = v, CQ¢|[0]

7. InitialClass = Find(InitialEdge)

8:  SameClass = True

9: j=1

10:  while SameClass and j < len(CQ¢) do

11: if InitialClass == Find(v, CQ¢lj]) then
12: j+=1

13: else

14: SameClass = False

15: end if

16:  end while
17:  if SameClass then

18: NewEdgeTo = v, C

19: NewEdgeFrom = C|v

20: MakeSet(NewEdgeTo)

21: MakeSet(NewEdgeFrom)

22: Union(InitialEdge,NewEdgeTo)
23: Union(InitialEdge,NewEdgeFrom)
24:  end if

25: end for
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3.2.3 Split function

Assume the vertex x sees in a different way some of the internal nodes in the
coarsest quotient of some clan Y, thus we have to split Y. Let Yy, Y1,...,Y,
be the elements in the coarsest quotient of Y, the result to split Y with
respect to x are those Y; that have an edge defined from z. If there is Y; not
seen by x, Y; is split with respect to x and the result is added to the split of
Y. This process is applied until we have only defined edges. The algorithm
to split a node is the Algorithm [6], it is based on the Theorem [3.4]

Complexity:

The split function makes a recursive call when any of the elements in the
corresponding coarsest quotient is not distinguishable, does not matter the
clan type (lines 9 and 18 of Algorithm @ Thus the worst case is to do the
split of all clans in the decomposition tree, unless all those elements are leaves.
The clan decomposition tree with most clans is that with just complete clans,
whose coarsest quotients have two elements: assume, one of the elements in
all the coarsest quotient is a leaf, in this way we get the decomposition tree
as deeply as possible, having a total of n — 1 clans for a 2-structure with n
vertices, as the last clan have only leaves, the maximum clans where we can
apply the split function is n — 2; while, if both of the elements in all the
coarsest quotient are clans, for a 2-structure with n vertices we will apply
the split function in a total of S-¥ 127 + (n — 2k) times, where k = [log, n.
Assume n — 2 > YF71 20 4 (n — 2k) where k = [logy n:

k—1
0>2+22i—2k

=1

k—1
0>1+22i—2k

=0
0>1+2F—1-2k

0> 2~ — 2k,
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a contradiction.

Thus, for a 2-structure with n vertices the split function takes at most

S 20 4 (n — 2k) where k = [log, n|, thus:

k-1

k—1
d 24 (n—2k) <1+ 2+ (n—2k)
=1

i=1

k—1 k—1
D24 (n—2k) <> 2+ (n—2k)
=1

1=0

ZQZ +(n—2k) <28 —14n—2k
221 +(n—2k)<n—14n—2k

221 +(n—2k) <2n—2k—1

Thus, the split function runs in time O(n).
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Algorithm 6 Algorithm to split a clan from a node

1:
2:
3:
4:
5:

10:
11:
12:
13:
14:
15:
16:
17:
18:

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

Input: A clan C' and a node n.
Output: C,, the set of maximal strong clans below C' visible from n.
Let (', be an empty set.
if C is primitive then
for all M in the coarsest quotient of C' do
if M is visible from n then
Add M to the maximal strong clans in C,.
else
Split M from n (Algorithm [6| with M and n as parameters), add
each maximal strong clan in the result to the set of maximal strong
clans in C),.
end if
end for
else
Let C; be an empty set for each different equivalence class i (color).
for all M in the coarsest quotient of C' do
if M is visible from n then
Add M to Cj, being ¢ the way in which n sees M.
else
Split M from n (Algorithm [6| with M and n as parameters), add
each maximal strong clan in the result to the set of maximal strong
clans in C),.
end if
end for
for all C; do
if C; has more than one maximal strong clan then
Add C; (as a single clan) to the set of maximal strong clans in C,.
else
Add the unique M in Cj to the set of maximal strong clans in C,.
end if
end for
end if
Return C,.

Let us see a couple of examples of the application of the Algorithm [6]

Example 3.1. Assume we add the vertex n to the decomposition shown in
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Figure having n connected by solid lines with b, ¢, h, j and [, and by
broken lines by the remaining vertices into the decomposition. Thus, the maz-
imal strong clans {b,c,d,e} and {f, g, h,{i, j, 1, k}} into the coarsest quotient
of the root clan are non visibles from n.

As the root clan is complete (Line 12, Algorithm @ the elements in its
coarsest quotient graph seen in the same way by n will conform a new maxi-
mal strong clan and those elements that are not seen by n are split. In this
case a and b will conform a new mazximal strong clan since they are con-
nected to m by broken lines, while the maximal strong clans {b,c,d,e} and
{f,g9,h,{i,7,k,1}} are split. As the clan {b,c,d,e} is a complete clan all
the elements in its coarsest quotient seen in the same way by n will con-
form new strong clans, as result we get {b,c} and {d,e} maximal strong
clans that are added to the coarsest quotient of the root clan. For the clan
{f,q9,h,{i,7,k,1}}, again a complete clan, we get {f, g} and {h} as maxi-
mal strong clans; while the clan {i, j, k,l} is non visible. As {i,j, k,l} is a
complete clan we get as new mazimal strong clans {i,k} and {j,1} as their
elements are seen in the same way by n.

In this way, as a result of adding n we get as maximal strong clans
{{a,m}, {b,c}, {d, e}, {f, g}, h,{i,k},{J,1}}, the final decomposition is shown
in Figure|3.2

3.2.4 Clan decomposition algorithm

As an initial case to our algorithm, we have two cases. One of them is to
add the new vertex to an empty tree, in this case the vertex is added to a
complete clan with just the vertex in its coarsest quotient. The other case
is to add the new vertex to a tree whose root has just one element x, in
this case the new vertex is added to a complete clan whose coarsest quotient
consists of the new vertex and x.

We say that X is a subclan of Y, or alternatively Y is a superior clan of
X, if X is a maximal strong clan and thus belongs to the coarsest quotient
of Y.

Assume we have a strong clan tree with at least two vertices, and a new
node to add to it. We have to look for its position into the tree, starting
from the root, going over the strong clan tree as deep as necessary until
find its place: a clan is represented by its coarsest quotient graph, so each
node there corresponds to a subtree decomposing the corresponding maximal
strong clan; then we may walk towards the leaves recursively. We will refer
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Figure 3.2: Graph of Example |3.1} Resulting decomposition.
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to the clan in which we are as current clan.
If we are not in any of the initial cases we follow the next steps:

1. If the current clan is a complete clan, the new vertex can:

(a)

Become one member of the clan, preserving the type of the clan:
The new node sees all the internal nodes of the current clan with
the same color as the color of the clan, the new node is added as a
maximal strong trivial clan into the coarsest quotient of the current
clan and the type of clan continues being complete. No recursive
call is made. (Lines 10-11 in the Algorithm

Generate a subclan: The new node sees at least one but not all the
internal nodes with the same color as the color of the clan, those
elements that are not seen by the color of the clan are removed
from the coarsest quotient of the current clan and moved to the
coarsest quotient of a new complete clan, sibling to the nodes seen
by the color of the clan. Thus, this new complete clan and the
nodes seen by the color of the clan will be in the coarsest quotient
of the current clan. The new vertex is recursively added to the new
clan. (Lines 12-20 in the Algorithm

Generate a superior clan: The internal nodes are in the list of visible
nodes and are seen by the same color but different to the color of the
clan. Then, the current clan and the new vertex will be maximal
strong clans into the coarsest quotient of a superior complete clan.
No recursive call is made. (Lines 21-23 in the Algorithm

Become one member of the clan, changing the type of the clan to
primitive: When not all the nodes in the clan are seen by the same
color and none of them are seen by the color of the clan, we add
the new vertex to the coarsest quotient of the current clan and:

(i) The nodes in the list of visible nodes are grouped into clans
according how they are seen form the new vertex and,

(ii)) The nodes in the list of nonvisible are split. This may re-
define the maximal strong clans: if there are maximal strong
complete clans in the coarsest quotient of the current clan
whose coarsest quotient elements are seen in the same way
from the new vertex, since they are not distinguishable from
any node.
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(Lines 24-30 in the Algorithm
2. If the current clan is a primitive clan, the new vertex can:

(a) Enter to the clan of one of the nodes inside of the coarsest quotient
of the current clan: If the new vertex and one of the internal nodes
see the remaining nodes in the same way. (Lines 32-33 in the
Algorithm

(b) Generate a superior clan: All of the internal nodes are in the list of
visible nodes and are seen by the same color. Then, the current clan

and the new vertex will be in the coarsest quotient of a superior
complete clan. (Lines 34-37 in the Algorithm

(¢) Become one member of the coarsest quotient of the current clan,
preserving the type of the clan: When not all the nodes in the clan
are seen by the same color. Thus, the new vertex is added to the
coarsest quotient of the current clan and the nodes in the list of
nonvisible are split; the elements of the split node may not gener-
ate any new clan since there exists nodes that already distinguish
them.(Lines 38-44 in the Algorithm

The general algorithm to process a graph is Algorithm It uses the
Algorithm [7] each time a new vertex is added.

In turn the Algorithm [7] uses the Algorithm [f] to split a node, the Algo-
rithm |5 to determine the existing edges from the new clan to the remaining
vertices and the Algorithm [5| to pack the resulting clan and when a new
internal clan is obtained.

Complexity of Algorithm [7}

Let |CQc¢| be the total number of elements in the coarsest quotient of C' and
let |L,| be the length of the list L,, the for on line 20 takes |CQc| — |Ly,|
times. The for involves for the copy of the coarsest quotient elements on
lines 28 and 41 takes |CQ¢| times each one. While the for in lines 32 and 45
takes |L,| plus the time of the split function, which is linear on the number
of vertices involve.

Being all of them independent cases, thus the worst case is to be in the
for that involves the split function and to it the worst cases is that any of
the element in the coarsest quotient of the current clan can be distinguished,
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Algorithm 7 Algorithm to get the strong clan decomposition tree when a
vertex is added to a specific clan.

