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INFERENCE ON CONDITIONAL QUANTILE RESIDUAL LIFE FOR

CENSORED SURVIVAL DATA

Wen-Chi Wu, PhD

University of Pittsburgh, 2014

For randomly censored data, the residual life function at a given time determines a life dis-

tribution of a subject survived up to that time point. In the situation where the data are

censored, or where the underlying distribution is skewed, the quantile residual life function is

preferred. A number of studies regarding the quantile residual lifetime have been conducted

in the univariate settings by many professionals. However, when a pair of units are observed,

i.e. a study of twins, or when patients experience two types of events, i.e. time to morbidity

and time to mortality, a bivariate modelling of quantile residual lifetime subject to right

censoring might be of utmost interest. In this dissertation, we develop the estimation of con-

ditional quantile residual lifetime on semi-competing risks data. The proposed estimator is

conditioning on the occurrence of the nonterminal event beyond time t. The covariate effects

on specific pairs of failure times are evaluated based on a log-linear regression on conditional

quantile residual lifetime for semi-competing risks data. Numerical studies demonstrate a

reasonable performance of the estimator for moderate sample sizes. The proposed method

is applied to a study of breast cancer data from a phase III clinical trial.

Public Health Significance: In many survival studies, bivariate correlated failure times

can be observed in a pair or in the same individual experiencing multiple failure times. It is

of interest to know the additional time to failure of a surviving unit, when another unit is

known to have failed at an earlier time. In this dissertation, the proposed estimator of the

residual lifetime given the occurrence of a failure demonstrates the importance of lifetime

expectancy that patients and their family seek to know before an onset of a new treatment.
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1.0 INTRODUCTION

In most cases where survival data are studied, traditional approaches focus on modeling the

distribution of the time to an event such as Kaplan-Meier estimator [Kaplan and Meier,

1958] and Cox proportional hazard model [Cox, 1972, 1975]. Kaplan-Meier estimator is used

to measure the fraction of patients survival after treatment. While Cox proportional haz-

ard model accesses the importance of various covariates in the survival times of individuals

through the hazard function. However, the hazard function, interpreted as the “instanta-

neous rate of failure”, does not directly provide numerical measure for long-term lifetime

reliability. For instance, patients participated in randomized clinical trials often inquire how

much more time they have or whether the new treatment improves their life expectancy.

To address these questions, the study of residual lifetime has recently received considerable

attention in biomedical research. This desirable information can be provided to medical

practitioners in predicting the remaining lifetime.

Quantile residual lifetime function provides a straightforward interpretation relating the

potential benefit of a secondary course of treatment for patients seeking for a long-term

medical care. In addition, without any strong assumptions, it can be estimated at any

specific time point [Jeong et al., 2008]. In this dissertation, such advantages are extended to

a bivariate modeling of quantile residual lifetime subject to right censoring.

Multivariate failure times arise with various censoring schemes of interest. There are

three main classifications for particular censoring schemes in bivariate failure times. First,

parallel failure data describe pairs of units or individuals such as a pair of eyes or twins are

followed simultaneously until each unit/individual experiences the event of interest. Second,

successive failure times occur when each patient is potentially observed from several related

events with a natural chronological order. That suggests the gap time between two successive
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events is censored by a dependent variable related to the first duration process if the two

duration times are correlated. Third, semi-competing risks data arise when the terminal

event censors the nontermial event, but not vice versa. In this dissertation, we study the

methodology to quantify conditional residual lifetime for semi-competing risks data and

parallel failure data.

Our research interest aims for development of a quantile residual lifetime using bivariate

correlated survival data. One can depict conditional quantile residual lifetime through a

residual lifetime of an event given the occurrence time of another event. Inference on con-

ditional survival function becomes pertinent to this research. Two types of conditioning on

survival function are studied, so the inference of quantile residual lifetime are proposed in

two aspects:

1. The main work is constructed on semi-competing risks data. The inference condition

focuses on the quantile residual lifetime of the terminal event given that the nonterminal

event occurs beyond a specific time point. We treat this proposed method as a semi-

parametric inference because a Clayton bivariate model is assumed to assess conditional

quantile residual lifetime.

2. A nonparametric inference is adopted to study the quantile residual lifetime of a subject

under the condition of another subject who has failed at earlier time t. More specifically,

we are interested in the quantile residual lifetime of a subject survived up to time t, when

another subject is known to have failed at time t2, for t > t2. The proposed estimator is

obtained relating a smoothing technique. Therefore, the bootstrap estimate of standard

error is utilized to measure the accuracy of our proposed estimator.

This dissertation is organized as follows. In Chapter 2 we present background details along

with the study motivation and objectives. Chapter 3 is devoted to the proposed method for

conditional quantile residual lifetime including the inference procedure, the simulation plan

and real data application. Chapter 4 presents the comparison of a nonparametric approach

using bivariate failure time data with censoring. The summary of our proposed method and

possible future work are discussed in Chapter 5.
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2.0 BACKGROUND

In this chapter, we present some important background information for our proposed analy-

sis. First of all, we review techniques for dealing with the estimation of residual life function.

Structures of bivariate survival data are then introduced based on the schemes of censoring.

The estimation of bivariate survival function specifically gives an idea of how investigators

account for the association between two failure times. Moreover, kernel smoothing function

is applied to estimate unknown density function. The presence of counting processes provides

an efficient method of deriving asymptotic properties for our proposed estimator. Finally,

the study motivation and objectives are presented.

2.1 MEAN AND MEDIAN (QUANTILE) RESIDUAL LIFETIME

Historically the mean residual life (MRL) function has been popular to characterize a residual

life distribution. Its univariate properties have been studied frequently in actuarial, reliability

or survivorship analysis. It is defined as the expected remaining lifetime given survival up

to time t. That is,

m(t) = E(T − t | T > t), (2.1)

where t > 0. A survival function can be written in terms of the MRL function through an

inversion formula [Hall and Wellner, 1981],

S(t) =
m(0)

m(t)
exp

{
−
∫ t

0

m(u)−1du

}
, (2.2)

where S(t) = Pr(T > t). Nonparametric estimation of the MRL function has been proposed

by Yang [1977], Lahiri and Ho Park [1992], Chaubey and Sen [1999], Abdous and Berred
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[2005] among others. McLain and Ghosh [2011] identified theoretical limitations of semi-

parametric conditional MRL models and compared them with their proposed nonparametric

methods in presence of censoring.

However, as Schmittlein and Morrison [1981] first pointed out, the mean residual lifetime

has many theoretical and practical shortcomings such as (i) inappropriateness for frequently

encountered censored data, (ii) skewness in time-to-event data and (iii) non-existence of the

mean residual life function for some distributions. As an alternative, the median residual

life function or more generally α-quantile residual life function would be more recommended

than the mean. For 0 < α < 1, the α-quantile residual life function is defined as

γα(t) = αquantile(T − t | T > t)

= inf{x : S(t+ x) < (1− α)S(t)}

= S−1{(1− α)S(t)} − t

(2.3)

at t > 0, and interpreted as the α percentile additional time to failure, given no failure by time

t. Numerous studies for estimating the quantile residual life function have been conducted

in the univariate settings with or without covariates. For example, Csörgő and Csörgő [1987]

initiated a nonparametric large sample estimation theory for the percentile residual lifetime

and also constructed confidence bands based on non-censored data. Chung [1989] proved

that the scaled (1−p) percentile residual lifetime process can be almost surely approximated

by a Gaussian process and then constructed confidence bands using bootstraps. Lillo [2005]

studied several aspects of the median residual life function and proposed that the median

residual life function can determine the distribution uniquely on an interval which fulfills

the insufficiency relative to the mean residual life function. They also found that the same

pattern of relationship holds for both the mean and median residual life functions. A kernel-

type smooth estimator of the quantile residual life function was studied by various authors

[Padgett, 1986, Padget and Thombs, 1988, Alam and Kulasekera, 1993]. Later Gelfand and

Kottas [2003] proposed a Bayesian approach to fit a median residual life regression that

was induced by a semiparametric accelerated failure time (AFT) regression model. Jung

et al. [2009] developed a time-specific regression method to model the effect of covariates on

quantile residual lifetime without specifying semiparametric model for the underlying failure
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time. It is noted that these methods are directly applicable to modeling the residual life

function in the univariate settings. Some of the important concepts can be addressed in

studying multivariate failure time data.

2.2 STRUCTURES OF BIVARIATE SURVIVAL DATA

Over the past few decades, much attention has been paid to bivariate times to the events and

inference. Studies on paired subjects, time to recurrence and time to death of a disease, or the

familial dependence for lifetimes of fathers and sons attempt to observe the life length of each

subject with the presence of censoring. If the development of those event times is considered

as longitudinal, such data can be formulated as multi-state models. A multi-state model is

defined as a model for a stochastic process, which at any time points occupied one of a set

of discrete state such as healthy, diseased, disease with complications, and dead [Hougaard

and Hougaard, 2000]. The state structure varies with a statistical model. Generally, any

continuous multivariate distribution can be described by a multi-state model. The limit of

censoring pattern, however, requires unique censoring for parallel failure data because of its

longitudinal approach.

Unlike the competing risks setting that only allows the observation time ends upon the

occurrence of the first failure, semi-competing risks data [Fine et al., 2001] refers to the

situation where a subject may experience a nonterminal event, such as recurrence, and/or

a terminal event, such as death. The terminal event can censor the nonterminal event but

not vice versa. For instance, recurrence is observable before mortality but only mortality is

observable otherwise. As illustrated in Figure 2.1, patients may die without recurrence after

the initial treatment or experience recurrence but survive beyond time t. Therefore, a pair of

event times (T1, T2) along with a censoring indicator is recorded for each patient. A censoring

indicator is independent of both T1 and T2. Since there exists an association between time-

to-recurrence and time-to-death from the same patient, the joint survival function of those

two event times is assumed to follow a copula model defined as

S1,2(t1, t2) = Pr(T1 > t1, T2 > t2) = Cθ
(
S1(t1), S2(t2)

)
, 0 < t1 < t2, (2.4)
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Figure 2.1: Illustration of semi-competing risks data

where T1, T2 are times to nonterminal and terminal events, S1, S2 are their respective marginal

survival functions. Since S(t1, t2) is only identifiable on the upper wedge where T1 < T2,

the interpretation of S1(t1) as a marginal distribution is controversial and would leave it

unspecified [Day et al., 1997, Fine et al., 2001].

For parallel failure data, there are two standard censoring cases, homogeneous and hetero-

geneous censoring. Homogeneous censoring arises when a simultaneous censoring is observed

for both subjects. For example, in a study that the time to a deterioration level is of inter-

est in pairs of eyes, the censoring time for both eyes are observed simultaneously when an

individual is withdrawn from the study. In contrast, heterogeneous censoring corresponds

to observing a separate censoring time for each subject. Taking a twin pair for example, an

individual can be lost to follow-up during the study, even though the other is still followed.

The model depicted in Figure 2.2 shows the flow of parallel data and gives some insight of

modeling conditional quantile residual lifetime when one of the subjects has failed at time t

before another subject.
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Figure 2.2: Illustration of parallel data

Several possible mechanisms to generate dependence between failure times have been

seen in the analysis of bivariate survival data. When common risks appear between the

various courses for parallel failure data, conditional independence is assumed that these

common risks are responsible for all the dependence seen between failure times [Hougaard

and Hougaard, 2000]. The most common model is the frailty model based on a common

factor in the hazard. Consider the form of the bivariate survival function

S1,2(t1, t2) = Pr(T1 > t1, T2 > t2) (2.5)

and its marginals are S1,2(t1, 0) = S1(t1) = Pr(T1 > t1) and S1,2(0, t2) = S2(t2) = Pr(T2 >

t2), respectively. With consideration of dependence between two failure times, Prentice and

Cai [1992] developed a covariance function that captures the characterization of the nature of

the dependence between two or more correlated failure times and proposed a nonparametric

bivariate survival function estimator in terms of marginal survival functions and a conditional

covariance function. Dabrowska [1988] developed the product integral representation of
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univariate survival functions and generalized to the bivariate case. Both methods have good

sample performance but are lack of nonparametrical efficiency. Pruitt [1991] proposed a

modification of the self-consistency equation to estimate a bivariate survival function by

redistributing singly-censored observations over their associated region and by assigning

uncensored observations to give mass 1/n to the observed survival time. His estimator is a

distribution function and each uncensored and singly-censored observation is redistributed

and smoothed over the region in one direction depending on the other observations. However,

instead of smoothing only in one direction, van der Laan [1994] adopted Pruitt′s estimator

and generalized it to the two dimension case using the edge corrected bivariate kernel density

estimator to develop a nonparametric maximum likelihood approach (NPMLE) in order to

deal with nonparametric efficiency.

