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Abstract

Background: The results of studies on observational associations may vary depending on the

study design and analysis choices as well as due to measurement error. It is important to under-

stand the relative contribution of different factors towards generating variable results, including

low sample sizes, researchers’ flexibility in model choices, and measurement error in variables of

interest and adjustment variables.

Methods: We define sampling, model and measurement uncertainty, and extend the concept of

vibration of effects in order to study these three types of uncertainty in a common framework.

In a practical application, we examine these types of uncertainty in a Cox model using data from

the National Health and Nutrition Examination Survey. In addition, we analyze the behavior of

sampling, model and measurement uncertainty for varying sample sizes in a simulation study.

Results: All types of uncertainty are associated with a potentially large variability in effect es-

timates. Measurement error in the variable of interest attenuates the true effect in most cases,

but can occasionally lead to overestimation. When we consider measurement error in both the

variable of interest and adjustment variables, the vibration of effects are even less predictable

as both systematic under- and overestimation of the true effect can be observed. The results

on simulated data show that measurement and model vibration remain non-negligible even for

large sample sizes.

Conclusion: Sampling, model and measurement uncertainty can have important consequences

on the stability of observational associations. We recommend systematically studying and re-

porting these types of uncertainty, and comparing them in a common framework.

Keywords— measurement error, metascience, observational study, replicability, researcher degrees

of freedom, stability
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1 Introduction

Observational associations in epidemiology can be unstable and occasionally difficult to replicate in

subsequent studies [1, 2, 3, 4]. The instability sometimes leads to contradictory findings from similar epi-

demiological studies, raising challenges to the interpretation and credibility of epidemiological evidence

[5].

There are many factors which contribute to this instability: Small sample sizes may lead to high insta-

bility in the estimates of the magnitude of an association and its statistical significance. Another key

factor which may play an important role in the instability of research findings in epidemiology includes

diverse model specification choices, such as which variables are adjusted for. As we have shown in earlier

research, the inclusion and exclusion of potential adjustment variables, can cause a large variability in

results when estimating the association between an exposure and an outcome variable of interest using a

given data set [6]. Finally, measurement error in exposure and outcome variables may further exacerbate

the instability of observational associations.

While sampling uncertainty is classically accounted for when deriving p-values and confidence intervals to

report the results of epidemiological studies, methods to account for model and measurement uncertainty

are not commonly used when analyzing observational data. Instead, results are usually presented as if the

chosen model were the only possible model, even though different authors may consider very different sets

of adjustment variables when analyzing the same research question of interest [6, 7]. The large majority

of observational analyses are not pre-registered and do not have explicitly pre-specified analysis plans [8].

Concerning measurement error, there is a widespread and persistent belief that the effects of exposure

measurement error and exposure misclassification are relatively benign, as they will merely result in a

bias in parameter estimates towards the null and loss in statistical power [9, 10, 11]. However, these

presumed consequences of exposure measurement error and exposure misclassification, which are some-

times mentioned in the discussion of epidemiological findings to argue that an observed association may

potentially have been underestimated, only hold in cases where the variable of interest is the only co-

variate in the model which is measured with error. If the included adjustment variables are also subject

to measurement error, which is almost always the case in epidemiological studies, it is more difficult to

predict whether measurement error will attenuate or inflate risk estimates [12, 13, 14, 15].

Due to the multiplicity of possible analysis strategies, the relatively small sample sizes of many epidemi-

ological studies and the ubiquity of measurement error, model, sampling and measurement uncertainty

all appear to play important roles in the instability of observational associations and may contribute to

the non-replicability of research findings. It would be interesting to quantify and compare these different

sources of uncertainty in a common framework.

The aim of this work is to extend the vibration of effects approach [7], which we previously used to

assess model and sampling uncertainty [6, 16], to measurement uncertainty in order to provide a tool to

investigate the robustness of observational associations to these three types of uncertainty.
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We will illustrate this approach with data from the National Health and Nutrition Examination Survey

(NHANES) and consider three different scenarios for measurement vibration. In the first scenario, we

introduce measurement error only in the exposure of interest. This type of error is expected to reduce the

strength of the association. Secondly, we introduce measurement error only in the adjustment variables.

This second scenario occurs in practice when there are special efforts being made to reduce measurement

error to a minimum for the exposure of interest or if a method for measurement error correction has been

applied to account for measurement error in this variable. Finally, we consider a more realistic scenario

for measurement error where error is present both in the variable of interest and in the adjustment vari-

ables. Additionally, we compare measurement vibration with model vibration and sampling vibration.