1: Input: A vertex v to be added, a clan C and the 2-structure induced by the vertices on C plus v.
2: Output: Strong clan decomposition tree.
3: Let Ly be a list of nonvisible maximal strong clans in the coarsest quotient of C' from v,
4: Let L, be a list of visible maximal strong clans in the coarsest quotient of C from v,
5: Let L. be a list of visible, as the color of the clan, maximal strong clans in the coarsest quotient of
C from v.
6: if C is empty or its coarsest quotient has just one element then
7 Add v to the coarsest quotient of C.
8: Assign the type of C' as complete.
9: else if the type of C is complete then
10: if L. is equal to the maximal strong clans in the coarsest quotient of C' then
11: Add v to the coarsest quotient of C.
12: else if |Lc| > 1 then
13: Let Cauz be an auxiliary complete clan.
14: for all maximal strong clans M not in L. do
15: Remove M from the coarsest quotient of C.
16: Add M to the coarsest quotient of Cgqyz-
17: end for
18: Add Cguz to the coarsest quotient of C.
19: Add v to the clan Cgyg. (Algorithm E with v, Cauz and the respective 2-structure as param-
eters).
20: Pack the coarsest quotient of Cyuz. (Algorithm
21: else if L, is equal to the maximal strong clans in the coarsest quotient of C' and all of them are
seen in the same way from v then
22: Copy the elements to the coarsest quotient of C to the auxiliary complete clan Cgqyq, and
remove them from C'.
23: Add Cyue and v to the coarsest quotient of C.
24: else
25: Change the type of the clan C' to primitive.
26: for all maximal strong clans M in L,, do
27: Remove the M from the coarsest quotient of C.
28: Split M from v (Algorithm@with M and v as parameters), add each maximal strong clan
in the result to the coarsest quotient of C.
29: end for
30: end if
31: else
32: if there is one maximal strong clan M in the coarsest quotient of C' that sees the remaining
maximal strong clans in the same way than v does then
33: Add v to the clan M (Algorithm with v, M and the respective 2-structure as parameters).
34: else if L, is equal to the maximal strong clans in the coarsest quotient of C' and all of them are
seen in the same way from v then
35: Copy the elements to the coarsest quotient of C' to the auxiliary primitive clan Cgyz, and
remove them from C.
36: Change the type of the clan C to complete.
37: Add Caue and v to the coarsest quotient of C.
38: else
39: Add v to the coarsest quotient of C
40: for all maximal strong clans M in L, do
41: Remove the M from the coarsest quotient of C.
42: Split M from v (Algorithm @ with M and v as parameters), add each maximal strong clan
in the result to the coarsest quotient of C.
43: end for
44: end if
45: end if

46: Pack C (Algorithm [5] with G and C as parameters).
47: Return C
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in that case |L,| = |CQ¢|. The maximum size of this coarsest quotient is
|CQc| = % since each clan in it must have at least two vertices. As each
element into the coarsest quotient has two vertices, the split function will
have 2 as running time, having all the process n as running time.

In this way the complexity of the Algorithm [7]is linear on the number of

vertices.

Algorithm 8 Algorithm to obtain a strong clan decomposition tree from a

2-structure
1: Input: A 2-structure.

Output: Strong clan decomposition tree.

Let current strong clan decomposition tree be an empty clan.

Let U be the set of vertices in the 2-structure.

for all v € U do

Current strong clan = root clan of the current strong clan decomposi-
tion tree.

7. Current strong clan decomposition tree = Apply the Algorithm [7] with
v, the current strong clan and the respective 2-structure induced by
them as parameters.

8: end for

Complexity of Algorithm [8}

Let n be the total number of vertices of a 2-structure, the run time of the
Algorithm [§is """, ¢ since the Algorithm [7]is linear. Thus, the Algorithm
runs in time O(n?).

3.2.5 Algorithms|[6], [7]and [8} correctness and examples

Let C C U be a clan to which we attempt at adding x € U. We assume
|IC| > 2 as the base cases are directly correct by definition. Let M be the
coarsest quotient of C, which can be either primitive or complete; it consists
of maximal strong clans M = {C;|i € I} for some index set I, with C; C U,
each C; is handled through its own coarsest quotient M; like C is handled
through M. We allow for the slight abuse of notation (C;,C;) € &, to refer
to all edges with one endpoint within C; and another within C; being in &,.
Since they are clans, such p is well-defined.
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If M is a complete clan, then pa is the “color of the clan”, that is, the
index of the equivalence class of its edges, &,,,; we often omit the subindex
M when it is clear from the context. We denote J C I the (indices of)
maximal strong clans in it that are seen from x with color pr: J = {i €
I|Vz € Ci(x,z) € E,}. This is the formalization of the “list of nodes visible
with the color of the clan”.

Likewise, C; being visible from z is formalized as J¢Vz € C;((z,z) € &,)
and its negation, which says that adding = requires to split C;, is Vgdz €
Mi((x,2) ¢ &).

Since maximal strong clans in M are proper subclans of C, |I| > 2.
Additionally, it is known that if M is primitive then every proper subclan
C' C C is included in one of the maximal strong subclans: 3i(C' C C;).

Definition 3.2. Given a clan C C U, a proper subclan of C' C C, and a
vertex x ¢ C, we say that x is like C' in C if x sees the rest of C in the same
way as C': for ally € C', and for all z € (C\ C'), the edges (z,2) and (y, z)
are equivalent.

The following theorems are focused on identifying the components of M’,
the desired coarsest quotient of C U {z}, for the cases (1)(b), (1)(d), (2)(c)
and (2)(a) of the Algorithm [7] The correctness of the rest of the cases is
easier to argument.

For the case (1)(b) above, we have the following theorem.

Theorem 3.3. If M is complete and O # J # I, then M’ = {C;|5 €
JPU{{z} Ul G

Proof. Items inside each C; with j € J, which is a clan of C, are not distin-
guishable from either other C;’s or x; thus, they are clans of C U {z}. By
the same token, so is {{z} U4, C;}. Assume they are not strong clans.
Overlaps of other clans within C with the C;’s cannot exist because M is the
coarsest quotient of C. Hence, a hypothetical overlapping clan must include
x and some y € C; for some j € J, but not all z € Uj¢JCj. But, then,
(y,2) € & and (z,z) ¢ &, so it is not a clan. Thus, they are strong clans.
Larger clans cannot exist either as, then, ignoring x would lead to larger
clans already in M. m

In the next theorem, the complete case corresponds to (1)(d) above and
the primitive case is (2)(c). The sequence of maximal strong clans corre-
sponds to the successive recursive calls of Algorithm [6]
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Theorem 3.4. If M s primitive and x is not like any C;, or if M is complete
with J = 0, and besides, in either case, Vq3z € C(x,2) ¢ &,, then C' € M’
if and only if C' = {z} or there is a sequence C =Cy, > C; D ---DC, D,
where:

1. each C{,, is a mazimal strong clan in the coarsest quotient of C; for
i <n (holds vacuously if n =0),

2. x does not split C’,
3. x splits each C; for i < n, and either

(a) the coarsest quotient of C!, is primitive and C' is one of its com-
ponents or

(b) the coarsest quotient of C,, is complete and there is q such that C’
is the union of all those components of the coarsest quotient of C),
that are connected to x with edges of class &,.

Note that, for some such C’, n can turn out to be 0.

Proof. We study first the case of {z}. Let C' be the maximal strong clan
C' € M’ that has x € C'. Assume [C'| > 2.

In case M is complete, say with color p, and with J = (), use |C'| > 2 to
fix z € C' such that z # x, and let C;, € M such that z € C;,. Since M| > 2,
there is at least some other C;, € M, i, # i.; and some y € C;, must have
(z,y) ¢ &, as, otherwise, i, € J. Then, y sees differently = and z because
(y,2) € &, the color of M, which contradicts the fact that C’ is a clan.

Now, in case M is primitive, since |C’| > 2, the set C' \ {z} is nonempty
and, hence, also a clan in C: there is i such that C’' \ {z} C C;, and the
maximality of C' implies equality: C'\ {z} = C;. Then, the other maximal
strong clans cannot distinguish C; from x as, otherwise, C’ is not a clan, and
therefore x is like C;, in contradiction with the hypothesis.

Thus, in both cases, |C'| = 1 and necessarily C' = {z}. That is, the single
clan in M’ containing x is the singleton {x}.

We move on to the case where x ¢ C’, which implies C’ C C. It has to be
a proper subset, C' C C, because C in full is not a clan in C U {x}: otherwise
we would contradict the hypothesis that Vg3z € C(z,2) ¢ &, (equivalently,
x splits C).

Assume first ' € M’. Together with {z} € M’ that we have already
argued, this implies that there is ¢ such that Vz € C'((z, 2) € &,). Fix that q.
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Also, C’ must be a clan in C as, otherwise, it cannot be a clan in the larger
set C U {z} and, by the same reason, C’ is not split by z.

We construct the claimed sequence inductively. The basis is, of course,
Cy, = C. Note that we just argued that z splits it.

Suppose the construction has proceeded up to some C. O C' where x
splits C!, the inclusion being proper because = does not split C'. The coarsest
quotient of C; can be either primitive or complete.

If the coarsest quotient of C; is primitive, then there is C;; in the coarsest
quotient of C; such that C;,;, 2 C’. We check whether all the edges from x
to C;,, are equivalent. If so, then C;,, is a strong clan in C U {x} and, by
maximality of C’, it must be C;,; = C’, so that C’ is one of the components of
the coarsest quotient of C; and the construction stops with n = i. Otherwise,
x splits C;,, and the construction has proceeded one further step.

Alternatively, if the coarsest quotient of C! is complete, we consider its
decomposition {C}|j € I'} for some index set I'. By the properties of com-
plete clans, C" being a clan in C is either a proper subset of some CJ, or a
union of one or more of them (but not all since C" C C/ properly). In the
latter case, we have the claimed statement by finishing the construction with
n = ¢ and letting ¢ be the color of the edges from C’ to x; maximality of C’
implies that all the components having that edge color in the connection to
x are included in C'.

Finally, in the former case, C' C CJ for j € I, note that if C} were not split
by x, C] being a clan of C, then it would be a clan in C U {z}, contradicting
the maximality of C'. Thus, C} must be split by x and the construction goes
on, taking this C7 as Cj,,.

The construction cannot run forever because C is finite.

Conversely, we must prove that every set C’ for which a chain as given
exists is in M": we have that C = C) D C{ D --- D C, D (' (each C! a
maximal strong clan in the previous one, each split by x, but not C’) and
that C’ is either one of the components of a primitive coarsest quotient of C,,,
or a union of one or more components of a complete coarsest quotient of C,,,
namely, those that see z with color g.

