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SOLUTION CAPABILITIES AND QUANTIFY UNCERTAINTY FOR

INVERSE PROBLEMS IN MECHANICS

Bahram Notghi, PhD

University of Pittsburgh, 2014

Computational approaches to solve inverse problems can provide generalized frameworks for

treating and distinguishing between the various contributions to a system response, while

providing physically meaningful solutions that can be applied to predict future behaviors.

However, there are several common challenges when using any computational inverse me-

chanics technique for applications such as material characterization. These challenges are

typically connected to the inherent ill-posedness of the inverse problems, which can lead to

a nonexistent solution, non-unique solutions, and/or prohibitive computational expense.

Toward reducing the effects of inverse problem ill-posedness and improving the capabil-

ity to accurately and efficiently estimate inverse problem solutions, a suite of computational

tools was developed and evaluated. First, an approach to NDT design to maximize the

capabilities to use computational inverse solution techniques for material characterization

and damage identification in structural components, and more generally in solid continua,

is presented. The approach combines a novel set of objective functions to maximize test

sensitivity and simultaneously minimize test information redundancy to determine optimal

NDT parameters. The NDT design approach is shown to provide measurement data that

leads to consistent and significant improvement in the ability to accurately inversely charac-

terize variations in the Young’s modulus distributions for simulated test cases in comparison

to alternate NDT designs. Next, an extension of the NDT design approach is presented,

which includes a technique to address potential system uncertainty and add robustness to
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the resulting NDT design, again in the context of material characterization. The robust

NDT design approach uses collocation techniques to approximate the modified objective

functionals that not only maximize the test sensitivity and minimize the test information re-

dundancy, but now also maximize the test robustness to system uncertainty. The capability

of this probabilistic NDT design method to provide consistent improvement in the ability to

accurately inversely characterize variations in the Young’s modulus distributions for cases

where systems have uncertain parameters, such as uncertain boundary condition features, is

again shown with numerically simulated examples. Lastly, an approach is presented to more

directly address the computational expense of solving an inverse problem, particularly for

those problems with significant system uncertainties. The sparse grid method is used as the

foundation of this solution approach to create a computationally efficient polynomial approx-

imation (i.e., surrogate model) of the system response with respect to both deterministic and

uncertain parameters to be used in the inverse problem solution process. More importantly,

a novel generally applicable algorithm is integrated for adaptive generation of a data en-

semble, which is then used to create a reduced-order model (ROM) to estimate the desired

system response. In particular, the approach builds the ROM to accurately estimate the

system response within the expected range of the deterministic and uncertain parameters,

to then be used in place of the traditional full order modeling (i.e., standard finite element

analysis) in constructing the surrogate model for the inverse solution procedure. This com-

putationally efficient approach is shown through simulated examples involving both solid

mechanics and heat transfer to provide accurate solution estimates to inverse problems for

systems represented by stochastic partial differential equations with a fraction of the typical

computational cost.
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1.0 OPTIMAL NONDESTRUCTIVE TEST DESIGN FOR MAXIMUM

SENSITIVITY AND MINIMAL REDUNDANCY FOR APPLICATIONS IN

MATERIAL CHARACTERIZATION

1.1 ABSTRACT

An approach to nondestructive test (NDT) design for material characterization and damage

identification in structural components, and more generally in solid continua, is presented

and numerically tested. The proposed NDT design approach is based on maximizing a

measure of the sensitivity of the test responses to changes in the material properties of the

structure while also maximizing a measure of the difference in the response components.

As such, the optimally designed NDT provides significant improvement in the the ability

to solve subsequent inverse characterization problems by extracting the maximum amount

of non-redundant information from the system to increase the inverse solution observability.

The NDT design approach is theoretically able to include any and all possible design aspects,

such as the placement of sensors and actuators and determination of actuation frequency,

among others. Through simulated test problems based on the characterization of damage in

aluminum structural components utilizing steady-state dynamic surface excitation and local-

ized measurements of displacement, the proposed NDT design approach is shown to provide

NDT designs with significantly higher measurement sensitivity as well as lower information

redundancy when compared to alternate test approaches. More importantly, the optimized

NDT methods are shown to provide consistent and significant improvement in the ability

to accurately inversely characterize variations in the Young’s modulus distributions for the

simulated test cases considered.
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1.2 INTRODUCTION

There has been a substantial amount of work to-date on a variety of computational inverse

mechanics approaches for the characterization, design, and/or control of complex systems in

several fields of science and engineering [4, 6, 8, 10, 62]. In particular, techniques for inverse

characterization of material properties in solids from nondestructive testing (NDT) data are

of great significance in areas spanning medicine [2] to structural engineering [35], since ma-

terial properties provide valuable insight about the health of the system, whether it is tissue

or steel. One of the more common computational approaches to solve these inverse char-

acterization problems is to cast them as optimization problems, in which a computational

representation (e.g., finite element) is created of the NDT performed, the representation is

parameterized with respect to the unknown material properties (to be characterized), and

a nonlinear optimization method is employed to determine the estimate of the material

parameters that minimizes the difference between the output of the computational represen-

tation and the measurements of the NDT. Such computational inverse solution methods are

typically generally applicable, providing a means to determine a wide variety of properties

from a wide variety of nondestructive testing methods. However, there are several common

challenges when using any computational inverse mechanics techniques, typically regarding

ill-posedness of the inverse problems, which can lead to a nonexistent solution, nonunique

solutions, and/or excessive computational expense for the optimization algorithm [18].

One effective approach to overcome, or at least relieve some of the ill-posedness of non-

destructive evaluation (NDE) problems is to address the complementary inverse problem of

optimal design of the NDT method. In other words, if the NDT method is controllable or

modifiable to any degree, aspects such as the actuation and measurement locations, direc-

tions, and frequencies could be identified using the same or similar tools as used for the NDE

solution procedure to somehow optimize the solvability/observability of the NDE problem

resulting from the NDT method. Moreover, NDT design can be an important step for the

feasibility of implementing a particular NDT system by optimizing the amount of resources

needed to characterize the system, subject to monetary cost, time, and/or accessibility con-

straints.
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A large amount of focus has been placed in recent years on developing methods for test

design, often specifically sensor optimization, for structural health monitoring and NDE

approaches One of the most important features of these methods is the metric used to

define the quality of a given sensor distribution. The existing methods are diverse and have

shown mixed results, including those relying on ad hoc approaches such as maximizing the

contribution of the sensor locations to the mode shapes of the structure [38], as well as

statistical or probabilistic approaches, such as those that minimize the information entropy

of the system that corresponds to the uncertainty of the model parameters [64], those that

attempt to maximize the probability of detection for the system [11, 32]. The methods

to then employ these metrics to improve NDT quality are also varied, including system

identification strategies that iteratively discard or include candidate sensors for the NDT

to optimally represent the target metrics [74, 43, 44], as well as traditional optimization

strategies that create an objective function directly relating to the NDT quality metric and

use iterative optimization to minimize or maximize the objective function [68, 91].

In the majority of cases, the existing sensor optimization methods are specialized (i.e.

may not be extensible) to the intended quantity to be identified and the nature of the ap-

paratus in which they can be used. Furthermore, the optimization capabilities are typically

limited to the number of sensors and their corresponding locations, with little attention paid

to actuation location, orientation, and/or excitation frequency and duration. Alternatively,

Raich and Liszkai [67] presented a potentially generalizable approach for NDT design that

relies on maximizing the total damage sensitivity of the frequency response functions col-

lected by a set of sensors while simultaneously minimizing the number of sensors employed.

Although only shown to be applied to frequency response function-based NDE of beam and

frame structures, the concept of maximizing sensitivity should theoretically be applicable to

a wide range of systems for NDE applications, physical processes, and NDT excitation and

sensing options.

The current work presents an approach to extend the concept of maximizing damage sen-

sitivity for optimal NDT design in a generally applicable way for NDE and material char-

acterization problems in continua. Furthermore, the approach presented also incorporates

an additional objective to prevent redundancy of the test information to further maximize

3



the resulting inverse solution capabilities for the designed NDT. In the following section

a general inverse characterization solution framework is outlined. Then, the method for

optimal NDT design to maximize inverse characterization solution capability is presented.

Lastly, simulated examples relating to characterization of semi-localized variations in the

Young’s modulus distribution in structures from frequency-response-based NDT are pre-

sented, including analysis of the NDT design metrics relating to sensitivity and information

redundancy and inverse characterization results, which is followed by the concluding remarks.

1.3 INVERSE PROBLEM FORMULATION AND SOLUTION STRATEGY

Although the concepts presented herein are easily generalizable, which is one of the key pro-

posed benefits, to provide context, the present work focuses on NDE of material properties in

structural components using frequency-response-based NDT methods. Potential application

of this NDE approach could include detecting damage in manmade structural components,

using a common assumption that the type of damage to be identified is manifested in changes

to the material properties such as material stiffness [35, 30], or determining disease-related

changes in material properties of biological structures [3]. As such, for a given NDT the in-

verse characterization solution approach (depending on implementation and application also

referred to as model updating or by other monikers) can be cast as an optimization problem

to minimize an objective functional that quantifies the difference between the experimental

measurements for the structure and those predicted numerically, such as

J(E(~x)) =

∥∥∥∥Rndt(~γk)−Rsim(~γk, E(~x))

Rndt(~γk)

∥∥∥∥
k

, (1.1)

where E(~x) is the material property (e.g., Young’s modulus) distribution to be determined,

~x ∈ Ω is the spatial position vector in the domain of the structure Ω, Rndt is the measured

response of the structure for the NDT, Rsim is the simulated estimate to the structure’s

response from the NDT for a given material property estimate, {~γk}NT

k=1 is the set of all

NDT combinations (e.g., excitation frequency, sensor location, actuator location, orientation
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of sensors etc.), assuming the NDT produces a set of discrete measurements with a total

number of NDT measurement combinations of NT , and ‖.‖k is some suitable metric norm

that combines the contributions of each measurement to produce the total error functional

J .

Commonly, approaches for computational inverse mechanics will rely on the traditional

numerical analysis tools such as finite element or boundary element methods to produce the

simulated estimates of the structure’s response from the NDT (often referred to as solv-

ing the “forward problem”), with the finite element method used for the examples herein

[34, 56]. Of critical importance to the inverse procedure is that the computational forward

modeling both accurately and efficiently represents the true physical behavior of the system.

Without accurate representation, an inverse solution may be unattainable, or worse yet,

any apparent solution may be dramatically incorrect. Yet, the typical practical limitation

in the application of the inverse approaches is the computational expense associated with

this numerical modeling of the system to be evaluated. Similarly, it is important that the

nonlinear optimization applied to minimize the objective functional shown in 1.1 is able

to traverse the optimization search space, which is typically significantly non-convex, both

efficiently and consistently to accurately estimate the unknown properties of the structure.

Potential optimization techniques are generally lumped into two categories: gradient-based

[59, 54] and non-gradient-based [21, 37, 76], with each having certain benefits and short-

comings. For instance, gradient-based methods typically converge to a solution estimate

in relatively few iterations, but are susceptible to convergence to local (i.e., inaccurate) so-

lutions if initialized far from the global solution. In contrast, non-gradient-based methods

are generally more capable of consistently identifying global solutions, but typically require

significantly more iterations (i.e., evaluations of the simulated structural response) than

gradient-based methods, which can become computationally prohibitive. For instance, for

just the single example computational inverse mechanics application of damage identifica-

tion/characterization, several examples exist in the literature for a variety of structure types

with a variety of optimization approaches utilized (gradient, non-gradient, heuristic, etc.)

[81, 26, 48, 16].

5



However, regardless of the optimization method, it is critically important that the error

functional 1.1, and therefore the measured response of the structure for the chosen NDT is

sensitive to changes in the material properties to be determined (E(~x)) if the search process

is expected to identify an accurate inverse approximation. For gradient-based methods, the

sensitivity obviously directly affects the search process in that the gradient of the error func-

tional with respect to the unknown properties drives the search direction and magnitude.

Moreover, although non-gradient-based methods do not directly rely on the sensitivity to

drive the search, there is still a universal need to have an objective functional that varies

significantly (i.e., is sensitive) with respect to the unknown properties throughout the search

space to provide information that ultimately directs the optimization towards a solution, if

nothing else, to maintain an efficient and consistent search process.

1.4 OPTIMAL DESIGN FOR NON DESTRUCTIVE TEST

Based on the observation that response sensitivity is critical to inverse solution capability, a

natural hypothesis is that choosing the NDT that somehow maximizes the sensitivity of the

response measurements with respect to changes in the unknown properties will maximize the

capability to then inversely characterize the material properties with that NDT. An example

of this concept of maximizing sensitivity for optimal NDT was recently employed by Raich

and Liszkai [67], in which sensor and excitation locations were determined that maximized

the cumulative sensitivity of the responses with respect to damage to all structural elements

to design frequency response function-based NDT for beam and frame structures. Similarly

to this previous work, in a general sense, the complementary inverse problem of designing the

optimal NDT can be cast as an optimization problem to maximize a functional that quantifies

the change in the measured response with respect to the unknown structural properties of

the following form

P
(
{~γk}NT

k=1

)
=
∥∥DER

sim(~γk, E(~x))
∥∥

Ω,k
, (1.2)
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where DER
sim is some form of the derivative or the gradient of the response functional with

respect to the material properties and ‖.‖ is now some suitable metric norm that combines

the sensitivity contributions of each measurement with respect to the material properties

over the entire domain of the structure (Ω) to produce the total sensitivity functional P .

While maximizing the functional shown in 1.2 addresses the sensitivity objective, in

the general sense and particularly for cases in which candidate locations of sensors and

actuations are continuously (or nearly continuously) distributed throughout the domain of

the structures being considered, maximizing P alone may lead to redundant measurement

information, and ultimately a poor use of resources. For example, the work by Stephan

[78] proposed a method to select sensor locations by maximizing the observability of mode

shapes, but showed that it was also necessary to simultaneously minimize the information

shared by a collection of sensors, otherwise the sensors would be clustered and not reasonably

distributed throughout the structure. Following this concept of reducing shared information,

a second functional can be formed that quantifies the similarity of the response measurements

in terms of orthogonality (i.e., responses are less similar if they are closer to orthogonal) as

θi,j = arccos

(
〈Rsim(~γi, E(~x)), Rsim(~γj, E(~x))〉
‖Rsim(~γi, E(~x))‖ ‖Rsim(~γj, E(~x))‖

)
, ∀ i, j ∈ [1, NT ], i 6= j (1.3)

where 〈., .〉 is a suitable inner product operator (e.g., standard vector dot product if the re-

sponses are simply a discrete vector of sensor measurements at a set of excitation frequencies)

and ‖.‖ can be defined as

∥∥Rsim(~γi, E(~x))
∥∥2

= 〈Rsim(~γi, E(~x)), Rsim(~γi, E(~x))〉. (1.4)

As such, the solution of the following multi-objective optimization problem should yield

potential designs for NDT aspects, including sensor and actuator locations, orientations,
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and frequencies, along with any other conceivable aspect, to produce tests that are maxi-

mally sensitive to changes in the material properties to be determined and simultaneously

minimally redundant

Maximize
{~γk}

NT
k=1


P
(
{~γk}NT

k=1

)
Minimum
i,j∈[1,NT ]

i 6=j

θi,j
. (1.5)

Note that maximizing the minimum value of the similarity metric, θi,j, is equivalent to

maximizing the dissimilarity over the entire set of NDT measurement combinations.

A final important point is that the material properties to be determined (E(~x)) must

be initialized (i.e., set to some chosen value) in order to solve the multi-objective NDT

optimization problem in 1.5. There is not necessarily one preferred choice for the initial

properties, and these chosen properties will affect the outcome of the NDT design to some

degree. However, for many NDE problems some value(s) for initial (i.e., healthy) properties

are known or can be assumed within a reasonable accuracy for the structure. Furthermore,

many applications seek to determine relatively subtle deviations of the structural properties

from this healthy state (e.g., structural damage detection), and therefore, utilizing these

initial healthy structural properties for the solution of the NDT optimal design problem

outlined above can be a natural selection.

1.5 EXAMPLES AND DISCUSSION

To display the potential capabilities and challenges of the approach presented for optimizing

the NDT through maximization of sensitivity and minimization of redundancy for improved

inverse material characterization capabilities, two simulated case studies were considered

regarding characterization of material stiffness distribution in aluminum structures as could

be related to possible damage. The first problem consisted of a simulated cantilever beam

with an unknown distribution of stiffness along the length of the beam, while the second

problem consisted of a simulated plate structure with unknown semi-localized reductions

in stiffness throughout the plate domain. In both case studies the NDT was first designed
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using the proposed optimization strategies and compared to select design alternatives. Then

the characterization problem was solved with the optimally designed NDT as well as the

design alternatives using a fixed number of finite element analyses for each trial to test the

potential performance improvement due to the NDT design optimization strategy. Due to the

stochastic nature of the optimization inverse solution strategy, the inverse characterization

solution procedure was repeated five times for every trial of each NDT case to quantify the

accuracy and consistency of the methods.

1.5.1 Nondestructive Testing and Forward Problem

As discussed previously, although the concepts presented are generally applicable, for context

the examples considered herein consist of structures tested with frequency-response-based

NDT. Directly measuring the frequency response (e.g., displacements, accelerations, etc.) of

a structure can provide substantial information for the resulting NDE problem, while also

relieving the need for intermediate processing steps required by alternate methods such as

modal analysis approaches [57]. Specifically for the examples herein, the NDT consisted

of a localized harmonic actuation applied to the surface of the structure over a range of

frequencies and with the resulting steady-state harmonic displacement amplitude measured

with a set of discrete sensors for each actuation frequency. Displacement measurement was

chosen solely based upon simplicity of implementation, and although not a particularly

common approach, displacement measurement could be acquired with techniques similar to

those shown in [75, 90]. As such, the potential NDT design parameters included the set of

actuation frequencies, {ωk}Nw

k=1, the actuation location (assuming the force acts normal to

the surface), ~XF , the set of sensor locations,
{
~XSk

}Ns

k=1
, and the set of corresponding sensor

orientations, {αk}NS

k=1.

For simplicity the actuation was assumed to be reasonably represented by an applied

harmonic pressure force to the surface of the structure being analyzed. For both generating

the experimental data and simulating the forward problem during the inverse solution process

the structures were assumed to behave linearly with respect to the NDT described, and

therefore be defined by steady-state dynamic solid mechanics and analyzed using the finite
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element method. The healthy (i.e., undamaged) material parameters were assumed to be

defined by a Young’s modulus of EH = 69GPa, a Poison’s ratio of ν = 0.3, and a density

of ρ = 2700kg/m3. The damage to be characterized was assumed to be manifested as a

reduction in the Young’s modulus, while all other material properties remained constant

(note that Young’s modulus reduction for approximating the effects of damage in solids and

structures has been previously utilized in a variety of applications [27, 50, 5, 24, 29]). To

reduce the computational expense, both case studies considered relatively thin structures

that were excited and responses measured in plane so that the plane stress assumption

could be employed and the simulations reduced to two-dimensions. Lastly, to add realism

to the simulated examples and to partially relieve the inverse crime inherent in simulated

experiments, 1% Gaussian white noise was added to all responses for the simulated NDT

prior to applying the inverse characterization procedure as

Rndt = Rndt
0 (1 + 0.01ℵ) , (1.6)

where Rndt
0 is the original simulated test response without noise and ℵ is a normally dis-

tributed random variable with zero mean and unit variance.