We complement the analyses on real data with results on simulated data to investigate the behavior of

the three types of vibration for increasing sample sizes.

2 Methods

2.1 Model and sampling vibration

We previously introduced the concept of vibration of effects to quantify the variability in results when

studying an association of interest under a broad range of model specifications [7]. The idea of this

approach is to quantify the variability of results through a vibration ratio, which we defined as the

ratio of the largest versus smallest effect estimate for the same association of interest under different

analysis choices. Moreover, we applied this framework to assess the vibration of effects arising through

the specification of the probability model to data from the NHANES [6]. We showed that this type of

vibration, which we obtained through the inclusion or exclusion of all potential adjustment variables,

can have important consequences on the estimation of the effect of the variable of interest on all-cause

mortality in a Cox regression. The vibration ratios used were the relative hazard ratio (RHR) and the

relative p-value (RP). In this second study, these vibration ratios describe the ratio of the 99th and

1st percentile of hazard ratios and the difference between the 99th and 1st percentile of -log10(p-value),

respectively. In addition, we suggested showing volcano plots with p-values at the y-axis and effect

estimates at the x-axis. These volcano plots allow easy detection of patterns like the Janus pattern,

which is characterized by significant estimates in both a positive and negative direction.

Furthermore, we previously applied the vibration of effects framework when fitting the same model

on different subsamples of the data [16], and compared this type of vibration, denoted as ‘sampling

vibration’ in the following, with ‘model vibration’ as assessed in [6]. When studying sampling vibration,

a favorite model has to be chosen from all models considered in the assessment of model vibration. For

this model, we suggested drawing a large number of B random subsets of the data and fitting the same

statistical model on each of these subsets [16]. Similar to model vibration, vibration ratios and volcano
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plots can be used to illustrate sampling vibration.

2.2 Measurement vibration

In this work, we suggest further extending the vibration of effects framework to illustrate measurement

uncertainty. For continuous variables, we focus on an additive classical non-differential measurement error

model Z = X + U , where Z is the observed exposure, X is the true exposure, and U is a measurement

error term, which is independent of the true exposure X. Measurement error for a continuous variable

can be assessed by quantifying the correlation ρXZ between true exposure X and observed exposure Z in

a calibration sample. For binary variables, the magnitude of misclassification can be quantified through

sensitivity and specificity values.

Following [11], we consider the observed values for a given variable to be the true exposure values

X. We can generate virtual error-prone observed values Z for continuous variables based on a given

correlation ρXZ as follows. As shown in the Supplement, we first calculate the variance of observed

exposure Z as the variance of true exposure X divided by ρ2XZ . We can then determine the measurement

error variance by subtracting the variance of X from the variance of Z:

Var(U) =
Var(X)

ρ2XZ

−Var(X). (1)

As a final step, to obtain observed exposure Z, measurement error values U can be generated from a

normal distribution with mean zero and variance Var(U), and added to the true exposure X.

Furthermore, we suggest adding exposure misclassification to binary variables by using values for

sensitivity and specificity. In particular, for a binary variable with observed values 0 or 1, all values of 1

can be replaced by random values from a binomial distribution with a probability of success that is equal

to the sensitivity. Similarly, all values of 0 can be replaced by random values from a binomial distribution

with a probability of success equal to 1− specificity. As shown in the Supplement, for ordinal variables,

we follow a strategy which is similar to the simulation strategy for continuous variables by assuming

latent variables which follow a normal distribution.

Similarly to sampling vibration, we have to choose a favorite model among the models that are con-

sidered in the assessment of model vibration. For this model, we repeat the procedure of adding random

measurement error a number of B times. With B different results obtained by adding measurement error

to the variables, the vibration of effects framework can be used. To quantify the results, we suggest using

the 99th and 1st percentiles of effect estimates and p-values as vibration ratios to define relative effect

estimates and relative p-values, similar to model and sampling vibration. Moreover, these results can be

visualized with volcano plots.
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2.3 The National Health and Nutrition Examination Survey cohort data

2.3.1 Data set description

We analyze cohorts from the NHANES, modeling all-cause mortality with a variable of interest and 15

adjustment variables (for more details on data collection and pre-processing see [6]). For this work,

we run the analyses successively with 30 variables of interest, which were chosen from a pool of 417

variables. We selected these 30 variables due to a small amount of missing values (< 15%), and, for ease

of interpretation, ensured that they were either binary or continuous. For illustrative purposes, out of

these thirty variables, we will limit the presentation of results to two continuous variables of interest (thigh

circumference and HDL-cholesterol), as well as the two binary variables diabetes (defined as self-reported

doctor diagnosed diabetes and fasting glucose > 125 mg/dl) and heart disease (defined as self-reported

doctor diagnosed heart attack or coronary disease). Results for the other 26 variables of interest can be

found in the Supplementary Material. The 15 adjustment variables used were selected in line with our

recent work [6]. They comprise variables of continuous, binary and ordinal type.