We need to see that C' is a clan (in CU{z}), strong, and maximal. When
the coarsest quotient of C, is primitive with C’ one of its components, the
chain of maximal strong clans keeps C’ a strong clan all the way up; besides,
these are the only strong clans that can contain C’. Additionally, C is also
maximal because x splits all the other clans along the way, so no superset of
C is a strong clan of C U {z}.
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When the coarsest quotient of C,, is complete, C’ is a union of components
in that coarsest quotient; therefore, it is a clan in C. Also, x does not split
C’ either because all those components are connected to x by edges of color
¢, so C'is a clan in C U {z}.

To see that it is a strong clan, observe that a hypothetical clan including
part of C’ plus some proper part of another component of C,, would overlap
that component, which cannot be the case because all these components are
strong; and cannot include any other component as a whole, because all
those connected by color g were already taken in for C’ so any other one is
distinguished from C’ by x. Additionally, if a hypothetical clan overlaps C by
including vertices from outside C,, then it would overlap C,, which cannot
be the case either as C,, is a strong clan.

The argument for maximality is similar: now, the hypothetical clan in-
cludes all of C’ instead of a part of it, plus additional vertices, and we argue
like before: if these vertices come from C,,, either they are a proper subset of
another component, and then that component would not be strong, or they
include totally other components, and then x distinguishes them and is not
a clan; and if they come from outside C,,, then they would overlap C,, which
cannot be the case; that is because not all the components of C,, are taken
into C’ since we know C’ C C], properly and the components left outside C’
are distinguished from C’ by z. m

Regarding case (2)(a) above, the fact that needs specific analysis is the
reason why one subclan to recurse on is unambiguously identified and will
lead to a correct outcome.

Theorem 3.5. Let M be a primitive coarsest quotient of a clan C and let
x ¢ C. Then there exists at most one maximal strong subclan C; € M such
that x is like C; in C. If there exists one such C;, then C; U {z} is a mazximal
strong subclan of C U{z}.

Proof. Consider C; € M and C; € M with 7 # j, and suppose z is like C;.
Since M is primitive, there is a third clan C; € M that distinguishes C;
from C;. As x is like C;, the edges connecting x to Cj, are equivalent to those
connecting C; to Ci, hence they are not equivalent to those connecting C; to
Ci; this implies that « is not like C;.

If such C; is available, let C' = C; U {z}: by the choice of 4, it is a clan; it
must be a strong clan because, as just argued, x cannot form a clan with any
other C; and no clan of C can overlap C;, which was already strong. Likewise,
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any proper superset of C' becomes a proper superset of C; once x is removed,
and cannot be a clan due to the maximality of C;. O

Figure 3.3: Example: Graph to apply the decomposition Algorithm [7]

As an example of how the algorithms work, we apply them on the graph
of Figure [3.3]

At the begin we add the vertex a to an empty clan decomposition tree,
getting a tree with just one singleton clan. In the next step we add the
vertex b to it, having as a result a complete clan with two maximal strong
clans in its coarsest quotient. Both steps are initial cases, they are shown in

Figure [3.4]

a /
/
L]

Figure 3.4: Initial cases from Algorithm

When we add ¢ to this clan, we are in the case 1.(b) since a is seen from
¢ by the color of the clan but b is not. Thus, the maximal strong clans that
are not seen from the color of the clan are removed to another clan and c is
added to it, in this case we add c to a complete clan with just b in its coarsest
quotient (the initial case). All the process is shown in Figure
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AR

Figure 3.5: Applying 1.(b) from Algorithm

Now, we have in the root a complete clan and the vertex d is added to
it. We find d may not see one of the maximal strong clans in the coarsest
quotient of the root, the case 1.(d), center of Figure . Thus, the type of
the clan is changed to primitive and the maximal strong clans that are seen
from d in the same way will conform a new coarsest quotient while those
nodes that are not seen from d are split; in this case we do not have any new
coarsest quotient and the maximal strong clan conform by b and c is split,
getting as result the decomposition tree shown in the right of Figure |3.6

d

J
G
CO-CD

Figure 3.6: Applying 1.(d) from Algorithm

In the next step we add the vertex e to a primitive clan root, left of
Figure 3.7 We find that there is one maximal strong clan b in its coarsest
quotient that sees all the remaining maximal strong clans in the same way
than the vertex to be added, the case 2.(a), we can see it in the center of Fig-
ure (3.7} Thus, the new vertex is added to it, the resulting clan decomposition
tree is shown in the right of Figure [3.7]
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Figure 3.7: Applying 2.(a) from Algorithm m

When we add f to the primitive clan on the root of the current decom-
position tree, left of Figure [3.8] we find f can not see one of the maximal
strong clans, the clan conform by b and e, as we have a primitive clan we are
in case 2.(c), and the elements of the clan are split, right of Figure .
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Figure 3.8: Applying 2.(c) from Algorithm

In the next step, we add g to the primitive root of this decomposition
tree, and we find that g sees all of the maximal strong clans in the coarsest
quotient of the root clan in the same way, case 2.(b), center of Figure .
Thus, this root clan and the new vertex will be in the coarsest quotient of a
new complete clan, right of Figure [3.9
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Figure 3.9: Applying 2.(b) from Algorithm

When we add h to the complete clan in the root of the current decom-
position tree, left of Figure [3.10, we find that h sees in the same way than
the color of the clan to all the maximal strong clans in the coarsest quotient
of the root clan, the case 1.(a), center of Figure m Thus, A is added as
another maximal strong clan to the coarsest quotient of the complete root
clan, right of Figure [3.10]

Finally, to add ¢ produces a superior clan, since ¢ sees in the same way all
the maximal strong clans of the current complete root clan but different than
the color of the clan, the case 1.(¢), center of Figure . Thus, this root clan
and the new vertex will be in the coarsest quotient of a new complete clan,
the resulting clan decomposition tree is shown in the right of Figure [3.11}

As an example to detail the use of the split function, we have the following
case.

Example 3.6. Assume we add n to the decomposition shown in the left of
Figure[3.19, such that n is connected by solid lines just with b, ¢, h, j and l.

Following the algorithm we will give the maximal strong clans in the coars-
est quotient of the current vertices plus the new vertex n.

Since the coarsest quotient of the root clan is complete those nodes seen
in the same way by n will conform a maximal strong clan, in this case we
get the clan {a,m}. And those nodes that are not visible from n are split,
thus we split the clan {b,c,d,e} and the clan {f,g,h,{i,j,k,1}}. When we

split the clan {b,c,d,e} we have again it is a complete clan, thus following
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Figure 3.10: Applying 1.(a) from Algorithm

the previous constrains we get {b,c} and {d,e} as maximal strong clans.

As the clan {f, g, h,{i, j, k,1}} is a primitive clan, the clans into its coars-
est quotient that are seen from n continue being maximal strong clans in the
new decomposition, while those clans that are not seen by n are split. In this
case we continue having f, g and h as maximal strong clans, and we split
the clan {i,7,k,l} since it is not possible to determine an edge to it from n.
Splitting the clan {i,7,k,l}, as it is a complete clan, we get {j,1} and {i, k}
as maximal strong clans.

The resulting decomposition is shown in the right of Figure[3.13.

3.3 A comparison with related algorithms

There are proposed algorithms to get the modular decomposition and the
2-structure clan decomposition, a detailed survey already exists in [19]. To
do an extensive comparison between them and our algorithm would take an
extensive work out of the line of this research but we explain in detail the two
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Figure 3.11: Applying 1.(c) from Algorithm

most relevant works: [28] and [29]. The order in which we mention them is
not related to how closer they are to our algorithm. Those earlier algorithms
differ among them and with ours in their quite diverse terminology for the
main notions. Although the type of modules are called prime and degenerate
in these works, we will follow our nomenclature of primitive and complete,
respectively.

Besides that, the main differences between the algorithm in [29] and our
algorithm, are the algorithm in [29] is applied only on graphs instead of
2-structures and the use of a parallel structure to the decomposition tree.
This parallel structure is a tree where refinements are made until get the
decomposition tree. The literal application of the algorithm exactly as it
is described there would not work on 2-structures. As an overview, the
algorithm in |29] begins with a tree that is modified until reaching the strong
decomposition tree, that is in each step we have a tree but, in contrast to
our algorithm, this includes all the nodes and the final decomposition tree is
not reached until the end of the algorithm.
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Figure 3.12: Example [3.6] to illustrate the use
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The other algorithm to be considered is [28], it is an incremental algorithm
as our algorithm. It works not only with complete and primitive clans as our
algorithm does, but also with linear clans. The linear clans appear when
decomposing 2-structures that are not necessarily symmetric; these are akin
to directed graphs. As we already stated, we do not take them into account
because in our data analysis all our 2-structures are symmetric, since they
rely on undirected Gaifman graphs. As a main procedural difference, this
algorithm builds a new structure M (G, z), where z is the vertex added to
G and G’ = G + z, this new structure does the labeling process each time
a new node is added. In our algorithm, we use the Union-Find structure
(Subsection each time a new vertex is added.

The algorithm in [29] is applied on undirected graphs. According to the
module definition, they are working with two equivalence classes, and the
time of execution is O(n+m) where n and m are the number of vertices and
edges of the graph respectively.

The algorithm begins with a tree 7" that is modified until reaching the
strong decomposition tree M D(G). There are three classes of M that char-
acterize tree T in the different refinement phases:

M1: The internal nodes are labeled primitive or complete. For each complete
node, there is a system of representative from its children that induces
a complete subgraph in G.

M?2: Same as M1, but the children of each complete node Mp are modules
in the restricted graph Mp and its coarsest quotient.

M3: Same as M2, but every node of T is a module in G.

The algorithm starts with the Theorem in [11] that says that in every
primitive undirected graph G there is an induced P;. There is a linear algo-
rithm that computes a P, tree which is the entry M1 tree, let us see how the
refinement of the tree is obtained.

Getting M1 tree As we already say, the initial M1 tree is a Py tree T'. If
the graph does not induce a P, the initial M1 tree will be the cotree of G.
In this case we only have a tree in which all the nodes are complete.

If a P, is gotten, the CreateTree algorithm in [37] is run to obtain the
Py tree from the graph, this tree tell us when the nodes are complete or
primitive.
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From M1 to M2 Once we get a primitive node, it is largely ignored,
because only complete nodes could violate the conditions needed for the tree
to be an M2 tree. There are three main functions used here:

e Forcing graphs: Find the elements of the modules inside a complete
module.

e SCC: Label each complete module with the forcing acyclic graph on its
children.

e PQ: It is a refining of SCC, remove nodes either not modules or nodes
that have outgoing edges.

