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Regenerative medicine techniques, such as extracellular matrix (ECM) scaffolds, are currently 

being investigated to address temporomandibular joint (TMJ) disc replacement.  Positive results 

were seen in the canine TMJ model, where ECM scaffolds remodeled to tissue resembling the 

native TMJ disc biochemically and in compressive properties (Brown et al. 2012, Brown et al. 

2011).  To further quantify the temporal remodeling of the ECM when implanted in the TMJ, the 

porcine model was chosen due to similarities with the human TMJ.  These pigs underwent 

bilateral discectomy and a unilateral small intestine submucosa extracellular matrix (SIS-ECM) 

device implantation and were then euthanized at 1, 3 and 6 months post-op.  Unconfined uniaxial 

compression was performed on the remodeled ECM, and the condylar cartilage from both joints.  

Biochemical characterization was also performed to measure glycosaminoglycan and DNA 

content.  The results of this study found no statistical (p<0.a05) difference in the mechanical 

properties between the remodeled tissue and the native tissue at any time point.  Additionally, the 

ipsilateral condylar cartilage was not statistically different from the native condylar cartilage 

except for peak stress and tangent modulus at the 30% strain rate for the 3 month post implant 

group.  Conversely, the contralateral condylar cartilage at the 6 month time point had a 

statistically significant difference in the peak stress and tangent modulus at 20% and 30% strain.  

The mechanical findings are supported by the biochemistry, which shows no statistical 

difference between native and remodeled tissue.  Overall, this study indicates that the SIS-

ECMscaffold constructively remodels into a TMJ disc-like structure. 
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1.0  INTRODUCTION 

The Temporomandibular Joint (TMJ) is a ginglymodiarthroidal synovial joint that is 

formed by the articulation of the mandibular condyle with the glenoid fossa and articular 

eminence of the squamous portion of the temporal bone. A biconcave fibrocartilaginous disc 

known as the TMJ disc separates the two bones (Beek et al., 2001b; Gallo et al., 2000).  This disc 

is essential for the smooth rotation and translation of the joint and is also vital for absorbing 

shock experienced during mastication (Beek et al., 2001a; Osborn, 1985; Tanaka and van Eijden, 

2003).  Due to the complex structure and mechanical function of the TMJ, there are numerous 

problems that can arise leading to Tempromandibular Joint Disorders (TMDs).  

It is estimated that TMDs affect nearly one in four Americans, with women being 

affected 9 times more frequently than men (Solberg et al., 1979).  Although no exact etiology has 

been determined for TMD, it frequently involves a spatial dislocation or defects in the TMJ disc 

(Brown et al., 2011).  A damaged disc often results in problems with mandible articulation, 

muscle/joint pain, and in extreme cases, crepitus due to bone on bone movement as a result of a 

perforated disc (Tanaka et al., 2008).  Unfortunately, the current standard of care for TMDs has 

questionable efficacy and has gone relatively unchanged since the 1970s.  Treatment for TMD 

generally begins with non-invasive treatments such as physical therapy or dental appliances.  If 

the non-invasive treatment is not effective and the disease progresses, the next step in treatment 

involves minimally invasive procedures such as joint arthrocentesis and arthroscopy.  Beyond 
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these minimally invasive procedures, the goal becomes to restore function (Tanaka et al., 2008).  

Procedures to do this involve discectomy and ultimately a total joint prosthesis.  Although both 

of these do provide a short-term solution, their long-term efficacy is questionable.   

To overcome deficiencies in these treatments, the goal over the past several decades has 

been to create a replacement for a damaged TMJ disc.  The first attempts utilized alloplastic 

devices such as proplast-teflon and silastic implants.  However, these devices failed due to 

particles being produced from the constant articulation, which in turn led to an adverse healing 

response.  This prompted the development of autogenous techniques, such as the use of the 

temporalis muscle flap.  While these procedures do provide positive short-term results, 

limitations such as donor site morbidity and resorption of the graft, negates their potential for 

long-term applications.  The failures of all of these techniques and approaches have provided 

insight as to the success criteria for an ideal implant material.  This material would provide a 

substrate for site-appropriate cell ingrowth, protect the condyle and fossa from degenerative 

changes, and not result in necrosis from the donor site (Brown et al., 2011). 

