
- 

SELF-ASSEMBLY OF ANISOTROPIC NANOSTRUCTURES 

 

 

 

 

 

 

 

 

by 

Youngsoo Jung 

ME, University of Nevada, Reno, USA, 2010 

ME, Inha University, South Korea, 2008 

 

BE, Inha University, South Korea, 2006 

 

 

 

 

 

 

Submitted to the Graduate Faculty of 

The Swanson School of Engineering in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

University of Pittsburgh 

2014 

 



 ii 

UNIVERSITY OF PITTSBURGH 

SWANSON SCHOOL OF ENGINEERING 

 

 

 

 

 

 

 

 

This dissertation was presented 

 

by 

 

 

Youngsoo Jung 

 

 

 

It was defended on 

June 25th, 2014 

and approved by 

Jung-Kun Lee, Ph.D., Associate Professor, Department of Mechanical Engineering and 

Materials Science 

John A. Barnard, Ph. D., Professor, Department of Mechanical Engineering and Materials 

Science 

Ian Nettleship, Ph.D., Associate Professor, Department of Mechanical Engineering and 

Materials Science 

Youngjae Chun, Ph.D., Assistant Professor, Department of Industrial Engineering 

 Dissertation Director: Jung-Kun Lee, Ph.D., Associate Professor,  

Department of Mechanical Engineering and Materials Science 

 

 

 



 iii 

Copyright ©  by Youngsoo Jung 

2014 



 iv 

 

Controlling and manipulating the physical and chemical intrinsic properties of nanomaterials has 

been a fascinating issue in chemistry and materials science. Two central geometric variables, size 

and shape, strongly affect the intrinsic properties of nanomaterials. Specifically, the shape of 

nanocrystals plays a pivotal role in the determining intrinsic properties, including optical, 

electronic, magnetic, and catalytic behavior. Since nanocrystals with tailored geometries possess 

unique shape dependent behaviors, considerable efforts to develop shape controlled inorganic 

materials and to investigate their shape anisotropic effects on functional properties are currently 

being undertaken. This dissertation will introduce specific shape anisotropic behavior of the 

shape modified particles achieved through two different synthetic routes: i) structural 

modification of shape anisotropic particles and ii) 3-dimensional self-assembly via microwave-

assisted solvothermal reactions. Each topic section will systematically provide an approach on 

enhancing each specific intrinsic property originating from self-assembly of anisotropic 

nanostructure and will discuss the fundamentals behind these phenomena. 
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1.0  INTRODUCTION 

Nanomaterials exhibit unique physical and chemical properties, such as large surface area 

to volume ratios and high interfacial reactivity. Nanoparticles have therefore displayed excellent 

chemical and physical properties that are not observed in bulk materials. In particular, shape-

dependent optical, electronic, and catalytic properties of nanomaterials have motivated 

researchers to engineer advanced nanomaterials by modifying the shape of the materials. 

Developing shape controlled inorganic nanomaterials and structural manipulation of shape 

anisotropic particles afford tuning their intrinsic properties. Furthermore, investigating and 

understanding its shape anisotropic effects on functional properties have great potential for both 

the scientific and commercial world, since inorganic nanocrystals with tailored geometries 

possess peculiar shape dependent phenomena; their utilization of such phenomena is of 

significant interest for a wide variety of functional application.  

 This dissertation consists of four-independent chapters covering i) the shape control of 

nanomaterials and structural modification of shape anisotropic particles using nanoparticles, ii) 

the modification of nanoparticle assembly with 2D plate clay, iii) microwave synthesis of 3D 

hierarchically structured particle and its functional applications, iv) conclusions and future work. 

In the Chapter 1, introductions to general concepts of shape control of nanomaterials by the 

anisotropic growth, structural modification of clay particle through the intercalation process of 

oxide nanoparticles, magnetorheology control via modification of particles alignment, as well as 
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research motivation are included. Chapter 2 firstly addresses the interparticle-association modes 

in the aqueous clay suspension and the characterization method of rheological behavior of the 

fluid systems, and then provides experimental results on controlling rheological behavior through 

the surface charge modification of the clay hybrid particles. The latter part of Chapter 2 covers 

the synthesis of magnetic iron oxide decorated organoclay hybrid and the effects on rheological 

property under an external magnetic field. Microwave synthesis of 3D hierarchically structured 

particle is tackled in Chapter 3. In this chapter, detailed descriptions on the principle of 

microwave irradiation and effects of microwave heating on the chemical reaction are presented. 

3D self-assembled flower-like shaped Fe3O4 and Fe are fabricated using microwave irradiation. 

The fundamental insight on the formation mechanism for the structure evolution from the 

primary nanoparticle building blocks to hierarchical architecture is discussed. Furthermore, 

flower like shaped Fe3O4 particles are employed as magnetic-responsive particles into the 

magnetorheological fluid and the change in the magnetorheology of the prepared fluids in the 

presence of magnetic field are introduced in Chapter 3. Lastly, conclusions and future work are 

summarized in Chapter 4. 
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1.1 THE SHAPE CONTROL OF NANOMATERIALS 

1.1.1 General concept: shape control of nanomaterials 

Unlike bulk inorganic crystals, whose innate properties are independent of size and 

shape, the physical and chemical intrinsic properties of inorganic nanocrystals can be tailored as 

desired [1-10]. Controlling and manipulating these properties is currently a challenging issue in 

chemistry and materials science. For example, Au crystals have characteristics of optical and 

chemical behaviors that can be tuned continuously by size control in the nano-regime. Two 

crucial geometric variables, size and shape, strongly affect these phenomena. Since the size of 

nanocrystals were found to strongly influence the physical properties of nanocrystals, early 

investigations focused on the nanoscale size effect [7–13]. For example, it has been shown both 

theoretically and experimentally that the electronic band of a crystal is gradually quantized as the 

crystal-size is reduced, resulting in an increase in the band-gap energy. Nanocrystal size 

furthermore significantly influences the electron-transport process.  

Similarly, the shape of nanocrystals plays a pivotal role in determining intrinsic 

properties [14,15]. Based on its dimensionality, the shape of a nanocrystal can be simply 

classified. Figure 1.1 represents the various shape of inorganic crystal; i) 0-D isotropic spheres 

and polyhedrons, ii) 1-D rods and wires, iii) 2-D plates, iv) 3-D hierarchically structured 

particles [16-19]. A number of painstaking efforts have been performed to establish reliable 

synthetic routes to well-defined nanocrystals with controlled size and shape. These synthetic 
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strategies include liquid-phase colloidal syntheses in aqueous solution [20-24], gas-phase 

syntheses utilizing vapor–liquid–solid (VLS) methods [25-28], chemical vapor depostion (CVD) 

[29,30], thermal evaporation,[31-33], and nonhydrolytic [1,5,7] reaction media. The liquid-phase 

colloidal preparative approach is considered to be a powerful method for the convenient and 

reproducible shape-controlled synthesis of nanocrystals, not only because this method is 

affordable for precisely tuning the resulting nanocrystals in terms of their size, shape, and 

composition on the nanometer scale, but also because it allows them to be dispersed in either an 

aqueous or nonhydrolytic media. These colloidal nanocrystals are, moreover, often referred to as 

‘molecular nanocrystals’ and can be modified by chemical hybridization with other functional 

materials for applications in electronics and biological systems [34-38]. In general, simplified 

colloidal nanocrystal growth processes can be described by the following procedure; i) seed 

formation initiated via a rapid increase in the monomer concentration in the solution to super-

saturation levels, ii) crystal growth from seeds by aggregation of monomers on the seed to 

achieve thermodynamic stable status, which results in progressive decrease in the monomers 

concentration, and iii) surface stabilization of the resulting nanocrystals. 

 

 

 

 

 

Figure 1-1 Representative examples of various shaped inorganic nanomaterials in TEM observation; 

(a) 0-D polyhedron, (b) 1-D rods, (c) 2-D plate, and (d) 3-D hierarchical structure [16-19] 
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1.1.2 Overview of proposed mechanisms for anisotropic growth 

In considering the growth mechanisms of nanomaterials derived via solution based 

chemical process, three representative shape controlling mechanisms have been proposed to 

explain the assembly of species during the reaction. The proposed mechanisms are as follows: 

  

i) seed-mediated solution-liquid-solid (SLS) growth 

ii) oriented attachment (OA) growth  

iii) kinetically induced anisotropic growth 

 

All of the proposed growth mechanisms above are found to be excellent for glib 

separation of the nucleation and growth stages, which are prerequisites to achieve shape 

controlled nanomaterial. This subsection will provide detailed description of the anisotropic 

growth behavior occurring in the proposed mechanisms. 

 

1.1.2.1 Seed-mediated solution-liquid-solid (SLS) growth 

 

As seeds in the chemical reaction process, nanocrystal can be beneficial for facilitating 

highly anisotropic growth of nanomaterials. 1D nanowires have been easily fabricated under gas-

phase atmosphere through chemical vapor deposition (CVD) synthetic route which is processed 

based upon a vapor-liquid-solid (VLS) growth mechanism. Similar synthetic approach, so called 
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solution-liquid-solid (SLS) process, has been proposed by Trentler and Buhro [39,40] and 

applied for the generation of 1D structured particles fabrication. Dissimilar from VLS growth 

mechanism which can be applicable for the reactions requiring a high temperature environment, 

the SLS growth mechanism affords strong support for the fundamentals on low temperature 

(165-203 
o
C) growth in solution based reaction media. 

The successful development of crystallized phases hinges upon the process of certain 

microscopic progression at the interface between nutrient and crystal as shown in Figure 1-2. 

During the crystal growth, existing species such as atoms, ions, or molecules in the reaction 

media are deposited onto a growth surface. Several consecutive elementary stages have been 

suggested to describe ultimate delivery of adspecies to these thermodynamic sites [41]. Buhro et 

al. simplified these steps into two processes; i) reversible deposition (adsorption) of adspecies 

from the fluid onto the growth surface, and ii) mobile diffusion of adspecies upon the growth 

surface. Figure 1-2 provides schematic representation of the i) and ii) processes [39]. 
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Figure 1-2 Microscopic interfacial processes supporting crystal growth [39]. Process (i) reversible 

adspecies deposition (adsorption). Process (ii) adspecies surface migration 

 

 

 

Circumvention of growth defect can be feasible either by the return of mispositioned 

adspecies to the nutrient phase (process (i)) or by the migration of adspecies to kinks (process 

(ii)). In this regard, when deposition is irreversible and adspecies are immobile on the growth 

surface, amorphous structure is expected to be achieved than crystalline solid structure. 

Figure 1-3(a) and 1-3(b) illustrates VLS mechanism and the low temperature solution-

liquid-solid (SLS) growth mechanism, respectively. As mentioned above, SLS growth 

mechanism (Figure 1-2) is analogous to the well-reported VLS mechanism which is observed at 

higher temperature under chemical vapor deposition conditions [42,43]. 
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Figure 1-3 Growth mechanisms for pseudo-1D crystalline morphologies: (a) VLS mechanism 

proposed by Wagner and Ellis for growth under CVD conditions, (b) SLS mechanism proposed by Buhro 

and co-workers for analogous growth from solution [44] 

 

 

 

The synthesis through the SLS process is conducted in solvent based dispersion of nano-

sized liquid-flux droplets, which is a seed composed of target metal precursors. The precursor 

elements in the solution are deposited into the liquid-metal flux droplets by catalyzed reactions 

occurring in the solution phase. When the deposition level reaches critical point, the flux droplets 

become supersaturated, driving psudo-one-dimensional crystal growth. In a polymerization 

process of the polymer, monomers begin polymerization with one another when they reach 

critical concentration in the reaction media. Similar with the polymerization of monomers, SLS 

growth resembles a living polymerization and a phase transfer reaction indicating the dissolution 

of precursor fragments (nutrients) to the living flux droplet and transferring these fragments from 

the solution phase to the liquid (flux) phase gives rise to low-temperature crystallization. 
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1.1.2.2 Oriented attachment growth 

 

Since Banfield et al. [45] first demonstrated the concept of oriented attachment process, 

“oriented attachment” has attracted increasing attention in recent years as a new means for 

fabrication and self-organization of nanocrystalline materials under one-pot conditions [45-49].  

 

 

 

 

Figure 1-4 Various organizing schemes for self-construction of nano structures by oriented 

attachment 

 

 

 

 

Figure 1-4 shows various organizing schemes for self-assembly of nanostructures through 

oriented attachment, including the formation of 1D nanorods from the 0D nanocrystallites (Fig 1-
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4(a)), length-multiplied 1D nanostructures or 2D plate through the self-attachment by planar van 

der Waal interaction (Fig. 1-4(b)), or lateral lattice fusion (Fig. 1-4(c)) of 1D nanorods and 

ribbons, 3D architectures of 2D crystal strips derived from 1D nanoribbons (Fig. 1-4(d)), and 

advanced geometrical architecture from 0D through 3D (Fig 1-4(e)) [45-49]. From the classical 

standpoint, crystal coarsening has been described as growth of the large particles is processed 

through the expense of small sized primary nanoparticles by the Ostwald ripening [50]. The 

driving force for the Ostwald ripening process is the minimization of surface energy. In this 

process, firstly, tiny crystalline nuclei are formed in supersaturated media and then the formation 

of large particles occurs at the expense of the small primary particles owing to energy difference 

between  large particles and smaller particles of a higher solubility based upon the Gibbs-

Thompson law [51]. In these systems, the larger particles grow from small primary nanoparticles 

via an oriented attachment process. The adjacent nanoparticles which are thermodynamically 

unstable (possessing high surface energy) are self-assembled by sharing a common 

crystallographic orientation and merging of the particles at a planar interface. The underlying 

principle for spontaneous oriented attachment is that the elimination of the pair of high energy 

surfaces bring about a decrease in the surface free energy, implying thermodynamically stability. 

A number of reaction systems with the interaction of surface interfaces of the adjacent 

nanoparticles have produced either directed or undirected particle aggregation [52,53]. The 

growth mode of these systems cause the generation of faceted particles or anisotropic growth if 

there is numerous primary nanoparticles comprised of different crystallographic faces with 

sufficient surface energy difference. 
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1.1.2.3 Kinetically induced anisotropic growth 

 

For producing nanomaterials with advanced architecture, kinetically induced anisotropic 

growth is one of the highly effective tactics that has been widely utilized in the synthetic 

chemistry area. Two important key factors play a pivotal role in the kinetic control of the final 

product shape, which are i) surface energy and selective adhesion, and ii) the effect of the 

crystalline seed phase. The following subsections will address an introduction to the kinetically 

induced anisotropic growth. 

 

Surface energy and selective adhesion 

The surface energy of the crystallographic faces of a seed determines the anisotropic 

growth patterns of nanocrystals. As shown in Figure 1-5, an example of ZnS growth reported by 

Zhang et al. highlights this kind of anisotropic growth [54]. The surface energy of each 

crystallographic face of ZnS seed is different in that (001) face is larger than those of other faces 

involving (100) and (110). Since the growth rate of the seed is in strong correlation with the 

surface energy, the surface energy differences between the each face intrigue rapid growth along 

the [001] direction of ZnS compared to the other directions and this results in the anisotropic 

growth along [001] direction. The other examples of the anisotropic elongation through the 

surface energy differences of the crystallographic faces can be found in TiO2 and Mn3O4 nanorod 

fabrication [55-56]. Jun et al. and Cozzoli et al. addressed the shape anisotropic growth of TiO2 
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induced by surface energy difference. Synthesis of Mn3O4 nanorod achieved through elongation 

along [001] direction is demonstrated by Seo et al..   

 

 

 

Figure 1-5 Surface energy of ZnS nanocrystals. The (001) face has the highest surface energy. Since 

the growth rate is proportional to the surface energy, the fastest growth occurs along the [001] direction [54] 

(G = growth rate, S =  surface energy) 

 

 

 

 

Introducing surfactants into the reaction media affords surface energy modification of 

nanocrystals, in which functional group of the surfactants is preferentially attached onto the 

surface of growing crystallites [55-60]. In the chemical reaction system with surfactant, selective 

adhesion of the surfactant occurs during the reaction process in which surfactant molecules are 

selectively attached onto the surface of the crystallographic faces, specifically the faces in a 

thermodynamically unstable state (possessing high surface energy). By the selective adhesion of 

the surfactant, the growth rate difference between each crystallographic direction can be 
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modified. Manna et al. verified anisotropic growth by the selective adhesion in CdSe synthesis 

[57]. In this contribution, HPA is used as a surfactant and work for determining the shape of 

fabricated CdSe. When the reaction was performed at low concentration of HPA or absence of 

HPA, only spherical shape was observed in the final product. At high concentration of HPA, 

however, rod-shaped CdSe was obtained, since HPA is selectively anchored onto the surfaces 

(100) and (110) plane of the growing crystallites, suppressing the growth along the 

corresponding directions (Figure 1-6(a)). 

Another phenomenon derived by the selective adhesion of surfactant is to induce 

compression along other axes. Formation of nanodisc in fabricating Cu2S carried out by 

Ghezelbash et al. is a good example to elucidate this peculiar behavior [58]. Figure 1-6(b) shows 

the formation of nanodisc shaped Cu2S in this work. The alkanethiol molecules which was used 

as surfactant binds to the (001) faces leading to decrease in the surface energy and this triggers 

the compression of other faces and this, in turn, results in the development of disc shaped 

particles. 
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Figure 1-6 Surface modulation effects induced by the selective adhesion of surfactant: a) anisotropic 

rod [57], and b) disc growth [58] 

 

 

 

 

The effect of the crystalline seed phase 

Crystallographic phase of the nucleated seeds is also another variable for shape control of 

the nanocrystals. The shape of the nanocrystals is determined by its seed phase. Isotropic growth 

of the seed crystals with zinc blende phase and anisotropic growth of the one with wurtzite 

structure are good examples representing growth behavior influenced by the crystallographic 

phase of the nucleated seeds. When seed crystals are composed of zinc blende phase, 0D shaped 

particles such as spheres and cubes are achieved since the seed crystals with blende phase tends 
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to grow isotropically along the three axes (a, b, and c directions). In other case of seed crystals 

formed in a wurtzite structure, however, seeds prefer to grow anisotropically and this induces rod 

and disc shaped particles. Crystal seeds can potentially possess a variety of varied 

crystallographic phases, and the environment regulates conditions forming the stable phase [61-

64]. In this regard, careful manipulation of the reaction temperature in the nucleation stage has 

been utilized as a simple and useful strategy for controlling the crystalline phase. Jun et al. and 

Lu et al. manifest control of the crystalline phase through adjusting the reaction temperature in 

the synthesis of MnS. [62,65]. Figure 1-7 shows the crystalline phase evolution with respect to 

the temperature performed in their works. At high temperature reaction regime, seed crystal with 

rock salt phase was preferred, resulting in the formation of isotropic cubes (Fig 1-7(a)). In 

contrast, lower temperature regime led to producing the seeds with wurzite phase which tend to 

grow anisotropically along the certain direction and this, in turn, generated nanorods (Fig 1-

7(b)). Another demonstration to regulate crystalline phase through temperature mediated phase 

control tactic was conducted in CdS synthesis by Jun et al. and Zwlaya-Angel [61,66]. Producing 

CdS seed with wurtzite phase was preferred at high temperature and this gave rise to 1D nanorod 

formation (Fig 1-7(c)). At low temperature, however, generation of zinc blende nuclei was 

favorable and tetrahedral seeds with four {111} faces are formed, and subsequently epitaxial 

growth of wurtzite pods along the [001] direction from the {111} faces befall, and finally, CdS 

bipods are formed (Fig. 7d). 
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Figure 1-7 Temperature-mediated crystalline-phase control of a,b) MnS and c,d) CdS nanocrystals 

[61,62,65,66] 
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1.2 MODIFICATION OF SHAPE ANISOTROPIC PARTICLES 

1.2.1 General concept of nanoparticles embedded clay composite 

Porous materials find many applications in heterogeneous catalysis, metal ion trapping, 

and molecular separations. The intercalation of the nanoparticles into host lamellar solids is one 

promising approach to the rational design of porous solids with a pore size distribution on a 

molecular length scale. As illustrated in Figure 1-8, ceramic nanoparticle embedded clay hybrid, 

so called pillared clay, is a special class of intercalation composite materials in which the gallery 

intercalant is sufficiently large, enabling the host structure to maintain layer separation and 

allowing access to the intercrystal surfaces of the layered structure through the development of 

slit-shaped gallery pores. Pillared interlayered clays have been described as a microporous 2-

dimensional labyrinth structure of molecular dimensions that is typified by the distance between 

the clay layers, the interlayer spacing, and the distance between the intercalated oxides, 

interpillar spacing. This heterostructured composite particle is analogous to supramolecular 

assembly processes used to form mesoporous molecular sieves. Moreover, porous clay 

heterostructures exhibit acidic properties for potential applications as sorbents and heterogeneous 

catalysts, while at the same time providing larger surface areas and pore sizes [67-70].  
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Figure 1-8 Schematic representation of the porous structured nanoparticles embedded clay hybrid 

composite 

 

 

 

 

The interlayer spacing along the c-dimension is determined by the chemical nature and 

the height of the intercalated particles. The pore size in a and b dimensions is characterized by 

three parameters including the distance between the pillars and the interpillar distance. In 

particular, the interpillar distance is mainly associated with the density of pillars, indicating the 

number of intercalated species between the aluminosilicate layers. The extent and the 

distribution of the charge density on the clay layers and size of the pillars strongly affect the 

density of pillars. The interlayer and interpillar spacing can be regulated in the thermal treatment 

stage of the fabrication process, in which elimination of organic components of the polycations 

and the thermal annealing of pillars occurs. 

