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ABSTRACT

Next Generation Sequencing (NGS) technology is emerging as an appealing tool in char-

acterizing genomic profiles of target population. However, the high sequencing expense and

bioinformatic complexity will continue to be obstacles for many biomedical projects in the

foreseeable future. Modelling of NGS data not only involves sample size and genome-wide

power inference, but also includes consideration of sequencing depth and count data property.

Given total budget and pre-specified cost parameters such as unit sequencing and sample

collection, researchers usually seek for a two-dimensional optimal decision.

In this dissertation, I will introduce a novel method SeqDEsign, which is developed to

predict genome-wide power (EDR) of detecting differential expression (DE) genes in RNA-

Seq experiment under targeted sample size (N’) and read depth (R’) given a pilot data (N,R).

We aimed at providing advice for researchers regarding the design of RNA-Seq experiment

with a limited budget.

The first part of this dissertation is about predicting genome-wide power at N’ with R

being fixed. The pipeline started with hypothesis test for differential expressed gene detection

based on Wald test and negative binomial assumption. We proposed ways to directly model

p-value distribution by both parametric and semi-parametric mixture model. To predict

the genome-wide power of DE gene detection at N, posterior approaches based on either

parametric or non-parametric model were implemented.
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In the second part, we discussed ways to extend power prediction to N’ and R’ simul-

taneously. Both nested down-sampling (NDS) scheme and model-based (MB) method were

proposed and compared. The three-dimensional EDR surface (Pow(N’,R’)) was constructed

by two-way inverse power law model.

Finally, we discussed the cost-benefit analysis of RNA-Seq experiment with specification

of a cost function. We also explored answers to other practical questions for experimental

design. This framework was illustrated in both simulations and a real data application of

rat RNA-Seq data.

The public health relevance of this work lies in the development of a novel methodol-

ogy for genome-wide power calculation of RNA-Seq experiment. By accurately predicting

genome-wide power, researchers can detect more biologically meaningful bio-markers, which

will promote better understanding of human disease.

Keywords: Next Generation Sequencing(NGS), RNA-Seq data, Power calculation, Sample

size, Mixture model, Cost-benefit analysis, Experiment design.
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1.0 INTRODUCTION

With the advances in robotics and the vastly available genomic information on public

databases, microarray technology gained tremendous popularity for its high-throughput

quantitative representation and cost-effectiveness since last decade[Reimers, 2010]. While

microarray experiment provides access for biologist to a range of applications, statistical

analysis has played an active and significant role in the whole process. Statisticians corre-

spondingly, have taken enthusiastic interests in developing statistical tools that led to more

profound biological interpretations for certain research questions[Slonim and Yanai, 2009,

Keer and Churchill, 2001]. The next-generation sequencing, which is based on random am-

plification and shotgun sequencing, is another revolutionary technology first came to market

in 2004, making genomic profiles available in much higher resolution and in extremely high

parallel[Fang and Cui, 2011]. Although errors and biases might be involved in major steps of

experimental preparation processes, next-generation sequencing has been hailed as the future

of genomic research because of its higher sensitivity and potential of generating unlimited

dynamic ranges. In this sense, research is gradually transiting from microarray technologies

to next-generation sequencing[Shendure, 2008]. From statistical point of view, some method-

ologies developed under the microarray context may still be extended to NGS, however we

are facing many new challenges in data analysis.

In a biological study, the procedure of exploring a research topic usually starts from an

experimental design, where a major component is sample size and power calculation. The

purpose of such careful design is obvious: to improve efficiency and reduce cost. Methods

for power and sample size calculation in clinical and microarray data are rich in the liter-

1



ature[Lee and Whitemore, 2002, Gadbury et al., 2004]. But methods for sequencing data

are very limited. As sequencing technology is still not quite affordable to the majority of

researchers, it’s significant to ensure desirable power of bio-marker detection (usually a Dif-

ferential expression(DE) analysis) in the earlier phase of study (herein called “pilot study”).

In this introduction section, we will first clarify the significance of quantifying gene ex-

pression and go over both traditional and novel biotechnology. After that, we will introduce

the structure of a typical gene expression data and review methods of differential expres-

sion analysis. Furthermore, we will distinguish between traditional power and genome-wide

power definition and review the existing methods for microarray and RNA-Seq data power

calculation. Finally, the major motivation of developing new methods will be addressed.

1.1 QUANTIFICATION OF GENE EXPRESSION

Gene expression, which is the procedure of mRNA synthesis from a set of genes, has been

extensively used in the characterization of human disease, identification of novel disease

subtypes and potential drug target for treatment. There are more than 20,000 genes in

human genome, and only a small fraction of them are actually expressed in certain cell

types and at certain times. Understanding the dynamic changes of gene expression of a

given subject is important for us to study biological process ranging from inflammation to

human aging. By comparing gene expression data between different groups of subjects, we

can explain the activation or deactivation of pathways and the heterogeneity of diseases.