2.3 KERNEL SMOOTHING FUNCTION

Kernel smoothing is an effective tool for visualising the distribution of data. The perfor-

mance of this methodology depends on the choice of a smoothing parameter, i.e. bandwidth,

which takes an important role to approximate the unknown density [Wand and Jones, 1993,

Simonoff, 1996]. There exists numerous methods that have good theoretical properties in

selecting the scalar bandwidth in univariate kernel density estimation and most of them can

be extended to the multivariate case [Jones et al., 1996]. When bivariate data are considered,

let T = (T1, T2) be i.i.d. bivariate random vector drawn from a density f , the kernel density

estimator is defined by

f̂(t; H) =
1

n

n∑
i=1

KH(t−Ti), (2.6)

where t = (t1, t2)T and KH(t) = |H|−1/2K(H−1/2t). Here the kernel K is a symmetric

probability density function; H is a symmetric and positive-definite bandwidth matrix to

determine the performance of f̂ . The choice of H is crucial because of its effect on the shape

of the corresponding estimator. The study of data-driven methods for selecting H provides

a general application on multivariate kernel smoothing problems.
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It is known that the most common bandwidth matrix seen in multivariate kernel density

estimation is a diagonal matrix [Wand and Jones, 1994, Sain et al., 1994]. The selectors for

a full (unconstrained) bandwidth matrix are more challenging and rarely discussed in the

literature. A full bandwidth is

H =

 h2
1 h1h2

h1h2 h2
2


which provides kernels with an arbitrary orientation whereas a diagonal matrix is only ori-

ented to the co-ordinate axes. Hall et al. [1992] studied a modification of cross-validation

method that involved a presmoothing of the pairwise differences of the observations. It was

named by smoothed cross-validation and revealed to have an excellent asymptotic perfor-

mance. Duong and Hazelton [2005] considered cross-validation technique for full bandwidth

matrices including unbiased, biased, and smoothed cross-validation approaches and com-

pared their performance. The judge of the performance was according to a global error

criteria for f̂(t,H) such as mean integrated squared error (MISE) given by

MISE(H) ≡ MISEf̂(·; H) =E

∫
Rd

(
f̂(t,H)− f(t)

)2
dt

=

∫
Rd

Bias{[f̂(t,H)]}2dt +

∫
Rd

Var[f̂(t,H)]dt.

(2.7)

The results suggest that smoothed cross-validation for full bandwidth matrices is the most

reliable among the selectors that they studied. The smoothed cross-validation function is

SCV (H) = n−2

n∑
i=1

n∑
j=1

(K2
HL

2
G − 2KHL

2
G + L2

G)(Xi −Xj) + n−1R(K)|H|−1/2, (2.8)

where LG(·) is the pilot kernel with pilot bandwidth matrix G and R(K) =
∫
Rd
K(x)2dx <

∞. Therefore, a smoothed cross-validation bandwidth matrix for estimating bivariate density

function is used throughout this work.
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2.4 THE COUNTING PROCESS AND MARTINGALE

A counting process is a stochastic process {M(t), t > 0} with characteristics of being positive,

integers, and an increasing step function. More generally, it is to model the numbers of events

in different types that occur over time. A martingale is based on what has happened up

to time t, the expected future change is 0. The introduction of martingales in survival

analysis was firstly introduced by Aalen [1976] in his Ph.D thesis. Let M(t), t ≥ 0 be a

right-continuous stochastic process with left-hand limits. Filtration at time t, Ft, is a σ-field

that increases or enlarges as a function of t. It usually corresponds to history or information

collected up to time t. It is a martingale if for any t ≥ s

E[M(t) | Fs] = M(s). (2.9)

In order to understand the concepts leading to the discussion of counting process and mar-

tingale with censored survival data, the estimation procedure in survival probability is briefly

reviewed. Assume T and C are continuous nonnegative and independent random variables.

T has a distribution function F (t) and density function f(t) = dF (t)/dt. When the Kaplan–

Meier estimator is studied, the concept of hazard function is required. The survival function

is given by S(t) = Pr(T > t). The hazard function is defined by means of a conditional

probability, that is,

λ(t) = lim
∆t→0

Pr{t ≤ T < t+ ∆t | T ≥ t}
∆t

= f(t)/S(t)

= −d log[S(t)]/dt

(2.10)

which can be described as the risk at which an event happens, conditional on not having

happened previously. The cumulative hazard function Λ(t) =
∫ t

0
λ(u)du is defined and

the survival probability can be written as S(t) = exp{−Λ(t)} for continuous T [Klein and

Moeschberger, 2003].

Martingale theory is widely used for right censored data because of its advantages in

variance simplification. Thus, we introduce the concepts of how martingale transformation

leads to present the properties of two famous estimators in survival analysis. Let the death

10



process given at time t be defined by Ni(t) = I(T̃i ≤ t, δi = 1) where T̃i = min(Ti, Ci)

and δi = I(Ti ≤ Ci) be the indicator variable. Let Yi(t) = I(T̃i ≥ t) denote as the risk

process and let N(t) =
∑n

i=1Ni(t) and Y (t) =
∑n

i=1 Yi(t). By theorem 1.3.1 in Fleming and

Harrington [2011], it follows that

Mi(t) = Ni(t)−
∫ t

0

Yi(u)dΛ(u) (2.11)

is a martingale for each i subject and the counting process {Ni : i = 1, · · · , n} holds for

subjects who have failed or have been censored up to and including that time t. The

Nelson–Aalen estimator [Nelson, 1972, Aalen, 1978] for cumulative hazard can be expressed

as

Λ̂(t) =

∫ t

0

dN(u)

Y (u)
, (2.12)

and it follows

Λ̂(t)− Λ(t) =

∫ t

0

N(u)− Y (u)dΛ(u)

Y (u)
=

∫ t

0

dM(u)

Y (u)
, (2.13)

where M(u) =
∑n

i=1M(u) is the sum of martingales for all subjects. The property of zero

mean in martingale transformation shows the consistency of the Nelson-Aalen estimator in

equation (2.12). Then we can adopt the property of martingale Central Limit Theorem to

establish distributional function of cumulative hazard function. By theorem 3.2.1 in Fleming

and Harrington [2011], it indicates that Λ̂(t) is an asymptotically unbiased estimator of Λ(t),

with bias converging to zero at an exponential rate as n→∞. The variance of Λ(t) should

approach

V ar[Λ̂(t)] =

∫ t

0

1

Y (t)

{
1− 4N(u)

Y (u)

}
dN(u)

Y (u)
, (2.14)

for large n. Since there exists a relationship between Λ and S, the Kaplan–Meier estimator

can be written in terms of martingale transformation as well. The variance of Ŝ can be

obtained as the same calculation for the Nelson-Aalen estimator which is approximately the

Greenwood’s formula:

V ar(Ŝ(t)) = Ŝ2(t)

∫ t

0

dN(u)

Y (u){Y (u)−4N(u)
. (2.15)
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2.5 MOTIVATION AND OBJECTIVES

A life expectancy of the treatment outcome is the most important information that patients

and their family are concerned. Although traditional tools such as Kaplan-Meier estimator

and Cox proportional hazard models are usually referred by physicians in estimating survival

probabilities, the estimates of residual life expectancy cannot be obtained directly for patients

who have been followed up for several years after the initial treatment. This desirable

estimate becomes critical for patients seeking long-term care on their secondary course of

treatment. We consider this idea in the extension of modeling bivariate failure time data

with censoring.

The objective of this study is to determine the additional time to failure on the later

event given the occurrence of the first event when the event times are correlated. We may

encounter a situation that the first event remains event free by a certain time point, saying,

under the condition of breast cancer patients staying recurrence free up to 5 years from the

initial diagnosis, how much residual life expectancy they will get after survival up to 10

years. We propose the method of conditional quantile residual lifetime by using the concept

of semi-competing risks data.

In addition to conditioning on a failure happening beyond a time, another approach is

studied when the first event occurs just at time t1, how much remaining lifetime can be

prolonged after the later event stays event-free up to time t2. One of the challenges that

investigators might encounter is to find the underlying density function of the unknown

failure time distribution with censoring. The proposed estimator of conditional quantile

residual lifetime can be obtained by inverting the estimating equation. However, the issue

of the unknown density function still needs to be addressed in the estimation of conditional

survival probability. A bivariate kernel density smoothing with an appropriate bandwidth

matrix is then used to overcome this challenge.

In the application of bivariate failure time data, we use examples of semi-competing risks

data and parallel data to evaluate our proposed estimators. First, the breast cancer data in

B-14 clinical trial provide time to recurrence and time to death with the censoring scheme

from semi-competing risks. We examine the additional time to the terminal event such as

12



death given a survivorship from the nontermial event such as recurrence beyond a time point.

Second, a study of duration of ventilating tubes in ears provides a good demonstration. The

insertion of ventilating tubes is often the treatment of choice for otitis media with effusion in

childhood. Since the observed failure times in both ears are recorded from the same child, it

takes account of the correlation between failure times. Each failure time is subject to right

censoring due to the cession of tube functioning or tube extrusion.
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3.0 SEMIPARAMETRIC INFERENCE USING SEMI-COMPETING RISKS

DATA

3.1 INTRODUCTION

In many biomedical studies, multivariate failure time data have been commonly encountered

by scientific investigators. To consider a series of random variables, the approach of studying

residual lifetime analysis was directly toward the multivariate mean residual life (MMRL)

function in literature. For instance, Arnold and Zahedi [1988] studied some general char-

acterization properties of MMRL function and also discussed the relationship between the

MMRL function and the hazard gradient. Nair and Nair [1989] proved an extended theoret-

ical results for the bivariate case. Shaked and Shanthikumar [1991] introduced a dynamic

notion of mean residual life functions in the context of multivariate reliability theory. They

studied the properties of mean residual life functions and their relationship to the multivari-

ate conditional hazard rate functions. A natural nonparametric estimator of bivariate mean

residual life based on empirical survival function has been studied by Jeong et al. [1996] and

Kulkarni and Rattihalli [2002]. They showed an asymptotically unbiased estimator which

has the joint weak convergence to a zero-mean Gaussian process. Although certain efficient

methods of MMRL function have been proposed, none has been applied to quantile residual

lifetime using bivariate failure data under random censoring.

Unlike the competing risks setting where only time-to-first-event is observed, semi-

competing risks data concern a situation where a subject may experience the nonterminal

event, such as recurrence, and/or the terminal event, such as death. The terminal event can

censor the nonterminal event but not vice versa. The semi-competing risks data have been

also described as an illness-death model [Keiding, 1991, Xu et al., 2010]. Fine et al. [2001]
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proposed a plug-in estimator for the marginal distribution of the nonterminal event using the

association parameter from a concordance estimating function. Peng and Fine [2007] mod-

eled the covariate effects on the survival function of the intermediate events via a functional

regression model. Li and Peng [2011] applied a quantile regression method to appropriately

handle the complexity posed by left-truncated semi-competing risks data. Earlier Ghosh

[2006] developed methods to infer dependence of semi-competing risks data across strata of

a discrete covariate Z. To the best of our knowledge, however, little attention has been paid

to inference on residual lifetime for semi-competing risks.

In this chapter, a method for estimating the conditional α-quantile residual lifetime is

proposed for semi-competing risks data. The objective is to infer the conditional residual

life distribution of time-to-the terminal event given that a patient has not experienced the

nonterminal event by a certain time point, when the event times are correlated. For instance,

in breast cancer patients, most of them might have their recurrent breast cancer in the first 3

to 5 years after initial treatment. Before starting the secondary treatment for breast cancer

recurrence, it would be informative to know the median of a time-to-death distribution

beyond year 10 if they were recurrence-free up to 5 years from the initial diagnosis.

This chapter is organized as follows. Section 3.2 introduces notation and model defini-

tion. Section 3.3 shows one-sample inference procedure for the conditional quantile residual

life function. In Section 3.4, a time-specific conditional quantile residual life regression is

proposed, together with an inference procedure for the regression coefficients. Section 3.5

presents simulation studies to assess performances of the proposed methods. In Section 3.6,

we demonstrate the proposed method through an application to NSABP B-14 phrase III

breast cancer dataset. Finally, Section 3.7 concludes with a summary and discussion.

3.2 MODEL DEFINITION

For the ith subject, let T1i be the nonterminal event time and T2i be the terminal event time.

Assume two event times are correlated and there exists the censoring time Ci independent

of both T1i and T2i, such as time to lost of follow-up. Define Zi = min(T1i, T2i), δZi =
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I(Zi < Ci), T
′
2i = min(T2i, Ci), δ2i = I(T2i < Ci), and T ′1i = min(T1i, T

′
2i), δ1i = I(T1i < T ′2i)

where I(·) is the indicator function. Thus, the semi-competing risks data are denoted by

{T ′1i, δ1i, T
′
2i, δ2i, i = 1, · · · , n}. Since 0 ≤ T ′1i ≤ T ′2i, this implies that the joint distribution

of (T1, T2) is only identifiable when observations are restricted to the upper wedge. Let

YZi(t) = I(Zi ≥ t) and NZi(t) = δZiI(Zi ≤ t) be the at-risk and death processes for Z.

Similarly, let Y2i(t) = I(T ′2i ≥ t) and N2i(t) = δ2iI(T ′2i ≤ t) for T2. In a univariate setting,

the α-quantile residual life function at time t is defined as

γα(t) = α-quantile(T − t | T > t), 0 < α < 1, (3.1)

which describes the α-quantile residual lifetime among survivors beyond time t. The function

(3.1) can be written as Pr(T > t+γα) = (1−α)Pr(T > t). Note that the conditional survival

function of the terminal event time given that the nonterminal event did not occur by t1 is

given by

S2|1(t2 | t1) = Pr(T2 > t2 | T1 > t1). (3.2)

Then the conditional quantile residual life function at time t2 is defined as

γSα|t1(t2) = inf
{
x : S2|1(t2 + x | t1) < (1− α)S2|1(t2 | t1)

}
. (3.3)

which is the α-quantile of the residual life distribution of the terminal event evaluated at

time t2 among patients who are recurrence-free up to time t1.

With semi-competing risks data, the Kaplan-Meier procedure can not be employed to

obtain a consistent estimator of S1(t) = Pr(T1 > t), the marginal distribution of the non-

terminal event. In general, without consideration of the dependent structure, Ŝ1 does not

converge to S1 as n → ∞. Fine et al. [2001] proposed a novel plug-in estimator for S1

using a closed-form estimator for an association parameter θ along with the Kaplan-Meier

estimators for Z and T2.
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3.3 INFERENCE

3.3.1 Estimation of θ and S1

When two event times are assumed to be correlated, the dependence structure between T1

and T2 is often formulated via the Clayton copula [Clayton, 1978], that is, for 0 < θ < ∞

and 0 ≤ t1 ≤ t2 <∞, the joint survival function S(t1, t2) is expressed as

S1,2(t1, t2) = {S1(t1)−1/θ + S2(t2)−1/θ − 1}−θ, (3.4)

where θ → 0 corresponds to the maximal positive dependence and θ →∞ to independence.