1.2.2 Structural features of clay particles 

Montmorillonite, a subset of clay, contains lamella structures, composed of 

phyllosilicates or layer silicates with a layer lattice structure in which two-dimensional 
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oxyanions are separated by layers of hydrated cations. The oxygen atoms define upper and lower 

sheets enclosing tetrahedral sites, and a central sheet having the brucite or gibbsite structure 

enclosing octahedral sites (Figure. 1-9). Clay that consists of two tetrahedral sheets around the 

central octahedral sheet in each layer is categorized as 2:1 phyllosilicates.  

All tetrahedral sites are filled with Si
4+

, and other species occupying the octahedral sites 

are Al, Mg, and Fe cations, respectively. The electrically neutral sheets are bonded together by 

relatively weak dipolar and van der Waals forces [71]. In contrast, montmorillonite clay has a 

negative charge at its face and positive charge at edge sites resulting from the isomorphous 

substitutions, via (i) Si
4+

 by Al
3+

 at tetrahedral sites, and (ii) Al
3+

 by Mg
2+

, or (iii) Mg
2+

 by Li
+
 at 

octahedral sites. The charge variation is balanced by absorbed cations, such as, Na
+
, K

+
. The 

montmorillonite clays were used as the first choice to fabricate nanoparticle-embedded clay 

materials, because it is cost effective, abundant and easily processed in water. Furthermore, the 

surface charge strongly influences the ion exchange and swelling of the clay, and the rheology of 

the clay fluids. 

 

 

 

 

Figure 1-9 Schematic illustration representing structure of montmorillonite clay 
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1.2.3 The nanoparticles embedded clay hybrid composite 

 

The modification of the physical and chemical properties of clay materials can be 

achieved via pH control using base and acid activation. For the layered clays, intercalation of 

metallic polycations into their interlayer region is widely used. The intercalation of metallic 

polycations brings about the generation of a new porous structure and the creation of active sites 

(acid and/or metallic), improving its intrinsic property. Over the past several decades, the 

development of inorganic pillared interlayered clays (PILCs) has created remarkable new 

opportunities in the field of the synthesis and applications of clay-based solids [72,73]. 

 

 

 

 

Figure 1-10 XRD patterns of pristine clay and nanoparticles (NPs)-intercalated clay [74]. Increase in 

c-spacing by intercalation of NPs into clay results in XRD peak shift to lower angle 
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The general fabrication approach of pillared interlayered clays is the intercalation of 

metal polycations into swelling clay particles. Through high temperature heat treatment, the 

intercalated polycations are successfully converted into the corresponding metal oxide via 

dehydration and dehydroxylation, and embedded oxides serve as ‘pillars’, creating interlayer 

meso- and micro-pores. In addition, c-spacing (basal spacing) of the parent clays increases by the 

intercalation of metal cation (Figure 1-10) [74]. The interlayer distance can be estimated from 

the basal c-spacing value (d(100)) obtained through the XRD patterns investigation. Fabrication 

of pillared clay is divided into four steps: expansion, exfoliation, intercalation, and calcination. 

In the intercalation step, the replacement of naturally absorbed Na
+
 and K

+
 cations by larger, 

more robust cations results in a pillared structure. In the annealing process, the embedded 

polycations yield rigid, thermally stable oxide species (pillars) which maintain the separation of 

the clay layers, thus preventing their collapse. This process results in an interesting two-

dimensional porous structure of molecular dimensions (Figure 1-11). 

 

 

 

 

 

Figure 1-11 Schematic illustration of nanoparticles intercalation process 
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1.3 MAGNETORHEOLOGY CONTROL 

1.3.1 General concept and characteristics of magnetorheological fluids 

Magnetorheology is a subset of Rheology instigating the flow and deformation behaviors 

of the fluid system under a magnetic field. Magnetorheological (MR) fluids are suspensions of 

micrometer range ferro- or ferromagnetic multi-domain particles in a liquid matrix [75]. MR 

fluids are reversible and very fast (in millisecond) transition from a liquid to a solid state under 

the presence of applied magnetic field. The basic phenomena occurring in MR fluids system is 

related to the control of the structure of two-phase fluid by relatively moderate magnetic fields. 

The applied fields induce a polarization of the multi-domain magnetizable particles which result 

in their aggregation and/or forming network structure, and this, in turn, brings about tremendous 

increase in the viscosity (up to 10
3
 times). As shown in Figure 1-12, in ‘on-set’ state of the 

magnetic field, magnetic moment in the MR fluid is induced by the applied field and it is 

vanishing at ‘off-set’ state (zero field), and the suspension returns back to its initial state [76]. In 

the absence of a magnetic field, MR fluid systems typically behave as Newtonian fluids. In 

contrast, when a magnetic field is applied transverse to the direction of flow, a yielding, shear 

thinning, and viscoelastic behavior are perceived. Strong interaction between magnetically 

induced particles gives rise to developing the chain-like network formation of the particles in the 
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direction of the field, and this is responsible for the increase in the viscosity of MR fluid under 

an applied magnetic field (Fig. 1-12c).  

 

 

 

 

Figure 1-12 The surface changes of a MR fluid under applied magnetic field: (a) liquid phase under 

no magnetic field, (b) solid phase under an applied magnetic field, (c) alignment of the magnetic particles 

along the direction of a magnetic field [76] 

 

 

 

Due to its fascinating behavior in the presence of a magnetic field, MR fluids are 

intensively attractive in the applications in mechanical system that involves active control of 

vibrations or the transmission of torque.  Conventional applications include shock absorbers, 

clutches, brakes, seismic vibration dampers, artificial joints, and control [77]. Other applications 
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are extended to biomedical application, precision polishing, thermal energy transfer, sound 

propagation, and chemical sensing applications which require the utilization of magnetic field 

[78-82].  

1.3.2 MR fluids 

Typical MR fluids are two-phase fluids, and the fluids preparation can be achieved by 

dispersing a large quantity of highly magnetizable particles (micron-size) in a non-magnetizable 

liquid. Iron particles, particularly fabricated from thermal decomposition of carbonyl iron 

particles, are most widely used in various cases since they exhibit a high saturation value of 

magnetization (μ0Ms = 2.1 T). Water, silicone oils, polyesters, polyethers, and synthetic 

hydrocarbons are commonly used as a liquid carrier. Use of additives including thixotropic 

agent, surfactants and polymers is necessary to deter severe precipitation and aggregation.  

As described above, the field induced magnetization of the suspended particles is a 

driving force to intrigue MR effect. In the absence of a magnetic field, a viscosity of the 

suspension is relatively low. When external magnetic field is applied to the system, particles are 

magnetically induced and attracted one another along the applied field direction, and they 

develop anisometric aggregation (chain-like network formation). The resulting suspension shows 

a large yield stress. Since the developed chain-like network enhances the resistance to the system 

that tends to flow, higher shear stress is required to enable the suspension flow. In general, good 

MR fluids are to possess a large saturation magnetization, minimal remnant magnetization, 

applicable to wide temperature range, stable against sedimentation, and irreversible flocculation.   

Other types of MR fluids, which include inverse-ferrofluids, magnetic composites 

containing fluids exist and are often employed. Inverse-ferrofluids are comprised of non-
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magnetizable particles with micron size and ferrofluids [83,84]. In the inverse-ferrofluids system, 

the strength of the applied magnetic field and the saturation magnetization of ferrofluids play a 

central role in controlling the rheological behavior of the system. Since a wide variety of non-

magnetizable particles are available, the functionality of the fluid system can be easily tunable by 

varying particle size and shape [85,86]. In the preparation of ferrofluid suspensions, two 

immiscible fluids containing one being magnetically inducible, are utilized [87,88].   

Polymer based magnetic-responsive particles containing MR fluids are regarded as 

magnetic composites MR fluids, which consists of the solid counterpart of ferrofluids and MR 

fluids. Magnetic gels and elastomers [89,90] are widely known magnetic composites. Synthesis 

of magnetic elastomer is relatively simple and reliable, in which magnetic particles are added 

into polymer precursor solution and a magnetic field is applied prior to initiating crosslinking of 

polymer cluster. In some case studies on colloidal aggregation and optical trapping behavior, 

field-responsive composite involving superparamagnetic polymer-based particles have been 

employed [91,92].     

 

1.3.3 Field induced particle interactions and structure formation 

In case of MR fluids, particle interactions under an applied magnetic field are 

significantly strong and develop a formation of thick column of particles, which radically change 

the flow behavior [75]. Given a system of an isolated particle of relative magnetic permeability 

μp in the fluid with relative permeability μf under an external magnetic field H0, a magnetic 

moment that particle will acquire is: 
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                                                              m = 4πμ0μfβa
3
H0                                                           (1.1) 

 

Where a is the radius of the particle, μ0 the permeability of vacuum, and β = (μp – μf)/ (μp + 2μf). 

This equation also holds when the permeability of the carrier fluid is larger than the one of the 

particle (β < 0) and the magnetization vector is opposed to the field. The interaction energy 

between two dipoles of moment m is expressed by; 

 

                                          W = [(mαmβ/r
3
) – {3(mαr)(mβr)/r

5
}]/4πμ0μf                                       (1.2) 

 

where r indicates the separation vector between the centers of the two particles. This energy 

reaches the minimum when the two dipoles are aligned with r, while the maximum is achieved 

when they are perpendicular, which triggers a preferential aggregation developing a chain-like 

network formation of the particles along the applied magnetic field direction. The formation of 

particle network is dependent on the ratio of this interaction energy to kT. Taking into account 

the interaction energy between two dipoles of moment m, the non-dimensional interaction energy 

of two dipoles in repulsive configuration gives 

 

                                                         λ = πμ0μfβ
2
a

3
H0

2
/2kT                                                         (1.3) 

 

For the particles having a diameter of 1μm with large permeability (β ≈ 1) and T = 300K, 

λ = 1 for H = 127 A/m, which corresponds to 1.6 Oe, can be obtained. In the fluid system with λ  

> 1, even under moderate magnetic field, magnetic forces usually dominate Brownian motion, 

and the random forces originating from Brownian motion can be neglected.  
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In order to procure all the quantities which govern the suspension behaviors, Stokesian 

dynamics are dimensionless and are useful approach as an equation of motion of a single 

particle, and allowing calculation of the trajectories of the particles [93,94]. For a given particle, 

we can write: 

 

                                                  m(dv/dt) = F
H

 + F
ext

 + F
I
+ F

B
                                                 (1.4) 

 

F
H

 represents the hydrodynamic force on the test particle coming from the hydrodynamic 

friction and is proportional to –ξ(v – v0(x)), where ξ = 6πμa, with μ the viscosity of the 

suspending fluid and v0(x) the imposed velocity field at the location x of the particle. The term 

F
ext

 is the hydrodynamic force attributed to the symmetric part of the velocity gradient tensor. In 

the case of a pure shear characterized by the shear rate , the scale of this force is as 6πμ a
2
. The 

third term F
I
 reveals the interparticle force originating from the dipole-dipole interaction shown 

above. Concerning two particles α and β, the force can be displayed: 

 

                            = 12πμ0μfa
2
β

2
H0

2
 (a/r)

4
 [(2cos

2
θαβ – sin

2
θαβ)er + sin

2
θαβeθ]                        (1.5) 

 

The last term F
B
 is associated with the Brownian random force, which scales as kT/a. 

Since the inertial force can be neglected, the left hand side in equation (1.4) also can be 

neglected. The following equation is attained through dividing all the terms in equation (1.4) by 

6πμ a
2
; 
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                                         (v-v0)/ a = [F
I
]/Mn + [F

B
]/Pe + [F

ext
]                                               (1.6) 

 

where Mn is the Mason number and Pe is the Peclet number; 

 

                                                         Mn = 8μ /μ0μfβ
2

                                                            (1.7) 

                                                            Pe = 6πμ a
3
/kT                                                               (1.8) 

and Mn represents the ratio of shear to magnetic forces, and Pe is the expression of the ratio of 

shear forces to Brownian forces. For the particles with size larger than 1 μm and rational shear 

rates, the Peclet number is large enough to allow for neglecting the Brownian force. The non-

dimensional magnetic dipole energy λ is related to the Mason number and to the Peclet number 

by the relation Mnλ = 2Pe/3. For a given MR fluid, the viscosity will be the same for the same 

values of Mn and λ.   
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1.4 RESEARCH MOTIVATION 

1.4.1 Fluid rheology control via nanoparticle assembly with 2D clay particle 

1.4.1.1 Rheology control of nanoparticle clay hybrid added bentonite suspension 

As described in the section on structural features of clay particle, clay has a negative 

charge at the face and positive charge at the edge site resulting from the cation substitutions that 

occurs in tetrahedral and octahedral layers. Plate-like clay particles are connected to each other 

in the fluid through several modes; edge-to-face (E-F), edge-to edge (E-E), and face-to-face (F-

F) type coagulations of clay particles. The driving force of the E-F type coagulation is the 

electrostatic force resulting from the negatively charged surface and the positively charged edges 

(E-F). Attraction between adjacent platelets via van der Waals forces leads to an E-E or F-F type 

coagulation. Modification of interparticle interactions is the most important factor for controlling 

viscosity, storage and loss modulus of clay suspensions. Although many studies have been 

conducted to modify interparticle interaction, the protocol of most trials has been based on the 

variation of clay suspension properties such as adjusting the ionic concentration and pH or using 

additives such as organic surfactants, polymers and nanoparticles as thickening agents [95-109]. 

Clay-nanocomposite embedding Fe2O3, Al2O3, ZrO2, TiO2, ZnO, SiO2-Al2O3, Al2O3-Cr2O3, 

SiO2-TiO2, and SiO2-CoO nanoparticles have been successfully synthesized [110-116]. They are 

used in catalytic reaction, water purification, and sorption-based chemical separation [117-119]. 
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However, the effect of these nanoparticles intercalated clay particles as additives on the 

rheological properties of clay suspensions have not been investigated. 

In this section, the hybrid clays, Fe2O3-embedded and Al2O3-SiO2-embedded clay hybrid 

composites are fabricated. Then, the effect of nanoparticle intercalated clay hybrid composites on 

montmorillonite suspensions and a specific effect of pH on the surface charging of 

montmorillonite suspensions containing clay hybrid particles will be introduced. Fe2O3 and 

Al2O3-SiO2 nanoparticles have been selected as the target species for embedment since they 

possess large variation of surface charge as a function of pH. This would allow for the clear 

comparison of different rheological behaviors resulting from changes in surface charges. 

1.4.1.2 Magnetorheology control of iron oxide nanoparticle decorated organoclay fluid 

As mentioned in previous sections on MR fluids, suspensions of the magnetically 

responsive nanoparticles can be rapidly and reversibly transformed between a liquid-like to a 

solid-like state within milliseconds in the presence of a magnetic field. Magnetic iron oxide 

nanoparticles have been widely utilized in preparation of MR fluid. However, a number of 

researchers have pointed out that very fine iron oxide nanoparticles do not have large magnetic 

moment which results in the magnetic force of fine nanoparticles being insufficient to subdue 

Brownian motion in the fluid. In parallel, the use of large magnetic particles has pros and cons. 

While large magnetic particles possess a significant magnetic moment, they exhibit large 

remnant magnetization. In this regard, magnetic nanoparticles assembly is gaining growing 

attention in that the collective response of magnetic nanoparticles triggers both a large magnetic 

moment, as well as high sensitivity to an external field. To achieve stable and reliable magnetic 
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nanoparticles arrays, several materials including clay minerals have been examined as a 

supporter for the nanoparticles.    

In this work, magnetic iron oxide nanoparticles (γ-Fe2O3) decorated organoclay hybrid 

particles, which are structurally different from the nanoparticle embedded clay hybrid particles, 

are fabricated. Then, we instigate the self-assembly of magnetite nanoparticles on the surface of 

hydrophobic clay in organic liquid, which does not require electrostatic interaction between the 

nanoparticles and the clay minerals. In addition, magentorheological (MR) property of the 

organic fluid of nanoparticle decorated organoclay will be examined.   

1.4.2 Facile synthetic route of 3D structured particles via MW irradiation 

1.4.2.1 MW-synthesis of self-assembled Fe and Fe3O4 particles for wastewater treatment 

Rational control over the morphology, crystalline structure, and size of nanostructures 

has attracted much attention due to their novel chemical and physical properties [120]. Recently, 

the synthesis of Fe-based nanomaterial with 3-dimensional hierarchical architecture has been 

extensively studied because of its versatility for a wide variety of applications. Conventional 

preparative methods for the synthesis of hierarchically structured Fe-based nanomaterials, 

require several hours to a day to complete achieving the desired nanostructure. Although 

researchers have introduced and developed well-designed synthetic tactics to achieve 3-D 

architecture, the structure transformation from the primary nanoparticles to the final structure has 

not yet been clearly identified. We synthesized 3-D hierarchically superstructured flower-like 

shaped (FLS) Fe and Fe3O4 particles. To increase the reaction rate, microwave irradiation was 

employed. Furthermore, the effects of critical variables (particularly reaction temperature and 
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pressure) on the final architecture will be discussed, and plausible formation mechanisms will be 

suggested. Furthermore, the fabricated particles are employed to the application in wastewater 

treatment containing sulfide species. 

