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Association of serum uric acid 
with visceral, subcutaneous and 
hepatic fat quantified by magnetic 
resonance imaging
Susanne Rospleszcz1*, Ditjon Dermyshi1,2,3, Katharina Müller-peltzer4, Konstantin Strauch5,6, 
fabian Bamberg4 & Annette peters1,7

Elevated serum uric acid (SUA) is associated with a variety of medical conditions, such as hypertension, 
diabetes and obesity. Analyses investigating uric acid and obesity were primarily conducted using 
anthropometric measures like BMI and waist circumference. However, different adipose tissue depots 
might be differentially affected in uric acid metabolism. We analyzed the relation of SUA with visceral, 
subcutaneous and hepatic fat as quantified by Magnetic Resonance Imaging in N = 371 individuals 
from a cross-sectional sample of a population-based cohort. Associations of SUA and fat depots were 
calculated by regressions adjusted for potential confounders. We found that SUA was correlated with 
all fat measures (e.g. Pearson’s r between SUA and hepatic fat: 0.50, 95%-CI: 0.42, 0.57). Associations 
with visceral and hepatic fat, but not with subcutaneous fat, remained evident after adjustment 
for anthropometric measures (e.g. visceral fat: β = 0.51 l, 95%-CI: 0.30 l, 0.72 l). In conclusion, these 
results show how different adipose tissue compartments are affected by SUA to varying degrees, thus 
emphasizing the different physiological roles of these adipose tissues in uric acid metabolism.

Serum Uric Acid (SUA) originates from the metabolic breakdown of purine nucleotides. When SUA exceeds the 
normal range of homeostasis, it is deposited in articulations and soft tissues in the form of monosodium urate 
crystals. Thus, elevated SUA levels (hyperuricemia) are the major etiologic factor for developing gout1. However, 
hyperuricemia has also been linked to several metabolic disorders such as chronic kidney disease2,3, fatty liver4, 
metabolic syndrome5–7 and its components, including hypertension8–10, diabetes11–13 and adiposity14,15.

Prevalence of adiposity and fatty liver – and thus also the prevalence of related comorbidities – is rising16,17. It 
is therefore important to investigate biomarkers such as SUA that might help to understand pathways and mech-
anisms of adipose tissue metabolism and examine their potential causal role in the development of adiposity.

However, the investigation of the association of SUA with adiposity and fatty liver is often hampered by 
insufficient methodology to quantify adipose tissue content. Adiposity is usually determined by anthropometric 
measures such as waist circumference (WC) and Body Mass Index (BMI); but these crude measures do not give 
a complete picture of the fat distribution in the body and cannot quantify the amount of metabolically active 
adipose tissue. Adipose tissue is a heterogeneous entity and different compartments might be affected by SUA in 
different ways. A recent Mendelian Randomization study found that genetically predicted BMI was associated 
with the risk of gout, whereas increased waist circumference was not, indicating the differential involvement of 
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adipose tissue in uric acid metabolism18. Therefore, accurate and differential quantification of body adipose tissue 
is needed.

There have already been efforts to use medical imaging such as computed tomography (CT) to determine 
adipose tissue in the context of its association with SUA14,15,19. However, magnetic resonance imaging (MRI) has 
emerged as the gold standard for the quantification of adipose tissue, due to its high sensitivity and high reso-
lution. Strong evidence of a correlation of SUA with MRI-derived abdominal adipose tissue and hepatic fat in a 
population-based sample is still lacking.

We therefore aim to analyze the association of SUA as an exposure variable with outcomes of MRI-derived 
visceral, subcutaneous and hepatic fat fraction (HFF) in a population-based sample.

Materials and Methods
Study population. The KORA-MRI study includes a cross-sectional sample of 400 participants from a popu-
lation-based cohort of The Cooperative Health Research in the Augsburg Region (KORA) in Southern Germany. 
The general design and setup of the KORA studies has been described previously20. Briefly, the baseline survey 
(S4) from 1999/2001 included 4261 participants who were randomly sampled from the city of Augsburg and two 
adjacent counties. The first follow-up (F4) took place in 2006/2008 and included 3080 of the original participants. 
The second follow-up (FF4) was conducted in 2013/2014 with 2279 participants. Among the participants of the 
second follow-up, a whole body MRI was performed on 400 individuals who met the inclusion criteria, as detailed 
in Fig. 1. The main setup of the KORA-MRI study has been described previously21.