For implementation of the NDT optimization procedure (as described by 1.5), the do-

mains of each structure were discretized into elements, the beam only along its length and

the plate along its height and width, and the Young’s modulus of the jth element labeled as

E(~xj). Although arbitrary, the size of the elements was taken to approximately match the

size of the converged discretization (i.e., finite element mesh) used to accurately simulate

the forward problems (although only one direction was discretized for the Young’s modu-

lus of the beam in contrast to the two-dimensional elements of the forward problem). In

addition, for simplicity, finite difference was used to calculate the change in the measured

response with respect to the Young’s modulus at an element. Thus, a discretized form of

the sensitivity metric 1.2 could be defined as

P =
Nw∑
i=1

NS∑
j=1

Ne∑
k=1

Sijk , (1.7)
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with

Sijk =

∣∣∣∣∣∣ Rsim(ωi, ~XSj, αj, ~XF , EH)−Rsim(ωi, ~XSj, αj, ~XF , EDk)

1
2

(
Rsim(ωi, ~XSj, αj, ~XF , EH) +Rsim(ωi, ~XSj, αj, ~XF , EDk)

)
∆E

∣∣∣∣∣∣ , (1.8)

where Ne is the total number of elements used for the discretization of Young’s modulus,

|.| is the absolute value, EH is the initial (healthy) Young’s modulus distribution, and EDk

is the Young’s modulus distribution with the Young’s modulus of the kth element reduced

by a fixed Young’s modulus perturbation value of ∆E. Lastly, the discretized form of the

measurement similarity metric, which was particularly focused on ensuring diversity in the

sensor locations, was defined as shown in 1.3 and 1.4 with

〈Rsim(~γi), R
sim(~γj)〉 =

Nw∑
k=1

Rsim(ωk, ~XSi, αi, ~XF , EH) ·Rsim(ωk, ~XSj, αj, ~XF , EH) , (1.9)

In general, the solution to the multi-objective optimization problem outlined by 1.5 can

be described by a set of non-dominated solutions with respect to both objectives (i.e., Pareto

front). Therefore, a criteria is needed for selecting the one solution from the Pareto front

that will be implemented as the optimal NDT. For the present work the one solution for the

NDT design was selected using the “nearest to ideal point” method. The nearest to ideal

point method selects the point that has the minimum euclidean distance to an imaginary

“ideal point”, which has the optimal value for each objective function separately [46, 45].

1.5.2 Inverse Characterization Problem

Once the NDT was designed, test distributions of Young’s modulus were selected and simu-

lated experimental test measurements were generated, including the artificial noise discussed.

Then, the computational inverse solution approach discussed in Section 1.3 was applied to

estimate the Young’s modulus distribution as if it were unknown, and thus, the capability to

accurately solve the inverse characterization problem for the chosen NDT was quantified. In
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particular, for the examples presented, the objective functional employed to measure the dif-

ference between the “experimental” measurements and those predicted by the optimization

simulations was defined as

J =
1

NwNS

Nw∑
k=1

NS∑
i=1

∣∣∣∣∣Rndt(ωk, ~XSi, αi, ~XF )−Rsim(ωk, ~XSi, αi, ~XF , E(~x))

Rndt(ωk, ~XSi, αi, ~XF )

∣∣∣∣∣ . (1.10)

Lastly, the surrogate-model accelerated random search (SMARS) optimization algorithm [18]

was applied to identify the Young’s modulus distribution that minimizes 1.10, and therefore,

estimate the solution to the inverse characterization problem. The SMARS algorithm itera-

tively combines the global random search algorithm with a locally applied surrogate model

method, and provides an optimization technique that maintains global search capabilities

over relatively large parameter domains while having a relatively low computational expense.

1.5.3 Example 1 - Beam

The first case study considered a 1m × 0.2m × 0.02m aluminum cantilever beam, and the

damage (i.e., change in Young’s modulus) to be inversely determined by the NDT was as-

sumed to solely vary along the length of the beam and be constant in the cross-sectional

directions. The beam was modeled as a continuum and taken to be fixed along the left

boundary and free to displace along the other three boundaries. The simulated NDT con-

sisted of applying a 1kPa harmonic load to a 5cm region normal to the top surface at the top

right corner of the beam. For simplicity and based on preliminary analysis of the problem,

two displacement sensors were determined to be sufficient and their potential locations were

restricted to the top surface of the beam between 0.03m to 0.97m (note that the number

of sensors could also easily be added as an unknown for the NDT optimization approach

presented). In addition, the potential excitation frequencies of the NDT were assumed to be

between 100Hz to 1000Hz and be restricted to three evenly spaced values. Therefore, the

unknown NDT parameters to be determined were the longitudinal location of each of the

two displacement sensors and the minimum and maximum excitation frequencies.
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Figure 1.1: Schematic for Example 1 - Beam, displaying the sensor locations, XSi, obtained

by optimizing the NDT with the method presented and the selected “experimental” damage

location, XD, to be approximated by the inverse characterization process.

Through the application of the presented approach for maximizing the test sensitivity

and minimizing the information redundancy the optimal NDT parameters for the sensor

locations and actuation frequency were determined to be: XS1 = 0.81m, XS2 = 0.94m,

ωmin = 700Hz, and ωmax = 1000Hz. Figure 1.1 shows a schematic of the beam example,

with the approximate sensor locations indicated as obtained from the method presented

for NDT optimization. For comparison, the NDT design process was performed a second

time only considering the sensitivity objective (the first objective in 1.5) and neglecting the

redundancy objective (the second objective in 1.5), which is an approach more closely related

to the previous sensitivity maximization technique presented in [67], and referred to herein

as the “Single-Objective” NDT design. The Single-Objective NDT design produced NDT

parameters of: XS1 = 0.81m, XS2 = 0.72m, ωmin = 700Hz, and ωmax = 1000Hz. Table 1.1

shows the values of the sensitivity metric and the similarity metric (even though it was not

an objective of the Single-Objective NDT design) corresponding to the two NDT design cases

considered. For both the Optimal (two-objective) and the Single-Objective NDT designs the
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Table 1.1: Values of the sensitivity metric (the first objective in 1.5) and the redundancy

metric (the second objective in 1.5) for the Optimal NDT design and Single-Objective NDT

design for Example 1 - Beam.

NDT Design Case Sensitivity Metric Redundancy Metric

Optimal 1.21 89◦

Single-Objective 2.09 71◦

sensors were determined to be located near to the free end of the cantilever beam, which

could be expected simply due to the significantly higher response magnitude away from the

beam support. Of particular note is that the excitation frequency range and the first sensor

location were identical for both NDT design cases. This result would seem to imply that this

first sensor and frequency range contribute maximally to the sensitivity of the NDT within

the search ranges considered. Alternatively, the second sensor location was considerably

different for the two NDT design cases, which combined with Table 1.1, indicates that the

sensor location of 0.72m is considerably more sensitive to Young’s modulus variations, but is

also significantly more redundant in terms of the information content when combined with

the first location of 0.81m compared to the second sensor location of 0.94m obtained with

the two-objective strategy presented.

To quantify the efficacy of the two NDT design results, a subsequent series of inverse

characterization tests were performed with both sets of NDT design parameters applied

in turn. For increased efficiency and simplicity of the presentation and interpretation, the

inverse characterization process assumed that the size of the damaged region on the beam was

known (i.e., given) as a value of 0.025m. In other words, the inverse characterization sought

the location, XD, and magnitude in terms of the Young’s modulus percent reduction, D, of

a region of damage initiation of a predicable small size, such that E(XD) = (1 − D) · EH .

The remainder of the beam (i.e., undamaged portion) had a constant Young’s modulus

value of EH . For the characterization solution process the damage location was assumed
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to be between 0m to 1m, and the damage magnitude was assumed to be between 0 to 1.

The stopping criteria was set to a maximum of 1500 finite element analyses for the SMARS

optimization process to estimate the damage parameters for all inverse characterization trials

with each of the NDT designs.

First, to show the consistency of the characterization results, regardless of the stochastic

nature of the optimization algorithm which was used to solve the characterization problem,

five trials of the the inverse characterization process were performed for one damage scenario.

For this first test, the simulated experimental data was generated with the damage location

arbitrarily taken to be XD = 0.5m and the damage magnitude was taken to be D = 0.8.

Table 1.2 shows the mean and standard deviation of the specified NDT displacement sensor

measurement errors, calculated as shown in 1.10, produced by the solutions obtained from

the five trials of the inverse characterization process for each NDT design. More importantly,

Table 1.2 also shows the target values for the unknown material parameters (i.e., values used

to generate the simulated experimental data) and the mean and standard deviation of the

material parameter values obtained from the five trials of the inverse characterization process

for each NDT design. Then, to show the capabilities of the NDT design results to characterize

a variety of damage scenarios, five additional trials of the inverse characterization process

were performed, each with a different randomly-generated set of damage parameters. Table

1.3 shows the estimated values as well as the mean and standard deviation of the relative l2-

Error for the damage parameters (i.e., location and magnitude) obtained from a single inverse

characterization process for each NDT design with respect to the five randomly generated

target values.

Overall, the characterization results show a clear improvement in the inverse charac-

terization capabilities for the Optimal NDT design that simultaneously maximized the test

sensitivity to material variations and the dissimilarity in the sensor measurement information

in comparison to the Single-Objective NDT design that only maximized the test sensitivity.

Although difficult to make direct comparisons, the measurement error for the Optimal design

was consistently minimized to a level that was two orders of magnitude lower than that for

the Single-Objective design. When noting that the sensor measurements for the two tests

were similar in magnitude, the measurement error results indicate that the Optimal NDT
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Table 1.2: Target (i.e., simulated experimental) values for the unknown percent reduction in

elastic modulus (D) and the location of the center of the elastic modulus reduction (XD), the

mean and standard deviation of the unknown values as estimated by the inverse characteri-

zation process for all five trials with both the Optimal NDT design and the Single-Objective

NDT design, and the mean and standard deviation of the corresponding displacement sensor

measurement error (J) for Example 1 - Beam.

D XD J

Target Value 0.80 0.50 -

Optimal NDT Design

Mean 0.801 0.507 0.0007

Std. Dev. 0.003 0.027 0.006

Single-Objective NDT Design

Mean 0.924 0.620 0.13

Std. Dev. 0.08 0.190 0.085
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Table 1.3: Five randomly-generated target (i.e., simulated experimental) damage parameters

and the corresponding parameters estimated by the inverse characterization process with

both the Optimal NDT design (Optimal) and the Single-Objective NDT design (Single-

Obj.) and the resulting relative l2-Error in the damage parameter solutions as well as the

mean and standard deviation over all five trials for Example 1 - Beam.

Trial D XD L2-Error

1 Target Value 0.70 0.20 -

Optimal 0.71 0.22 0.031

Single-Obj. 0.43 0.11 0.390

2 Target Value 0.90 0.60 -

Optimal 0.89 0.64 0.038

Single-Obj. 0.88 0.58 0.026

3 Target Value 0.60 0.40 -

Optimal 0.61 0.49 0.126

Single-Obj. 0.69 0.52 0.208

4 Target Value 0.80 0.80 -

Optimal 0.86 0.83 0.059

Single-Obj. 0.88 0.87 0.094

5 Target Value 0.20 0.70 -

Optimal 0.19 0.71 0.019

Single-Obj. 0.18 0.68 0.039

Optimal Mean 0.055

Std. Dev. 0.042

Single-Obj. Mean 0.151

Std. Dev. 0.152
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design measurements provided an optimization search space that was significantly easier for

the optimization algorithm to traverse than in the cases for the Single-Objective design.

More importantly, the material parameters obtained from inverse characterization with the

Optimal NDT design were nearly exact for all trials comparing with the target values, dis-

playing the capability of the design approach presented herein to provide an NDT method

with sufficient information to accurately characterize the material properties of a structure.

In contrast, the material parameters obtained with the Single-Objective NDT design had

errors in the range of 15% on average (nearly three times that for the Optimal NDT design),

which displays the importance of including the second objective in the NDT design process

and maintain diversity in the sensor measurement information.

1.5.4 Example 2 - Plate

To examine the capability of the NDT design approach presented to generalize to other sim-

ilar NDE problems, the second case study considered a 1m× 1m× 0.02m aluminum plate,

with the NDE objective of determining a semi-localized change in the Young’s modulus dis-

tribution throughout the plate (again, as could be representative of a damage scenario). The

plate was assumed to be fixed along the bottom boundary and free to displace along the

other three boundaries. The simulated NDT consisted of applying a 1kPa harmonic load to

a 5cm region normal to the top surface of the plate, which was restricted to 4 discrete po-

tential (i.e., to be designed) locations: XF = 0m, XF = 0.25m, XF = 0.5m, or XF = 0.75m,

as shown in the schematic in Figure 1.2. Note that the potential actuation locations were

chosen arbitrarily, as could be the case in practice where external restrictions could produce

limitations on actuation locations, and all produce an unsymmetric deformation. Again for

simplicity and based on preliminary analysis of the problem, four displacement sensors were

determined to be sufficient, and the potential horizontal and vertical coordinates of the sen-

sor locations were restricted to XSi ∈ [0, 1m] and YSi ∈ [0.02m, 0.98m], respectively, to avoid

placing a sensor at the support condition or on the surface where the actuation force was
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Figure 1.2: Schematic for Example 2 - Plate, displaying the sensor locations, XSi and YSi,

and the actuator location, XF , to be determined by optimizing the NDT with the method

presented.
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applied. In addition, for this second example the sensor orientation was assumed to be a

component in the NDT design optimization, and the sensors were assumed to be potentially

oriented to measure either the horizontal or vertical displacement. Lastly, the excitation

frequencies of the NDT were assumed to be given as six evenly spaced values from 500Hz

to 1500Hz. Therefore, the unknown NDT parameters to be determined were the horizontal

and vertical coordinates and the orientation of the four sensors and the horizontal location

of the actuation.

As previously, through the application of the presented approach for maximizing the test

sensitivity and minimizing the information redundancy the optimal NDT parameters for the

sensor and actuator locations were determined to be: XS1 = 0.7m, YS1 = 0.75m, XS2 = 1m,

YS2 = 0.1m, XS3 = 0.375m, YS3 = 0.85m, XS4 = 0.55m, YS4 = 0.95m, and XF = 0.25m.

All of the sensors were determined to be optimally oriented vertically. To again have a point

of comparison, a “Single-Objective” NDT design was created as was done for the previous

example (considering only the sensitivity objective), which yielded sensor and actuator lo-

cations of: XS1 = 0.34m, YS1 = 0.1m, XS2 = 1m, YS2 = 0.1m, XS3 = 0.42m, YS3 = 0.92m,

XS4 = 0.55m, YS4 = 0.94m, and XF = 0.25m. Similarly, all of the sensors were determined

to be optimally oriented vertically. Additionally, a third intuitive “Control” NDT design was

also utilized for this second example with the same actuation location and sensor orienta-

tion as the optimized NDT design, but with the sensors predefined to be located uniformly

throughout the plate (as might be done in practice [39]) with: XC
S1 = 0.25m, Y C

S1 = 0.25m,

XC
S2 = 0.25m, Y C

S2 = 0.75m, XC
S3 = 0.75m, Y C

S3 = 0.25m, XC
S4 = 0.75m, and Y C

S4 = 0.75m.

Figure 1.3 shows a schematic of the sensor and actuator layouts of the Control NDT

design, the Single-objective NDT design, and the Optimal NDT design obtained from the

presented approach. Additionally, Table 1.4 shows the values of the sensitivity metric and

the similarity metric corresponding to the three NDT design cases considered for this second

example. As is not unexpected, the sensitivity metric was increased (i.e., improved) by

several orders of magnitude through both optimized NDT approaches in comparison to the

Control design, even with the only difference between the tests being the sensor locations.
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Figure 1.3: Schematics of the NDT designs, including (a) the uniformly distributed sensor

locations utilized for the Control NDT design, (b) the sensor locations determined for the

Optimal design through the method presented, and (c) the sensor locations determined for

the Single-Objective design.

Table 1.4: Values of the sensitivity metric (the first objective in 1.5) and the redundancy

metric (the second objective in 1.5) for the Optimal NDT design, the Control NDT design,

and the Single-Objective NDT design for Example 2 - Plate.

NDT Design Case Sensitivity Metric Redundancy Metric

Optimal 2.26× 1012 90◦

Control 3.81× 107 0.02◦

Single-Objective 2.43× 1012 15◦
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Furthermore, both optimized NDT approaches produced improvements to the redundancy

metric in comparison to the Control design, but the Optimal NDT design obtained from

the presented approach produced a redundancy metric that was substantially improved in

comparison to both the Single-Objective optimal design and the Control design.

To again measure the resulting characterization capability of the optimal NDT design

approach, a series of simulated tests were performed with various distributions of Young’s

modulus throughout the plate to be inversely characterized, and all three (Optimal, Single-

Objective, and Control) NDT design were utilized, in turn, to inversely estimate the selected

modulus distributions. For all tests in this second example, the Young’s modulus distribution

was assumed to vary due to semi-localized changes defined by a radial basis function (RBF)

representation as

E(~x) = EH

[
1−

ND∑
i=1

Di · exp

(
−‖~x− ~εi‖

2

ci

)]
, (1.11)

where ‖.‖ represents the standard l2-norm. For simplicity, the number of RBFs, ND, neces-

sary to describe the Young’s modulus distribution was assumed to be known for the examples

herein. Therefore, the material parameters to be determined by the inverse characterization

process were the Young’s modulus percent reduction corresponding to each RBF, Di, the

center of each RBF, ~εi, and the breadth of each RBF, ci. Two cases of Young’s modulus

distribution were considered for testing the inverse characterization capabilities of the two

NDT designs: a single RBF (i.e., one damage location) and two RBFs (i.e., two damage

locations). For the characterization solution process for all tests the material parameters

were assumed to be bounded as follows: Di ∈ [0, 1], ~εi ∈ [0, 1]× [0, 1], and ci ∈ [0, 0.1]. The

stopping criteria for the SMARS optimization process to estimate the material (i.e., dam-

age) parameters for the inverse characterization trials for this second example was set to a

maximum of 5500 finite element analyses for all tests with one RBF and 6000 finite element

analyses for all tests with two RBFs. As before, to show the consistency of the character-

ization results, regardless of the stochastic nature of the SMARS optimization algorithm,

for the first tests five trials of the inverse characterization process were performed each for

two damage parameter scenarios, one scenario with a single RBF and one scenario with two

RBFs. Then, to show the generalization capabilities a second set of tests were performed
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with five additional trials of the inverse characterization for the single RBF scenario and

for the two RBFs scenario (i.e., 10 total additional trials), with each trial having a different

randomly-generated set of material parameters.