So the procedure to obtain an M2 from a M1 is to apply PQ to the T’
tree and then apply SCC to the resulting graph; SCC runs the Forcing graph
algorithm.

It is an M2 tree since if a child A of a complete node of M1 disagrees on
a vertex of G that is contained in one of its siblings, B, thus B also disagrees
on a vertex of G that is contained in A. When a forced graph is computed on
any refinement of M1, their connected components are strongly connected.

From M2 to M3 There is apply the Decomp function on the original
undirected graph G and on M2 tree T corresponding to G. This function
find the members of T' that are modules in G, since they can not overlap with
any other module of G by definition of M2. Any other member of M D(G)
is a non trivial children of a complete node of T'. Inside of a complete node,
find the elements that conform modules using a list of its children strong
neighbors (SN). Finally, for each member in M D(G) that is not a node in
T, insert it in 7. Purge T of those members that are not modules and return
T as result.

Thus, in the first kind of tree the internal nodes are labeled primitive
or complete by recognizing the P, induced. If the original graph does not
induce any Py, the initial graph will have just complete internal nodes. To
get the second kind of tree, only the complete nodes of the previous kind of
tree will be analyzed in order to find modules within the complete nodes. To
reach the third kind of tree, modules that are not strong are removed.

Example 3.7. From the Figure we get {f,h,g,abcde} as induced Py,
while the graph conformed by {a,b,c,d,e} does not induce Py. In this way,



76

Figure 3.14: Graph of Example 3.7} Intermediate decomposition phases.

the first kind of tree is a tree with two internal nodes, one labeled as primitive
and the other one labeled as complete, left of Figure[3.1])

The next step is to analyze just the complete modules looking for more
modules (strong or not), those only could be complete since all primitive ones
were obtained in the previous step. We get, among other modules, {abc}
as complete strong module and in turn {a,b,c} are also modules of it, the
process to get the second kind of tree is shown in right of Figure|3.14)

The last step is to prune the previous tree, removing those modules that are
not strong modules. The final decomposition is shown in Figure [3.15. Thus
we illustrate the different modus operandi with respect to our algorithm.

The algorithm in |28] generalizes the elements of the Muller and Spinrad
algorithm for decomposition of undirected graphs [32]. The structure used
in that algorithm is replaced by a scheme that labels each edge with at
most one node. Having an incremental algorithm, that is, from the clan
decomposition tree of a G graph, M D(G), is generated the clan decomposition
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Figure 3.15: Graph of Example 3.7 Modular decomposition tree.

tree of G’ = G + z where z is the new node. Since our algorithm works only
with complete and primitive clans, we will avoid those parts of the algorithm
referent to linear clans. Once this was said, the algorithm runs as follows:

Label the clans. The clans of the M D(G) are labeled uniform, if z may
not distinguish its elements (they are seeing in the same way), or non
uniform in other way.

Find Z,. It is selected as Z; the maximum clan labeled as non uniform.

Obtain DL(Zy,G', z). According to the type of the clan Z; the elements
of DL(Zy,G', z) are determined. If Zj is primitive, DL = Z;. Else,
assume the equivalence class (color) of the clan is a, DL = zUx where
x € Children(G) such that z is not in the same equivalence class than
the clan according with z, that is z does not see = by a.

These elements will conform a new clan child of Z;. Removing of the
children of Z; such elements that are in DL. If | DL| = 2, then the clan
type of DL will be complete (primitive if it is not).

Construct M(G', z). There is a parallel structure called M(G’, z). For
each clan in M D(G), if a clan is uniform with z, that is, z is connected to
the member of the clan by the same kind of edges, it will be in M (G’, 2).
Else, if the module is primitive, its children will be in M (G, z) and if
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the clan type is complete, its maximum children seen in the same way
will be join and added to M(G’, z) (union siblings).

e Assign the split labels as appropriate.

Split label algorithm The main purpose of the split label is to find in Z,
which node is clan with z.

The algorithm to update the labels is: For each complete clan M in
M D(G) and for each pair {S, T} children of M that are contained in DL(Zy, G’, z)
and members of different classes of M partition. The partition of a clan is
determined by the equivalence classes of its children according to z.

e If S and T are uniform with respect to z, then z is the split node of all
edges connecting S and T

e If at least one of them is non uniform with respect to z, let us say 7"

— If T is complete, let A be any partition class of the T”s children,
so T\ A is not empty. Any node in A is a split node of the edges
connecting S and T\ A, while any node in 7"\ A is a split node
for the edges connecting S\ A.

— If T is primitive, take s € S, if TU{s} is a clan in G’, there exists
U in children of T such that U U {s} is a clan of G'. A node v of
T\ U distinguishes s and U, assigning v as the split label of edges
connecting S and U.

The algorithm to update the split labels to edges incident to z: If there
is a split label for (u,v), u € Zy and v € dom(G) \ Z, copy it to (z,v) and
(v,2). It DL(Zy,G’, 2) is primitive:

o If 7, is primitive, for each U in the children of Z,, v that distinguish z
from U will be a label to them.

o If 7, is complete, select U such that U € childreng(Zy) and U €
DL(Zy, G, z). Let X = Uchildreng (DL(Zy,G',2)) \ {2} be such that
UNX = 0. u € U will be the split label of z to X. Let V €
childreng(Zy) be such that V€ X, v € V that distinguish z and
u the split label of all edges connecting z and (DL(Zy,G', 2) \ {z}) \ X.
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Thus, the algorithm works with two trees. One of them keeps the clan
decomposition of the graph, each internal node of the tree represents a clan
but its internal 2-structure is not shown. The other tree stores node informa-
tion and information between the nodes by split labels, we will talk a little
more about them later.

Example 3.8. Suppose we have a complete clan {a,b,c,d, F,G} whose el-
ements are connected by black color edges, and a new node e is added, Fig-
ure |3.10. This new node does not see some of the clan elements, F and G,
and the rest of the elements are seen by not black color, say red to a,b and
blue to c,d, Figure[3.17. Suppose G is a primitive clan conform by g1, ge, gs
and F is a complete clan conform by f1, fa, Figure|3.18; and their elements,
91, 92, 93, [1, f2, are uniform with respect to e, Figure|3.19.

The modular decomposition before to add e is shown in Figure[3.20. The
nodes are filled by white if there is an unambiguous color to connect the node
with e, and gray otherwise (“not seen”). The algorithm ask for the type of
the node that is not seen by e. If the node is primitive its children are the
same plus the new verter. FElse (the node is complete), its children will be
those nodes that are not connected with e by the same kind of edges than the
edges of the node. The other tree stores each wisible clan of the previously
described tree. If the node is complete its children are grouped according to
how they are seen from the new vertex (e, in this example). The edges are
labeled by a split label: w is a split label for the edges X,Y if (X, w) # (Y, w).
In this way, this tree works complementing the information about the children
of the nodes in the decomposition tree. The final tree decomposition is shown

in Figure[3.21.

The main difference with Algorithm [7]is that, instead of building this tree
and doing the labeling process, our algorithm uses the Union-Find structure:
each time a new clan is generated, its edges to the other clans (sigleton or
not) are added according to their equivalence classes if they exist.

3.4 Implementation

This section is focused in the details of our implementation, https://github.
com/MelyPic/Gaifman-graphs_Mod, not only about the decomposition algo-
rithm but also about the construction of the standard Gaifman graph and its


https://github.com/MelyPic/Gaifman-graphs_Mod
https://github.com/MelyPic/Gaifman-graphs_Mod

30

Figure 3.18: Graph of Example [3.8; F’ and G internal 2-Structure.
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Figure 3.19: Graph of Example|3.8f How e sees F' and G internal 2-structure.

Figure 3.20: Initial tree decomposition and tree decomposition according e
sees its nodes

Figure 3.21: Final tree decomposition
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variants, and about the creation of the file with the resulting decomposition.
Each of these processes are explained separately.

One thing to consider is, like the co-occurrences of the attribute values
into the dataset are record by these Gaifman graphs, in practice, as we said
in Section we get as many equivalence classes as different multiplicities
leading us to many singleton clans on the decomposition since most vertices
distinguish most others. Thus, to think on the discretization process to
implement is important and needs not be always the same, it depends on
the behavior of data. That is, we have to observe how different are the
multiplicities on the co-occurrences.

In our implementation we use the NetworkX to get a known graph and
GraphViz to draw the resulting decomposition.

3.4.1 Construction of the Gaifman graph from a dataset

The main purpose in this sections is to explain how we obtain the matrix that
represents the desired Gaifman graph from the data in our implementation.

As first step, we select the source of the data. The data can be obtained
from one table (one file), from a set of tables (several files) or from a Net-
workX graph.

For any of the two first options, we ask for the type of the files since the
presentation of the format is different according to the file type. Our project
works with three types of files: .csv, .arff and .tzt. But the reading file pro-
cess must be treated with care since there are different configurations in the
data. For example, there are cases where the attribute value a is taken as the
same does not matter value of which attribute is, but there are other cases
where it is important. Think in the same string yes as a value of columns
named homeowner and haschildren, the same yes represents different in-
formation, by different values of the universe, the strings haschildren:yes
and homeowner :yes.

Processing these data, in any of the possible cases, we generate the matrix
M of the Gaifman graph that represents the information. In the initial
version of the matrix, the value of the M, ;, the position i, j into the matrix
M, contains the quantity of times the attribute values that i and j represent
appear together into the dataset, that is the number of co-occurrences for ¢
and j. This matrix represents what we call Current graph, a 2-structure with
as many equivalence classes as different co-occurrence values.
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Thus, the user may select one of the following options to apply the de-
composition algorithm on:

e The current Gaifman graph: the graph previously described.

e The standard Gaifman graph: A graph with just two equivalence classes,
in this case the matrix has 1 in the position M, ; if M; ; # 0 in the initial
graph, representing ¢ and j are connected, and 0 otherwise, representing
they are disconnected.

e The thresholded Gaifman graph: We ask to the user for a lower thresh-
old and upper threshold values, we will preserve from the original graph
those co-occurrences values between the lower and the upper thresh-
olds, the other values will be consider as disconnected. That is, assume
a and b are the lower and upper threshold respectively, if a < M, ; <b
then 7 and j are consider as connected items, that is, M;; = 1 for the
matrix that represent the thresholded Gaifman graph. If the threshold
values are not satisfied, ¢ and j are consider as disconnected items, that
is, M; ; = 0.

e The linear Gaifman graph: This graph could have many equivalence
classes defined on its edges. In order to specify the equivalence classes
the user gives the interval size to divide the co-occurrences. You may
find the formal definition in Section [I.7] Additionally, the user may
give a lower threshold (all the values less than or equal to it would
be disconnected) and an upper threshold (all the values grater than or
equal to it would be disconnected too)

e The exponential Gaifman graph: It is a graph where the equivalence
classes are determined by the logarithmic function of the matrix values,
the formal definition is in Section [I.7] Also, it is possible for the user,
to give a lower threshold value and an upper threshold value that works
in the same way than in the linear Gaifman graph case.

e The shortest path Gaifman graph: It is a graph where the value of the
element M; ; is the length of the shortest path that connects the node i
with j in the standard Gaifman graph. Additionally, a threshold on the
length of the path could be assigned, the paths out of the thresholds
will be disconnected.



