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Abstract

Multi-omics data, that is, datasets containing different types of high-dimensional molecular variables, are increasingly often
generated for the investigation of various diseases. Nevertheless, questions remain regarding the usefulness of multi-omics
data for the prediction of disease outcomes such as survival time. It is also unclear which methods are most appropriate to
derive such prediction models. We aim to give some answers to these questions through a large-scale benchmark study
using real data. Different prediction methods from machine learning and statistics were applied on 18 multi-omics cancer
datasets (35 to 1000 observations, up to 100 000 variables) from the database ‘The Cancer Genome Atlas’ (TCGA). The
considered outcome was the (censored) survival time. Eleven methods based on boosting, penalized regression and random
forest were compared, comprising both methods that do and that do not take the group structure of the omics variables into
account. The Kaplan–Meier estimate and a Cox model using only clinical variables were used as reference methods. The
methods were compared using several repetitions of 5-fold cross-validation. Uno’s C-index and the integrated Brier score
served as performance metrics. The results indicate that methods taking into account the multi-omics structure have a
slightly better prediction performance. Taking this structure into account can protect the predictive information in
low-dimensional groups—especially clinical variables—from not being exploited during prediction. Moreover, only the block
forest method outperformed the Cox model on average, and only slightly. This indicates, as a by-product of our study, that in
the considered TCGA studies the utility of multi-omics data for prediction purposes was limited.
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Supplementary information: Supplementary data are available at Briefings in Bioinformatics online. All analyses are
reproducible using R code freely available on Github.
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Introduction
In the past two decades, high-throughput technologies have
made data stemming from molecular processes available on
a large scale (‘omics data’) and for many patients. Starting
from the analysis of whole genomes, other molecular entities
such as mRNA or peptides have also come into focus with the
advancing technologies. Thus, various types of omics variables
are currently under investigation across several disciplines
such as genomics, epigenomics, transcriptomics, proteomics,
metabolomics and microbiomics [1].

It may be beneficial to include these different data types
in models predicting outcomes, such as the survival time of
patients. Until recently, only data from a single omics type were
used to build such prediction models, with or without the inclu-
sion of standard clinical data [2]. In recent years, however, the
increasing availability of different types of omics data measured
for the same patients (called multi-omics data from now on)
has led to their combined use for building outcome predic-
tion models. An important characteristic of multi-omics data is
the high-dimensionality of the datasets, which frequently have
more than 10 000 or even 100 000 variables. This places particular
demands on the methods used to build prediction models: they
must be able to handle data where the number of variables by
far exceeds the number of observations. Moreover, practitioners
often prefer sparse and interpretable models containing only a
few variables [3]. Last but not the least, multi-omics data are
structured: the variables are partitioned into (nonoverlapping)
groups. This structure may be taken into account when building
prediction models.

Several methods have been specifically proposed to han-
dle multi-omics data, while established methods for high-
dimensional data from the fields of statistics and machine
learning also seem reasonable for use in this context. Although
there are studies with a limited scope comparing some of
these methods, there has not yet been a large-scale systematic
comparison of their pros and cons in the context of multi-omics
using a sufficiently large amount of real data.

The pioneering study by Bøvelstad et al. [4] investigates the
combined use of clinical and one type of molecular data, using
only four datasets. In one of the first studies devoted to method-
ological aspects of multi-omics-based prediction models, Zhao
et al. [5] compare a limited number of methods for multi-omics
data based on a limited number of datasets. Lang et al. [6] inves-
tigate automatic model selection in high-dimensional survival
settings, using similar but fewer prediction methods than our
study. Moreover, again only four datasets are used. A study by
De Bin et al. [7] investigates the combination of clinical and
molecular data, with a focus on the influence of correlation
structures of the feature groups, but it is based on simulated
data.

Our study aims to fill this gap by providing a large-scale
benchmark experiment for prediction methods using multi-
omics data. It is based on 18 cancer datasets from The Can-
cer Genome Atlas (TCGA) and focuses on survival time predic-
tion. We use several variants of three widely used modeling
approaches from the fields of statistics and machine learning:
penalized regression, statistical boosting and random forest.
The aim is to assess the performances of the methods and the
different ways to take the multi-omics structure into account. As
a by-product of our study, we also obtain results on the added
predictive value of multi-omics data over models using only
clinical variables.

The remainder of the paper is structured as follows. The
Methods section briefly outlines the methods under investi-
gation. In the subsequent Benchmark experiment section, we
describe the conducted experiment. The findings are presented
in the Results section, which is followed by a discussion.

Methods
Preliminary remarks

There are essentially two ways to include multi-omics data in a
prediction model. The first approach, which we term as naive,
does not distinguish the different data types, i.e. does not take
the group structure into account. In the second approach, the
group structure is taken into account. The advantage of the naive
approach, its simplicity, comes at a price. First of all, physicians
and researchers often have some kind of prior knowledge of
which data type might be especially useful in the given con-
text [3]. If so, it is desirable to include such information by
incorporating the group structure. Well-established prognostic
clinical variables which are known to be beneficial for building
prediction models for a specific disease are an important special
case. In this situation, it may be useful to take the group structure
into account during model building or even to treat clinical
variables with priority. Otherwise, these clinical variables might
get lost within the huge amount of omics data [2]. To some
extent, the same might be true for different kinds of omics data.
If, for example, gene expression (rna) is expected to be more
important than copy number variation (cnv) data for the purpose
of prediction, it might be useful to incorporate the distinction
between these two data types into the prediction model or even
to prioritize rna in some sense.

Other important aspects of prediction models from the per-
spective of clinicians are sparsity, interpretability and trans-
portability [3]. Methods yielding models which are sparse with
regard to the number of variables and number of omics types
are often considered preferable from a practical perspective.
Interpretation and practical application of the model to the
prediction of independent data are easier with regression-based
methods yielding coefficients that reflect the effects of variables
on the outcome than with machine learning algorithms [8].

Finally, in addition to the prediction performances of the dif-
ferent methods, the question of the additional predictive value of
omics data compared with clinical data is also interesting from
a clinical perspective [2]. Many of the omics-based prediction
models which were claimed to be of value for predicting disease
outcomes could eventually not be shown to outperform clinical
models in independent studies [2, 4, 9]. However, some findings
suggest that using both clinical and omics variables jointly may
outperform clinical models [4, 10, 11]. In our benchmark study,
we can address this issue by systematically comparing the per-
formance of clinical models and combined models for a large
number of datasets.