 

1.4.2.2 Investigation of magnetorheological behavior of the fluid  

The other case study in this chapter is to employ this hierarchically structured iron Fe3O4 

particle to control rheological behavior of aqueous fluid under magnetic field. In this part, we 

focus on the interparticle association in the fluid to explain the change in MR behavior in the 

presence of a magnetic field. 
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2.0  MODIFICATION OF NANOPARTICLE ASSEMBLY WITH 2D PLATE 

2.1 INTRODUCTION 

2.1.1 Surface charge modification of 2D clay particle  

Clay minerals are intensively utilized in a wide range of applications such as ceramic 

products, drilling fluids, molding sands, paints, and paper making [121,122]. Among the clay 

minerals, bentonite, a smectite type clay mineral, has attracted much attention due to its unique 

swelling ability, ion-exchange capacity, and rheological properties. In particular, the rheological 

properties of bentonite suspensions have been considerably studied. The most important factor to 

directly control the viscosity and the storage and loss modulus of clay suspensions is interparticle 

interaction. Plate-like clay particles in the fluid are connected through several modes: edge-to-

face (E-F), edge-to-edge (E-E), and the face-to-face (F-F) type coagulations of clay particles. 

The driving force of E-F type coagulation is an electrostatic force resulting from the negatively 

charged surface and the positively charged edges (E-F). Attraction between adjacent platelets by 

van der Waals forces leads to E-E or F-F type coagulation. To modify interparticle interaction, 

researchers have changed the ionic concentration [95-98] and pH [99-101] of the fluids. 

Additives such as organic surfactants, [102-104] polymers, [105-107] and nanoparticles 

[108,109] have been also added to the fluid as thickening agents. Intercalation of nanoparticles 
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into the interlayer space of clay can introduce new functional properties to clay. Native clay 

minerals normally bind Na
+
 and Ca

+
 cations at the intragallery exchange sites. The replacement 

of the small cations by larger, more robust polycations transforms the clay to pillared clay with 

subsequent thermal treatment. Inorganic pillared interlayered clays (PILCs) embedding Fe2O3, 

Al2O3, ZrO2, TiO2, ZnO, SiO2-Al2O3, Al2O3-Cr2O3, SiO2-TiO2, and SiO2-CoO nanoparticles 

have been successfully synthesized [110-116]. They are used in catalytic reactions, water 

purification, and sorption-based chemical separation [117-119]. However, the effect of these 

nanoparticlesintercalated clay particles as additives on the rheological properties of clay 

suspensions has not been investigated. The objective of this work is to introduce the effect of 

nanoparticle intercalated clay hybrid particles on montmorillonite suspensions and specific effect 

of pH on surface charging of montmorillonite suspensions containing clay hybrid particles. To 

the best of our knowledge, in a recent work, only the heterocoagulation process between 

montmorillonite and nanoparticles has been extensively studied, which reported the interaction 

of clay particles with oppositely charged inorganic oxide nanoparticles [108,109]. In this work, 

two different types of hybrid materials, iron oxide-clay hybrid (ICH) and Al2O3-SiO2-clay hybrid 

(ASCH) were studied. We synthesized the hybrids and investigated their structural 

characteristics. In addition, we explored the effect of added hybrid particles on the rheological 

behavior of bentonite suspensions as a function of surface charge. Also, the viscosity of prepared 

bentonite suspensions containing hybrid particles is examined in a high-temperature, high–

pressure environment. 
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2.1.2 Magnetorheological property of iron oxide decorated clay fluid  

Nanophase magnetic materials have been extensively studied because of their potential 

applications [123-125]. Suspensions of the magnetic nanoparticles, so called ferrofluids, are 

regarded as smart materials, meaning that they can be rapidly and reversibly transformed 

between a fluid-like to a solid-like state within milliseconds by applying a magnetic field [75]. 

Consequently, the suspensions of the magnetic nanoparticles show dramatic and tunable changes 

in rheological properties under the influence of the external applied magnetic field. In addition, 

functionalized γ-Fe2O3 nanoparticles have been studied for use in separating target materials 

magnetically, which is a more selective and efficient method than others such as centrifugation 

or filtration [126-129]. However, very fine iron oxide nanoparticles do not have large magnetic 

moment and the magnetic force of fine nanoparticles is not large enough to overcome Brownian 

motion in the fluid. At the same time, while large magnetic particles have large magnetic 

moment, they have a larger coercive field and remnant magnetization. Therefore, in larger 

particles, the relative change in the magnetization over an external magnetic field is small and 

the magnetic response is less sensitive to an external field than that of fine nanoparticles. 

In this regard, magnetic nanoparticles arrays are receiving a considerable amount of 

interest. This is because the collective response of magnetic nanoparticles generates both large 

magnetic moment and high sensitivity to an external field, which is needed for many applications 

of magnetic materials. Several supporting materials have been studied to induce the assembly of 

the nanoparticles [95-99]. Clay minerals provide one of the best matrix materials on which 

nanoparticles can be collected and aligned in that clay minerals are abundant, environmentally 

friendly and economical [110-115]. Since plate type clay materials have different electric 

charges locally in water, the surface, edge or interlayer space of clay materials can be decorated 
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with charged nanoparticles.  When the magnetic nanoparticles were attached to clay minerals, a 

movement of nanoparticle-clay mixture was controlled by applying a magnetic field. Because of 

a tunable motion of the mixture and an absorbent ability of the clay, the mixture of magnetic 

nanoparticles and clay minerals was successfully used to separate contaminants in water 

[127,129,130].  

To date, however, studies on the magnetic nanoparticle decorated clay have been mainly 

carried out in an aqueous fluid system. In organic solutions, the electrostatic interaction between 

clay and oxide nanoparticles is not strong and the viscosity of the base fluid is large. 

Consequently, it is difficult to stimulate a strong magnetic response by applying a small 

magnetic field to organic suspensions of a clay-magnetic nanoparticle mixture. In this study, we 

investigate the self-assembly of magnetite (Fe3O4) nanoparticles on the surface of hydrophobic 

clay in organic liquid, which does not require electrostatic interactions between the nanoparticles 

and the clay minerals. We also examine the magnetorheological behavior of the organic fluid of 

nanoparticle decorated hydrophobic clay (called organoclay). When plate-type montmorillonite 

and magnetite nanoparticles are treated with alkyl amine and oleic acid, magnetite nanoparticles 

are strongly attached to the surface of montmorillonite due to hydrophobic attraction. Such 

magnetite nanoparticle decorated clay is well dispersed in organic media and the rheological 

properties of the fluid are easily controlled by applying a magnetic field. 
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2.2 BACKGROUND 

2.2.1 Structure of 2D plate clay and interparticle-association 

Today, clays are one of important materials in a wide variety of applications fields 

covering the ceramics, cosmetics, cement, drilling fluids, metal, and paper industry [131]. The 

use of clay is further extended to adsorbent, decoloration agents, ion exchangers, and molecular 

sieve catalysts [132]. Clay particles exhibit distinguished behavior from other colloidal materials 

by the highly anisometric particle shape, the broad particle size distribution, flexibility of the 

layers, the outstanding cation exchange capacity, and the different association modes of 

aggregation originating from anisotropic surface charge difference (permanent charges on the 

face and pH-dependent charges at the edge) [133]. Montmorillonite, a subset of clay, has lamella 

structures, and its general formula is (Al2-yMgy)Si4O10(OH)2·(M
+
,M1/2

2+
)y·nH2O [134]. Figure 2-1 

illustrates the structure frame work of the clay which is basically composed of two layers, 

alumina and silica sheets that are stacked on the top of each other. The central octahedral sheet is 

sandwiched by two tetrahedral sheets, and these units are occupied in the atomic lattices of clay 

particles [135]. The octahedral sheet is comprised of closely packed oxygen and hydroxyls and 

Al, Mg, and Fe atoms are embedded in octahedral coordination which stays in equidistant from 

six oxygen atoms or hydroxyls. The other unit around the octahedral sheet is called the 

tetrahedral sheet, which is built of silica tetrahedrons. In each tetrahedron, a silicon atom is 

equidistant from six oxygens and hydroxyls. The silica tetrahedral groups are positioned to form 
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a hexagonal structure, and it is repeated open-endedly for the sheet formation of Si4O6(OH)4. The 

combination of two tetrahedral sheets and the octahedral sheet is denoted as a unit layer, and the 

clay particles composed of unit layers are called 2:1 type clay. Most clay minerals consist of unit 

layers in a form of being stacked parallel to each other. Indefinite stacks of unit layer in face-to-

face orientation form a crystal lattice. The distance between the plane in one layer and another 

plane in the next layer is known as basal or c-spacing d(00l). Each sheet in the unit layer is held 

together through covalent bonding, which makes unit layer stable. 

 

 

 

 

Figure 2-1 Schematic illustration of clay structure 

 

 

 

Crystals of clay particle carry a charge, and the main contribution to the surface charge of 

clay layers is the permanent negative charge on the basal planes due to the isomorphic 

substitutions of certain atoms in their structure for other atoms of a different valent [136]. In the 

tetrahedral sheet, the replacement of Si
4+

 for Al
3+

 occurs, which results in localized charge 

distribution, while either Mg
2+

 or Fe
2+

 replaces Al
3+

 in the octahedral sheet [137]. This leads to 
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charge deficiency and a negative charge is created on the surface of clay. Aroused negative 

charges can be compensated by naturally absorbed cations such as Na
+
 and K

+
.  Additional polar 

sites, mainly octahedral Al-OH and tetradral Si-OH groups, are situated at the broken edges 

[137]. These amphoteric sites are conditionally charged, and variable charges can be promoted 

by direct H
+
 or OH

-
 migrated from aqueous media.   

As described, isomorphic substitution associated with the structural characteristic in the 

clay particle intrigues surface charge anisotropy in the clay, representing negatively charged face 

and pH-variable edge site. The surface charge anisotropy between the face and edge in the clay 

develops unique interparticle associations in the clay suspension. As illustrated in Figure 2-2, 

when a suspension of clay particles flocculates (>3wt% clay in a given suspension), three 

different association modes possibly take place, which are i) face-to face (F-F), ii) edge-to-edge 

(E-E), and iii) edge-to-face (E-F). F-F and E-E interactions occur through attraction between 

adjacent clay platelet by Van der Waals forces, while electrostatic forces between the negatively 

charged faces and the positively charged edges give rise to E-F association mode. F-F 

association which brings about thicker and larger flakes decreases in the gel strength due to 

minimizing the number of platelet units to participate in constructing gel structure and surface 

area necessary for interaction between platelets. Meanwhile E-F and E-E interparticle 

associations promote to build a gel-like structure with three dimensional voluminous ‘cardhouse’ 

in the clay suspension. The particle association between clay platelets determines the rheological 

behavior of the clay-based fluid system and this will be discussed in experimental section.   
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Figure 2-2 Association modes of individual clay platelet 

 

 

 

2.2.2 Estimating rheological properties of fluid systems 

2.2.2.1 Flow behavior of clay suspension 

 

The flow behavior of any system is illustrated in terms of the relationship between the 

shear stress τ and the shear rate . The shear stress is stated precisely as the tangential force 

applied per unit area, and the shear rate is defined as the change of shear strain per unit time. The 

ratio of shear stress τ to shear rate  is defined as viscosity η. In other words, η indicates a 

measure of the resistance to flow of fluid suspension. 
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                                                                         η =                                                                   (2.1) 

Figure 2-3 depicts fluid behavior of five different types of fluid systems: Newtonian, 

pseudoplastic, Bingham plastic, Bingham, and Dilatant. The Newtonian which the shear stress is 

directly proportional to shear rate, reveals constant viscosity, whereas viscosity of other types of 

fluid behavior called non-Newtonian fluids could be varied with shear rate. Correlation between 

shear stress and shear rate of aqueous clay suspensions basically follows the Bingham plastic 

behavior [138]. 

 

 

 

 

Figure 2-3 Consistency curves for four different types of flow systems 

 

 

 

The Bingham model postulates that a finite stress should be applied to initiate flow and 

the flow will become Newtonian at greater stresses. Hence, the resistance of the fluid suspension 

to flow can be set as two regimes; i) a Newtonian regime in which the shear stress is proportional 
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to the shear rate and ii) a non-Newtonian regime in which the shear stress is constant regardless 

of the increase in shear rate. The Bingham model is expressed as follow: 

 

                                                                  τ = τB + ηpl                                                               (2.2) 

where, ηpl is the plastic viscosity, which is determined by the slope of the curve, and τB is the 

Bingham yield stress estimated from the intercept of the flow curve at high shear rate. The other 

models describing the rheological behavior of clay suspensions are the Casson equation [139] 

 

                                                          τ 
1/2

 = k0 + k1
1/2

                                                      (2.3) 

 

and the Herschel-Bulkley equation [140]. 

 

                                                              τ = τy + K
n
                                                                 (2.4) 

 

where yield stress is τy, flow consistency is K, and flow behavior indices are n. Both models have 

been employed to provide a description to the consistency curves of the clay based fluids [141]. 

In both cases, the given suspension has an initial yield stress at low shear rates. As shear rates 

increases to high regime, flow behavior of the suspension exhibits shear thinning type behavior 

leading to a decrease in viscosity. 
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2.2.2.2 Viscoelastic behavior – oscillatory shear 

 

An applicable way to investigate particle-particle interaction in clay suspension is to 

confirm viscoelastic behavior [133]. Among the various measurements for the rheology test, this 

approach is affordable to obtain qualitative information on interparticle interactions including the 

gel strength of clay suspensions, the gelation mechanism, and the possible structures that are 

formed in the suspensions. Oscillatory experiments are used to monitor the viscoelastic behavior 

of clay suspensions. This test allows measuring the response of viscoelastic materials to small 

amplitude oscillatory shear. When small amplitude sinusoidal oscillation is applied to the system, 

stress and strain can be measured simultaneously. By measuring the time lag of frequency Δt, it 

is feasible to attain the phase angle shift δ: 

 

                                                                               δ = Δtω                                                             (2.5) 

 

where ω is the frequency in radians per second, which is given by: 

 

                                                                        ω = 2πν                                                               (2.6) 

 

where ν is the frequency in terms of Hertz. 

In oscillatory shear, a complex shear modulus G* is described through the equation: 

 

                                                         τ (t) = G*(ω)γ(t)                                                       (2.7) 
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where G* is a function of the oscillation frequency ω. For an applied oscillatory strain, the stress 

will possess a similar form, but its phase will be in advance of the strain by an angle of δ. 

Equations in this case are: 

 

                                                γ(t) = γoiexp(iωt) = γosinωt                                                 (2.8) 

                                               τ (t) τoiexp[i(ωt + δ)] = τosin(ωt + δ)                                          (2.9) 

 

where γo and τo are the amplitude of the imposed strain and the amplitude of the sensed stress, 

respectively. In a complete elastic system, the stress is exactly in phase with the strain (δ=0), 

while in a complete viscous liquid, it is exactly out of phase with the strain (δ=90
o
). For a 

viscoelastic system, the phase angle shift lies on a certain point between elastic and viscous 

systems. From the equations above, the following relations can be derived; 

 

                                              G′ = |G*|cos δ                                                       (2.10) 

                                              Gʺ = |G*|sin δ                                                       (2.11) 

                                              G* = G′ + iGʺ                                                       (2.12) 

  

where i =  

 G′ and Gʺ represent the storage modulus and loss modulus that corresponds to elastic and 

viscous response, respectively. The storage modulus G′ indicates a part of modulus in phase with 

strain and this physically means elastically stored energy during a deformation. The loss modulus 

is attributed to the modulus that is out of phase with the strain and implies a measure of the 
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dissipated energy in a cycle of deformation. Figure 2-4 gives a typical small amplitude 

oscillation result of a viscoelastic fluid system. 

 

 

 

 

Figure 2-4 Measurements of viscoelastic behavior in small amplitude oscillatory method 

 

 

 

In the strain regime with G′ > Gʺ, the given fluid system has gel-like behavior, while in 

the strain regime showing G′ < Gʺ, it exhibits liquid-like behavior. The small amplitude 

oscillation experiment also provides a transition point from gel-like to liquid-like behavior of a 

viscoelastic fluid system (G′ = Gʺ).  
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2.3 EMBEDDED CLAY HYBRID NANOPARTICLES 

2.3.1 Sample preparation 

2.3.1.1 Materials and chemicals 

Na
+
 - montmorillonite (Kunipia F, Kunimine Corp.) was used as starting material to 

fabricate metal oxide nanoparticle-clay hybrid particles. The chemical formula of Kunipia F is 

Na0.35K0.01Ca0.02(Si3.89Al0.11) (Al1.60Mg0.32Fe0.08)O10(OH)2·nH2O, and its cation exchange 

capacity (CEC) is 100 mequiv/100 g. Embedded nanoparticles were synthesized from 

FeCl3·6H2O, AlCl4·6H2O, Si-(OC2H5)4, and NaOH, which were obtained from SigmaAldrich 

and J.T. Baker. Aqueous clay fluids, were prepared by mixing hybrid particles and bentonite 

(H2Al2O6Si, CAS 1302-78-9, SigmaAldrich). 

 

2.3.1.2 Synthesis of nanoparticle-clay hybrids 

In this study, two different types of nanoparticle clay hybrid particles were prepared 

through the intercalation of metal polycations into the interlayer space of the clay and the 

subsequent thermal annealing. A detailed synthesis process of the hybrid particles is as follows. 
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Iron oxide clay hybrid (ICH) particles 

Iron oxide clay hybrid (ICH) particles were synthesized following the procedure that was 

precisely described elsewhere [110]. Fe polycation solution was prepared by dissolving an 

aqueous solution of 0.2 M FeCl3·6H2O and that of 0.4 M NaOH at 70 
o
C. An intercalation 

process was carried out by mixing Fe polycation solution with Na
+
- montmorillonite at 70 

o
C to 

intercalate Fe polycations into the interlayer space of Na
+
- montmorillonite. The resulting 

particles were collected and excessive polycations on the surface were washed out with D.I. 

water several times. The hybrids were then dried and subsequently annealed at 450 
o
C in an 

atmosphere of N2 to fully transform intercalated Fe polycations into embedded iron oxide 

nanoparticles. 

 

Aluminosilicate nanoparticle-clay hybrid (ASCH) Particles 

We also prepared the hybrid particles in which aluminosilicate nanoparticles were 

embedded into the interlayer space of Na
+
-montmorillonite (Al2O3-SiO2 clay hybrid (ASCH) 

particles). An Al polycations solution was prepared by slowly mixing an aqueous solution of 0.2 

M AlCl3·6H2O and 0.2M NaOH. The molar ratio of OH
-
/Al

3+
 in the Al polycation solution was 2 

[142]. The mixture solution was stirred vigorously for 24 h at room temperature and mixed with 

Si(OC2H5)4 to prepare the aqueous hydroxy silico-aluminum polycation solutions in which the 

molar ratio of Al/Si is 1. These hydroxy silico-aluminum polycations were mixed with the Na
+
-

montmorillonite to intercalate the prepared polycations into the interlayer space of Na
+
-

montmorillonite. After the intercalation process, the hybrid particles were washed, freeze-dried, 

and thermally annealed at 400 
o
C in a N2 atmosphere to fully convert the polycations into the 

aluminosilica nanoparticles. 
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2.3.2 Characterization 

2.3.2.1 Characterization of hybrid particles 

To examine the effect of the hybrid particles on the rheological properties of clay-based 

fluids, we prepared the aqueous clay fluids by dispersing bentonite and hybrid particles in D.I. 

water. In aqueous fluids containing particle suspensions, bentonite (Aldrich, USA) was selected 

as a main clay component. After the solid particles were poured into D.I. water, the suspensions 

were agitated for 30 min by a mechanical stirrer and were subsequently sonicated for 30 min by 

an ultrasonic horn. All processes were performed at room temperature. Solid contents in five 

different fluids were (i) 5 wt % bentonite (5B), (ii) 5 wt % bentonite and 0.5 wt % ICH particles 

(5B-0.5ICH), (iii) 5 wt % bentonite and 0.5 wt % ASCH particles (5B-0.5ASCH), and (iv) 5 wt 

% bentonite and 5 wt % ASCH particle (5B-5ASCH). To control the net surface charge of the 

particles in the fluids, we also adjusted the pH of the fluids by adding NH4OH or HCl (J.T. 