84

e The K-mean Gaifman graph: In this graph the number of equivalence
classes is determined by the user by giving the number of clusters, the
formal definition is in Section [I.7 The user also may give a lower
threshold value and an upper threshold value, in this case, their value
may change the position of the clusters.

Once the graph to work with is selected, we may apply on it the clan
decomposition method.

3.4.2 Applying the clan decomposition method on a
2-structure

In this section we explain the main functions, classes and their use in the
implementation of the decomposition method, the general algorithm was
explained in Section [3.2.4]

In this part of the program there are defined two main classes: Fdge and
MyClan.

The objects of the class Edge represent the connection between two ver-
tices, we may obtain the starting vertex, EdgeFrom, and the ending vertex,
EdgeTo, these attributes are specified when a object Edge is initialized.
Since we are working with undirected graphs for the edge (x,y) we have that
x is an EdgeFrom y and also x is an EdgeTo y.

To handle the class of equivalence to which each edge belongs we use the
Union-Find data structure approachﬁ (Find, Union and MakeSet).

EdgesNodes has Edge objects, on which MakeSet operates directly, and
thus Find and Union too. So, the edges in the same equivalence class will
have the same father, that is the function Find will return the same value.

Our decomposition is divided into clans represented by MyClan objects,
those clans could be singleton elements or clans by themselves. The internal
members of a clan are named as its children, that is, we name as children of
a clan those elements in its coarsest quotient.

At the end of the program we obtain a main clan object, the root of
the tree, where all the internal nodes are clans and the leaves are singleton
elements.

We may divide the class functions according to their tasks, some of them
are focused in adding elements (add_nodes_from, add_clan, add_node), remov-
ing elements (remove_nodes_from, remove_clan, remove_node) and giving the

4 https://en.wikipedia.org/wiki/Disjoint-set_data_structure


https://en.wikipedia.org/wiki/Disjoint-set_data_structure
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elements in the coarsest quotient of a clan (nodes) or return a clan with a
specific coarsest quotient if it exists (getclanwithnodes). Also we may access
to the type of the clan by clantype.

Once a clan is generated or a new vertex is added to it we use the function
Pack to get all the edges to it from the remaining vertices if they are and if it
is possible to determine the edge. To pack the members of a clan we also use
the Union-Find data structure, the algorithm is explained in Section [3.2.2]

Another fundamental function is call SplitClan. To implement this func-
tion we follow the algorithm in Section

The main function of our algorithm is the function AddNode, as we may
deduce by the name, is the function that add a node to a clan. This function
is the implementation of the Algorithm [7]

Where the first step is to ask how the elements of the clan are seen from
the new node, to do it we use the function HowClansAreSeen.

The function HowClansAreSeen returns the list of nodes visibles with
the color of the clan, the list of other visible nodes and the list of the non-
visible nodes as they are defined in Section [3.2.4 To know what to do with
this information, the type of the clan is required, we analyzed all the possible
cases in Section [3.2.4]

Since the clans are packed as they are generated, to determine if a clan
is seen by the new node or not is easy, we just need to search it in the edges
and know its equivalence class by the function Find.

3.4.3 Visualizing the strong clan decomposition tree

The purpose of this section is the visualization of the main clan obtained pre-
viously, being this clan the decomposition tree. We employ the tool Graphviz
to do this.

The main task is deal with how decide when the elements will be visual-
ized. The quantity of elements could be so large, drawing all of them may
result in an not understandable tree. So, as a first approach we decided to
create a node (Others) to group them.

In the case of singletons elements, when all the elements that we grouped
in this node are singletons, it is sufficient to fix a number of elements that
we want to see to obtain an understandable and informative image. It is
different if there are involved elements that are clans because we may lose
important information inside of them, it is not easy to determine how many
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of the elements we want to see. The process to decide the optimal number
of items to be shown depends on many factors and it is not easy to specify.

The Others node is also used to represent isolated vertices in the cor-
responding Gaifman graph. Those are vertices that have no connections,
neither among them, nor with other vertices. So, they are grouped in a
single vertex labeled as Others.

Leaving that aside, the following are some important functions for the
visualization process:

e DecomposeClan has a clan as input and the output are two lists, one
with all single nodes in the clan and the other one with the clans in its
coarsest quotient.

e [indClans also has a clan as input and returns a list of all its descen-
dant clans in a clan, doing this in a depth-first search. Not only the
clans in its coarsest quotient but also the clans in the coarsest quotient
of each respective clan, and so on.

e GiveName recibes a list of the elements in the clan and returns a string
with the attribute names corresponding to all clan members.

o MakeCluster generates an element cluster in the .dot file. Use the
function GiveName to assign the name of cluster and the function
DecomposeC'lan to know its members. In this section we decide how
many singleton and clans elements will be consider as too many to draw
them one by one, that is, here we determine the use of the Others node.

The program goes through the internal clans and draws for each one a
subgraph cluster according to the specific constrains, calling the previously
described functions as they are necessary. Finally, the program returns the
.png of the .dot generated.

As we have seen, the decomposition results will depend on the chosen
Gaifman graph variant, along with the assigned parameters and thresholds,
which will make the edges belong to an equivalence class or another. There-
fore, in the final visualization of the decomposition, we will be able to see the
equivalence classes of the edges, but not the amount of co-occurrences be-
tween one item and another. However, we will have access to this information
through the matrix of the initial Gaifman graph.



Chapter 4

Exploring data through graph
decompositions

4.1 Introduction

In this chapter and the next, we show some applications of the decomposition
methods and their interpretation.

Before to go on it is important to point out, as we referred previously,
that to work with many attribute values may cause to have clans, into the
decompositions, with many single items, leading to large primitive clans,
whose mathematical study gets pretty complicated |15], and thence to di-
agrams that one can not understand, like in Figure To handle it, we
implement several measures like the frequency thresholds; being the same
attitude followed in frequent set mining [25] [38].

Nonetheless, there are cases where this problem persists thus, in our dia-
grams clans containing more than handful of nontrivial clans are not drawn
in detail. Besides, if there are few nontrivial clans, but many trivial ones,
then the trivial clans are grouped in a single node labeled as Others, sort of
a merge of them all, like in Figure

As we move on, one case turns out to be common in our experiments:
whereas Gaifman graphs do not have isolated vertices, in our generalizations
this is no longer true. Many datasets will lead to isolated vertices in the
corresponding Gaifman graph. The set of those isolated vertices forms a quite
large clan that clutters the diagram but contributes nothing to the analysis
beyond all these vertices are actually isolated. We use again the label Others
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Figure 4.1: Example: “not understandable” decomposition.

to represent these items, all alike from the decomposition perspective, as a
single vertex. One example of this measure is the Gaifman graph shown in
the left of Figure 4.5|

Once all these details has been mentioned, let us go to the chapter struc-
ture. At first, in Section [4.2] we talk about some characteristics on the data
information to be consider on the Gaifman graph construction from a dataset.

In Section [4.3] we work with standard Gaifman graph versions and with
the thresholded variant of the Gaifman graphs, in those cases we apply mod-
ular decomposition since we only have two equivalence classes: connected
and disconnected items, either because the items do not co-occur together or
because their multiplicity is below a determined co-occurrence threshold. We
also show the use of the frequency threshold, previously mentioned, whose
objective is to reduce the number of vertices in the Gaifman graph.

We extend the capabilities of our approach by generalizing the notion
of Gaifman graph. Hence, we develop our work using the more general de-
composition method called the 2-structures decomposition method. In Sec-
tion 4.4 we work with linear, exponential and shortest path Gaifman graph
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variants applying them on different datasets with different threshold values.

4.2 From Datasets to Gaifman graphs

Often, in practice, each column of a table has its own semantics and, even if a
data value seems to superficially coincide in occurrences at different columns,
it might mean different things. There are times that we must to consider
them as different values, if domain information was available advising data
pieces to be considered different. Besides, there are other times where it is
better to take these values as one and the same, that is, regardless of the
attribute that they represent. As we said in Section |3.4.1] we assume that a
preprocessing has been run looking for the optimal option.

4.3 Modular decomposition

We move on to explain some examples of our analysis strategy based on
modular decomposition.

One of the datasets used to apply our decomposition method is the Zoo
dataset, a dataset from the UC Irvine repository [12]; it contains 17 at-
tributes, with 39 possible attribute values, of 100 animal species. We have
preprocessed it slightly so that the semantics of each item is clearly identifi-
able (e. g. predator _False or toothed True).

The decomposition of the Zoo dataset standard Gaifman graph is shown
in Figure[d.2] The topmost node of this decomposition is, the trivial clan with
the whole universe; in this case, it turns out to decompose as a primitive clan
whose coarsest quotient graph collapses many trivial clans, that we choose
not to draw complete; however, one nontrivial clan also appears: mammal and
milk True are indistinguishable from the perspective of all the other elements
in the dataset. That is, for every other piece of information, either it goes
together with each in some tuples (one such item could be hair True), or it
does not go together with any of them ever (for instance: feathers True).
In our diagrams, as we already said, clans containing more than a handful of
nontrivial clans are not drawn in detail: just the clan type label (primitive
or complete) is shown.

We describe next some outcome of analysis on the very well-known dataset
Mushroom, also known as “Agaricus-Lepiota”. In this dataset a number of
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Figure 4.2: Modular decomposition: Zoo dataset graph.

purported attributes of potential mushrooms of these families are expected to
be useful to predict whether each of the 8124 observations would correspond
to an edible or a poisonous mushrooms [14].