Now, the question comes that how we can quantify the gene expression. The techniques for

quantification of gene expression could be categorized into two types: (1) Candidate gene

transcriptome profiling; (2) High-throughput transcriptome profiling.
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1.1.1 Candidate gene transcriptome profiling

The candidate gene approach starts with a given gene list of interest, ranging from hun-

dreds to thousands. Comparing with high-throughput transcriptome profiling, it requires

additional expert knowledge and consequently creates bias in the study.

Conventional method for mRNA quantification by this approach is electrophoretic tech-

niques, including northern blot(1977), which is still the benchmark against other techniques.

It has advantages that the size of transcript is obtained by gel electrophoresis and it allows

for the identification of splicing variant which may be present. However, northern blots is

tedious and its sensitivity is limited by the capacity of the gel[Roth, 2002].

Later in 1989, reports of real-time PCR (rt-PCR) experiments for transcriptome analysis

were published[Burg et al., 1989]. It is generally accepted that rt-PCR produces the most

superior quantitative data due to the exquisite sensitivity and specificity of the PCR. For

many cDNA microarray data, rt-PCR could serve as the validation instead of the other way

around. While the advantage of routine microchip array is the large number of genes that

could be profiled simultaneously, they also suffers from high batch effect, poor sensitivity

and specificity. In comparison, though rt-PCR can only profile a smaller number of genes

(100 ∼ 400), the quality of quantification is much more desirable[Schmittgen et al., 2008].

Comparing with northern blot, the assay is far more quantitative, allowing more accurate

measurements of mRNA amounts.

1.1.2 High-throughput transcriptome profiling

Advances in molecular and computational biology have led to the development of powerful,

high-throughput methods for the quantification of gene expression. These tools have opened

up new opportunities in disciplines ranging from cell and developmental biology to drug

development and pharmacogenomics.

3



1.1.2.1 Hybridization based approaches(Microarray) With the increased popular-

ity of high throughput technology in mid 90’s, microarray became a novel tool in quantifying

genomic changes. The ability of these arrays to simultaneously interrogate thousands of tran-

scripts had led to important advances in a wide range of biological problems. These advances

include the identification of gene expression differences between disease and healthy tissues,

and new insights into developmental processes, pharmacogenomic responses, and the evo-

lution of gene regulation. The principle of a microarray experiment is that mRNA from a

given tissue is used to generate a labelled target, which is then hybridized in parallel to a

large number of DNA sequence, immobilized on a solid surface in an ordered array[Schulze

and Downward, 2001]. The data generated from microarray experiment typically consist of

a long list of measurements for spot intensities or intensity ratios. Nonetheless, it suffers

from following limitations: (1) background noise from hybridization limits the measurement

of expression, especially for probes with low abundance; (2) heterogeneity of probes with

respect to their hybridization properties will reduce the accuracy of measurements; (3) assay

is limited to transcript with relevant probes[Marioni et al., 2008].

1.1.2.2 Sanger sequencing of cDNA or EST libraries Sanger sequencing, developed

by Frederich Sanger and colleagues in 1977 [Sanger and Coulson, 1975], is a method of DNA

sequencing based on the selective incorporation of chain-terminating dideoxynucleotides by

DNA polymerase during in vitro replication. It is more desirable to be used for projects with

smaller-scale requirement for gene expression quantification.

1.1.2.3 Serial Analysis of Gene Expression (SAGE) Serial Analysis of Gene Ex-

pression(SAGE) was used to overcome the disadvantage of low throughput, expensive and

non-quantitative in Sanger sequencing. This tag-based sequencing method can provide pre-

cise and digital gene expression levels. They have, however, shortcomings, such as that, a

significant portion of the short tags cannot be uniquely mapped to the reference genome

and only partial transcripts are covered, etc. These disadvantages have largely limited the

application of traditional sequencing technologies[Wang et al., 2009b].
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1.1.2.4 RNA-Seq With the advent of rapid Next Generation Sequencing(NGS) technol-

ogy with reduced cost, RNA-Seq was recently developed to characterize the transcriptomic

profiling, impacting almost every field in life science and is being applied for clinical use. In

general, RNA sample is converted to a library of cDNA fragments with adaptors attached

to one or both ends. Then, each RNA molecule is sequenced in a high-throughput manner

to obtain short sequences for one or both end. Once reads with high quality have been

retrieved after preprocessing, the next step for quantification of gene expression is the align-

ment to reference genome. Consequently, we can compute the number of reads that have

been aligned to each gene region[Wang et al., 2009b]. Comparing with microarray platforms,