For all t1 ≤ t2, the parameter θ is equivalent to the ratio of the two conditional probabilities

(predictive hazard ratio), that is, the conditional probability of T2 > t2 given T1 = t1 over

the conditional probability of T2 > t2 given T1 > t1 being constant [Oakes, 1989]. If the

model (3.4) describes the dependency between T1 and T2 in the whole plane, the parameter

θ has the usual relationship with Kendall’s τ , defined by

τ = Pr{(T1i − T1j)(T2i − T2j) > 0} − Pr{(T1i − T1j)(T2i − T2j) < 0}, i 6= j (3.5)

where (T1i, T2i) and (T1j, T2j) are independent pairs of (T1, T2) and τ = 1/(1 + 2θ).

Our proposed estimator will be built upon estimation of the dependent structure and

the marginal distribution of the nonterminal event, which will play an important role for

inference on the quantile residual lifetime in semi-competing risks data. We briefly review

the procedure for estimating θ and S1 from Fine et al. [2001] and Jiang et al. [2003]. First, let

T̃1ij = min(T1i, T1j), T̃2ij = min(T2i, T2j) and C̃ij = min(Ci, Cj) for i 6= j. The concordance

indicator ∆ij = I{(T1i − T1j)(T2i − T2j) > 0} has the expected value of (1 + θ)/(1 + 2θ)

under model (3.4). A consistent estimator for θ is obtained from a concordance estimating

function U(θ) which is

U(θ) =
∑
i<j

W (T̃ ′1ij, T̃
′
2ij)Dij

{
∆ij −

1 + θ

1 + 2θ

}
, (3.6)
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where Dij = I(T̃1ij < T̃2ij < C̃ij), T̃
′
1ij = min(T ′1i, T

′
1j), T̃

′
2ij = min(T ′2i, T

′
2j), and W (u, v) is a

random weight function. The equation U(θ) = 0 gives the estimation of θ as

θ̂ =

∑
i<jW (T̃ ′1ij, T̃

′
2ij)Dij(1−∆ij)∑

i<jW (T̃ ′1ij, T̃
′
2ij)Dij(2∆ij − 1)

. (3.7)

A useful form of the weight function is

Wa,b(x, y) = n−1I{T ′1i ≥ min(a, x), T ′2i ≥ min(b, y)}, (3.8)

where a and b are chosen to be the pth quantile of the uncensored T1 and T2. According

to the simulation results from Fine et al. [2001], θ̂ is efficient when p takes a value between

75 and 95. The survival function of Z denoted as SZ(t) is equivalent to Pr(T1 > t, T2 > t).

Therefore, one can manipulate (3.4) to get S1(t) in terms of SZ(t), S2(t) and θ, that is,

S1(t) = {SZ(t)−1/θ − S2(t)−1/θ + 1}−θ. (3.9)

Since Z and T2 are subject to right censoring by C, SZ(t) and S2(t) can be consistently esti-

mated with Kaplan-Meier estimators ŜZ(t) and Ŝ2(t), respectively. A closed form estimator

for S1(t) is obtained by replacing SZ(t), S2(t) and θ by their estimators ŜZ(t), Ŝ2(t) and θ̂

in equation (3.9).

3.3.2 Estimation of γSα|t1

One approach to estimate the quantile residual lifetime from (3.3) is to solve the equation

u(γSα|t1) = 0 for γSα|t1 , where

u(γSα|t1) = S2|1(t2 + γSα|t1 | t1)− (1− α)S2|1(t2 | t1). (3.10)

Based on equations (3.4) and (3.9), the conditional survival probabilities S2|1(t2 + γSα|t1 | t1)

and S2|1(t2 | t1) can be written in terms of SZ(t1), S2(t1), S2(t2) and S2(t2 + γSα|t1). To

account for the correlation between the marginal survival distributions of T2 evaluated at t1,

t2 and t2 + γSα|t1 , suppose that k = S2(t1)/S2(t2 + γSα|t1) and m = S2(t1)/S2(t2) are the ratios
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of S2 at different time points. Therefore, once can rewrite the equation (3.10) as a function

of five elements including SZ(t1), S2(t1), θ, k, and m shown as below:

u(γSα|t1) =S2|1(t2 + γSα|t1 | t1)− (1− α)S2|1(t2 | t1)

=
[S1(t1)−1/θ + S2(t2 + γSα|t1)

−1/θ − 1]−θ − (1− α)[S1(t1)−1/θ + S2(t2)−1/θ − 1]−θ

S1(t1)

=
[SZ(t1)−1/θ − S2(t1)−1/θ + S2(t2 + γSα|t1)

−1/θ]−θ

[SZ(t1)−1/θ − S2(t1)−1/θ + 1]−θ

− (1− α)
[SZ(t1)−1/θ − S2(t1)−1/θ + S2(t2)−1/θ]−θ

[SZ(t1)−1/θ − S2(t1)−1/θ + 1]−θ

=
[SZ(t1)−1/θ − (1− k1/θ)S2(t1)−1/θ]−θ − (1− α)[SZ(t1)−1/θ − (1−m1/θ)S2(t1)−1/θ]−θ

[SZ(t1)−1/θ − S2(t1)−1/θ + 1]−θ

=φ {SZ(t1), S2(t1), θ, k,m}

(3.11)

After doing some algebra, the estimating equation u(γSα|t1) simplifies to φ {SZ(t1), S2(t1), θ, k,m},

where

φ(a, b, c, d, e) =

[
a−1/c −

(
1− d1/c

)
b−1/c

]−c − (1− α)
[
a−1/c −

(
1− e1/c

)
b−1/c

]−c
[a−1/c − b−1/c + 1]

−c

and hence the consistent estimator is given by û(γSα|t1) = φ
{
ŜZ(t1), Ŝ2(t1), θ̂, k̂, m̂

}
, where

k̂ and m̂ are estimators of the ratios of Ŝ2 at different times. Let γ̂Sα|t1 denote the solution.

According to Theorem 3.4.2 of Fleming and Harrington [2011], when a continuous failure

time random variable T along with a censoring time C are subject to the continuity of S,

the uniform consistency of Ŝ holds over 0 ≤ t ≤ ν, where ν = sup{t : Pr(min(T,C) >

t) > 0}. Since Z and T2 are subject to right censoring by C, ŜZ(t1) and Ŝ2(t1) are strongly

consistent for SZ(t1) and S2(t1) over 0 ≤ t1 ≤ ν. Therefore, for t2 + γSα|t1 ≤ ν, û(γSα|t1)

uniformly converges to u(γSα|t1). Suppose γSα|t1,0 denotes as the true value of α-quantile

residual lifetime such that u(γSα|t1,0) = 0. One can show that γ̂Sα|t1 is a consistent estimator

of γSα|t1,0 consequently.

It is noted that both the Kaplan-Meier estimator and the Nelson-Aalen estimator can be

obtained using the theory of counting process. The derivation of their asymptotic properties
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is provided in Chapter 3 of Fleming and Harrington [2011]. The martingale representations

for ŜZ and Ŝ2 indicate the weak convergence of

n1/2
{
ŜZ(t)− SZ(t)

}
= −SZ(t)n−1/2

n∑
i=1

∫ t

0

dMZi(s)

hZ(s)
+ op(1)

n1/2
{
Ŝ2(t)− S2(t)

}
= −S2(t1)n−1/2

n∑
i=1

∫ t

0

dM2i(s)

h2(s)
+ op(1),

where hZ(t) and h2(t) are the limits of ĥZ(t) = n−1
∑n

i=1 YZi(t) and ĥ2(t) = n−1
∑n

i=1 Y2i(t),

and

MZi(t) = NZi(t)−
∫ t

0

YZi(s)dΛZ(s),

M2i(t) = N2i(t)−
∫ t

0

Y2i(s)dΛ2(s)

(3.12)

are martingales, and ΛZ(s) and Λ2(s) are the cumulative hazard functions for Z and T ′2,

respectively. According to Theorem 3.2.3 in Fleming and Harrington [2011], if S(t) > 0,

Ŝ(t)

S(t)
= 1−

∫ t

0

Ŝ(s−)

S(s)

{
dN(s)

Y (s)
− dΛ(s)

}
. (3.13)

Since k and m are ratios of the marginal survival probability of T2 evaluated at different

time points, one can approximate k̂/k using equation (3.13) represented as

k̂

k
=
Ŝ2(t1)S2(t2 + γSα|t1)

Ŝ2(t2 + γSα|t1)S2(t1)

=
1−

∫ t1
0

Ŝ2(s−)
S2(s)

{
dN2(s)

Y 2(s)
− dΛ2(s)

}
1−

∫ t2+γS
α|t1

0
Ŝ2(s−)
S2(s)

{
dN2(s)

Y 2(s)
− dΛ2(s)

}

= 1 +

∫ t2+γS
α|t1

t1
Ŝ2(s−)
S2(s)

{
dN2(s)

Y 2(s)
− dΛ2(s)

}
[
1−

∫ t2+γS
α|t1

t1
Ŝ2(s−)
S2(s)

{
dN2(s)

Y 2(s)
− dΛ2(s)

}] .
(3.14)
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Therefore, in terms of martingale representation, weak convergence of n1/2
(
k̂ − k

)
gives

n1/2
(
k̂ − k

)
=

n∑
i=1

k · n1/2
∫ t2+γS

α|t1
t1

dM2i(s)
h2(s)[

1−
∑n

l=1

∫ t2+γS
α|t1

0
dM2l(s)
h2(s)

] + op(1). (3.15)

Similarly,

n1/2
(
m̂−m

)
=

n∑
i=1

m · n1/2
∫ t2
t1

dM2i(s)
h2(s)[

1−
∑n

l=1

∫ t2
0

dM2l(s)
h2(s)

] + op(1). (3.16)

The ratios k and m are shown to converge weakly to a Gaussian process.

Since a concordance estimating equation U(θ) is a U-statistic, Fine et al. [2001] have

shown that with application of the central limit theorem to the U-statistic and Slutsky’s law,

as n → ∞, n1/2(θ̂ − θ) has a limiting distribution with variance I−2J which can be consis-

tently estimated by Î = n−2
∑

i<jW (T̃ ′1ij, T̃
′
2ij)Dij(1+ θ̂)−2 and Ĵ = 2n−3

∑
k<l<m(Q̂klQ̂km+

Q̂klQ̂lm + Q̂lmQ̂km). An asymptotic normality of θ̂ gives

n1/2(θ̂ − θ0) = I−1

(
n−3/2

∑
i<j

Qij

)
+ op(1), (3.17)

where I is the probability limit of Î, and Qij = W (T̃ ′1ij, T̃
′
2ij)Dij{∆ij − (1 + θ0)(1 + 2θ0)−1}.

Now the asymptotic distribution of the estimating equation u(γSα|t1) is obtained by utilizing

the finite-dimensional delta method, which shows that n1/2{û(γSα|t1)− u(γSα|t1)} is asymptot-

ically equivalent to

φ1

{
SZ(t1), S2(t1), θ, k,m

}[
n1/2{ŜZ(t1)− SZ(t1)}

]
+ φ2

{
SZ(t1), S2(t1), θ, k,m

}[
n1/2{Ŝ2(t1)− S2(t1)}

]
+ φ3

{
SZ(t1), S2(t1), θ, k,m

}[
n1/2{θ̂ − θ}

]
+ φ4

{
SZ(t1), S2(t1), θ, k,m

}[
n1/2{k̂ − k}

]
+ φ5

{
SZ(t1), S2(t1), θ, k,m

}[
n1/2{m̂−m}

]
,

21



where the function φ is differentiable at (SZ(t1), S2(t1), θ, k,m)T, with the first derivative

φ′(SZ(t1),S2(t1),θ,k,m) = {φ1, · · · , φ5} shown in follows:

φ1 = a−(1+1/c)

{
(a−1/c − b−1/c + 1)c ·

[
(a−1/c − (1− d1/c)b−1/c)−(1+c)

− (1− α)(a−1/c − (1− e1/c)b−1/c)−(1+c)
]
− g(a, b, c, d, e)

(a−1/c − b−1/c + 1)

}
,

φ2 = − b−(1+1/c)

{
(a−1/c − b−1/c + 1)c ·

[
(a−1/c − (1− d1/c)b−1/c)−(1+c)

− (1− α)(a−1/c − (1− e1/c)b−1/c)−(1+c)
]
− φ(a, b, c, d, e)

(a−1/c − b−1/c + 1)

}
,

φ3 =φ(a, b, c, d, e)

{
log(a−1/c − b−1/c + 1) +

log(a)a−1/c − log(b)b−1/c

c · (a−1/c − b−1/c + 1)

}
− (a−1/c − b−1/c + 1)c ·

{
(a−1/c − (1− d1/c)b−1/c)−c·[

log(a−1/c − (1− d1/c)b−1/c) +
log(a)a−1/c − log(d)d1/cb−1/c − (1− d1/c) log(b)b−1/c

c · (a−1/c − (1− d1/c)b−1/c)

]
− (1− α)(a−1/c − (1− e1/c)b−1/c)−c ·

[
log(a−1/c − (1− e1/c)b−1/c)

+
log(a)a−1/c − log(e)e1/cb−1/c − (1− e1/c) log(b)b−1/c

c · (a−1/c − (1− e1/c)b−1/c)

]}
,

φ4 =− (a−1/c − b−1/c + 1)c
{

[a−1/c − (1− d1/c)b−1/c]−1−cd1/c−1b−1/c
}
,

φ5 =(a−1/c − b−1/c + 1)c
{

[a−1/c − (1− e1/c)b−1/c]−1−ce1/c−1b−1/c
}
.