In this case, we restrict ourselves to items appearing at least 2000 times,
that is we give 2000 as frequency threshold. Even then, we do not display
the complete decomposition tree, we just show a module that deserves to
be discussed. First, of course a number of false twinsﬂ appear such as
grass-living versus wood-1living mushrooms. Again a P, case is shown in
Figure [4.3] if a mushroom has foul odor, then it is a poisonous mushroom,
as foul odor never appears in the same transaction with edible.

Figure [£.4] is a little bit more difficult to interpret but we find there, for
example, that bruised mushrooms have smooth stalk surfaces, both below
and above, but never exhibit silky surfaces either below or above, and not all
smooth stalk surfaces, either below or above, are bruised, since both are also
connected to the no-bruises vertex. The induced P, predicted by the theory
is indeed there as well.

We also impose a threshold on the co-occurrence of items. It is important
to point out the difference between co-occurrence threshold and frequency
threshold: in the first one we work with all the possible attribute values
but those edges labeled below than a determined co-occurrence threshold are
consider as disconnected since in the second case we construct the Gaifman
graph just with those attribute values that appear more than a determined
frequency threshold. We will see more examples later on.

Wertices with the same set of neighbors are commonly called “twins” in graph theory:
“true twins” if they are connected and “false twins” otherwise
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Figure 4.3: Modular decomposition: A non-trivial module in the Mushroom
dataset graph.

stalle surface below nng silky

stalle_swface below_ring_smooth

stalk_surface_above ring_smooth

Figure 4.4: Modular decomposition: A second non-trivial module in the
Mushroom dataset graph.

stalk_swface above_ring_silky
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Figure 4.5: Modular decomposition: Titanic with 1000 as co-occurrence
threshold graph.

If we restrict the Titanic Gaifman graph of Section with 1000 as co-
occurrence threshold, we obtain the left of Figure where the item Others
involves all the remaining vertices. Its modular decomposition is shown in
the right of Figure[4.5] The resulting graph supports the saying “women and
children first” since show us than most of the non-survivors were men.

Thus, to obtain these results is sufficient to work with the decomposition
method, but as we said, there are cases where this method is not enough. In
the following sections we will see more results where we apply the 2-structure
decomposing method properly.

4.4 Clan decomposition

As we saw earlier, part of our contribution is working with variations of
Gaifman graphs which are the result of applying, on the multiplicity of their
edges, discretization methods, resulting in a 2-structure. These discretiza-
tions are explained in detail in Section [1.8

In the following sections we will show and explain some examples of the
decomposition of discretized Gaifman graph.
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Figure 4.6: Clan decomposition: Titanic linear threshold Gaifman graph.

4.4.1 Decomposition of linear Gaifman graph

In Figure|4.6|we have the result of applying the clan decomposition method on
the linear threshold Gaifman graph for the Titanic dataset. We differentiate
a few multiplicity values with different colors plus an upper threshold. The
upper co-occurrence threshold given was 20, all those values greater than or
equal to this threshold are in the same equivalence class. We may deduce,
by the resulting graph, that there were few children in the first class, there
were found six co-occurrences of these values. In this case the linear interval
size is not really important since we just have one edge whose multiplicity is
between 0 and the assigned upper threshold value.

In Figure [4.7] we find the result of applying the clan decomposition on
the Zoo dataset of the linear Gaifman graph with 10 as interval size. As we
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Figure 4.7: Clan decomposition: Zoo linear Gaifman graph.

already said, the dataset has 17 attributes and a total of 42 attribute values
of about 100 animal species. In the decomposition we find two clans which
tell us that mammals drink milk and birds have feathers. The remaining
items are all involve in the Others node.

The Figure 4.8 shows the clan decomposition of the linear Gaifman graph
from the Zoo dataset, where the interval size is 25. Since the maximum
multiplicity of the edges in the Gaifman graph of Zoo is 81, we obtain four
equivalence classes, but we do not see all of them: this is due simply to our
visualization limits. Here we have three interesting clans: the fact that an
animal is mammal (milk_true) has a strong co-occurrence with that it does
not lay eggs and has hair. Following this, those animals that do not lay eggs
are not mammals. And also there is a strong co-occurrence between those
animals that are mammals and have four legs.

We also work with the decomposition of the Votes dataset [12] 2-structure,
that contains information about the votes for each of the U.S. House if Rep-
resentatives Congress-men on the 16 key votes. Figure 4.9]is the result of
applying the decomposition method on the linear Gaifman graph with 100
as interval size of those values that appear more than 100 times, that is the
frequency threshold is 100. We find a clan conformed by republicans and
the negative of adoption of the budget resolution, since they are around 141
republican of 168 votes against adoption of budget resolution.
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Figure 4.8: Clan decomposition: Zoo linear Gaifman graph.
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Figure 4.9: Clan decomposition: Votes linear Gaifman graph.
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Figure 4.10: Clan decomposition: Mushroom exponential Gaifman graph.

4.4.2 Decomposition of exponential Gaifman graph

Comparing the exponential variant with the linear variant of the Gaifman
graph we have on one hand that, the exponential variant frees the user from
having to bet on a specific interval width; on the other, there could be cases
where some information may be lost when we work with large intervals.

In Figure we find the result of applying the clan decomposition
method on the 2-structures described by the exponential Gaifman graph
of the Mushroom dataset with 2000 as frequency threshold, that is taking
just those attributes appearing more than 2000 times. As we can see most
of the attribute values co-occur with each other in different ways excepting
the items gill attachement free and veil color _white that have around
the same quantity of co-occurrences with the other items, and also, we find
that they co-occur very often, around 7900 times. Considering there are a
total of 8000 rows, we may say that they co-occur almost always, thus most
on the mushrooms into the dataset do not have gills and have a white veil.

In order to illustrate a case working with multiple tables we work with
UW-CSE dataset from the relational dataset repository http://relational.
fit.cvut.cz. Figure was obtained applying a co-occurrence threshold
value of 30: multiplicities below this value remain as non-edges (broken lines
of the completion), and isolated vertices under this condition are removed
and jointly replaced by the Others vertex. Indeed, the line in the topmost
rectangle is a broken line which means that the items grouped in the node
Others co-occur among them less than 30 times. In the decomposition, Fig-
ure [4.11] we find the amount of students that are not professors is almost
same than the amount of persons not registered in any phase and who have


http://relational.fit.cvut.cz
http://relational.fit.cvut.cz
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Figure 4.11: Clan decomposition: UW-CSE exponential Gaifman graph.

zero years in the program, while the amount of professors, of course not
students, is in a different rank.

4.4.3 Decomposition of shortest path Gaifman graph

We propose to explore the shortest path variant of the Gaifman graph. The
decomposition of this version provides us with a complementary information
about the data behavior. For example, the Figure 4.12f shows the decompo-
sition of the shortest path variant for the linear Gaifman graph Zoo dataset
whose decomposition is shown in Figure [4.7. Despite generating the same
clans, we find different equivalence classes: in the linear variant decomposi-
tion the edge that connects feathers_True with bird is in a different equiv-
alence class than the edge that connects milk True with mammal, while in the
shortest path variant decomposition both are in the same equivalence class
since they are directly related.
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Figure 4.12: Clan decomposition: Zoo shortest path Gaifman graph.



Chapter 5

Analyzing medical diagnostic
data

5.1 Introduction

In the next analysis we work with a medical dataset. This dataset was pro-
vided to us by the Hospital de la Santa Creu i Sant Pau, under a collaboration
agreement: between that institution and UPC. This is a public hospital lo-
cated in Barcelona, with about 430K visits and 40K admissions per year. The
medical dataset contains information on all urgent hospitalizations for the
years 2015-2016. It is in a transactional format that consists of a sequence
of (Excel-like) rows corresponding to patients and, in each, there are, orga-
nized in columns, diagnostics, treatments and patient conditions encoded in
ICD-9—CME]. Additional information as gender, provenance, etc., is also in
the data but we do not take this information into account, we only work
with diagnostics, treatments and patient conditions, working with them in
different phases.

The dataset contains around 80000 rows with information about 80000
anonymous patients. The total number of potential diagnostics is 5637, grow-
ing to 7741 if treatments are also considered and to 8250 if patient conditions
are considered too. Thus, considering the set as relational would result in a
huge dimensionality, with vast amounts of zeros. Hence, we chose to see our
dataset as transactional, each row consisting of a set of diagnostics, treat-
ments, and/or conditions; we will describe all the particularities for each

L'https://www.cdc.gov/nchs/icd/icd9cm.htm
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application. Most of these results were presented and published in [6].

5.2 Modular decomposition

As first example of this dataset analysis we will work only with diagnostic
values, we follow the same attitude as in previous examples: we set a mini-
mum frequency threshold, so that diagnostics appearing less often than the
threshold are not taken into account for that visualization.

Thus, we impose 100 as frequency threshold getting the follow diagnostics
as vertices of our initial graph:

e 650 Normal delivery,

e 632 Missed abortion,

305.1 Tabacco use disorder,

401.9 Unspecified essential hypertension,

272.4 Other and unspecified hyperlipidemia.

The decomposition obtained is shown in Figure [5.1] At the top of the
figure we find that the item 650 Normal delivery does not appear together
with any of the other diagnostics, since 650 is connected by a broken line with
all the remain items. Inside the large box, we find co-occurrences between all
the remaining items excepting 272.4 and 632. To have a better understanding
of this dataset in the next section we apply the clan decomposition on the
linear Gaifman graph variant of this graph, and we find interesting results.

5.3 Linear Gaifman graph decomposition

On the hospitalization dataset we applied our clan decomposition method on
different linear Gaifman graphs.

At first we work just with the diagnostics using a frequency threshold of
100 as in the example of Figure [5.1] thus we work with the same items.

Additionally, we use a co-occurrence threshold of 8, and 1000 as interval
size to get the linear Gaifman graph variant. The result of applying the
clan decomposition method on the described 2-structure is shown in Fig-
ure 5.2l At the top of the figure we find that the item 650 Normal delivery
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Figure 5.1: Modular decomposition: Diagnostics appearing more than 100
times (frequency threshold).

does not appear together with any of the other diagnostics. The large
box represents together all the remaining items, we see no co-occurrences
between 632 Missed abortion and the clan conform by the hypertension
items and few co-occurrences with 305.1 Tabacco use disorder, around
12 co-occurrences, while the item 305.1 Tabacco use disorder co-occurs
around 2000 times with the members of the hypertension clan. In the
hypertension clan, we find the diagnostics 272.4 Other and unspecified
hyperlipidemia and 401.9 Unspecified essential hypertension linked
by a high-frequency co-occurrences, checking that out, we find over 11000
cases of co-occurrences.