2.3.2 Assessing model and sampling vibration

In order to assess model vibration for the NHANES data, we follow [6], where we focused on the particular

type of model vibration that is due to the inclusion or exclusion of all potential adjustment variables in a

Cox regression. Furthermore, we include the variables age and sex as baseline variables in every model.

The combination of the 13 remaining adjustment variables yields 213 = 8192 different models. For the

investigation of sampling vibration, we consider B = 1000 subsets of size 0.5n, where n is the number of

observations. Moreover, we use the model with all 15 adjustment variables as favorite model.

2.3.3 Assessing measurement vibration

In order to assess the vibration of effects due to measurement uncertainty in the NHANES data, we

first have to get an idea of the magnitude of measurement error that we can expect in this study. In

the absence of a calibration sample specific to the NHANES data, which would allow quantification

of the exact magnitude of measurement error in this study, we decided to search in the literature for

information on the precision with which the variables of interest and adjustment variables used in our

analyses are typically measured. To obtain a representative range of measurement error, we aimed to

collect high and low values of sensitivity, specificity and correlations for each variable. As we found only

scarce information for most variables, we decided to calculate average values for sensitivity, specificity

and correlations for high and low measurement error to obtain representative values which we applied

to all error-prone variables. For more detailed information for the different variables and references see

Supplementary Tables 2 and 3. Using the average values for high and low measurement error as limits

in a uniform distribution, we randomly draw a correlation and values for sensitivity and specificity for
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each iteration b = 1, ..., B. In the case of continuous variables, this strategy resulted in correlation

coefficients between observed exposure and true exposure uniformly distributed between 0.73 to 0.9. For

binary variables, we draw values for sensitivity and specificity from a uniform distribution between 0.56

and 0.85, and between 0.73 and 0.98, respectively. Finally, we generate measurement error for different

types of variables following the procedure described in section 2.2. Similar to the assessment of sampling

vibration, we use the model with all 15 adjustment variables as a favorite model and repeat the procedure

B = 1000 times. In accordance with [11], we assume the variables age and sex to be without measurement

error, and the same is assumed to apply to race/ethnicity.

2.3.4 Comparing different scenarios of measurement vibration with sampling and

model vibration

In the assessment of measurement vibration for the NHANES data, we distinguish between three different

scenarios: 1) We add measurement error to the variable of interest but not to the adjustment variables, or,

conversely, 2) we add measurement error to all adjustment variables except age, sex, and race/ethnicity,

and consider the variable of interest to be measured without error, and 3) we add measurement error to

both the variable of interest and the adjustment variables (expect age, sex and race/ethnicity). For all

scenarios, we assume that information on the outcome has no measurement error, an assumption that

is justifiable given the completeness and accuracy of NHANES data on death ascertainment. Finally,

we compare these three scenarios, which illustrate measurement vibration, with model and sampling

vibration, and focus in the interpretation of results on relative hazard ratios and volcano plots. In these

volcano plots, we consider a p-value < 0.05 as significant. For all analyses on the NHANES data, we use

the coxph function from the R-package survival. Due to the complex sampling structure of the NHANES

data, we account for participant weights, as well as for the clusters pseudostrata and pseudosampling

units by using a robust sandwich variance estimator. For all types of vibration, we standardize the

continuous variables of interest to ensure comparability.