Ethics approval and consent to participate. The KORA FF4 study was approved by the ethics commit-
tee of the Bavarian Chamber of Physicians, Munich; the MRI sub-study was approved by the institutional review 
board of the Ludwig-Maximilians-University Munich. The investigations were carried out in accordance with the 
Declaration of Helsinki, including written informed consent of all participants.

Outcome assessment. All MRI scans were done on a 3 Tesla Magnetom Skyra (Siemens Healthineers, 
Erlangen, Germany), as detailedly described elsewhere21. For the assessment of adipose tissue, a 
volume-interpolated three-dimensional in/opposed-phase VIBE-Dixon sequence was used and adipose tissue 
was quantified semiautomatically using a Matlab-based (MathWorks Inc., Natick, Massachusetts) inhouse algo-
rithm. Visceral Fat (VAT) was calculated from the femoral head to the diaphragm and subcutaneous fat (SAT) 

Figure 1. Flowchart of participants. CVD: cardiovascular disease defined as myocardial infarction, stroke or 
revascularization; * non-removable metal parts in the body, such as pacemakers or stents, renal insufficiency, 
known gadolinium allergy, claustrophobia, inability to lay down and/or hold breath, pregnancy or breast-
feeding; ** unreachable by phone call (n = 39), scheduling problems (n = 8) and not included for matching 
(n = 327). 
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from the femoral head to the cardiac apex. VAT and SAT are summed up to total abdominal adipose tissue. All 
measurements are indicated in liter (l)22,23.

Multi-echo single voxel proton magnetic resonance spectroscopy, based on a high-speed T2-corrected 
multi-echo technique (HISTO), was used to quantify HFF in the right and left lobe of the liver. The arithme-
tic mean of left and right lobe HFF was used for further analysis (HFF_HISTO). Additionally, a multiecho 
Dixon-sequence was utilized to quantify HFF at the level of portal vein (HFF_dixon)24. HFF is given in %.

Exposure and covariate assessment. Venous blood samples were taken without stasis as a part of the 
standardized examination procedure at the study center. SUA was measured using an enzymatic colorimet-
ric test based on uric acid cleavage by uricase forming allantoin and hydrogen peroxide (Cobas C, Roche). 
Hyperuricemia was defined as SUA levels >6 mg/dL in women and >7 mg/dL in men25. Standard enzymatic and 
immunonephelometric assays were used to quantify serum cholesterol and albumin levels, respectively.

Weight and height of participants were measured by Seca’s digital scales (Seca GmbH & Co, KG, Hamburg, 
Germany), determined to the closest 0.1 kg and 0.1 cm, respectively. BMI was computed as weight in kg divided 
by height in m squared. WC was measured with an inelastic measuring tape between the iliac crest and lower rib 
margin.

Systolic and diastolic blood pressure were measured with an automated oscillometric device (Omron HEM-
705CP) while participants were seated. Three measurements with three-minute intervals in between were 
obtained and the mean of the second and third measurement was used as the final value.

Participants’ glycemic status was categorized as either type 2 diabetes (established type 2 diabetes or newly 
detected type 2 diabetes by Oral Glucose Tolerance Test (OGTT) with 2-h glucose ≥200 mg/dL and/or fasting 
glucose ≥125 mg/dL according to WHO criteria), prediabetes (2-h glucose between 140 and 200 mg/dL and/or 
fasting glucose between 110 and 125 mg/dL according to WHO criteria) or normoglycemic.

Smoking history, alcohol consumption and medication intake were assessed by self-report during the stand-
ardized interview.

Medication was considered antihypertensive if it contained antihypertensive agents according to the most cur-
rent guidelines of the German Hypertension Association and if individuals were aware of having hypertension. 
Diuretics, lipid-lowering medication and gout medication were defined according to the Anatomical Therapeutic 
Chemical (ATC) classification as C03, C10 and M04, respectively.

Statistical methods. Descriptive characteristics of the study population, stratified by presence of hyperu-
ricemia, are presented as arithmetic mean and SD for continuous covariables and as counts and percentages for 
categorical covariables. Differences were evaluated by t-test or χ2-Test, where applicable.