The methods included in our study can be subsumed in three
general approaches, which are briefly described in the follow-
ing subsections: penalized regression-based methods, boosting-
based methods and random forest-based methods. A more tech-
nical description of the methods can be found in the supplemen-
tary material. It should be noted, however, that several multi-
omics specific penalized regression-based methods have already
been developed and have readily available implementations in R,
while the same is not true for the other two classes of methods
to the same extent. Consequently, there is an imbalance in the
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number of methods included for each class. Moreover, our study
does not include deep learning approaches. To the best of our
knowledge, studies using deep learning based on multi-omics
data mostly focus on classification. For the two approaches we
are aware of that successfully applied deep learning on multi-
omics data to predict survival times [12, 13]—the latter not yet
formally published— there are at the moment no thorough,
established and easy to use implementations in R. Similar to
extended boosting methods, we did not include deep learning
approaches for these reasons.

Moreover, two reference methods are considered: simple
Cox regression, which only uses the clinical variables, and the
Kaplan–Meier estimate, which does not use any information
from the predictor variables.

Penalized regression-based methods

The penalized regression methods briefly reviewed in this sec-
tion have in common that they modify maximum partial likeli-
hood estimation by applying a regularization, most importantly
to account for the n << p problem.

Standard Lasso, introduced more than two decades ago [14]
and subsequently extended to survival time data [15], applies
L1-regularization to penalize large (absolute) coefficient values.
The result is a sparse final model: a number of coefficients are
set to zero. The number of nonzero coefficients decreases with
increasing penalty parameter λ and cannot exceed the sample
size. The method does not take the group structure into account.
The parameter λ is a hyper-parameter to be tuned.

Two-step (TS) IPF-Lasso [16] is an extension of the standard
Lasso specifically designed to take a multi-omics group structure
into account. This method is an adaptation of the integrative
Lasso with penalty factors (IPF) [17], which consists in allowing
different penalty values for each data type. In TS-IPF-Lasso,
the ratios between these penalty values are determined in a
first step (roughly speaking, by applying standard Lasso and
averaging the resulting coefficients).

Priority-Lasso [3] is another Lasso-based method designed
for the incorporation of different groups of variables. Often,
clinical researchers prioritize variables that are easier, cheaper
to measure or known to be good predictors of the outcome. The
principle of priority-Lasso is to define a priority order for the
groups of variables. Priority-Lasso then successively fits Lasso-
regression models to these groups, whereby at each step, the
resulting linear predictor is used as an offset for the Lasso model
fit to the next group. For the study at hand, however, we do not
have any substantial domain knowledge, so we cannot specify
a meaningful priority order. We therefore alter the method into
a TS procedure similar to the TS IPF-Lasso. More precisely, we
order the groups of variables according to the mean absolute
values of their coefficients fitted in the first step by separately
modeling each group. This ordering is used as a surrogate for a
knowledge-based priority order.

Sparse group Lasso (SGL) [18] is another extension of the
Lasso, capable of including group information. The method
incorporates a convex combination of the standard Lasso
penalty and the group-Lasso penalty [19]. This simultaneously
leads to sparsity on feature as well as on group level.

Adaptive group-regularized ridge regression (GRridge) [20]
is designed to use group specific co-data, e.g. p-values known
from previous studies. Multi-omics group structure may also be
regarded as co-data, although the method was originally not
intended for this purpose. It is based on ridge regression, which
uses a L2-based penalty term. Feature selection is achieved post

hoc by exploiting the heavy-tailed distribution of the estimated
coefficients, which clearly separates coefficients close to zero
from those which are further away [20].

Boosting-based methods

Boosting is a general technique introduced in the context of clas-
sification in the machine learning community, which has then
been revisited in a statistical context [21]. Statistical boosting can
be seen as a form of iterative function estimation by fitting a
series of weak models, so-called base learners. In general, one is
interested in a function that minimizes the expected loss when
used to model the data. This target function is updated itera-
tively, with the number of boosting steps mstop, i.e. the number
of iterations, being the main tuning parameter. This parameter,
together with the so-called learning rate, which steers the contri-
bution of each update, also leads to a feature selection property.
In this study, we use two different boosting approaches.

Model-based boosting [22], the first variant, uses simple lin-
ear models as base learners and updates only the loss minimiz-
ing base learner per iteration. The learning rate is usually fixed
to a small value such as 0.1 [23].

Likelihood-based boosting [24], in contrast, uses a penalized
version of the likelihood as loss and the shrinkage is directly
applied in the coefficient estimation step via a penalty parame-
ter. It is also an iterative procedure: the updates of previous iter-
ations are included as an offset to make use of the information
gained.

Random forest-based methods

Random forest is a tree-based ensemble method introduced by
Breiman [25]. Instead of growing a single classification or regres-
sion tree, it uses bootstrap aggregation to grow several trees and
aggregates the results. Random forest was later expanded to
survival time data [26]. For each split in each tree, the variable
maximizing the difference in survival is chosen as the best
feature. Eventually, the cumulative hazard function is computed
via the Nelson–Aalen estimator in each final node in each tree.
For prediction, these estimates are averaged across the trees to
obtain the ensemble cumulative hazard function.

Block forest [27] is a variant modifying the split point selec-
tion of random forest to incorporate the group structure (or
‘block’ structure, hence the name of the method) of multi-omics
data. It can be applied to any outcome type for which a random
forest variant exists.

Benchmark experiment
Study design

Our study is intended as a neutral comparison study; see
[28, 29] for an exact definition and discussions of this concept.
Firstly, we compare methods that have been described elsewhere
and do not aim at emphasizing a particular method. Secondly,
we tried to achieve a reasonable level of neutrality, which we
disclose here following the example of Couronné et al. [30]. As
a team, we are approximately equally familiar with all classes
of methods. Some of us have been involved in the development
of priority-Lasso, IPF-Lasso and block forest. As far as the other
methods are concerned, we contacted the person listed in CRAN
as package maintainer via email and asked for an evaluation of
our implementation including the choice of parameters.
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A further important aspect of the study design is the choice
and number of datasets used for the comparison, since the per-
formance of prediction methods usually strongly varies across
datasets. Boulesteix et al. [29] compare benchmark experiments
to clinical trials, where methods play the role of treatments
and datasets play the role of patients. In analogy to clinical
trials, the number of considered datasets should be chosen
large enough to draw reliable conclusions, and the selection
of datasets should follow strict inclusion criteria and not be
modified after seeing the results; see the Datasets section for
more details on this process. Finally, a benchmark experiment
should be easily extendable (and, of course, reproducible). It is
almost impossible to include every available method in a single
benchmark experiment, and it should also be easy to compare
methods proposed later without re-running the full experiment
and without too much programming effort. For this reason, we
use the R package mlr [31], which offers a unified framework for
benchmark experiments and makes them easily extendable and
reproducible.