Baker). 

 

2.3.2.2 Characterization of rheological properties 

The influence of hybrid particle additives on the rheological behavior was measured by a 

rheometer (MCR 301, Anton paar, Austria) installed with a high-temperature, high-pressure 

(HTHP) cell. Measurements were performed at temperatures ranging from 25 to 200 
o
C and at 

pressures between 1 and 100 bar. In the steady state measurement, the shear rate was increased 

from 1 to 200 s
-1

, the step size was 4 s
-1

 and the duration time at each step was 10 s. In order to 
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explore the viscoelastic properties of the fluids, a small amplitude oscillatory test was also 

conducted as the amplitude of the oscillatory strain was increased from 0.001% to 100% at a 

fixed angular frequency of 10 rad/s. Prior to the oscillatory measurement, the fluids were 

presheared at the shear rate of 50 s
-1

 for 300 s and aged for 5 min. 

2.3.3 Results and discussions 

2.3.3.1 Structure of ICH and ASCH particles 

 

Low angle XRD patterns of as-grown hybrid particles are shown in Figure 2-5. The 

interlayer spacing can be estimated from the basal spacing d(001) of the samples, which is 

determined from (00l) reflections in low-angle X-ray diffraction patterns. A change in the 

interlayer space of the intercalated hybrids estimated by tracking the position of (001) peaks 

provides strong evidence for the intercalation of polycations [143]. Compared with pristine 

montmorillonite (Figure 2-1a), both ICH (Figure 2-1b) and ASCH (Figure 2.1c) particles show 

the shift of (001) peak to the lower angle. The basal distance of 0.96 nm in pristine 

montmorillonite, was increased to 1.94 nm in ICH and 2.05 nm in ASCH. This expansion of the 

interlayer space indicated that Na
+
 ions in the montmorillonite were successfully replaced with 

larger oxide nanoparticles in the hybrid particles. XRD results showed that the size of embedded 

nanoparticles was about 2 nm after the intercalation process. Figure 2-6 shows high angle XRD 

patterns of the pristine montmorillonite and the hybrid particles. Additional reflections that 

appeared in ICH are indexed as the rhombohedral hematite phase (α-Fe2O3). This attests to the 

formation of the oxide nanoparticles within the interlayer space. In the case of ASCH, no 
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crystalline phase appeared after ASCH particles were annealed at 400 
o
C. In general, it has been 

reported that Al2O3 possess a high thermal stability, which initiates phase transformation from 

amorphous to γ-Al2O3 at 500-600 
o
C; and some oxide materials such as SiO2, Cr2O3, and La2O3 

inhibit phase transformation of Al2O3 [144-148]. Therefore, the amorphous nature of 

aluminosilicate nanoparticles shows that Al and Si are uniformly mixed to form the solid 

solution. 

 

 

 

 

Figure 2-5 Low-angle X-ray diffraction patterns of pristine Na+-montmorillonite and hybrid 

particles; (a) pristine clay, (b) as-grown ICH, and (c) as-grown ASCH particles 
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Figure 2-6 High-angle X-ray diffraction patterns of pristine Na+-montmorillonite and hybrid 

particles: (a) pristine clay, (b) 450 
o
C annealed ICH, and (c) 400 

o
C annealed ASCH particles (H: Hematite) 

 

 

 

2.3.3.2 Microstructures of clay fluids containing hybrid particles 

 

The effect of the hybrid additives on the formation of the clay networks was examined by 

analyzing the microstructure of the solid suspension. To investigate the particle network in the 

suspension, the fluids were quickly frozen by pouring liquid nitrogen and the frozen solids were 

dried at -45 
o
C. This process enabled us to preserve the particle network in the suspension. 

Figure 2-7 shows scanning electron microscope (SEM) micrographs of the freeze-dried solids. 

The fluid consisting of only bentonite (Figure 2-7a) has an entangled ivy-like internal structure 

with the irregular shape of interparticle pores. When 0.5 wt % ASCH is added to 5 wt % 

bentonite suspension, the zigzag type connection of the clay particles disappear and the clay 

particles randomly stack (Figure 2-7b). However, a very different internal structure of the solid is 
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found in freeze-dried 5B-0.5ICH (Figure 2-7c). Individual platelike particles were cross-linked 

and a relatively well-oriented pore structure was developed. 

 

 

 

 

Figure 2-7 SEM micrographs of freeze-dried solids of (a) 5B, (b) 5B-0.5ASCH, and (c) 5B-0.5ICH 

 

 

 

2.3.3.3 Effect of clay hybrid particles on the rheological properties of aqueous clay fluids 

 

The flow behavior of any system is illustrated in terms of the relationship between the 

shear stress τ and the shear rate γ. The shear stress is defined as the tangential force applied per 

unit area, and the shear rate is defined as the change of shear strain per unit time. The ratio of 

shear stress to shear rate is defined as viscosity η. In other words, η is a measure of suspension 

fluid’s ability to dissipate momentum within a fluid flow. Correlations between shear force and 

shear strain in fluids can be categorized as Newtonian, pseudoplastic, Bingham plastic, Bingham, 

and dilatant behaviors. The Newtonian model assumes that shear stress is directly proportional to 

shear rate; it therefore follows that a Newtonian fluid possesses a constant viscosity, whereas the 

viscosity of fluids described by non-Newtonian models is dependent on the local shear rate of the 
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fluid. In this study, the correlation between shear stress and shear rate is explained by using the 

Bingham plastic behavior. The effect of the hybrid particles on the shear rate-viscosity 

correlation in the aqueous fluids under atmospheric pressure is presented in Figure 2-8.  

 

 

 

 

Figure 2-8 Viscosity vs. shear rate curves of the fluid samples at 25 oC under atmospheric pressure 

 

 

 

When NH4OH or HCl was not added to the fluid, the pH of the fluids was in the range of 

8-8.5. In comparison with the reference fluid (5B), the viscosity of 5B-0.5ICH suspension 

increased almost by one order of the magnitude. In contrast, the addition of 0.5 wt % ASCH into 

5 wt % bentonite fluid decreased the viscosity of the fluid by about 50% as the shear rate 

increased from 20 to 200 1/s. The change in the yield stress also attests to the opposite effect of 

ICH and ASCH on the rheological properties. A yield point which is a transition point to a 

plastic flow shows the binding strength of the coagulated clay network structure in the fluid. The 

shear stress at the yield point was obtained by extrapolating shear stress vs shear strain curves as 

illustrated in Figure 2-9.  
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Figure 2-9 Schematic illustration of acquisition of yield point using the tangent in the linear-elastic 

deformation 

 

 

 

The yield stress of 5B, 5B-0.5ICH, and 5B-0.5ASCH was 1.27, 0.98, and 12.05 Pa, 

respectively. The small amount of ICH additive significantly increased the yield stress, but the 

decrease in the yield stress was observed in 5B-0.5ASCH. High viscosity and yield stress of clay 

fluids are mainly due to the electrostatic attraction between negatively charged faces and 

positively charged edges of the platelike clay [149]. Hence, the dramatic change in the viscosity 

and yield stress of the fluids imply that the added hybrid particles modify the interparticle force 

in the clay suspension. As shown in Figure 2-7 on SEM micrographs of the freeze dried samples, 

the hybrid particles can develop a stable and robust gel network in the fluid. To scrutinize the 

interparticle interaction, the viscoelastic behavior of the fluid was measured by a small amplitude 

oscillatory test at a fixed angular frequency of 10 rad/s. Figure 2-10 shows the relation between 

storage modulus (G′) and strain (ε). In the investigation of viscoelastic behavior of fluid systems, 

the storage modulus (G′) and loss modulus (G″) represent the elastic and viscous response of a 



 55 

given fluid system [150]. The storage modulus related to the internal motion of material and the 

linear viscoelastic region that corresponds to a plateau in the G′-ε curve, represents the stability 

of fluid system [151]. G′ of 5B-0.5ICH showing a long linear viscoelastic region (LVR) was 5-6 

times larger than that of 5B in the range of strain from 0.1 to 100%. In contrast, G′-ε curve of 

5B-0.5ASCH did not show LVR and G′ continuously decreased with an increase in ε. Longer 

LVR in 5B-0.5ICH suggests that the addition of ICH fortifies the coagulated network structure 

and enhances the stability of the clay suspension. ASCH oppositely influenced on the rheological 

properties of the clay suspension and turned the fluid to be more viscous. This trend is also 

observed in the flow stress of the clay suspension.  

 

 

 

 

Figure 2-10 Storage modulus vs. strain amplitude curves of the fluid samples at fixed frequency (10 

rad/s) 
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Figure 2-11 presents the change in G′ and G″ plotted as a function of shear stress yielding 

from the amplitude oscillatory test shown in Figure 2-10. In this plot, a critical point at which the 

storage modulus becomes equivalent to the loss modulus is called a flow point. The shear stress 

at the flow point is can be used in an alternative method to determine the magnitude of the 

external shear stress which is needed to transform the fluid from the elastic state to the viscous 

state [151]. Therefore, the strength of the interparticle interaction and the particle network in the 

fluids can be evaluated by monitoring the transition of the fluids from a solid-like elastic state to 

a liquid-like viscous state [152]. The flow stress increased from 1.44 Pa (5B fluid) to 8.02 Pa 

(5B-0.5ICH fluid). However, the flow stress for 5B-0.5ASCH was only 0.12 Pa, which is 

consistent with other measurement results suggesting that ACSH prevents the coagulation of the 

clay in the fluid and weakens the strength of the network structure. 

 

 

 

 

Figure 2-11 Change in storage (G′) and loss modulus (G″) of fluid samples as a function of the shear 

stress; (a) 5B, (b) 5B-0.5ASCH, and (c) 5B-0.5ICH suspensions 
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2.3.3.4 Change in the viscosity of the clay fluids at high temperature and high pressure 

 

One of the main applications of fluids containing clay particles is to control the rheology 

of water during the subterranean drilling. Therefore, there are interests on the change in the 

viscosity at the high temperature and pressure conditions found deep underground. Hence, we 

performed high-temperature, high-pressure studies. In addition to the properties under 

atmospheric pressure at 25 
o
C, the viscosity of the clay suspensions was measured as a function 

of temperature at the pressure of 100 bar. Temperature dependence of the viscosity is shown in 

Figure 2-12. In pure bentonite fluids above 100 
o
C (Figure 2-12c), the increase in the 

temperature increased the viscosity and yield stress of the fluid; however this effect was not 

found to be significant for fluids below 100 
o
C. This has been attributed to the fact that the 

change in the ionic activity at high temperature promotes the flocculation of the clay particles 

[153,154]. Briscoe et al. suggested that heating the bentonite suspensions increased the 

conductivity of the fluid system, which is attributed to rise of Na
+
 concentration dissolved from 

the surface of the particles. An increase in content of Na
+
 by the raise of temperature leads to 

increase in yield stress and viscosity of clay suspensions [96-98]. 
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Figure 2-12 (a) 5B, 5B-0.5ASCH, 5B-0.5ICH at 25 
o
C, atmospheric pressure, (b) 5B, 5B-0.5ASCH, 

5B-0.5ICH at 25 
o
C, 100 bar, (c) 5B, at 20-200 

o
C, 100 bar, (d) 5B-0.5ASCH, at 20-200 

o
C, 100 bar, (e) 5B-

5ASCH, at 20-200 
o
C, 100 bar, (f) 5B-0.5ICH at 20-200 

o
C, 100 bar 

 

 

 

As shown in panels (a) and (b) in Figure 2-12, the effect of high pressure is not as 

pronounced as that of high temperature, though the compression of the liquid media slightly 

increased the viscosity and yield stress of 5B and 5B-0.5ASCH [155-157]. The viscosity of 5B-
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0.5ICH was primarily affected by an increase in temperature. However, the addition of ASCH 

suppressed the increase in viscosity and yield stress at higher temperature. To confirm the role of 

the ASCH additive, the amount of ASCH in the clay fluid was increased from 0.5 to 5 wt %. 

When the 5 wt % of ASCH was added to the 5 wt % bentonite fluid, the viscosity of the fluid 

was increased slightly than that of the 5B-0.5ASCH fluid, and lost its dependence on 

temperature. This suggests that addition of ASCH prevents the continuous gel structure of the 

clay and makes the clay particles well-dispersed even in the fluid of 200 
o
C with high ionic 

concentration. 

 

2.3.3.5 Effect of pH on the rheological properties of clay fluids containing hybrid particles 

 

The change in the rheological properties of the clay fluids implies that the hybrid 

additives modify the coagulation behavior of the bentonite fluid. Given that the electrostatic 

interactions between platelike clay particles could be mainly affected by pH variation, we 

examined this hypothesis by varying the pH of the fluids. The viscosity and yield stress of the 

fluids were measured as a function of pH; the results are summarized in Figure 2-13 and Table 2-

1. Compared to pure bentonite and ICH fluids, the viscosity and yield stress of ASCH fluid are 

strongly depended on the pH of the fluid. Their viscosity and yield stress were larger at pH 5 

than at pH 8 and 10 by more than one order of magnitude. 
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Figure 2-13 Viscosity vs. shear rate curves of the fluid samples with respect to change of pH: (a) 5B, 

(b) 5B-0.5ASCH, (c) 5B-5ASCH, and (c) 5B-0.5ICH suspensions 

 

 

 

Table 2-1 Variation of yield stress of the prepared fluid samples with respect to change of pH 

  Yield stress (Pa)  

Fluids samples pH5 pH8 pH10 

5B 1.52 1.27 1.20 

5B-0.5ASCH 2.91 0.98 0.91 

5B-5ASCH 67.51 7.69 4.32 

5B-0.5ICH 11.07 12.05 10.58 
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2.3.3.6 Evolution of different surface charge on hybrid additives 

 

The association of the platelike clay in water is attributed to the evolution of both positive 

and negative electric charges on the surface of the clay in fluids. The surface charge distribution 

of plate-like montmorillonite (or bentonite) consists of permanent negative charge at the face 

(charge-invariable) and pH-dependent positive charge at the edge (charge-variable). On the edge 

of platelets, the layers of octahedral Al-OH and tetrahedral Si-OH groups have broken links and 

dangling bonds at the end [137]. The broken links are amphoteric sites, because variable charges 

are conditionally developed at the edge. Concentrations of H
+
 or OH

-
 which depend on the pH of 

the aqueous fluids determine the polarity of the broken links. The evolution of the charge at the 

edge of the platelets under different pH is expressed as follows 

 

At low pH ([H
+
] > [OH

-
]) : Al – OH + H

+
 → Al – OH2

+
 (positively charged edge surface)   (2.13) 

At high pH ([H
+
] < [OH

-
]) : Al – OH + OH

-
 → Al – O

-
 (negatively charged edge surface)   (2.14) 

Si – OH + OH- → Si – O- (negatively charged edge surface)       (2.15) 

 

A question of the interest is how the intercalation of the oxide nanoparticles changes the 

charge distribution of the hybrid particles. To inspect the variation in surface charge with respect 

to pH, we investigated the zeta potential of bentonite, ICH, and ASCH in 1mM KCl electrolyte 

as a function of pH. Zeta potential can be utilized to estimate the effect of the particle charge on 

such as aggregation, flow, sedimentation, and filtration behaviors and also can be used to 

evaluate the effects of various reagents on the properties of the colloid suspension [158]. 

Generally, colloidal particles with |zeta potential| >30 mV are considered stable. The results are 
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shown in Figure 2-14. The zeta potential of the platelet clay particles is a net surface charge, 

which is determined by a difference between the negative face charge and positive edge charge 

[158]. Al2O3-SiO2 clay hybrid particles became more negatively charged in higher pH, which is 

in good agreement with eqs 1-3. In comparison, the negative charge of iron oxide clay hybrid 

particles exhibited marginal variation in a given pH range. The zeta potential of ASCH particles 

showed a dramatic decrease with an increase in pH and saturated at about -45 mV in pH ≥8. This 

variation can be explained by the surface charge of Al2O3-SiO2 nanoparticles embedded within 

the interlayer of montmorillonite [159]. The surface charge of Al2O3-SiO2 nanoparticles stays 

negative at pH >2. This negatively charged surface of embedded Al2O3-SiO2 nanoparticles 

makes the overall charge of ASCH particles to be more negative than that of pure 

montmorillonite particle. When Fe2O3 nanoparticles were intercalated, the surface charge of ICH 

particles became much more positive than that of ASCH particles in whole range of pH. This is 

attributed to the high isoelectric point (IEP) of Fe2O3 nanoparticles. Because the surface of Fe2O3 

nanoaprticles is positively charged in water, the edge of ICH particles is positive even at pH ∼8, 

where pure montmorillonite shows the negative charge at the edge surface. These results suggest 

that the surface charge of oxide nanoparticles intercalated within the interlayer of the clay 

particles has an important effect on the net charge of the hybrid particles through changing the 

charge at the edge surface. 
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Figure 2-14 Variation of zeta potential of bentonite, ASCH, and ICH particles as a function of pH 

 

 

 

2.3.3.7 Role of the surface charge of hybrid additives on the gel structure of the clay fluids 

 

Differences in the net surface charge and pH dependence of the hybrid particles explain 

the role of the hybrid particles as rheology controlling additives in the aqueous bentonite fluids. 

The association of the clay platelets in the fluids occurs through several modes: edge-to-face (E-

F), edge-to-edge (E-E), and face-to-face (F-F) flocculation [160]. The F-F type association that 

brings about the precipitation of thick clay flakes weakens the gel strength because of (i) the 

decreased number of the clay particles that participate in constructing the gel structure and (ii) 

the decreased surface area of aggregate that is necessary for interplatelet interactions. In contrast, 

the E-F and E-E association of platelets promote the gel-like structure and form the three-

dimensional voluminous “house-of-card” structure within the fluid [149]. A correlation between 
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the zeta potential and the viscosity in hybrid particle added bentonite fluids reveals that more 

negatively charged edge surface of the hybrids lowers the viscosity of the aqueous fluids. As 

shown in 5B-0.5ICH, the development of the positive charge at the edge surfaces that is 

manifested by the increase in the net surface charge increases the viscosity and yield stress of the 

fluid. The positively charged edges of the hybrid additives produce attractive interactions with 

the negatively charged face of the bentonite, leading to the construction of the three-dimensional 

‘house-of-card’ structures. However, more negatively charged edges of the hybrids generate a 

repulsive force between hybrid and bentonite particles and consequently prevent the coagulation 

and the network structure formation in the bentonite fluid. As illustrated in Figure 2-15, this 

repulsive interparticle force between negatively charged surfaces reduces both viscosity and 

yield stress, as shown in 5B-0.5ASCH at pH 8 and 10. For ICH particles, the variation of zeta 

potential at pH 5-10 was marginal and the stabilized positive charge at the edge surfaces 

strengthens E-F association. This explains the internal microstructure of 5B-0.5ICH showing the 

well-developed porous network that is the origin of its high viscosity and yield stress. 
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Figure 2-15 Schematic illustration of (a) particles association in 5B-0.5ASCH and (b) “house-of-card” 

structure in 5B-0.5ICH fluid 
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2.4 IRON OXIDE NANOPARTICLES DECORATED CLAY 

2.4.1 Sample preparation 

2.4.1.1 Materials synthesis  

Na
+
-montmolionite (Kunipia F, Kunimine Corp) was used as a starting clay material. It 

has the chemical formula Na0.35K0.01Ca0.02(Si3.89Al0.11)(Al1.60Mg0.32Fe0.08)-O10(OH)2nH2O and a 

cation exchange capacity (CEC) of 100 mequiv/100g. FeO(OH) (Aldrich), olecic acid 

(Mallinckro) and 1-octadecene were used to synthesize iron oxide nanoparticles. All the 

chemicals were used without further purification. 

