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Abstract

In this thesis we will discuss basic concepts of homogenous discrete time
Markov chains. We will start by introducing stochastic processes as a series
of random variables {Xn}n∈N0 taking values in the same measurable space
(E, E), which are called states. The basic idea of Markov chains is that the
probability of {Xn}n∈N0 to adopt some state only depends on the previous
state, but not on the ones before. This property is called Markov property.
In case of discrete state spaces we describe the transition from one state to
another by stochastic matrices, which we will then generalize to continous
state spaces by introducing Markov kernels. Throughout this thesis we will
analyze serval different examples of Markov chains in discrete as well as
continous state spaces.
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Preface

The content of this thesis is mainly based on three books, which are cited
at the end of this work. As basic concepts of Markov chains are addressed
here, it will be refrained from citing within the main text. The first chap-
ter on countable state space Markov chains is mainly based on Brémaud
(1999) while chapter two on continuous state space Markov chains is based
on Cappé (2005). The introductory part of the second chapter is based on
Breiman (1992). References for the introduction are formally cited within
the text as well as at the end of the thesis.

I would like to thank my supervisor Dennis Mao, M.Sc. and referent Prof.
Mittnik, PhD for giving me the oportunity to work on this topic and for their
constant supervision and care.
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1 Introduction

The genetic code across all known species consists of four different nucle-
obases, namely adenine [A], cytosine [C], thymine [T] and guanine [G]. For
each gene, independently of the organism at scope, a unique sequence of these
nucleobases is linked together to provide the information necessary for build-
ing proteins. When we arbitrarily pick a gene, we can easily calculate the
frequency of each nucleobase from the genetic sequence. Taking the coding
sequence of CD274 (gene of the “Programmed Death Ligand 1”) we obtain
a sequence of 3634 nucleobases starting with AGTTCTGCGCAGCTTCCCG... and
empirical (rel.) frequencies

A C T G

0.284 0.201 0.308 0.206
.

If we assume the sequence of nucleobases to be a sequence of independent,
identically distributed random variables {Xn}n∈N we would expect the prob-
ability of a G following a C to be P (Xi = C, Xi+1 = G) = 0.201 · 0.206 = 0.041
for any i in {1, ..., n}, n ∈ N. However empirically we obtain a frequency of
0.010, which diverges from the previous considerations by a factor of about
4. [4]
It was the very same argument Andrei Andrejewitsch Markov (1856–1922)
used in 1913 to show the necessity of independence of random variables for
the law of large numbers. As opposed to the above example Andrei Markov
used the first 20.000 letters of Alexander Sergejewitsch Puschkin’s novel Eu-
gen Onegin to show that the frequency of two successive vocals differed con-
siderably from the theoretical probability under the assumption of indepen-
dence. With his work Andrei Markov contributed significantly to the theory
of stochastic processes, where in a sequence of random variables {Xn}n∈N the
probability of observing some event is conditioned on the event before. [5] In
honor of Andrei Markov, such stochastic processes were later called Markov
chains1 with the observed events called states.

In fact from the genetic sequence given, we can estimate the probabilities
of the sequence transiting from one nucleobase (or state) to another.

A C G T

A 0.297 0.174 0.236 0.292
C 0.370 0.249 0.051 0.331
G 0.299 0.205 0.223 0.273
T 0.205 0.194 0.268 0.334

1Ususally one refers to Markov chains if the process is discrete in time, as opposed to
Markov processes were time is assumed to be continuous.
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We will later see that this table is indeed a transition matrix of a discrete
time Markov chain in a countable finite state space. Markov chains of this
type are the most simple form of Markov processes. They can further be
extended to processes with countable infinite or even continuous state spaces
and/or continuity in time.

Markov chains find their applications in various diciplines, ranging from
natural sciences to social sciences, because many real life phenomenons can
be described as such. Furthermore Markov chains also build the basis for a
range of other model classes such as Hidden Markov Models, Variable-order
Markov Models and Markov renewal processes.

This thesis will focus mainly on the extension of Markov chains in a
countable state space (finite and infinite) to Markov chains in continuous
state spaces. Therefore so called Markov kernels will be introduced. For
some selected properties of discrete space Markov chains it will be shown
how they translate to a continuous state space. In any case however, this
thesis is restricted to Markov chains in discrete time.
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2 Countable state space Markov chains

Definition 2.1 (Stochastic process)
Let (Ω,A, P ) be a probability space and (E, E) a measurable space. A

stochastic process in discrete time is a sequence of random variables
{Xn}n∈N0 with Xn : Ω −→ E for all n ∈ N0.