Technicalities and implementation

The benchmark experiment is conducted using R 3.5.1 [32]. We
compare the 13 learners described in the Method configurations
section on 18 datasets (see the Datasets section). The code
to reproduce the results is available on GitHub (https://github.
com/HerrMo/multi-omics_benchmark_study), the data can be
obtained from OpenML [33, 34] (https://www.openml.org/). To
further improve reproducibility, the package checkpoint [35] is
used. Because the computations are time demanding but par-
allelisable, the package batchtools [36] is used for parallelisation.
The package mlr [31], used for this benchmark experiment, offers
a simple framework to conduct all necessary steps in a unified
way.

The focus of our study is the general performance of
prediction methods. In this context, cross-validation (CV) is a
standardly used procedure to obtain estimates of the prediction
performance of a prediction method when applied to data with
similar characteristics as the training data. We use 10 × 5-fold
CV for datasets with a size less than 92 MB (11 datasets) and
5 × 5-fold CV for datasets with a size larger than 112 MB
(7 datasets) to keep computation times feasible.

The proportion of patients with events is very small for
some datasets. We avoid training sets with few or even zero
events using stratification by event status, i.e. the resulting
training sets have comparable censoring rates. Moreover, hyper-
parameter tuning is performed. This could in principle also
be implemented via mlr, but in this study, the tuning proce-
dures provided by the specific packages are used. We denote
the resampling strategy used for hyper-parameter tuning inner-
resampling and the repeated CV used for performance assess-
ment outer-resampling. For inner-resampling we use out-of-bag
(OOB) samples for random forest learners and 10-fold CV for the
other learners.

Performance evaluation

The performance is evaluated in three dimensions. First of all,
the prediction performance is assessed via the integrated Brier
score and the C-index suggested by Uno et al. [37] (hereinafter
simply denoted as ibrier and cindex). The time range for calcula-
tion is set to the maximum event time of the individual CV test
set. While the cindex only measures discriminative power, the
ibrier also measures calibration. Moreover, the cindex, unlike the

ibrier, is not a strictly proper scoring rule [38]. The ibrier should
therefore be used as the primary measure for prediction accu-
racy. If, however, one is interested in ranking patients according
to their risk, the cindex is also a valid measure. Ranking the
patients according to their risks is relevant from a practical
point of view because in many applications of risk prediction,
the goal is to assign the patients to fixed, ordered risk classes.
Another reason we included the cindex as a secondary measure
in our study is that it is routinely used as a standard measure
in benchmarking, thus allowing easier comparison with other
studies.

The second dimension is the sparsity of the resulting models,
which has two aspects: sparsity on the level of variables and
sparsity on group level. The latter refers to whether variables
of only some groups are selected. Sparsity on feature level, in
contrast, refers to the overall sparsity, i.e. the total number of
selected features. As random forest does not perform variable
selection, it is not assessed in this dimension. Computation
times are considered as a third dimension.

Another important aspect is the different use of group
structure information. Some of the methods do not use any
such information, some favor clinical data over molecular
data, and some differentiate between all groups of variables
(i.e. also between omics groups). Thus, the differences in
performance might not only result from using different
prediction methods. They may also arise from the way in
which the group structure information is included. Therefore,
comparability in terms of predictive performance is only given
for methods that use the same strategy to include group
information: (i) naive methods not using the group structure;
(ii) methods using the group structure and not favoring clinical
features; (iii) methods using the group structure by favoring
clinical features, where we subsume methods favoring clinical
and not distinguishing molecular covariates and methods
favoring clinical and additionally also distinguishing molecular
covariates.

Method configurations

Following the terminology of the package mlr [31], we denote
a method configuration as a ‘learner’. There may be several
learners based on the same method. An overview of learners
considered in our benchmark study is displayed in Table 1, while
the full specification is given in the paragraph devoted to the
corresponding method. In the following, the R packages used to
implement the learners can be found in parentheses after the
paragraph heading.

Penalized regression-based learners

Lasso (glmnet [39, 40]). The penalty parameter λ is chosen via
internal 10-fold CV. No group structure information is used.

SGL (SGL [41]). The model is fit via the cvSGL function. Tuning of
the penalty parameter λ is conducted via internal 10-fold CV. The
parameter α steering the contribution of the group-Lasso and the
standard Lasso is not tuned and set to the default value 0.95, as
recommended by the authors [18]. All other parameters are set
to default as well.

TS IPF-Lasso (ipflasso [42]). The penalty factors are selected in
the first step by computing separate ridge regression models
for every feature group and averaging the coefficients within
the groups by the arithmetic mean. These settings have shown
reasonable results [16]. The choice of the penalty parameters λm
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Table 1. Summary of learners used for the benchmark experiment.

Learner Method Package::function Tuning

Lasso Standard Lasso glmnet::cv.glmnet 10-f-CV
ipflasso∗ TS IPF-Lasso ipflasso::cvr.ipflasso 10-f-CV
prioritylasso∗ Priority-Lasso priortiylasso::prioritylasso 10-f-CV
prioritylasso favoring∗ Priority-Lasso priortiylasso::prioritylasso 10-f-CV
grridge∗ GRridge GRridge::grridge 10-f-CV
SGL∗ SGL SGL::cvSGL 10-f-CV
glmboost Model-based boosting mboost::glmboost 10-f-CV
CoxBoost Likelihood-based boosting CoxBoost::cv.CoxBoost 10-f-CV
CoxBoost favoring∗ Likelihood-based boosting CoxBoost::cv.CoxBoost 10-f-CV
ranger Random forest tuneRanger::tuneMtryfast OOB
blockForest∗ Block forest blockForest::blockfor OOB
Clinical only Cox model survival::coxph No
Kaplan–Meier Kaplan–Meier estimate survival::survival No

The use of group structure information is indicated with ∗.

is conducted using 5-fold-CV in the first step and 10-fold CV in
the second.

Priority-Lasso (prioritylasso [43]). The priority order is deter-
mined through a preliminary step realized in the same way
as in the first step of TS IPF-Lasso. The priority-Lasso method
takes into account the group structure. Even though the version
with cross-validated offsets delivers slightly better prediction
results [3], the offsets are not estimated via CV in order to not
increase the computation times further. To select the parameter
λ in each step of priority-Lasso, 10-fold CV is used.