Therefore, we obtain

n1/2
{
û(γSα|t1)− u(γSα|t1)

}
= n−3/2

∑
i<j

Vij + op(1), (3.18)
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where

Vij =− φ1 · SZ(t1)

∫ t1

0

dMZi(s) + dMZj(s)

hZ(s)
− φ2 · S2(t1)

∫ t1

0

dM2i(s) + dM2j(s)

h2(s)

+ φ3 · I−1Qij + φ4 · k
∫ t2+γS

α|t1

t1

dM2i(s) + dM2j(s)

h2(s)

[
1−

n∑
l=1

∫ t2+γS
α|t1

0

dM2l(s)

h2(s)

]−1

+ φ5 ·m
∫ t2

t1

dM2i(s) + dM2j(s)

h2(s)

[
1−

n∑
l=1

∫ t2

0

dM2l(s)

h2(s)

]−1

.

(3.19)

Finite dimensional convergence for each term of Vij gives n1/2{û(γSα|t1)−u(γSα|t1)} → N(0, σ2
u),

where

σ2
u = E

{
n−3/2

∑
i<j

Vij

}2

= n−3

{∑
i<j

V 2
ij + 2

∑
k<l<m

[
VklVkm + VlmVkm + VklVlm

]}
.

(3.20)

Replacing the unknown parameters by their consistent estimators in equation (3.20) gives

σ̂2
u = n−3

{∑
i<j

V̂ 2
ij + 2

∑
k<l<m

[
V̂klV̂km + V̂lmV̂km + V̂klV̂lm

]}
,

where

V̂ij =− φ1

{
ŜZ(t1), Ŝ2(t1), θ̂, k̂, m̂

}
· ŜZ(t1)

∫ t1

0

dM̂Zi(s) + dM̂Zj(s)

ĥZ(s)

− φ2

{
ŜZ(t1), Ŝ2(t1), θ̂, k̂, m̂

}
· Ŝ2(t1)

∫ t1

0

dM̂2i(s) + dM̂2j(s)

ĥ2(s)

+ φ3

{
ŜZ(t1), Ŝ2(t1), θ̂, k̂, m̂

}
· Î−1Q̂ij

+ φ4

{
ŜZ(t1), Ŝ2(t1), θ̂, k̂, m̂

}
· k̂
∫ t2+γ̂S

α|t1

t1

dM̂2i(s) + dM̂2j(s)

ĥ2(s)

[
1−

n∑
l=1

∫ t2+γ̂S
α|t1

0

dM̂2l(s)

ĥ2(s)

]−1

+ φ5

{
ŜZ(t1), Ŝ2(t1), θ̂, k̂, m̂

}
· m̂
∫ t2

t1

dM̂2i(s) + dM̂2j(s)

ĥ2(s)

[
1−

n∑
l=1

∫ t2

0

dM̂2l(s)

ĥ2(s)

]−1

.
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M̂Zi(t) and M̂2i(t) are obtained by using Nelson-Aalen estimators of ΛZ and Λ2 in equation

(3.12). Hence, a 100 × (1 − α)% confidence interval for γSα|t1 can be obtained by inverting

the estimating equation u(γSα|t1)

{γSα|t1 : σ̂−2
u û(γSα|t1)

2 < χ2
1,1−α}, (3.21)

where χ2
1,1−α is the 100× (1−α)th percentile of the χ2 distribution with 1 degree of freedom.

It is known that using the estimating equation for inference on γSα|t1 has the merit to

avoid estimation of underlying probability density function of bivariate failure times under

censoring [Jeong et al., 2008, Jung et al., 2009]. However, having the model-based variance

formula would be also worthwhile to compare performances of the estimators from both

approaches. Suppose there exists a function, Ψ, such that

Ψ
(
u(γSα|t1)

)
= S−1

2|1
(
u(γSα|t1) + (1− α)S2|1(t2 | t1) | t1

)
− t2, (3.22)

where S−1
2|1 is the inverse function of S2|1(· | t1), and the inverse function S−1

2|1 has the deriva-

tives of order n, that is S
−1(n)
2|1 (x|t1) = dn

dxn
S−1

2|1(x | t1) exists, then the Taylor polynomial of

order n gives

Ψ
(
u(γSα|t1)

)
= γS,0α|t1 +

∞∑
n=1

{
[u(γSα|t1)− u(γS,0α|t1)]

n

n!
S
−1(n)
2|1

(
u(γS,0α|t1) + (1− α)S2|1(t2 | t1) | t1

)}
.

(3.23)

The approximation of a first-order Taylor series expansion to the variance of φ(û(γSα|t1))

(delta method) gives

n1/2
[
Ψ(û(γSα|t1))−Ψ(u(γSα|t1))

]
≡ n1/2

[
γ̂Sα|t1 − γ

S
α|t1

]
→ N

(
0,
[
Ψ′(u(γSα|t1))

]2
σ2
u

)
, (3.24)

where

Ψ′(u(γSα|t1)) =

[
∂S2|1(t2 + γS,0α|t1 | t1)

∂(t2 + γS,0α|t1)

]−1

=
P (T1 > t1)

P (T1 > t1, T2 > t2 + γS,0α|t1 + ∆t)− P (T1 > t1, T2 > t2 + γS,0α|t1)/∆t

.
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When ∆t → 0, Ψ′(u(γSα|t1)) is asymptotically equivalent to

S1(t1)∫∞
t1
f(x, t2 + γS,0α|t1)dx

. (3.25)

For estimation of the joint density f(x, y) in (3.25), a kernel smoothing is suggested to

approximate the unknown density. Performance of this methodology depends on the choice

of a smoothing parameter, i.e. bandwidth [Simonoff, 1996, Wand and Jones, 1993]. The

kernel density estimator is defined by f̂(t; H) = n−1
∑n

i=1 KH(t−Ti), where t = (t1, t2)T and

KH(t) = |H|−1/2K(H−1/2t). Here the kernel K is a symmetric probability density function

and H is a symmetric and positive-definite bandwidth matrix to determine performance of

f̂ . So the variance of γ̂Sα|t1 can be obtained by

n−1σ̂2
uŜ1(t1)2[∫∞

t1
f̂(x, t2 + γ̂Sα|t1)dx

]2 , (3.26)

and a 95% confidence interval can be constructed based on the variance formula. Although

the estimated variance formula involves the unknown density function, it can get close to

optimal approximation by means of kernel smoothing with appropriate bandwidth selection

and moderate sample sizes to reduce potential bias.

3.4 REGRESSION MODEL

3.4.1 Estimation of Regression Coefficients

Jung et al. [2009] proposed a time-specific log-linear regression method on quantile residual

lifetime and evaluated the test statistic without estimating the variance-covariance matrix

of the regression estimators. We adopt the similar approach but modify the test statistic

accounting for the condition of T1 > t1. A regression setting for the conditional α-quantile

residual lifetime is studied for a single sample. Suppose γSα|t1 defines the α-quantile residual
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lifetimes among patients who have recurrence-free up to time t1. It can be estimated through

an estimating equation expressed as

Pr(T2i > t2 + γSα|t1 | T1i > t1)

Pr(T2i > t2 | T1i > t1)
= 1− α. (3.27)

Consider a linear regression model for the α-quantile residual lifetimes for patients who

survived beyond time t2 conditioned on T1 > t1, on a log-scale,

α-quantile{log(T2i − t2) | T2i > t2, T1i > t1,Xi} = βT

αXi, (3.28)

where βα = (βα,0, βα,1, · · · , βα,p)T denotes a vector of the regression coefficients, and Xi =

(1, X1i, · · · , Xpi)
T is a vector of covariates for a subject i. Let G(t) = Pr(C > t) denote

the censoring distribution and E{I(T2 > t2)} = S2(t2)G(t2) assume the terminal event time

T2 is independent of the censoring variable C. Assuming conditional independence between

T2i | T1i and Ci given Xi and independence between Ci and Xi, the equation (3.27) can be

rewritten as

E
[
I{T ′2i > t2 + exp(βT

αXi)} | T1i > t1,Xi

]
Pr(Ci > t2 + exp(βT

αXi) | T1i > t1,Xi)
× Pr(Ci > t2 | T1i > t1,Xi)

E
[
I(T ′2i > t2) | T1i > t1,Xi

] = 1− α

Therefore,

E
[
I{T ′2i > t2 + exp(βT

αXi)}
∣∣ T1i > t1,Xi

]
= (1− α)

Pr(Ci > t2 + exp(βT

αXi) | T1i > t1,Xi)

Pr(Ci > t2 | T1i > t1,Xi)
E
[
I(T ′2i > t2) | T1i > t1,Xi

]
= E

[
(1− α)

G{t2 + exp(βT

αXi)}
G(t2)

I(T ′2i > t2)

∣∣∣∣ T1i > t1,Xi

]
Mimicking the least squares principle from the ordinary multiple linear regression model, the

estimating equation for the regression parameter βα is given by

Bα,t2(βα) =
n∑
i=1

I(T1i > t1)Xi

[
I{T ′2i > t2 + exp(βT

αXi)}
Ĝ{t2 + exp(βT

αXi)}
− (1− α)

I(T ′2i > t2)

Ĝ(t2)

]
≈ 0. (3.29)

The invariance property of the log-transformed quantile allows the estimating equation (3.29)

to evaluate on the original scale of the observed survival data. A solution β̂α to the equation

(3.29) can be obtained by minimizing the function ‖Bα,t2(βα)‖, where ‖ · ‖ is defined as the
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square root of the sum of squares. Under certain regularity conditions, β̂α is shown to be a

consistent estimator for the true value β0
α according to Jung et al. [2009](Web Appendix A).

3.4.2 Test Statistic and Confidence Interval

To test a statistical hypothesis H0 : βα = β0
α, it is difficult to use a Wald-type statistic based

on β̂α because the corresponding limiting covariance matrix depends on the unknown density

functions. In particular, with censored data, the covariance matrix cannot be estimated well

nonparametrically. Therefore, the estimating equation Bα,t2(βα) is used directly to make

inference on β̂α. In a similar proof to Web Appendix B of Jung et al. [2009], we show that

the distribution of n−1/2Bα,t2(β
0
α) is approximately normal with mean zero and variance-

covariance matrix Γα = limn→∞ n
−1
∑n

i=0 ξα,i ξ
T
α,i, where

ξα,i =I(T1i > t1)Xi

[
I{T ′2i > t2 + exp(β0,T

α Xi)}
G{t2 + exp(β0,T

α Xi)}
− (1− α)

I(T ′2i > t2)

G(t2)

]

+

∫ ∞
0

G−1(s)

∫ s

0

h−1
2 (v){dI(T ′2i ≤ v, δ2i = 0)− I(T ′2i ≥ v)dΛG(v)}dq1(s)

− q2(t2)

∫ t2

0

h−1
2 (s){dI(T ′2i ≤ s, δ2i = 0)− I(T ′2i ≥ s)dΛG(s)},

(3.30)

where ΛG(·) is the cumulative hazard function for the censoring distribution. h2(t) =

limn→∞ n
−1
∑n

i=1 Y2i(t), q1(s) = limn→∞ n
−1
∑n

i=1 XiI(T1i > t1)I{min(s, T ′2i) > t2+exp(β0,T
α Xi)},

and

q2(t2) = lim
n→∞

G−1(t2)
n∑
i=1

XiI(T1i > t2)I(T ′2i > t2). (3.31)

A consistent estimator Γ̂α for the limiting covariance matrix of n−1/2Bα,t2(β
0
α) can be

obtained as

Γ̂α = n−1

n∑
i=1

ξ̂α,i ξ̂
T

α,i,
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where

ξ̂α,i =

[
I{T ′2i > t2 + exp(β̂

T

αXi)}
Ĝ{t2 + exp(β̂

T

αXi)}
− (1− α)

I(T ′2i > t2)

Ĝ(t2)

]
I(T1i > t1)Xi

+
n∑
l=1

[
I(T1l > t1)Xl

I{T ′2l > t2 + exp(β̂
T

αXl)}
Ĝ{t2 + exp(β̂

T

αXl)

]

×

[
(1− δ2i)I{T ′2i ≤ t2 + exp(β̂

T

αXl)}∑n
m=1 I(T ′2m > T ′2i)

−
n∑
j=1

(1− δ2j)I{T ′2j ≤ min(T ′2i, t2 + exp(β̂
T

αXl))}[∑n
m=1 I(T ′2m > T ′2j)

]2
]

−
n∑
l=1

[
I(T1l > t1)Xl

(1− α)I(T ′2l > t2)

nĜ(t2)

]

×

[
(1− δ2i)I(T ′2i ≤ t2)∑n

m=1 I(T ′2m > T ′2i)
−

n∑
j=1

(1− δ2j)I{T ′2j ≤ min(T ′2i, t2)}[∑n
m=1 I(T ′2m > T ′2j)

]2
]
.

(3.32)

Wei et al. [1990] used the linear rank statistics for censored data to make inference about

a subset of the regression coefficients in the linear model without estimating the covariance

matrix. Ying et al. [1995] proposed semiparametric procedures to regress the median of the

failure time under censoring on potential covariates. By using their similar arguments, a test

statistic for testing H0 would be

n−1BT

α,t2
(βα)Γ̂−1

α Bα,t2(βα),

which approximately follows a χ2 distribution with p + 1 degrees of freedom. Consider

a partition of the regression coefficients, βα = (β(1)
α ,β(2)

α )T, where β(1)
α is a r × 1 vector.