RNA-Seq technology has many advantages. First, RNA-Seq can cover the transcription of

whole genomic region unbiasedly comparing with hybridization-based approaches. Secondly,

it renders single-base resolution in quantification of gene expression and therefore reveals the

precise location of transcription boundaries. Thirdly, it provides more information regarding

the alternative splicing to improve our understanding of genomic transcription. Furthermore,

since there’s no control probe to compared with as it is in microarray, background signal

will not be an issue to reduce accuracy. Different from the response variable in microar-

ray, which is continuous intensity, RNA-Seq data is consist of aligned read count for each

gene. Since RNA-Seq does not have an upper limit for quantification, there will be a larger

dynamic range it could cover. RNA-Seq has also been shown to have high accuracy and re-

producibility from previous studies[Marioni et al., 2008]. Table 1 compared the advantages

and disadvantages of major biotechnologies in the quantification of gene expression.
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Table 1: Comparison between high-throughput technology in transcriptome profiling

Technology Microarray cDNA or EST sequencing RNA-Seq

Technology specifications

Principle Hybridization Sanger sequencing High-throughput sequencing

Resolution From several to 100bp Single base Single base

Throughput High Low High

Reliance on genomic sequence Yes No In some cases

Background noise High Low Low

Application

Simultaneously map transcribed regions and gene expression Yes Limited for gene expression Yes

Dynamic range to quantify gene expression level Up to a few-hundredfold Not practical ≥ 8,000-fold

Ability to distinguish different isoforms Limited Yes Yes

Ability to distinguish allelic expression Limited Yes Yes

Practical issues

Required amount of RNA High High Low

Cost for mapping transcriptomes of large genomes High High Relatively low
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1.2 DATA STRUCTURE OF MICROARRAY AND RNA-SEQ

EXPERIMENT

A genomic study typically assesses a large number of DNA sequences under multiple con-

ditions, e.g., a collection of different tissue samples. The resulting data after proper pre-

processing is a gene expression matrix M = {egij|1 ≤ g ≤ G, 1 ≤ i ≤ k, 1 ≤ j ≤ nk},

where the rows (G = {−→g1 , ...,−→gG}) form the expression patterns of gens, the columns (S =

{−→s11, ...,−−→s1n1 , ...,
−−→sknk

}) represent the expression profiles of samples, and each cell egij is the

measured expression level of gene g in sample j of group i. We assume that the genomic

study has a balanced design. If there are two groups of interest, there are n1 = n2 = N

samples in each experiment condition. In other words, subjects {−→s11, ...,−−→s1n1} are in group A

with xj = 1, while subjects {−→s21, ...,−−→s2n2} are in group B with xj = 0. See Figure 1 for the

detailed illustration.

In microarray study, egij is log2 of raw intensity or intensity ratio, which is typically

modeled as a continuous variable. For RNA-Seq data, egij is read count of gene g of subject

j in group i. And egij is frequently observed to follow over-dispersed poisson distribution.

[McCarthy et al., 2012]

In both technologies, sample size is the most influential factor in the determination of

power. Assuming we are primarily interested in detecting differentially expressed genes(DE

gene) between two groups, here we formally define the sample size (N) as the number of

biological replicates in each group. For RNA-Seq data, read(or sequencing) depth, which

is proportional to total aligned reads(R), is another important factor that impact power

calculation[Rapaport et al., 2013]. It is clear that higher read depth generates more infor-

mational reads, which will increase statistical power to detect DE genes. Throughout this

thesis, we refer to read depth and coverage inter-changeably both meaning how many reads

are assigned to a particular gene.
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(a) A gene expression matrix; (b) Notations in this paper.

Figure 1: Data structure of genomic study.

1.3 BIOMARKER DETECTION IN MICROARRAY AND NGS DATA

The most important reason to generate gene expression data regardless of specific platform

is to identify the DE genes in two or more conditions. Such genes are usually detected based

on a combination of expression change threshold and p-value cutoff[Rapaport et al., 2013].

Sandrine and others [Dudoit et al., 2003] provided a comprehensive review for the sta-

tistical issues that are addressed in microarray gene expression data. Elena and others

[Perelman et al., 2007] compared several alternative methods including t-test, modification

of t-test(significance analysis model, SAM) for differential expression analysis. In the limma

package, an empirical Bayes approach is implemented that employs a global variance esti-

mator s20 computed on the basis of all genes’ variances[Smyth, 2004]. These methods are all

based on Gaussian assumption for log transformed gene expression eij.