Priority-Lasso favoring clinical features (prioritylasso [43]). The set-
tings are the same as before, except that the group of clinical
variables is always assigned the highest priority. The preliminary
step only determines the priority order for the molecular groups.
The clinical variables are used as an offset when fitting the
model of the second group. Furthermore, the clinical variables
are not penalized (setting parameter block1.penalization = FALSE).

GRridge (GRridge [44]). This method was not originally intended
for the purpose of including multi-omics group structure but
is capable of doing so. To better fit the task at hand, a spe-
cial routine was provided by the package author in personal
communication. In addition, the argument selectionEN is set to
TRUE so post-hoc variable selection is conducted, and maxsel, the
maximum number of variables to be selected, is set to 1000.

Boosting-based learners

Model-based boosting (mboost [45]). Internally, mlr uses the func-
tion glmboost from the package mboost and sets the family argu-
ment to CoxPH(). Furthermore, the number of boosting steps
(mstop) is chosen by a 10-fold CV on a grid from 1 to 1000 via cvrisk.
For the learning rate ν the default value of 0.1 is used. Group
structure information is not taken into account.

Likelihood-based boosting (CoxBoost [46]). The maximum number
of boosting steps maxstepno is set to default, i.e. 100. Again, mstop is
determined by 10-fold CV. The penalty λ is set to default and thus
computed according to the number of events. No group structure
information is used.

Likelihood-based boosting favoring clinical features (CoxBoost [46]).
The settings are the same as before. Additionally, group structure
information is used by specifying the clinical features as manda-
tory. These features are favored as in the case of priority-Lasso
by setting them as an offset and not penalizing them. Further

group information is not used, so the molecular data are not
distinguished.

Random forest-based learners

Random forest (ranger [48]). Tuning of mtry is conducted via
the tuneMtryfast function of package tuneRanger. The minimal
node size is 3 (the ranger default settings). The other hyper-
parameters are set to default as well. Note that we also investi-
gated the randomForestSRC [47] implementation of random forest,
which leads to comparable results, but worked only on Windows
and not on Ubuntu if parallelization was conducted via package
batchtools. We thus show only the results obtained with ranger.

Block forest (blockForest [49]). Block forest is a random forest
variant able to include group structure information. The imple-
mentation is based on ranger. With function blockfor the models
are fit via the default settings.

Reference methods

The clinical reference model is a Cox proportional hazard model,
computed via the coxph function of the survival package [50]
and only uses clinical features. The Kaplan–Meier estimate is
computed via survfit from the same package.

Datasets

From the cancer datasets that have been gathered by the TCGA
research network (http://cancergenome.nih.gov), we selected
those with more than 100 samples and five different multi-
omics groups, which resulted in a collection of datasets for
26 cancer types (a list of these 26 cancer types is provided
in the supplement). As described below, further preprocessing
eventually lead to 18 usable datasets. Table 2 gives an overview
of these 18 datasets and the abbreviations used to reference
them within the study.

For each cancer type, there are four molecular data types and
the clinical data type, i.e. five groups of variables. The molecular
data types comprise cnv, rna, miRNA expression (mirna) and
mutation. It should be noted that the choice of data types was
motivated by practical issues to a certain extent. In particular,
methylation data would have been interesting to consider but
could not be included due to their massive size, which would
have led to long downloading and computation times. However,
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Table 2. Summary of the datasets used for the benchmark experiment. The third to the seventh column show the number of features in the
feature group, the eighth column the total amount of features (p). The last three columns show, in this order, the number of observations (n),
the number of effective cases (n_e) and the ratio of the number of events and the number of observations (r_e).

Dataset Cancer Clin. cnv mirna mutation rna p n n_e r_e

BLCA Bladder urothelial 5 57964 825 18577 23081 100455 382 103 0.27
BRCA Breast invasive C. 8 57964 835 17975 22694 99479 735 72 0.10
COAD Colon adenocarcinoma 7 57964 802 18538 22210 99524 191 17 0.09
ESCA Esophageal C. 6 57964 763 12628 25494 96858 106 37 0.35
HNSC Head–neck squamous CC. 11 57964 793 17248 21520 97539 443 152 0.34
KIRC Kidney renal clear CC. 9 57964 725 10392 22972 92065 249 62 0.25
KIRP Cervical kidney RP. CC. 6 57964 593 8312 32525 99403 167 20 0.12
LAML Acute myeloid leukemia 7 57962 882 2176 29132 90162 35 14 0.40
LGG Low grade glioma 10 57964 645 9235 22297 90154 419 77 0.18
LIHC Liver hepatocellular C. 11 57964 776 11821 20994 91569 159 35 0.22
LUAD Lung adenocarcinoma 9 57964 799 18388 23681 100844 426 101 0.24
LUSC Lung squamous CC. 9 57964 895 18500 23524 100895 418 132 0.32
OV Ovarian cancer 6 57447 975 13298 24508 96237 219 109 0.50
PAAD Pancreatic AC. 10 57964 612 12392 22348 93329 124 52 0.42
SARC Sarcoma 11 57964 778 10001 22842 91599 126 38 0.30
SKCM Skin cutaneous M. 9 57964 1002 18593 22248 99819 249 87 0.35
STAD Stomach AC. 7 57964 787 18581 26027 103369 295 62 0.21
UCEC Uterine corpus EC. 11 57447 866 21053 23978 103358 405 38 0.09

Abbreviations: C. indicates carcinoma; CC., cell carcinoma; PP, renal papilla; AC., adenocarcinoma; M., melanoma; EC., endometrial carcinoma.

such compromises for practical reasons are inevitable and other
data types could have been considered.

The number of variables differs strongly between groups but
is similar across datasets. Most molecular features (about 60
000) belong to the cnv group but only a few hundred features
to mirna, the smallest group. There is a total of about 80 000 to
103 000 molecular features for each cancer type.

Of the 26 available datasets, three were excluded because
they did not have observations for every data type. Furthermore,
since the outcome of interest is survival time, not only the
number of observations is crucial but, most importantly, the
number of events (deaths), which we call the number of effective
cases. A ratio of 0.2 of effective cases is common [10]. The five
datasets that had less than 5% effective cases were excluded.

Since the majority of the clinical variables had missing val-
ues, the question arose of which to include for a specific dataset
while saving as many observations as possible. As we did not
have any domain knowledge, we adopted a two-step strategy.
Firstly, an informal literature search was conducted to find stud-
ies where the specific cancer type was under investigation.
Variables mentioned to be useful in these studies were included,
if available. Secondly, we additionally used variables that were
available for most of the cancer types. These comprised sex,
age, histological type and tumor stage. These were included as
standard, if available. Of course, sex was not included for the
sex-specific cancer types.