Correlation between SUA and measures of adipose tissue were assessed graphically by scatterplots and quan-
titatively by Pearson’s correlation coefficient with respective 95% confidence intervals (CI). Differences in adipose 
tissue measures according to presence of hyperuricemia were assessed graphically by boxplots and quantitatively 
by t-test.

To assess the association between SUA and adipose tissue, we used a multiple linear regression model adjusted 
for age, sex, systolic blood pressure, total serum cholesterol, serum albumin, alcohol consumption, gout medica-
tion, diuretic medication, antihypertensive medication, lipid-lowering medication, antidiabetic medication and 
glycemic status. SUA served as the exposure variable and adipose tissue (VAT, SAT, hepatic fat fraction) as the 
outcome. Continuous exposure and adjustment variables were standardized (mean = 0, standard deviation = 1) 
before analysis. The outcome hepatic fat fraction (HFF_dixon and HFF_HISTO) was log-transformed and result-
ing estimates therefore denote the percent change in mean HFF. Goodness-of-fit of the models was estimated by 
the R2 metric which denotes the percentage of variance in the outcome that is explained by the model. In a second 
step, the model was additionally adjusted for either BMI or WC. We calculated all models for continuous expo-
sure SUA and dichotomized exposure hyperuricemia; for the whole sample as well as in a sex-stratified fashion. 
In a sensitivity analysis, all individuals taking anti-gout medication were excluded. In another sensitivity analysis, 
fasting serum glucose instead of glycemic status was used for adjustment.

R version 3.4.4 was used for all analyses.

Results
Characteristics of the study sample. Baseline characteristics of the study sample, stratified by presence 
of hyperuricemia, are given in Tables 1 and 2. Sex-stratified results are provided in Supplementary Table S1. 
The sample comprised 371 middle-aged individuals (mean age 56.1 ± 9.1 years) with a mean SUA level of 
5.6 ± 1.5 mg/dL. Prevalence of hyperuricemia was almost 20%, with a higher prevalence in men (26.3%) than in 
women (10.4%). Participants with hyperuricemia were on average older, had higher BMI and WC, higher blood 
pressure and generally a more unfavorable risk profile (compare Table 1). The amount of VAT, SAT and HFF was 
evidently higher in participants with hyperuricemia compared to those without (compare Table 2 and boxplots in 
Fig. 2). Continuous SUA was correlated to VAT (r = 0.58, p = 2.52E-24) and HFF (r = 0.50, p = 1.21E-24) and to 
a lesser extent to SAT (r = 0.10, p = 0.04, compare scatterplots in Fig. 2).

Cross-sectional association of SUA/hyperuricemia and adipose tissue. Results of the adjusted 
linear regression models describing the cross-sectional association of SUA or hyperuricemia with the different 
adipose tissue outcomes are presented in Table 3. A change of one standard deviation of SUA was associated with 
an increase of 0.82 l in VAT. The association was attenuated after adjustment for BMI and even further attenuated 
after adjustment for WC, but was still highly evident. Effect size estimates for the dichotomous variable hyperu-
ricemia were even more pronounced.
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Whole 
sample

no 
Hyperuricemia Hyperuricemia

pvalueN = 371 N = 298 (80.3%) N = 73 (19.7%)