Oranopilization of the clay: the Na
+
-montmorillonite was dispersed in water containing 

the cationic surfactant, cetyl trimethylammonium bromide (CTAB) at room temperature. The 

weight ratio of the montmorillonite/water was 1:50 and the amount of CTAB was calculated to 

completely exchange cations in the montmorillonite. The temperature of the solution was then 

increased to 80 
o
C, and the solution was vigorously stirred for 4 h. The resulting CTAB 

intercalated clay was filtered and washed several times with distilled water before being dried at 

60 
o
C in a vacuum for 24 h. Then the agglomerated particles were ground with a mortar. 

Synthesis of the Fe2O3 nanoparticles [161]: Magnetite nanoparticles were synthesized in 

a three-neck flask equipped with a condenser, magnetic stirrer, thermocouple and heating mantle. 

A mixture of 0.178 g FeO(OH) fine powder (2.00 mmol), 2.26 g oleic acid (8.00 mmol) and 5.00 
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g 1-octadecene was heated to 320°C and reacted for 1 h during vigorous stirring. The resulting 

oleic acid coated iron oxide nanoparticles were collected by centrifugation and were then washed 

several times with ethanol (EtOH). The residual liquid was frozen and sublimed at -50 
o
C in a 

vacuum for 24 h. 

2.4.1.2 Fluid preparation and characterization 

Preparation of the magnetic fluid: The oleic acid coated magnetite nanoparticles were 

attached to the surface of organoclay plates in mineral oil. First, 0.5g of the oraganoclay powder 

was slowly added to 20ml mineral oil, and the mixture was sonicated to exfoliate organoclay. 

The resulting exfoliated organoclay plates were well dispersed in the mineral oil and 0.5g oleic 

acid coated magnetite nanoparticles were added into the solution of exfoliated organoclay. The 

mixture was then sonicated for 1h to promote the attachment of the magnetite nanoparticles to 

the surface of the organoclay. 

The shape and crystal structure of the synthesized materials were characterized using x-

ray powder diffraction (XRD, a Philips PW 1810 diffractometer with Cu Kα radiation, λ=1.542Å, 

40 kV, 30 mA), transmission electron microscopy (TEM, Jeol 200CX), and photocorrelation 

spectroscopy (PCS) (Horiba LB 550). The magnetic properties of the materials were measured 

using a vibrating sample magnetometer (VSM, LakeShore 7400). Rheology measurements of the 

particle dispersed fluid were performed by a rheometer (Anton Parr, MCR 300) with a 

magnetorheological cell. To examine the effect of a magnetic field on the rheology of the fluids, 

a homogeneous magnetic field was set perpendicular to the direction of shear flow during the 

rheology measurement. 
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2.4.2 Results and discussions 

2.4.2.1 Characterization of structure, morphology, and magnetic property of prepared 

nanoparticle-clay composite 

 

Figure. 2-16 shows the x-ray diffraction (XRD) patterns for the pristine clay; the 

organoclay, that is, the clay intercalated with CTAB; and the nanocomposite clay, that is, the 

organoclay decorated with magnetic nanoparticles. When the CTAB molecules were dissociated 

in water, cetyl trimethylammonium cations replaced the alkali or alkali earth cations within the 

interlayer space of montmorillonite [162]. Hence, the (001) reflection of the montmorillonite 

phase shifted from 2θ = 7.2
o
 to 2θ = 5.9

o
. The basal spacing along the c-axis was calculated to be 

12.4 Å  for pristine clay and 14.8 Å  for the CTAB treated organoclay using the XRD patterns. An 

inset shows the XRD pattern of nanoparticle decorated organoclay. The reflections of the 

magnetite in the XRD pattern of the nanocomposite clay indicate that iron oxide nanoparticles 

were well bonded to the organoclay via attractive interaction between hydrophobic nanoparticles 

and the organoclay. Since the basal spacing of organoclay (~1.5 nm) is much smaller than the 

diameter of magnetite nanoparticles (~7.5 nm), the nanoparticles mainly bonded to the surface of 

the exfoliated organoclay platelets.  
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Figure 2-16 XRD patterns of (a) pristine clay, (b) CTAB-treated clay (organo clay) and (c) CTAB-

treated clay and OA-treated iron oxide nanoparticles. The inset shows XRD pattern in the range of 30-40 

(2theta) from (c) 

Figure 2-16(a) and (b) show the TEM micrograph and particle size distribution
 
of the 

OA-treated iron oxide nanoparticles. Spherical nanoparticles show a uniform size distribution, 

with a mean diameter of 7.5nm. Fig. 2-16(c) provides a TEM micrograph of the pristine clay 

where 2-dimensional layers of exfoliated clay are found. To observe the microstructure of the 

iron nanoparticles and organoclay, we carried out HT-TEM observation of a cross-sectional 

image. Fig. 2-16(d) shows a lattice image of the exfoliated clay 4nm in size and the nanoparticles 

7nm in size.  
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Figure 2-17 TEM images and particle size distribution: (a) OA-treated iron oxide, (b) size 

distribution of OA-treated iron oxide, (c) pristine clay, and (d) OA-treated iron oxide and CTAB-treated clay 

 

 

 

Photographs of the oil based fluids containing the three different particles (CTAB treated 

organoclay, OA treated magnetite nanoparticles, and magnetite nanoparticle decorated 

organoclay) and schematics of the structure of the particles dispersed in the fluid are shown in 

Figure 2-18. All of the particles were well dispersed in the mineral oil, with no segregation over 

a 30-day period. 
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Figure 2-18 Sample image for fluids containing modified particles in mineral oil and their 

microstructure from the TEM 

 

 

 

Figure 2-19 shows the M-H curves of the iron oxide nanoparticle decorated organoclay. 

Its saturation magnetization (σs) was 42 emu g
-1

, which is half the saturation magnetization of 

magnetite (~80 emu g
-1

) [163,164]. This indicates that the magnetite content in the composite is 

about 50 wt%. The coercive field of the composite material in the inset of Figure 2-19 is almost 

zero, which agrees well with a well-known very small coercive field of the magnetite 

nanoparticles [165,166].  
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Figure 2-19 Magnetic property of heterostructured sample of OA-treated iron-oxide and CTAB-

treated clay 

 

 

 

2.4.2.2 Magnetorheological property of iron oxide nanoparticle decorated organoclay fluid 

 

The rheological properties of the mineral oil based fluids containing 1 wt% OA treated 

magnetite nanoparticles, CTAB treated organoclay, and magnetite nanoparticle - organoclay 

mixture were also measured. In Figure 2-20, the viscosity and shear stress of the fluids are 

plotted as a function of shear rate. Both the CTAB treated organoclay fluid and magnetite 

nanoparticle - organoclay mixture fluid show thixotropic behavior. Specifically, viscosity 

dramatically decreased as shear rate increased. In contrast, the fluid containing 1wt % OA-

treated iron oxide nanoparticle exhibited typical Newtonian fluid behavior, where viscosity is 

independent of shear rate. When the shear rate was 80 1/s and temperature was 25 
o
C, the 
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viscosity was 12 cp for 1wt % OA-treated iron oxide nanoparticle, 26 cp for 1wt% CTAB-treated 

clay and 38 cp for 1 wt% nanoparticle decorated organoclay. 

The dramatic change in viscosity as shear rate increased shows that the organoclay and 

nanoparticle decorated organoclay interconnected to form a network structure in mineral oil. The 

network formation and breakdown in the fluids are more quantitatively explained by measuring 

shear stress vs. shear rate relation. Shear stress curves in Fig. 2-20(b) consist of two different 

regimes. When the shear rate was smaller than 85 1/s, the slope of the shear stress – shear rate 

curves was larger for the nanoparticle decorated organoclay fluid and the bare organoclay fluid 

than for the magnetite nanoparticle fluid. The higher stress needed to produce the shear strain in 

the organoclay based fluids can be attributed to the unique network formation capability of the 

organoclay in the fluid. As the shear rate becomes larger than 85 1/s, the slope of the stress-strain 

curve becomes similar in all samples. Since the organoclay cannot be interconnected in a high 

shear rate regime, the network structure of the clay is broken and a difference in the rheological 

properties among three fluids becomes negligible. 
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Figure 2-20 (a) Viscosity and (b) shear stress vs. shear rate of fluid containing of (●) OA-treated iron-

oxide and CTAB treated clay, (■) CTAB-treated clay and (▲) OA-treated iron oxide nanoparticles 

 

 

 

Since the magnetic particles are strongly bonded to the clay using a chemical interaction, 

the clay moves with the magnetic nanoparticles when they are exposed to a magnetic field. 

Therefore, decorating the surface of the organoclay with magnetite nanoparticles provides the 

freedom to tune the rheological properties of the fluid by applying a magnetic field. In this study, 

the magnetorheological properties of the fluid were measured while the fluid was in an 

oscillating motion. This oscillatory technique is widely used in characterizing the viscoelastic 

properties of fluid systems [165, 167-169]. A correlation between storage modulus and strain 

amplitude under a magnetic field is shown in Figure 2-21 Oscillation frequency was fixed at ω = 

5 rad/s, and a sweeping strain ranged from 0.01% to 100%. A magnetic field of 0.38T was 

applied.  

To investigate the effect of the strong bond of the magnetic nanoparticles to the clay, the 

viscoelastic properties of a fluid containing only OA-treated iron oxide nanoparticles were also 

examined. Application of the magnetic field increased the storage modulus of the nanoparticle 

decorated organoclay fluid by three times. In addition, a linear viscoelastic (LVE) behavior was 
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observed in the magnetic field applied fluid when the sweeping strain was small. Storage 

modulus of the viscoelastic fluid is related to the elastic internal motion of a solid component 

[169].  The nearly constant storage modulus over small strain shows that the magnetic field 

induced a stable network of the solid components, leading to solid-like behavior. As the shear 

strain increased, the elastic behavior of the solid network could not be maintained, even under a 

magnetic field, and the loss modulus increased. A critical point at which the storage modulus is 

same as the loss modulus is called the “flow point” [167]. When a magnetic field of 0.38T was 

applied, the flow point of the fluid containing the nanoparticle decorated organoclay moved from 

10.3% to 38.1%. An increase in the flow point supports our claim that the nanoparticle decorated 

organoclay forms a strong network structure in mineral oil and maintains a solid-like behavior 

under a magnetic field.   

 

 

 

 

Figure 2-21 Storage modulus vs. strain amplitude of the fluids containing OA-treated iron oxide 

nanoparticles (b) OA-treated iron oxide and CTAB-treated clay with different magnetic field. Solid symbol 

represent storage modulus and open symbol are loss modulus 
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3.0  MIROWAVE SYNTHESIS OF 3D STRUCTURES PARTICLE  

3.1 INTRODUCTION 

Synthesis of intricate 3-dimensional (3D) hierarchical nanostructure materials with 

controlled morphology and orientation has attracted intense interest owing to their potential 

application in catalysis, drug delivery, energy storage, water treatment, and sensors [170-184]. 

Many kinds of hierarchical superstructured materials such as nano-flowers, snowflakes, and 

dendrites have been successfully synthesized and examined to explore their physical and 

chemical characteristics with respect to morphology [185-187]. In general, the simplest synthetic 

route to a 3-dimensional hierarchical structure is the oriented assembly of nanoparticles to 

decrease their surface energy by stacking nanoparticle building blocks. Therefore, it is important 

to develop simple and reliable synthetic method for hierarchically ordered architectures with 

desired morphology, which greatly acts on the properties of the final product. 

Recently, a microwave reaction has been applied to chemically synthesize nanomaterials. 

This technique offers several advantages over other conventional techniques, such as vapor–

liquid–solid (VLS), vapor phase, hydrothermal and solvothermal synthesis [188-191]. 

Microwave irradiation reduces reaction time and temperature, which is due to the molecular level 

interaction of the microwave with the reagent species [192,193]. This has allowed the 

preparation of highly crystalline nanomaterials with tailored shapes and sizes, such as uniform 
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Ag nanoparticles, microporous SnO2, TiO2 nanowires, CdTe nanocrystals, Cu3Se2 nanoplates, 

and iron oxide nanorings [194-199].  

Fe-based magnetic nanomaterials have been intensively studied for applications of 

magnetic data storage devices, magnetic resonance imaging, biomedical markers, wireless 

sensors, water treatments, and ferrofluids [200-209]. In addition to their outstanding magnetic 

properties, a very unique intrinsic property of Fe-based nanomaterials is their sulfidation ability. 

Fe-based materials are easily converted to iron sulfide, which is used to decompose hydrogen 

sulfide (H2S). Due to its toxic and flammable nature, H2S needs to be removed from waste gas 

streams of chemical plants or from byproducts of oil/gas drilling operations [210,211]. Various 

transition metal oxide materials with high catalytic activity have been utilized in H2S removal 

[212-214]. Among these materials, Fe-based materials are widely reported as strong oxidation 

reagents for H2S treatment [215,216]. Several methods have been developed to synthesize Fe3O4 

and Fe particles, which include thermal decomposition, co-precipitation, hydrothermal 

processing, reverse micelle, and sol–gel processing [217-221]. In comparison, the effect of 

microwaves on the growth of Fe3O4 and Fe particles with a hierarchical superstructure has not 

been studied yet. Herein, we demonstrate a facile microwave-assisted method to fabricate 

flower-like Fe3O4 and Fe particles. The effect of reaction parameters and annealing conditions on 

the morphology and phase of the particles were examined. A growth mechanism of hierarchical 

particles in ethylene glycol (EG)-mediated solution was proposed. Moreover, the reaction of 

flower-like particles with S
2-

 ions was tested to evaluate their efficacy as a H2S absorbent in 

water. 

In this work, utilization of flower-like Fe3O4 particles will be extended to controlling 

rheological behavior of fluid system under magnetic field. Based upon interesting fact that the 
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magnetic particles in solutions can be aligned when an external magnetic field is applied, we will 

investigate viscoelastic properties of flower-like Fe3O4-containing fluid system that can be 

rapidly and reversibly controlled by the magnetic field. Furthermore, influence of hierarchical 

morphology of flower-like Fe3O4 particles on fluid viscosity will be addressed. 
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3.2 BACKGROUND 

3.2.1 Principles of microwave irradiation 

Microwave irradiation is a form of electromagnetic radiation within the frequency range 

of 0.3 - 300 GHz. A large fraction of the microwave spectrum is reserved for the utilization in 

telecommunication and cellular phone applications. All the domestic ‘kitchen’ microwave ovens 

and all commercially available dedicated microwave reactors for the chemical synthesis are 

designed to be operated at a frequency of 2.45 GHz, which corresponds to a wavelength of 12.24 

cm. The microwaves are generated by a magnetron, comprised of an oscillator converting high-

voltage direct current into high frequency radiation (Figure 3-1). The frequency of 2.45 GHz is 

selected for two reasons. The first reason is to avoid any interference with telecommunication, 

wireless networks and cellular phones. Second, this frequency is ideal as a kitchen microwave, 

since it is attainable to manufacture corresponding magnetron at low cost, and the typical 

penetration depth in food is in the range of a few centimeters. 
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Figure 3-1 Commercially available microwave reactor for the chemical synthesis (Mars, CEM) 

 

 

 

The wavelength λ0 of a microwave (12.24 cm) is in correlation with the frequency (2.45 

GHz) through the equation (3.1). The frequency represents the number of oscillations of the 

electric or magnetic field per second [222]: 

 

                                                                      λ0 =                                                                   (3.1) 

 Microwave chemistry is based on the efficient heating of matter by so called microwave 

dielectric heating on the ability of a specific material to absorb microwave energy and to convert 

it into heat [223,224]. The heating mechanism involves two main processes; i) dipolar 

polarization and ii) ionic conduction shown in Figure 3-2. In the dipolar polarization process, an 

important property is the mobility of the dipoles and the ability to align the dipoles in a response 

to the direction of the electric field. The orientation of dipoles is altered with an oscillating 

electric field. A dipole is sensitive to external electric fields, and molecules possessing a 
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permanent dipole moment attempt to align themselves to the field by rotation with the direction 

of the field. In gases, molecules are spaced far apart and their alignment is rapid, which enables 

the molecules to rotate in time with the applied field, while in liquid medium, the rotations of 

polar molecules begin to lag behind the electric field oscillations, and this leads to producing 

resistive heating in the medium. This phenomenon is described as dielectric loss, which is the 

amount of input microwave energy that is lost to the sample by being dissipated as heat [225].  

If two samples, distilled water and tap water, are heated in a single mode microwave at a 

fixed radiation power and time, the final temperature of the tap water sample will be higher 

compared to that of the distilled water. This result is attributed to the second major interaction 

process of the electric field component with the sample, regarded as the ionic conduction. In the 

ionic conduction process, the dissolved charged particles migrate back and forth under the 

influence of the microwave irradiation and dissipate a heat by the collision with neighboring 

molecules, and therefore, create heat. It is noted that the ionic conduction process is a much 

stronger interaction than the dipolar polarization with respect to the heat-generating capacity, and 

this renders significant effect on synthesis of nanoparticles in ionic liquids [226].  
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Figure 3-2 Two main heating mechanisms under microwave irradiation: (a) dipolar polarization, (b) 

ionic conduction mechanism [226] 

 

 

 

The coupling of microwave energy in the medium depends on the dielectric properties of 

the substance to be heated. Two parameters define the dielectric properties of the substance; i) 

the dielectric constant ε′, representing the ability to be polarized by the electric field, and ii) the 

dielectric loss εʺ, describing the efficiency with which electromagnetic radiation is converted 

into heat [227]. Microwave heating can be described using a complex permittivity εг. A measure 

εг is related to the capacity C, which indicates the ability to store electric energy expressed in 

equation (3.2), 

 

                                                                   εг = C/C0                                                         (3.2) 

 

For the electromagnetic field, εг is extended by the imaginary part iεʺ via equation (3.3), 

 

                                                                 εг = ε′ + iεʺ                                                                 (3.3) 
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where i
2
 = -1. The dielectric loss factor εʺ is derived from comparing the irradiated microwave 

energy to the energy coupled with the sample. εʺ depends on the dielectric conductivity σ and the 

frequency f, 

 

                                                       εʺ =                                                               (3.4) 

The degree of energy coupling in the reaction system can be expressed as the ratio of ε′ and εʺ 

and is called loss factor (tan δ), 

 

                                                                   tan δ =                                                            (3.5) 

                                                                    tan δ ~                                                                   (3.6) 

 

The definition of the loss factor is the ability to convert electromagnetic energy into heat 

at a given frequency and temperature. Furthermore, it is in correlation with the penetration depth 

(x) of microwave irradiation into a material as shown in equation (3.6).  