These specifications have made tissue-engineering approaches to joint preservation 

appealing over the past decade.  The goal of tissue engineering is to use natural or synthetic 

materials to induce the restoration or regeneration of the appropriate tissue in both morphology 

and function (Brown et al., 2011).  There are numerous techniques and methods that can be used 

as templates for tissue regeneration.  However, one that has successfully been used for a variety 

of applications is allogenic and xenogenic extracellular matrix (ECM).  The ECM can be 

harvested from a variety of tissue types, including the small intestine, urinary bladder, and 

dermis.  The ECM are then processed into 2 or 3-dimensional constructs which are then 

implanted to form site appropriate tissue.  A previous study by Brown et al. (2012) proved that 



3 

powdered urinary bladder ECM laminated between sheets of the same material could be formed 

into a pillow like device that resembles a rudimentary TMJ disc.  The results of this canine study 

showed regeneration of tissue that resembles the native TMJ disc.  Although this study was 

ground breaking, a quantitative temporal analysis of the remodeling was not performed, with 

measurements such as compressive stiffness or collagen content.  Furthermore, it is believed that 

the porcine model more closely resembles the human TMJ than the canine model, in terms of 

size and shape of the disc and condyle, the rotation and translation of the condyle during opening 

and closing, and the size ratio of the temporalis to the masseter. 

Therefore, this work will study the potential of a small intestine submucosa (SIS) ECM 

device to remodel constructively at different time points in the porcine TMJ, as assessed through 

mechanical and biochemical testing.  The characterization of the native articulating tissues of the 

TMJ is paramount to understanding the efficacy of any device intended to preserve the joint.  

Previous literature has characterized the porcine TMJ disc under unconfined uniaxial 

compression at high strain rates (Allen and Athanasiou, 2006).  However, the fast ‘instantaneous’ 

strain rate of 50% per second is technically difficult to perform due to overshoot of the 

mechanical testing apparatus.  Furthermore, there are no constitutive models for the compressive 

behavior at those high strain rates.  However, compressive behaviors at slow strain rates can be 

fit to biphasic tissue models (solid and liquid phase) to gain an understanding on the contribution 

of each phase.  For that reason, a slow strain rate will be used for this study as previously 

described by Hagandora et al. (2011) in the goat model.  In addition to determining the properties 

of the TMJ disc, it is also important to evaluate the properties of the tissue that the disc protects, 

the mandibular condylar cartilage.  The results of testing this tissue will show how well the 

remodeled ECM protects the condylar head when compared to the native tissue.  Previously, the 
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condylar cartilage had only been tested under dynamic compression, however, for this study the 

static compression protocol established by Hagandora et al. in 2011 will be followed (Tanaka et 

al., 2006).  Characterizing the properties of both the native condylar cartilage and the TMJ disc 

are essential in order to establish a baseline by which to compare remodeled ECM.   

In addition to the mechanical properties, the biochemical characterization of both the 

TMJ disc and condylar cartilage is also important in determining the efficacy of the device.   

This is because in order to prove that this device will be successful long-term, its biochemical 

composition should be similar to that of the native tissues.  Works by Almarza et al. (2005) have 

highlighted this importance and have provided the suite of biochemical markers that are 

necessary to accurately characterize TMJ tissues.  Almarza et al. (2005) validated previous 

claims that the TMJ is a relatively acellular tissue, is rich in collagen, and also has small amounts 

of glycosaminoglycans (GAGs).  These metrics will provide a means by which to evaluate the 

remodeled ECM as well as its effect on the surrounding tissues.  The presence of DNA would 

indicate cellularity, and we would expect a decrease over time as the ECM is remodeling.  GAGs 

in the TMJ are mainly found as highly branched polysaccharides attached to protein cores, 

proteoglycans, and due to the small amounts (~2% dry weight) found in the TMJ, these 

proteoglycans are believed to be involved in the control of collagen fiber size and packing 

(Almarza et al., 2006).  

The objective of this study is to evaluate the remodeling of an ECM scaffold in the TMJ 

through biomechanical and biochemical characterization in the porcine model at various time 

points, as well as the impact on the condyle cartilage.  Uniaxial compression testing will be done 

on native TMJ discs and mandibular condylar cartilage to determine strength and stiffness.  

These tests will be done at various strain levels since there is no widely agreed upon level of 
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strain that the TMJ disc would experience under normal physiological loading.  The native TMJ 

soft tissues will further be characterized through biochemistry, testing for DNA and GAGs.  