Age, years 56.1 ± 9.1 55.6 ± 9.1 57.9 ± 8.8 0.054

Men 217 (58.5%) 160 (53.7%) 57 (78.1%) 2.54E-04

BMI, kg/m2 27.8 ± 4.7 27.3 ± 4.6 29.8 ± 4.3 4.19E-05

Waist circumference, cm 97.9 ± 13.7 95.9 ± 13.6 106.1 ± 10.7 4.79E-09

Systolic Blood Pressure, mmHg 120.7 ± 16.5 118.8 ± 15.6 128.1 ± 18.1 1.31E-05

Diastolic Blood Pressure, mmHg 75.4 ± 9.9 74.9 ± 9.6 77.4 ± 10.7 0.052

Albumin, mg/dL 4.3 ± 0.3 4.3 ± 0.3 4.4 ± 0.3 0.033

Total cholesterol, mg/dL 217.6 ± 36.4 216.9 ± 35.4 220.3 ± 40.4 0.482

HDL cholesterol, mg/dL 61.9 ± 17.8 63.4 ± 17.6 55.8 ± 17.2 9.86E-04

LDL cholesterol, mg/dL 139.3 ± 32.9 139.1 ± 32.6 140.3 ± 34.1 0.788

Triglycerides, mg/dL 131.7 ± 86.1 119.9 ± 69.4 180.1 ± 123.4 4.98E-08

Creatinine, mg/dL 0.9 ± 0.2 0.9 ± 0.2 1.0 ± 0.1 5.44E-07

Uric acid, mg/dL 5.6 ± 1.5 5.1 ± 1.1 7.7 ± 1.0 4.12E-57

Antihypertensive medication 90 (24.3%) 66 (22.1%) 24 (32.9%) 0.078

Lipid-lowering medication 39 (10.5%) 32 (10.7%) 7 (9.6%) 0.941

Gout medication 9 (2.4%) 8 (2.7%) 1 (1.4%) 1

Diuretic medication 45 (12.1%) 28 (9.4%) 17 (23.3%) 0.002

Antidiabetic medication 29 (7.8%) 22 (7.4%) 7 (9.6%) 0.699

Smoking

never-smoker 134 (36.1%) 107 (35.9%) 27 (37.0%) 0.060

ex-smoker 161 (43.4%) 123 (41.3%) 38 (52.1%)

smoker 76 (20.5%) 68 (22.8%) 8 (11.0%)

Alcohol consumption, g/day 18.9 ± 24.2 17.0 ± 23.0 26.4 ± 27.3 0.003

thereof beer 11.6 ± 18.9 9.3 ± 16.4 20.7 ± 24.8 2.75E-06

thereof wine 6.8 ± 14.1 7.2 ± 14.3 5.1 ± 12.9 0.246

thereof spirits 0.5 ± 1.6 0.5 ± 1.6 0.6 ± 1.4 0.642

Fasting serum glucose, mg/dL 104.0 ± 22.7 103.4 ± 24.2 106.6 ± 15.1 0.271

Glycemic Status

normoglycemic 231 (62.3%) 195 (65.4%) 36 (49.3%) 0.039

prediabetes 90 (24.3%) 66 (22.1%) 24 (32.9%)

diabetes 50 (13.5%) 37 (12.4%) 13 (17.8%)

Table 1. Baseline characteristics of the sample. Continuous variables are presented as mean ± standard 
deviation with p-values from t-test. Categorical variables are presented as counts and percentage with p-values 
from Wilcoxon rank-sum test. Hyperuricemia was defined as serum uric acid levels >6 mg/dL in women and 
>7 mg/dL in men. P-values are exploratory and not corrected for multiple testing.

Whole 
sample no Hyperuricemia Hyperuricemia

pvalueN = 371 N = 298 (80.3%) N = 73 (19.7%)

Total abdominal adipose tissue, l 12.5 ± 5.3 11.7 ± 5.2 15.5 ± 4.7 3.68E-08

Visceral adipose tissue, l 4.5 ± 2.7 4.0 ± 2.5 6.5 ± 2.5 5.51E-14

Subcutaneous adipose tissue, l 8.0 ± 3.6 7.8 ± 3.6 9.0 ± 3.3 0.009

HFF_HISTO, % 8.6 ± 7.8 7.4 ± 7.2 13.3 ± 8.5 5.52E-09

HFF_right lobe, % 9.4 ± 8.5 8.1 ± 7.6 14.8 ± 9.9 6.52E-10

HFF_left lobe, % 7.8 ± 7.6 6.8 ± 7.2 11.8 ± 8.0 3.15E-07

log(HFF_HISTO, %) 1.8 ± 0.9 1.6 ± 0.9 2.3 ± 0.8 4.38E-10

HFF_dixon, % 8.3 ± 8.3 7.1 ± 7.7 13.0 ± 9.0 2.62E-08

log(HFF_dixon, %) 1.7 ± 0.9 1.5 ± 0.9 2.3 ± 0.8 3.28E-10

Table 2. Measures of adipose tissue, as derived by MRI. Data are presented as arithmetic means and standard 
deviations. HFF_HISTO: hepatic fat fraction as measured by high-speed T2-corrected multi-echo technique 
(HISTO). HFF_dixon: hepatic fat fraction, as measured by multiecho Dixon-sequence. Hyperuricemia was 
defined as serum uric acid levels >6 mg/dL in women and >7 mg/dL in men. P-values are exploratory and not 
corrected for multiple testing.
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A change of one standard deviation of SUA was associated with an increase of 0.81 l in SAT, but this model 
could only explain 27% of the variation in SAT. After adjustment for BMI or WC, more than 80% of the variation 
in SAT could be explained, but the association of SUA was attenuated (compare Table 3).