Table 1.5 shows the RBF parameters used to simulate the first set of sensor measure-

ment data for the Optimal, Single-Objective, and Control NDT designs for the single RBF

example, the respective means and standard deviations of the inversely estimated RBF pa-

rameters over of the five trials for each method for this one damage parameter scenario, as

well as the corresponding means and standard deviations of the sensor measurement errors,

calculated as shown in 1.10. More importantly, Table 1.6 shows the means and standard

deviations for the relative L2-Error and the relative L∞-Error for the Young’s modulus dis-

tributions obtained from the inverse characterization process with respect to the one target

Young’s modulus distribution and Figure 1.4 shows representative examples (i.e., one result

from the five trials) for the Young’s modulus distributions corresponding to the Optimal,

Single-Objective, and Control NDT designs in comparison to the target distribution. Lastly,

Table 1.7 shows the estimated damage parameter values as well as the mean and standard

deviation of the relative L2-Error and the relative L∞-Error for the Young’s modulus dis-

tributions obtained from a single inverse characterization process for each NDT design with

respect to the five randomly generated target distributions.

Similarly to what was seen in the first example, the resulting estimates of the material

properties obtained from the Optimal NDT design were significantly and consistently more

accurate than those obtained from both the Control and Single-Objective NDT designs. Al-

though relatively accurate estimates to the material properties were obtained for all trials

with all three NDT designs, the Optimal NDT design estimated the Young’s modulus distri-

bution in the plate with nearly half or less of the error on average compared to the Control

and Single-Objective NDT designs. Furthermore, while all test methods underestimated

the damage magnitude (i.e., reduction in Young’s modulus), particularly the Optimal and

Control designs, the Optimal NDT design estimated the location of the modulus variation

(i.e., center of the RBF) nearly identically for all trials in comparison to the results for the

Control and Single-Objective NDT designs. What is particularly interesting for the repre-

sentative case shown (Figure 1.4) is that even though the Control NDT design had a sensor
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Table 1.5: Target (i.e., simulated experimental) values for the unknown damage amplitude

(D1), the breadth of the damage region (c1), and the horizontal and vertical location of

the center of the damage region (εx1 , ε
y
1), the mean and standard deviation of the unknown

values as estimated by the inverse characterization process for all five trials with the Optimal

NDT design, the Single-Objective NDT design, and the Control NDT design, and the mean

and standard deviation of the corresponding displacement sensor measurement error (J) for

Example 2 - Plate with a single damage location.

D1 c1 εx1 εy1 J

Target Value 0.80 0.003 0.400 0.400 -

Optimal NDT Design

Mean 0.37 0.015 0.400 0.415 0.004

Std. Dev. 0.25 0.013 0.006 0.009 0.003

Single-Objective NDT Design

Mean 0.79 0.014 0.242 0.224 1.390

Std. Dev. 0.001 0.006 0.212 0.213 2.212

Control NDT Design

Mean 0.50 0.011 0.423 0.326 0.028

Std. Dev. 0.39 0.009 0.055 0.185 0.034
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Table 1.6: Mean and standard deviation of the relative L2-Error and the relative L∞-Error

of the Young’s modulus distribution with respect to the single target (i.e., simulated exper-

imental) distribution for the distributions estimated by the inverse characterization process

for all five trials with the Optimal NDT design, the Single-Objective NDT design, and the

Control NDT design for Example 2 - Plate with a single damage location.

L2-Error L∞-Error

Optimal NDT Design

Mean 0.029 0.104

Std. Dev. 0.016 0.031

Single-Objective NDT Design

Mean 0.110 0.796

Std. Dev. 0.016 0.006

Control NDT Design

Mean 0.061 0.477

Std. Dev. 0.017 0.390
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Figure 1.4: (a) Target (i.e., simulated experimental) spatial distribution of the Young’s

modulus and representative examples of the Young’s modulus distributions estimated by

the inverse characterization process with (b) the Optimal NDT design, (c) the Control NDT

design, and (d) the Single-Objective NDT design for Example 2 - Plate with a single damage

location (color contours are in units of GPa).

that was significantly more closely placed to the damage location, the improved sensitivity

and diversity of the measurements in the Optimal NDT design lead to significantly improved

inverse characterization of the material distribution in comparison to a design with the sen-

sors uniformly distributed that would intuitively imply better “coverage” for the inverse

characterization problem.

Regarding the final set of analyses involving the plate example with two damage locations,

Table 1.8 shows the RBF parameters used to simulate the first set of sensor measurement

data, the respective means and standard deviations of the inversely estimated RBF param-

eters over the five trials for this one damage parameter scenario, and the corresponding

means and standard deviations of the sensor measurement errors. In addition, Table 1.9

shows the mean and standard deviations for the relative L2-Error and the relative L∞-Error

for the Young’s modulus distributions obtained from the inverse characterization processes

with respect to the one target Young’s modulus distribution and Figure 1.5 shows represen-

tative examples of the Young’s modulus distributions from the five trials corresponding to

the Optimal, Single-Objective, and Control NDT designs in comparison to the one target

26



Table 1.7: Five randomly-generated target values for the unknown damage parameters D1,c1,

and εx1 , ε
y
1 and the corresponding values estimated by the inverse characterization process with

the Optimal NDT design (Optimal), the Single-Objective NDT design (Single-Obj.), and the

Control NDT design (Control) and the resulting relative L2-Error and the relative L∞-Error

of the estimated Young’s modulus distributions as well as the mean and standard deviation

over all five trials with a single damage location.

Trial D1 c1 εx1 εy1 L2-Error L∞-Error

1 Target 0.600 0.008 0.700 0.800 - -

Optimal 0.598 0.023 0.740 0.788 0.071 0.361

Single-Obj. 0.800 0.002 0.793 0.970 0.080 0.795

Control 0.595 0.028 0.554 0.698 0.121 0.586

2 Target 0.900 0.010 0.800 0.200 - -

Optimal 0.958 0.010 0.865 0.174 0.078 0.545

Single-Obj. 0.227 0.021 1.000 0.182 0.108 0.211

Control 0.900 0.027 0.760 0.045 0.139 0.852

3 Target 0.600 0.005 0.200 0.300 - -

Optimal 0.101 0.029 0.200 0.278 0.041 0.051

Single-Obj. 0.843 0.030 0.022 0.355 0.134 0.842

Control 0.921 0.012 0.199 0.251 0.090 0.685

4 Target 0.700 0.004 0.800 0.700 - -

Optimal 0.548 0.003 0.727 0.694 0.051 0.408

Single-Obj. 0.424 0.018 0.954 0.680 0.070 0.422

Control 0.771 0.007 0.740 0.823 0.091 0.765

5 Target 0.800 0.009 0.600 0.200 - -

Optimal 0.118 0.005 0.739 0.254 0.095 0.077

Single-Obj. 0.990 0.016 1.000 0.500 0.150 0.990

Control 0.610 0.011 0.500 0.100 0.100 0.545

Optimal Mean 0.067 0.288

Std. Dev. 0.021 0.216

Single-Obj. Mean 0.109 0.654

Std. Dev. 0.034 0.326

Control Mean 0.108 0.686

Std. Dev. 0.021 0.126
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Table 1.8: Target (i.e., simulated experimental) values for the unknown damage amplitudes

(Di), the breadths of the damage regions (ci), and the horizontal and vertical locations of

the centers of the damage regions (εxi , ε
y
i ), the mean and standard deviation of the unknown

values as estimated by the inverse characterization process for all five trials with the Optimal

NDT design, the Single-Objective NDT design, and the Control NDT design, and the mean

and standard deviation of the corresponding displacement sensor measurement error (J) for

Example 2 - Plate with two damage locations.

D1 c1 εx1 εy1 D2 c2 εx2 εy2 J

Target Value 0.80 0.003 0.20 0.20 0.90 0.004 0.20 0.80 -

Optimal NDT Design

Mean 0.26 0.014 0.18 0.16 0.56 0.012 0.17 0.75 0.03

Std. Dev. 0.085 0.008 0.03 0.04 0.17 0.004 0.12 0.13 0.01

Single-Objective NDT Design

Mean 0.48 0.009 0.29 0.03 0.82 0.011 0.17 0.62 0.59

Std. Dev. 0.26 0.010 0.07 0.03 0.18 0.005 0.19 0.22 0.49

Control NDT Design

Mean 0.31 0.013 0.19 0.15 0.75 0.02 0.30 0.89 0.65

Std. Dev. 0.22 0.007 0.06 0.10 0.27 0.005 0.19 0.10 0.59
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distribution with two damage locations. Lastly, Table 1.10 shows the estimated damage

parameter values as well as the mean and standard deviation of the relative L2-Error and

the relative L∞-Error for the Young’s modulus distributions obtained from a single inverse

characterization process for each NDT design with respect to the five randomly generated

target distributions with two damage locations.

It is worth noting that the difficultly of the inverse problem in terms of the ability to

accurately and efficiently estimate solutions is not linearly proportional to the number of

parameters to be determined, and the difficulty for this example with two RBFs is substan-

tially more than for the previous example of only one RBF. As such, even with an increase

in the optimization stopping criteria to 6000 finite element analyses, there is still generally

a significantly higher solution error for these final tests than for the previous beam and

plate examples. However, once more the NDT design that had been optimized for maximum

sensitivity and minimum measurement redundancy performed significantly better than both

the Single-Objective NDT design that was only optimized for maximum sensitivity and the

Control (i.e., uniformly distributed sensor) NDT design for the purpose of inverse material

characterization. For instance, the characterization process with the Optimal NDT design

was able to minimize the measurement error to a reasonable stopping point of approximately

3% on average, even for this more challenging inverse problem, whereas the same process

with the Single-Objective and Control NDT designs clearly became trapped in local minima

in the optimization search space with measurement errors in the range of 59% and 65%,

respectively, again showing the improvement to the search process through optimization of

the NDT design. Thus, the Optimal NDT design produced estimates for the Young’s modu-

lus distributions with an increase in accuracy in the range of 40% or more in comparison to

both the Single-Objective and Control NDT designs for all trials (i.e., for both the consis-

tency and generalization tests), again with particular improvements in determining the two

damage locations.
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Table 1.9: Mean and standard deviation of the relative L2-Error and the relative L∞-Error

of the Young’s modulus distribution with respect to the single target (i.e., simulated exper-

imental) distribution for the distributions estimated by the inverse characterization process

for all five trials with the Optimal NDT design, the Single-Objective NDT Design, and the

Control NDT design for Example 2 - Plate with two damage locations.

L2-Error L∞-Error

Optimal NDT Design

Mean 0.09 0.42

Std. Dev. 0.017 0.15

Single-Objective NDT Design

Mean 0.14 0.84

Std. Dev. 0.016 0.12

Control NDT Design

Mean 0.15 0.79

Std. Dev. 0.037 0.19

Figure 1.5: (a) Target (i.e., simulated experimental) spatial distribution of the Young’s

modulus and representative examples of the Young’s modulus distributions estimated by the

inverse characterization process with (b) the Optimal NDT design, (c) the Control NDT

design, and (d) the Single-Objective NDT design for Example 2 - Plate with two damage

locations (color contours are in units of GPa).
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Table 1.10: Five randomly-generated target (i.e., simulated experimental) values for the

unknown damage amplitudes (Di), the breadths of the damage regions (ci), and the horizon-

tal and vertical locations of the centers of the damage regions (εxi , ε
y
i ) and the corresponding

values estimated by the inverse characterization process with the Optimal NDT design (Opti-

mal), the Single-Objective NDT design (Single-Obj.), and the Control NDT design (Control)

and the resulting relative L2-Error and the relative L∞-Error of the Young’s modulus distri-

butions as well as the mean and standard deviation over all five trials for Example 2 - Plate

with two damage locations.

Trial D1 c1 εx1 εy1 D2 c2 εx2 εy2 L2-Error L∞-Error

1 Target 0.300 0.006 0.200 0.300 0.800 0.009 0.800 0.400 - -

Optimal 0.170 0.016 0.290 0.940 0.932 0.007 0.808 0.388 0.044 0.181

Single-Obj. 0.290 0.027 0.098 0.669 0.506 0.018 0.888 0.272 0.120 0.469

Control 0.987 0.013 0.306 0.821 0.822 0.008 0.794 0.386 0.149 0.987

2 Target 0.700 0.005 0.400 0.800 0.500 0.002 0.700 0.700 - -

Optimal 0.657 0.005 0.391 0.866 0.401 0.005 0.714 0.706 0.054 0.446

Single-Obj. 0.691 0.024 0.031 0.615 0.565 0.012 0.923 0.836 0.149 0.691

Control 0.173 0.011 0.039 0.593 0.706 0.002 0.651 0.500 0.080 0.706

3 Target 0.500 0.006 0.100 0.700 0.900 0.009 0.800 0.200 - -

Optimal 0.498 0.008 0.252 0.628 0.700 0.012 0.925 0.148 0.131 0.616

Single-Obj. 0.748 0.008 0.216 0.645 0.662 0.013 0.927 0.148 0.137 0.720

Control 0.840 0.019 0.154 0.559 0.798 0.014 0.807 0.056 0.181 0.831

4 Target 0.700 0.008 0.800 0.200 0.900 0.006 0.600 0.700 - -

Optimal 0.108 0.021 0.864 0.240 0.406 0.015 0.641 0.687 0.085 0.191

Single-Obj. 0.843 0.021 0.715 0.385 0.288 0.030 0.584 0.712 0.174 0.844

Control 0.544 0.015 0.779 0.260 0.260 0.023 0.537 0.584 0.097 0.324

5 Target 0.800 0.007 0.200 0.200 0.600 0.004 0.200 0.800 - -

Optimal 0.087 0.023 0.143 0.232 0.761 0.004 0.074 0.500 0.107 0.764

Single-Obj. 0.308 0.014 0.271 0.033 0.999 0.021 0.066 0.626 0.188 0.999

Control 0.636 0.030 0.164 0.057 0.401 0.010 0.175 0.863 0.114 0.614

Optimal Mean 0.084 0.440

Std. Dev. 0.036 0.257

Single-Obj. Mean 0.154 0.744

Std. Dev. 0.028 0.196

Control Mean 0.124 0.692

Std. Dev. 0.041 0.249
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1.6 CONCLUSIONS

A method for optimal NDT design for applications in material characterization and damage

identification of solid continua was presented. The proposed method extends the concept of

maximizing response sensitivity for optimal NDT design in a generally applicable way for

NDE/material characterization problems, and in particular, includes an additional objective

to prevent redundancy of the test information. Through simulated examples of frequency

response function-based NDT, the optimal NDT design method was shown to yield NDT

specifications with substantially higher measurement sensitivity and lower measurement re-

dundancy than alternate (more traditional) NDT designs. Moreover, the improved NDT

design features were shown to provide consistently more accurate material characterization

results than the alternate testing techniques, indicating the ability of the optimized NDT

design to produce a substantially more solvable inverse problem. Overall, this work provides

a generalized foundation for deterministic optimal NDT design, but it should be noted that

accounting for the omnipresence of uncertainty (e.g., system defects) is of critical importance

to moving forward in this field and the field of inverse problems as a whole. As such, future

efforts are expected to focus on extending such NDT design approaches to simultaneously

provide robustness in the presence of uncertain features of the systems considered.
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2.0 A COMPUTATIONAL APPROACH FOR ROBUST

NONDESTRUCTIVE TEST DESIGN MAXIMIZING

CHARACTERIZATION CAPABILITIES FOR SOLIDS AND STRUCTURES

SUBJECT TO UNCERTAINTY

2.1 ABSTRACT

A robust approach to nondestructive test (NDT) design for material characterization and

damage identification in solids and structures is presented and numerically evaluated. The

generally applicable approach combines maximization of test sensitivity with minimization

of test information redundancy, while simultaneously minimizing the effects of uncertain sys-

tem parameters to determine optimal NDT parameters for robust nondestructive evaluation.

In addition, to maintain reasonable computational expense while also allowing for general

applicability, a stochastic collocation technique is presented for the quantification of uncer-

tainty in the robust design metrics. The robust NDT design approach was tested through

simulated case studies based on the characterization of localized variations in Young’s mod-

ulus distributions in aluminum structural components utilizing steady-state dynamic surface

excitation and localized measurements of displacement and compared to a purely determin-

istic NDT design approach. The robust design approach is shown to produce substantially

different NDT designs than the analogous deterministic strategy. More importantly, the

robust NDT designs are shown to provide significant improvements in the ability to accu-

rately nondestructively evaluate structural properties for the cases considered when there is

significant uncertainty in system parameters and/or aspects of the NDT implementation.
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2.2 INTRODUCTION

An extensive amount of work has been focused in recent years on developing methods for the

solution of a wide variety of inverse problems in applied mechanics and engineering, includ-

ing characterization, design, and/or control of complex systems [85, 4, 6, 8, 10, 62, 83]. Of

particular interest to the present work are inverse problems relating to the use of nondestruc-

tive testing (NDT) to evaluate various properties of different in-service structures/systems,

such as aircraft [55], spacecraft [69], and bridges [80], which can be an important step in

predicting the health of these systems, to improve safety and operational efficiency. Al-

though various research efforts, particularly the computational approaches, directed towards

the solution of these types of inverse characterization problems have made significant strides,

there are still several common challenges, most often relating to the ill-posedness of the in-

verse problems in the form of nonexistent or non-unique solutions along with the excessive

computational expense associated with many solution algorithms. These inverse problem

challenges are even more highlighted when considering the various omnipresent sources of

noise in the NDT measurements and uncertainty in the features of the systems to be charac-

terized. One effective approach to overcome, or at least relieve some of the ill-posedness of

nondestructive evaluation (NDE) inverse problems is to address the complementary inverse

problem of robust optimal design of the NDT itself. NDT design can also be an important

step for the feasibility of implementing a particular NDT system by optimizing the amount

of resources needed to characterize the system (e.g., minimizing the number of sensors), sub-

ject to monetary cost, time, and/or accessibility constraints. Moreover, in order to design a

NDT that is truly optimal in practice, the NDT design must consider the uncertainties in

all system parameters that have an effect on the system response, even those that may not

be the chosen variable of interest of the associated characterization problem.