Due to different characteristics, methods for detecting DE gene from RNA-Seq data is

more complicated and diverse. The methods can be splitted into three major categories:

(1) Method based on Gaussian assumption: Bloom and others[Bloom et al., 2009] applied

the t-test to the total-count normalized data. Peter and others[’t Hoen et al., 2008] performed
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a square-root transformation for the total-count normalized data to stabilize the variance

and applied a t-test afterwards. In DEGseq proposed by Wang and others[Wang et al.,

2009a], it is assumed that log ratios of the counts have a normal distribution and a z-score

is calculated.

(2) Methods based on Poisson assumption: Marioni and others[Marioni et al., 2008]

proposed a Poisson log-linear model and performed likelihood ratio test (LRT) for differen-

tial expression gene detection. They applied normalization based on total-count implicitly.

Bullard and others [Bullard et al., 2010] took an external quantile normalization step rather

than doing total-count normalization. “Poissonseq” method [Li et al., 2012] is based on Pois-

son log-linear model, and can be used to not only two-class outcome but also multiple-class

and even quantitative outcome.

(3) Methods based on negative binomial assumption: Generalized linear model based on

a negative binomial distribution has also been developed in order to deal with over-dispersed

counts in RNA-Seq data. Robinson and others[Robinson et al., 2010] developed edgeR by

extending from previous methods for SAGE data. In their method, the dispersion parameter

can be estimated for each gene or can be assumed to be common across all genes, making this

method quite flexible. DESeq, developed by Anders and Huber[Anders and Huber, 2010], is

another method that imposes a negative binomial assumption and uses local regression to

estimate the relationship between the variance and the mean. baySeq[Hardcastle and Kelly,

2010] was proposed based on empirical Bayes theory. NOISeq[Tarazona et al., 2011] differs

from previous methods in that it is data-adaptive and nonparametric, and consequently

better adapts to the size of the data set.

Comparative studies [Rapaport et al., 2013] have indicated that no single method appears

to be favorable in all settings but methods based on negative binomial assumption (e.g.,

DESeq, edgeR, and baySeq) have superior specificity, sensitivities as well as good control

of false positive errors. Intawat and others [Nookaew et al., 2011] found that edgeR could

uniquely identify more differential gene expression(DGE) than Cuffdiff, baySeq, DESeq and

NOISeq.
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1.4 SAMPLE SIZE, POWER, GENOME-WIDE POWER

The design issues in microarray experiment had been broadly discussed in [Kerr and Churchill,

2001, Simon and Dobbin, 2003]. Generally, design problems cover level of replication, ref-

erence design, the balanced block design, the loop design and so on, which are proposed to

address different research questions. One of the most common tasks of statistician requested

by investigators is the sample size and power calculation. In general, sample size is the

number of patients or other experimental units enrolled in a study, and is usually referred

as biological replicates.

In order to calculate the sample size, it is required to have some idea of the results

expected in a study. In general, the greater the variability in the outcome variable, the

larger the sample size is required to assess whether an observed effect is a true effect. On the

other hand, the more effective a tested treatment is, the smaller the sample size is needed

to detect this positive or negative effectNoordzij et al. [2009].

Traditional definition of power is based on the framework of one hypothesis testing.

Assume we are interested in testing H0 : µA−µB = 0 against H1 : µA−µB = 2, where A and

B are two different treatment groups, both of which have the same number of subjects. To

achieve a statistical power of 1−β, the sample size needs to be n =
(s2

ȲA−ȲB
)(zα+zβ)

2

(ȲA−ȲB)2
, where α

and β denotes for type I and type II error respectively. ȲA − ȲB is usually defined as effect

size, indicating the difference between two groups of interest. s2
ȲA−ȲB

is the variability of

group difference.

Data generated from genomic study are constitute of more than 20,000 probes or genes.

In this large-scale simultaneous hypothesis testing problem, with hundreds of cases consid-

ered together, we can quantify the power of detecting genomic changes by “genome-wide

power”. It was also referred as expected discovery rate(EDR) in Gary and others’ paper

[Gadbury et al., 2004]. Under this framework, an important question is how we can maintain

type I error since there are multiple comparisons. Family-wise error rate and False discovery

rate(FDR)[Benjamini and Hochberg, 1995] are widely used to address this problem.
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Suppose we construct the following two by two contingency table with specific G hypothe-

ses to be known in advance. The numbers G0 and G1 of false and true null hypotheses are

unknown parameters, R is an observable random variable and A0, A1, R0, R1 are unobserv-

able random variables. In the context of microarray experiment, we would like to minimize

the number R0 of false positives[Efron, 2007, Ge et al., 2009]. In this case, genome-wide

Table 2: Multiple testing framework

True hypothesis Test declaration: Number of genes

non DE DE

non DE H0 A0 R0 G0

DE H1 A1 R1 G1

Total A R G

power is defined as EDR = E(R1

G1
) = 1 − β1. FDR is defined as FDR = E(R0

R
). In

most genomic applications, one controls FDR under a certain pre-specified threshold (e.g.,

FDR=0.05) to obtain the DE gene list. In the power calculation method throughout this

thesis, we pursue genome-wide power (EDR)under pre-specified FDR control.