Specimen from 1, 3 and 6 months post implantation of an ECM scaffold will undergo the same 

compression and biochemical analysis as the native tissue.  It is hypothesized that ECM scaffold 

will remodel into a tissue with no statistical differences in mechanical or biochemical properties 

between the six month time point and the native disc.  Additionally,  no statistical difference will 

be seen between the six month ispilateral condyles and the native condyles in terms of 

compressive properties.  
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2.0  MATERIALS AND METHODS 

2.1 SPECIMEN PREPARATION 

Heads from 9-month old female pigs were obtained from a local abattoir to be used as 

native samples at n=9.  For the experimental group, 3-month old female pigs were implanted 

with ECM scaffolds and were allowed to heal for 1, 3, and 6 months. These animals underwent 

bilateral discectomy and then received a SIS-ECM 3D construct that is described in Brown et al. 

(2012) unilaterally.  At this stage of the study, we have remodeled ECM samples and 

corresponding condyles from 1 month post-op (n=2), 3 month post-op (n=3), and 6 month post-

op (n=2).  Condyles from the empty contralateral joint were also tested from 1 month post-op 

(n=5), 3 month post-op (n=5), and 6 month post-op (n=3).  

For all specimens, the right TMJ joint was dissected using an anterior approach.  Once 

the joints were dissected and TMJ discs excised, a 4mm dermal biopsy punch was used to 

remove a punch from the lateral portion of the intermediate zone, as well as from the 

corresponding location on the mandibular condylar cartilage.  Special attention was given to 

ensure no subchondral bone was attached to the sample.  The mandibular condylar cartilage 

sample, as well as the remaining disc, was immediately wrapped in gauze soaked in 0.1M PBS 

and frozen at -80°C until testing.  The disc punches were immediately embedded in optimal 

cuttent temperature comound and cryotomed to ~1mm in height to ensure parallel surfaces as 
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well as an appropriate aspect ratio for mechanical testing.  These samples were then wrapped in 

gauze soaked in PBS and frozen at -80°C until testing.  

2.2 BIOMECHANICAL TESTING 

2.2.1 Experimental Testing 

Before mechanical testing, samples were allowed to thaw and equilibrate in 37°C PBS 

for a minimum of one hour.  After the samples had equilibrated, the diameter was measured 

using digital calipers.  The sample was then adhered to an aluminum stage inside of an empty 

water bath using cyanoacrylate and preloaded to 0.02N using an MTS insight electromechanical 

testing system (MTS Systems Corp, Eden Prairie MN).  After obtaining the height of the sample, 

the water bath was filled with 0.1M PBS and heated to 37°C.  The platen was then lowered into 

the water bath down to within 0.1mm of the level previously determined.  The load at this point 

was recorded as buoyancy and the load cell zeroed.  The sample was then preloaded to 0.05N 

and allowed to relax for 30 minutes, and this distance between clamps was used as the specimen 

height.  After the preload, the sample underwent 10 cycles of preconditioning to 10% strain at a 

strain rate of 9% per minute.  Samples were then subjected to stress relaxation testing at 10%, 

20%, and 30% strain steps at a rate of 9% per minute and allowed to relax for 30 minutes.  Data 

was collected at 3Hz during ramping and 1Hz during relaxation.  After compression testing, the 

samples were frozen at -80°C.  Data was then analyzed using MATLAB® which provided peak 

stress and the tangent modulus (Hagandora et al. 2011).  Stress was calculated by taking the load 

and dividing it by the cross-sectional area of the sample.  Strain was calculated by plate-to-plate 



8 

displacement divided by specimen height after pre-load.  Peak stress was determined as the 

highest value of stress at each strain step.  The tangent modulus was determined as the slope of 

the curve at the last 20% of the linear portion of the stress-strain curve.  