In recent years, several different approaches have been developed for NDT design, most

often specifically optimizing the placement of sensors, for structural health monitoring and

NDE [11, 38, 87, 47, 65, 64, 66, 77]. Naturally, one of the most important features of

NDT design methods is the metric used to define the quality of a given design (e.g., sensor

distribution). The existing methods are diverse in the definition of this design metric and
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have shown mixed results, including those relying on ad hoc approaches such as maximizing

the contribution of the sensor locations to the mode shapes of the structure [38], as well as

statistical or probabilistic approaches, such as those that minimize the information entropy

of the system that corresponds to the uncertainty of the model parameters [64], and more

theory-driven techniques, such as those that attempt to maximize the probability of detection

for the system [11, 32]. The methods to then employ these metrics to improve NDT quality

are also varied, with some taking a system identification approach that iteratively discard or

include candidate sensors to optimally represent the target metrics [74, 43, 44], while others

use more traditional optimization strategies, creating an objective function directly relating

to the NDT quality metric of choice and applying iterative optimization to minimize or

maximize the objective function [68, 91]. Overall, the majority of existing NDT optimization

methods are specialized with respect to the intended quantity to be evaluated and the nature

of the NDT apparatus in which they can be used, and most approaches are limited to

consideration of the number of sensors and their corresponding locations, with little attention

paid to actuation location, orientation, excitation frequency/duration, and redundancy of

the measured information. Alternatively, a potentially generalizable approach was presented

in [67] that relies on maximizing the sensitivity of the nondestructively generated frequency

responses with respect to the damage parameters to be determined, while simultaneously

minimizing the number of sensors employed. Notghi and Brigham [60] then extended this

concept of maximizing response sensitivity for optimal NDT design in a generally applicable

way for NDE and material characterization problems, while also including an additional

NDT design objective to prevent redundancy of the testing information and further ensure

the efficient use of NDT resources.

Significantly fewer NDT design efforts have attempted to address robustness with respect

to uncertainty in the variables outside of the set of variables to be evaluated by the NDE.

Examples include the work by Castro-Triguero et al. [23] which used the highest optimal

selected sensors from samples generated by Monte Carlo simulation in stochastic space as

well work by Azarbayejani et al.[11], which rely on the highest probability of detection.

Additionally, one substantial challenge/limitation to address additional uncertain parameters

in the NDT design is the added computational expense of propagating the uncertainty and
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quantifying the effect of these uncertain parameters on the NDT and ultimately the resulting

NDE. Most of the existing NDT design methods incorporating uncertainty have used the

traditional computationally expensive Monte-Carlo techniques, which when combined with

the expense of the numerical analysis (e.g., finite element analysis) that is often used to

predict system responses, can lead to these approaches becoming computationally prohibitive

for many practical problems with any degree of complexity. Another critical aspect which

effect the performance of NDT design is to address the uncertainty that exists in these NDT

systems [41, 74] .

The current work presents a generalized approach for optimal design of NDT that is

robust to system uncertainty, discussed within the context of material characterization prob-

lems in solid continua. In particular, the approach extends the concept of maximizing test

response sensitivity and minimizing measurement redundancy to include the maximization

of robustness to uncertainty of system parameters that are not part of the set to be inversely

characterized with the NDT. In addition, the techniques presented address the issues of com-

putational expense of uncertainty quantification by incorporating Smolyak method, which

significantly reduces the number of numerical analyses of the system response necessary

to quantify the effects of system uncertainty in comparison to the standard Monte-Carlo

techniques, while maintaining ease of implementation. In the following section a general

inverse characterization solution framework for the NDE problems to be considered for con-

text is outlined. Then, the approach for robust optimal NDT design to maximize inverse

characterization solution capabilities is presented. Lastly, simulated examples relating to

characterization of semi-localized variations in the Young’s modulus distribution in struc-

tures from frequency-response-based NDT are presented, including simulated experiments

to show inverse characterization capabilities, which is followed by the concluding remarks.
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2.3 INVERSE PROBLEM FORMULATION AND SOLUTION STRATEGY

The present work utilized a standard generally-applicable optimization-based computational

approach for inverse material characterization to motivate the NDT design approach and

the method to test the efficacy of potential NDT designs. As is typical, this computational

inverse mechanics approach for material characterization consists of first constructing a nu-

merical representation (e.g., finite element model) of the behavior of the target system that

is parameterized with respect to the unknown system properties and subject to whatever

particular NDT that has been chosen to be applied. Then, an objective functional is con-

structed that quantifies the difference between the measured response from the NDT and

that predicted by the numerical representation for any given admissible set of system prop-

erties. An example objective functional for the inverse problem of determining the spatial

distribution of some material property over the system domain could be written as

J(E(~x)) =

∥∥∥∥Rndt(~γk)−Rsim(~γk, E(~x))

Rndt(~γk)

∥∥∥∥
k

, (2.1)

where E(~x) is the material property (e.g., Young’ modulus) distribution to be determined,

~x ∈ Ω is the spatial position vector in the domain of the system Ω, Rndt is the measured

response of the system from the NDT, Rsim is the simulated estimate of the system response

from the NDT for a given material property estimate, {~γk}NT

k=1 is the set of all NDT com-

binations (e.g., excitation frequency, sensor location, actuator location, etc.), with a total

number of NDT measurement combinations of NT (assuming for the presentation here that

the NDT produces a set of discrete measurements), and ‖.‖k is some suitable metric norm

that combines the contributions of each measurement to produce the total error functional J .

Lastly, all that is necessary is to minimize the objective functional (J(E(~x))) with respect to

the material properties (E(~x)) to produce an estimate to the inverse problem solution. There

are generally two classes of optimization techniques that are used to solve these typically

non-convex optimization problems, those that are gradient-based [59, 54], which iteratively

update solution estimates based upon the gradient of the objective functional with respect

to the parameters to be determined and are relatively computationally efficient, but local

in nature (i.e., may often stall in the search process at a local minimum of the objective
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functional, and those that are non-gradient-based [21, 37, 76], which commonly (although

not always) include some stochastic component within the search process to provide global

search capabilities, but have relatively higher computational expense.

Regardless of the specifics of this form of inverse solution process (e.g., specific numeri-

cal representation, objective functional form, and/or optimization algorithm), of paramount

importance is that the error functional, which is obtained from the measured response of the

system for the chosen NDT, is sensitive to changes in the material properties to be deter-

mined. The measurement sensitivity clearly has a direct effect on the capability of gradient-

based methods to traverse the search space of the problem, but even for non-gradient-based

methods there is a universal need to have an objective functional that varies significantly

with respect to the unknown properties throughout the search space to provide sufficient

information to direct the search process towards a solution. At the same time, the error

functional should be insensitive (i.e., robust) to parameters that may have some degree of

uncertainty, but are not considered as part of the set of properties to be determined through

the inverse solution process (e.g., potential errors in the estimation of the actuation location

and/or the support conditions of a structure, etc.). These uncertainties could be viewed as

leading to a loss of accuracy in the computational representation of the system response, and

if the system response were to be significantly sensitive to these uncertain parameters, an in-

verse solution may be unattainable, or worse yet, any apparent solution may be dramatically

incorrect.

2.4 ROBUST OPTIMAL NONDESTRUCTIVE TEST DESIGN

The first hypothesis enforced here is that to maximize the capability of a NDE process to

inversely characterize material properties, the associated NDT (potentially including consid-

eration of sensor and actuator locations, orientations, and frequencies, along with any other

conceivable aspect) should somehow maximize the sensitivity of the response measurements

with respect to changes in the unknown properties. Thus, the problem of designing the

optimal NDT can firstly be cast as an optimization problem to maximize a functional that
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quantifies the change in the measured response with respect to the unknown properties to

be determined of the following form,

P
(
{~γk}NT

k=1

)
=
∥∥DER

sim(~γk, E(~x))
∥∥

Ω,k
, (2.2)

where DER
sim is some form of the derivative or gradient of the response functional with

respect to the material properties and ‖.‖ is now some suitable metric norm that combines

the sensitivity contributions of each measurement with respect to the material properties

over the entire domain of the system (Ω) to produce the total sensitivity functional P . How-

ever, as was shown in [61], only considering 2.2 may lead to a poor use of NDT resources

by resulting in redundant measurement information (e.g., sensors nearly overlapping), par-

ticularly for cases in which candidate locations of sensors and actuator are continuously (or

nearly continuously) distributed throughout the domain of the system. As such, a second

functional can be formed that quantifies the similarity of the response measurements in terms

of orthogonality (i.e., responses are less similar if they are closer to orthogonal) as

θi,j = arccos

(
〈Rsim(~γi, E(~x)), Rsim(~γj, E(~x))〉
‖Rsim(~γi, E(~x))‖ ‖Rsim(~γj, E(~x))‖

)
, ∀ i, j ∈ [1, NT ], i 6= j, (2.3)

where 〈., .〉 is a suitable inner product operator (e.g., standard vector dot product if the

responses are simply a discrete vector of sensor measurements) and ‖.‖ can be defined such

that ∥∥Rsim(~γi, E(~x))
∥∥2

= 〈Rsim(~γi, E(~x)), Rsim(~γi, E(~x))〉. (2.4)

Simultaneously maximizing 2.2 and 2.3 can thus provide an estimate to the optimal NDT

with respect to maximum response sensitivity and minimum measurement redundancy.

While the above two functionals allow for the design of a sensitive test with respect

to the desired properties with non-redundant testing information (i.e., efficiently utilizing

system resources), neither addresses the potential uncertainty that could exist within system

parameters that are not part of the desired NDE properties (i.e., properties that may not be

known exactly, but will not be a solution variable of the NDE). As discussed previously, if

the system response is sufficiently sensitive to these uncertain system parameters, then the

inverse solution capabilities may suffer greatly, and the optimality would be lost for an NDT

design constructed based upon only 2.2 and 2.3. Alternatively, a more robust approach that
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takes into account sources of uncertainty within the system could be constructed along the

lines of the following general form for a robust optimization problem,

Optimize
{
µ~ϕ

[
~fd(~d, ~ϕ)

]
, ν~ϕ

[
~fu(~d, ~ϕ)

]}
, (2.5)

where ~d is the set of deterministic system parameters (i.e., those deemed to have negligible

uncertainty and/or effect on the system response, which can be represented by their nominal

values), ~ϕ is the set of uncertain system parameters, ~fd is the vector of representations of

performance or cost objective functionals, ~fu is the vector of dispersion measures relating

to the objective functionals with respect to the uncertain parameters, µ~ϕ is the expected

value operator with respect to the uncertain parameters, and ν~ϕ is the dispersion measure

operator (e.g., variance or standard deviation). For an optimal NDT design the performance

functionals can be simply defined with respect to the sensitivity and redundancy objectives

defined above. Then, to ensure robustness of the NDT design, the second core hypothesis

for the present study is that the effects of the uncertain parameters on the NDE process can

be minimized by minimizing the variance of the system response measured by the NDT with

respect to the uncertain parameters. Combining these three concepts (i.e., maximum sen-

sitivity, minimum redundancy, and maximum robustness), the robust optimal NDT design

problem can be cast as a multi-objective optimization problem as

Maximize
{~γk}

NT
k=1



‖µ~ϕ [DER
sim(~γk, E(~x), ~ϕ)]‖Ω,k

Minimum
i,j∈[1,NT ]

i 6=j

arccos

(
〈µ~ϕ[Rsim(~γi,E(~x),~ϕ)], µ~ϕ[Rsim(~γj ,E(~x),~ϕ)]〉
‖µ~ϕ[Rsim(~γi,E(~x),~ϕ)]‖‖µ~ϕ[Rsim(~γj ,E(~x),~ϕ)]‖

)
1

‖V ar~ϕ[Rsim(~γk,E(~x),~ϕ)]‖
Ω,k

, (2.6)

where V ar~ϕ is the variance operator with respect to the uncertain parameters.

In order to solve the optimization problem in 2.6 it is necessary for the properties that

will ultimately be determined by the NDE (E(~x)) to be initialized. Fortunately, for many

NDE problems (e.g., damage characterization) some nominal values are available based upon

assumed initial (i.e., healthy) properties of the system, are these property values can often

be a natural selection for the initialization of the NDT design problem. More importantly,

the calculation of the moments (i.e., expected values and variance) for the components of
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the multi-objective optimization problem typically requires the solution of stochastic partial

differential equations (SPDE) and boundary conditions (i.e., a boundary value problem that

represents the physical behavior of the system subject to the specific NDT that is dependent

upon the uncertain parameters). The solution of a SPDE and boundary conditions is a

nontrivial task, and depending upon implementation, can require considerable computational

expense. As such, it is important to choose a generally applicable approach that maintains

reasonable computational expense, and the particular solution approach utilized herein is

described in detail in the following.

2.4.1 Stochastic Collocation for SPDE Solution Approximation

Consider the following general form of a SPDE representing the behavior of the system of

interest subject to nondestructive testing,

L(~x, t, ~d, ~ϕ;R(~x, t, ~d, ~ϕ)) = f(~x, t, ~d, ~ϕ), (2.7)

where R is the total system response field, L is a differential operator, and f is some source

term. Based upon the SPDE, the objective is to somehow determine the desired moments

of the system response field with respect to the uncertain parameters. There exist a variety

of different numerical methods that can be used for the solution of an SPDE with boundary

conditions, including both intrusive and non-intrusive approaches, with each having varying

benefits and shortcomings [12, 14, 36, 33, 88]. For simplicity within this proof-of-concept

study of an approach to address system uncertainty within NDT design a non-intrusive

stochastic collocation method was implemented, which is generally applicable, relatively

simple to implement, and reasonably computationally efficient.

Stochastic collocation methods are based on the use of interpolation functions in com-

bination with collocation points samples from the stochastic space to approximate the dis-

tribution of the response in the stochastic space, which can then be used to approximate

the moments of the desired components with minimal computational expense [88, 13, 58].

For brevity in the following formulation it is assumed that each uncertain parameter can be

mapped to a domain of [−1, 1] and all previously given deterministic dependencies of the
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responses field are implied, while the dependency on the deterministic parameters will be

explicitly stated. Thus, for any single dimension (i.e., component) of the stochastic space

the stochastic collocation approximation of the response field can be written as

R(ϕ) = Um(R) =
m∑
j=1

R(ϕj) · Lj(ϕ) , (2.8)

where Lj are the standard Lagrange interpolating polynomials and m is the number of

collocation points in the stochastic space.

For the multivariate case (e.g., n-dimensional) the one-dimensional approximation can

be simply applied in each of the multiple dimensions to produce the full tensor product

formula [15]

(
U i1 ⊗ · · · ⊗ U in

)
(R) =

m1∑
j1=1

· · ·
mn∑
jn=1

R(ϕi1j1 , ..., ϕ
in
jn

) ·
(
Li1j1 ⊗ · · · ⊗ L

in
jn

)
. (2.9)

Direct application of this tensor product formula requires what can be an excessive number of

collocation points (m1×· · ·×mn) with increasing stochastic space dimension. Therefore, the

sparse grid approaches seek to substantially reduce the total number of required collocation

points without significantly diminishing the approximation accuracy. For the present study

sparse grids were constructed using the Smolyak algorithm, in which the sparse interpolant

is given as [86, 15]

Aq,n =
∑

q−n+1≤|~i|≤q

(−1)q−|
~i| ·

 n− 1

q − |~i|

 · (U i1 ⊗ · · · ⊗ U id), (2.10)

where n is the number of stochastic dimensions, q − n is the order of interpolation, ~i =

(i1, ..., in) and |~i| = i1 +· · ·+in (note that ik conceptually represents the level of interpolation

along the the kth direction). To compute Aq,n(R) the response function should be evaluated

at the sparse grid points given by

Hq,n =
⋃

q−n+1≤|i|≤q

(Θi1 ⊗ · · · ⊗Θin), (2.11)
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where Θik = (ϕik1 , ..., ϕ
ik
mk

). Lastly, for the present work the extrema of the Chebyshev

polynomials were chosen to be used as the foundation for the interpolation. As such, the

collocation points for any mi > 1 were defined as

ϕij = −cosπ.(j − 1)

mi − 1
, for j = 1, · · · ,mi, (2.12)

and ϕi1 = 0 if mi = 1.

2.5 EXAMPLES AND DISCUSSION

In order to show the potential capabilities of the presented approach for creating a robust

optimal NDT design, two simulated case studies were considered regarding characterization

of material stiffness distributions, specifically semi-localized reductions in stiffness within

aluminum structures as could potentially be used to represent and characterize states of

damage. To perform the assessment NDT designs were created based on the robust ap-

proach shown, and for comparison purposes NDT designs were also created through a purely

deterministic approach only maximizing the sensitivity and minimizing the redundancy met-

rics (utilizing Equations. 2.2 and 2.3 as shown in [61]). In order to calculate the NDT design

metrics the baseline (i.e., undamaged) material parameters were assumed to be defined by

a homogeneous Young’s modulus of EH = 69 GPa and a Poison’s ratio of ν = 0.3.

Several inverse characterization cases were examined applying the respective NDT de-

signs to produce measurement data with which to estimate simulated material distributions

and assess the effectiveness of the NDT design approaches. Specifically, for each case study

the inverse characterization processes were repeated for four different damage scenarios, and

to test the robustness of the designs for each scenario 10 different randomly generated sets of

the uncertain system parameters were applied to generate the NDT, while the mean values

of the parameters were used for the inverse solution process (i.e., 40 total inverse character-

ization trials for each case). An important note is that one of the key steps in the analysis

of any stochastic system is the identification and parameterization of the significant uncer-

tain properties of the system with a finite number of independent random variables with
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appropriate distributions, which requires some amount of expert knowledge and intuition

[89]. For simplicity in the present work all chosen uncertain parameters were assumed to

have uniform distributions, but it should be noted that the approach discussed is generally

applicable regardless of the specific distributions assumed.

2.5.1 Nondestructive Testing and Forward Problem

As discussed, the concepts presented are intended to be generally applicable, however,

for context the examples considered herein consisted of structures tested with frequency-

response-based NDT. For both case studies the NDT consisted of a localized harmonic

actuation applied normal to the surface of the structure over a range of frequencies and

the resulting steady-state harmonic vertical displacement amplitude was measured at a set

of discrete sensor locations for each actuation frequency. Frequency-response-based NDT

was chosen for its implementation simplicity and proven diagnostic capability, and although

displacement measurement is not particularly common, approaches have been developed to

acquire such measurements [78, 75]. Therefore, the potential NDT design parameters for

the test cases were the set of sensor locations,
{
~XSk

}Ns

k=1
(however, it should again be noted

that the approach presented could easily be applied to any number of NDT parameters, not

just sensor locations).