2.4 Simulation study

In addition to the analyses on real data, we conduct a simulation study with the aim of comparing

measurement, sampling and model vibration for sample sizes that can both be smaller and larger than

the initial sample size of the NHANES data. In this simulation study, we generate data with sample sizes

n ∈ {500, 1000, 5000, 10 000, 50 000, 100 000, 200 000}. The simulated data is based on the NHANES

data in the sense that we adopt the correlation structure as well as the effect sizes of the variables on the

real data. More details about the data generation are described in the Supplement. Finally, we assess

the three types of vibration in the same way as introduced in section 2.3. For measurement vibration, we

consider only the scenario with measurement error in both the variable of interest and the adjustment

variables.
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3 Results

3.1 Results on the NHANES data

Figures 1 − 4 show volcano plots of model, sampling and measurement vibration for the three different

scenarios of measurement error introduced in section 2.3.4 for the four selected variables of interest, i.e.,

diabetes, heart disease, thigh circumference and HDL-cholesterol. In these figures, we provide additional

quantitative information about RHRs and RPs.

In the most realistic scenario for measurement error, i.e., when there is measurement error in the variable

of interest and the adjustment variables, both significant and non-significant results can be observed for

all variables of interest. Measurement vibration in this scenario is higher than model and sampling vibra-

tion in terms of RHRs for three of four variables of interest (diabetes, heart disease and HDL-cholesterol).

In the assessment of sampling vibration, both significant and non-significant results are obtained for all

variables of interest and sampling vibration is higher than model vibration for diabetes, heart disease and

thigh circumference. In contrast to measurement and sampling uncertainty, model uncertainty does not

change the significance of results for diabetes, heart disease and thigh circumference, where all results are

significant. Only for HDL-cholesterol does model uncertainty change the significance of results. While we

observe a Janus pattern for HDL-cholesterol in the case of sampling vibration, we can clearly distinguish

two clusters for thigh circumference in the case of model vibration. These clusters result from the choice

of whether BMI was included or excluded as an adjustment variable.

Despite a general tendency of measurement error to lead to an attenuation in effect estimates and loss

of statistical power when present only in the variable of interest, we can also observe cases where mea-

surement error leads to an inflated effect estimate and a smaller p-value compared to the results without

measurement error in this scenario. This tendency is particularly evident for HDL-cholesterol and di-

abetes and can also be observed for the large majority of the variables of interest illustrated in the

Supplement. When measurement error is only present in the adjustment variables, we can observe a clear

bias towards the null for thigh circumference, while there is a substantial bias away from the null for

diabetes and HDL-cholesterol. Finally, in the more realistic scenario when measurement error is present

both in the variable of interest and in the adjustment variables, the effects of measurement error are

more difficult to summarize as they seem to combine the effects of a general attenuation towards the

null, which occurs due to the measurement error in the variable of interest, and the effect attenuation or

inflation which occurs due to measurement error in the adjustment variables.

3.2 Results on simulated data

Figures 5 − 8 provide RHRs quantifying the variability in effect estimates for simulated data of varying

sample sizes. In the lower panels of these figures, bar plots visualize the percentage of significant results for

each sample size and each type of vibration for the three categories: negative significant, non-significant,
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and positive significant.

For all variables of interest, RHRs decrease with increasing sample size. This is most obvious for sampling

vibration, which is larger than model and measurement vibration for small sample sizes and tends to 1

with increasing sample size. Model and measurement vibration, on the other hand, remain non-negligible

even for a sample size of 200 000: For diabetes, heart disease and thigh circumference RHRs > 1.1

can be observed. For HDL-cholesterol, model vibration decreases to 1.1 and measurement vibration to

1.02 for the largest sample size. In the comparison of model and measurement vibration, measurement

vibration is lower for thigh circumference and higher for diabetes and heart disease for all sample sizes.

For HDL-cholesterol, measurement vibration is higher than model vibration for small sample sizes, and

lower for large sample sizes.

When focusing on the results with regard to the type of significance, both significant and non-

significant results are present for small sample sizes and all types of vibration for the three variables dia-

betes, heart disease and thigh circumference. For large sample sizes, the results indicate significance with

either only positive sign or only negative sign (without showing a Janus pattern). For HDL-cholesterol,

in contrast, a Janus pattern can be observed for measurement and model vibration for both small and

large sample sizes. For sampling vibration, most of the results are significant with positive sign for the

largest sample size, but non-significant results occur as well. As shown in the Supplement, eight of the

other 26 variables of interest can be associated with a Janus pattern for at least one type of vibration for

the largest sample size.