The measurable space (E, E) is also referred to as the state space and the
index n ∈ N0 is interpreted as steps in time. {Xn}n∈N0 therefore describes
how some stochastic process evolves in time.2 We will now narrow stochastic
processes down to processes with a very specific dependency structure.

Definition 2.2 (Markov chain) Let {Xn}n∈N0 be a stochastic process on
(Ω,A, P ) with values in a discrete state space (E, E). {Xn}n∈N0 is called
Markov chain, if for all n ∈ N0 and all states i, i0, ..., in−1 ∈ E and {j} ∈ E
with P (X0 = i0, ..., Xn−1 = in−1, Xn = i) > 0

P (Xn+1 = {j}|X0 = i0, ..., Xn−1 = in−1, Xn = i) = P (Xn+1 = {j}|Xn = i).
(1)

(1) is called Markov property.

The Markov property states that the probability of observing some state
{j} ∈ E at some timepoint n + 1 ∈ N0, only depends on the state i ∈ E
at timepoint n ∈ N0, but not on the states before. More precisely one calls
stochastic processes that satisfy (1) Markov chains of 1st-order. If the prob-
ability depends on n previous time points, the Mrakov chain is of nth-order.

If (1) is independet of n ∈ N0 the Markov chain is called homogenous.
This means, that at any given timepoint n ∈ N the conditional probabilities
are identical.

It seems a bit finical at this point to write P (Xn+1 = {j}|Xn = i) in-
stead of P (Xn+1 = j|Xn = i). We use the more sophisticated notation to
specify (firstly) that a probability measure P : A −→ [0, 1] is always defined
on a σ−algebra and (secondly) that the conditional probabilities in terms of

2More general the sequence of random variables {Xn}n∈I could be on any index set
I ⊆ N0 or even I ⊆ R+ = [0,∞), when a time continuous process is at scope.
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Markov chains are conditioned on sets of single elements. This will be espe-
cially important for the introduction to Markov kernels, which are important
for nondenumerable state spaces. This will be discussed later. For discrete
state spaces we set E = P(E).

Lemma 2.3 Let (Ω,A, P ) be a probability space and B ∈ A with P (B) > 0.
Then

P (·|B) : A −→ [0, 1], A 7→ P (A|B),

is a probability measure for all B ∈ A.

Proof : (P0) We show, that P (A|B) ∈ [0, 1] for all B ∈ A. It is obvious
that P (A|B) ≥ 0. Due to the monotony of P

P (A|B) =
P (A ∩B)

P (B)
≤ P (B)

P (B)
= 1.

(P1)

P (Ω|B) =
P (Ω ∩B)

P (B)
= 1

(P2) Let A1, A2, ... ∈ A be pairwise disjoint. Then

P (
∞⋃
i=1

Ai|B) =
P (
⋃∞

i=1(Ai|B))

P (B)
=
∞∑
i=1

P (Ai|A)

P (B)
=
∞∑
i=1

P (Ai|B)

Definition 2.4 (Stochastic matrix)
A matrix Π ∈ [0, 1]E×E is called stochastic, if∑

{j}∈E

Π(i, {j}) = 1 for all i ∈ E.

This means, that the row sum is equal to 1.

8



Definition 2.5 (Transition Matrix)
A stochastic matrix is called transition matrix for a homogenous discrete
state space Markov chain {Xn}n∈N0, if

Π(i, {j}) = P (Xn+1 = {j}|Xn = i) (2)

for all i ∈ E, {j} ∈ E and n ∈ N0 with P (Xn = i) > 0. Π(i, {j}) are called
transition probabilities.

The prerequisite P (Xn = i) > 0 in (2) is neccessary for the transition
matrix to be a stochastic matrix. Only then Lemma 2.3 garanties∑
{j}∈E

Π(i, {j}) =
∑
{j}∈E

P (Xn+1 = {j}|Xn = i) = P (
⋃
{j}∈E

{Xn+1 = j}|Xn = i) = 1.

It is therefore advisable to choose the state space accordingly. Otherwise the
transition matrix does not have a row sum equal to 1 and it is no stochastic
matrix.

Having now given a short introduction into discrete state space Markov
chains, we will now have a look at some examples.