1.5 COST OF RNA-SEQ EXPERIMENT

The cost of RNA-seq experiments often limits RNA-seq studies to only a small number of

replicate libraries. Many methods developed have also limitation when being applied to

small sample size. On May.28 2014, we checked the pricing of RNA-Seq experiment in the

NGS services at MD Anderson center. Sample preparation costs 572.30 dollars per sample.

Sequencing cost for HiSeq 2000 100bp pair-end reads is 2771.55 dollars per lane for external

user. For each lane, usually 300 - 400M paired-end reads could be generated which takes

11 days according to Duke institute for genome science and policy. That means, assuming
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the alignment rate is 50%, One can generate ∼ 650X coverage of RNA-Seq data if running a

sample per lane. The cost will be (572.30+2771.55)× 5 ≈ $ 16700 for five samples at 650X.

Alternatively, one can tag two samples per lane and run ten samples at ∼ 325X for 572.30

× 10 +277.1×5≈ $ 19600. In our method, we will consider both sequencing cost and sample

preparation cost in the cost function.

1.6 EXISTING SAMPLE SIZE AND POWER CALCULATION METHOD

1.6.1 The use of pilot study in power calculation

In general, power calculation method could be based on information from a pilot study or

purely model-based. Model-based methods is straight-forward and more economical, while

in most cases, it will give unrealistic estimation of sample size and power. By conducting

pilot study, we can estimate variability and effect size from pilot data to infer proper sample

size and power. Especially for genomic data, pilot study is of greater importance, since there

are variability coming from biological replicates, technical replicates, experiment and batch

effects.

In this thesis, we assume a pilot study with sample size N and total read R is available

to tackle the problem of power prediction. We will also discuss the potential approach of

power calculation when there is no pilot study in the discussion part.

1.6.2 Existing Methods for microarray data Sample Size Calculation

The significance of performing power and sample size calculation for genomic data was firstly

addressed by Mei-Ling Ting Lee.[Lee and Whitemore, 2002] They started from a common
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setting of ANOVA model in microarray data analysis:

Yb = γ0 + γ1(b1) + ...+ γL(bL) +
L∑
l=1

L∑
k>l

γlk(bl, bk) + ...+ ϵb (1.1)

where l = 1, ..., L denotes a set of L experimental factors. Parameter γl(bl) denotes a main

effect for factor l when it has level bl, for l = 1, ..., L, respectively. With the purposed

hypothesis test H0 : Ig = 0 against H1 : Ig = Id for main effects, a t-statistics, F-statistics,

χ2 or z-statistics could be constructed for single gene under different study designs. Here

Ig(= Igc) is denoted as the effect of a covariate/condition c for gene g, and the non-zero vector

Id in H1 is a target vector of differential expression levels that is expected to detect. In their

paper, ways to control multiple comparison were discussed when genes are correlated and

not correlated. Microarray studies usually involve simultaneous test of thousands of genes,

therefore the probability of producing incorrect conclusions must be controlled.

Family-wise error rate(FWER), (αF = P (R0 > 0)), is discussed in details for application

in multiple comparison issues in Mei-Ling Lee’s paper. Both(1)Sidak approach: assuming

independent estimation errors; and (2)Bonferroni procedure: assuming dependent estimation

errors are considered. It is obvious that the approach proposed there doesn’t consider the

heterogeneity across genes, since they assumed all genes have same variance and same effect

size for alternative hypothesis. They also mentioned the possibility to solve power calculation

problem from a Bayesian perspective, where a mixture model is introduced as:

f(v) = p0f0(v) + p1f1(v) (1.2)

where p0 is the proportion of non-DE gene, and p1 = 1−p0. Here v is the summary statistics

for each gene, f0(v) is the density for non-DE component, and f1(v) is the density for DE

component. But this approach is not investigated enough until the methodological paper for

PowerAtlas[Gadbury et al., 2004].

PowerAtlas is a popular web tool for power and sample size calculation proposed by Gary

L Gadbury and others [Page et al., 2006]. They considered the variability for mean expression

and effect size across genes by directly modeling p-value distribution of test statistics. They

introduced the concept of expected discovery rate(EDR), which could be viewed as the
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average power for all genes with null hypothesis being false. Since microarray studies are

influenced by multiple comparison issues, they also defined true positive rate(TP), true

negative rate(TN) as shown below. The notations are consistent with Table 2.