Finally, note that our study considers only one dataset per
cancer type, i.e. per prediction problem. It evaluates the can-
didate learners using CV, which reasonably estimates the pre-
diction performance that would be obtained for a population
with similar characteristics (in statistical terms, with similarly
distributed data). From a practical clinical perspective, it is cru-
cial to evaluate prediction rules on independent external data
before implementing them in practice. The resulting estimated
prediction performance is usually less impressive than the CV
estimate [51]. However, although some discrepancies between
the rankings can be observed, the difference between rankings is
less prominent than the difference between errors. We assume

that methods performing best in CV also range among the best
ones when applied to external datasets, which is compatible
with the extensive results presented in Bernau et al. [52].

Results
Failures and refinement of the study design

As a consequence of the repeated 5-fold CV, 11 · 10 · 5 + 7 · 5 ·
5 = 725 models are fit for each learner in total. Some of these
model fittings—i.e. some CV iterations—were not successful.
This is common in benchmark experiments of larger scale [53].
Such a failure does not affect the other 4 CV iterations and the
remaining nine repetitions of CV but leads to missing values for
the assessment measures for the failing iterations, which have
to be handled when computing averaged measures. To cope with
such modeling failures, we follow strategies described previously
[53, 54]. If a learner fails in more than 20% of the CV iterations
for a given dataset, we assign (for the failing iterations) values of
the performance measures corresponding to random prediction
(0.25 for ibrier and 0.5 for cindex) and the mean of the other
iterations for the computation time and the number of selected
features. If a learner fails in less than 20%, the performance
means of the successful iterations are assigned for all measures.
See Table 4 for the learners’ failure rates averaged over the
datasets.

Modeling failures are mainly learner related, that is, there
are no datasets for which many or all learners are unstable, but
individual learners are particularly unstable. For every dataset,
there are at least seven learners yielding no failures. In contrast,
learners Lasso, CoxBoost and glmboost are rather unstable, with
31.2%, 28.6% and 19.7% failures in total. IPF-Lasso is more stable
overall, but also considerably unstable for specific datasets. The
other learners are very stable, with not a single failure for the
random forest variants, the reference methods and CoxBoost
favoring. Dataset specific failure rates can be taken from the
tables in the supplement, which show the learner performances
like in Table 4 broken down by dataset.
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Table 3. Performance of SGL on four small datasets. Column ‘All’ represents the total number of selected features, the subsequent columns the
numbers of selected features of the respective groups.

Data cindex ibrier Time All clin cnv mirna rna mut

LAML 0.496 0.231 1.9 8149 0.5 7822 4.7 0 323
LIHC 0.533 0.198 9.0 3617 0.3 3250 28 264 75
PAAD 0.650 0.255 4.5 1483 3.2 62 30 12 1375
SARC 0.629 0.278 7.5 3081 2.7 1906 51 40 1082
mean 0.58 0.24 5.7 4083 1.7 3260 28 79 714

Besides such modeling failures, more general issues related
to usability occurred while conducting the experiment. First
of all, using SGL with the considered large numbers of fea-
tures always leads to a fatal error in R under Windows, but not
using the Linux distribution Ubuntu 14.04. More importantly, the
extremely long computation times for SGL were problematic.
Since we received no feedback from the authors, we used the
standard settings. These lead to computations lasting several
days for one single model fit for large datasets. Altering some
of the parameters did not strongly reduce the computational
burden. Running the whole experiment as planned was thus not
possible for SGL. Here, we briefly present the results of SGL which
could be obtained based on four of the smallest datasets. For the
rest of the study we exclude SGL from the analysis. On average,
over all iterations and the four datasets, SGL leads to a cindex of
0.58 and an ibrier of 0.24. The resulting models are neither sparse
on feature level, with an average of 4083 selected features, nor
on group level. The mean computation time of 5.7 h for one CV
iteration confirms the problem of extremely long computation
times. In comparison, the next slowest method needs 1.2 h for
one iteration, on average over all datasets. Table 3 shows the
performance values of SGL for each of the four datasets and the
mean values.

Computation time

Table 4 shows the average performance measures for every
method and is ordered by the ibrier. All values are obtained by—
firstly—averaging over the outer-resampling CV iterations and—
secondly—averaging over the datasets. For the methods not
yielding model coefficients the corresponding cells contains ‘-’.

The ninth column of Table 4 displays the mean computation
time. The computation times are measured as the time needed
for model fitting (training time). The fastest procedures are stan-
dard Lasso and ranger, followed by glmboost and the CoxBoost
variants. The three penalized regression methods using group
structure (IPF-Lasso, priority-Lasso, GRridge) are about two to
three times slower, with GRridge being the fastest of the three
methods. Of the two prioritylasso variants the one favoring clin-
ical features is a little slower. Finally, blockForest is the slowest
method.

Of course, the computation times depend on the size of
the datasets. Figure 1 displays the mean computation time of
one outer-resampling iteration for the different learners and
datasets. The datasets are ordered from smallest (LAML) to
largest (BRCA).

The long computation times of priority-Lasso and IPF-Lasso
for COAD and KIRP are notable. COAD and KIRP are among the
smaller datasets with 17 (9%) and 20 (12%) events, respectively.
Generally, computation times vary more over the CV iterations
for these methods. For KIRP and COAD this variation is partic-
ularly strong, with individual model fittings taking up to 50 h.

However, the CV iterations which lead to these extreme compu-
tation times for IPF-Lasso and priority-Lasso, lead to modeling
failures for the unstable learners Lasso, glmboost and CoxBoost.
That means, especially priority-Lasso and to lesser extent
IPF-Lasso are more stable for particular CV iterations than
the unstable learners, but this comes at the price of increased
computation times. Note, moreover, all Lasso variants rely on
the same implementation of Lasso (glmnet). The more specific
methods improve the Lasso approach in terms of stability,
because where standard Lasso fails, often the more specific
variants do not.

Model sparsity

To assess sparsity, the number of nonzero coefficients of the
resulting model of each CV iteration is considered. As random
forest models do not yield such coefficients, this aspect is not
assessed for random forest variants.