2.2.2 Protocol Validation 

The first step in the mechanical testing procedure included validating the testing 

equipment as well as establishing a repeatable protocol.  Machine validation was first attempted 

by trying to reproduce known porcine TMJ disc compression data from Allen and Athanasiou 

(2006).  However, as previously mentioned, this proved technically difficult as the strain rate of 

50% per second resulted in the machine overshooting the desired strain level, producing 

inaccurate results.  The next attempt at validating the machine was to reproduce data in the goat 

TMJ model from Hagandora et al. (2010).  This study used a slow, reproducible strain rate of 9% 

per minute.  This strain rate was also found to be beneficial as it provides a way to characterize 

the contributions of the solid and liquid phases.  For this validation 6 skeletally mature goats 

were obtained from a local abattoir and the discs and condylar cartilage were excised.  Through 

this validation the proper sample preparation and testing procedures were determined and are 

employed in the current study. The results of this validation can be seen in Table 1.     

Further validation was performed using the canine model.  This was done to ensure the 

accuracy of the machine and reproducibility of the protocol.  For the canine validation, samples 

were tested and then compared to data from Brown et al. (2011).  After this successful 

validation, the current study commenced. 



9 

10	  %	  Strain	   20	  %	  Strain	   30	  %	  Strain	  

Peak	  Stress	  

(kPa)	  
Tangent	  Modulus	  

(kPa)	  
Peak	  Stress	  

(kPa)	  
Tangent	  Modulus	  

(kPa)	  
Peak	  Stress	  

(kPa)	  
Tangent	  Modulus	  

(kPa)	  Species	  

Hagandora	  
2011	  

Goat	   16±7	   304±141	   61±26	   729±267	   127±40	   1278±385	  

Goat	   13±5	   282±105	   73±20	   757±294	   151±49	   1560±409	  

Canine	   2.7±0.6	   23.4±6.0	   4.8±1.4	   68.8±23.8	   -‐	   -‐	  

Mortimer	  2014	  

Brown	  2012	  

Mortimer	  2014	  
Canine	   2.0±0.8	   18.6±6.3	   4.7±1.2	   60.1±19.7	   -‐	   -‐	  

Table 1-Study Validation- Mechanical testing results as published in Hagandora et al. 2011 and Brown et al. 2012 compared to the 
data obtained to validate the protocol and mechanical testing equipment for testing of TMJ disc tissues.   
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2.3 BIOCHEMICAL ANALYSIS 

Once all samples had been mechanically tested, they were placed in 5mL glass tubes and 

their weight was measured.  They were then lyophilized for 72 hours and re-measured so that a 

dry weight and percent water could be obtained.  These samples were then placed in a 4mL 

papain digest at 60°C for 28 hours.  After digest, samples were kept frozen until testing. 

Glycosaminoglycans were tested using a Blyscan™ dimethylmetheylene blue assay kit 

(Biocolor, Newtownabbey U.K.).  DNA content was measured using PicoGreen dsDNA 

quantitation assay kit (Molecular Probes, Inc., Eugene, Oregon).  

2.4 STATISTICAL ANALYSIS 

Both biomechanical and biochemical analyses for all the time points and native tissue 

were assessed through a one-way ANOVA’s with p<0.05 being statistically significant.  To 

determine differences among groups, a Tukey’s post-hoc test was performed.  When only two 

groups with statistical power were present, a two-tailed t-test was performed.  All statistics were 

calculated using Minitab®.  Statistics were only performed when at least 3 samples per group 

were available to testing. 
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3.0  RESULTS 

3.1 BIOMECHANICAL TESTING 

3.1.1 TMJ Disc 

The native and experimental TMJ discs were tested as previously described under 

uniaxial compression.  In terms of peak stress (Figure 1), the 1-month group (n=2) seems to have 

a lower value than native (n=9), and there seems to be a trend of increasing peak stress from 1 

month to 3 month, but more samples are needed for statistical comparison.  No statistically 

significant differences (p<0.05) in peak stress were seen between the 3-month group (n=3) and 

the native disc.  It also seems that the peak stress for the 6-month group is on par with the native 

tissue, but again more samples are needed.  Similar trends were observed when analyzing the 

tangent modulus (Figure 2).  Complete peak stress and tangent modulus data for the TMJ discs 

can be seen in Table 2.  