4 Discussion

In this work, the vibration of effects approach [7], which we previously used to assess the variability in

observational associations for different model specifications [6], and applied to different subsamples of

the data [16], was extended to exposure measurement uncertainty. Through this extension, it is possible

to quantify and compare model, sampling and measurement uncertainty in a common framework when

investigating the stability of research findings in observational studies. We studied these three sources of

uncertainty on real data for different scenarios of measurement vibration and on simulated data for varying

sample sizes. In accordance with [17] and in contrast to what is commonly assumed in the literature [9, 10],

we found in our analyses on the NHANES data set that even in the simple situation where there is only

measurement error in the variable of interest, measurement error can lead to occasional overestimations

of parameter estimates. This phenomenon is well-illustrated in [17] and especially occurs in the situation

of low sample sizes. Yet, even for larger sample sizes, the additional variance in the estimator, which is

introduced by measurement error, can induce overestimations of parameter estimates.

For the more realistic scenario of measurement error, where both the variable of interest and the

adjustment variables were assumed to be prone to measurement error, measurement vibration was even
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less predictable as both bias towards the null and systematic inflations of effect estimates occurred in

this situation. For this latter scenario, measurement vibration, as quantified through RHRs, exceeded

model vibration and sampling vibration for 27 and 12 of the 30 associations of interest that we studied,

respectively. In our simulation study we found that, while all types of uncertainty decreased for increasing

sample sizes, model and measurement vibration persisted non-negligibly for large sample sizes in contrast

to sampling vibration.

For most probability models, there are theoretical results on the behavior of sampling uncertainty. In

contrast, the consequences of model and measurement uncertainty on parameter estimates in observa-

tional studies in epidemiology are very difficult to predict. Model uncertainty is, in principle, reducible

by considering the fit of the different candidate models to the data (note, however, that there are different

possible ways to do that, implying some sort of method uncertainty). In contrast, a reduction in sampling

uncertainty and measurement uncertainty requires more effort as it can only be achieved by increasing

the sample size or by using more precise measurement tools, respectively. Finally, in the comparison

between the different types of vibration, one must keep in mind that measurement uncertainty does not

only lead to a variability in effect estimates, but also to bias.

Measurement error may also be a prominent feature for outcomes assessed in observational studies. This

was not an issue for the mortality outcome that we used in the NHANES analyses, but measurement

error in the outcome may be as large as or even larger than measurement error in the exposure and

adjustment variables in many other circumstances. In these cases, a similar approach can be used to

investigate the vibration of effects due to outcome measurement error.

Currently, statistical inference that is commonly applied to analyze epidemiological studies only accounts

for sampling uncertainty. Neglecting model and measurement uncertainty can lead to an underestima-

tion of uncertainty and overconfidence in results, and therefore to contradictory findings when studying

the same association of interest in different epidemiological studies. To improve the replicability and

credibility of epidemiological findings, it is therefore vital to either pre-emptively reduce these sources of

uncertainty during the planning of epidemiological studies, to integrate them when deriving statistical

results, or to systematically report their consequences on parameter estimation. While there are a num-

ber of methods to account for model and measurement uncertainty in epidemiological studies, including

Bayesian model averaging [18], multimodel inference [19], simulation extrapolation, regression calibration

[20] and Bayesian hierarchical approaches [21], these methods are only rarely applied in practice. More-

over, to our knowledge there are currently no methods which can simultaneously account for measurement

error in the exposure of interest and all adjustment variables, or methods that can account for sampling,

model and measurement uncertainty in a common framework. In cases where we can neither reduce

nor integrate the uncertainty when deriving statistical results, it is important to study the robustness of

results by systematically assessing the impact of all three types of uncertainty on parameter estimation.

Some caveats need to be discussed regarding our vibration of effects approach. Firstly, there may be a lack
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of consensus among experts about which variables can legitimately be considered adjustment variables

in a model, and which combinations of adjustments are acceptable and most plausible. The plausible

set may be a reduced subset of the full set of all theoretical combinations. However, even experts will

often have difficulties agreeing which variables are indispensable. Empirical studies suggest that most

observational studies do not include the majority of those variables for which there is a theoretical con-

sensus that they should be considered as adjustment variables [22]. Other empirical work shows that,

even within the same publication, estimates of reported associations for the same exposure-outcome pair

under different analyses and models can yield large differences in effect estimates [23]. Therefore, we ar-

gue that considering a substantial number of variables and all their combinations is a legitimate exercise.

Secondly, data on the extent of measurement error for exposures, outcomes, and adjustment variables

may be missing entirely, or existing data from other datasets may not be representative of the respective

measurement errors in a new dataset. In these cases, investigators should meticulously record what is

known and what is unknown about these measurement errors. Using the proposed vibration of effects

framework will allow them to show what influence different sizes of measurement error could have on the

stability of the results.