Example 2.7 (Oversimplified model of the weather)
Let us examine the weather of some sunny place on a daily basis. To do so

we confine to a countable finite state space (E, E) = ({s, r},P({s, r})), where
s =̂ Sun and r =̂ Rain. We assume that for the weather of tomorrow only
today’s weather is relevant, but not the weather of the days before. Further
we assume the transition probabilities from one weather state to another to
be independent of the time and known with the following transition matrix

Π(i, {j}) =

{s} {r}( )
s 0.9 0.1
r 0.5 0.5

, i ∈ E and {j} ∈ E .

In this example the probability of enjoying sun another day following a sunny
day is 90%. One can easily confirm that this transition matrix is indeed a
stocastic matric, as the row sum is euqal to 1 for both rows. A common way
to visualize the transitions between different states is by drawing transition
graphs (Appendix A.1 and A.2). For our weather model we recieve the fol-
lowing transition graph:
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sun rain
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0.5

0.9 0.5

Example 2.8 (Random walk on Z)
Let us assume we toss a fair coin, where we depict head = 1 and tail = −1.

We model the outcome of a series of independent, identically distributed
random variables {ξi}, i ∈ N which take values in ({1,−1},P({1,−1})) with
P (ξi = {1}) = 1

2
= P (ξi = {−1}). Let {Xn}n∈N0 be another series of random

variables, that takes values in (Z,P(Z)) and is given by

X0 = 0, Xn+1 = Xn + ξn+1 =
n+1∑
i=1

ξi.

One can illustrate the process as followed:

-2 -1 0 1 2

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Xn gives us the position of some particle at timepoint n ∈ N0. This particle
starts in 0. At any given timepoint n ∈ N0 it tosses a coin. When head
shows, it jumps to the right, when tail shows, it jumps to the left. It therefore
“walks” on Z. We can define the transition probabilities as

Π(i, {j}) =

{
1
2
, if {j} ∈ {{i+ 1}, {i− 1}}

0, else.

Of note: Π(i, {j}) is the probability of transiting from state i to j. It
does not give the probability for {Xn}n∈N0 to be in state i or j.
The following proposition will help us show, that Example 2.8 is indeed a
(homogenous) discrete state space Markov Chain.

Proposition 2.9
Let {Xn}n∈N0 be a stochastic process with a countable state space (E, E) and
let Π ∈ [0, 1]E×E be a stochastic matrix. If

P (Xn+1 = {j}|X0 = i0, ..., Xn−1 = in−1, Xn = i) = Π(i, {j}) (3)
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for all n ∈ N0, i, i0, ..., in−1 ∈ E and j ∈ E with P (X0 = i0, ..., Xn−1 =
in−1) > 0. Then {Xn}n∈N0 is a homogenous Markov Chain with transition
matrix Π.

Proof: We start by showing the following assertion: For all n ∈ N0 and
i, i0, ..., in−1 ∈ E with P (X0 = i0, ..., Xn−1 = in−1, Xn = i) > 0 the following
applies:

P (X0 = i0, ..., Xn−1 = in−1, Xn = i) = P (X0 = i0)
n−1∏
k=0

Π(ik, {ik+1}) (4)

By full induction we show for all n ∈ N0:
n = 0: clear.
n→ n+ 1: We set An := {X0 = i0, ..., Xn = i}. Due to (3)

P (X0 = i0, ..., Xn = i,Xn+1 = in+1) = P (An)P (Xn+1 = in+1|An)

= P (An)Π(in, {in+1}).

(4) follows therefore from the induction requirement.
To now proove the Markov property (1), it is sufficient so assume n ∈ N0,
i, i0, ..., in ∈ E, {in+1} ∈ E and P (X0 = i0, ..., Xn = i) > 0 and proove that

P (Xn+1 = {in+1}|Xn = in) = Π(in, {in+1}).

For that let I = {(i′0, ..., i′n−1) ∈ E : P (X0 = i′0, ..., Xn−1 = i′n−1, Xn = in) >
0}. From (4) it follows:

P (Xn = in) =
∑

(i′0,...,i
′
n−1)∈I

P (X0 = i′0, ..., Xn−1 = i′n−1, Xn = in)

=
∑

(i′0,...,i
′
n−1)∈I

P (X0 = i′0)
n−2∏
k=0

Π(i′k, {i′k+1})Π(i′n−1, {in}).