EDR = E(R1/G1) (1.3)

TP = E(R1/R) (1.4)

TN = E(A0/A) (1.5)

Assuming we have c being a binary covariate, with 0 as control and 1 as case. If µiA

and µiB are underlying true expression for group A and B, we want to test whether the

expression of group A and B are different for the ith gene with H0 : µiA − µiB = 0 against

H0 : µiA −µiB ̸= 0. In their power calculation procedure, they started from a set of p-values

of t-statistics to test for differential expression based on a pilot data. This pilot data should

have similar experimental characteristics as the future data. It could either be generated in

a pilot study or from a public database. t-statistics could be written in the following form:

ti =
ēiA − ēiB

Sei0xi1

√
1
nA

+ 1
nB

(1.6)

where SeiAeiB =
(nA−1)S2

eiA
+(nB−1)S2

eiB

nA+nB−2
and n = nA + nB., assuming equal variance. When the

two groups have equal sample size nA = nB = N , test statistics reduces to:

ti =
ēiA − ēiB√

(S2
eiA

+ S2
eiB

)/N
(1.7)

With the assumption that p-value distribution by DE analysis from microarray exper-

iment is a mixture of beta component and uniform component, a mixture model is fitted

with p-values from ti(i = 1, ..., G). The fitted model is f ∗(p). Then a parametric bootstrap
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procedure is performed to obtain new set of p-values with a targeted sample size N ′. Their

key step is the transformation of t-statistics by:

t∗i = ti
√
N ′/N (1.8)

The underlying assumption is that the group difference of each gene remains the same

under different sample size. By directly modeling p-value distribution, the heterogeneity

across genes could be maintained. Besides, it is more suited for this task since thousands of

hypotheses are tested in a discovery oriented research[Gadbury et al., 2004]. However, their

method cannot be directly apply to RNA-Seq data and they didn’t control FDR at fixed

level by imposing arbitrary p-value cut-off instead.

1.6.3 Existing Methods for RNA-Seq data Sample Size Calculation

The greatest distinction between RNA-Seq and microarray gene expression data is the types

of expression values. Microarray has continuous intensity, while RNA-Seq data is in read

count for each gene. As a consequence, their distribution assumption differs: Gaussian as-

sumption for microarray(usually at log-intensity level), and poisson/negative binomial dis-

tribution for NGS data.

In the typical DE gene analysis, we want to compare expression level of two experimental

groups, e.g., tumor and normal groups. it is equivalent to test H0 : µiA = µiB or H0 :
µiA

µiB
= 1

against H1 : µiA ̸= µiB or H1 :
µiA

µiB
̸= 1.

1.6.3.1 Method based on Poisson assumption Many literature has discussed various

Poisson tests for this hypothesis testing: (1) asymptotic test based on normal approxima-

tion:(a)Unconstrained maximum likelihood estimate(MLE) (b)Constrained maximum likeli-

hood estimate(CMLE); (2)tests based on approximate p-value methods; (3)exact conditional

test and mid-p conditional test; (4)likelihood ratio test, and corresponding power were cal-
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culated. See [Gu et al., 2008] for a comprehensive review for poisson rate tests. Chung-I

Li and others [Li et al., 2013a] developed methods(we will call it “Poisson model” for later

reference) for sample size and power calculation, based on previous introduced poisson tests.

They used false discovery rate(FDR) for multiple comparison, which was originally proposed

by [Storey and Tibshirani, 2001, Storey, 2002].

1.6.3.2 Methods based on negative binomial assumption Poisson tests are widely

used, while it ignores the nature of over-dispersion in real sequencing data. We have re-

viewed methods to detect DE genes based on over-dispersed poisson model. Among them,

edgeR[Robinson and Smyth, 2008] and DEseq[Anders and Huber, 2010] have been two most

popular packages to perform DE analysis. Extensive comparative studies have shown the

superiority of these two tests in detecting biomarkers over other tests. But it is obvious that

the two exact tests don’t have a closed form for sample size and power calculation.

Until now, there are two methods for RNA-Seq power calculation proposed: (1)RNASe-

qPower[Hart et al., 2013]; (2)Method based on exact test.[Li et al., 2013b] The two method

are similar in that they both require estimation or pre-specification of fold change, mean

counts, coefficient of variation and dispersion parameter.

