International Journal on Software Tools for Technology Transfer
https://doi.org/10.1007/s10009-020-00568-x

COMPETITIONS AND CHALLENGES l‘)

Check for
updates

Special Issue: TestComp 2019

Plain random test generation with PRTest

Thomas Lemberger’

© The Author(s) 2020

Abstract

Automatic test-suite generation tools are often complex and their behavior is not predictable. To provide a minimum baseline
that test-suite generators should be able to surpass, we present PRTEST, arandom black-box test-suite generator for C programs:
To create a test, PRTEST natively executes the program under test and creates a new, random test value whenever an input
value is required. After execution, PRTEST checks whether any new program branches were covered and, if this is the case,
the created test is added to the test suite. This way, tests are rapidly created either until a crash is found, or until the user aborts
the creation. While this naive mechanism is not competitive with more sophisticated, state-of-the-art test-suite generation
tools, it is able to provide a good baseline for Test-Comp and a fast alternative for automatic test-suite generation for programs

with simple control flow. PRTEST is publicly available and open source.

Keywords Random testing - Software engineering - Software testing - Software verification - Test-Comp

1 Introduction

Automatic test-suite generation is a highly active field of
research and many successful tools exist to this date. Unfor-
tunately, most of these tools are based on sophisticated
algorithms and thus, both their code and their behavior can
be hard to understand for non-experts. In addition, these tools
and their improvements are usually only compared to each
other, but no naive baseline exists. We present PRTEST, a
plain random test-suite generator that provides a solution for
both issues. PRTEST is designed to be simple: its full test-
suite generation logic consists of 125 lines of code, and it uses
no heuristics or sophisticated algorithms. Instead, PRTEST
provides random input generation [2]: It repeatedly executes
the program under test with random inputs and stores the
input values of an execution as a test if the execution increased
the overall coverage. Thanks to its pure randomness and
native execution of the program under test its behavior is
easy to understand and it can be used as a lower baseline for
Test-Comp.

B Thomas Lemberger
thomas.lemberger @sosy.ifi.Imu.de

I LMU Munich, Munich, Germany

Published online: 06 July 2020

Test-Gen 3 Native execution
Harness ,
' Test Inputs
Input- CLANG 3 Test Iflpl?tf
Program Compiler [} Setup [} PIOE’,M_IH
! Execution
i

Tests

Fig.1 Workflow of PRTEST

2 Test-suite generation approach

Figure 1 shows the workflow of PRTEST. PRTEST consists of
two steps: (1) it compiles the input program against a test har-
ness, and (2) it natively executes the compilation result. This
execution consists of the test setup and a test-generation loop.

First, PRTEST uses the CLANG compiler to compile the
program under test against a C harness that provides the full
test-suite generation logic (‘Test Gen. Harness’ in Fig. 1).
The harness provides: (1) a custom program entry point
for test-generation setup, (2) definitions for the Test-Comp-
specific input methods _ VERIFIER nondet_x (where x
is any primitive C type; e.g., _ VERIFIER_nondet_int),
(3) a method input that creates new test inputs, and
(4) CLANG-specific methods that allow PRTEST to track pro-
gram coverage during runtime.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-020-00568-x&domain=pdf

T. Lemberger

int _ VERIFIER nondet_int () {
int var;
input (&var, sizeof (var));
return var;

}

[SA NS SR

Fig. 2 Test-harness definition of the Test-Comp-specific method
__VERIFIER nondet_int

1 for (int i = 0; 1 < var_size; i++) {

2 new_value[var_size — 1 — 1] = rand() & 255;
3}

4 memcpy (var, new_value, var_size);