According to the mechanism of energy input, dipole polarization or ion conduction, the 

loss factor is further affected by other factors, including the ion concentration, ion size, dielectric 

constant, microwave frequency, and viscosity of the reaction medium [228]. For instance, the 

loss factor of water and organic solvents diminishes with increase of temperature, owing to 

decrease in the absorption of microwave radiation in water at higher temperature. In contrast, the 

penetration depth of microwaves increases. Organic solvents are generally categorized in three 
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different groups in terms of their high, medium, and low absorbing properties. Solvents with 

high microwave absorbing ability typically have tanδ >0.5, while the loss factor value of medium 

and low absorbing solvents is 0.1-0.5 and <0.1, respectively [223]. 

 

 

 
Table 3-1 Loss factors (tanδ) and dielectric constant of different solvents [229] 

Solvent tanδ Dielectric 

constant 

Solvent tanδ Dielectric 

constant 

ethylene glycol 1.350  DMF 0.161  

ethanol 0.941 24.6 1,2-dichloroethane 0.127  

DMSO 0.825 47 water 0.123 80.4 

2-propanol 0.799  chlorobenzene 0.101  

formic acid 0.722  chloroform 0.091 4.8 

methanol 0.659 32.7 acetonitirile 0.062 36 

nitrobenzene 0.589  ethyl acetate 0.059 6.2 

1-butanol 0.571  acetone 0.054 20.6 

2-butanol 0.447  tetrahydrofuran 0.047  

1,2-dichlorobenzene 0.280  dichloromethane 0.042  

NMP 0.275  toluene 0.040  

acetic acid 0.174 6.1 hexane 0.020 1.9 

 

 

 

3.2.2 Effects of microwave heating in chemical reaction 

Microwave-assisted material synthesis is characterized by the outstanding accelerations 

resulting from the chemical reaction involving unique heating rate, which cannot be achieved 

and duplicated by conventional heating. The effect of microwave irradiation in chemical 

reactions is classified into two separate terms which are thermal effects and non-thermal effects. 

Thermal effects originate from the heating rate, superheating or ‘hot spot’, and the specific 

microwave effect caused by the uniqueness of the microwave dielectric heating mechanisms. 
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Such phenomena are not usually attainable by classical heating, and thus, thermal effects have 

been widely accepted notion in the field of microwave synthesis. Non-thermal effects, which are 

still a controversial topic, are induced by the highly polarizing radiation of microwaves. This 

subsection will cover an overview of thermal effects and non-thermal microwave effects, and 

provide basic concepts for understanding these microwave-dependent effects. 

3.2.2.1 Thermal effect 

Table 3-2 presents the different characteristics of microwave dielectric heating and 

conventional heating, and the given features in microwave-dependent dielectric heating provokes 

so called thermal effects. Microwave heating exploits the ability of the materials to transform 

electromagnetic energy into heat. While the conventional heating accompanying the conduction 

and convection processes, in microwave heating, energy transmission is generated by dielectric 

losses. The magnitude of heating is dependent on the dielectric properties of the molecules, 

which is also dissimilar to conventional heating. These characteristics signify the speculation that 

radiation absorption and heating may be carried out selectively. As shown in Figure 3-3, heating 

through microwave irradiation is rapid and volumetric with uniform heating distribution across 

the whole material. In contrast, conventional heating is gradual, and initially, heating spots are 

more concentrated on the surface of reactors, then impart to the sample. The efficient and 

uniform volumetric heating with minimized thermal gradients achieved from microwave 

irradiation result in rapid and more spatially uniform nucleation and growth of the material 

[230]. These benefits innate to microwave dielectric heating have often been contemplated to be 

responsible for accelerating certain reactions.  
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Table 3-2 Characteristics of microwave and conventional heating [231] 

Microwave heating Conventional heating 

Energetic coupling Conduction/convection 

Coupling at the molecular level Superficial heating 

Rapid Slow 

Volumetric Superficial 

Selective Non-selective 

Dependent on the properties of the material Less dependent 

 

 

 

 

Figure 3-3 Temperature profile after 60s heated by (a) microwave irradiation, (b) conventional oil-

bath treatment [232] 
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3.2.2.2 Heating inhomogeneity. ‘Hot-spot’ 

In a chemical reaction using conventional heating, crystals often tend to nucleate on a 

container wall and undergo a slow growth rate due to randomly spread ions, tardy and non-

uniform nucleation stage, availability of few seed nuclei, and an uneven heating profile across 

the reaction medium [233]. In contrast, microwave dielectric heating gives rise to efficient 

internal volumetric heating, minimizing the tendency of wall effect [234]. Hence, it is suggested 

that in a microwave-assisted reaction, numerous ‘hot-spots’ probably form by volumetric 

dielectric heating, facilitating massive nucleation of seeds throughout the solution and this leads 

to overall rapid formation of the final product and higher yield.  

It has been intensively studied and addressed the presence of ‘hot-spots’ in the 

microwave-assisted synthesis. This is a thermal effect that is attributed to the inhomogeneity of 

the applied electric field. The temperature in certain zones within the reaction media is much 

higher than the macroscopic temperature. In addition to volumetric dielectric heating, difference 

in dielectric properties of materials can be the driving parameter to create a ‘hot-spot’, due to the 

uneven distribution of electromagnetic field strength [235].    

Figure 3-4 shows the Ce
3+

/Tb
3+

 co-doped LaF3 synthesized through the microwave 

irradiation [233]. When microwave irradiation triggered the reaction, monodispersed 

nanoparticles (4.5nm) were produced. In comparison, oil-bath heating yielded the final product 

with broad size distribution (3-8nm). In the proposed reaction mechanism, by the microwave 

irradiation, fast and spatially uniform nucleation was induced in the polar liquid environment and 
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a uniform concentration of reactive monomers around the crystal embryos, and this, in turn, 

advanced subsequent growth under stable and steady conditions.    

 

 

 

 

Figure 3-4 a),b) TEM images of Ce
3+

/Tb
3+

 co-doped LaF3 fabricated under MW and oil-bath heating, 

respectively [233]. c),d) Proposed mechanisms for the nucleation stage of the Ce
3+

/Tb
3+

 co-doped LaF3 under 

MW irradiation and oil-bath heating, respectively 

 

 

 

3.2.2.3 Selective heating 

In the microwave-assisted synthesis, the selective heating is defined as the ability of 

microwave energy to be preferentially absorbed by highly polar substrates. When a mixture 

compound containing different dielectric properties (loss factor, tanδ) is exposed to microwave 

irradiation, the substance with higher loss factor will absorb the energy preferentially and get 
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heated more rapidly compared to the other compound [236,237]. One example to demonstrate 

the selective heating is to investigate the temperature variation of the oxide particles grafted by a 

certain functional group, specifically hydroxide group, which has good ability to absorb 

microwave energy [238]. The result revealed that surface temperature of an oxide particle 

decorated with hydroxyl group dramatically increases, intriguing local overheating on the 

surface. Figure 3-5 provides another experimental demonstration on the selective heating process 

in the microwave-assisted synthesis of α-Fe2O3 nanoring [239]. The proposed formation 

mechanism represents microwave induced nucleation-aggregation-dissolution stages (Figure 3-

5). Initially, α-Fe2O3 nanodisk is formed through oriented attachment process. Subsequently, the 

formed nanodisk is selectively heated to considerably high temperatures beyond a critical point 

characterizing the remaining bulk mixture. The creation of a ‘hot-spot’ on the surface of 

nanodisk accelerates further localized-etching by the highly polarizable phosphate ions, leading 

to transformation into α-Fe2O3 nanorings [240].  
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Figure 3-5 a)/d), b)/e), c)/f) TEM images showing the morphology evolution of α-Fe2O3 

nanostructures achieved by the MW reaction [239,240] at 220 
o
C after (a,d) 10 s, (b,e) 50 s, and (c,f) 5 min, g) 

Schematic representation of α-Fe2O3 nanoring formation 

 

 

 

3.2.2.4 Non-thermal microwave effect 

In addition to thermal and specific microwave effects, another possible microwave effects 

so called non-thermal effects have been proposed [241-245]. Basically, non-thermal microwave 

effects must be discerned as the rate acceleration that cannot be vindicated by thermal or specific 

microwave effects. Non-thermal effects are strongly related to the direct interaction of 
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microwave field with molecules or substances in the reaction medium, which cause no 

macroscopic temperature effects on the reaction path [246,247]. The main advantage of 

employing microwave irradiation to the materials synthesis is that the reaction time can be 

dramatically reduced. The rate of the reaction can be described by the Arrhenius equation as 

follow, 

 

                                                   K = A e
-∆G/RT

                                                          (3.7) 

 

Considering the Equation (3.7), the pre-exponential factor A describes the molecular 

mobility and depends on the frequency of the molecules vibrations at the reaction interface. It 

has been argued that the pre-exponential factor A or the free energy of activation (entropy term) 

can be changed by the reorientation of dipolar molecules under an electric field [248,249]. In 

addition, polar reaction mechanisms involves similar effects, suggesting that the polarity 

increases from the ground to the transition state and this brings about enhanced reactivity since 

the activation energy barrier decreases [250]. Bilecka et al. has experimentally validated 

reaction-kinetic accelerated formation of ZnO through minimizing the activation energy [251]. 

Further efforts to investigate this issue have been extended to estimate the influence of varying 

microwave frequency. Caponetti et al. and Nyutu et al. [252,253] scrutinized the effects of the 

microwave frequency on the final product in microwave synthesis and revealed that the size 

features and surface morphology of the nano crystals were all affected by the microwave 

frequency.   
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3.2.3 Mechanisms of shape anisotropic particle growth 

As described in the subsection on the mechanism for the anisotropic growth of 

nanomaterials in Chapter 1, three representative shape controlling mechanism have been 

proposed and employed for understanding anisotropic particle growth. These are i) seed-

mediated solution-liquid-solid (SLS) growth, ii) oriented attachment (OA)  process, and iii) 

kinetically induced anisotropic growth. In 1D rod/wire synthesis, the main governing 

mechanisms for the particle growth are the oriented attachment process and selective adhesion 

behavior. Formation of 2D plate/disc particle can be achieved through the selective adhesion, in 

which capping agents participate in the reaction medium and play a crucial role in controlling the 

growth direction. In comparison, the particle growth mechanism for the formation of 3D 

hierarchical architecture is more sophisticated. The basic building blocks, including 0D spheres, 

1D rods, and 2D plates, have unique geometries and natures, and self-assembly of the building 

blocks via van der Waals interaction, electrostatic, dipolar fields, hydrophobic interactions, and 

hydrogen bonds determine the advanced shape of the final products. The following subsections 

will present some selected examples to highlight the importance and versatility of the particle 

growth mechanism for the field of inorganic nanomaterial synthesis. 

3.2.3.1 1D nanorod 

Figure 3-6 represents the formation process of 1D BiPO4 nanorod through a time-

dependent reaction [254]. As shown in the figure, detailed TEM images of a series of aggregated 

particles at the early stage of the crystal growth indicate an oriented attachment growth. In this 

process, primary particles aggregate in an oriented fashion to produce a larger single crystal, or 
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the particles randomly aggregate and reorient, recrystallize, or undergo phase transformations to 

produce larger single crystals. Such growth mode possibly triggers to the formation of faceted 

particles, resulting in anisotropic growth if each crystallographic face possesses different surface 

energy [255]. In addition, it has been reported that the anisotropic growth often occurs in 

inorganic materials with hexagonal crystal structure, such as ZnO and CdSe [256,257]. BiPO4 

has hexagonal crystal structure, which favors anisotropic growth preferentially along the [001] 

direction. 

 

 

 

 

Figure 3-6 TEM images of BiPO4 obtained after sonication for (a) 2, (b) 5, (c) 8, (d) 15, (e) 25, and (f) 

60 min [254] 

 

 

 

Investigation of 1D-anisotropic growth through combined effects of oriented attachment 

and selective adhesion process was performed by Liu et al. in which introduces development of 

Te nanorod in reaction media with a surfactant [258]. Based on the TEM observation presented 

in Figure 3-7, the formation of Te nanorods includes four-step growth mechanism; i) the 

generation of a-Te and t-Te primary nanoparticles, ii) growth of Te nanoords on the seeds of t-Te 
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nanoparticles, iii) continuous formation of Te nanorods by the expense of a-Te colloids, and iv) 

the formation of uniform Te nanorods through ripening process (Figure 3-8). Such an evolution 

process so called the solid-solution-solid transformation and the surfacetant-assisted growth 

mechanism can be supported by the results from TEM observation. Due to the presence of 

surfactant in the reaction media, surfactant molecules are strongly and rapidly attached on the 

surface of the nanoparticles and this leads to suppressing aggregation of Te atoms, and allowing 

for the formation of stable colloids in a very early stage to form nascent nanoparticles. Since the 

1D structure of the final products (Te nanorod) is associated with the anisotropic nature of the 

building blocks along the [001] direction, it could be assumed that the sidewalls, which are 

corresponding to {100} and {110} planes, were completely passivated by the surfactant 

molecules. 
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Figure 3-7 TEM images showing different stages of growth for Te nanorods after an aging time of (a) 

0 min, (b) 20min, (c) 15 h, and (d) 20 h, (e) HRTEM images of an individual Te nanorod, (f) SAED pattern of 

nanorod, which is indexed to be the [110] of t-Te [258] 

 

 

 

 

Figure 3-8 Schematic illustration of a plausible mechanism for the formation of Te nanorods via a 

solid-solution-solid transformation and a surfactant-assisted growth mechanism [258] 
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A number of groups have examined the use of strong complexing agent such as polyol to 

lower the hydrolysis rates of transition alkoxides [259]. Jiang et al., have employed polyol based 

reaction media to the 1D TiO2, In2O3, and PbO nanowire synthesis and proposed anisotropic 

growth mechanism resulting from the formation of polymeric network [260]. According to the 

suggested mechanism, since glycols could serve as a ligand in the reaction mixture, chain-like 

coordination complexes with metal cations can be formed. As the chain-like complexes become 

sufficiently long, they are agglomerated into bundles and then precipitate out from the reaction 

media in the form of uniform nanowires which are composed of the glycolate precursor.    

 

 

 

 

Figure 3-9 Schematic illustrations of linear complexes that were formed between ethylene glycol (a) 

Ti, (b) In, and (c) Pb cations [260] 
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3.2.3.2 2D plate/disc 

In colloidal systems, the formation of 2D plate/disc shaped nanocrystals is uncommon, 

which is dissimilar with a 1D rod/wire. As schematically illustrated in Figure 3-10, in a 

kinetically driven growth regime, 1D nanorod growth is typically achieved by faster growth 

along a specific direction. On the other hand, when the growth direction is hindered and growth 

along the other two axis is coincidently bechanced, 2D plate/disc shape particles can be 

developed. Ghezelbash et al., have synthesized 2D disc shaped Cu2S through surface 

modification using alkanethiol surfactant [261]. The introduced alknethiol surfactant is 

preferentially adsorbed onto the plane along [001] direction and this results in inhibition to grow 

along the corresponding directions, and induces the growth along [100] and [110] direction. As a 

result, 2D disc shaped particles are accomplished (Figure 3-10(b)). Another similar modification 

tactic used for 2D particles synthesis can be found in the literature on NiS nanoprism [262]. As 

shown in Figure 3-10(b), in the presence of surfactant prohibiting growth along [110] direction, 

rapid growth along the other directions occurs. 
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Figure 3-10 1D rod versus 2D disc growth; (a) preferential growth along one direction (z-axis), (b) 

growth along two directions (xy-plane) 

 

 

 

 

Figure 3-11 (a) Cu2S discs [261] and (b) NiS nanoprism [262] through solvent less thermolysis of 

metal-alkanethiol complexes. Insets show HRTEM images of the Cu2S discs and NiS prisms 

 

 

 

Geng et al., have investigated growth behavior of BiOCl nanosheets through the self-

assembly based on oriented attachment [254]. Figure 3-12 indicates the TEM images 

representing aggregation and crystallization process. The growth of BiOCl showed a similar self-

assembly process from primary nano particles to lamellar structure in the reaction. The coarse 
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fringes of the nanosheets become smooth, implying the oriented attachment of nanoparticles at 

the fringe of the nanosheets and a further crystallization process. 

 

 

 

 

Figure 3-12 TEM images of BiOCl obtained after sonication for (a) 2, (b) 5, (c) 8, (d) 15, (e) 25, and 

(f) 60 min. The coarse fringes of lamellae became smooth, indicating an aggregation and crystallization 

process [254] 

 

 

 

3.2.3.3 3D hierarchically architectured particles 

Concerning the driving force for the self-assembly of the 3D structured particles, 

although many hierarchical microstructures with oriented growth and assembly of nanosheets 

have been introduced, the detailed mechanism for the formation of complex inorganic 

microstructures still remains a mystery and has rarely been discussed [263]. Since multiple 

variables affect the self-assembly, entailing crystal-face attraction, electrostatic and dipolar fields 

associated with the aggregate, van der Waals forces, hydrophobic interactions, hydrogen bonds, 
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or the impact of their joint role [264], the formation mechanism for 3D hierarchical structure is 

quite intricate.    

Wei et al., addressed the vapor-liquid-solid (VLS) formation mechanism on microwave-

assisted synthesis of 3D SnO2 nanoflower self-assembled from formed nanowires [265]. In this 

work, they found out that the supersaturation ratio plays a critical role in controlling the 

morphology of the final products in the VLS growth process. In the microwave heating process, 

there are excessive metal oxide and metal atom precipitating out in the reaction owing to the fast 

heating rate. Once Sn liquid drops form, it absorbs a Sn metal atom from the reaction media and 

rapidly grows in a short time. Due to the Sn metal atom precipitating out in the reaction 

environment rapidly, multiple critical nucleations will occur at the liquid-solid interface and 

continue to grow with adsorbed molecules, and this, in turn, leads to the formation of the flower 

like architecture. 
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Figure 3-13 SEM images of SnO2 nanoflowers: panels (a) and (b) are low-magnification SEM images 

of the nanoflowers, (c) TEM image of SnO2 nanowires: the inset is the corresponding SAED pattern, (d) local 

high magnification SEM image of panel (b) [265] 

 

 

 

The plausible mechanism on developing flower-like α-Fe2O3 from the reaction media 

with solvent mixture of DI water and ethanol has been suggested by Zeng et al. [266]. On the 

basis of the time-dependent experiments of the products, this work proposed a two-step growth 

model for the formation of a flower-like advanced nanostructure. As shown in Figure 3-15, in the 

first step, primary nanoparticles first appear in the solution. The primary nanoparticles gradually 

transformed to uniform nanoplates via Ostwald ripening process. Since there is a trace amount of 

water in the reaction system the particle growth process can possibly be limited. Subsequently, a 

secondary nucleation begins, and the flowers grow layer by layer, which is similar to the 
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progression referred in the terrace-step-kink model [267]. Based upon the notion that the layered 

structure can roll into nanotubes [268], multilayered structure rolled up and scrolled into flower-

like nanostructures during the growth. 