Analogously it follows that

P (Xn+1 = {in+1}, Xn = in)

=
∑

(i′0,...,i
′
n−1)∈I

P (X0 = i′0, ..., Xn−1 = i′n−1, Xn = in, Xn+1 = in+1)

=
∑

(i′0,...,i
′
n−1)∈I

P (X0 = i′0)
n−2∏
k=0

Π(i′k, {i′k+1})Π(i′n−1, {in})Π(in, {in+1})

= P (Xn = in)Π(in, {in+1}).
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The assertion follows therefore:

P (Xn+1 = {in+1}|Xn = in) =
P (Xn+1 = {in+1}, Xn = in)

P (Xn = in)
= Π(in, {in+1}).

Proposition 2.10 (Homogenous Markov chain driven by white noise)
Let Zn, n ∈ N be a random variable on (Ω,F , P ) with values in (E ′, E ′). Let
further be (E, E) be a countable measurable space, f : E × E ′ −→ E a mea-
surable function and X0 : Ω −→ E a random variable, which is independet
of Zn, n ∈ N. We set

Xn+1 := f(Xn, Zn+1) for all n ∈ N0.

Then {Xn}n∈N0 is a homogenous Markov chain with a countable state space
and transition matrix

Π(i, {j}) = P (f(i, Z1) = {j}) for all i, j ∈ E.

Proof: As defined recursively

X1 = f(X0, Z1),

X2 = f(x1, Z2) = f(f(X0, Z1), Z2),

X3 = f(X2, Z3) = f(f(f(X0, Z1), Z2), Z3), etc.

In general
Xn = gn(X0, Z1, ..., Zn)

for all n ∈ N and a measurable function gn.
Let n ∈ N, i0, ..., in−1, i ∈ E and {j} ∈ E with

P (X0 = i0, ..., Xn−1 = in−1, Xn = i) > 0.

We set A := {X0 = i0, ..., Xn−1 = in−1, Xn = i}. It applies

P (Xn+1 = j|Xn = i, ..., X0 = i0) = P (f(Xn, Zn+1) = {j}|{Xn = i} ∩ A)

= P (f(i, Zn+1) = {j}|{Xn = i} ∩ A)

= P (f(i, Zn+1) = {j})
= P (f(i, Z1) = {j}) =: Π(i, {j})
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Remarks: (firstly) {Xn = i}∩A only depends on X0, X1, ..., Xn and therefore
on X0, Z1, ...Zn. It is independent of Zn+1. (secondly) Zn+1 is identically
distributed as Z1.

As Π is a stochastic matrix, the assertion follows from Proposition 2.9.

This last proposition will now help us prove, that the random walk on Z
is indeed a Markov chain.

Proof: (Example 2.8 continued)
Let {ξn}, n ∈ N be a series of independent fair coin tosses, with

P (ξn = −1) =
1

2
= P (ξn = 1).

We set Zn := ξn for n ∈ N, f(i, j) = i+ j and for X0 := 0 we obtain

Xn+1 := f(Xn, Zn+1) = Xn + Zn+1 = Xn + ξn+1.

By induction we get

Xn =
n∑

i=1

ξi,

which means, that {Xn}n∈N0 is the random walk on Z. Following Proposition
2.10, it is indeed a homogenous Markov chain with transition matrix

Π(i, {j}) = P (f(i, Z1) = {j}) = P (i+ Z1 = {j})
= P (i+ ξ1 = {j}) = P (ξ1 = {j − i})

=

{
1
2
, if {j} ∈ {{i+ 1}, {i− 1}},

0, else.

Example 2.11 (Random walks on the cyclic group Z/4Z)
We will now extend the random walk on Z to a random walk on Z/4Z =

{[0], . . . , [4]} For this purpose we map our random variable {Xn}n∈N0 from
the previous example to the residue class modulo 4. This means, that two
integers that are maped to the same residue class, have the same residue if
divided by 4.
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The transition matrix of this process is given by

Π(i, {j}) =

{0} {1} {2} {3}


0 0 1
2

0 1
2

1 1
2

0 1
2

0
2 0 1

2
0 1

2

3 1
2

0 1
2

0

One can illustrate the process as followed:

0 1

23

0.5

0.5

0.5 0.5

0.5

0.5

0.50.5

We refrain from proving that this is indeed a Markov chain at this point.
However it can be observed that for X0 = 0 the process adopts to states
{0, 2} at even time points and {1, 3} at uneven time points.
It follows

Π2 =


0 1

2
0 1

2
1
2

0 1
2

0
0 1

2
0 1

2
1
2

0 1
2

0




0 1
2

0 1
2

1
2

0 1
2

0
0 1

2
0 1

2
1
2

0 1
2

0

 =


1
2

0 1
2

0
0 1

2
0 1

2
1
2

0 1
2

0
0 1

2
0 1

2

 , Π3 = Π.