Sparsity on the level of variables

Sparsity in terms of the number of included variables is par-
ticularly interesting for practical purposes, since sparse models
are easier to interpret and to communicate. On average, as
Table 4 shows, ipflasso leads to the sparsest models with an
average of seven variables, followed by CoxBoost with on average
10 variables. CoxBoost favoring and Lasso are also reasonably
sparse (13, 16), but the variability is higher for Lasso (Figure 2).
glmboost, prioritylasso and prioritylasso favoring yield models
with more than 20 features (22, 26, 30). Least sparse is grridge;
the average grridge model size (984) is close to the maximum
number of features to be selected (maxsel = 1000). grridge seems
not to be able to appropriately select variables in this setting
(recall that it is not intended to do so).

Sparsity on group level

Table 4 (see also Figure 1 in the supplement) shows that grridge
and priority-Lasso choose variables from all groups and are
thus not sparse on group level. Among the other methods, IPF-
Lasso yields strong sparsity on group level. Mostly clinical fea-
tures are selected. Furthermore, with boosting variants CoxBoost
and glmboost and with standard Lasso no clinical features are
selected. CoxBoost favoring does not select mirna features. IPF-
Lasso does not include cnv and rna features. This exemplifies the
problem of methods treating high- and low-dimensional groups
equally. As already pointed out, due to their low dimension,
clinical variables get lost within the huge number of molecular
variables. It becomes obvious that this also applies for some
of the molecular variables. The mirna group is, in comparison
with the other molecular groups, lower dimensional with 585 to
1002 features. Learners which do not consider group structure
fail to include clinical variables and include at most one mirna
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variable. CoxBoost favoring, which differentiates clinical and
molecular variables, does not select mirna features. In contrast,
learners taking into account the multi-omics group structure
generally include variables of both lower dimensional groups.
Using the group structure thus prevents low-dimensional groups
from being discounted.

Prediction performance

Overview and main findings

Figure 2 shows the distributions of the values of the performance
metrics across the datasets. Again, grridge is excluded from the
sparsity panel. Three important findings can be highlighted.
First of all, regarding Figure 2, most of the learners perform
better than the Kaplan–Meier estimate (indicated by the dashed
horizontal line). This indicates that using the variables is, in
general, useful. Only Lasso performs worse than the Kaplan–
Meier estimate (based on the ibrier). Secondly, only blockForest
outperforms the reference clinical Cox model (red horizontal
line), which stresses the importance of the clinical variables for
these datasets. Finally, methods taking into account the group
structure in some way in general outperform the naive methods.

Comparing prediction methods

All analyses in this section refer to Table 4.
Naive methods The learners CoxBoost, glmboost, ranger and

standard Lasso are fit with the naive strategy. In general, the
results are not consistent over the two measures. With regards
to the ibrier, likelihood-based boosting performs best. Moreover,
model-based boosting performs better than Lasso but gets out-
performed by random forest which is close to likelihood-based
boosting. According to the cindex, random forest performs best
followed by likelihood-based boosting and Lasso. Model-based
boosting performs the worst. All methods are at least slightly
better than the Kaplan–Meier estimate. To sum up, although the
results differ depending on the considered measure, random
forest shows a tendency to outperform the other methods, since
it is among the best methods based on the ibrier and performs
best based on the cindex.

Methods not favoring clinical features The learners block
forest, ipflasso, prioritylasso and grridge use the group structure
but do not favor clinical features. The random forest variant
blockForest outperforms the other methods. It performs better
on average than any other method based on both measures.
Among the penalized regression methods, IPF-Lasso performs
best according to the ibrier and priority-Lasso according to the
cindex. GRridge ranks third according to the ibrier and second
according to the cindex. Moreover, priority-Lasso and GRridge
perform equal to or even worse than the Kaplan–Meier estimate
based on the ibrier. Since IPF-Lasso yields the sparsest models,
it might be preferable when sparsity is important.

Methods favoring clinical features There are two learners
favoring clinical features: CoxBoost favoring and prioritylasso
favoring. The results are unambiguous with CoxBoost favoring
performing better than prioritylasso favoring. Furthermore, both
learners perform better than the Kaplan–Meier estimate based
on the cindex, but only CoxBoost favoring performs better than
the Kaplan–Meier estimate based on the ibrier. Thus, according
to these findings, likelihood-based boosting yields better results
than priority-Lasso when clinical variables are favored, even
though priority-Lasso here further distinguishes the molecular
data.
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Large-scale multi-omics benchmark study 9

Figure 1. Computation time. (A) Computation times in seconds. (B) Computation times in log(seconds). The datasets are ordered form smallest (LAML) to largest (BRCA).

However, when comparing the described performances—
especially if based on the aggregated results in Table 4—it is
very important to consider the heterogeneity over the datasets.
As the standard deviations and confidence intervals in Table 4
and the boxplots in Figure 2 show, the performance of the
methods varies strongly over the datasets (the confidence
intervals are obtained by using the learners’ average values
over the CV iterations as observations, i.e. one observation
per dataset). The dataset specific learner performances are
depicted in the supplementary tables. Moreover, paired two-
sided t-tests comparing, for example, blockForest with CoxBoost
favoring and the clinical only model show no statistically
significant differences in performance with p-values of 0.81
and 0.86 (cindex) and 0.95 and 0.78 (ibrier). For all t-tests in the
study, the normal distribution assumption was checked with
Shapiro–Wilk tests and Q-Q plots. Thus, considering the small
differences in performance and the variability of the method
performances across datasets, conclusions about the superiority
of one method over another should be treated with great
caution.

Using multi-omics data

In the first part of this section, we summarize our results regard-
ing the added predictive value of multi-omics as a by-product of
our benchmark study, before eventually focusing on the method-
ological comparison of the different approaches of taking the
structure of the clinical and multi-omics variables into account.

Added predictive value To assess the added predictive value
of the molecular data, we follow approach A proposed by
Boulesteix and Sauerbrei [2], thus comparing learners obtained
by only using clinical features and combined learners, i.e.
learners using clinical and molecular variables. Since it is
emphasized that for this validation approach the combined
learners should not be derived by the naive strategy, these
learners are not considered here.