Fig. 3 Program logic for creating a new input value of var_size
bytes

When the compilation result is executed, the custom pro-
gram entry point initializes a random number generator and
traps signals that would usually terminate the program (e.g.,
SIGINT) as well as the exit method. This is necessary so
that PRTEST is not terminated prematurely if the input pro-
gram raises a signal or calls the exit method. Then, the
test-generation loop starts and calls the original main func-
tion of the program under test on clean memory. Whenever
a method __VERIFIER_nondet_X is called in the pro-
gram under test, method input introduces a new test input
of the expected type, records it as the next test input for
the current execution, and returns it to the function call in the
program under test. When the program under test terminates,
PRTEST checks whether the execution covered any new code
blocks, and if it did, the test inputs that were recorded for that
execution are stored as a new test. If no new code blocks
were covered, the test inputs are discarded. We call this
mechanism fest filter. After test filtering, loop starts again
by calling the main method of the input program, creating
another random test in the process. The test-generation loop
stops if a looked-for program bug is found (in case of cate-
gory Coverage-Error) or if the process is aborted by the user.

The test harness of PRTEST defines input methods
__VERIFIER_nondet_X so that they declare a new pro-
gram variable of their respective type X and call method
input to introduce a new test input of the
required size. Figure 2 shows this exemplary for method
__ _VERIFIER_nondet_int.

Method input receives a pointer to input variable var
that a new value should be assigned to, and the size of the
type of var in bytes. For each byte, input creates a random
byte value and stores that in an array that represents the new
value of the given size. To create random values, it uses the
random number generator rand () provided by the C stan-
dard library. After a value has been created for each byte, this
byte sequence is copied into var (Fig. 3). Method input
considers all types in their binary representation and is thus
type-agnostic: it uses a uniform distribution over arbitrary-
size binary values and is able to handle both integer and float

types.

@ Springer

To measure code coverage of program executions, PRTEST
uses the program instrumentation SanitizerCoverage
that is provided by CLANG. This instrumentation adds a spe-
cial method call at the beginning of each code block. We
define this method so that, whenever a new code block is
covered, a Boolean flag is set to indicate that the current test
covers new program behavior. This flag is then checked by
the test filter to decide whether to keep or discard a test.

The version of PRTEST used in Test-Comp ‘19 was
implemented as part of TBF [1]. Itis written in PYTHON 3 and
C, and uses the pseudo-random number generator provided
by the C standard library with a uniform distribution. For
reproducibility of the Test-Comp results, the seed of the ran-
dom value generator is set to the arbitrary value 1618033988,
derived from the golden ratio. Since version 2.0, PRTEST is
a stand-alone application that does not require Python any-
more.

3 Strengths and weaknesses

Strengths PRTEST does not interpret or analyze the program
under test, but executes it natively with a test-generation har-
ness. Thanks to this, PRTEST is able to handle all existing
C constructs and can efficiently handle all numeric types,
including floats.

PRTEST is also able to create a vast amount of tests
in a very short time: For example, for benchmark task
floats-cdfpl/square_2.i, PRTEST generated over
400 000 tests per second. This allows very fast generation of
arudimentary test suite that covers the, based on naive input-
value probability, most probable program branches. PRTEST
is also very simple: The C harness, which is the only nec-
essary component to create tests, is only 125 lines of code.
The remaining code exists to determine the input methods for
methods outside of Test-Comp, and to transform tests into the
Test-Comp test format—functionality that is not required if
one wants to apply PRTEST’s approach to a specific program
with a fixed set of input methods.

Weaknesses The uniform randomness of PRTEST cannot
compete with control-flow-aware test generators if programs
contain deeply nested branches or branches that are only
entered on a small range of inputs or a single input: The prob-
ability to generate a random test that reaches the comment
‘code block’ in the following example is 2% ~ 2% 10710

1 int 1 = _ VERIFIER_ _nondet_int () ;
> if (1 == 1) {

3 // code block

4}

1 https://gitlab.com/sosy-lab/software/prtest.

https://gitlab.com/sosy-lab/software/prtest

Plain random test generation with PRTest

If PRTEST produced tests with the same speed as for
the task floats-cdfpl/square_2.i that was mentioned
above, PRTEST would have a chance of about 8 % to cre-
ate a test to enter this loop within the Test-Comp time limit.
To achieve a 90 % probability to produce a test that reaches
the code block, PRTEST would have to create almost 10 bil-
lion random tests. For task floats-cdfpl/square_2.1i,
this would take PRTEST about 7 hours. The probability to
enter a program branch also exponentially decreases with
the number of conditions required to enter the branch.