RNAseqPower has a basic formula:

n = 2(z1−α
2
+ zβ)

1/µ+ σ2

ln(∆2)
(1.9)

where α and β are type I error and power respectively; zx is the x quantile of standard

normal; and ∆ is the testing target(typically fold change or effect size). These three param-

eters are required to be fixed across genes or a given study, and are often determined by

external requirements. µ and σ, which are coverage and coefficient of variation(CV) between

biological replicates are gene specific. The derivation of this formula is based on a general-

ized linear model framework and is presented in their paper. In their paper, the test is only

limited to single gene level. CV is estimated by edgeR. (σ = 1√
δ
,where δ is the dispersion

parameter) When considering gene collections, they simply take σ0.60 (60% quantiles of CV
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as the overall CV) and quantile of depth distribution across gene for sample size calculation.

Currently, they have an R package(RNASeqPower) available. Though this method is pretty

straightforward, it has several disadvantage: (1) it does not consider multiple comparison

issue since the the power is only computed based on one single test; (2) it fails to incorporate

the variability across genes and instead uses summary statistics for effect size, dispersion,

coverage of each gene, etc.

Chung-I Li and others [Li et al., 2013b] proposed a method for power calculation based

on exact test. For single gene case, power could be calculated by:

ξ(N, ρ, µA, δ, ω, α) =
∞∑

eA=0

∞∑
eB=0

f(Nωρµ̄A,
δ

N
)f(NµA,

δ

N
)I(p(eA, eB) < α) = 1− β (1.10)

where ω =
d∗1
d∗0

is the ratio of the geometric means of normalization factors between group

A and B. ρ is the fold change. µA is the average read counts in group A and f(µ, δ) is the

proabablity mass function of negative binomial model with mean µ and dispersion δ.

Considering collections of genes, they provide two approaches. In the first approach, µiA,

ρi, δi can be estimated from pilot data for each prognostic gene g that are know. Then we

could use numerical method to solve the equation:

r1 =
∑
i∈M1

ξ(N, ρg, µiA, δi, ω,
∗ ) (1.11)

where α∗ is the type I error when FDR is controlled at f. In the second approach, we can

specify a desired minimum fold change ρ∗, a minimum average read count µiA and a minimum

dispersion δi

This method has advantages to provide ways in account for across genes heterogeneity.

However, the parameter setting is also arbitrary and not flexible enough.
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1.6.3.3 Method based on Gaussian assumption “Scotty”[Busby et al., 2013] is an-

other tool recently developed for interactive power calculation. It first assesses number of

reads required to measure a specific number of genes, then estimate the within group vari-

ance. After that, Scotty will test a matrix of different experimental designs. Finally, the

design with highest power under a user-specified parameter will be selected. The parame-

ters include number of biological replicate, read depth and cost. While Scotty provides novel

ways in the experimental design for RNA-seq experiment, the framework is established based

on Gaussian assumption. Statistical power is calculated based on a t-test. They argued that

by using t-test unbiased calls of differential expression will be produced and power formula

for t-test is readily available for the computation.

To validate the prediction accuracy of power in Scotty, the authors compared Scotty with

DESeq using simulated data. They found that when sample size is small(N=2), DESeq has

more power in detecting DE genes, while sample size increases to greater than 5, t-test have

slightly greater power in detection. However, the papers did not evalutate the accuracy of

power prediction and selection of optimal experiment configuration since they didn’t have a

true power surface to compared with in their simulation studies. Furthermore, they didn’t

take consideration of multiple testing issue when predicting genome-wide power.

We compare the four existing methods with respect to six different perspectives in Table

3. According to our observation, not a single existing method can accommodate requirements

for all these criterion and in this thesis, we will develop “SeqDEsign”, a method to perform

power prediction and provide practical recommendation for the optimal experimental design

under a certain constraint of budget.
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Table 3: Advantage and disadvantage of existing methods

Method characteristics Poisson Model by Li (2013) RNASeqPower by Hart (2013) Exact test by Li(2013) Scotty by Busby (2013) SeqDEsign

Use negative binomial assumption X X X
Use pilot data X X X X X

Consider sequencing depth X X X
Consider multiple comparison (FDR) X X X
Apply genome wide power calculation X X
Consider cost function by N and R X X
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1.7 MOTIVATION OF SEQDESIGN

In all, unlike power calculation of traditional microarrays, modeling NGS data not only

involves sample size and genome-wide inference, but also includes sequencing depth and

count data statistics. The optimal design is beyond one-dimensional dual problem between

sample size versus statistical power as in the traditional array scenario. Given a total budget

and pre-specified cost factors such as unit sequencing expense (e.g. sequencing cost per

million reads), sample collection cost and bioinformatics expenditure, researchers usually

seek a two-dimensional optimal decision by balancing between the number of samples and

sequencing depth, yet existing methods have intrinsic limitations. We hypothesize that:

Using advanced count-data probabilistic modeling and power calculation, balancing be-

tween sample size and sequencing depth under a fixed total budget will provide optimal

genome-wide statistical power to detect differentially expressed genes.