In general, the findings indicate that the multi-omics data
may have the potential to add predictive value. First of all,
blockForest outperforms the Cox model based on both measures.
Secondly, as Table 5 shows, there are several datasets for which
there is at least one learner that takes the group structure into
account and outperforms the clinical learner. For some of the

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbaa167/5895463 by guest on 13 O

ctober 2020



10 Herrmann et al.

Figure 2. Performance of the learners. A: cindex. B: ibrier. C: total number of selected features; only learners yielding model coefficients are included and grridge is

excluded since it yields models on a much larger scale. The solid red and dashed black horizontal lines correspond to the median performance of the clinical only model

and the Kaplan–Meier estimate, respectively. Colors indicate membership to one of the general modeling approaches: penalized regression (blue), boosting (orange),

random forest (green), reference methods (white). Abbreviations: KM indicates Kaplan–Meier; Lasso, Lasso; glmB, glmboost; CoxB, CoxBoost; CoxPH, clinical only; prior,

priority-Lasso; prior_f, priority-Lasso favoring; IPF, ipflasso; CoxB_f, CoxB favoring; GRr, grridge; BF, blockForest; ranger, ranger.

datasets, e.g. LAML and COAD, the performance differences are
substantial. Thus, using additional molecular data leads to better
prediction performances in some of the considered cases. On the
other hand, it must be taken into account that in the other cases
the differences are small and, again regarding the confidence
intervals, one has to be careful when drawing conclusions about
the superiority over the Cox model. Moreover, for six datasets the
Cox model does not get outperformed by methods which use the
omics data. This raises serious concerns regarding a beneficial
effect of the omics data as far as the considered TCGA data are
concerned.

Including group structure In general, the results suggest
that using the naive strategy of treating clinical and molecular

variables equally leads to a worse performance in comparison
to methods that take the group structure into account. Table 6
shows the mean performance of the naive learners and the
structured learners (both favoring and not favoring the clinical
features) by dataset. That is, we compare methods using multi-
omics data and additionally its structure (structured learners:
ipflasso, priortylasso variants, grridge, CoxBoost favoring,
blockForest) against methods using the multi-omics data but
not taking into account its structure (naive learners: Lasso,
ranger, CoxBoost, glmboost). The clinical only model and the
Kaplan–Meier estimate are not considered here. Each value is
computed as average over the naive respectively the structured
learners’ mean cindex and ibrier values. Only in five cases is
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Table 6. Comparing naive learners and structured learners. The
performance of structured learners, i.e. learners using the group
structure, and naive learners are compared for every dataset. The
cindex and ibrier columns show the mean performance values for
the corresponding dataset and learner types. Bold values indicate
better values for the given dataset.

ibrier cindex

Data Structured Naive Structured Naive

BLCA 0.198 0.201 0.618 0.595
BRCA 0.152 0.187 0.598 0.512
COAD 0.104 0.120 0.518 0.480
ESCA 0.235 0.234 0.506 0.477
HNSC 0.210 0.210 0.562 0.557
KIRC 0.154 0.156 0.721 0.690
KIRP 0.132 0.136 0.560 0.532
LAML 0.207 0.217 0.634 0.558
LGG 0.169 0.153 0.695 0.726
LIHC 0.171 0.167 0.566 0.559
LUAD 0.181 0.194 0.636 0.539
LUSC 0.220 0.229 0.501 0.457
OV 0.172 0.192 0.575 0.448
PAAD 0.196 0.203 0.663 0.588
SARC 0.197 0.180 0.667 0.624
SKCM 0.200 0.221 0.580 0.509
STAD 0.199 0.210 0.556 0.525
UCEC 0.103 0.119 0.646 0.538

the average performance of the naive learners better than the
average performance of the structured learners: regarding the
ibrier, the naive learners perform better than the structured
learners for four datasets; regarding the cindex, only for the LGG
dataset is the performance of the naive learners higher than
the performance of the structured learners. Unpaired, one-sided
t-tests for the four naive and the six structured learners, using
the mean performance values of the individual methods over
the datasets as observations, yield p-values of 0.1273 and 0.0002
for the ibrier and cindex, respectively.

In summary, if multi-omics data are used—although there
is a general concern regarding the usefulness of models using
multi-omics compared with simple clinical models—its struc-
ture should also be taken into account.

Favoring clinical features According to our findings, favor-
ing clinical variables leads to better prediction results. For
likelihood-based boosting, this is in line with the findings
of others (see [57] and the reference therein). Differentiating
the clinical variables from the molecular features strongly
increases the prediction performance of likelihood-based
boosting (CoxBoost and CoxBoost favoring), according to the
average cindex. Favoring clinical features raises likelihood-based
boosting from one of the worst to one of the best performing
methods. Moreover, our findings show this might also hold
for methods which use the multi-omics group structure. For
priority-Lasso the increase is not as strong, but still notable
when considering the cindex. Yet, the ibrier does not confirm
this.

Discussion
In general, one should be very careful when interpreting the
results of our benchmark experiment and drawing conclusions.
Most importantly, the findings highly depend on the consid-
ered prediction performance measure, as the method ranking

changes drastically between the two measures. For example,
CoxBoost performs poorly based on the cindex but performs
third best regarding the ibrier. These findings indicate that the
performance of a method may change dramatically if a differ-
ent performance measure is used for its assessment. Moreover,
according to ibrier, two methods perform better than the Cox
model (though only slightly), and six methods perform worse
than the Kaplan–Meier estimate. Generally, since the cindex only
measures discrimination and is not a strictly proper scoring rule,
the ibrier should be considered more important. In particular, if
prognostic accuracy is of interest, preference should be given to
the ibrier. However, given its interpretability, the cindex could be
preferred if risk classification is the main objective.

Another important aspect of the performance assessment is,
as shown in Figure 2 and Table 5, the variability across datasets.
The superiority of one method over the other strongly depends
not only on the considered performance measure but also, most
importantly, on the considered datasets. This stresses the impor-
tance of large-scale benchmarks, like this one, which use many
datasets. Since the variability between datasets is huge, we need
many datasets—a fact well known by statisticians performing
sample size calculations, which however tends to be ignored
when designing benchmark experiments using real datasets
[58]. If we had conducted our study with, say, 3, 5 or 10 datasets
(as usual in the literature), we would have obtained different—
more unstable—results.

Regarding prediction performance, blockForest outperforms
the other methods on average overall datasets. Moreover, it
is the only method which outperforms the simple Cox model
on average regarding both measures. The other methods using
the molecular data do not perform better than the simple Cox
model. The better prediction performance of blockForest, how-
ever, comes at the price of long computation times. Apart from
SGL, blockForest is the slowest method. The fastest learners,
standard Lasso and ranger, are about 10 times faster and block-
Forest is still 2 times slower than the next slowest learner
prioritylasso favoring. Moreover, like the standard random for-
est variant, it does not yield easily interpretable models, even
though the strengths of the variables can be assessed via the
variable importance measure(s) output as a by-product of the
random forest algorithms. Thus, taking the other assessment
dimensions into account, e.g. CoxBoost favoring clinical features
is very competitive. It is quite fast, leads to reasonably sparse
models at group and feature level and yields performances only
slightly worse than (cindex) or equal to (ibrier) blockForest.