Suppose that β̂
(1)

α and β̂
(2)

α are the corresponding estimates, and we are only interested in

testing the hypothesis H̃0 : β(1)
α = β0,(1)

α , a specific vector, against a general alternative. For

the test statistic, the minimum dispersion statistic [Basawa and Koul, 1988] is considered as

V
(
β0,(1)
α

)
= min

β
(2)
α

{
n−1BT

α,t2

([
β0,(1)
α ,β(2)

α

]T)
Γ̂−1
α Bα,t2

([
β0,(1)
α ,β(2)

α

]T)}
. (3.33)
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It can be shown that equation (3.33) is approximately χ2 distribution with r degrees of

freedom. We reject H̃0 for a large value of V
(
β0,(1)
α

)
. A (1− α) confidence interval for β(1)

α

can be obtained by {
β(1)
α : V

(
β(1)
α

)
< χ2

r,1−α

}
, (3.34)

where χ2
r,1−α is the upper α-percentile of a chi-squared distribution with r degrees of freedom.

3.5 SIMULATION STUDY

Simulation studies were conducted to evaluate performance of the proposed estimator of

conditional quantile residual lifetime. Specifically, n pairs of (T1, T2) were generated from the

Clayton bivariate exponential distribution. The marginals S1 and S2 followed an exponential

distribution with the rate parameter equal to 0.5. The independent censoring time C was

generated from a uniform(0, c) distribution, where c determined the censoring proportion.

Using the transformation from the model (3.4), with T1 = −2 log(1− u1), T2 was generated

from the equation of P (T2 > t2 | T1 = t1) = 1 − u2, where u1 and u2 were uniform(0,1)

random variables. Therefore,

T2 = 2θ log
[
(1− a) + a(1− u2)−1/(1+θ)

]
,

where a = (1 − u1)−1/θ. A censoring variable was generated to censor the terminal event

time and the observed terminal event time then censored the nonterminal event time, which

yielded the observable data restricted to the upper wedge of a plane.

A total of 1000 iterations from a bivariate Clayton distribution were carried out in

samples of size 200 and 300. The censoring parameter c was chosen to be 9.9, giving 20%

censoring. A combination of association parameter θ=0.25, 0.5 or 1, along with multiple pairs

of fixed time points, were used to examine the performance of the proposed estimator. Fixed

time points were chosen at values of 0.44, 0.58, 1.03, 1.28, and 1.79, corresponding to marginal

survival probabilities of 0.8, 0.75, 0.60, 0.50 and 0.40 from an exponential distribution with

rate 0.5. The bandwidth matrix was fixed at diag(0.3, 0.3) for estimating bivariate density
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function in the variance formula. Under the assumption of t1 ≤ t2, the proposed method

was assessed at six pairs of fixed time points for the approximation of conditional median

residual lifetime, i.e., α = 0.5 from the Clayton distribution. For a regression setting of the

conditional quantile residual lifetime for semi-competing risks data, we have considered the

median residual regression

med(T2i − t2 | T2i > t2, T1i > t1, x1i) = exp(β0.5,0 + β0.5,1x1i), (3.35)

where x1i is a binary covariate taking values of 0 or 1. The regression coefficients β0.5,0 and

(β0.5,0 + β0.5,1) are interpreted as the median residual lifetimes on a log-scale for the control

(x = 0) and treatment (x = 1) groups at time t2, respectively. Under H̃0 : β0.5,1 = 0, the

equation (3.35) was written in terms of median residual lifetime

γS0.5|t1 ≡ exp(β0.5,0) = S−1
T2|T1

{
(1/2)S(t2 | t1) | t1

}
− t2

= 2θ log
{

21/θ(et1/2θ + et2/2θ − 1)− et1/2θ + 1
}
− t2.

(3.36)

Note that at the origin of time axis, i.e., t1 = t2 = 0, exp(β0.5,0) = 2 log(2) = 1.386.

The empirical distribution of the regression parameters β0.5,0 and β0.5,1 was evaluated via

the mean and the standard deviation of the parameter estimates. The grid search method

was used to determine the minimum score of the equation (3.29). The true parameter

values of β0.5,0 for all six pairs of fixed time points were obtained from the equation (3.36).

The true value of β0.5,1 must be 0 because the survival distribution was identical for both

control and treatment groups. Similar settings were employed for testing the null hypothesis

H̃0 : β0.5,1 = 0 except that we compared Type I error probabilities for 0% and 20% censoring

proportions at various time points.

For each pair of fixed time points, the estimator of the median conditional quantile

residual lifetime was evaluated by the empirical mean (EST) and standard deviation (SD)

of estimates, the mean of estimated standard errors (SE), mean square errors (MSE), the

percent of bias (%Bias), and 95% coverage probabilities (Cov95). The weighted function Wa,b

for θ were equal to T1,0.75 and T2,0.75 which represent the 75th percentiles of the uncensored

T1 and T2, respectively. In Table 3.1, the estimated conditional median residual lifetimes

γSα|t1 are virtually unbiased with the percent of bias between -1 and 1 for each combination
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of parameter settings. The mean of the estimated standard errors are well approximated to

the empirical standard deviation. Regardless of the association level, increasing the value

of t2 also increases the standard deviation of the estimates and the mean square error. It is

observed that 95% coverage probabilities from model-based variance formula are slightly less

efficient than ones directly from the estimating equation approach when association becomes

less dependent, i.e. increasing θ. With a sample size of 300, 95% coverage probabilities

from model-based and equation-based variance estimation are improved; there is a great

improvement especially when the association becomes less dependent. The result is shown

in Table 3.2. Overall, the coverage probabilities tend to approximate the nominal level

reasonably well when increasing a sample size.

Table 3.3 presents the results for the estimated regression coefficients using the grid search

method. The mean values of the estimates of β0.5,0 and β0.5,1 are close to their true values

for given fixed time points. As expected, the MSE increased as the value of t2 increased for

both estimates of β0.5,0 and β0.5,1. The results in Table 3.4 indicate that the test based on

the minimum dispersion statistic tends to be slightly conservative, which is consistent with

the observations presented by Jeong et al. [2008] and Jung et al. [2009].
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Table 3.1: Simulation summary of γ̂S0.5|t1 reported as mean estimate, mean standard error, em-

pirical standard deviation, MSE, %Bias, and empirical 95% coverage probability:(1)model-

based, (2)equation-based for 1000 iterations in the sample size of 200.

θ n t1 t2 True EST (SE) SD MSE %Bias Cov95

Value (1) (2)

0.25 200 0.44 0.44 1.605 1.607 (0.184) 0.186 0.035 0.101 93.8 94.7

0.58 1.560 1.557 (0.188) 0.191 0.036 -0.166 94.2 93.9

1.28 1.435 1.443 (0.216) 0.225 0.051 0.587 92.9 93.4

1.03 1.03 1.685 1.687 (0.232) 0.229 0.053 0.104 95.0 93.9

1.28 1.588 1.596 (0.239) 0.247 0.061 0.495 93.7 94.8

1.79 1.469 1.478 (0.259) 0.279 0.078 0.630 93.0 94.2

0.5 200 0.44 0.44 1.623 1.617 (0.183) 0.196 0.038 -0.344 92.0 92.5

0.58 1.595 1.593 (0.189) 0.201 0.040 -0.101 93.3 92.4

1.28 1.495 1.498 (0.224) 0.235 0.055 0.174 92.6 93.7

1.03 1.03 1.780 1.770 (0.234) 0.251 0.063 -0.536 91.6 93.3

1.28 1.705 1.704 (0.247) 0.263 0.069 -0.051 92.3 93.7

1.79 1.590 1.599 (0.275) 0.289 0.084 0.603 92.3 93.3

1.0 200 0.44 0.44 1.575 1.571 (0.177) 0.197 0.039 -0.247 91.3 91.7

0.58 1.562 1.558 (0.184) 0.202 0.041 -0.269 91.6 92.2

1.28 1.512 1.513 (0.224) 0.245 0.060 0.033 91.9 93.5

1.03 1.03 1.753 1.750 (0.228) 0.267 0.072 -0.158 90.8 90.5

1.28 1.713 1.715 (0.243) 0.277 0.077 0.099 89.2 92.4

1.79 1.644 1.654 (0.277) 0.307 0.095 0.613 91.7 92.9
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Table 3.2: Simulation summary of γ̂S0.5|t1 reported as mean estimate, mean standard error, em-

pirical standard deviation, MSE, %Bias, and empirical 95% coverage probability:(1)model-

based, (2)equation-based for 1000 iterations in the sample size of 300.

θ n t1 t2 True EST (SE) SD MSE %Bias Cov95

Value (1) (2)

0.25 300 0.44 0.44 1.605 1.608 (0.152) 0.154 0.024 0.200 94.4 94.2

0.58 1.560 1.562 (0.155) 0.159 0.025 0.172 94.1 94.0

1.28 1.435 1.443 (0.178) 0.185 0.034 0.589 94.0 93.9

1.03 1.03 1.685 1.686 (0.190) 0.186 0.034 0.066 96.2 95.2

1.28 1.588 1.593 (0.196) 0.196 0.039 0.304 95.6 95.2

1.79 1.469 1.470 (0.213) 0.224 0.050 0.087 93.0 94.0

0.5 300 0.44 0.44 1.623 1.623 (0.151) 0.158 0.025 0.017 93.4 93.6

0.58 1.595 1.595 (0.156) 0.163 0.027 -0.027 94.3 94.3

1.28 1.495 1.496 (0.184) 0.186 0.035 0.011 94.8 94.1

1.03 1.03 1.780 1.772 (0.193) 0.194 0.038 -0.435 93.7 92.9

1.28 1.705 1.700 (0.203) 0.207 0.043 -0.278 93.8 93.4

1.79 1.590 1.594 (0.227) 0.234 0.055 0.262 93.3 94.3

1.0 300 0.44 0.44 1.575 1.571 (0.146) 0.155 0.024 -0.242 92.8 92.2

0.58 1.562 1.561 (0.152) 0.159 0.025 -0.109 92.7 92.8

1.28 1.512 1.514 (0.185) 0.191 0.037 0.123 93.5 95.3

1.03 1.03 1.753 1.751 (0.188) 0.214 0.046 -0.115 90.8 92.9

1.28 1.713 1.716 (0.201) 0.218 0.048 0.138 91.9 93.9

1.79 1.644 1.654 (0.229) 0.243 0.059 0.595 92.6 93.8
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Table 3.3: Simulation summary of the empirical estimates of the regression parameters β0.5,0

and β0.5,1 reported as mean estimate, empirical standard deviation, and MSE by using the

grid search method for 1000 iterations.

θ t1 t2 True β0.5,0 EST(β0.5,0) SD MSE EST(β0.5,1) SD MSE

0.25 0.44 0.44 0.473 0.452 0.182 0.034 0.012 0.269 0.072

0.58 0.445 0.419 0.198 0.040 0.015 0.289 0.084

1.28 0.361 0.327 0.245 0.061 0.017 0.364 0.132

1.03 1.03 0.522 0.500 0.219 0.048 0.002 0.330 0.109

1.28 0.462 0.435 0.250 0.063 0.009 0.376 0.141

1.79 0.384 0.331 0.465 0.219 0.028 0.563 0.318

0.5 0.44 0.44 0.484 0.458 0.194 0.038 0.014 0.290 0.084

0.58 0.467 0.439 0.205 0.043 0.014 0.303 0.092

1.28 0.402 0.354 0.275 0.078 0.035 0.399 0.160

1.03 1.03 0.577 0.559 0.283 0.080 -0.008 0.397 0.157

1.28 0.534 0.506 0.295 0.088 0.003 0.422 0.178

1.79 0.464 0.416 0.526 0.279 -0.015 0.625 0.391

1.0 0.44 0.44 0.454 0.422 0.215 0.047 0.024 0.320 0.103

0.58 0.446 0.419 0.222 0.050 0.009 0.330 0.109

1.28 0.413 0.371 0.293 0.088 0.025 0.418 0.175

1.03 1.03 0.561 0.549 0.321 0.103 -0.021 0.443 0.196

1.28 0.538 0.514 0.359 0.130 -0.0001 0.501 0.251

1.79 0.497 0.445 0.609 0.374 -0.0005 0.756 0.572
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Table 3.4: Simulation summary of the Type I error probabilities for testing the null hypoth-

esis H0 : β0.5,1 = 0 when the true parameter values are β0.5,1 = 0.

Censoring proportion

θ t1 t2 0% 20%

0.25 0.44 0.44 0.036 0.026

0.58 0.033 0.024

1.28 0.033 0.026

1.03 1.03 0.037 0.026

1.28 0.038 0.026

1.79 0.029 0.021

0.5 0.44 0.44 0.038 0.027

0.58 0.034 0.025

1.28 0.031 0.023

1.03 1.03 0.043 0.027

1.28 0.039 0.027

1.79 0.030 0.024

1.0 0.44 0.44 0.038 0.043

0.58 0.040 0.043

1.28 0.039 0.020

1.03 1.03 0.039 0.026

1.28 0.034 0.023

1.79 0.039 0.020
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3.6 ANALYSIS OF B-14 BREAST CANCER DATA

A total of 2,817 eligible patients with estrogen receptor positive breast cancer and negative

axillary lymph nodes were enrolled in B-14 phrase III breast cancer clinical trial from the

National Surgical Adjuvant Breast and Bowel Project (NSABP). It was a randomized double-

blind multi-center trial comparing the treatment of tamoxifen to placebo following surgery.

In this trial, patients were randomly assigned to either the placebo arm (n=1,413) or the

tamoxifen arm (n=1,404) following surgery. Patients tested with estrogen receptor positive

indicate that their hormone receptor suggests the need of signals from estrogen to promote the

growth of cancer cells. Tamoxifen blocks the effects of estrogen on cancer cells to prevent the

tumor from growing. Initial results showed that tamoxifen treated women has a significantly

better outcome than did those who received placebo [Fisher et al., 1989]. Several follow-up

studies relating long-term findings provided substantial support for the initial results. [Fisher

et al., 1996] found that the benefit of 5-year tamoxifen treatment persisted through 10 years

of follow-up but no additional advantage was found for more than 5 years. The study of

Fisher et al. [2004] showed chemotherapy plus tamoxifen was more effective than tamoxifen

alone from a conjunctional trial.