All simulations were performed using the finite element method, including the simulations

to design the NDT, to simulate the measurement data, and to solve the inverse problems. The

structures were assumed to behave linearly elastically with respect to the NDT described, and

therefore, defined by steady-state dynamic solid mechanics. In addition, the actuation was

assumed to be reasonably represented by an applied harmonic pressure force to the surface

of the structure being analyzed. Therefore, the SPDE and boundary conditions governing

the behavior of the structures and used to predict the moments of the displacement NDT

measurement responses with respect to the uncertain parameters (~ϕ) can be written as
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∇ · σ(~x, ω, ~ϕ) + ω2ρ(~x, ~ϕ)~u(~x, ω, ~ϕ) = ~0, ∀ ~x ∈ Ω,

σ(~x, ω, ~ϕ) · ~n(~x) = ~T (~x, ω, ~ϕ), ∀ ~x ∈ ΓT , (2.13)

~u(~x, ω, ~ϕ) = ~u0(~x, ω, ~ϕ), ∀ ~x ∈ Γu,

where σ is the stress tensor, ω is the excitation frequency, ρ is the density, ~u is the displace-

ment vector, ~n is the unit normal to the surface, ~T is the applied traction vector, ~u0 is the

vector of applied displacement boundary conditions, Ω is the domain of the structure, ΓT

is the portion of the domain boundary with applied traction boundary conditions, and Γu

is the portion of the domain boundary with applied displacement boundary conditions. In

particular, for the examples considered herein the input uncertainties were assumed to only

exist within the parameters of the essential boundary conditions (~u0), the natural boundary

conditions (~T ), and the density (ρ). The Smolyak algorithm discussed in the previous section

was applied to approximate the moments of the displacement response.

The NDT design metrics were discretized and approximated as shown in [61]. In addition,

the solutions to the multi-objective optimization problems for both the robust designs and

the deterministic comparison designs can be described by sets of non-dominated solutions

with respect to the various objectives (i.e., Pareto fronts). For the examples herein the one

solution for the NDT designs were selected using the ‘nearest to ideal point’ method, which

selects the point that has the minimum euclidean distance to an imaginary ‘ideal point’ that

has the optimal value for each objective function separately [46, 45]. Lastly, to add realism

to the simulated examples and to partially relieve the inverse crime inherent in simulated

experiments, in addition to randomly generating values of the uncertain parameters for the

simulated NDT, 1% Gaussian white noise was added to all responses for each simulated NDT

case prior to applying the inverse characterization procedure as

Rndt = Rndt
0 (1 + 0.01ℵ) , (2.14)

where Rndt
0 is the original simulated test response without noise and ℵ is a normally dis-

tributed random variable with zero mean and unit variance.
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2.5.2 Inverse Characterization Problem

To test each NDT design measurement data was generated as described above with various

randomly generated Young’s modulus distributions, and the computational inverse solution

approach discussed in Section 2.3 was applied to estimate the Young’s modulus distributions

as if they were unknown. In particular, for all examples cases the Young’s modulus distri-

bution was assumed to vary due to semi-localized changes defined by a radial basis function

(RBF) representation as

E(~x) =

[
1−D · exp

(
−‖~x− ~ε‖

2

c

)]
× 69 GPa, (2.15)

where ‖.‖ represents the standard l2-norm, and the material parameters to be determined

by the inverse characterization process were the Young’s modulus percent reduction corre-

sponding to each RBF, D, the center of the RBF, ~ε, and the breadth of the RBF, c. For the

characterization solution process for all tests the material parameters were assumed to be

bounded as follows: D ∈ [0, 1], ~ε ∈ [0, 1]× [0, 1], and c ∈ [0, 0.1].

Again, note that as would be often done in practice a single value of the uncertain pa-

rameters (the mean value here) was used for all inverse solution analyses, whereas randomly

generated values of those parameters were used to simulate the NDT measurements (i.e.,

the input parameters for the analyses used to generate the NDT measurements were not

identical to those for the inverse solution process). Therefore, the objective functional em-

ployed for the inverse solution process to measure the difference between the “experimental”

measurements and those predicted by the optimization simulations was defined as

J (E(~x)) =
1

NwNS

Nw∑
k=1

NS∑
i=1

∣∣∣∣∣Rndt(ωk, ~XSi, ~XF , ~ϕ
r)−Rsim(ωk, ~XSi, ~XF , ~̄ϕ, E(~x))

Rndt(ωk, ~XSi, ~XF , ~ϕr)

∣∣∣∣∣ , (2.16)

where ~ϕr is a randomly generated set of the uncertain parameters and ~̄ϕ is the set of mean

values of the uncertain parameters. Lastly, the surrogate-model accelerated random search
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(SMARS) optimization algorithm [18] was applied to identify the Young’s modulus distribu-

tion that minimizes 2.16, and therefore, estimate the solution to the inverse characterization

problem. The SMARS algorithm iteratively combines the global random search algorithm

with a locally applied surrogate model method, and provides an optimization technique that

maintains global search capabilities over relatively large parameter domains while having a

relatively low computational expense.

2.5.3 Example 1 - Plate

The first inverse material characterization case study consisted of a 1m×1m aluminum plate,

shown schematically in Figure 2.1, with a precisely known density value of ρ = 2700kg/m3

(i.e., uncertainty in this material property was assumed to be negligible), but with uncer-

tainty in the boundary condition. The first uncertain boundary condition consisted of a

fixed region of uncertain length along the bottom, for which the start of the fixity was as-

sumed to begin at the bottom left corner of the plate and terminate at a horizontal length

described by a uniformly distributed random variable XBC ∼ U(0.62, 0.76)m, with the re-

maining boundary assumed to be free to displace. In addition, the simulated NDT consisted

of applying a 1kPa harmonic load to a 5cm region normal to the top surface of the plate, and

the horizontal position of the load was assumed to be described by a uniformly distributed

random variable XF ∼ U(0.66, 0.74)m. For simplicity of the design problem and based on

preliminary analysis, four vertical displacement sensors were determined to be sufficient.

Additionally, to avoid placing a sensor too near to a support condition or the actuation force

the potential sensor locations were restricted to ~XSi ∈ [0, 1]× [0.02, 0.98]m. The excitation

frequencies of the NDT were also assumed to be predetermined as 6 evenly spaced values

from 100Hz to 1000Hz. Therefore, the unknown NDT parameters to be determined con-

sisted of the locations of each of the four sensors. To quantify the uncertainty for the robust

NDT design (i.e., to calculate the metrics in 2.6) for this case study a 2 dimensional level 7

Smolyak method was used, which required 705 realization (i.e., 705 finite element analyses

of the system).

47



Figure 2.1: Schematic for Example 1, displaying the sensor locations, (XSi, YSi), the length

of the essential boundary condition, Xbc, and the actuator location, XF .

Utilizing the robust optimal NDT design process presented the locations of the sensors

were determined to be (shown in Fig. 2.2(a)): ~XS1 = (0.7, 0.85)m, ~XS2 = (0.8, 0.6)m, ~XS3 =

(0.35, 0.6)m, and ~XS4 = (0.2, 0.1)m. Alternatively, for the deterministic comparison case

(using the deterministic NDT design approach approach shown in [60]) the sensor locations

were determined to be (shown in Fig. 2.2(b)): ~XS1 = (1.0, 0.7)m, ~XS2 = (0.8, 0.7)m,

~XS3 = (0.5, 0.9)m, and ~XS4 = (0.7, 0.3)m. Note that for the deterministic NDT design the

mean values of the uncertain parameters (i.e., XBC = 0.69m and XF = 0.70m) were used.

Since neither the support condition nor the actuation location were centered on the plate it is

not surprising that neither optimal design is symmetric (note that this was done intentionally

to avoid a trivial or non-unique result for this test case). What is more interesting, however,

is that the two sensor distributions were significantly different, with only one sensor from

each of the two groups that could be considered particularly close to one another. This

substantial difference in the sensor layouts at least initially indicates the significance of

addressing robustness to uncertainty within the NDT design process. Furthermore, Table

2.1 shows that the robust NDT design has significantly lower values for the sensitivity and
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Figure 2.2: Schematics of the NDT designs for Example 1, including the sensor locations

determined for (a) the robust NDT design and (b) the deterministic NDT design.

redundancy metrics when calculated based on the mean values of the uncertain parameters

compared to the deterministic NDT design, which is not necessarily surprising, but indicates

the significance of the robustness as a competing objective.

As discussed, in order to test the true effectiveness of each NDT design, the inverse

characterization process was applied for four different material distribution (i.e., damage)

scenarios, shown in Figure 2.3, with the measurement data from each NDT design utilized

in turn. Again, note that to test the robustness and solution consistency the inverse pro-

cess was repeated 10 times for each damage scenario, each time with a different randomly

generated value of the uncertain parameters, while the forward modeling used in the inverse

solution process assumed the uncertain parameters maintained the mean value. The stop-

ping criteria for the SMARS optimization process to estimate the material parameters for

the inverse characterization for this example was set as a maximum of 5700 finite element

analyses for all trials.
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Table 2.1: Values of the sensitivity metric 2.2 and the redundancy metric (the minimum

value of 2.3) based on the mean values of the uncertain parameters (XBC = 0.69m and

XF = 0.70m) for the robust NDT design and the deterministic NDT design for Example 1.

NDT Design Case Sensitivity Metric Redundancy Metric

Robust 2.43× 104 81◦

Deterministic 3.54× 104 89◦

Figure 2.3: Four (a-d) randomly generated target (i.e., simulated experimental) spatial dis-

tributions of the Young’s modulus for testing the inverse characterization capabilities of each

NDT design for Example 1 (color contours are in units of GPa).
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Table 2.2 shows the RBF parameters for each damage scenario used to simulate the sensor

measurement data for both the robust and the deterministic NDT designs, the respective

means and standard deviations of the inversely estimated RBF parameters from the 10

trials of each scenario with each NDT, as well as the corresponding mean and standard

deviation of the relative L2-Error and the relative L∞-Error for the resulting Young’s modulus

distributions with respect to the distributions used to generate the sensor measurement data.

On average over all inverse characterization tests for the four damage scenarios there

was a reduction in the relative L2-Error of approximately 3% for the robust NDT design

compared to the deterministic design, with specific trials ranging between a 1% and 5%

reduction. However, what may be more significant, especially for problems searching for

localized or semi-localized property variations such as this (noting that the L2-Error averages

over the domain), is that the average relative L∞-Error for the results of the robust NDT

design was less than half of that for the deterministic NDT design for each damage scenario

considered. Furthermore, one specific observation from the inverse characterization results

was that the robust NDT design tended to underestimate the magnitude of the damage (i.e.,

change in stiffness), but the robust design provided a significantly more accurate estimate

of the location of the damage region in comparison to the deterministic NDT design. As

was not unexpected, there were several tests within the set of 40 in which the deterministic

NDT design produced slightly more accurate results than the robust NDT design. Upon

close inspection it was found that the tests in which the deterministic NDT design was

more accurate typically had values of the randomly generated uncertain system parameters

relatively near to the mean values that were used in the inverse solution process. Thus,

since the deterministic NDT achieves a higher sensitivity for the measurement quantities

assuming no error in the assumed system parameters, the exected result of a more accurate

characterization occurs for those cases where that error is relatively small. Alternatively,

when the error in the uncertain parameters of the system is not negligible for the inverse

solution process (as would often be the case in reality) the robustness of the NDT design

becomes essential, and the robust NDT design approach consistently improves the solution

capabilities.
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Table 2.2: Target values for the unknown damage parameters D1c1) and εx1 , ε
y
1, the mean

and standard deviation of the unknown values as estimated by the inverse characterization

process for all 10 trials with both the robust NDT design and the deterministic NDT design,

and the corresponding mean and standard deviation of the relative L2 and relative L∞.

D1 c1 εx1 εy1 L2-Error L∞-Error

Damage 1

Target Value 0.8 0.02 0.3 0.4 -

Robust NDT Design

Mean 0.44 0.026 0.36 0.25 0.13 0.30

Std. Dev. 0.31 0.007 0.06 0.13 0.03 0.22

Deterministic NDT Design

Mean 0.79 0.018 0.33 0.29 0.15 0.65

Std. Dev. 0.03 0.005 0.11 0.16 0.03 0.12

Damage 2

Target Value 0.7 0.008 0.7 0.3 -

Robust NDT Design

Mean 0.38 0.022 0.60 0.28 0.09 0.35

Std. Dev. 0.20 0.006 0.11 0.08 0.02 0.20

Deterministic NDT Design

Mean 0.70 0.020 0.57 0.40 0.12 0.68

Std. Dev. 0.09 0.008 0.24 0.24 0.02 0.09

Damage 3

Target Value 0.8 0.01 0.6 0.6 -

Robust NDT Design

Mean 0.41 0.028 0.61 0.50 0.10 0.33

Std. Dev. 0.30 0.003 0.13 0.01 0.03 0.28

Deterministic NDT Design

Mean 0.76 0.014 0.70 0.73 0.11 0.65

Std. Dev. 0.06 0.007 0.16 0.14 0.03 0.18

Damage 4

Target Value 0.5 0.01 0.2 0.8 -

Robust NDT Design

Mean 0.15 0.014 0.26 0.70 0.06 0.09

Std. Dev. 0.16 0.009 0.15 0.11 0.01 0.09

Deterministic NDT Design

Mean 0.49 0.025 0.45 0.63 0.11 0.48

Std. Dev. 0.12 0.008 0.12 0.03 0.02 0.11

Total

Robust NDT Design Mean 0.10 0.27

Std. dev. 0.03 0.12

Deterministic NDT Design Mean 0.13 0.62

Std. dev 0.02 0.09
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2.5.4 Example 2 - Airfoil

Finally, to examine the capabilities of the NDT design approaches for a more realistic sce-

nario, the second simulated case study consisted of analysis of an aluminum airfoil structure

based upon the standard NACA-0012 cross section, shown schematically in Figure 2.4.

Again, the NDE objective was to determine a semi-localized change in the Young’s mod-

ulus distribution throughout the airfoil as could be representative of a damage scenario.

However, to simplify the inverse problem slightly, the semi-localized change in the Young’s

modulus distribution was assumed to be known to only occur in the upper portion of the

airfoil and the value was kept constant through the thickness of the airfoil. Therefore, the

two-dimensional parameterization of the Young’s modulus described by 2.15 was still appli-

cable as the description of the in plane Young’s modulus distribution of the top half of the

airfoil. Similarly to the previous example, the airfoil was assumed to be partially fixed on one

side with the remaining boundaries free to displace, but with uncertain parameters in this

case describing the length of the upper and lower portions of the boundary separately (as

shown in Figure 2.4(b)). The length of the supported regions on the upper and lower bound-

aries were assumed to be described respectively by uniformly distributed random variables

XUBC ∼ U(0.66, 0.74)m and XLBC ∼ U(0.62, 0.76)m. In addition, for this examples case, the

homogeneous material density of the airfoil was also assumed to be an uncertain parameter

described by a uniformly distributed random variable ρa ∼ U(2565, 2835)kg/m3. The simu-

lated NDT consisted of applying a 1kPa harmonic load to a circular region normal to the top

surface of the airfoil with a radius of 0.09m and centered at (Xf , Yf ) = (0.41, 0.8)m, while the

displacement amplitude was measured at four sensors that were restricted to the top surface

of the upper portion of the airfoil. As before, the excitation frequencies of the NDT were

assumed to be predetermined as 3 evenly spaced values from 100Hz to 300Hz, and the un-

known NDT parameters to be determined consisted of the sensor locations. Again, to avoid

the boundary the potential sensor locations were restricted to ~XSi ∈ [0, 1.0] × [0.02, 1.0]m.

To quantify the uncertainty for the robust NDT design for this case study a 3 dimensional

level 7 Smolyak method was used, which required 2561 realization of the system.
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Figure 2.4: Schematic for Example 2, including (a) the top view of the airfoil, displaying the

sensor locations, (XSi, YSi), the location of the actuation (Xf , Yf ), (b) the cross section of

the airfoil, displaying the upper and lower boundary conditions, and (c) The 3D view of the

airfoil.
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Figure 2.5: Top view schematics of the NDT designs for Example 2, including the sensor

locations determined for (a) the robust NDT design and (b) the deterministic NDT design.

For this airfoil case the sensor locations for the robust NDT design were determined to be

(shown in Fig. 2.5 (a)): ~XS1 = (0.31, 0.40)m, ~XS2 = (0.043, 0.50)m, ~XS3 = (0.076, 0.70)m,

and ~XS4 = (0.005, 0.10)m. Again, to provide a deterministic (i.e., non-robust) comparison,

the sensor locations for the deterministic NDT design were determined to be (shown in

Fig. 2.5 (b)): ~XS1 = (0.005, 0.60)m, ~XS2 = (0.25, 0.80)m, ~XS3 = (0.80, 0.60)m, and ~XS4 =

(0.924, 1.0)m. Similarly to the first example, the mean values of the uncertain parameters

were used for the deterministic NDT design (i.e., XUBC = 0.70m, XLBC = 0.69m, and

ρa = 2700kg/m3), and as before, the sensor distributions identified for the robust design and

the deterministic design were considerably different. The effectiveness of each NDT design

was once again tested by applying the inverse characterization process for four different

damage scenarios shown in Fig. 2.6.

The stopping criteria for the SMARS optimization process to estimate the material pa-

rameters for the inverse characterization for this example was set as a maximum of 17500

finite element analyses for all trials. Table 2.3 shows the RBF parameters for each dam-

age scenario used to simulate the sensor measurement data for both the robust and the
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Figure 2.6: Top view of the four (a-d) randomly generated target (i.e., simulated experi-

mental) spatial distributions of the Young’s modulus for testing the inverse characterization

capabilities of each NDT design for Example 2 (color contours are in units of GPa).
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deterministic NDT designs, the respective means and standard deviations of the inversely

estimated RBF parameters from the 10 trials of each scenario with each NDT, as well as

the corresponding mean and standard deviation of the relative L2-Error and the relative

L∞-Error for the resulting Young’s modulus distributions with respect to the distributions

used to generate the sensor measurement data.

The results for the characterization tests, particularly the relative errors comparing the

robust design to the deterministic design, were surprisingly highly consistent for this sig-

nificantly more complex test case compared to the first example. On average, the robust

NDT design produced inverse material characterization results that were significantly more

accurate than the deterministic NDT design, particularly in terms of the L∞-Error in the

Young’s modulus, and the capabilities of the robust NDT design were especially highlighted

for the individual trials where the variation in the uncertain parameters was significant.

2.6 CONCLUSIONS

A generalized approach for robust NDT design for applications in material characterization

and damage identification of solids and structures was presented. The approach extends the

concept of deterministic NDT design for maximum test response sensitivity and minimum

measurement redundancy to include the maximization of robustness to uncertainty of system

parameters that are not included in the set to be inversely characterized with the NDT. In

addition, the Smolyak stochastic collocation method was presented as a means to efficiently

calculate the response moments with respect to the uncertain parameters of the system

utilized in the robust NDT design metrics in a way that is generally applicable. Through

simulated examples of frequency response function-based NDT, the robust NDT design ap-

proach was shown to provide considerably different optimal NDT parameters in comparison

to an analogous deterministic NDT design method. Moreover, example cases of applying the

respective optimal NDT designs showed that the robust NDT design consistently produced

more accurate material characterization results for the NDE of structural components in

which system uncertainty exists in comparison to the deterministic NDT design.
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Table 2.3: Target values for the unknown damage parameters D1, c1, and εx1 , ε
y
1, the mean

and standard deviation of the unknown values as estimated by the inverse characterization

process for all 10 trials with both the robust NDT design and the deterministic NDT design,

and the corresponding mean and standard deviation of the relative L2 and relative L∞.