Results for HFF were similar for the average HFF of the right and left liver lobe (HFF_HISTO) and HFF meas-
ured at the level of the portal vein (HFF_dixon). A change in one standard deviation of SUA was associated with 
an increase of 32% in HFF_HISTO and an increase of 31% in HFF_dixon. Comparable to the results for VAT, the 
association of SUA with HFF was attenuated after adjustment for BMI or WC, but was still evident; and the effect 
sizes for the dichotomous variable hyperuricemia were larger in size.

In a sensitivity analysis excluding all participants taking anti-gout medication, similar results were obtained 
(Supplementary Table S2). Furthermore, in another sensitivity analysis adjusting for serum fasting glucose 
instead of glycemic status, similar results were obtained (Supplementary Table S3).

Results for the male and female subsample were similar. However, the association of SUA and hyperuricemia 
with HFF was more pronounced in women.

Discussion
In this population-based sample, SUA and hyperuricemia were strongly related to increased storage of VAT and 
hepatic fat, independently of additional confounders and independently of anthropometric measures of overall 
adiposity. In contrast, the association of SUA and SAT was not independent of anthropometric measures.

The relation between SUA and anthropometric measures of overall adiposity is well established. Several stud-
ies found cross-sectional associations between BMI or WC with SUA or hyperuricemia26–28. Moreover, SUA levels 
have predictive ability with respect to weight gain. In normotensive, non-obese men, baseline SUA predicted 
5-year changes in BMI29. A more recent study found that hyperuricemia in individuals without any other comor-
bidities predicted an increased 5-year risk of developing obesity, independent of other confounders30.

Without the appropriate methodology, VAT and SAT cannot be quantified separately. Therefore, analyses of 
their specific effects are constrained to studies using medical imaging; however those studies have mainly focused 
on total abdominal fat without drawing any distinction of VAT and SAT. In this regard, our results are in line with 
previous studies. In a cross-sectional study of 801 healthy Japanese men, Yamada et al. found an independent 
association between both hepatic and visceral fat tissue quantified by CT with hyperuricemia19. Another study 
using CT for quantification of visceral adiposity found that elevated SUA levels were associated with visceral fat 
accumulation31. Yet to our knowledge epidemiological studies assessing the relationship between subcutaneous 
adipose tissue and SUA are scarce.

Adipose tissue is a central endocrine organ and both VAT and SAT have key metabolic functions in energy 
homeostasis and glucose regulation. However, they have different cellular properties and exhibit major functional 

Figure 2. Correlation of serum uric acid and hyperuricemia with MRI-derived adipose tissue compartments.

https://doi.org/10.1038/s41598-020-57459-z


6Scientific RepoRtS |          (2020) 10:442  | https://doi.org/10.1038/s41598-020-57459-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

differences. Recent preliminary ontogenetic studies suggest that VAT and SAT cells originate from different 
embryonic mesodermal regions32.

The role of SUA on a cellular level is not quite clear. Mouse models have shown that adipose tissues can pro-
duce and secrete uric acid and secretion is enhanced in obesity33. Uric acid is also involved in the production of 
key pro-inflammatory adipokines in adipose tissue34. Especially VAT secretes pro-inflammatory adipocytokines 
and cytokine‐like factors such as tumor necrosis factor α and interleukin-6, thereby contributing to chronic 
low-grade inflammation. This might be mainly due to accelerated hypertrophic lipogenesis without appropriate 
angiogenesis, thus resulting in hypoxia, apoptotic and necrotic adipocytes, inflammation and an overbalance of 
unfavorably polarized M1-macrophages35. Our results demonstrate a strong cross-sectional association of SUA 
with VAT, beyond BMI and WC.