 

 

 

 

Figure 3-14 (a) SEM image of the flower-like α-Fe2O3, (b) high magnification SEM image of a single 

nanoflower, (c) TEM image of a single nanoflower (inset: SAD patterns), (d) TEM image of a single petal 

(inset: SAD pattern), (e) HRTEM image of a single petal [266] 
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Figure 3-15 Time-dependent experiments for the precursor after reacting for (a) 1h, (b) 2h, (c) 3h, (d) 

6h, and (e) schematic illustration for the nanoflower formation [266] 

 

 

 

More complicated and detailed growth mechanism on the formation of hierarchical 

architecture has been intensively studied by Li et al. [269]. They investigated the self-assembly 

of flower like β-FeSe utilizing polyol based reaction media and addressed how polyol contributes 

in transformation of 2D nanoplates to 3D advanced structure. Basically, polyol possess the 

strong chelating ability with iron ions, which allows it to anchor to the surface and edges of the 

β-FeSe nanoplates and this leads to minimization of the total energy of the system and van der 

Waals interactions between the anchored polyol molecules, self-assembly of the nanoplates 

through edge-to-edge attachments and edge-to-surface conjunctions.    
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Figure 3-16 FESEM images of the as-prepared β-FeSe by microwave irradiation for 1 h. (a) Low 

magnification image, (b) high magnification image (inset: a much higher magnification image) [269] 
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3.3 3D SELF-ASSEMBLY OF FLOWER-LIKE PARTICLES 

3.3.1 Sample preparation and characterization 

3.3.1.1 Synthesis of flower-like shape particles 

The fabrication of flower like shape (FLS) iron oxide particles was achieved by the 

ethylene glycol (EG) mediated self-assembly process of nanoparticles, which has been adapted 

to the synthesis of several nanomaterials [270-272]. 1.3 g of FeCl3·6H2O, 7.2 g of 

tetrabutylammonium (TBAB), and 2.7 g of CO(NH2)2 (urea) were mixed homogeneously in 180 

ml of EG at room temperature for 1 h. A mixture precursor with a red color was loaded into a 

Teflon vessel. The solution in a sealed Teflon vessel was reacted at 120–210 
o
C for 30 min under 

microwave irradiation (CEM-Marsxpress, USA). The pressure inside the vessel was controlled to 

be between 0.2 MPa and 1 MPa. The reaction temperature and pressure were independently 

controlled by changing the input of microwave power and the solution content in the vessel. The 

resulting particles were collected by centrifugation, washed with ethanol several times, and 

subsequently dried in a vacuum oven at room temperature for 18 h. As-grown particles with 

green color were crystallized at 400 
o
C in N2 or forming gas (N2 + 5%H2) for 2 h. 
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3.3.1.2 Characterization 

 

The crystal structure of the thermally-annealed FLS-iron oxide particles was examined by 

the X-ray diffraction (XRD) method (Philips, PW-1810 diffractometer, Cu-Ka radiation, l = 1.54 

Å ). The Raman spectroscopy of particles was carried out at room temperature with an incident 

beam wavelength of 633 nm (Renishaw, inVia Raman microscope). The Fourier transform 

infrared (FTIR, Bruker VERTEX-70LS) spectra was recorded in a transmission geometry. 

Particles were mixed with KBr and the mixed particles were pressed into to pellets. The 

morphology of FLS iron oxide particles was probed by field emission-scanning electron 

microscope (FE-SEM, Philips XL-30) and transmission electron microscope (TEM, JEOL 

200CX). Magnetic properties were measured at room temperature by vibrating sample 

magnetometer (VSM, Lake Shore 7400). Nitrogen adsorption and desorption isotherm of the 

particles were also measured at liquid nitrogen temperature to analyze the surface structure. 

Before the adsorption measurement, the samples were outgassed under a vacuum for 3 h at 100 

o
C. In order to confirm the sulfidation ability of FLS particles, 0.1 g of the particles was 

introduced into 100 ml of 12.5 mM sodium sulfide (Na2S) aqueous solution in a 200 ml glass. 

Then, the concentration of sulfur ions in water was monitored by measuring the ionic 

conductivity of S
2-

 (Denver instrument, 250 conductivity meter) at every 10 min. 
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3.3.2 Results and discussions 

3.3.2.1 Crystal structure analyses 

XRD patterns of the as-grown and annealed particles are presented in Figure 3-17. In the 

XRD pattern of the as-grown FLS precursor particles (Fig. 3-17a), broad peaks indicate a co-

existence of α-Fe2O3 and α-FeOOH. Nucleation of a-FeOOH is known to compete with that of α-

Fe2O3 below 80 
o
C [273]. Reflections of the as-grown particles at 26.4

o
, 33.0

 o
, 44.8

 o
, 53.7

 o
, and 

61.3
 o

 are indexed as (012), (104), (202), (116), and (214) of α-Fe2O3 (JCPDS 80-2377). Figure 

3-17(b) and Figure 3-17(c) show XRD patterns of the samples that were annealed at N2 and 

N2+5%H2 atmosphere. To make the particles magnetically active, particles were annealed only in 

a reducing atmosphere. After being annealed at 400 
o
C in a N2 atmosphere, the XRD pattern of 

the FLS particles matches well with the diffraction pattern of Fe3O4 (magnetite, JCPDS 85-

1436). In comparison, annealing in N2+5%H2 resulted in the appearance of a Fe phase (JCPDS 

87-0721). There are several polymorphs of iron oxide and oxyhydroxide (e.g., α-Fe2O3, α-

FeOOH, γ-FeOOH) and each phase exhibits a distinctive Raman spectrum. The Raman 

investigation, therefore, is regarded as one of the reliable methods to discern phases of the 

particles which do not have a long range order [274]. In addition, Raman spectroscopy is 

complementary to XRD analysis, which does not clearly differentiate Fe3O4 from γ-Fe2O3 [275]. 

To accurately identify the crystal phase of each product, Raman spectroscopy is used and the 

Raman spectra of the as-grown and N2-annealed particles are displayed in Figure 3-18. For the 

as-grown precursor particles (Fig. 3-18a), Raman peaks represent the coexistence of α-FeOOH 

(227, 262, 324, and 432 cm
-1

) and α-Fe2O3 phases (388, 494, 616, 652, 826, 914, 1064, and 1103 

cm
-1

), which are in agreement with reported studies [276-278]. The Raman spectra of N2-
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annealed FLS particles are presented in Figure 3-18(b). A relatively strong band centered at 661 

cm
-1

 and two broad peaks at 306, and 530 cm
-1

 is shown in the results, confirming the formation 

of the Fe3O4 phase for FLS–Fe3O4 particles [279,280]. This indicates that the as-grown particles 

consisting of α-Fe2O3 and α-FeOOH phases are fully transformed to Fe3O4 in N2-annealing.  

 

 

 

 

Figure 3-17 XRD patterns of fabricated FLS particles; (a) as-grown FLS-precursor, (b) FLS-Fe3O4, 

and (c) FLS-Fe particles. (■ : α-FeOOH) 
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Figure 3-18 Raman spectra of (a) as-grown FLS particles and (b) N2-annealed FLS particles (■ : α-

FeOOH, □ : α-Fe2O3) 

 

 

 

When FeCl3 meets with EG, a series of reactions occur and nanoparticles are formed in 

the precursor solution. First, FeCl3 first meets with EG (HOC2H4OH) and a partial reduction 

occurs to generate iron alkoxide [281]. Then, Fe2O3 primary nanoparticles are formed by a 

reaction between iron alkoxide and oxygen [199]. In addition to the precipitation of Fe2O3 

nanoparticles, Fe
3+

 from FeCl3 can directly react with OH
-
 and produce FeOOH. To validate the 

reaction mechanism of primary nanoparticles, the FTIR spectra of the as-grown and thermally-

annealed FLS particles were investigated. The FTIR spectrum of the as-grown FLS particles is 

shown in Figure 3-19. The strong absorption band lying in the 2500–3000 cm
-1

 range is 

characteristic of the C–H stretching mode and all the peaks located below 1750 cm
-1

 are Fe–O, 

C–O, C–C, and CH2 bonds that are the main moieties of Fe-alkoxide [282]. With Raman spectra 

and XRD patterns, the FTIR spectra clearly supports the notion that the Fe-alkoxide is formed 

from the EG-mediated reaction of FeCl3 and a significant amount of Fe-alkoxide is still left in 

the as-grown particles. 
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Figure 3-19 FTIR spectra of the as-grown FLS particles 

 

 

 

3.3.2.2 Morphology of the superstructured particles 

 

Changes in the morphological characteristics were examined by SEM and TEM. Figure 

3-20 shows SEM and TEM micrographs of the as-grown FLS particles. When raw materials 

were reacted at 180 
o
C and below 0.2 MPa, the product of the reaction was FLS particles with a 

size of 2 ~ 3 μm. The surface of the petal-like plates was very smooth and their thickness was 

smaller than 100 nm (Fig. 3-20a and 3-20b). A detailed microstructure of FLS particles is shown 

in the inset of Figure 3-20(c). The selected area diffraction (SAD) patterns of as-grown FLS-

particles exhibit diffraction rings confirming polycrystalline nature of the as-grown FLS 

particles. This is consistent with XRD patterns. Grain boundaries of nanoparticles are not 

observed even in a TEM micrograph with higher magnification (Fig. 3-20d). Figure 3-21 shows 
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SEM and TEM micrographs of the particles after thermal annealing. The morphology of Fe3O4 

nanoparticles crystallized by N2 annealing is similar to that of as-grown FLS particles (Fig. 3-

21a). This suggests that FLS particles maintain their unique shape during N2 treatment at 400 
o
C. 

TEM images of Fe3O4 (Fig. 3-21b and 3-21c) indicate that each petal-like plate of FLS particles 

is polycrystalline and porous. Appearance of pores in the petals of FLS particles is ascribed to 

the decomposition of iron alkoxide and a-FeOOH and the removal of residual organic species 

during annealing. The SAD patterns (the inset of Fig. 3-21b) clearly reveal polycrystalline 

nature. High magnification TEM micrograph in Fig. 3-21(c) shows that the individual petal 

consists of small nanoparticles with a size of 10 ~ 15 nm. This value is inconsistent with the 

particle size that is determined by analyzing XRD patterns via the Debye-Scherrer equation. In 

comparison, Fe particles crystallized by N2+5%H2 annealing display a moderate change in the 

shape during the annealing process (Fig. 3-21d). Though the hierarchical superstructure was 

found and the pores were created, FLS particles partially collapsed and the petals warped more 

after N2+5%H2 annealing than N2 annealing. 
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Figure 3-20 SEM and TEM micrographs of as-grown FLS-precursor particles. (Inset: selected area 

diffraction (SAD) patterns) 

 

 

 

3.3.2.3 Effects of reaction parameters on primary particles and self-assembly 

 

The morphology of the superstructured particles is sensitive to experimental parameters 

such as reaction temperature, reaction time, reagent concentration, solvent types, and solution pH 

[283-285]. In the present work, we systematically investigated the evolution of the hierarchical 

structures during the microwave-assisted reaction. There is an optimum range of reaction 

temperature and reaction pressure, which is suitable for the formation of hierarchically structured 

FLS-particles. Among the experimental variables, the reaction temperature is critical in the self-

assembly of the nanoparticles. As shown in Figure 3-22(a), the reaction at 120 
o
C leads to 

irregular aggregates of nanoparticles. When the reaction temperature was increased to 150 
o
C 
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(Fig. 3-22b), the nanoparticles assemble to form 3-dimensional (3-D) frameworks of nanoplates. 

However, the binding strength between the nanoplates is not strong enough to make the surface 

of the nanoplates smooth. The surface is rough and the individual nanoparticles are still 

identified. 

At the reaction temperature of 180 
o
C (Fig. 3-22c), 3-D hierarchical architecture with a 

smooth surface is achieved. However, further increase of the reaction temperature to 210 
o
C (Fig. 

3-22d) results in random aggregates of nanoparticles with diameters of 90–100 nm, in which 

case self-assembly of the nanoparticles is not observed. This implies that the self-assembly 

process of the nanoparticles competes with the growth process of the nanoparticles, and that 

there is an optimum window of reaction temperature for the formation of 3-D FLS particles. The 

other parameter examined in this study is the reaction pressure. Since the precursors were reacted 

in a sealed Teflon vessel, the increase in the reaction temperature was accompanied by the 

increase in the reaction pressure. To separate the effect of the reaction temperature from that of 

the reaction pressure, the reaction temperature was fixed at 180 
o
C and only the reaction pressure 

was controlled by varying the volume of the precursor solution inside a sealed Teflon reactor. 

SEM micrographs in Figure 3-23 show the change in the morphology of the reaction products as 

a function of the pressure. When the pressure in the reactor was below 0.2 MPa (Fig. 3.7a), well-

structured hierarchical FLS particles were obtained. While, when the pressure was between 0.3 

and 1 MPa (Fig. 3-23b), the petal-like plates consisting of the nanoparticles were observed. A 

part of the particles have the microstructure of stacked plates and a part of them show the 3-D 

FLS structure. When the pressure was higher than 1 MPa (Fig. 3-23c), the particles turned to 

large flakes. The change from the FLS structure to the flake structure is explained by the role of 

urea. In the EG-mediated reaction of FeCl3, HCl is produced as a byproduct [286]. However, an 
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increase in HCl concentration decreases pH and prohibits further conversion of FeCl3 to the iron 

alkoxide. This, in turn, decreases the yield of the EG-mediated reaction. To prevent the side 

effect of HCl, urea is added to the precursor solution as a neutralizing agent that is decomposed 

to provide counter ions, OH
-
. In the previous study, Chen et al. suggested that the decomposition 

of urea is sensitive to the pressure of a reaction solution [287], 

 

CO(NH2)2 → NH4
+
 + CON

-
 (T ≥ 80 

o
C)            (3.8) 

CON
-
 + 3H2O → NH4

+
 + 2OH

-
 + CO2            (3.9) 

 

As described in eqn (3.8) and (3.9), the decomposition of urea releases CO2 gas as well as 

OH
-
 ions. Therefore, the increase in the reaction pressure restricts the decomposition of urea by 

preventing the release of CO2 from the solution. The degree of urea decomposition begins to 

diminish beyond a pressure of 0.5 MPa. When the reaction pressure reaches 0.9 MPa, only a 

small portion of urea is decomposed. This indicates that the conversion of FeCl3 to iron alkoxide 

is negligible at high pressure and the amount of primary nanoparticles from iron alkoxide is not 

large enough to develop the 3-D hierarchical superstructure. As a result, only 2-D flake type 

particles are produced in the high pressure environment. 
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Figure 3-21 SEM and TEM micrographs of (a), (b), (c) FLS-Fe3O4 and (d), (e) FLS-Fe particles. 

(Inset: selected area diffraction (SAD) patterns of FLS-Fe3O4 particles) 

 

 

 

 

Figure 3-22 SEM micrographs of the as-grown particles obtained at different reaction temperatures: 

(a) 120 
o
C, (b) 150 

o
C, (c) 180 

o
C, and (d) 210 

o
C 
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Figure 3-23 Change in the morphology of the reaction products as a function of the pressure: (a) ~0.2 

MPa, (b) 0.3 ~ 1 MPa, and (c) 1MPa 

 

 

 

3.3.2.4 Mechanism of the self-assembly of 3-D FLS particles 

 

To understand the self-assembly process of 3-D FLS particles, the reaction process was 

monitored as a function of reaction time. As seen in Figure 3-24(a), the product at the early stage 

of the reaction, at 180 
o
C ,and below 0.2 MPa, was nanoparticles with a diameter of about 50 nm. 

A large amount of the nanoparticles was formed within 20 s in the precursor solution. After the 

microwave-assisted reaction continued for 1 min (Fig. 3-24b), a small portion of the nanoparticle 

gathered to form microspheres with a diameter of 1-2 μm. The microspheres coexist with the 

nanoparticles. As the reaction proceeded (Fig. 3-24c), most of the nanoparticles is consumed to 

form the microspheres. Simultaneously, 3-D hierarchical structures started to appear. When the 

reaction time continued for 5 min, all nanoparticles turn to fully developed FLS particles, as 

shown in Figure 3-24(d). From this point, the morphology and size of FLS particles were 

maintained. It is worth noting that the growth of fully developed FLS particles under the 
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microwave irradiation was completed within 5 min, which is much faster than conventional 

methods. This means that the ‘hot-spots’ effects induced by the microwave irradiation may 

create an environment suitable for the fast nucleation of nanoparticles and their accelerated 

growth to FLS-precursor particles [288]. On the basis of experimental observations in the above, 

a three-step growth mechanism is proposed. This is composed of i) a fast nucleation of 

amorphous primary nanoparticles, ii) an aggregation of nanoparticles into the microspheres with 

rough surface, and iii) the self-assembly of thin plates onto the microspheres [289-291]. Oriented 

assembly of the nanoparticles has been considered as being a key step in producing the 

hierarchical superstructure [292]. Various factors influence the oriented assembly of the 

nanoparticles, such as surface energy, electrostatic and dipolar fields, van der Waals forces, 

hydrophobic interactions, and hydrogen bonds. Given that the surfactants are not added to the 

precursor solution in this study, the surface energy is speculated to play a major role in the 

formation of FLS particles. Penn et al. and Li et al. propose that a main driving force to develop 

such hierarchical particles is a tendency to reduce the high surface energy via self-assembly of 

adjacent particles [293,294]. In addition, the chelating ability of EG may contribute to the 

formation of FLS particles. Li et al. suggests that the generation of self-assembly of nanosheets 

is caused by the anchored polyol molecules. The strong chelating ability of the EG with iron ions 

makes it anchor to the surface and edges of nanosheets [295]. This gives rise to edge-to-edge 

attachment and edge-to-surface conjunction among the nanoparticles, leading to the formation of 

hierarchical FLS superstructure. 
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Figure 3-24 SEM micrographs of as-grown particles as a function of reaction time; (a) 20 s, (b) 60 s, 

(c) 2 min, and (d) 5 min (a scale bar in the inset is 1μm) 

 

 

 

3.3.2.5 Surface characteristics 

 

Figure 3-25 shows the nitrogen adsorption–desorption isotherms and corresponding pore 

size distribution of as-grown particles, Fe3O4 and Fe particles, respectively. The Brunauer–

Emmett–Teller (BET) surface area of as-grown FLS particles (Fig. 3-25a) was 15.7 m
2
 g

-1
, while 

the FLS–Fe3O4 (Fig. 3-25b) and FLS–Fe (Fig. 3-25c) particles had specific surface areas of 71.1 

m
2
 g

-1
 and 41.9 m

2
 g

-1
, respectively. The increased surface area of thermally-annealed FLS 

particles is attributed to the formation of internal pores. The adsorption and desorption isotherms 

of the as-grown particles in Figure 3-25(a) are close to type II isotherms that do not show the 

hysteresis loop. Given that the type II isotherm is typical for non-porous or macroporous 



 119 

materials, the isotherms in Figure 3-25(a) indicate that the as-grown FLS particles do not have 

mesopores [296]. In contrast, the isotherms of thermally annealed FLS particles (Fe3O4 and Fe) 

exhibit the hysteresis loops that results from different adsorption and desorption in the 

mesopores. The isotherm of FLS–Fe3O4 displays the features of H3 type hysteresis loops. This 

indicates that both slit-like mesopores and micropores are formed during the annealing. The 

coexistence of mesopores and micropores is confirmed in the pore size distribution curve, shown 

in the inset of Figure 3-25(b). Though the hysteresis loop is also observed, the isotherm curve of 

FLS–Fe particles is close to H4 type hysteresis loop in that the adsorption and desorption 

branches remain nearly horizontal over a wide range of p/po. This H4 type hysteresis loop shows 

that the phase transition to metallic Fe during the annealing in reducing environment develops 

the slit-like mesopores with a well-defined size and shape. The results of the BET analysis are 

consistent with TEM micrographs of Figure 3-21, showing that the decomposition of iron 

alkoxide and a-FeOOH and the removal of organic species during the thermal annealing create 

mesopores in the FLS–Fe3O4 and FLS–Fe particles. The large surface area of thermally-annealed 

FLS particles suggests that these hierarchical structured particles would be utilized as efficient 

catalysts and absorbents. 
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Figure 3-25 Nitrogen adsorption-desorption isotherms and pore size distribution curves of (a) as-

grown FLS-precursor, (b) FLS-Fe3O4, and (c) FLS-Fe particles. (Inset: pore size distribution curve) 

 

 

 

3.3.2.6 Application to water treatment 

Hydrogen sulfide (H2S) has been reported as a malodorous toxic gas which could spread 

out through water [297]. To remove H2S from water, several sorbents containing metal elements 

such as Fe, Zn, Ti, V, and Al, have been intensively explored [214,298-300]. In this study, we 

tested the capability of FLS particles to remove H2S from water. To simulate H2S dissolved in 

water, Na2S was added to water. When sodium sulfide (Na2S) is exposed to a moist environment, 

Na2S and its hydrates emit hydrogen sulfide. In the solution, as summarized in eqn (3.10), the 

dianion S
2-

 does not exist in perceivable amounts in water since S
2-

 is an excessively strong base 

which may not be favorable for coexistence with water. Dissolution of Na2S in the water is 

expressed as follow:  

 

Na2S(s) + H2O(l) → 2Na
+
 + HS

-
 + OH

-
                                                                                   (3.10) 
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After FLS particles were added to the solution, the relative concentration of HS
-
 in water 

was examined by measuring the electrical conductivity of the solution. Figure 3-26 shows the 

concentration of sulfur ion as a function of reaction time. Both FLS–Fe3O4 and Fe removed most 

of the sulfur ions from the solution within 10 min. When the aqueous solution of 3000 ppm Na2S 

was reacted for 50 min, less than 2% of the sulfur ions were left in solution. It is known that the 

reaction between Fe and S gives FeS2 or Fe3S4, depending on their thermodynamic stability in 

the reaction conditions. Fast removal of H2S, shown in Figure 3-26, indicates that the large 

surface areas of the FLS–Fe and FLS–Fe3O4 particles provide plenty of active sites for the 

sulfidation reaction. Almost similar HS
-
 removal rates by FLS–Fe and FLS–Fe3O4 particles 

imply that the activation energy for the reaction with HS
-
 may be lower for Fe than for Fe3O4 and 

that the different reaction kinetics may compensate for the difference in surface area. 