In the next example we continue working with diagnostics, in this case
we take those diagnostics that appear more than 80 times, having as new
nodes:

e 250.00 Diabetes mellitus without of complication, type II or
unspecified type, not stated as uncontrolled,

e 278.00 Obesity unspecified,
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Figure 5.2: Clan decomposition: Diagnostics, linear Gaifman graph.

e 634.92 Spontaneous abortion complete without complication.

In Figure we have at the top the item 650 Normal delivery discon-
nected with all of the other items, we find a clan conformed by the items
305.1 Tobacco use disorder and 278.00 Obesity unspecified. Both of
them co-occur around 500 times. The item 250 Diabetes mellitus and
the members of this clan co-occur more than 1000 times but less than 2000
times, while 401.9 Unspecified essential hypertension and 272.4 Other
and unspecified hyperlipidemia co-occur with the same clan more than
2000 times; and the clan co-occurs just few times with the items 634.92
Spontaneous abortion complete without complication and 632 Missed
abortion.

In the next example we show the decomposition on the linear Gaifman
graph of those diagnostics, treatments, patients conditions that appear more
than 250 times, with an interval size of 1000, and 500 as co-occurrence thresh-
old value. The items involved are:

e (632 Missed abortion,

e 272.4 Other and unspecified hyperlipidemia,
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Figure 5.3: Clan decomposition: Diagnostics, linear Gaifman graph.

e V15.82 Personal history of tobacco use,
e V58.66 Long-term (current) use of aspirin,

e V58.61 Long-term (current) use of anticoagulants.

We have Figure |5.4] as the resulting figure. Here we find that 632 Missed
abortion has not co-occurrences with any of remaining nodes. And we
find a clan, conformed by V58.66 Long-term (current) use of aspirin
and V58.61 Long-term (current) use of anticoagulants, they are con-
nected by a broken line since they co-occur around 300 times, that is they
co-occur less than the co-occurrence threshold (500), not often enough ac-
cording to it.

We also see that this clan, the anticoagulant clan items, co-occurs more
frequently with 272.4 Other and unspecified hyperlipidemia than with
V15.82 Personal history of tobacco use. And the items that co-occur
more frequently than any others are 272.4 and V15.82. That is, the number
of people who have hyperlipidemia and take anticoagulants is greater than
people who have a history of smoking ad take anticoagulants; while, it is more
frequent to have cases with history of tobacco use and having hyperlipidemia.
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Figure 5.4: Clan decomposition: Diagnostics, treatments and patient condi-
tions, linear Gaifman graph.

5.4 Exponential Gaifman graph decomposi-
tion

Let us analyze those diagnostics with a frequency threshold of 100 as in
the first examples for the previous sections. In Figure we find the de-
composition of the diagnostic exponential Gaifman graph. In the top node
we see that 650 Normal delivery has not co-occurrences with any of the
other nodes. Also we find a clan conformed by the item 272.4 Other and
unspecified hyperlipidemia and the item 401.9 Unspecified essential
hypertension diagnostics, that is, those diagnostics have the same behav-
ior with the rest of the diagnostics: they do not have co-occurrences with
632 Missed abortion diagnostic and they have around two thousand co-
occurrences with 305.1 Tobacco use disorder. On the other hand, Tobacco
use disorder co-occurs with Missed abortion around ten times that com-
pared with the 80000 possible cases is too few.

Considering diagnostics and treatments we have 7741 different values thus
we give a frequency threshold to reduce them. The Figure |5.6| shows the de-
composition of the exponential Gaifman graph of those items that appear
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Figure 5.5: Clan decomposition: Diagnostics, exponential Gaifman graph.

more than 100 times. We see two clans, one of them conformed by the di-
agnostics items: 272.4 Other and unspecified hyperlipidemia and 401.9
Unspecified essential hypertension linked by a high-frequency joint oc-
currence (checking that out, we find over 11000 cases), we will call it hyper-
tension diagnostic clan, we get this clan also in the previous example. And
the other one, a completely new clan, in the bottom with two similar codes,
81.54. . . , with a broken line connecting them that indicates that they are
incompatible: they are both Total knee replacement, each referring to one
laterality option, and, of course, it is hardly ever the case that both knees
are replaced at once, we will refer to it as knee replacement procedure.

The larger box represents together all the remaining items except one.
At the top of the figure we read that 650 Normal delivery does not ap-
pear together with any of the other items represented in the figure, because
650 is connected with a broken line to the box corresponding to the remain-
ing diagnostics and treatments; whereas, inside the larger box, we see no
joint occurrences (that is, broken lines) from 632 Missed abortion to the
hypertension diagnostic clan and to the knee replacement procedure clan
but it is connected with diagnostic 305.1 Tobacco use disorder showing
up that they co-occur a not too significant number of times (about a dozen
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Figure 5.6: Clan decomposition: Diagnostics and treatments, exponential
Gaifman graph.

times each), same as 305.1 Tobacco use disorder co-occurs with the knee
replacement procedure clan. While, 305.1 Tobacco use disorder is signifi-
cantly connected (in the range of 2000 occurrences) with both nodes of the
hypertension diagnostic clan.

And, finally, the knee replacement procedure clan and the hypertension
diagnostic clan appear jointly around 100 times.

5.5 Shortest path Gaifman graph decompo-
sition

In the next examples we get the decomposition of the shortest path version
of some clan decomposition already calculated, all of them are applied on the
medical dataset. We presented those results in [34]. As a general result, we
find coincidentally three equivalence classes in the 2-structures drawing by
broken lines (to link items whose shortest path is equal to zero), solid lines
(to link items whose shortest path is equal to one) and dotted lines (to link
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items whose shortest path is equal to two). First, in Figure , we have the
decomposition of the shortest path version of those diagnostics that appear
more than 80 times, the decomposition of its linear variant is in Figure [5.3|

In this current decomposition, we find again the item 650 Normal delivery
disconnected to the remaining items. The items 305.1 Tobacco use disorder
and 278.00 Obesity unspecified connected to a clan with all the remain-
ing items conform a clan, since they co-occur at least one time. While inside
of the clan that contains the remaining items, we find different equivalence
classes that is because some of the items are not directly related. Also, in-
side of this box we find a clan conform by the items 401.9 Unspecified
essential hypertension and 250.00 Diabetes mellitus, they are in the
same clan because both of them co-occur or do not co-occur with the same
items; and also we may see that they appear together since they are directly
connected. We may think that the items 272.4 Other and unspecified
hyperlipidemia and 401.9 Unspecified essential hypertension could
be in a clan but they are not because there is a case where the items
401.9 Unspecified essential hypertension and 632 Missed abortion
co-occur but missed abortion does not have any co-occurrence with 272.4
Other. . .hyperlipidemia.

The Figure [5.8 shows the decomposition of the shortest path version of
the linear Gaifman graph decomposed in Figure 5.4, Therefore, we work
with the diagnostics, treatments and patient condition with 250 as frequency
threshold and 500 as co-occurrence threshold. As we can see the resulting
figure is quite similar to Figure [5.4] excepting for the type of the edges,
that is, excepting for the equivalence relation to which they belong. At
the top of the figure we reaffirm that the item 632 Missed abortion is
not connected with any other item, will the items into the large box are
directly connected, they used co-occur together. Finally, the items V58.66
Long-term (current) use of aspirinand V58.61 Long-term (current)
use of anticoagulants are connected by a dotted line because the shortest
path to go from one to another has two as length.

The application of the shortest path version of the decomposition on the
diagnostics and treatments Gaifman graph that appear more than 100 times,
allows us a better understanding of the behavior of the items within the larger
box in the Figure [5.6, The resulting figure of this analysis is show in Fig-
ure [5.9) we can verify that the node 650 Normal delivery is not connected
with any other node. The node 305.1 Tobacco use disorder is directly
related, with different co-occurrences values, within all the remaining nodes.
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Figure 5.7: Clan decomposition: Diagnostics appearing at least 80 times,
shortest path Gaifman graph.
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Figure 5.8: Clan decomposition: Diagnostics, treatments and patient condi-
tions appearing at least 250 times, shortest path Gaifman graph.

While 632 Missed abortion is not directly related with hypertension diag-
nostic clan items and knee replacement clan, there could be cases where the
patient medical conditions consist on 632 Missed abortion, 305.1 Tobacco
use disorder and some of the items into the large box clan. Again, with
different multiplicities of co-occurrences, the members of the larger box clan
are directly correlated. This shows how the hypertension diagnostic clan
items are connected to each other and with both cases of knee replacement.
While, to have both knees replaced, does not happen.

5.6 K-means Gaifman graph decomposition

In this section we analyse the decomposition of the K-means Gaifman graph
variant. The Figure[5.10[shows the result of applying the clan decomposition
method on the Gaifman graph of those diagnostics, treatments and patient
conditions with 250 as frequency threshold applying the K-means method
with 2 clusters, while Figure shows decomposition of the same Gaifman
graph but applying the K-means method with 3 clusters.

In both cases, we have 632 Missed abortion as isolated item since it has
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Figure 5.9: Clan decomposition: Diagnostics and treatments appearing at
least 100 times, shortest path Gaifman graph.
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not co-occurrences with any of remaining items.

Despite the fact that in these cases we do not use co-occurrence threshold
values, we can observe similar behaviors in the data since the items V58.66
Long-term (current) use of aspirinand V58.61 Long-term (current)
use of anticoagulants also are in the same clan.

In fact, when we work with three clusters they conform a clan, bot-
tom of Figure [5.11] in this decomposition we may see in a more clear way
the differences on the co-occurrences. As we described previously, the item
272.4 Other and unspecified hyperlipidemia co-occurs more frequently
with V15.82 Personal history of tobacco use and with the anticoagu-
lant clan than V15.82 Personal history of tobacco use co-occurs with
the anticoagulant clan.

As we said in Section [1.§ adding thresholds to a K-means Gaifman graph
can cause edges to belong to different equivalence classes compare with the
not threshold K-means Gaifman graph version. For example, if we give
1500 as lower threshold value to the K-means Gaifman graph variant with
3 clusters, the edges that connect V15.82 and 272.4 with the anticoagulant
clan are modified getting the decomposition shown in Figure [5.12]
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Figure 5.10: Clan decomposition: Diagnostics, treatment and patient condi-
tion appearing at least 250 times, K-means Gaifman graph, 2 clusters.
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Figure 5.11: Clan decomposition: Diagnostic, treatment and patient condi-
tion appearing at least 250 times, K-means Gaifman graph, 3 clusters.