D1 c1 εx1 εy1 L2-Error L∞-Error

Damage 1

Target Value 0.7 0.01 0.6 0.8 -

Robust NDT Design

Mean 0.76 0.003 0.84 0.91 0.09 0.74

Std. Dev. 0.20 0.001 0.18 0.13 0.01 0.21

Deterministic NDT Design

Mean 0.89 0.008 0.85 0.92 0.12 0.88

Std. Dev. 0.23 0.005 0.19 0.14 0.02 0.23

Damage 2

Target Value 0.6 0.008 0.2 0.7 -

Robust NDT Design

Mean 0.94 0.020 0.22 0.60 0.12 0.74

Std. Dev. 0.11 0.008 0.02 0.08 0.05 0.18

Deterministic NDT Design

Mean 0.96 0.019 0.13 0.59 0.14 0.94

Std. Dev. 0.04 0.005 0.15 0.04 0.01 0.04

Damage 3

Target Value 0.7 0.01 0.3 0.3 -

Robust NDT Design

Mean 0.74 0.022 0.17 0.42 0.13 0.71

Std. Dev. 0.13 0.008 0.07 0.04 0.02 0.11

Deterministic NDT Design

Mean 0.89 0.019 0.07 0.46 0.15 0.87

Std. Dev. 0.08 0.008 0.13 0.07 0.03 0.11

Damage 4

Target Value 0.7 0.007 0.8 0.3 -

Robust NDT Design

Mean 0.27 0.002 0.94 0.15 0.07 0.24

Std. Dev. 0.23 0.001 0.08 0.19 0.01 0.22

Deterministic NDT Design

Mean 0.54 0.006 0.87 0.09 0.09 0.54

Std. Dev. 0.30 0.005 0.20 0.15 0.03 0.30

Total

Robust NDT Design Mean 0.10 0.61

Std. dev. 0.03 0.24

Deterministic NDT Design Mean 0.12 0.81

Std. dev 0.03 0.18
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3.0 ADAPTIVE REDUCED-BASIS GENERATION FOR

REDUCED-ORDER MODELING IN SPARSE GRID APPROXIMATIONS

OF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

3.1 ABSTRACT

A generally applicable algorithm for creating a computationally efficient approximation of a

system response that is defined by a boundary value problem is presented. More specifically,

the approach presented is focused on substantially reducing the computational expense re-

quired to approximate the solution of a stochastic partial differential equation, particularly

for the purpose of estimating the solution to an associated inverse problem. In order to

achieve this computational efficiency, the approach combines reduced-basis reduced-order

modeling with a sparse grid collocation surrogate modeling technique to estimate the re-

sponse of the system of interest with respect to any designated unknown parameters, in-

cluding those that may be considered to have significant uncertainty and/or those that

are entirely unknown and sought to be determined through an inverse solution procedure.

The reduced-order modeling component includes a novel generally applicable algorithm for

adaptive generation of a data ensemble based on a nested grid technique, to then create

the reduced-order basis. The capabilities and potential applicability of the approach pre-

sented are displayed through two simulated case studies regarding inverse characterization

of material properties for two different physical systems/processes involving some amount

of significant uncertainty. The first case study considered characterization of an unknown

localized reduction in stiffness of a structure from simulated frequency response function

based nondestructive testing. Then, the second case study considered characterization of

an unknown temperature-dependent thermal conductivity of a solid from simulated thermal
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testing. Overall, the surrogate modeling approach was shown through both simulated exam-

ples to provide accurate solution estimates to inverse problems for systems represented by

stochastic partial differential equations with a fraction of the typical computational cost.

3.2 INTRODUCTION

There are a large number of important inverse problems in engineering mechanics, covering

applications from characterization to design of complex physical systems, and a correspond-

ing large amount of work involving the solution of these problems. [85, 4, 6, 8, 10, 62, 83].

One effective approach for solving such inverse problems in mechanics has been to use a

numerical analysis tool, such as finite element analysis, to predict the forward response of

the system under consideration and then combine nonlinear optimization to find the un-

known properties to “best match” the response of the numerical model with the desired or

measured response of the system [2, 84, 51, 83, 60]. Although various research efforts, have

been directed towards such computational methods for the solution of inverse problems and

have made significant strides, there are still several common challenges, most often relat-

ing to the ill-posedness of the inverse problems in the form of nonexistent or non-unique

solutions along with the excessive computational expense associated with many solution al-

gorithms. In particular, regardless of the solution approach (e.g., gradient based [59, 54] or

non-gradient-based optimization [21, 37, 76], etc.), solving an inverse problem using a com-

putational solution procedure commonly requires a relatively large number of evaluations

of the forward response of the system. Moreover, the computational expense drastically

increases if considering uncertainty within the system, since the forward problem then in-

volves a stochastic partial differential equation (SPDE) (which is considerably expensive on

its own).

There are several different approaches that have been developed for the solution of SPDEs

[36, 12, 88]. Whether the approach to address the uncertainty is intrusive (i.e., modifies the

deterministic boundary value problem) or non-intrusive (i.e., only uses results from the

deterministic boundary value problem), these solution approaches typically require a sub-
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stantial amount of computational expense. As such, there has been considerable effort to

attempt to reduce the computational expense of SPDE solutions, both for intrusive [17] and

non-intrusive approaches [42]. Sparse grid approximation approaches are one particular com-

putationally efficient solution technique that builds a low-cost approximation (i.e., surrogate

model) of the SPDE and has shown considerable promise for being used in approximating

SPDE solutions [79, 88]. The sparse grid methods are non-intrusive, and therefore, easy to

implement, requiring only the solution of uncoupled deterministic problems, and use sub-

stantially fewer evaluations of the boundary value problem in comparison to the traditional

Monte Carlo non-intrusive methods, without sacrificing accuracy [12]. However, even with

the reduction in the number of boundary value problem evaluations required, constructing a

sufficiently accurate sparse grid approximation of the SPDE for high-dimensional or highly

nonlinear problems (among other complexities) that can provide accurate approximations

for the entire parameter space can still require a substantial number of analyses of the as-

sociated deterministic boundary value problem, even to the point of being computationally

prohibitive in some cases [52]. To address this challenge, one potential approach could be

to use a two step process to reduce the overall computational expense to a feasible level,

first reducing the cost of the deterministic boundary value problem with a reduced-basis

reduced-order modeling technique, that can then be used with a sparse grid approach to

construct the surrogate model for the SPDE solution approximation.

Reduced-basis-type model reduction approaches that identify the relatively low-dimensional

basis that is optimal in some sense for representing the physics of the system of interest have

been used to produce efficient and accurate numerical representations for several different

applications in mechanics [40, 25, 63, 20]. By not replacing the boundary value problem

governing the mechanics of interest as would be done with surrogate modeling approaches,

reduced-basis ROM techniques are more computationally expensive than surrogate model-

ing approaches, but are typically capable of more accurate approximations, particularly for

extrapolating throughout the space of potential system inputs. This ROM approach has

also been recently extended to stochastic problems with the work by Boyaval et al. [17]

that created reduced-basis ROMs to estimate the solution of an SPDE. There are different

strategies to determine the low-dimensional basis, but the focus of the work herein is on
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methods that derive the “optimal” basis from a given set of potential fields for the sys-

tem of interest. These given fields can be either experimentally measured or numerically

simulated with different values of the system input parameters, depending on capabilities.

There are also different approaches to process these given fields to produce a basis. For

example, proper orthogonal decomposition (POD) has been used in several studies [9, 49, 1]

to extract the basis from a given dataset that is optimal in the average L2-error sense for

representing the given fields. Alternatively, other works, including the work by Boyaval et

al. relating to SPDEs, have simply used Gram Schmidt orthogonalization to directly convert

the given fields into an orthogonal basis [17]. Yet, a more important question that is not

often addressed in ROM studies is how to generate (e.g., select the system inputs to numer-

ically simulate with full-order analysis) the initial set of potential fields used to create the

basis. The majority of the previous work has used some form of fixed sampling, often simply

uniformly sampling the input parameter space [53]. Alternatively, one approach that has

been developed and referred to as “certified reduced basis methods” uses a posteriori error

estimation to iteratively add to a set of potential fields to minimize the error of the resulting

ROM with respect to the estimated error bound [72]. However, the ability to generate and

ensure accuracy of the a posteriori error estimate for the ROM with a given PDE can be

nontrivial and a potentially costly task. A different approach was presented by Brigham and

Aquino [20] to generate the dataset for ROM creation that was based on creating the set of

potential fields that were maximally diverse in a sense within the solution space. However,

this maximum diversity approach was only applicable as presented for problems relating to

solid mechanics of rate-dependent materials. Overall, no clear approach exists as of yet that

is generally applicable, easy to implement, and computationally inexpensive to generate a

suitable dataset and ultimately an accurate ROM.

The current work presents an approach to substantially reduce the computational ex-

pense required to approximate the solution of a stochastic PDE, particularly for the purpose

of estimating the solution to an associated inverse problem. In order to achieve this compu-

tational efficiency, the approach presented combines reduced-basis reduced-order modeling

with a sparse grid collocation surrogate modeling technique to estimate the response of the

system of interest with respect to both the inverse problem unknowns and the uncertain
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system parameters. In the following section a general inverse problem solution framework

is outlined. Then, the approach for using the sparse grid method as a system response sur-

rogate model is presented, which is followed by an adaptive method for generating efficient

and accurate reduced-order models for the solution of SPDEs. Lastly, the capability of this

computationally efficient approach to provide accurate solution estimates to inverse prob-

lems of systems represented by SPDEs with a fraction of the typical computational cost is

shown through simulated examples involving both solid mechanics and heat transfer.

3.3 METHODS

For context, the methods are presented with respect to inverse characterization problems

based upon some type of physical system measurements (e.g., displacements or tempera-

tures) given the associated boundary conditions and some knowledge of significant epistemic

uncertainty in certain system parameters. Furthermore, the present work utilizes a standard

generally-applicable optimization-based computational approach for inverse problem solu-

tion approximation to evaluate the ROM strategy. As is typical, the computational inverse

mechanics approach consists of first constructing a numerical representation of the behavior

of the target system that is parameterized with respect to the unknown system properties.

Then, an objective functional is constructed that quantifies the difference between the mea-

sured response and the response predicted by the numerical representation for any given

admissible set of system properties. Lastly, all that is necessary is to minimize the objective

functional with respect to the unknown system properties to produce an estimate to the

inverse problem solution. As an example, a common objective functional for the inverse

solution approach could have the following form:

J(~h) =

∥∥∥Rmes −R(~c,~h)
∥∥∥

‖Rmes‖
, (3.1)

where ~h is the vector of unknown parameters (e.g. parameters defining a material property

distribution) to be determined through the inverse solution process, Rmes is the measured
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response of the system, R is the simulated estimate to the system’s response for a given

parameter set estimate, ~c is the vector of uncertain system parameters, and ‖.‖ is some

suitable metric norm that combines the contributions of all measurement information to

produce the total scalar error functional.

A critical point is that the calculation of the simulated response of the structure with

respect to different parameter estimates using traditional analysis methods (e.g., finite el-

ement analysis) can be computationally expense for many realistic applications, which can

lead to the inverse solution process becoming computationally infeasible (especially when

addressing uncertainty). Therefore, rather than using computationally expensive methods

to numerically simulate the system response estimate, the present work instead utilizes a

substantially more computationally inexpensive surrogate modeling strategy to produce a

tool to simulate the system response (R) with negligible computational expense. In partic-

ular, this work presents a combined ROM-collocation strategy to effectively and efficiently

generate a surrogate model of the system response with respect to both the inverse problem

unknowns and the uncertain system parameters. As outlined in the following, this approach

not only uses a collocation method to obtain the surrogate model for the system response,

but generates and uses a ROM to create this surrogate model with a substantial savings in

computational expense in comparison to traditional techniques at each step in the process

and for the overall solution procedure.

3.3.1 Sparse Grid Collocation Method for Forward Model Approximation

A sparse grid collocation method was selected to create the system response surrogate model

for the present work due to its capabilities to provide accurate approximations of smooth

functions in high dimensions based on a relatively small number of function evaluations, as

has been shown in several works relating to global optimization [73, 31]. For the purposes of

the sparse grid collocation method, the vector of unknown/inverse problem parameters (~h)

and the vector of uncertain system parameters (~c) are treated equivalently, and therefore,

are combined into a single parameter vector, ~ϕ = [~h,~c]T , for this presentation.
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The basic collocation approach uses Lagrange interpolating polynomials and the tensor prod-

uct technique to incorporate all dimensions of the parameter space to define the surrogate

model approximation of the system response in terms of a higher-order (e.g., finite element

analysis) model of the system response evaluated at each collocation point in the parameter

space as:

(
U i1 ⊗ · · · ⊗ U in

)
(RHO) =

m1∑
j1=1

· · ·
mn∑
jn=1

RHO(ϕi1j1 , ..., ϕ
in
jn

) ·
(
Li1j1 ⊗ · · · ⊗ L

in
jn

)
, (3.2)

where RHO is the higher-order model response, Lij is the jth standard Lagrange interpolating

polynomial corresponding to the ith parameter and mi is the number of collocation points

for the ith parameter. Note that each parameter is typically mapped to a domain of [−1, 1]

for this implementation. While this collocation approach is a relatively straightforward

technique overall, the selection of the collocation points is a nontrivial task. With the total

number of evaluations of the higher-order model of the system response being equivalent

to m1 × · · · × mn, the creation of the surrogate model by simply using uniformly spaced

collocation points in the parameter space can be excessively computationally expensive,

even for a relatively inexpensive higher-order model (RHO). Thus, the sparse grid approach

is used here to reduce the computational cost by significantly reducing the total number of

required collocation points without significantly sacrificing accuracy of the surrogate model.

For the present study, the Smolyak algorithm [86, 15] was used for the sparse grid con-

struction. At its core, the Smolyak algorithm creates a sparse grid interpolant to be utilized

in place of the tensor product above as:

Aq,n =
∑

q−n+1≤|~i|≤q

(−1)q−|
~i| ·

 n− 1

q − |~i|

 · (U i1 ⊗ · · · ⊗ U id), (3.3)

where n is the total number of system parameters (i.e., dimension of ~ϕ), q−n is the order of

interpolation, ~i = (i1, ..., in), and |~i| = i1 + · · ·+ in (note that ik conceptually represents the

level of interpolation along the the kth direction). To compute the surrogate model response

approximation, R = Aq,n(RHO), the response function should be evaluated at the sparse grid

points given by

Hq,n =
⋃

q−n+1≤|i|≤q

(Θi1 ⊗ · · · ⊗Θin), (3.4)
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where Θik = (ϕik1 , ..., ϕ
ik
mk

). Lastly, there are different potential choices for the nested grid to

define the collocation points in the parameter space, such as the Gauss Patterson approach

[22] or the Clenshaw-Curtis approach [82].

Utilizing a sparse grid approximation allows for construction of the surrogate model with

orders of magnitude reduction in the number of higher-order analyses required compared to

a standard tensor product implementation with approximately the same level of accuracy.

However, sparse grids are still affected by the “curse of dimensionality,” and the number

of analyses required for relatively high-dimensional parameter spaces can become excessive

if the higher-order model being approximated requires a substantial computational expense

(as would often be the case if using traditional finite element analysis to produce the system

response here). Thus, the present works adds one more layer of computational savings by

building and using a ROM (instead of a commonly used full-order finite element analysis)

for the higher-order analysis in the surrogate model creation, as detailed in the following.

3.3.2 Adaptive Nested Sampling for Reduced-Order Model Generation

The reduced-order modeling strategy utilized herein is the reduced-basis approach, which

in essence, identifies the low-dimensional basis that is optimal in some sense to replace the

standard higher-order generalized (e.g., polynomial) bases typically used within a numerical

PDE solution strategy (e.g., weak form Galerkin finite element method)[70]. This approach

was chosen since it balances the improvement in computational expense with the capability

to maintain accurate generalization over the parameter space that is afforded by maintaining

the physics of the problem through the PDE, which is still included in the solution proce-

dure, in contrast to alternate ROM techniques. The following discussion of an approach to

create such an accurate physics-based ROM is presented in a general format, which can be

used for a variety of mechanics, including both steady-state and transient processes, etc.,

and could even be applicable as a direct replacement in a computational inverse problem

solution procedure (although, that was not the focus of the work herein).
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To understand the ROM approach, first consider the following general form of a SPDE

representing the behavior of a system of interest (arbitrarily shown as transient and with only

essential boundary conditions for clarity, but could equivalently be utilized for a static prob-

lem, a problem in the frequency domain, and/or a problem with other boundary conditions

as well):
∂n~u(~x, t; ~ϕ)

∂tn
= F (~ϕ; ~u(~x, t; ~ϕ)), ∀ ~x ∈ Ω

∂r~u(~x, t = 0; ~ϕ)

∂tr
= gr(~x; ~ϕ), ∀ ~x ∈ Ω, for r = 0, ..., n− 1

~u(~x, t; ~ϕ) = ~u0(~x, t; ~ϕ) ∀ ~x ∈ Γ,

(3.5)

where ~u is the primary system response field (e.g., displacement in solid mechanics), ~x is the

spatial position, t is time, F is a spatial differential operator, n is the number of temporal

derivatives, gr are the known initial conditions, ~u0 is the known boundary condition, Ω is

the spatial domain, and Γ is the domain boundary. The core hypothesis of the reduced-

basis reduced-order modeling approach considered in the present work is that a relatively

small number of full-order (i.e., traditional finite element) analyses based upon different

values of the input parameters of interest (~ϕ) contain fundamental information about the

spatial distribution of potential solution fields of the boundary value problem (BVP) and can

be used to derive a low-dimensional basis that can predict the solution fields for a range of

input parameters (not just the specific parameter values used to generate the set of full-order

analyses) with reasonable accuracy.