The failure times in this example are time-to-recurrence, T1 and time-to-death, T2. We

apply our proposed method to re-analyze this dataset and evaluate the effect of tamoxifen

in breast cancer on 25% percentile residual lifetime. First, we estimate the 25th percentile

residual lifetimes for each treatment group. Next, a covariate variable of whether patients

receive placebo coded as 0 or tamoxifen coded as 1 is included in a regression model.

Figure 3.1a shows the estimated 25th percentile residual lifetimes in patients treated with

tamoxifen and placebo. The 25th percentile residual lifetimes in tamoxifen group tend to be

higher than the placebo group throughout all years even though the difference between the

two groups becomes closer at the tail. It is interesting to observe that the estimated residual

lifetime in tamoxifen group has a dramatic decreasing beyond year 9. This may imply that

patients treated with tamoxifen and survived up to year 9 would expect their residual lifetime

to drop around 23% at year 15 (9.47 versus 7.34) given no sign of recurrence by year 2. We

also evaluate the 25th percentile residual lifetime for patients without recurrence by year

36



5. In Figure 3.1b, although there still exists a notable difference between tamoxifen and

placebo, we can not spot any strong variation by each group throughout the whole examined

years. Table 3.5 presents estimates of regression coefficients and p-values from the minimum

dispersion statistic. The 25th percentile residual lifetimes are compared between tamoxifen

and placebo at each time point. The results indicate that the treatment of tamoxifen has an

influence on 25th percentile residual lifetimes from years 8 to year 10 when conditioning on

year 2 (borderline significant at years 8 and 9, p-value=0.051, 0.049 respectively). However,

we did not find any significant effect of tamoxifen on 25th percentile residual lifetime for

patients who remain recurrence-free by year 5, shown in Table 3.6.
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3.7 DISCUSSION

We have proposed a method for semi-competing risks data, by which the residual lifetime

can be evaluated and compared at any fixed time point for patients who remain no sign of a

morbidity after a prespecified number of years of follow-up for an original disease. Overall,

the estimator is nearly unbiased for the conditional median residual lifetime, even though

the results indicate that larger values of t2 are associated with higher mean square error, as

expected.

Choosing a value for the bandwidth for density estimation is arbitrary. There exists

numerous methods that have good theoretical properties in selecting the bandwidth [Jones

et al., 1996]. A modification of cross-validation method named by smoothed cross-validation

involves a presmoothing of the pairwise differences of the observations [Hall et al., 1992].

However, the bandwidth selection is time-consuming and the variation of kernel smoothing

estimation among iterations needs to be considered using a resampling mechanism. Even

though the bandwidth in our simulation is fixed at a diagonal matrix, the estimates of the

standard errors result in reasonable coverage probabilities in most cases. Larger sample size

might decrease biases resulted from density estimation.

In addition, a regression model was proposed to associate the conditional residual life-

times with selected covariates under right censoring among survivors without morbidities

up to a specific time point. The conditional survival and censoring variables are assumed

to be conditionally independent given covariates. However, if a censoring distribution is

independent of covariates, then the conditional independence becomes unconditional which

would hold in most randomized clinical trials.

The grid search method provided reasonable solutions to the estimating equation in the

simulation studies. The proposed estimator was studied under a gamma frailty model. It

might be also worthwhile to investigate it in different joint survival models.
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(a) Given recurrence free by year 2

(b) Given recurrence free by year 5

Figure 3.1: The comparison of estimated 25th percentile conditional residual lifetimes be-

tween the treatment of tamoxifen and placebo in B-14 study
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Table 3.5: Regression parameter estimates from the 25% residual life regression model with

a single covariate of treatment and associated p-values, given t1 > 2

t2 min score β̂0.5,0 β̂0.5,1 p-value

3 0.287 2.392 0.093 0.198

5 0.261 2.245 0.144 0.155

7 1.157 2.191 0.186 0.083

8 0.265 2.164 0.249 0.051

9 0.132 2.161 0.192 0.049

10 0.533 2.126 0.276 0.083

11 0.230 2.066 0.202 0.421

13 0.499 2.024 0.272 0.603

15 0.214 1.983 0.040 0.919

Table 3.6: Regression parameter estimates from the 25% residual life regression model with

a single covariate of treatment and associated p-values, given t1 > 5

t2 min score β̂0.5,0 β̂0.5,1 p-value

6 0.727 2.415 0.055 0.588

7 0.525 2.367 0.044 0.629

8 0.221 2.306 0.118 0.338

9 0.449 2.243 0.116 0.150

10 0.421 2.170 0.189 0.562

11 0.682 2.135 0.209 0.728

12 0.364 2.160 0.097 0.723
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4.0 COMPARISON OF A NONPARAMETRIC ESTIMATOR USING

BIVARIATE RIGHT CENSORED SURVIVAL DATA

In the previous chapter, we used a semiparametic method to model the conditional quantile

residual lifetime. While a great amount of parametric and semiparametric methods have

been proposed on the inference of residual lifetime, it is also desirable to have a completely

nonparametric estimator that does not require any distributional assumptions. Suppose we

are interested in the quantile residual life function of the occurrence time of a unit, say T2,

given the occurrence time of another unit, say T1. To implement this interesting idea, the

first step is to consider estimation of the conditional survival function of T2 given T1 = t1

when T1 is also subject to censoring.

Inference about such a conditional survival function has received attention in several

scientific studies. Beran [1981] proposed a generalized Kaplan–Meier estimator to study

regression problem with censored data. It is also referred to as conditional Kaplan–Meier

estimator. The idea behind this estimator is to use the relationship between the distribution

and the cumulative hazard function. In some cases such estimation of the conditional sur-

vival function is prerequisite for the estimator of bivariate survival function. The extension

of Beran’s estimator can be seen in literature. Akritas [1994] considered the problem of

estimating the bivariate distribution by averaging estimates of the conditional distribution

of T2 given T1 = t1 over a range of values of t1. Later, Akritas and Keilegom [2003] proposed

estimators for marginal distributions and also required estimation of a condition survival

function when the conditioning variable is subject to censoring. From the mechanism of

Pruitt’s estimator, those singly-censored observations have to redistribute the mass 1/n over

their associated lines. It means that in order to estimate the bivariate survival function

the conditional probability for each singly-censored observation has to be estimated in an

41



appropriate way. When the assumption of independence of T and C is relaxed to dependent

censoring, a nonparametric estimator of the conditional survival function for bivariate failure

times has been proposed by Lakhal-Chaieb et al. [2013].

In a bivariate failure time setting, let T = (T1, T2) represent the pair of survival times

and C = (C1, C2) the pair of censoring times. Assume that T is independent of C. The i.i.d.

observed random variables are T̃ij = min(Tij, Cij), and let δij = I(Tij ≤ Cij) be the indicator

function, for i = 1, 2, j = 1, · · · , n. In this case, observed times T̃ = (T̃1, T̃2) could be singly

or doubly censored, or both uncensored. Each observation in the bivariate censoring model

can be illustrated by a region for the bivariate survival time T. The survival time is obtained

if both T1 and T2 are observed(uncensored), it is known to be on a line if only one of the

survival times Ti is right-censored(singly-censored) and in a region of quadrant if both T1

and T2 are right-censored(doubly-censored).

The nonparametric estimation of the conditional survival function is considered when

the conditioning variable is subject to right censoring. However, the main issue that needs

to be addressed is the analyzed region in which the conditioning variable should be placed if

it is censored. Since the purpose of considering the conditional survival function is to make

inference on the residual lifetime of a unit given another is uncensored at a specific time

point, we adopt the approach of using those pairs of observations in the region for which the

value of the conditioning variable is uncensored. Therefore, the conditional survival function

of T2, given that T1 is uncensored at time t1 is defined as

ST2|T1=t1(t2 | t1) = Pr(T2 > t2 | T1 = t1), (4.1)

and such setting can be applied vice versa for ST1|T2=t2 . However, it is important to note

that the problems of dealing with singly-censored observations may cause inconsistency for

continuous distributions when using nonparametric maximum likelihood. In the following

section, we will compare the sample behavior of two nonparametric estimators of conditional

survival probability but restrict attention to the modified nonparametric maximum likelihood

estimator (NPMLE) proposed by van der Laan [1994].

This chapter begins with a discussion of nonparametric estimators on conditional survival

probability. Next, the inference of conditional quantile residual life function is addressed
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and the nonparametric bootstrap method is discussed. Then a small simulation study is

conducted to compare the nonparametric estimators with our proposed estimator from semi-

competing risks data. Lastly, the potential future work of quantile residual life function is

highlighted on the basis of bivariate failure data with censoring.

4.1 ESTIMATION OF CONDITIONAL SURVIVAL FUNCTION

Nonparametric estimation of conditional survival function (4.1) is discussed. The usual em-

pirical distribution function for survival data is used to estimate the underlying distribution

when there exists no censoring. Suppose there are two failure time variables and both of

them are under independent censoring. The estimated distribution of T2 can be explained

by the available information regarding T1, and vice versa. If the ith observation of T2 is

censored, the Kaplan–Meier estimator would redistribute its mass to all observations of T2

which are larger than it. However, the information contained in the ith observation of T1 is

consequential if the correlation of the two variables presents positive.

4.1.1 Beran’s estimator and nearest neighbor estimation

In a situation that T1 is uncensored and T2 is independent of C2, kernel estimates of the

conditional survival probability based on censored data were firstly introduced by Beran

[1981]. It is defined as

ŜT2|T1=t1(t2 | t1) =
∏
T̃2i≤t2

{
1− Wi(t1)∑n

j=1 Wj(t1)I(T̃2j ≥ T̃2i)

}δ2i

, (4.2)

where

Wi(t) =
K
(
t−T̃1i
h

)
∑n

j=1K
(
t−T̃1j
h

) .
Here K is a symmetric kernel function and h is a positive smoothing bandwidth. When T1 is

subject to right censoring, the extension of Beran’s estimator [Akritas and Keilegom, 2003]
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has been proposed. The analysis was conducted by using an alternative of Wi in equation

(4.2) to take advantage of the information from the value of observed T1 if the value of T2 is

censored. The modified Wm
i (t) is shown as

Wm
i (t) =

δ1iK
(
t−T̃1i
h

)
∑n

j=1 δ1jK
(
t−T̃1j
h

) .
4.1.2 van der Laan’s modified estimator from NPMLE

The idea of van der Laan [1994] is originally taken from Pruitt [1991]. It is used to overcome

the problems with the NPMLE calculated from singly-censored observations in bivariate

failure data. The strategy suggests that the uncensored component of a singly-censored

observation, say (T1, T2, δ1 = 1, δ2 = 0), is censored by a small interval (T1 − λ, T1 + λ)

for some λ > 0. The conditional survival function can be expressed as the equivalent of

Kaplan-Meier estimator

ST2|T1=t1(t2 | t1) =
∏
(0,t2]

(1− Λ(t1 | ds)) (4.3)

where

Λ(t1 | ds) =
P (T2 ∈ ds | T1 = t1, δ1 = 1, δ2 = 1)

P (T2 ≥ s | T1 = t1, δ1 = 1)

Here Λ(t1 | ds) is the conditional hazard representing the conditional probability that the

first event occurs at the coming moment given that it remains event free right now when the

later event has occurred at time t2. Since Λ can be estimated by the Nelson-Aalen estimator

which takes the ratio of the number of deaths to the number at risk, the death and risk

processes are denoted as

N(t1, t2) =
d

dt1
P (T̃1 ≤ t1, T̃2 ≤ t2, δ1 = 1, δ2 = 1)

Y (t1, t2) =
d

dt1
P (T̃1 ≤ t1, T̃2 > t2, δ1 = 1)

(4.4)

In order to estimate conditional densities, a nonparametric data smoothing technique is in-

troduced for visualising the distribution of data. Then the death and risk processes from
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the equation (4.4) are estimated using bivariate kernel smoothing function with a full band-

width matrix to provide different weights for all uncensored and singly-censored observations

around the line [van der Laan, 1997]. Therefore, the density estimators are denoted with N̂

and Ŷ :

N̂(t1, dt2) =
1

nh1h2

n∑
j=1

K

(
t1 − T̃1j

h1

,
dt2 − T̃2j

h2

)
I(T̃2j ∈ dt2, δ1j = 1, δ2j = 1)

Ŷ (t1, t2) =

∫ λ2

t2

1

nh1h2

n∑
j=1

K

(
t1 − T̃1j

h1

,
s− T̃2j

h2

)
I(δ1j = 1)ds

(4.5)

where K is the bivariate Gaussian kernel, K(x) = (2π)−1/2 exp
(
−1

2
xTx

)
. The values of

bandwidth h1 and h2 are chosen from a full bandwidth matrix H which minimizes the

smooth cross-validation function in the equation (2.8). The Kaplan-Meier estimator for

ST2|T1=t1 under the condition of t1 ≤ t2 is then

ŜT2|T1=t1(t2 | t1) =
∏

T̃2j≤t2, δ1j=1

(
1− N̂(t1, 4T̃2j)

Ŷ (t1, T̃2j)

)
. (4.6)

4.2 QUANTILE RESIDUAL LIFETIME ESTIMATOR

Jeong et al. [2008] proposed a method for estimating the median residual lifetimes directly

dealing with an estimating equation in the univariate settings. For a bivariate modeling of

the residual life function, an estimating equation for quantile residual lifetime is defined by

conditioning on the first failure at time t1. Since the objective is to determine the residual

lifetime of a later failed unit, it is reasonable to assume t2 ≥ t1 from a dynamic point of

view. The corresponding expression for only right censored T1 is analogous. For 0 < α < 1,
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the α-quantile residual life function at time t2 is defined as

γBα|t1(t2) = inf{x : FT2|T1=t1(x | t1) ≥ α}

= inf{x : ST2|T1=t1(t2 + x | t1) < (1− α)ST2|T1=t1(t2 | t1)}

= S−1
T2|T1=t1

{(1− α)ST2|T1=t1(t2) | t1} − t2
(4.7)

which implies the α-quantile residual lifetime of a unit survived beyond time t2 when t1

is fixed. On the basis of this conditional scenario, the proposed method is to estimate

conditional survival probability given T1 = t1 and use it to infer γBα|t1 through the estimating

equation.