In the literature, random testing is mostly used as a
complement to control-flow-aware testing techniques, for
example to provide an initial test suite [4] or to avoid other
generation techniques from getting stuck [3].

4 Tool setup

Availability PRTEST is developed at Dirk Beyer’s Soft-
ware and Computational Systems Lab (SoSy-Lab) at LMU
Munich. It is open source under Apache License, ver-
sion 2.0, and available online.>2 This work describes the
Test-Comp ’ 19 submission of PRTEST—the newest ver-
sion of PRTEST is available as a stand-alone program.>

Installation and Usage PRTEST requires PYTHON 3.5
or later and CLANG 3.9 or later. It can be installed by
following the steps described in file README . md. The fol-
lowing command line runs PRTEST in its configuration for
Test-Comp ' 19, for coverage-property file PROP_FILE
and input program PROGRAM. c:

./bin/tbf -i random —write-xml \
—svcomp -nondets \
—spec PROP_FILE PROGRAM.cC

The created test suite will be located in directory
output/test-suite/.

Participation PRTEST participated in all categories of
Test-Comp. In category Cover-Error, PRTEST was not
able to get any points in sub-categories ReachSafety-
ControlFlow, ReachSafety-ECA and ReachSafety-
Sequentialized because of its weakness regarding con-
trol flow. In sub-category ReachSafety-Floats, in contrast,
PRTEST even reaches the third place due to its ability to
natively handle float types. PRTEST also proved useful as
a baseline to identify potential weaknesses of other partici-
pants: The result tables of Test-Comp ’ 19 (e.g., for branch

2 https://gitlab.com/sosy-lab/test-comp/archives-2019/blob/c99 1e4/
2019/prtest.zip.

3 https://gitlab.com/sosy-lab/software/prtest.

coverage®) can show scatter plots for the values of chosen
table columns. This allows a quick comparison of the cov-
erage achieved per task by the random test suites created
by PRTEST and the test suites created by other participants.
If a tool achieves significantly worse results for a task than
PRTEST, this may hint to a potential weakness in that tool.
Such tasks exist for all participants.

Acknowledgements Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Beyer, D., Lemberger, T.: Software verification: Testing vs. model
checking. In: Proc. HVC, LNCS, vol. 10629, pp. 99-114. Springer
(2017)

2. Bird, D.L., Munoz, C.U.: Automatic generation of random self-
checking test cases. IBM Syst. J. 22(3), 229-245 (1983)

3. Majumdar, R. Sen, K.: Hybrid concolic testing. In: Proc. ICSE, pp.
416-426. IEEE (2007)

4. Rojas, J.M., Fraser, G., Arcuri, A.: Seeding strategies in search-
based unit test generation. Softw. Test. Verif. Reliab. 26(5), 366-401
(2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

4 https:/test-comp.sosy-lab.org/2019/results/results- verified/
META_Cover-Branches.table.html.

@ Springer

https://gitlab.com/sosy-lab/test-comp/archives-2019/blob/c991e4/2019/prtest.zip
https://gitlab.com/sosy-lab/test-comp/archives-2019/blob/c991e4/2019/prtest.zip
https://gitlab.com/sosy-lab/software/prtest
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://test-comp.sosy-lab.org/2019/results/results-verified/META_Cover-Branches.table.html
https://test-comp.sosy-lab.org/2019/results/results-verified/META_Cover-Branches.table.html

	Plain random test generation with PRTest
	Abstract
	1 Introduction
	2 Test-suite generation approach
	3 Strengths and weaknesses
	4 Tool setup
	Acknowledgements
	References