The proper orthogonal decomposition (POD) method was used herein to derive the ba-

sis to be used from a set of previously generated full-order analysis solution fields [19]. As

detailed in Appendix A, POD creates the basis that is optimal in an L2 average sense for

approximating the given solution fields. Assuming such a m-dimensional basis has been cre-

ated, the solution of the SPDE (Equation 3.5) can be approximated by a linear combination

of the basis functions (i.e., modes) as:

~u(~x, t; ~ϕ) =
m∑
i=1

ai(t; ~ϕ)~φi(~x) (3.6)

where ai(t; ~ϕ) is the ith modal coefficient to be determined by the numerical analysis to

approximate the solution of the system given a new set of system input parameters, whether
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those parameters are unknowns to be determined through an inverse solution process or

other uncertain parameters of the system. Applying the Galerkin projection procedure,

the solution approximation (Equation 3.6) can be substituted into the governing SPDE

(Equation 3.5) to obtain the weak form of the SPDE that can be used to approximate the

modal coefficients as:

∂nαc(t; ~ϕ)

∂tn
=

(
F

(
~ϕ;

N∑
i=1

αi(t; ~ϕ)~φi(~x)

)
, ~φc(~x)

)
L2

, for c = 1, ...,m, (3.7)

with the initial conditions given as:

αc(t = 0; ~ϕ) = (gr(~x; ~ϕ), φc)L2
, for r = 0, ..., n− 1, c = 1, ..,m, (3.8)

where (·, ·)L2
is the standard L2 inner product. Note that for the case of fixed essential

boundary conditions, the modes will automatically satisfy the essential boundary conditions

for the system of interest.

Of paramount importance is that a critical question still remains unanswered from the

above formulation, which is how to select the set of input parameters used to create the set of

full-order analyses that will be utilized to then create the POD basis and ultimately the ROM.

In particular, to see a true benefit from this ROM strategy, this dataset must be generated

in such a way to limit the number of full-order simulations necessary to ensure sufficiently

accurate generalization of the ROM over the admissible range of the input parameters of

interest. As such, the following presents an adaptive strategy to incrementally select the

parameter set values to be used to create full-order analysis fields (referred to as “snapshots”

from here on) and build the ROM to minimize a measure of the potential ROM solution

error.
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3.3.2.1 Adaptive Nested Grid Snapshot Generation: The core of this incremental

snapshot generation approach is the use of a nested grid strategy to select the associated

parameter set values along with a local refinement procedure to select additional parameter

set values adaptively in the region of the parameter space with the highest approximation

error. In addition, the parameter space sampling that is used to create the ROM can be

done in such a way (as was done herein) that a portion of the parameter space grid points

corresponding to the snapshots are the exact same points as a portion of the collocation

points that will then be used to create the surrogate model (as described in Section 3.3.1).

Since, the points in the parameter space corresponding to the full-order analyses are naturally

the most accurate (in the ROM context), having the grids overlap in this two stage (i.e.,

ROM to surrogate model) process will ensure that the information with the highest possible

accuracy is used to create the numerical representation of the system response that will

ultimately be used in the inverse problem solution procedure.

The algorithm developed for adaptive nested grid snapshot generation is outlined in Algo-

rithm 1. For the present work, an ad hoc approach was used to estimate the approximation

Algorithm 1 - Adaptive Nested Grid Snapshot Generation

1: Randomly generate a ROM test set of parameter sets and corresponding response fields with
full-order simulation.

2: Generate an initial set of snapshots from the parameter sets that are defined based on the
chosen nested grid type and initial level (L).

3: Create a reduced-basis ROM from the set of snapshots.
4: Evaluate the ROM for each parameter set in the ROM test set and calculate the average relative

L2-error with respect to the full-order simulations (Eave
L2

(ROM)).

5: while
(
Eave
L2

(ROM) > Etol
Level

)
do

6: Increase the grid level: L = L + 1, and generate the additional associated snapshots.
7: Create a reduced-basis ROM from the set of snapshots.
8: Evaluate the ROM for each parameter set in the ROM test set and calculate Eave

L2
(ROM).

9: end while
10: Calculate the maximum relative L∞-error with respect to the full-order simulations

(Emax
L∞

(ROM)).

11: while
(
Emax
L∞

(ROM) > Etol
Local

)
do

12: Identify the parameter set (~S) corresponding to Emax
L∞

(ROM).
13: Generate additional snapshots from parameter sets based on a hypercube of length l centered

at ~S in the parameter space.
14: Create a reduced-basis ROM from the set of snapshots.
15: Evaluate the ROM for each parameter set in the ROM test set and calculate Emax

L∞
(ROM).

16: end while
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error of the ROM based on a randomly generated set of full-order analysis response fields

(i.e., “ROM test” set) to drive the adaptive snapshot generation procedure. Two different

measures of this approximation error are utilized at two different stages in the snapshot

generation algorithm, the average relative L2-error, which is defined as:

Eave
L2

(ROM) =
1

a

a∑
k=1

∥∥RFOM(~x,~γk)−RROM(~x,~γk)
∥∥
L2(Ω)

‖RFOM(~x,~γk)‖L2(Ω)

, (3.9)

and the maximum relative L∞-error, which is defined as:

Emax
L∞ (ROM) = Max

k∈[1,a]

∥∥RFOM(~x,~γk)−RROM(~x,~γk)
∥∥
L∞(Ω)

‖RFOM(~x,~γk)‖L∞(Ω)

, (3.10)

where a is the number of response fields in the ROM test set, RFOM is the response field

simulated with the full-order model, RROM is the response field simulated with the ROM, and

‖·‖L2(Ω) and ‖·‖L∞(Ω) are the standard L2 and L∞ norms, respectively. In addition, two error

tolerance values are set by the user, Etol
Level (i.e., the level error tolerance), which corresponds

to the average relative L2-error and is used to determine the final level of the nested grid to

generate the snapshots, and Etol
Local (i.e., the local error tolerance), which corresponds to the

maximum relative L∞-error and is used during the local refinement process. Therefore, the

first step in the snapshot generation procedure is to create the ROM test set by randomly

generating a set of parameter sets and calculating the associated response fields with the

full-order simulation. Then, an initial set of snapshots is created based on a nested grid

with a selected level (this level could typically be chosen as an arbitrarily small number,

such as 1) and an ROM is created from this set of snapshots. The level of the nested grid is

iteratively increased, with the corresponding new parameter sets evaluated with the full-order

model and the ROM updated after each iteration until the average relative L2-error of the

ROM computed with the ROM test set is below the level error tolerance. Lastly, the local

refinement procedure iteratively generates additional snapshots by sampling a hypercube

with a user-defined sampling procedure (e.g., a uniform grid) in the parameter space of

user-defined relative length (l) centered at the parameter set values from the ROM test set

corresponding to the maximum relative L∞-error (~S), and the ROM is again updated after

each iteration until the maximum relative L∞-error is below the local error tolerance.
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3.3.3 Computationally Efficient Stochastic Inverse Problem Solution Procedure

Putting all of the components together, the complete process for computationally efficient

approximation of inverse problem solutions involving SPDEs is as follows:

Step 1: Create a reduced-order model for the SPDE of interest using a traditional (full-

order) numerical solution technique (e.g., finite element anlaysis) to adaptively

generate an optimal set of snapshots (Section 3.3.2).

Step 2: Create a surrogate model for the SPDE of interest that will estimate the system

response given inverse problem and uncertain system parameters using the reduced-

order model with the sparse grid collocation method (Section 3.3.1).

Step 3: Apply the computational inverse problem solution procedure to estimate the solu-

tion to the inverse problem by minimizing the difference between the measured/target

system response and the response estimated by the surrogate model (Equation

(3.1)).

3.4 EXAMPLE AND DISCUSSION

Two numerical case studies were considered to investigate the potential capabilities of the

presented approach for creating a ROM using an adaptive nested grid sampling strategy and

utilizing this ROM to construct a surrogate model to be used in an inverse problem solution

strategy of a system with uncertainty. The objective of the first case study was to inversely

calculate the unknown localized reduction in stiffness of a structure from simulated frequency

response function based nondestructive testing. Alternatively, the objective of the second

case study was to inversely calculate the temperature-dependent thermal conductivity of a

solid from simulated thermal testing.

For both case studies standard Galerkin finite element analysis [71] was used to simulate

the “experimental” measurements and to generate the snapshots for the ROM construction.

For all examples, the Gauss Patterson approach [82] was chosen to define the grid points

for both the snapshot selection process to create ROMs and the sparse grid surrogate model
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method. The ROM test sets for calculating the error norms of the ROM were comprised

of 50 randomly generated response field snapshots, the level error tolerance was defined as

Etol
Level = 5%, and the local error tolerance was defined as Etol

Local = 1% for both example.

Gauss Patterson grids were used for the sparse grids with an initial level of one, and the local

refinement process for the ROM generation adaptively defined the hypercube length (l) as

the euclidean distance in the parameter space between the parameter set corresponding to

Emax
L∞ (ROM) (~S) and the next nearest parameter set from the current set of snapshots used

to create the ROM. A genetic algorithm (GA) (a stochastic optimization algorithm) [28]

was applied to approximate the inverse problem solutions for all examples (as described in

Section 3.3). For simplicity, standard GA parameters were utilized and the stopping criteria

was set to be well in excess of the actual convergence of the GA population to ensure that

the optimization process was as successful as possible for each trial, and therefore, did not

bias the results. An important point is that although a GA provides significant global search

capabilities, a GA would typically be computationally excessive for problems such as this,

since GAs usually require a relatively large number of function evaluations to converge to a

solution. However, the use of surrogate modeling herein allows even a GA to be applied with

relatively low overall computational expense for the inverse solution process. An addition

note is that to add some amount of realism to the examples and to partially relieve the

inverse crime inherent in simulated experiments, 1% Gaussian white noise was added to all

simulated experimental responses prior to applying the inverse characterization procedure

as:

Rmes = Rmes
0 (1 + 0.01ℵ) , (3.11)

where Rmes
0 is the original simulated test response without noise and ℵ is a normally dis-

tributed random variable with zero mean and unit variance.

3.4.1 Stiffness Characterization from Frequency Response Testing

The first numerical example was based upon characterization of the stiffness of a solid from

frequency response testing and consisted of a 1m × 1m × 0.01m aluminum plate, that was

fixed along the bottom and free to displace on the remaining three sides. Figure 3.1 shows
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a schematic of the plate and the simulated nondestructive test used to perform the inverse

material characterization. For the simulated test, an actuator was assumed to be represented

by a harmonic pressure force of 1kPa applied to a 5cm region normal to the top surface that

excited the structure to steady state at 10 equally spaced excitation frequencies between 100

to 1000 Hz, while the resulting harmonic displacement amplitudes were measured at nine

“sensor” locations for each excitation frequency. The horizontal position of the actuator was

assumed to be the main source of uncertainty for this inverse problem example, and was

assumed to be described by a uniformly distributed random variable XF ∼ U(0.6, 0.8)m.

3.4.1.1 Forward Problem and Reduced-Order Modeling: The structure was as-

sumed to behave linearly elastically with respect to the nondestructive testing (NDT) and

represented by steady-state dynamic solid mechanics. Therefore, the SPDE and boundary

conditions governing the behavior of the structure can be written as:

∇ · σ(~x, ω, ~ϕ) + ω2ρ~u(~x, ω, ~ϕ) = ~0, ∀ ~x ∈ Ω,

σ(~x, ω, ~ϕ) · ~n(~x) = ~G(~x, ω, ~ϕ), ∀ ~x ∈ ΓG, (3.12)

~u(~x, ω) = ~u0(~x, ω), ∀ ~x ∈ Γu,

where σ is the stress tensor, ω is the excitation frequency, ~ϕ is again the vector of both the

unknown/inverse problem parameters (stiffness distribution parameters for this example)

and the uncertain system parameters (actuation location for this example), ρ is the density,

~u is the displacement vector, ~n is the unit normal to the surface, ~G is the applied traction

vector, ~u0 is the vector of applied displacement boundary conditions, Ω is the domain of the

structure, ΓG is the portion of the domain boundary with applied traction boundary condi-

tions (which is uncertain for this example), and Γu is the portion of the domain boundary

with applied displacement boundary conditions. In addition, the response of the thin plate

was assumed to obey the plane stress condition. The material parameters of the plate were

based upon standard values for aluminum, with a Poisson’s ratio of ν = 0.3 and density of

ρ = 2700 kg/m3. The elastic modulus distribution was assumed to be the primary unknown
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Figure 3.1: Schematic for the first example of stiffness characterization of a plate from fre-

quency response testing, displaying the sensor locations (x-marks) and the actuator location

(XF ).
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of the inverse problem, but for simplicity, the distribution was assumed to be known to be

localized (as could be potentially applicable for damage characterization problems) with a

base value of 69 GPa, and defined by a radial basis function (RBF) representation as:

E(~x) =

[
1−D · exp

(
−‖~x− ~ε‖

2

c

)]
× 69 GPa, (3.13)

where ‖.‖ represents the standard l2-norm, D is the Young’s modulus percent reduction, ~ε,

is the center of the RBF (i.e., localized stiffness change), and c is the breadth of the RBF.

For the ROM and surrogate model generation and the inverse characterization process, the

material parameters were assumed to be bounded as follows: D ∈ [0, 1], ~ε ∈ [0, 1] × [0, 1],

and c ∈ [0, 0.1].

Applying the Galerkin projection described in Section 3.3.2 to the governing equations

(Equation 3.7) produces the ROM for the steady-state dynamic solid mechanics problem as:

∫
Ω

∇~φc(~x) :

µ
 m∑
i=1

αi(ω, ~ϕ)∇~φi(~x) +

(
m∑
i=1

αi(ω, ~ϕ)∇~φi(~x)

)T
 d~x

+

∫
Ω

∇~φc(~x) :

(
λ

(
∇ ·

m∑
i=1

αi(ω, ~ϕ)~φi(~x)

)
I

)
d~x

−
∫

Ω

ω2ρ~φc(~x) ·

(
m∑
i=1

αi(ω, ~ϕ)~φi(~x)

)
d~x

−
∫

ΓG

~φc(~x) · ~G(~x, ω, ~ϕ)d~x = 0, for c = 1...m,

(3.14)

where I is the identity tenor, and the Lamé constants can be expressed in terms of the elastic

modulus and Poisson’s ratio as:

λ =
E(~x)ν

(1− 2ν)(1 + ν)
(3.15)

µ =
E(~x)

2(1 + ν)
. (3.16)

The POD procedure with adaptive snapshot generation described in Section 3.3.2 was applied

to determine the basis for the above ROM. As such, snapshot displacement fields were

generated with full-order analyses based upon variations in the input parameters of the
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RBF (D, C and ~ε), the actuation location (XF ), and excitation frequency (ω). The adaptive

nested grid snapshot generation algorithm converged at a total of 97 snapshots, which were

used to create the ROM that would be applied for the surrogate model generation.

An intermediate test was performed first, in which the response approximation capabil-

ities of an ROM created with the adaptive strategy presented was compared to the approx-

imation capabilities of a “baseline” ROM created with an equivalent number (i.e., 97) of

snapshots that were entirely randomly generated from the space of input parameters (as has

often been the default snapshot creation strategy in the literature). The average relative L2-

error and the maximum relative L∞-error (as defined previously in 3.9 and 3.10, respectively)

between both ROMs and a set of 50 test response fields that were randomly generated (and

different than the snapshot sets used to generate the ROMs) were calculated. The two error

values (L2 and L∞) for the adaptively generated ROM were 1.2% and 1.9%, respectively,

while the error values for the baseline ROM were 2.11% and 2.14%, respectively. Thus, the

use of the adaptive nested grid snapshot generation strategy improved the accuracy of the

resulting ROM by 40% in terms of the average relative L2-error and 10% in terms of the

L∞-error in comparison to a common random generation approach.

3.4.1.2 Surrogate Modeling: In order to construct a sparse grid approximation of the

displacement with respect to the vector of unknown/inverse problem parameters and the

vector of uncertain system parameters (parameters of the RBF, excitation frequency, and

the location of the actuator) as described in Section 3.3.1, a 6 dimensional level 5 sparse

grid, which required 1, 345 evaluations of the ROM, was found to be suitable to approximate

the displacement fields. Note that the computing cost (in terms of analysis time) of the

ROM was approximately 10% of the cost of the equivalent full-order model, and therefore,

the overall cost of creating the surrogate model was approximately 10% of what would have

been required with a full-order model.

3.4.1.3 Inverse Problem Results: The objective of the inverse problem for this first

example was to determine the statistics of the elastic modulus distribution, and therefore the

RBF parameters (D, c, and ~ε), with respect to the nondestructive test with the uncertain
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location of the actuation (XF ). The objective functional used for the optimization-based in-

verse solution procedure in terms of the nine displacement measurement locations ({ ~XSi}9
i=1)

at the 10 excitation frequencies was cast as:

J(D, c,~ε) =
9∑
i=1

10∑
j=1

(
Rmes( ~XSi, ωj)−Rsim( ~XSi, ωj;D, c,~ε,XF )

)2

(
Rmes( ~XSi, ωj)

)2 , (3.17)

where Rmes is the simulated experimentally measured response (i.e., target response) and

Rsim is the response estimate simulated with the surrogate model for a given estimate of the

inverse problem solution and the uncertain parameter. To estimate the statistical moments

of the inverse problem solution, the optimization-based solution procedure was repeated 20

times, each time with a different randomly generated value of the actuator location (within

the given bounds) assumed within the surrogate model estimate of the system response to be

compared to the simulated experimental measurements. Also note that the actuator location

used to generate the simulated experimental measurements was randomly selected, but fixed

for all trials (as would be the case in reality). 20 was chosen arbitrarily as the number of

trials, since the accuracy of the statistics of the solution was considered less important than

showing that the surrogate model approach was capable of estimating these solutions (nearly)

as accurately as a traditional (full-order) model, but with a fraction of the computational

expense. For each trial the stopping criteria for the GA optimization process to estimate the

material parameters was set as a maximum of 7, 000 functional evaluations.

Table 3.1 shows the mean (the first moment) and variance (the second central moment)

of the RBF parameters estimated by the inverse solution process. Table 3.1 also shows the

mean and variance of the measurement error corresponding to the parameter estimates with

respect to the surrogate model (Equation 3.17) and the measurement error of those param-

eter estimates with respect to the full-order model (Equation 3.17 with the full-order model

in place of the surrogate model for Rsim), as well as the error between the surrogate model

and the full-order model (Equation 3.17 with the full-order model in place of the target

response, Rmes) for the parameter estimates. Furthermore, the parameter values estimated

produced a mean relative L2 and L∞ error in the estimated elastic modulus distribution in

comparison to the distribution used to simulate the experimental measurements of 7.8% and
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Table 3.1: Target (i.e., simulated experimental) values for the unknown damage amplitude

(D), the breadth of the damage region (c), and the horizontal and vertical location of the

center of the damage region (εx, εy), the mean and variance of the corresponding values

estimated by the inverse characterization process for the 20 trials, and the mean and variance

of the measurement error corresponding to the parameter estimates with respect to the

surrogate model (SM-EXP), the measurement error with respect to the full-order model

(FOM-EXP), and the error between the surrogate model and the full-order model (SM-

FOM) for the first example.