SAT, on the other hand, has a higher secretion of adiponectin, which has anti-inflammatory and 
insulin-sensitizing properties. Uric acid inhibits adiponectin production in adipocytes34,36 Adiponectin levels are 
negatively correlated with uric acid37 and adiponectin production is lower in obese individuals. In our analysis, 
we found higher amounts of SAT in individuals with hyperuricemia, but this association was attenuated after 
adjustment for anthropometric measures.

In the context of hepatic fat, cross-sectional associations of elevated SUA and NAFLD have been reported from 
smaller clinical and larger epidemiological studies38–41. Moreover, a predictive role of SUA has been suggested. 

VAT SAT HFF_HISTO HFF_dixon

β 95%-CI p-value R2 β 95%-CI p-value R2 Estimate 95%-CI p-value R2 Estimate 95%-CI p-value R2

Exposure SUA

age + sex adjusted 1.03 [0.77, 1.29] 4.8E-14 0.43 1.19 [0.76, 1.62] 9.6E-08 0.10 1.46 [1.32, 1.62] 1.3E-13 0.28 1.48 [1.34, 1.63] 3.8E-13 0.27

  men 0.84 [0.53, 1.15] 2.79E-07 0.18 0.89 [0.48, 1.31] 3.34E-05 0.08 1.30 [1.16, 1.45] 4.47E-06 0.12 1.28 [1.15, 1.43] 1.20E-05 0.11

  women 0.86 [0.60, 1.11] 1.08E-09 0.36 1.06 [0.44, 1.68] 8.69E-04 0.08 1.49 [1.32, 1.67] 1.79E-10 0.34 1.54 [1.36, 1.73] 1.68E-10 0.32

fully adjusted 0.82 [0.58, 1.07] 2.20E-10 0.56 0.81 [0.39, 1.24] 1.87E-04 0.27 1.32 [1.20, 1.45] 1.07E-08 0.44 1.31 [1.20, 1.45] 4.56E-08 0.45

  men 0.66 [0.36, 0.96] 2.19E-05 0.34 0.65 [0.25, 1.04] 0.002 0.26 1.19 [1.07, 1.31] 6.70E-04 0.38 1.16 [1.05, 1.28] 0.003 0.38

  women 0.55 [0.30, 0.79] 2.18E-05 0.54 0.5 [−0.11, 1.12] 0.110 0.26 1.36 [1.2, 1.54] 1.72E-06 0.40 1.38 [1.21, 1.57] 1.99E-06 0.42

fully adjusted + WC 0.39 [0.20, 0.58] 8.06E-05 0.76 −0.15 [−0.37, 0.08] 0.198 0.81 1.19 [1.09, 1.30] 1.22E-04 0.54 1.17 [1.07, 1.28] 3.96E-04 0.55

  men 0.23 [0.01, 0.45] 0.038 0.67 −0.04 [−0.25, 0.18] 0.725 0.80 1.08 [0.99, 1.19] 0.082 0.51 1.07 [0.97, 1.17] 0.170 0.49

  women 0.33 [0.15, 0.51] 4.83E-04 0.76 −0.18 [−0.50, 0.14] 0.272 0.81 1.27 [1.14, 1.43] 4.00E-05 0.49 1.27 [1.14, 1.43] 5.31E-05 0.54

fully adjusted + BMI 0.51 [0.30, 0.72] 2.08E-06 0.70 0 [−0.21, 0.22] 0.976 0.82 1.23 [1.13, 1.35] 8.28E-06 0.51 1.22 [1.12, 1.34] 3.06E-05 0.52

  men 0.34 [0.09, 0.58] 0.007 0.59 0.05 [−0.16, 0.27] 0.633 0.80 1.11 [1.01, 1.21] 0.029 0.47 1.09 [0.99, 1.2] 0.069 0.45

  women 0.38 [0.19, 0.56] 1.13E-04 0.74 −0.07 [−0.36, 0.23] 0.659 0.84 1.31 [1.16, 1.46] 1.41E-05 0.46 1.31 [1.16, 1.48] 1.87E-05 0.51