The equation (4.7) is equivalent to P (T2− t2 > γBα|t1 | T1 = t1, T2 > t2) = 1−α, showing

that P (T1 = t1, T2 > t2 + γBα|t1) = (1 − α)P (T1 = t1, T2 > t2). So in terms of conditional

survival function defined by equation (4.1), the following is obtained

ST2|T1=t1(t2 + γBα|t1 | t1) = (1− α)ST2|T1=t1(t2 | t1). (4.8)

The resulting estimator shown in the equation (4.6) can be plugged in the estimating equation

û(γBα|t1) = 0 for γBα|t1 , where

û(γBα|t1) = ŜT2|T1=t1(t2 + γBα|t1 | t1)− (1− α)ŜT2|T1=t1(t2 | t1) (4.9)

and γ̂Bα|t1 is the solution of û(γBα|t1).

4.2.1 Nonparametric bootstrap method

The bootstrap introduced by Efron [1979] is a general methodology to deal with uncertainty

of sampling distribution of estimators in almost any nonparametric estimation problem. The

uncertainty associated with parameter estimates is usually summarized by approximated bi-

ases, standard deviations, and confidence intervals. It can answer questions which are far too

complicated for traditional statistical analysis without the assumptions about distributions.

In the case of right censored data, the bootstrap approach answers several questions con-

cerning the Kaplan–Meier survival curve and provides a new justification for Greenwood’s
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formula using large sample approximation [Efron, 1981]. Basically, the resampling scheme is

the same as for the uncensored case, except that the data points become pairs with censor-

ing indicators. The observed bivariate failure times along with their censoring indicators are

denoted as T̃ = (T̃1, T̃2, δ1, δ2). Suppose we observe T̃i, i = 1, 2, · · · , n, where T̃i are inde-

pendent and identically distributed according to some unknown probability distribution F .

We are interested in calculating a standard error for our proposed estimator, γ̂Bα|t1 . Let σ(F )

denote the standard error of γ̂Bα|t1 as a function of F . The bootstrap estimate of standard

error is σ̂ = σ(F̂ ), where F̂ is the empirical distribution function putting mass 1/n at each

observation. The general bootstrap procedure is as follow:

1. A random sample of size n is drawn with replacement from the actual sample T̃ ∼

F̂ and repeat N times to obtain a large number of bootstrap datasets, denoted as

T̃
∗
(1), T̃

∗
(2), · · · , T̃

∗
(N).

2. For each bootstrap dataset, calculate the statistic of interest, say γ̂B
∗

α|t1(i), j = 1, 2, · · · , N .

3. Calculate the sample standard deviation of the γ̂B
∗

α|t1(i), which is

σ̂Boot =

√√√√∑N
i=1

{
γ̂B
∗

α|t1(i)
}2

−
{∑N

i=1 γ̂
B∗
α|t1(i)

}2

/N

N − 1
(4.10)

4.2.2 Simulation study

We conducted a simulation study to evaluate the performance of the proposed estimator of

conditional α-quantile residual lifetime in a bivariate failure time setting. Bivariate right

censored data were generated from Clayton bivariate exponential distribution. A pair of

independent censoring variables C1 and C2 were uniform(0, c) variates, where c determined

the censoring proportion. Values of t1 and t2 were generated using the transformation from

the model (3.4), where t1 = − log(1 − u1) and t2 = 2θ log
[
(1 − a) + a(1 − u2)−1/(1+θ)

]
, a =

(1− u1)−1/θ.

A total of 1000 simulations from a bivariate Clayton distribution were carried out in

samples of size 200. The censoring parameter c was chosen to give 20% censoring. The

association parameter θ was chosen to be 0.25 or 0.5 to examine the performance of the

proposed estimator for various pairs of failure times. We used Gaussian kernel and choose
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a suitable bandwidth for each generated sample via smooth cross-validation function. For

each simulation, 300 bootstrap samples were generated to obtain the bootstrap estimate of

standard error. Under the assumption of t1 ≤ t2, the conditional median residual lifetime,

i.e., α = 0.5 was evaluated from Clayton distribution. To receive the estimator of nonpara-

metric conditional median residual lifetime in each parameter setting, one dimension root

finding from the function uniroot() in R was used to search the interval from 0 to 3 for a

root of the estimating equation.

In the following simulation results, the values of t1 chose to be 0.44 and 1.03 correspond-

ing to marginal survival probabilities of 0.8 and 0.6 and t2 were at values of 0.44, 0.58, 1.03,

1.28 and 1.79 corresponding to marginal survival probabilities of 0.8, 0.75, 0.60, 0.50 and

0.40 from exponential with rate 0.5. Table 4.2 shows the results of nonparametric estimation

of conditional median residual lifetime using the extension of Beran’s estimator. The results

from Van Der Laan’s estimator are shown in Table 4.3. The estimated conditional median

residual lifetimes from both estimators have similar performance. There is no obvious chang-

ing pattern in terms of 95% coverage. We observed that conditioning on the smaller t1 would

have less bias compared to larger t1. However, we did not observe any reasonable coverage

close to 95 among all parameter settings.

In addition, the mean of estimated standard errors were underestimated. Figure 4.1

illustrates the nonparametric estimation of conditional survival probabilities using van der

Laan’s approach. From eyeballing, the bias of estimated conditional survival probabilities

in Figure 4.1a was small when θ = 1 compared to other association values. In Figure

4.1b, the strength of association does not seem to distinguish the performance of estimated

conditional survival overall, but the estimated conditional survival with strong association

tended to approach the true distribution when t2 was increasing. Furthermore, a smaller t1

resulted in overestimated conditional survival in contrast with a larger t1 for all θ.
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Table 4.1: Simulation results of γ̂B0.5|t1 using nearest neighbor estimation at θ = 0.25. EST is

the mean of estimates, SE is the mean of estimated standard errors, SD is standard deviation

of the estimates and Cov95 is the 95% coverage.

θ n t1 t2 True Value EST (SE) SD Cov95

0.25 200 0.44 0.44 0.388 0.440 (0.091) 0.086 91.2

0.58 0.364 0.416 (0.097) 0.092 91.9

1.28 0.300 0.362 (0.146) 0.153 88.8

1.03 1.03 0.435 0.489 (0.122) 0.122 91.0

1.28 0.379 0.449 (0.129) 0.134 89.3

1.79 0.316 0.372 (0.149) 0.171 86.7

0.25 400 0.44 0.44 0.388 0.432 (0.064) 0.062 90.0

0.58 0.364 0.406 (0.069) 0.066 90.8

1.28 0.300 0.342 (0.115) 0.113 91.7

1.03 1.03 0.435 0.476 (0.089) 0.087 92.3

1.28 0.379 0.427 (0.099) 0.094 91.7

1.79 0.316 0.364 (0.130) 0.129 91.0

0.25 800 0.44 0.44 0.388 0.421 (0.046) 0.045 89.7

0.58 0.364 0.396 (0.049) 0.047 89.9

1.28 0.300 0.323 (0.084) 0.079 93.5

1.03 1.03 0.435 0.462 (0.064) 0.065 91.7

1.28 0.379 0.410 (0.071) 0.071 91.2

1.79 0.316 0.346 (0.101) 0.100 92.6
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Table 4.2: Simulation results of γ̂B0.5|t1 using nearest neighbor estimation at θ = 0.5. EST is

the mean of estimates, SE is the mean of estimated standard errors, SD is standard deviation

of the estimates and Cov95 is the 95% coverage.

θ n t1 t2 True Value EST (SE) SD Cov95

0.5 200 0.44 0.44 0.586 0.612 (0.116) 0.118 91.6

0.58 0.571 0.600 (0.123) 0.125 90.9

1.28 0.517 0.546 (0.154) 0.172 86.9

1.03 1.03 0.676 0.677 (0.136) 0.146 86.1

1.28 0.632 0.649 (0.143) 0.163 83.1

1.79 0.568 0.572 (0.161) 0.194 80.8

0.5 400 0.44 0.44 0.586 0.611 (0.088) 0.087 93.0

0.58 0.571 0.596 (0.094) 0.093 92.9

1.28 0.517 0.546 (0.129) 0.133 91.9

1.03 1.03 0.676 0.684 (0.112) 0.116 89.4

1.28 0.632 0.651 (0.123) 0.131 88.3

1.79 0.568 0.594 (0.147) 0.163 85.5

0.5 800 0.44 0.44 0.586 0.602 (0.065) 0.063 94.7

0.58 0.571 0.588 (0.069) 0.068 93.6

1.28 0.517 0.539 (0.100) 0.103 91.7

1.03 1.03 0.676 0.684 (0.090) 0.096 92.1

1.28 0.632 0.642 (0.099) 0.103 91.1

1.79 0.568 0.580 (0.122) 0.125 90.8
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Table 4.3: Simulation results of estimation of γB0.5|t1 using van der Laan’s estimator. EST is

the mean of estimates, SE is the mean of estimated standard errors, SD is standard deviation

of the estimates and Cov95 is the 95% coverage.

θ n t1 t2 True Value EST (SE) SD Cov95

0.25 200 0.44 0.44 0.388 0.449 (0.085) 0.087 89.9

0.58 0.364 0.421 (0.087) 0.089 89.3

1.28 0.300 0.365 (0.105) 0.104 90.7

1.03 1.03 0.435 0.498 (0.113) 0.116 90.0

1.28 0.379 0.460 (0.118) 0.120 89.4

1.79 0.316 0.411 (0.130) 0.128 88.8

0.5 200 0.44 0.44 0.586 0.555 (0.106) 0.109 89.5

0.58 0.571 0.534 (0.110) 0.110 90.2

1.28 0.517 0.505 (0.131) 0.142 89.3

1.03 1.03 0.676 0.603 (0.129) 0.136 84.1

1.28 0.632 0.585 (0.136) 0.150 85.6

1.79 0.568 0.559 (0.151) 0.159 86.3
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(a) Fixed time t1 = 0.44

(b) Fixed time t1 = 1.03

Figure 4.1: Nonparametric estimator of the conditional survival probabilities in comparison

of Clayton exponential model for different levels of dependence parameter, θ = 0.25, 0.50, 1

with n = 50 in 500 iterations
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4.3 DISCUSSION

The mechanism of nonparametric estimators for the conditional quantile residual life function

is built upon redistributing the mass between an interval around the value of uncensored

component of T. Two estimators of conditional survival function are studied to estimate the

conditional quantile residual lifetime. The bandwidth selection of kernel smoothing function

is important relating to how well the estimated conditional survival function can approximate

to the underlying distribution. The simulation results indicate that the conditional median

residual lifetime inferred by both methods performs biased estimates when using a sample

size of 200. The standard errors tend to estimate poorly when t1 and t2 get large. The

reason might result from the fact of decreasing number of events from the tail. Therefore,

we increase a sample size of 400 and 800 to see whether there is an improvement on the

estimates. The 95% coverage probability shows a fairly amount of improvement for the

estimated conditional median residual lifetime. Further investigation needs to take place in

order to find a precise approximation.
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5.0 CONCLUSION AND FUTURE WORK

The estimator of conditional quantile residual lifetime for semi-competing risks data has been

constructed and studied in this dissertation. Given the occurrence time of the nonterminal

event beyond a certain time t, the quantile residual lifetime of the terminal event can be

evaluated at any time point. The proposed method considers the nature of the association

between event times and provides a practical application for patients who have been followed

for years after the initial treatment. In addition, the association between the conditional

residual lifetime and selected covariates has been proposed in a regression model. The results

indicate that our proposed estimator is nearly unbiased for the conditional median residual

lifetime.

A nonparametric approach of conditional quantile residual lifetime has been compared

to the proposed estimator. The censoring structure changes to the setting of parallel data,

i.e. bivariate independent censoring. By assuming the condition that one of the paired

units has failed at time t, we also evaluate the conditional quantile residual lifetime by using

the estimating equation. Several existing methods of estimation of conditional survival

function are considered. We adopt the methods proposed by Akritas and Keilegom [2003]

and van der Laan [1994] to implement our approach. A small simulation study suggests that

both estimators do not perform well according to 95% coverage probabilities. The estimator

is sensitive to the choice of the bandwidth even though we have used a modification of

cross-validation method in a bandwidth selection.

In summary, our proposed estimator performs better compared to a nonparametric ap-

proach. The conditioning of one of the paired units just failed at time t before another

restricts to the occurrence time of the first failure. One has to consider the information from

singly-censored and both uncensored observations to make the resulting estimator consistent.
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A bootstrap method is useful because it provides the estimation of the standard deviation

of the conditional quantile residual lifetime. Reasons for causing a biased nonparametric

estimator might be due to an insufficient sample size or an improper bandwidth. Further

investigation is needed.

This work only considered gamma frailty model to derive our proposed estimator in

semi-competing risks data. It would be worthwhile to consider other joint survival models.

Another issue that can be addressed in the future is to investigate other complex censoring

structures in bivariate failure time data such as the analysis of successive event times. It

would be reasonable to perform our analysis under various specific censoring schemes.
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APPENDIX

ANALYSIS OF VENTILATING TUBES IN EARS

Otitis media (OM), an inflammation of the middle ear, is frequently diagnosed in children.