In general it applies for all n ∈ N0:

Π2n = Π2, Π2n+1 = Π.

This means, that the random walk on Z/4Z is an example for a non homoge-
nous Markov chain.
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3 Continuous state space Markov chains

Up to now, we have studied Markov chains in countable finite or infite state
spaces (E, E), where the model is described mainly by a stochastic matrix -
a non negative matrix Π(i, {j}) where the row sum

∑
{j}∈E Π(i, {j}) = 1 for

all i ∈ E.
Evidently we can think of Π as family of discrete distributions Π(i, ·), one
for each i ∈ E, where Π(i, ·) gives us the distribution of Xn+1 given Xn =
i, n ∈ N0.

At the end of the past section we have proven that a a random walk on
Z can be modelled by a Markov chain. We have conceived this random
walk on Z a particle jumping from one integer to an adjacent one, mean-
ing Xn+1 − Xn ∈ {−1, 1}. If we stick to the concept of a moving particle,
a much more intuitive way would be, if we allow it to move any distance
Xn+1 −Xn ∈ R between two timepoints of observation.

Let (E, E) now be a continuous state space, with E ⊂ R and E = σ(O) be a
Borel σ-algebra on E, with O a favourable set of open sets on E. Heuristi-
cally speaking the family of discrete distributions Π(i, ·) is now replaced by
a family of densities Q(x, ·), one for each x ∈ E.

Before giving the formal definition of transition kernels we will derive its
concept starting with conditional probabilities as a motivation. Lemma 2.3
extends directly to conditional probabilities of random variables that adopt to
a countable number of values/states. Instead of P (A|B) = P (A∩B)

P (B)
, A,B ∈ F

we obtain P (A|X = x) = P (A,X=x)
P (X=x)

for a discrete random variable X. In case

P (X = x) = 0 we arbitrarily define P (A|X = x) = 0. However this last
restriction can be circumvent by choosing (E, E) well.

Suppose now a random variable X on (Ω,A, P ) that takes nondenumer-
able many values. Let further be B ∈ E a Borel σ-algebra such that
P (X ∈ B) > 0. The conditional probability of A ∈ A given X ∈ B is
given by

P (A|X ∈ B) =
P (A,X ∈ B)

P (X ∈ B)
.

In sepcific, we are interested in the conditional probability of A ∈ A given
X(ω) = x, ω ∈ Ω a single element. In case of continous random variables
P (X(ω) = x) = 0 for all x, which is unfavourbale. Therefore we are looking
for a way to generalize the definition of conditional probabilities in Lemma

15



2.3.

If we let (x − h, x + h) = B ∈ E an open interval, we can try to take
the limit, given by

P (A|X = x) = lim
h↘0

P (A,X ∈ (x− h, x+ h))

P (X ∈ (x− h, x+ h))
, (5)

we run into the trouble, that the existence of x = x0 is not garanteed, if
P (X = x0) = 0. If we however percieve (5) as a function of x it looks as if
we try to take the derivative of one measure with respect to another. Let us
therefore define two measures on E . For B ∈ E , let

Q̃(B) = P (A,X ∈ B), (6)

P̃ (B) = P (X ∈ B). (7)

Just like in Lemma 2.3 Q̃ is absolutely continuous with respect to P̃ (0 ≤
Q̃(B) ≤ P̃ (B)). The Radon-Nikodym-Theorem (Appendix A.3) ensures,
that a E-measurable function ϕ(x) exists such that

Q̃(B) =

∫
B

ϕ(x)P̃ (dx), for all B ∈ E .

It needs to be noted that ϕ is not uniquely defined. However, with this
restriction we can now generalize the conditional probability P (A|x = x) as
follows:

Definition 3.1
The conditional probability P (A|x = x) is defined as any E-measurable func-
tion satisfying

P (A,X ∈ B) =

∫
B

P (A|X = x)P̃ (dx),

for all B ∈ E.