Exposure Hyperuricemia

age + sex adjusted 1.76 [1.22, 2.31] 7.53E-10 0.40 1.62 [0.71, 2.53] 5.33E-04 0.22 1.72 [1.39, 2.12] 7.28E-07 0.22 1.77 [1.42, 2.20] 4.92E-07 0.21

  men 1.55 [0.83, 2.27] 3.13E-05 0.15 1.30 [0.34, 2.26] 8.23E-03 0.03 1.55 [1.21, 1.99] 5.61E-04 0.08 1.60 [1.25, 2.05] 3.25E-04 0.08

  women 2.41 [1.54, 3.27] 1.74E-07 0.31 2.39 [0.35, 4.42] 2.17E-02 0.04 2.20 [1.46, 3.29] 1.67E-04 0.21 2.32 [1.49, 3.56] 2.27E-04 0.19

fully adjusted 1.48 [0.99, 1.98] 9.50E-09 0.55 1.10 [0.25, 1.94] 0.011 0.25 1.48 [1.22, 1.79] 7.59E-05 0.41 1.49 [1.22, 1.80] 6.62E-05 0.43

  men 1.33 [0.68, 1.98] 7.82E-05 0.34 1.02 [0.15, 1.89] 0.022 0.24 1.39 [1.12, 1.72] 0.003 0.37 1.39 [1.12, 1.72] 0.003 0.38

  women 1.75 [0.95, 2.55] 2.82E-05 0.54 1.09 [−0.93, 3.10] 0.288 0.25 1.73 [1.14, 2.64] 0.010 0.33 1.70 [1.09, 2.64] 0.019 0.34

fully adjusted + WC 0.87 [0.50, 1.24] 5.49E-06 0.76 −0.24 [−0.67, 0.20] 0.284 0.81 1.26 [1.06, 1.49] 9.01E-03 0.53 1.27 [1.06, 1.51] 0.008 0.54

  men 0.62 [0.16, 1.08] 0.009 0.68 −0.11 [−0.56, 0.35] 0.638 0.80 1.19 [0.98, 1.43] 0.075 0.51 1.21 [0.99, 1.48] 0.060 0.49

  women 1.32 [0.75, 1.88] 9.94E-06 0.77 −0.24 [−1.27, 0.78] 0.643 0.81 1.52 [1.03, 2.23] 0.033 0.45 1.43 [0.97, 2.12] 0.067 0.49

fully adjusted + BMI 1.06 [0.66, 1.47] 3.58E-07 0.71 0.05 [−0.37, 0.46] 0.827 0.82 1.34 [1.12, 1.58] 1.72E-03 0.49 1.34 [1.12, 1.62] 0.002 0.51

  men 0.89 [0.37, 1.40] 7.74E-04 0.60 0.22 [−0.24, 0.67] 0.352 0.80 1.26 [1.04, 1.54] 0.021 0.47 1.27 [1.04, 1.55] 0.018 0.46

  women 1.24 [0.63, 1.84] 9.14E-05 0.74 −0.64 [−1.59, 0.30] 0.182 0.84 1.52 [1.02, 2.27] 0.040 0.40 1.42 [0.94, 2.14] 0.089 0.45

Table 3. Association of SUA and Hyperuricemia with MRI-derived adipose tissue content. Results from 
a linear regression model with outcome adipose tissue for the whole study sample, as well as sex-stratified. 
Exposure was either the continuous variable SUA or the dichotomous variable Hyperuricemia, defined as serum 
uric acid levels >6 mg/dL in women and >7 mg/dL in men. The fully adjusted model was adjusted for age, sex, 
systolic blood pressure, total serum cholesterol, serum albumin, alcohol consumption, gout medication, diuretic 
medication, antihypertensive medication, lipid-lowering medication, antidiabetic medication and glycemic 
status. Outcome hepatic fat fraction (HFF) was log-transformed and resulting estimates therefore denote the 
percent change in mean HFF. Continuous exposure and adjustment variables were standardized (mean = 0, 
standard deviation = 1) before analysis; therefore estimates for models with exposure SUA denote the change 
in adipose tissue per one standard deviation of SUA. Note that for sex-stratified models, standardization was 
also performed in a stratified fashion. R2 denotes the percentage of variance in the outcome that is explained by 
the model. P-values are exploratory and not corrected for multiple testing. VAT: visceral adipose tissue; SAT: 
subcutaneous adipose tissue; HFF_HISTO: hepatic fat fraction as measured by high-speed T2-corrected multi-
echo technique (HISTO); HFF_dixon: hepatic fat fraction, as measured by multiecho Dixon-sequence.
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In a 5-year retrospective cohort study of 4954 healthy Korean participants, whose intrahepatic fat was quantified 
using abdominal ultrasonography, Lee et al. found an association between hyperuricemia and an increased risk 
of developing NAFLD42. Jensen et al. used data from 8025 participants of a retrospective Japanese cohort study 
and found that accelerated SUA increase over a period of five years was associated with a higher risk of developing 
NAFLD from a healthy liver, independently of other metabolic confounders43.