The symptoms of OM include pain in the ear, fever, and temporary hearing loss and general

signs such of loss of appetite and irritability. Several subtypes of otitis media have been

distinguished but the most common form is otitis media with effusion (OME). It is defined

when there is a collection of thick or sticky fluid behind the eardrum in the middle ear

without signs of ear infection. In typical, children with OME do not suffer pain or fever but

may experience the loss of hearing to affect their behavioural and language development. A

number of medical interventions have been suggested for the treatment of OME but failed

with limited effects. Therefore, physicians seek with favor of a surgical intervention, that is,

ventilating tubes are inserted in the eardrums to let fluid trapped behind the eardrum drain.

Between February 1987 and January 1990, a total of 78 eligible children age 6 months

to 8 years with chronic OME were enrolled after receiving therapeutic myringotomy for

tympanostomy tube placement [Le and Lindgren, 1996]. Children were randomly assigned to

either receive 2-week trials of prednisone and sulfamethoprim treatment after surgery (n=40)

or serve as controls without additional treatment (n=38). The duration of ventilating tubes

were recorded in order to assess whether the medical treatment could prolong the life of the

tubes. The cession of tube functioning or tube extrusion would be treated as the primary

endpoint of the study. For each child duration time of vent tube in each ear along with

corresponding censoring time are recorded. The data are shown in Figure A1.
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Figure A1: Duration times (months) of ventilating tubes in both ears for 78 children with

otitis media effusion
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Miklós Csörgő and Sándor Csörgő. Estimation of percentile residual life. Operations Research,
35(4):598–606, 1987.

Dorota M. Dabrowska. Kaplan-meier estimate on the plane. The Annals of Statistics, pages
1475–1489, 1988.

Roger Day, John Bryant, and Myrto Lefkopoulou. Adaptation of bivariate frailty models for
prediction, with application to biological markers as prognostic indicators. Biometrika, 84
(1):45–56, 1997.

Tarn Duong and Martin L. Hazelton. Cross-validation bandwidth matrices for multivariate
kernel density estimation. Scandinavian Journal of Statistics, 32(3):485–506, 2005.

Bradley Efron. Bootstrap methods: another look at the jackknife. The annals of Statistics,
pages 1–26, 1979.

Bradley Efron. Censored data and the bootstrap. Journal of the American Statistical Asso-
ciation, 76(374):312–319, 1981.

Jason P. Fine, Hongyu Jiang, and Rick Chappell. On semi-competing risks data. Biometrika,
88(4):907–919, 2001.

Bernard Fisher, Joseph Costantino, Carol Redmond, Roger Poisson, David Bowman, Jean
Couture, Nikolay V. Dimitrov, Norman Wolmark, D. Lawrence Wickerham, Edwin R.
Fisher, et al. A randomized clinical trial evaluating tamoxifen in the treatment of pa-
tients with node-negative breast cancer who have estrogen-receptor–positive tumors. New
England Journal of Medicine, 320(8):479–484, 1989.

Bernard Fisher, James Dignam, John Bryant, Arthur DeCillis, D. Lawrence Wickerham,
Norman Wolmark, Joseph Costantino, Carol Redmond, Edwin R. Fisher, David M. Bow-
man, et al. Five versus more than five years of tamoxifen therapy for breast cancer patients
with negative lymph nodes and estrogen receptor-positive tumors. Journal of the National
Cancer Institute, 88(21):1529–1542, 1996.

Bernard Fisher, Jong-Hyeon Jeong, John Bryant, Stewart Anderson, James Dignam, Ed-
win R. Fisher, and Norman Wolmark. Treatment of lymph-node-negative, oestrogen-
receptor-positive breast cancer: long-term findings from national surgical adjuvant breast
and bowel project randomised clinical trials. The Lancet, 364(9437):858–868, 2004.

Thomas R. Fleming and David P. Harrington. Counting processes and survival analysis,
volume 169. John Wiley & Sons, 2011.

59



Alan E. Gelfand and Athanasios Kottas. Bayesian semiparametric regression for median
residual life. Scandinavian Journal of Statistics, 30(4):651–665, 2003.

Debashis Ghosh. Semiparametric inferences for association with semi-competing risks data.
Statistics in medicine, 25(12):2059–2070, 2006.

Peter Hall, JS Marron, and Byeong U. Park. Smoothed cross-validation. Probability Theory
and Related Fields, 92(1):1–20, 1992.

WJ Hall and Jon A. Wellner. Mean residual life. Statistics and Related Topics, 169:184,
1981.

Philip Hougaard and Philip Hougaard. Analysis of multivariate survival data, volume 564.
Springer New York, 2000.

Dong Myung Jeong, Jae Kee Song, and Joong Kweon Sohn. Nonparametric estimation of
bivariate mean residual life function under univariate censoring. JKSS (Journal of the
Korean Statistical Society), 25(1):133–144, 1996.

Jong-Hyeon Jeong, Sin-Ho Jung, and Joseph P. Costantino. Nonparametric inference on
median residual life function. Biometrics, 64(1):157–163, 2008.

Hongyu Jiang, Rick Chappell, and Jason P Fine. Estimating the distribution of nonterminal
event time in the presence of mortality or informative dropout. Controlled clinical trials,
24(2):135–146, 2003.

Chris Jones, JS Marron, and Simon J. Sheather. Progress in data-based bandwidth selection
for kernel density estimation. Computational Statistics, (11):337–381, 1996.

Sin-Ho Jung, Jong-Hyeon Jeong, and Hanna Bandos. Regression on quantile residual life.
Biometrics, 65(4):1203–1212, 2009.

Edward L. Kaplan and Paul Meier. Nonparametric estimation from incomplete observations.
Journal of the American statistical association, 53(282):457–481, 1958.

Niels Keiding. Age-specific incidence and prevalence: a statistical perspective. Journal of
the Royal Statistical Society. Series A (Statistics in Society), pages 371–412, 1991.

John P. Klein and Melvin L. Moeschberger. Survival analysis: Techniques for censored and
truncated data: Statistics for Biology and Health. Springer, 2003.

Hemangi V. Kulkarni and RN Rattihalli. Nonparametric estimation of a bivariate mean
residual life function. Journal of the American Statistical Association, 97(459):907–917,
2002.

Parthasarthi Lahiri and Dong Ho Park. Nonparametric bayes and empirical bayes estimators
of mean residual life at age t. Journal of statistical planning and inference, 29(1):125–136,
1992.

60



Lajmi Lakhal-Chaieb, Belkacem Abdous, and Thierry Duchesne. Nonparametric estima-
tion of the conditional survival function for bivariate failure times. Canadian Journal of
Statistics, 41(3):439–452, 2013.

Chap T. Le and Bruce R. Lindgren. Duration of ventilating tubes: a test for comparing two
clustered samples of censored data. Biometrics, pages 328–334, 1996.

Ruosha Li and Limin Peng. Quantile regression for left-truncated semicompeting risks data.
Biometrics, 67(3):701–710, 2011.

Rosa E. Lillo. On the median residual lifetime and its aging properties: A characterization
theorem and applications. Naval Research Logistics (NRL), 52(4):370–380, 2005.

Alexander C. McLain and Sujit K. Ghosh. Nonparametric estimation of the conditional mean
residual life function with censored data. Lifetime data analysis, 17(4):514–532, 2011.

KR Muralidharan Nair and N Unnikrishnan Nair. Bivariate mean residual life. Reliability,
IEEE Transactions on, 38(3):362–364, 1989.

Wayne Nelson. Theory and applications of hazard plotting for censored failure data. Tech-
nometrics, 14(4):945–966, 1972.

David Oakes. Bivariate survival models induced by frailties. Journal of the American Sta-
tistical Association, 84(406):487–493, 1989.

William J. Padget and LA Thombs. A smooth nonparametric quantile estimator from right-
censored data. Statistics & probability letters, 7(2):113–121, 1988.

William J. Padgett. A kernel-type estimator of a quantile function from right-censored data.
Journal of the American Statistical Association, 81(393):215–222, 1986.

Limin Peng and Jason P. Fine. Regression modeling of semicompeting risks data. Biometrics,
63(1):96–108, 2007.

Ross L. Prentice and Jianwen Cai. Covariance and survivor function estimation using cen-
sored multivariate failure time data. Biometrika, 79(3):495–512, 1992.

RC Pruitt. Strong consistency of self-consistent estimators: general theory and an application
to bivariate survival analysis. Technical report, Technical report, 1991.

Stephan R. Sain, Keith A. Baggerly, and David W. Scott. Cross-validation of multivariate
densities. Journal of the American Statistical Association, 89(427):807–817, 1994.

David C. Schmittlein and Donald G. Morrison. The median residual lifetime: A characteri-
zation theorem and an application. Operations Research, 29(2):392–399, 1981.

Moshe Shaked and J George Shanthikumar. Dynamic multivariate mean residual life func-
tions. Journal of applied probability, pages 613–629, 1991.

61



Jeffrey S. Simonoff. Smoothing methods in statistics. Springer, 1996.

Mark J. van der Laan. Modified em-estimator of the bivariate survival function. Mathematical
Methods of Statistics, 3:213–43, 1994.

Mark J. van der Laan. Nonparametric estimators of the bivariate survival function under
random censoring. Statistica Neerlandica, 51(2):178–200, 1997.

Matt P. Wand and M Chris Jones. Comparison of smoothing parameterizations in bivariate
kernel density estimation. Journal of the American Statistical Association, 88(422):520–
528, 1993.

Matt P. Wand and M Chris Jones. Multivariate plug-in bandwidth selection. Computational
Statistics, 9(2):97–116, 1994.

Lee-Jen Wei, Zhiliang Ying, and Danyu Lin. Linear regression analysis of censored survival
data based on rank tests. Biometrika, 77(4):845–851, 1990.

Jinfeng Xu, John D. Kalbfleisch, and Beechoo Tai. Statistical analysis of illness–death
processes and semicompeting risks data. Biometrics, 66(3):716–725, 2010.

Grace Yang. Life expectancy under random censorship. Stochastic Processes and their
Applications, 6(1):33–39, 1977.

Zhiliang Ying, Sin-Ho Jung, and Lee-Jen Wei. Survival analysis with median regression
models. Journal of the American Statistical Association, 90(429):178–184, 1995.

62


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	3.1. Simulation summary of "03620.5 t1S reported as mean estimate, mean standard error, empirical standard deviation, MSE, %Bias, and empirical 95% coverage probability:(1)model-based, (2)equation-based for 1000 iterations in the sample size of 200.
	3.2. Simulation summary of "03620.5 t1S reported as mean estimate, mean standard error, empirical standard deviation, MSE, %Bias, and empirical 95% coverage probability:(1)model-based, (2)equation-based for 1000 iterations in the sample size of 300.
	3.3. Simulation summary of the empirical estimates of the regression parameters 0.5,0 and 0.5,1 reported as mean estimate, empirical standard deviation, and MSE by using the grid search method for 1000 iterations.
	3.4. Simulation summary of the Type I error probabilities for testing the null hypothesis H0:0.5,1=0 when the true parameter values are 0.5,1=0.
	3.5. Regression parameter estimates from the 25% residual life regression model with a single covariate of treatment and associated p-values, given t1>2
	3.6. Regression parameter estimates from the 25% residual life regression model with a single covariate of treatment and associated p-values, given t1>5
	4.1. Simulation results of "03620.5 t1B using nearest neighbor estimation at =0.25. EST is the mean of estimates, SE is the mean of estimated standard errors, SD is standard deviation of the estimates and Cov95 is the 95% coverage.
	4.2. Simulation results of "03620.5 t1B using nearest neighbor estimation at =0.5. EST is the mean of estimates, SE is the mean of estimated standard errors, SD is standard deviation of the estimates and Cov95 is the 95% coverage.
	4.3. Simulation results of estimation of 0.5 t1B using van der Laan's estimator. EST is the mean of estimates, SE is the mean of estimated standard errors, SD is standard deviation of the estimates and Cov95 is the 95% coverage.

	LIST OF FIGURES
	2.1. Illustration of semi-competing risks data
	2.2. Illustration of parallel data
	3.1. The comparison of estimated 25th percentile conditional residual lifetimes between the treatment of tamoxifen and placebo in B-14 study
	4.1. Nonparametric estimator of the conditional survival probabilities in comparison of Clayton exponential model for different levels of dependence parameter, =0.25,  0.50,  1 with n=50 in 500 iterations
	A1. Duration times (months) of ventilating tubes in both ears for 78 children with otitis media effusion

	PREFACE
	1.0 INTRODUCTION
	2.0 BACKGROUND
	2.1 Mean and median (quantile) residual lifetime
	2.2 structures of bivariate survival data
	2.3 Kernel smoothing function
	2.4 The counting process and martingale
	2.5 Motivation and objectives

	3.0 SEMIPARAMETRIC INFERENCE USING SEMI-COMPETING RISKS DATA
	3.1 Introduction
	3.2 Model definition
	3.3 Inference
	3.3.1 Estimation of  and S1
	3.3.2 Estimation of |t1S

	3.4 Regression model
	3.4.1 Estimation of Regression Coefficients
	3.4.2 Test Statistic and Confidence Interval

	3.5 Simulation Study
	3.6 Analysis of B-14 breast cancer data
	3.7 Discussion

	4.0 COMPARISON OF A NONPARAMETRIC ESTIMATOR USING BIVARIATE RIGHT CENSORED SURVIVAL DATA
	4.1 Estimation of conditional survival function
	4.1.1 Beran's estimator and nearest neighbor estimation
	4.1.2 van der Laan's modified estimator from NPMLE

	4.2 Quantile residual lifetime estimator
	4.2.1 Nonparametric bootstrap method
	4.2.2 Simulation study

	4.3 Discussion

	5.0 CONCLUSION AND FUTURE WORK
	APPENDIX. ANALYSIS OF VENTILATING TUBES IN EARS
	BIBLIOGRAPHY