From a practical perspective, even simpler modeling
approaches, such as a simple Cox model using clinical variables
only, might be preferable. This model is easily interpretable,
needs only a fraction of the computation time and, with a
mean cindex of 0.618 and a mean ibrier of 0.175, performs
only slightly worse than blockForest (0.620 and 0.172) and
comparable to or even better than all other methods. Note,
however, that blockForest also offers the possibility of favoring
clinical covariates using the argument always.select.block of the
blockfor function. Hornung and Wright [27] show that this can
improve the prediction performance of block forest considerably.
However, since this option was not yet available at the time of
conduction of the analyses performed for the current paper, we
were not able to consider this block forest variant here.

In general, conclusions about the superiority of one method
over the other with respect to the prediction performance must
be drawn with caution, as the differences in performance can be
very small and the confidence intervals often show a remarkable
overlap. Exemplary t-tests comparing blockForest with CoxBoost
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favoring and the Clinical only model showed no significant
differences in performance. Furthermore, we do not believe that
the recommendation of a single method is generally appropriate
because even if some methods have a better average perfor-
mance than others, the ranking between methods depends in
large part on the specific dataset used. On the other hand, if there
is no independent, external dataset available for performance
estimation it is also not advisable to try out too many methods
in practice because this increases the risk that the maximum
of the cross-validated performance estimates is optimistic [59]
and correction methods to adjust for this over-optimism are still
in their infancy [60]. In this situation, it is likely best to strike
a balance by taking into account the learners which perform
reasonably well. Our study identifies methods worth taking into
closer consideration in practice. Apart from the clinical model,
these are all methods which take the multi-omics structure into
account or favor the clinical covariates, as on average those
methods performed better than the naive methods not using the
group structure (note again, however, that we did not observe
statistically significant differences). A method should then be
chosen based on the methodology described in the paper using
the dataset at hand.

More generally, it should be noted that the choice of a method
should result from the simultaneous consideration of various
aspects beyond performance. If (i) performance is the main
criterion, (ii) the model is intended solely as a prediction tool, and
implemented, say, as a shiny application [61], and (iii) sparsity
and interpretability are not considered important, blockForest is
certainly a very good choice. Other methods may prove attrac-
tive in different situations. Finally, let us note that one of the
methods that did not perform very well in the present study
in terms of performance, priority-Lasso, may perform better
in practice when accurate prior knowledge on the groups of
variables is available, and allows the user to favor some of the
groups—a dimension that could not be taken into account in our
comparison study.

A potential limitation of our study is that the datasets were
already used by Hornung and Wright [27] in their comparison
study. Since they selected the most promising blockForest based
on this comparison study, our results may be slightly optimistic
regarding the performance of blockForest—a bias mechanism
that has been previously described [62]. More precisely, Hor-
nung and Wright [27] initially considered five different variants
of random forest taking the block structure into account and
identified the best-performing variant using a collection of 20
datasets including the 18 considered in our study. They named
this best-performing variant ‘block forest’. It is in theory possible
that part of the superiority of the selected ‘block forest’ variant
on the specific 20 datasets is due to chance. In this case, our
study, which uses 18 of these datasets again, would (slightly)
favor block forest. However, this over-optimism only exists if a
different one of the five Block Forest variants compared in the
Block Forest paper were the best in reality, i.e. if the superiority
of the Block Forest variant considered in our paper were just
the result of random fluctuations in the paper of Hornung and
Wright [27]. Given the fact that Hornung and Wright [27] used
a lot of datasets this is rather unlikely and it is plausible that
block forest is indeed the best option, in which case the over-
optimistic effect for our study can be ruled out. In addition,
although our study is based on data from the same cancer stud-
ies, there are several notable differences. Hornung and Wright
[27] included two additional datasets and did not use the same
sets of clinical variables as in our study. Furthermore, to reduce
the computational burden, they used only a subset of 2500

variables when groups had more than 2500 variables. Taking
all these aspects into account, it is unlikely that our study is
noticeably biased, although such a bias is possible in principle.
Regarding the advantage of favoring the clinical variables, it
is important to note that it strongly depends on the level of
predictive information contained in these variables. If clinical
variables contain less information than for the datasets used in
our analysis, favoring of these covariates might be less useful
than they were found to be in this study, or even detrimental.
While we strongly recommend considering favoring the clinical
variables, this should not necessarily be performed by default.

Another limitation of our study is that it is based on CV—as
usual in the context of large-scale benchmarking. We assume
that methods performing best in CV also range among the
best ones when applied to external datasets, which is compat-
ible with the results presented in Bernau et al. [52]. However,
in principle, differences may occur. For example, the perfor-
mance of methods tending to strongly overfit the training data is
expected to drop more when considering external data instead
of using CV than the performance of methods that do not
strongly overfit. These subtle issues could be addressed in future
studies using the recently suggested cross-study validation tech-
nique. This approach, however, requires the availability of sev-
eral external datasets for each cancer type that include exactly
the same prediction and outcome variables and consider com-
parable target populations. Currently, such data is simply not
available.

Extending the benchmark to further methods (e.g. methods
that do not rely on the proportional hazards assumption, which
are only represented by random forest in our study) and further
data pre-processing approaches as well as further datasets are
desirable. In the same vein, it may be interesting to consider
alternative procedures to handle model failures in the outer-
resampling process, which may lead to different results. There
is to date no widely used standardized approach to deal with
missing values in this context. This issue certainly deserves fur-
ther dedicated research. This benchmark experiment is designed
such that such extensions are easy to implement. Using the
provided code, further methods can be compared to the ones
included in this study.

Key Points
• For the collection of the datasets used in this study,

the standard Cox model only using clinical variables
is very competitive compared with complex methods
using multi-omics data. Among the investigated com-
plex methods, only block forest outperforms the Cox
model on average over all datasets, and the difference
is not statistically significant.

• If multi-omics data is used, its structure should be
used as well: on average it increases the predictive
performance and prevents low-dimensional feature
groups from being discounted.

• Favoring clinical variables over molecular data in-
creases the prediction performance of the investigated
methods on average.

• In general, the findings indicate that assessing and
comparing prediction methods should be based on a
large number of datasets to reach robust conclusions.

• Aside from the main results of the study, we also
observed that using multi-omics data can improve
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the performance of prediction methods for particu-
lar datasets, but the average performance was not
improved for the data investigated in our study.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.
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