Anatomy suggests a close interrelation of VAT and hepatic fat, as inflammation-enhancing adipokines and 
free fatty acids that are secreted from VAT can be directly deposited in the liver through the portal vein. In line 
with this, our results relating SUA to hepatic fat were similar to those relating SUA to VAT, as both showed strong 
cross-sectional associations which pertained after adjustment for BMI or WC. Several pathways potentially link 
hyperuricemia to hepatic lipogenesis: First, increased intra-cellular uric acid levels affect hepatocyte mitochon-
drial function. Thus, they promote an increased accumulation of reactive oxygen species and induce stress on the 
endoplasmatic reticulum which results in lipogenesis44,45. Second, increased uric acid levels upregulate fructoki-
nase, an enzyme responsible for dietary fructose metabolism. Overexpression of fructokinase modulates the lipo-
genic effects of fructose by inducing increased triglyceride accumulation in hepatocytes46. Third, uric acid leads 
to downregulation of adenosine monophosphate activated kinase (AMPK). Lower expression of AMPK leads to 
reduced lipolysis, i.e. lower depletion of hepatocytes, lower fat oxidation and higher lipogenesis47. However, the 
directionality of this effect is not straightforward, as fatty liver has also been found to be a predictor of incident 
hyperuricemia48,49.

In sex-stratified analyses, we found similar tendencies for men and women. However, estimates of the associ-
ation of SUA with hepatic fat were substantially higher in women. This is in line with two other population-based 
studies that found stronger associations of uric acid with NAFLD in women compared to men50,51. However, as 
other studies report stronger associations in men52,53, findings remain inconclusive. Genetic and hormonal sex 
differences in the development and pathophysiology of NAFLD have been established (recently reviewed by 
Lonardo et al.54) but the exact mechanism that would influence the differential association of SUA to hepatic fat 
is not yet clear.

Our study only comprises cross-sectional observational data and thus cannot establish the direction of the 
relation between SUA and adipose tissue nor its causality. Further research on larger, longitudinal cohort studies 
is needed to investigate the issue. Another option is the use of Mendelian Randomization analyses to investi-
gate causality. In this respect, a recent meta-GWAS of serum urate identified 147 previously unknown SNPs 
which could be used to build an informative genetic instrument for such a Mendelian Randomization analysis55. 
On the other hand, data on the association of these SNPs with VAT, SAT and hepatic fat would be needed as 
well. Although GWAS of VAT, SAT and non-alcoholic fatty liver disease (NAFLD) have been conducted56–58, 
genome-wide summary statistics - i.e. results for every analyzed SNP and not only the significant ones - are not 
publicly available. In theory, these associations could also be estimated from our sample at hand, but given the 
limited size of the study sample, and given the fact that genetic effects are usually extremely small, such an estima-
tion is severely statistically underpowered. Therefore, these analyses constitute interesting future research, when 
more GWAS data and increased sample sizes become available.

Besides these limitations, a major strength of our study is the use of a population-based sample from a 
well-characterized, prospective cohort study and the use of MRI, which allows a precise quantification of VAT, 
SAT and hepatic fat. Furthermore, we can rule out confounding by cardiovascular disease or renal impairment, as 
these were global exclusion criteria for the study sample.

In conclusion, our findings show how VAT, SAT and hepatic fat are differentially affected by serum uric acid, 
thus highlighting the different physiological roles of these fat compartments in uric acid metabolism.

Data availability
Informed consent given by KORA study participants does not cover data posting in public databases. However, 
data are available upon request from KORA-gen (http://epi.helmholtz-muenchen.de/kora-gen/) by means of a 
project agreement. Requests should be sent to kora.passt@helmholtz-muenchen.de and are subject to approval 
by the KORA Board.
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