D c εx εy Relative L2-Error

Target Value 0.7 0.005 0.7 0.3 SM-EXP FOM-EXP SM-FOM

Mean 0.49 0.005 0.7 0.37 0.14 0.19 0.02

Variance 0.059 6.18×10−6 0.026 0.020 0.007 0.04 0.005

49%, respectively. The resulting parameter values were consistent with the sensitivity of

the system response to the uncertain system parameter, with the mean value of the breadth

and horizontal location of the RBF having been accurate in comparison with the target

values (i.e., those used to simulate the experimental data) and with relatively low variances.

Alternatively, the amplitude and vertical location of the RBF were more sensitive to the

uncertain actuator location, particularly relative to the sensitivity of the measured response

to those parameters themselves, and therefore, had significantly more relative variance and

lower accuracy overall. The measurement error with respect to the simulated experiment

with the full-order model in place of surrogate model shows higher relative L2-Error than the

measurement error of simulated experiment with surrogate model, which is expected since

the error objective functional was minimized based on surrogate model. More importantly,

the difference between the surrogate and full-order models and the change in measurement

error when analyzing the solutions with the full-order model rather than the surrogate model

were both relatively low, providing confidence that the surrogate model was able to accu-
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rately represent the system response, and thus, provide accurate estimates to the statistical

moments of the inverse problem solution. This is particularly impressive when considering

that the surrogate model was built using only 147 full-order analyses (97 for the ROM snap-

shots and 50 for the ROM test set) to then be used for 140, 000 system evaluations (7, 000

evaluations for each of the 20 GA trials), with those 140, 000 system evaluations only requir-

ing on the order of 1 hour of computing time on a standard PC with a 2.00 GHz processor

and 4 GB RAM.

3.4.2 Conductivity Characterization from Thermal Testing

The second numerical example was based upon characterization of the thermal conductivity

of a solid from temperature measurements. Figure 3.2 shows a schematic of the 0.2m×0.2m

two-dimensional plate structure and the simulated thermal testing considered. The simulated

thermal testing involved applying a heat flux to the top surface of the plate, with the plate

having a known initial temperature of 0 throughout and the remaining three sides fixed at a

temperature of 0, and the transient temperature response at 10 discrete “sensors” within the

plate was measured. The applied heat flux was assumed to be the main source of uncertainty

for this problem, with this uniformly applied flux assumed to be defined and known for the

purposes of the inverse problem as:

q = 7× 105 × (1 + ζ) W/m2, (3.18)

where the uniformly distributed random variable ζ ∼ U(0, 1). Then, the test was simulated

by randomly generating 40 realizations of the applied heat flux from the given distribution,

and for each realization of the applied flux the resulting temperature was measured at 10

uniformly spaced points in time between 0s and 1s at each sensor to produce the first moment

and second central moment of the temperature at each sensor and each time step with respect

to the variable flux.
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Figure 3.2: Schematic for the second example of conductivity characterization from thermal

testing, displaying the sensor locations (x-marks) and the temperature and flux boundary

conditions.
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3.4.2.1 Forward Problem and Reduced-Order Modeling: The structure for this

example was assumed to have a nonlinear transient thermal response due to a nonlinear

thermal conductivity and no internal heat sources, with the SPDE and boundary conditions

governing the behavior given as:

ρ Cv
∂T (~x, t, ~ϕ)

∂t
−∇ · [κ(T (~x, t, ~ϕ)) · ∇T (~x, t, ~ϕ)] = 0, ∀ ~x ∈ Ω,

−(κ (T (~x, t, ~ϕ)) · ∇T (~x, t, ~ϕ)) · ~n(~x) = q(ζ), ∀ ~x ∈ Γq,

T (~x, t, ~ϕ) = 0, ∀ ~x ∈ ΓT ,

T (~x, t = 0, ~ϕ) = 0, ∀ ~x ∈ Ω,

(3.19)

where T is the temperature, t ∈ [0, 1]s is the time, ρ is the density, Cv is the specific

heat, κ(T ) is the temperature-dependent thermal conductivity, ~ϕ is again the vector of both

the unknown/inverse problem parameters (heat conductivity parameters for this example)

and the uncertain system parameters (heat flux magnitude for this example), ~n is the unit

normal to the surface, Ω is the domain of the structure, Γq is the portion of the domain

boundary with applied heat flux boundary conditions, and ΓT is the portion of the domain

boundary with applied temperature boundary conditions. The specific material parameters

were based on those utilized in [7] (with some minor modification to the function used to

define the thermal conductivity), with a density of ρ = 7850 kg/m3 and specific heat of

Cv = 419 J/(kg ·o C). The temperature-dependent thermal conductivity κ(T ) was assumed

to be the primary unknown of the inverse problem and defined in terms of four scalar

coefficients in the following form:

κ (T (~x, t, ~ϕ)) = c3T
3(~x, t, ~ϕ) + c2T

2(~x, t, ~ϕ) + c1T (~x, t, ~ϕ) + c0. (3.20)

For the ROM and surrogate model generation and the inverse characterization process, the

four material parameters were assumed to be bounded as follows: c0 ∈ [420, 980], c1 ∈

[1.8× 10−3, 4.2× 10−3 ], c2 ∈ [1.2× 10−3, 2.8× 10−3 ], and c3 = [0.66× 10−3, 1.55× 10−3].
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Applying the Galerkin projection described in Section 3.3.2 to the governing equations

(Equation 3.19) produces the ROM for the nonlinear transient heat transfer problem as:

ρ Cv
∂αc(~ϕ, t)

∂t
+ c0

m∑
i=1

αi(~ϕ, t)

∫
Ω

∇φi(~x) · ∇φc(~x)d~x

+c1

∫
Ω

(
m∑
j=1

αj(~ϕ, t)φj(~x)

)
·
m∑
i=1

αi(~ϕ, t)∇φi(~x) · ∇φc(~x)d~x

+c2

∫
Ω

(
m∑
j=1

αj(~ϕ, t)φj(~x)

)2

·
m∑
i=1

αi(~ϕ, t)∇φi(~x) · ∇φc(~x)d~x (3.21)

+c3

∫
Ω

(
m∑
j=1

αj(~ϕ, t)φj(~x)

)3

·
m∑
i=1

αi(~ϕ, t)∇φi(~x) · ∇φc(~x)d~x

−
∫

Γq

φc(~x)q d~x = 0, for c = 1...m,

with

αc(~ϕ, t = 0) =

∫
Ω

T0 · φc(~x)d~x, for c = 1...m. (3.22)

The snapshot temperature fields generated with full-order analyses using the adaptive snap-

shot generation algorithm were based upon variations in the thermal conductivity parameters

(c0, c1, c2, and c3) and the heat flux amplitude parameter (ζ). Alternatively, for simplicity,

the time sampling was fixed for the snapshot generation, with three times generated for each

conductivity and heat flux combination: t = 0.3s, t = 0.6s, and t = 0.9s. The adaptive

nested grid snapshot generation algorithm converged at a total of 33 transient full-order

analyses to form the snapshot set used to create the ROM.

Again, an intermediate test was performed first, in which the response approximation

capabilities of an ROM created with the adaptive strategy presented was compared to the

approximation capabilities of a baseline ROM created with an equivalent number (i.e., 50)

of snapshots that were entirely randomly generated from the space of input parameters. The

average relative L2-error and the maximum relative L∞-error between both ROMs and a

set of 50 test response fields that were randomly generated were calculated. The two error

values (L2 and L∞) for the adaptively generated ROM were 0.9% and 1.1%, respectively,

while the error values for the baseline ROM were 2% and 2.2%, respectively. Thus, the use of
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the adaptive nested grid snapshot generation strategy improved the accuracy of the resulting

ROM by 55% in terms of the average relative L2-error and 50% in terms of the L∞-error in

comparison to a common random generation approach for this second example.

3.4.2.2 Surrogate Modeling: A 6 dimensional level 5 sparse grid was used to construct

a suitably accurate surrogate model approximation of the temperature response with respect

to the thermal conductivity parameters, the heat flux parameter, and the time, which re-

quired 1, 345 evaluations of the ROM. Similarly as the previous example, the computing cost

of the ROM was approximately 5% compared to that of the full-order model used to create

the ROM, and therefore, the overall cost of constructing the sparse grid surrogate model was

5% of the computing cost that would have been required to use the full-order model only.

3.4.2.3 Inverse Problem Results: The objective of the inverse problem for this second

example was to determine the parameters of the temperature-dependent thermal conductiv-

ity function (c0, c1, c2 and c3) with respect to the simulated thermal test that produced the

two statistical moments (i.e., mean and variance) of the temperature at each sensor location

({ ~XSi}10
i=1) at 10 uniformly spaced points in time between 0s and 1s ({ti}10

i=1) with respect

to the uncertain applied flux parameter (ζ). Therefore, the objective functional used for the

optimization-based inverse solution procedure was defined as:

J =
10∑
i=1

10∑
j=1

2∑
k=1

∣∣∣∣∣∣
〈
Tmes( ~XSi, tj)

〉
k
−
〈
T sim( ~XSi, tj; c0, c1, c2, c3, ζ)

〉
k〈

Tmes( ~XSi, tj)
〉
k

∣∣∣∣∣∣ (3.23)

where Tmes is the simulated experimentally measured response, T sim is the response estimate

simulated with the surrogate model for a given estimate of the inverse problem solution and

the uncertain parameter, 〈.〉1 represents the first moment operator, 〈.〉2 represents the second

central moment operator, and |.| is the absolute value operator. Similarly to the approach

that was used to generate the simulated experimental data, the moments of the temperature

response were estimated with the surrogate model during the optimization process (i.e., at

each iteration) by randomly generating 40 realizations of the applied heat flux parameter,

evaluating the surrogate model with each realization (given values of the thermal conductivity
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Table 3.2: Target (i.e., simulated experimental) values for the heat conductivity parameters

(c0, c1, c2 and c3) and the corresponding values estimated by the inverse characterization

process, as well as the respective relative error for east estimated parameter.

c0 c1 c2 c3

Target Value 650 2.5× 10−3 2.5× 10−3 1.2× 10−3

Estimated Value 640 1.98× 10−3 2.46× 10−3 1.12×10−3

Relative Error 1.5% 20.8% 1.6% 6.7%

parameters and the time), and then estimating the moments from the results. The stopping

criteria for the GA optimization process to estimate the material parameters for this example

was set as a maximum of 40, 000 evaluations of the error functional.

Table 3.2 shows the thermal conductivity parameters used to simulate the experimental

measurements (i.e., the target conductivity parameters), the thermal conductivity parame-

ters estimated with the inverse solution process, and the relative error between each target

and estimated parameter. More importantly, Figure 3.3 shows a plot of the temperature-

dependent thermal conductivity that corresponds to the parameters used to simulate the

experimental measurements (i.e., the target conductivity function) compared to the ther-

mal conductivity corresponding to the parameters estimated through the inverse solution

procedure. These results clearly indicate that the inverse procedure utilizing the compu-

tationally efficient surrogate model was able to accurately estimate temperature-dependent

thermal conductivity, with the approximate relative L2-error in the thermal conductivity

being 0.38%. More specifically, the surrogate model was capable of successfully captur-

ing the relationship between the temperature response and the uncertain applied flux for

the potential variations in the thermal conductivity with sufficient accuracy to guide the

optimization-based inverse solution procedure through the parameter space to an accurate

solution. Similarly to the previous example, the surrogate model also provided a dramatic

decrease in the computational expense compared to if the full-order model or reduced-order
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Figure 3.3: Target (i.e., simulated experimental) temperature-dependent thermal conduc-

tivity and the thermal conductivity estimated by the inverse characterization process (Esti-

mated).

model had been used directly. For this second example, the surrogate model was built using

only 83 full-order analyses (33 for the ROM snapshots and 50 for the ROM test set) to

then be used for 40,000 system evaluations, which required on the order of 30 minutes of

computing time on a standard PC with a 2.00 GHz processor and 4 GB RAM.

3.5 CONCLUSION

A generally applicable approach was presented for creating a computationally efficient poly-

nomial approximation (i.e., surrogate model) of a system response with respect to any desig-

nated unknown parameters, including parameters that may be considered to have significant

uncertainty and/or parameters that are entirely unknown and sought to be determined

through an inverse solution procedure. To enhance the overall efficiency of the approach,

a novel algorithm was included as an intermediate step for creating a reduced-basis type

reduced-order model of the system of interest based upon a technique to use nested grids to

adaptively generate a data ensemble that is representative of the potential system response
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with respect to the unknown/uncertain parameters. The overall approach would then use

this computationally efficient ROM to create the surrogate model rather than a full-order

model (e.g., traditional finite element analysis) at a substantial computational savings. This

approach to generate an ROM was shown to provide a more accurate representation of the

system of interest in comparison to a commonly used approach of randomly generating the re-

sponse field ensemble. The overall surrogate modeling approach was then evaluated through

numerically simulated example inverse problems based on characterization of material prop-

erties for two different systems, involving solid mechanics and heat transfer, respectively.

Not only did the two examples consider different physical processes, but they also consider

two different ways that uncertainty could be present and significant within an inverse prob-

lem application. The first example showed that the surrogate modeling approach could be

used to computationally efficiently and accurately estimate the statistical moments of the

parameters for an unknown stiffness distribution for a dynamically tested solid with uncer-

tainty in the applied actuation. Lastly, the surrogate modeling approach was shown to be

able to provide a single estimate, again both efficiently and accurately, of the parameters for

an unknown temperature-dependent thermal conductivity for a solid in which the inverse

problem objective was to match the statistical moments of the measured temperature field

given an uncertain applied heat flux.
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4.0 CURRENT CAPABILITIES AND FUTURE DIRECTIONS

A computational inverse problem solution approximation framework has been developed

that significantly improves the efficiency and accuracy of computational inverse mechanics

for both the setup and solution process of inverse problems with applications in material char-

acterization. The framework is capable of improving nondestructive test (NDT) design by

maximizing the measured response sensitivity in a generally applicable way for nondestruc-

tive evaluation (NDE)/material characterization problems. Through simulated examples of

frequency response function-based NDT, the optimal NDT design approach was shown to

provide consistently more accurate material characterization results than alternate testing

techniques. This indicates the ability of the optimized NDT design to produce a substantially

more solvable inverse problem. In addition, this work extended the concept of maximizing

test response sensitivity to include the maximization of robustness to uncertainty of system

parameters that are not part of the set to be inversely characterized with the NDT. The ex-

tended robust NDT design was shown to produced more accurate material characterization

results for the NDE of structural components with epistemic uncertainty in comparison to

deterministic NDT designs.

The issue of the computational expense of solving an inverse problem was addressed

by developing a generally applicable algorithm for creating a low cost approximation of

the physical system. More specifically, the current work is capable of substantially reduc-

ing the computational expense required to approximate the solution of a stochastic partial

differential equation (PDE), particularly for the purpose of estimating the solution to an

associated inverse problem. The approach combines reduced-basis reduced-order modeling

with a sparse grid collocation surrogate modeling technique to estimate the response of the

system of interest with respect to both the inverse problem unknowns and the uncertain
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system parameters. This computationally efficient approach was shown through simulated

examples involving both solid mechanics and heat transfer to provide accurate solution esti-

mates to inverse problems for systems represented by stochastic PDEs with a fraction of the

typical computational cost. In addition, a novel, generally applicable algorithm is integrated

for adaptive generation of a data ensemble, which is then used to create a reduced-order

model (ROM) to estimate the desired system response.

However, certain extensions need to be made in order to improve the computational

efficiency and applicability of the developed framework for large scale systems and systems

with significant measurement noise. More specifically, since calculating the measured re-

sponse sensitivity due to the unknown material properties is computationally expensive,

adjoint methods can instead be used to calculate the sensitivity information with respect to

unknown material properties with a fraction of the computational time that is needed by

traditional methods (as were used herein). The capability of the developed framework can

also be extended to include higher levels of noise in measurements (e.g., aleatoric uncertain-

ties) by using Bayesian inference methods, which are powerful tools for modeling various

information sources and quantifying uncertainty of a model. In order to generate a sufficient

number of samples to construct the posterior distribution to be used in Bayesian inference

approach, Markov chain Monte Carlo (MCMC) methods require sequential evaluations of the

posterior probability density at many different points in the parameter space. This can be a

computationally expensive process. Alternatively, the developed sparse grid approximation

can be used to calculate the solution of the forward model used to define the likelihood func-

tion and provide near real time estimation of the state of the system based on measurement

data.
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APPENDIX A

PROPER ORTHOGONAL DECOMPOSITION

A.1 OBJECTIVE

Apply the proper orthogonal decomposition (POD) method to derive an orthogonal basis

that is optimal in some sense to represent a given system provided with an associated set of

representative system response fields.

A.2 METHODS

The problem to determine the POD basis can be cast as an optimization problem to deter-

mine the set of m modes {~φi(~x)}mi=1 given a set of n system response fields (referred to as

snapshots in the context of POD) {~u(~x,~γk)}nk=1, from a set of various input parameters of

interest {~γk}nk=1, such that:

Minimize
{ ~φi(~x)}mi=1∈L2(Ω)

〈
‖~u(~x,~γk)− ~̂u(~x,~γk)‖2

L2(Ω)

〉
, (A.1)

where:

〈 ~uk〉 =
1

n

n∑
k=1

~uk, (A.2)

‖~u(~x)‖2
L2(Ω) = (~u(~x), ~u(~x)) , (A.3)
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(~u(~x), ~v(~x)) =

∫
Ω

~u(~x) · ~v(~x)d~x, (A.4)

and assuming an orthogonal basis, the best approximation can be defined by the projection

onto the basis as:

~̂u(~x,~γk) =
n∑
i=1

(
~φi(~x), ~u(~x,~γk)

)
‖~φi(~x)‖2

L2(Ω)

~φi(~x). (A.5)

Through several manipulations, including applying the method of snapshots, the POD

optimization problem defined by A.1 can be transformed into the following n-dimensional

eigenvalue problem (see [19] and the references therein for additional details on the POD

formulation):

1

n

n∑
k=1

AjkCk = λCj, (A.6)

where

Ajk =

∫
Ω

~u(~x,~γj) · ~u(~x,~γk)d~x, (A.7)

An optimal set of as many as n orthogonal basis functions (i.e., POD modes) can then be

determined from the solution of the above eigenvalue problem by:

~φi(~x) =
1

λ(i)n

n∑
k=1

~u(~x,~γk)C
(i)
k , for i = 1, 2, ..., n, (A.8)

where C
(i)
k is the kth component of the ith eigenvector from the solution of A.6 and λ(i)

is the corresponding eigenvalue. λ(i) is often considered a measure of the “usefulness” of

the corresponding mode (~φi(~x)) for approximating the given dataset of potential solution

fields. Therefore, a common procedure (as was done herein) is to only use the m modes with

the highest corresponding eigenvalues, with m < n , for any subsequent solution approxi-

mation, and the remaining modes are discarded (a typical heuristic is to use the set with

corresponding eigenvalues that represent around 99% of the total sum of the n eigenvalues).
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