12 

Figure 1- TMJ Disc Peak Stress-Peak stresses are shown for 10%, 20%, and 30% strain rates 
on the TMJ disc of  1 month post implant pigs (n=2),  3 month post implant pigs (n=3), six 
month post implant pigs (n=2) and native pigs (n=9).  No statistical significant differences were 
observed among groups.  
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Figure 2- TMJ disc Tangent Modulus- Tangent moduli are shown for 10%, 20%, and 30% 
strain rates on the TMJ disc of one month post implant pigs (n=2), three month post implant pigs 
(n=3), six month post implant pigs (n=2), and native pigs (n=9).  No statistical significant 
differences were observed among groups.  
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10	  %	  Strain	   20	  %	  Strain	   30	  %	  Strain	  

Peak	  Stress	  (kPa)	   Tangent	  Modulus	   Peak	  Stress	  (kPa)	   Tangent	  Modulus	   Peak	  Stress	  (kPa)	   Tangent	  Modulus	  

1	  Month	  Pig	   6.19±4.35	   143.12±130.91	   31.36±25.97	   427.26±339.80	   67.46±49.42	   760.91±422.42	  

3	  Month	  Pig	   8.19±2.74	   202.75±79.78	   53.14±20.63	   757.72±294.86	   121.89±26.87	   1360.38±474.61	  

Native	  Pig	   10.05±3.92	   208.57±96.12	   45.04±21.50	   604.50±285.66	   105.19±38.92	   1169.27±376.25	  

Table 2- Mechanical testing data for 1 month, 3 month, and native TMJ discs
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3.1.2 Ipsilateral Condylar Fibrocartilage 

The condylar fibrocartilage from the treated side was harvested and mechanically tested 

as previously described and analyzed for peak stress and tangent modulus.  In terms of peak 

stress (Figure 3), there seems to be a trend of increased peak stress at all time points (n<3) when 

compared to the native specimens at 10%, 20%, and 30% strain levels.  The three-month post op 

group had a statistically significant 100% increase in peak stress at the 30% strain level when 

compared to the native tissue (p<0.05) (Figure 3).  Similar trends were seen with the tangent 

modulus, with an apparent increase stiffness at all time points (n<3) when compared to the native 

specimens at 10%, 20%, and 30% strain levels (Figure 4).  The three-month post op group had a 

significant increase (p<0.05) in tangent modulus of 132% when compared to the native tissue at 

the 30% strain level. 
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Figure 3-Condylar Cartilage Peak Stress- Peak stresses are shown for 10%, 20%, and 30% 
strain rates on the ipsilateral condylar cartilage of 1 month post implant pigs (n=2),  3 month post 
implant pigs (n=3), 6 month post implant pigs (n=2) and a native pigs (n=9).  Statistical 
significance between the 3 month and native pigs can be seen at the 30% strain level.   
The * signifies a statistical difference between native and the three-month post op group within 
the respective strain step.  
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Figure 4-Condylar Cartilage Tangent Modulus- Tangent modulus is shown for 10%, 20%, 
and 30% strain rates on the ipsilateral condylar fibrocartilage of  1 month post implant pigs 
(n=2),  3 month post implant pigs (n=3), six month post implant pigs (n=2) and a native pigs 
(n=9). Statistical significance between the 3 month and native pigs can be seen at the 30% strain 
level. The * signifies a statistical difference between native and the three-month post op group 
within the respective strain step.  
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3.1.3 Contralateral Condylar Fibrocartilage 

The contralateral fibrocartilage was mechanically tested with an identical protocol to the 

aforementioned ipsilateral condylar cartilage.  At the one and three-month time points, no 

statistical significant differences (p<0.05) were detected in peak stress when compared to native 

at all strain levels (Figure 7).  At the six-month post implant time point, statistically significant 

differences were observed when compared to the native specimens at the 20% and 30% strain 

levels, with increases of 163% and 217%, respectively (p<0.05).   

When the tangent modulus was analyzed, a trend similar to that seen in the peak stress 

was observed (Figure 8).  At the one and three month post implant times there were no 

statistically significant (p<0.05) differences to native within each strain level.  At the six-month 

post implant time point, however, statistical differences (p<0.05) were observed at the 20% and 