Let us now have a closer look how the transition from one state to another
is defined in terms of continuous state spaces.
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Definition 3.2 (Transition Kernel)
Let (E, E) and (E ′, E ′) be two measurable spaces. An unnormalized transition
kernel from (E, E) to (E ′, E ′) is a function Q : E×E ′ −→ [0,∞) that satisfies

1. for all x ∈ E,Q(x, ·) is a positive measure on (E ′, E ′)

2. for all A ∈ E ′, the function x 7→ Q(x,A) is measurable.

Remarks: (firstly) If Q(x,E ′) = 1 for all x ∈ E, then Q is called a normal-
ized transition kernel or simply kernel. In this case Q(x, ·) is a probability
measure. (secondly) If (E, E) = (E ′, E ′) and Q(x,E ′) = 1, then we refer to
Q as a Markov kernel. From now on, we will only consider Markov kernels.

The first requirement of Definition 3.2 makes sure that we get a probability
measure for every x ∈ E. Which means that whatever state the Markov
chain adopts to, we can specify the probability for any state at the next
timepoint.
The second requirement can be viewed in analogy to definition 3.1. It ensures
that the conditional probability of A ∈ E ′ exist for single events x ∈ E.

Definition 3.3 (Density of a transition kernel)
Let Q be a Markov kernel and q : E×E ′ −→ [0,∞) a non negative function,
measurabel with respect to the product σ-field E ⊗E ′. Q adopts a density with
respect to the positive measure P on E ′ such that

Q(x,A) =

∫
A∈E ′

q(x, y)P (dy), A ∈ E ′.

The function q is then referred to as a transition density.

Let us now have s closer look at the transition matrix in case of homogenous
discrete state space Markov chains. Alternatively we can define the transition
matrix from Definition 2.5 as a family of functions

Π : E × E ′ −→ [0, 1], Π(i, B) 7→
∑
j∈B

Π(i, {j}), ∀B ∈ E ′, (8)
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where Π(i, {j}) = P (Xn+1 = {j}|Xn = i) as before. We claim that (8) de-
fines a Markov kernel.

Proof: In oder to show that (8) is a Markov kernel, we need to show that (8)
satisfies the two requirements from Definition 3.2.

1. follows directly from Lemma 2.3. It shows that for every i ∈ E we get
a probability measure Π(i, ·).

2. As we consider the case of a discrete state space, that σ-algebra E is
equivalent to P(E). Therefore any function i 7→ Π(i, B), ∀B ∈ E ′ is
measurable with respect to the powerset P(E).

Remarks: This last requirement means, that for every i ∈ E we assign a
row of the transition matrix Π.

Before we can define a homogenous Markov chain in a continuous state space,
we need to be able to grasp the history of a stochastic process. For this, we
need to introduce filtrations.

Definition 3.4 (Filtration)
Let (Ω,F , P ) be a probability space. For every n ∈ N An is a sub-σ-algebra
of F and the family of σ-algebra is denoted by A = {An}n∈N0.
A is called a filtration on (Ω,F , P ) if it is ordered, such that for any n,m ∈ N
with m ≤ n : Am ⊆ An.

If A = {An}n∈N0 is a filtration we call (Ω,F , {An}n∈N0 , P ) a filtered proba-
bility space.

Remarks: (firstly) One says a stochastic process {Xn}n∈N0 adapts to A, if
Xn is An-measurable for all n ≥ 0. (secondly) The natural filtration of a
process {Xn}n∈N0 is the smalles filtration {Xn}n∈N0 adapts to and is denoted
by AX = {An}Xn∈N0

.

In order to give a better understanding about filtrations, we can think back
to the previous Example 2.8, the random walk on Z.
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Example 3.5
We intend to model a random walk on Z. Let {Xn}n∈N0 therefore take

values in the measurable space (Z,P(Z)). Assuming we are interessted in
modelling the probability of adopting state z ∈ Z at time point n ∈ N0. A
possible filtration would be

An := σ(P({−z, . . . , z})).

Definition 3.6 (Markov chain in a continuous state space)
Let (Ω,F , {An}n∈N0 , P ) be a filtered probability space and let Q be a Markov
kernel on a measurable space (E, E). A stochastic process {Xn}n∈N0 with
X0 : Ω −→ E is said to be a Markov chain under P, with respect to the
filtration A = {An}n∈N0 and transition kernel Q, if it is adapted to A for all
n ∈ N0 and A ∈ E, with

P (Xn+1 ∈ A|An) = Q(Xn, A). (9)

X0 is called the initial distribution of the chain.