 

 

Figure 3-26 Concentration of residual sulfur ions as a function of reaction time 
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3.4 MAGNETORHEOLOGY OF MR FLUID WITH FLS IRON OXIDE 

 

3.4.1 Results and discussions 

3.4.1.1 Magnetic property of FLS Fe3O4 particle 

 Magnetization is one of the important parameters to evaluate the structure and property of 

Fe-based materials. To investigate the magnetic properties of the FLS-Fe3O4 particles, the 

magnetic properties of the particles were measured at room temperature using VSM. M-H curves 

are shown in Figure 3-27. The saturation magnetization (Ms) of the FLS-Fe3O4 particles was 45.0 

emu g
-1

. The inset of Fig.3-27 shows that the coercivity (Hc) for the Fe3O4 was 23.6 Oe. The Ms 

value for FLS-Fe3O4 was lower than the value of bulk Fe3O4 (92 emu g
-1

). 
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Figure 3-27 M-H curves of FLS-Fe3O4 particles (inset: hysteresis loop of FLS-Fe3O4) 

 

 

 

3.4.1.2 Viscoelastic properties of the fluids containing FLS-Fe3O4 particles 

 

To understand an influence of hierarchical morphology of FLS-Fe3O4 particles on the 

rheology of the fluids containing magnetic particles, we carried out a magnetorheological 

analysis in a strain amplitude sweep mode using rheometer (MCR-301, Anton Paar) with 

magnetorheological devices. Figure 3-28 shows the plot of the storage modulus versus the strain 

amplitude in the fluids containing a different amount of FLS-Fe3O4 particles. The storage 

modulus increases dramatically as the content of FLS-Fe3O4 particles increased from 5 to 40 wt 

%. 
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Figure 3-28 (a) M-H curves of FLS-Fe3O4 particles, and (b) storage modulus vs. strain amplitude 

curves of the fluids containing different amount of FLS-Fe3O4 particles when the magnetic field of 0.38 T is 

applied 

 

 

 

3.4.1.3 Viscoelastic properties of the fluids containing FLS-Fe3O4 particles under applied 

magnetic field 

 

Figure 3-29(a) shows an increment of the storage modulus in a 10 wt % fluid as a 

function of magnetic field. When a magnetic field of 0.38 T was applied, the storage modulus of 

the fluid containing the FLS-Fe3O4 particles increased by more than two orders of the magnitude, 

compared to zero magnetic field. As a control sample, we also prepared a fluid containing 

spherical γ-Fe2O3 particles with an average diameter of 30 nm. Their saturated magnetization 
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was about 80 emu/g, which is very similar to that of FLS-Fe3O4 particles. The stability of the 

fluid containing 10 wt % γ-Fe2O3 nanoparticles is similar to that of the FLS-Fe3O4 particle fluid 

due to the nanosize of γ-Fe2O3 particles. Same analysis was performed using the fluids of 

spherical γ-Fe2O3 particles to examine the effect of the surface morphology. Though the 

saturated magnetizations of γ-Fe2O3 and FLS-Fe3O4 particles are almost same, their storage 

moduli are very different. When 10 wt % of the spherical particles were added, there is a 

moderate increase in the storage modulus under the magnetic field, which is demonstrated in 

previous studies [301,302]. At the same solid content and magnetic field, as shown in Figure 3-

29(b), the storage modulus of FLS-Fe3O4 fluids is two times as large as that of the spherical 

particles. A comparison of two fluids indicates that a unique morphology of FLS-Fe3O4 particles 

increases interparticle interaction at the surface, leading to larger friction between the particles 

and an enhanced dependency on the magnetic field. 
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Figure 3-29 (a) Storage modulus vs. strain amplitude curves of the fluids containing 10 wt% FLS-

Fe3O4 particles under magnetic field (0-0.38 T), (b) a change in the storage modulus of the fluids containing 

10 wt% FLS-Fe3O4 or spherical γ-Fe2O3 particles 

 

 

 

3.4.1.4 Interparticle interaction and particle association of fluid containing FLS-Fe3O4 

particles under applied magnetic field 

 

The strength of the interparticle interaction and the particle networks in the fluids can be 

evaluated by monitoring the transition of the fluids from a solid-like status to a liquid-like status. 

Therefore, we forced two different fluids (10 wt% FLS-Fe3O4 particle fluid and 10 wt % 

spherical γ-Fe2O3 particle fluid) to be subject to incremental oscillatory motion and compared 

their loss moduli to their storage moduli as functions of oscillatory strain. Figure 3-30(a) shows 

the change in the storage (G′) and loss modulus (G″) obtained from the oscillatory measurement 
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at a constant magnetic field of 0.38 T. As the amplitude of the oscillatory strain increases, the 

network of the magnetic particles is shaken and the strength of interparticle connection is 

weakened. When the oscillatory strain reaches a critical strain, the breakdown of the particle 

network begins and G′ starts to fall significantly. At the same critical strain, G″ exhibits a 

maximum value due to the out-of-phase motion of the particle network in the fluids. These 

changes in G′ and G″ at a critical point represent yield of fluids over applied strain. As the 

oscillatory strain becomes larger than critical strain (γy), the fluids show a transition from solid-

like state to liquid-like state [303,304]. The strength of the magnetic particle network is 

estimated by comparing the critical strain (γy) and effective yield stress (τy) of colloidal fluids. G′ 

corresponding to the critical strain is Gy′. By using τy and Gy′, we estimate the effective yield 

stress which induces a viscous flow that is indicative of a liquid-like state, 

 

τy = γyGy′, 

τi = γiG′ (γ → 0) 

 

In addition, G′ in the low strain region, G′(γ→0) and initial strain (γi) show the stress (τi) 

that is required for the initial breakdown of the colloidal network. The initial strain is defined as 

a strain of a point where the linear viscoelastic region ends. Then, τi represents the strength of the 

particle network in the solid-like state. Table 3-1 shows values of rheological parameters to 

estimate the strength of colloidal network at 0.38 T. The value τy, stress of self-assembled 

particle is about five times stronger than that of spherical Fe2O3 particles, attesting that rugged 

surface of the self-assembled particles increases interparticle friction when they are aligned and 

neighbored by the external magnetic field. This is schematically explained in Figure 3-30(b). The 
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values of τi, show that the self-assembled particles and the spherical particles begin to break the 

network structure over 4.53 and 2.84 Pa. These results are consistent with the previous 

explanation that FLS-Fe3O4 particles are more rigid to strain amplitude. Therefore, it is more 

difficult to make a transition to the liquid like state which exhibits viscous flow under oscillatory 

motion, leading to a larger effective yield stress of the FLS-Fe3O4 particle fluid. 

 

 

 

 

Figure 3-30 (a) Storage (G′) and Loss (G″) modulus for FLS-Fe3O4 ferrofluid and spherical γ-Fe2O3 

at 0.38 T, (b) Scheme for increasing stress to break the rows of aligned particles by the rugged surface of 

FLS-Fe3O4 
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Table 3-3 Rheological parameters of FLS-Fe3O4 and spherical γ-Fe2O3 particle fluids at a constant 

magnetic field of 0.38 T 

Fluid Gy′/Pa γy τy/Pa G′(y→0)/Pa γi τi/Pa 

10 wt% FLS-Fe3O4 254 0.21 53.34 906 0.005 4.53 

10 wt% γ-Fe2O3 186 0.052 9.67 473 0.006 2.84 
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4.0  CONCLUSIONS AND FUTURE WORK 

4.1 CONCLUSIONS 

Research topics discussed in this dissertation have covered the rational design and 

synthesis of the clay hybrids including nanoparticles embedded clay hybrid particles and 

nanoparticles decorated organoclay hybrid and 3D self-assembled flower-like shaped (FLS) 

particles through microwave-assisted reaction, and their applications in the control of rheological 

behavior of the clay based fluid system and catalytic performance in the waste-water treatment, 

respectively. In addition, these particles are employed in the magneto rheology control to 

instigate the change in network formation of the particles under an applied magnetic field. 

Detailed conclusions are summarized as following. 

As tackled in the Chapter 2, in the first part, two different types of the nanoparticle – clay 

hybrid particles were synthesized and their effect on the rheological properties of aqueous 

bentonite fluids was investigated. In 5B-0.5ICH fluid, individual particles cross-link to develop a 

relatively well-oriented porous structure. The formation of the rigid gel structure makes a 

noticeable increase in the viscosity, yield stress, storage modulus, and flow stress of the fluids. 

The strengthening of the gel structure by the addition of ICH particles results from the 

development of net positively charged edge surfaces in ICH. The role of ASCH particles on the 

clay platelets association in the bentonite fluids is sensitive to the change in pH. At high pH, the 
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addition of ASCH into the bentonite suspension gives rise to the collapse of the pre-existing clay 

network and prevents the E-F type association of the platelets, leading to the decrease in the 

viscosity, yield stress, storage modulus, and flow stress. As pH of the fluid containing ASCH 

additives decreases, the clay in the suspension become flocculated and the rheological properties 

of the ASCH added fluid get close to those of the ICH added fluids. A correlation between the 

net surface charge of the hybrid additives and the rheological properties of the fluids indicates 

that the embedded nanoparticles within the interlayer space control the variable charge of the 

edge surfaces of the platelets and determine the association modes of the clay constituents in the 

fluids.  

In the second part of Chapter 2, a stable fluid containing a composite of OA-treated iron 

oxide and CTAB-treated clay was investigated.  When plate-type montmorillonite and magnetite 

nanoparticles were treated with alkyl amine and oleic acid, the hydrophobic attraction led to the 

attachment of magnetite nanoparticles to the surface of montmorillonite. The magnetite 

nanoparticle decorated clay was well dispersed in organic media and the rheological properties 

of the fluid were controlled by applying a magnetic field. 

In Chapter 3 describing microwave-assisted synthesis of FLS particles and their 

application for waste-water treatment, the formation mechanism of the Fe3O4 and Fe particles 

with 3D advanced architecture and the role of critical reaction parameters including temperature 

and pressure in the development of such a hierarchical superstructure were discussed. 

Hierarchical precursor particles have been successfully prepared by a microwave-assisted 

reaction of FeCl3·6H2O, TBAB, urea, and EG at 180 
o
C for 30 min. FLS particles with a 

hierarchical structure are formed through the self-assembly of iron alkoxide, α-Fe2O3 and 

FeOOH nanoparticles. The appearance of FLS particles is sensitive to reaction temperature and 
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reaction pressure. Due to the competition between the self-assembly process and growth process 

of the nanoparticles, there is an optimum window of the reaction temperature for the formation 

of 3-D FLS particles. Also, the combined use of FeCl3, EG, and urea as raw materials makes the 

reaction of FLS particles strongly dependent on the pressure. Since urea is not decomposed well 

at high pressure (>1 MPa), FLS particles are synthesized at pressures lower than 1 MPa. The 

surface area of the as-grown FLS particles is 15.7 m
2
 g

-1
, while the FLS–Fe3O4 and FLS–Fe 

particles exhibit specific surface areas of 71.1 m
2
 g

-1
 and 41.9 m

2
 g

-1
, respectively. The 

decomposition of iron alkoxide, α-FeOOH and the removal of organic species during the 

thermal-annealing leaves micro- and mesopores in the FLS particles. Because of their high 

specific surface area, mesoporosity, and intrinsic reactivity, FLS–Fe3O4 and Fe particles exhibit 

an excellent ability to remove sulfur ions from aqueous solution. 0.1 g of both FLS–Fe3O4 and Fe 

remove most of the sulfur ions (~ 90%) in 12.5 mM Na2S aqueous solution within 10 min. This 

suggests that the FLS particles are good absorbers of toxic H2S in aqueous solution.  

The results of the magneto rheology of the aqueous fluid containing the FLS-Fe3O4 

particles exhibited that self-assembled FLS-Fe3O4 particles with rough surface provide enhanced 

controllability and increased colloidal network strength under applied magnetic field. FLS-Fe3O4 

fluids demonstrate higher modulus strength and effective yield stress than spherical particle 

fluids. This suggests that hierarchical surfaces of FLS-Fe3O4 particles interlock under magnetic 

field and form a strong network structure. 
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4.2 FUTURE WORK 

TiO2 nanoparticle-based dye sensitized solar cells (DSSCs) have attracted a significant 

amount of interest, due to their possession of certain inherent advantages [305]. In DSSCs, a 

series of redox reactions occur via electrolyte, which works as an electron-transfer mediator. For 

continuous operation, photoexcited dye molecules need to be reduced by oxidizing the redox 

couple in the electrolyte. Then, the oxidized ions in the electrolyte diffuse from the photoanode 

to the counter electrode, and electrons are collected for the next redox reaction at the photoanode 

[306]. While many redox couples including I
−
/I3

−
, Br

−
/Br3

−
, cobalt (II/III), disulfide/thiolate, and 

ferrocene/ferrocenium redox mediator have been investigated, a pair of I
−
/I3

−
 is still widely used 

for high performance DSSCs [307-310]. Due to the fast dye regeneration capability and the slow 

recombination of I3
−
 with electrons in TiO2, the iodine based redox couple increases the energy 

conversion efficiency of DSSCs to ~12% [311,312]. 

In spite of its outstanding electrochemical performance, the liquid electrolyte containing 

the redox couple of I
−
/I3

− 
poses a problem regarding the long-term stability of DSSCs. One main 

limitation of the liquid electrolyte is that the volatile solvent can leak and evaporate under the 

dual stresses of heat and light [313]. To avoid a tradeoff between long-term stability and energy 

conversion efficiency, several groups have studied quasi-solid electrolyte, where nanoparticles,
 

cross-linked gelators, or polymeric materials
 
are added to the liquid electrolyte [314-318]. The 

additives form a network in the electrolyte and increase its viscosity. This solid network 

suppresses leakage of the electrolyte, and the liquid solvent inside the network supports the 

superior functioning of the redox couple. However, due to its viscosity, it is not easy to 

completely fill the nanopores of the mesoporous electrode with the quasi-solid electrolyte. 
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Unfilled pores become a source of the recombination of photogenerated electrons with oxidized 

sensitizers, leading to a reduction in photocurrent [319]. 

As mentioned above, due to the electrostatic forces between the faces and edges of the 

clay platelets, a unique network forms in the fluid and turns the liquid to gel [320]. When a 

network of nanolayers is formed, the solvent can be retained in the gel through physical and 

chemical interactions between the solvent and the nanolayers [321,322].
 
The most intriguing 

properties of the clay based gel are its thixotropic and shear thinning behaviors. They indicate 

that the gelation of the clay-based fluid occurs gradually over time, and that the transition of the 

clay-based fluid to the gel is reversibly controlled by applying a shear force. Nanoclay particles 

are also used as a gelator in fabricating the quasi-solid electrolyte of DSSCs [323,324]. 

 

 

 

 

Figure 4-1 (a) Viscosity vs. shear rate curve of normal liquid electrolyte and nanoclay added 

electrolyte, and (b) storage modulus vs. strain amplitude curve at a fixed angular frequency of 10rad/s as a 

function of clay content 
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Figure 4-1(a) shows a shear rate-viscosity correlation of nanoclay added (NCA) 

electrolyte at room temperature. In comparison with a liquid electrolyte, the viscosity of NCA 

electrolyte dramatically increases by a 4~5 order of magnitude. As represented in the photo of 

the samples, the NCA electrolyte exhibit quasi-solid behavior in a static state. This observation 

suggests that the addition of 3~6 wt% nanoclay to the liquid electrolyte forms a strong network 

structure.  

The viscoelastic behavior of the NCA electrolyte fluids is measured by a small amplitude 

oscillatory test at a fixed angular frequency of 10 rad/s. The investigation of the viscoelastic 

behavior of fluid systems affords to identify the inter-particle interaction which can be estimated 

by linearviscoelastic region (LVR), representing the stability of the quasi-solid state. As shown 

in Figure 4-1(b), All NCA electrolytes exhibit LVR, demonstrating evidence of separable elastic 

response and stress relaxation.  

 The preliminary experimental results on the quasi-solid electrolyte modified by nanoclay 

indicate its possibility to further enhance the performance and the long-term stability of the 

DSSC device based upon the following concepts: i) superior chemical and physical abilities of 

the nanoclay to retain liquid solvent ii) the formation of rigid network of nanoclay makes the 

electrolyte stable, and iii) promoting the function of a redox couple through grotthuss-type 

charge transport on the cross-linked nano clay network. Hence, the utilization of nanoclay in 

quasi-solid state electrolyte will be promising approach to improve both the electron transport 

rate and the long-term stability of the DSSC device. 
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Figure 4-2 Schematic illustration representing proposed mechanism on the Grotthuss like charge 

transport 
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