30% strain levels when compared to the native tissue with increases of 235% and 244%, 

respectively (p<0.05).    
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Figure 5- Condylar Cartilage Peak Stress- Peak stresses are shown for 10%, 20%, and 30% 
strain rates on the contralateral condylar cartilage of 1 month post implant pigs (n=5),  3 month 
post implant pigs (n=5), 6 month post implant pigs (n=3) and a native pigs (n=9).  Statistical 
significance between the 6 month and native pigs can be seen at the 20% and 30% strain levels.  
The * signifies a statistical difference between native and the six-month post op group within the 
respective strain step. 
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Figure 6- Condylar Cartilage Tangent Modulus- Tangent Modulus is shown for 10%, 20%, 
and 30% strain rates on the contralateral condylar cartilage of 1 month post implant pigs (n=5),  
3 month post implant pigs (n=5), 6 month post implant pigs (n=3) and a native pigs (n=9).  
Statistical significance between the 6 month and native pigs can be seen at the 20% and 30% 
strain levels.  The * signifies a statistical difference between native and the six-month post op 
group within the respective strain step. 
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3.2 BIOCHEMICAL TESTING 

3.2.1 Glycosaminoglycans 

As previously mentioned, the TMJ disc and both ipsilateral and contralateral condylar 

cartilage samples underwent biochemical analysis to determine the glycosaminoglycan content at 

the varying time points (Figure 9).  The native TMJ disc had a glycosaminoglycan content of 

0.7±0.3% by dry weight.  There were no statistical differences (p<0.05) observed amongst time 

points.  The native condylar cartilage had a glycosaminoglycan content of 1.8±0.7% by dry 

weight.  Again, there were no statistically significant differences (p<0.05) amongst time points.  

In the contralateral condylar cartilage, there were statistically significant increases (p<0.05) in 

GAG when comparing 1-month to 3-month and native, of about 205%.   
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Figure 7- Glycoasaminioglycan Content-There were no statistically significant differences in 
the amount of GAG seen amongst the groups for the TMJ disc, or ipsilateral condylar cartilage.  
The one month post-op contralateral cartilage, however, had significantly (p<0.05) more GAG 
by dry weight than the native condylar cartilage.  The numbers above each bar signify the 
number of samples represented.  An * indicates a statistically significant difference between the 
sample and the respective native tissue.  
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3.2.2 DNA Content 

A Picogreen® assay was used to determine the DNA content of both the TMJ discs as 

well as ipsilateral and contralateral condylar cartilage (Figure 10).  The native TMJ disc was 

found to have a DNA content of 0.01±0.004% by dry weight.  At the one-month time point, there 

was a general trend of increased DNA content, but more samples are needed for statistical 

comparison.  At the three-month time point, there no statistically significant differences found 

when compared to native.  The native condylar cartilage had 0.07±0.02% DNA by dry weight 

(Figure 10).  The one month post implant cartilage seem to have a lower DNA content of 

0.04±0.01% by dry weight when compared to native, but more samples are needed for statistical 

comparison.  The three month post implant cartilage had a DNA content of 0.03±0.01% by dry 

weight, statistically less (p<0.05) than the native condylar cartilage.  On the contralateral side, 

DNA content was relatively consistent amongst samples (Figure 10), with no statistical 

differences (p<0.05) observed amongst the groups.  
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Figure 8-DNA Content- The three month remodeled TMJ disc had a significantly greater 
(p<0.05) percentage of DNA by dry weight than did the native TMJ disc.  Conversely, the three 
month post-op ipsilateral condylar cartilage had a significantly lower percentage of DNA by dry 
weight than the native condylar cartilage.  There were no statistical differences amongst the 
contralateral condylar cartilage groups.   The numbers above each bar signify the number of 
samples represented.  An * indicates a statistically significant difference between the sample and 
the respective native tissue.  
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4.0  DISCUSSION 

4.1 MECHANICAL TESTING 

The results of the biomechanical testing indicate that SIS-ECM has promise as an 

inductive template for constructive tissue remodeling after discectomy.  The current pig model 

with a xenogenic canine SIS-ECM implant has provided insight that was not available in 

previous studies (Brown et al. 2011, Brown et al. 2012).  This study starts to quantify the 

temporal remodeling of the ECM, and it effect on the condyle cartilage, from one to three to six 

months.  Of note, this study has shown that in the porcine model, there seems to be little 

differences in tangent modulus and peak stress when the native tissues are compared to the one 

and three month post remodeled matrix.  This suggest that after only one month, the acellular 

biologic scaffold remodels into a tissue which may be capable of functioning as a disc analog.  