As already mentioned, A = {An}n∈N0 represents the history of the (ho-
mogenous) stochastic process {Xn}n∈N0 . One can see from (9) that the tran-
sition to the next time point only relies on Xn. In analogy to Definition 2.2
the transition of a Markov chain in a continuous state space only depends
on the present and not on the past.

Example 3.7 (Random walk with normal increment)
Consider the following continuous state space Markov chain. We set X0 = 0
and

Xn+1 = Xn + εn,

for n ≥ 1, where {εn}n∈N are independent and identically normal distributed
random variables with mean 0 and variance σ2. The Markov kernel of this
chain is given by

Q(xn, A) =

∫
A

1√
2πσ2

exp

{
−(y − xn)2

2σ2

}
dy.

In the recursive definition of the chain, the increment from one step to the
next is given by a random number drawn from a normal distribution N(0, σ2).
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Example 3.8
Let us now consider a stochastic process {Xn}n∈N0 on a probability space
(Ω,F , P ) that takes values in ([0, 1], σ(O[0,1])), where σ(O[0,1])) denotes the
Borel σ-algebra generated by open sets on the interval [0, 1]. We set X0 = 1
and define a Markov kernel as

Q(xn, A) =

∫
A

λ(A)

λ([0, xn])
dλ(x) =

λ(A)

λ([0, xn])
=
λ(A)

xn
,

for A ⊆ [0, xn] and λ the lebesgue measure.

In a first step we draw a random number from a continuous uniform dis-
tribution on the interval [0, 1]. This number will then be the upper bound of
the intervall from wich the number of the next step is drawn, again from a
continuous uniform distribution on that new interval.
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4 Outlook

Starting from stochastic processes, we have defined Markov chains in dis-
crete and continuous state spaces. However, we have resticted ourselves to
homogenous discrete time Markov chains of first order. There are several
ways to further extend such models. In the following we will discuss three
possible extensions:

1. From discrete time to continuous time: such processes {Xt}t≥0, t ∈ R+

are defined by a (countable) state space (E, E) and instead of a tran-
sition matrix Π a transition rate matrix Ψ. Each ψij ∈ R+

0 is non-
negative and gives the rate of transiting from state i to state j, while
ψii ∈ R are chosen such that the rowsums are equal to 0.

2. From first order to nth - order: in such processes the probability of ob-
serving some state is conditioned on n ∈ N previously observed states.
The transition kernel then needs to be extended to a function Q :
En × E ′ −→ [0,∞), that satisfies

i. for all (x1, . . . , xn) ∈ En, Q((x1, . . . , xn), ·) is a positive mea-
sure on (E ′, E ′)

ii. for all A ∈ E ′, the function (x1, . . . , xn) 7→ Q((x1, . . . , xn), A)
is measurable.

3. Convergence of Markov chains: in Example 3.8 the interval [0, xn], n ∈
N0 from which the upper bound of the next interval is drawn, becomes
narrower with every step in time. One could hypothesize, that the
interval converges to 0.
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[2] Brémaud P (1999), Markov chains. Gibbs Fields, Monte Carlo Sim-
ulation, and Queues, Springer, New York.
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6 Appendix

A.1 Definition (Transition Graph)
The graph G = (N ,K) is determined by a countable set of nodes N and a
set of directed edges K ⊆ N × N . For k = (i, {j}) ∈ K there is an edge
pointing from i to j. If k = (i, {i}) then there is a loop in i.

i j

node

edge

loop

A.2 Definition
If {Xn}n∈N0 is a homogenous Markov chain with countable state space (E, E)
and transition matrix Π, its transition graph is defined by G = (N ,K) with

N = E and K = {(i, {j}) ∈ E × E : Π(i, {j}) > 0}.

A.3 Proposition (Radon-Nikodym-Theorem)
Let (Ω,F) be a measurable space and µ, ν two measures on F . If ν << µ,
then there exists a non-negative F -measurable function X determined up to
equivalence, such that for any A ∈ F ,

ν(A) =

∫
A

Xdµ.

This means that the Radon derivative of ν with respect to µ exists and is
equal to X. That is

dν

dµ
= X.
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