Acknowledging these caveats, the vibration of effects approach provides a flexible tool to systematically

assess and compare sampling, model and measurement uncertainty in a common framework. Finally,

encouraging the wider use of the vibration of effects concept for understanding model, sampling, and

measurement uncertainty may further sensitize researchers to the need to think more carefully about

these sources of instability. For example, studies rarely report the extent of measurement error for the

exposures of interest, and don’t make a systematic effort to summarize the existing evidence about these

measurement errors. It is possible that, in many studies, such evidence does not even exist. Similarly,

consideration of confounding and choice of adjustment variables is often sketchy and not well-documented

[24, 25]. In the current illustrative simulations we used a broad range of possible error, but in specific

future studies investigators may be able to have a better sense, even at the design phase, of what mag-

nitude of errors need to be anticipated. Moreover, the set of candidate adjustment variables would best

be pre-emptively defined. Regardless, the vibration of effects estimations may help place the instability

or robustness of study results into better context.
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Figure 1: Volcano plots for different types of vibration and different scenarios of measurement
vibration when diabetes is the variable of interest. The summary measures RHR and RP

indicate relative hazard ratios and relative p-values, respectively. The black cross in the top
panel indicates the model without measurement error.
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Figure 2: Volcano plots for different types of vibration and different scenarios of measurement
vibration when heart disease is the variable of interest. The summary measures RHR and
RP indicate relative hazard ratios and relative p-values, respectively. The black cross in the

top panel indicates the model without measurement error.

16



1

50

1 50 99

p = 0.05

p = 0.001

0

3

6

9

0.4 0.6 0.8 1.0 1.2
Hazard Ratio

−
lo

g1
0(

p) 10
20
30
40
50

Density

RHR = 1.46
RP = 2.11

Error in variable of interest and in 
adjustment variables

1

50

99

1 50 99

p = 0.05

p = 0.001

0

3

6

9

0.4 0.6 0.8 1.0 1.2
Hazard Ratio

−
lo

g1
0(

p)

10

20

Density

RHR = 1.40
RP = 4.72

Error in variable of interest

1
50
99

1 50 99

p = 0.05

p = 0.001

0

3

6

9

0.4 0.6 0.8 1.0 1.2
Hazard Ratio

−
lo

g1
0(

p)

25

50

75

Density

RHR = 1.38
RP = 1.31

Error in adjustment variables

1

50

99

1 50 99

p = 0.05

p = 0.001

0

3

6

9

0.4 0.6 0.8 1.0 1.2
Hazard Ratio

−
lo

g1
0(

p) 50
100
150
200

Density

RHR = 1.50
RP = 4.49

Model vibration

1

50

99

1 50 99

p = 0.05

p = 0.001

0

3

6

9

0.4 0.6 0.8 1.0 1.2
Hazard Ratio

−
lo

g1
0(

p) 5
10
15
20

Density

RHR = 2.09
RP = 6.36

Sampling vibration

M
ea

su
re

m
en

t v
ib

ra
tio

n

Figure 3: Volcano plots for different types of vibration and different scenarios of measurement
vibration when thigh circumference is the variable of interest. The summary measures RHR

and RP indicate relative hazard ratios and relative p-values, respectively. The black cross in
the top panel indicates the model without measurement error.
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Figure 4: Volcano plots for different types of vibration and different scenarios of measurement
vibration when HDL-cholesterol is the variable of interest. The summary measures RHR
and RP indicate relative hazard ratios and relative p-values, respectively. The black cross in

the top panel indicates the model without measurement error.
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Figure 5: Measurement, model, and sampling vibration for different sample sizes (top panel),
and bar plots visualizing the type of results in terms of significance of estimated effects

(bottom panel) for the association of diabetes with mortality.
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Figure 6: Measurement, model, and sampling vibration for different sample sizes (top panel),
and bar plots visualizing the type of results in terms of significance of estimated effects

(bottom panel) for the association of heart disease with mortality.
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Figure 7: Measurement, model, and sampling vibration for different sample sizes (top panel),
and bar plots visualizing the type of results in terms of significance of estimated effects

(bottom panel) for the association of thigh circumference with mortality.
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Figure 8: Measurement, model, and sampling vibration for different sample sizes (top panel),
and bar plots visualizing the type of results in terms of significance of estimated effects

(bottom panel) for the association of HDL-cholesterol with mortality.
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