Although the device does seem to remodel in constructive manner, it is important to 

study the effect the device has on the underlying condylar cartilage.  The results suggest that at 

all time points, the condylar cartilage seems to have a higher peak stress at all strain levels and 

might be stiffer than the native condylar cartilage.  If these findings hold true when more 

samples are analyzed, it would suggest that the condyle is going through a healing response as 

well.   
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In the contralateral joint, where no ECM was placed, the fibrocartilage of the remaining 

condyle does not appear normal.  This joint was left empty to provide a control that demonstrates 

that the TMJ disc does not regenerate naturally.  It also provides a metric by which to measure 

the damage done by the loss of congruity and new stress distributions.  The peak stress and 

stiffness of the fibrocartilage seems to be higher than the ipsilateral joint.  These trends seem to 

suggest that the remodeled ECM may protect the articulating surfaces, manifested as a less acute 

of stiffening the condylar fibrocartilage.  

4.2 BIOCHEMICAL TESTING 

Much like the mechanical data, the biochemical analysis indicates that SIS-ECM shows 

promise as an inductive scaffold for constructive tissue remodeling after a discectomy.  The 

native data collected was consistent with that of previous literature, validating the methods of the 

study (Almarza et al. 2006, Hagandora et al. 2012).  At the three month post-op time point, the 

implanted device displayed a glycosaminoglycan content that was not statistically different from 

the native tissue, indicating a rapid remodeling process.  Additionally the condylar cartilage on 

the ipsilateral side remained largely unaffected, with similar content to the native tissue.  This 

consistency provides evidence that the remodeling SIS-ECM device protects the condylar head 

and preserves its properties.  The contralateral condylar cartilage, however, displayed a 

noticeable and statistically significant increase in the amount of glycoasaminoglycans at the one 

month post implant time point when compared to both the native and three month post implant 

groups.   
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In addition to the insight provided by glycosaminoglycan content, DNA is also a valuable 

property in assessing remodeling tissue.  This is because DNA presence indicates cellularity, 

which, in an acellular tissue such as the TMJ disc, indicates tissue remodeling.  Therefore, the 

significantly greater quantity of DNA seen at the three month post-op time point indicates that 

remodeling is still ongoing in the tissue.  

4.3 LIMITATIONS AND FUTURE DIRECTIONS 

Although this study did seem to provide support for positive remodeling of the SIS-ECM 

in the TMJ, there were several limitations to this study.  The first major limitation is the lack of 

tensile testing to mechanically characterize the tissue.  The TMJ disc has been proven to function 

primarily under tension, leaving a large gap in our knowledge of native and constructively 

remodeled tissues (Detamore and Athanasiou, 2003).  Additionally, the lack of collagen 

biochemistry furthers this lack of understanding of the discs tensile properties and is an 

important aspect to quantifying any tensile properties.  

In the switch from the canine to the porcine model, many new procedures and approaches 

have been tailored as differences in the models are being found.  The porcine model thought to 

be one of the better large animal models of the human TMJ, however, no previous studies have 

involved an invasive in vivo component (Allen and Athanasiou, 2006; Brown et al. 2012).  When 

performing surgery on the porcine model, Drs. Chung and Brown have noted many differences 

to the canine model.  One such difference is the size of the animals.  An ideal animal model for 
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the implant of the SIS-ECM device would be skeletally mature, much like the majority of human 

TMD patients (Solberg et al., 1979).  However, the experience gained in this study has shown 

that skeletally mature pigs weight in at over 200kg, making them hard to handle.  Furthermore, 

some of the morphology of the pig is also different, in which the zygomatic arch grows over the 

joint space throughout ontogeny.  With the zygomatic arch covering the joint, accessing the disc 

for removal and the subsequent device implant is difficult without inflicting excessive damage to 

the surrounding area.   

As a result, the study was performed on juvenile pigs as their smaller size of roughly 

40kg is much more manageable for the surgeons.  Additionally, the zygomatic arch has not 

completely covered the joint, making accessing the joint space possible.  As such, we are now 

introducing a new variable where growth of the animal is a factor, as pigs double their weight 

within the first two months after the operation (Corson et al. 2008).  This growth adds an 

additional layer of complexity to the remodeling of the tissue that would not be seen in skeletally 

mature dogs. 
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5.0  CONCLUSION 

This study suggests through mechanical and biochemical testing that the SIS-ECM 

scaffolds do constructively remodel into a disc-like tissue.  However, although the results are 

promising, more samples need to be tested and there is still a need for tensile testing and other 

measures before the true impact of ECM technology can be elucidated in the TMJ. 
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