Figure 5.12: Clan decomposition: Diagnostic, treatment and patient condi-
tion appearing at least 250 times K-means Gaifman graph, 3 clusters with

1500 as lower threshold.



Chapter 6

Conclusions

6.1 Discussion and perspectives

In this dissertation, the major topic is the study of how to provide, in an
unsupervised way, hierarchical visualizations of the co-occurrence patterns
on data. It could be applied to work as an additional or helping tool to other
data analysis tools, since to have a general view of the data behavior is so
useful in many areas.

First, along this thesis, we have seen that the known notion of modular
decomposition of a graph can be understood, in a quite natural way from a
perspective of data analysis, as a variant of closure space visualization; then,
that this process can be applied to datasets via a known logical construction,
namely the Gaifman graph; and, also, that both the theoretical connection
and the practical applicability of the decomposition process can be general-
ized to quantitatively enabled variants of Gaifman graphs through a known
generalization of modular decompositions, namely the clan decomposition
of 2-structures. In the case of (natural completions of) standard Gaifman
graphs, it is well-known that the given decomposition via 2-structures co-
incides with the classical modular decomposition of undirected graphs [30].
Indeed, in this case, the modules of the graph are exactly the clans of its natu-
ral completion, seen as a 2-structure with just two equivalence classes, strong
clans are exactly so-called strong modules, and the resulting decomposition
tree is essentially the same. The other variations of Gaifman graph proposed
here were thresholded, linear, exponential, shortest path and K-means-based
Gaifman graphs.

114
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It is important to point-out that the use of 2-structure clan decomposition
on data analysis is novel, and of course, it is inspired on theory developed
many years ago.

We have included a number of developments that relate the taxonomy
of modules to the corresponding local structure of the closure space, since
it was necessary to develop a precise understanding of exactly what was the
set of co-occurrence patterns we were displaying. Thus, we developed the
underlying theory, oriented both towards better understanding and also to-
wards the algorithmic point of view. We identified a closure space related to
so-called “modular implications” in the particular case of standard Gaifman
graphs and to “clan implications” for the more general cases, and character-
ized modules and clans in terms of subfamilies of the corresponding closed
sets. We also developed algorithms for related tasks, including, mainly, the
ones we use in our current open source implementation, and discuss how
these algorithms relate to existing ones for modular decomposition.

We have described an incremental algorithm to compute clan decompo-
sitions. There is ample room to study improvements to this algorithm and,
as mentioned above, the possibilities of using our results to obtain further
algorithms. But, as we have seen here, it already allows us to argue the
potential value of this approach for data analysis.

Data analysis and data mining relies, most often, on statistical studies.
One may be surprised that our approach does not follow that major line:
we are interested in exploring complementarity with the existing processes.
We believe that our visualizations can act usefully not at all replacing, but
complementing the statistical approaches, by pointing out specific pairs of
items, possibly conditioned to other items, whose correlation studies might
be candidates to priority analysis, for instance, or in many other ways.

Since we work with the co-occurrence of data, one might think that this
approach could be related to frequent set mining [1] [25] and rare pattern
mining [22], let us discuss about it:

Our approach did not provide yet any interesting results when we directly
applied it in combination with standard quantitative pattern mining concepts
like support or confidence thresholds. Frequent set mining finds itemsets that
appear in a dataset with a frequency no less than a determined threshold,
thus, as a substantial difference with respect to our proposal: we do not
take into account the frequency of the itemsets, we take into account the
co-occurrences of each pair of items and despite the fact that in some cases
we use frequency thresholds, these are only applied on single items or on
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pairs of items and we can not only know if they are frequent or not, that
is if they satisfy the threshold or not, but we can also observe the different
frequencies (by the equivalence classes) and their co-occurrence patterns with
the other items. The rare pattern mining, unlike frequent pattern mining,
finds itemsets that whose frequency of appearance in a dataset is below some
defined threshold. We may compare this with our approach since we may
give lower and upper thresholds values as low as we require, but again those
thresholds are only applied on single items or on pairs of items.

Another existing topic related to our study is the notion of blockmodel-
ing in network analysis [33]. The blockmodeling goal is to reduce an incom-
prehensible network to another more understandable and easy to interpret,
similar to the proposed use of our graph decomposition method. Thus, com-
paring blockmodeling to the construction of the Gaifman graph, taking into
account the partial implications, the network will be determined by the Gaif-
man graph and the relations between the items will be determined by the
confidence of the connected items, in this way we will have a directed graph
allowed by the blockmodeling theory but not by our current graph decom-
position method.

6.2 Results and limitations

The paper that we published in IDA 2018 [5] was the first to explain the
interest of these notions in exploratory data analysis. We also put forward
there a number of variations of Gaifman graphs that allowed for finer anal-
ysis. In the paper published in CBMS 2019 [6] we illustrate the process and
some of the possible results applying the data analysis approach based on the
decomposition of Gaifman graphs variations on a medical dataset. Through-
out this thesis we also provide proofs of our theorems and many additional
examples of the usage of these tools for exploratory data analysis.

We have resorted to a relatively simple implementation in Python and
relying on the standard graph module NetworkX and on the graphical capa-
bilities of the pydot interface to the Dot engine of Graphvizﬂ in fact, all the
graph layouts in the figures in this paper were automatically computed by
the Dot engine. Finding out how to configure it to produce acceptable out-
put was a nontrivial task, since certain incompatibilities could have occurred
with the Dot code.

! https://en.wikipedia.org/wiki/Graphviz
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We must discuss a clear limitation. Like in so many other exploratory
data analysis frameworks, for a given dataset we may not be lucky: it may
happen that a given selection of Gaifman graph, once decomposed, has no
nontrivial clans, or decomposes into just a few quite large primitive substruc-
tures that provide little or no insight about the data. After all, parameter
tuning is a black art in many data mining approaches.

All that provokes to have some visual limitations, the obtained decompo-
sition graphs are somewhat too large or complex to provide intuition through
visualization. We even have chosen to omit the edges inside a clan whenever
it is composed of too many subclans, the other consideration was to give a
frequency threshold to reduce the quantity of vertices in the Gaifman graph.
To decide the frequency threshold value we must to observe carefully the
general behavior of data. All in all, for the time being, the human brain is a
must during the exploration of interesting parameter settings. Useful advice
to choose properly the thresholds and the sorts of Gaifman graphs among
available options remains to be found.

6.3 Future work

There is ample room to study improvements and the possibilities of using our
results to obtain further algorithms. For instance, the multiplicity-based gen-
eralizations we have proposed are quite basic; more sophisticate approaches
to define the equivalence relation between edges might be advantageous. We
believe that other than K-means unsupervised discretization methods could
be applied. In addition, many other tunings can be applied to the Gaifman
graph before applying the decomposition procedure. Similar to the short-
est path version, we could work with the vertices connectivity, that is, the
number of disjoint paths (that one can relate to Menger’s theorem).

As seen throughout the work, closure spaces play an important role in
our development. It is well-known that, in data analysis tasks, categorical
concepts benefit from a relaxation allowing for exceptions, whether they come
from varied inputs or even from material errors in coding or transmission.
Likewise, we could relax through allowing exceptions the notions of module
and clan. The concept we would end up with seems to us very close to
the notion of blockmodeling employed in social network analysis: if we take
into account the confidence of the items to determining their corresponding
edges in the Gaifman graph, as we proposed in Section [6.1 we will have the
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present of a third type of 2-structure, the linear 2-structure. The analysis
of the decomposition of such a graph is left out of this investigation, but it
would be interesting to be analyzed.

In regards to compressing the data, two existing works could be imple-
mented to our approach, |35] and [39]. In the first work, they study the min-
ing of top-K frequent closed itemsets in order of decreasing support, whereas
in our case we work with standard sets and even there is a possibility that its
adaptation to our application would allow to have a faster algorithm. This
would be a long task as it would require more than one additional chapter to
this thesis. In the second paper, they address the problem of pattern mining
by using the MDL principle that establishes that the best set of patterns
were the set which best compresses the data. As a result, they developed
the heuristic Krimp algorithm that works with all closed sets evaluating how
much they allow to compress. The application of both theories to our work
would lead to additional research which would of course be interesting.

A line that we do not analyze in this work is the presence of foreign keys.
We would like to focus on investigating how foreign keys influence in the
construction of the initial graph. For example in Section [4.4] in Figure [£.11]
we have the clan decomposition of the dataset UW-CSE which is a multire-
lational dataset, we wonder whether the decomposition will change taking
into account the foreign keys.

As we know, the primary key is an attribute, or set of attributes, whose
values identify unequivocally each transaction in the father table. When a
primary key migrates to another table, child table, it becomes in a foreign
key. In this way, foreign key determines the relation between two tables.
Assuming integrity on data, the values of the foreign keys in the child tables
must link up with just one transaction in the father table, the correct use
of foreign keys allows referential integrity as well. The referential integrity
is that a transaction in the child table cannot have a foreign key value that
is not a primary key value in the father table. There could be cases where
the attributes of the primary keys have different names than the attributes
of the foreign keys, to our work this do not imply a real problem since based
on our current proposal we construct the desired graph taking as vertices the
set of attribute values.

Thus, to construct the Gaifman graph taking into account the presence of
foreign keys we propose to do the denormalization of the data by the primary
keys. Denormalization is a database technique in which we add redundant
data to one or more tables. This can help us to avoid costly joins in a
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relational database. We have to be careful not to count the co-occurrences
of the foreign keys more times than necessary, because although they are
happening, they will not be telling us anything really representative because
they only serve as indexes or references in the data and can appear so many
times making the rest of the co-occurrences lose in the hierarchy when it
should not be.

Related to visualization, we have proposed a few simple strategies to
encompass complex substructures upon visualization (the Others node) but
a more systematic study of the ways in which visualizations can become
helpful is necessary; we believe that the answers will come from some notion
of interactive data analysis process. Here we may separate the cases of how
the Others node is used: when it represents isolated vertices could be not
necessary to know all the isolated ones; but in the case the Others node
represents too large clans we may implement a zoom function to visualize
the internal 2-structure of it. We would like to offer self-describing, more
informative, perhaps even animated visualizations.
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