In this method, the optimal design involves two-dimensional factors of sample size and se-

quencing depth under the constraint of a realistic cost schedule, involving per-unit sequencing

and sample collection, etc. As a result, the solution and interpretation from optimal design

and cost-benefit analysis are readily applicable to a real-world lab setting.

The following chapters will be arranged as described below. In chapter 2, we will first

investigate the proposed power prediction method for sample size when sequencing depth

is fixed. That means, for pilot data with sample size N and fixed read depth R, what’s

the genome-wide power in DE gene detection if N is increased to N’? We will introduce

our algorithm step by step and demonstrate the accuracy of our method in a simulation

study with parameters estimated from real data and compare to four existing methods.

Furthermore, we applied the method to real data and evaluate the accuracy of predicted EDR

curve. In chapter 3, we develop methods to include the varying read depth in the prediction

of EDR. A three dimensional EDR surface can be consequently constructed. In chapter 4,

we will discuss the design of cost function, optimization of EDR given cost function and

provide a series of case studies for cost-benefit analysis. Furthermore, the predicted optimal
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design will be compared with underlying true optimal design. Finally, in chapter 5, we will

discuss several major issues and limitations of our methods and the future directions.
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2.0 SAMPLE SIZE AND GENOME-WIDE POWER(EDR) PREDICTION

As described before, genome-wide power could be modeled as an increasing function of

sample size. For RNA-seq data, many power calculation methods[Li et al., 2013a,b] were

established based on this assumption. In this chapter, we firstly investigated the influence of

sample size on the estimation of genome-wide power, namely EDR, in our proposed methods

and then compared with existing methods in simulation studies. We further applied our

proposed method in real data applications.

2.1 HYPOTHESIS TESTING FOR DE GENE DETECTION

In chapter 1, we reviewed methods for DE gene detection under different models. There

are advantages and disadvantages for each method. Yet, most of them could not be directly

applied to predict power of a target sample size N’ given a pilot data with sample size N in

the case of RNA-Seq data.

Here we proposed the application of Wald test based on generalized linear model for power

calculation. The statistical formulation has been discussed in detail in a recent paper[Zhu

and Lakkis, 2013]. Following our notation in chapter 1, denote by egij the read counts of gene

g(g = 1, ..., G) for subject j(j = 1, ..., ni) of group i(i = 1, 0). For example, i=0 represents

the control and n0 is the number of controls; i=1 for the case and n1 for number of cases.

Assume egij follows a negative binomial distribution with mean µgij and common dispersion
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parameter δ, egij has the following probability mass function:

P (egij) =
Γ(δ + egij)

Γ(δ)egij!
(

δ−1µgij

1 + δ−1µgij

)egij(
1

1 + δ−1µgij

)δ (2.1)

where Γ(·) is the gamma function. Link function for negative binomial regression is:

log(µgij) = log(Rij) + βg0 + βg1xij (2.2)

where Rij is assumed to be the total mappable reads for subject j in group i and xij is a indi-

cator variable(subjects x1j comes from case group(i=1) and subjects x0j comes from control

group(i=0)). From previous two formula, we can easily get the log-likelihood function:

Lg =
1∑

i=0

ni∑
j=1

[log
Γ(δ + egij)

Γ(δ)egij!
+ egijlog(δ

−1µgij)− (egij + δ)log(1 + δ−1µgij)] (2.3)

βg0 and βg1 could be estimated by standard maximum likelihood(ML) methods with proper

initial points. Variance-covariance matrix of the MLE estimates could be approximated by

inverse expected Fisher information.

For gene g, our goal is to test null hypothesis H0 : βg1 = 0 against H1 : βg1 ̸= 0. Based on

likelihood theory, asymptotic tests, including likelihood ratio test, score test and Wald test,

can be constructed. Among the three tests, only Wald test statistics could be written in a

closed form. The advantage of Wald test is the convenience for Z statistic transformation

assuming effect size of treatment remains the same for each gene for different sample sizes.

Specifically, Wald test could be constructed by:

Zg =
β̂g1√

V ar(β̂g1)
∼ N(0, 1) (2.4)

under the null hypothesis for gene g.( ∑1
i=0

∑ni

j=1[egij − (egij + δ)× qij
(1+qij)

]∑1
i=0

∑ni

j=1[xijegij − (egij + δ)× xijqij
(1+qij)

]

)
=

(
0

0

)
(2.5)

where qij = δ−1Rije
βg0+βg1xij and

(β̂g0

β̂g1

)
can be estimated by solving equation (2.5) by numer-

ical methods.
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For purpose of power calculation, we assume all samples have the same total reads R,

Rij = R ∀ i, j . When samples do not have equal total reads, normalization methods could

be applied to meet this requirement. Under this assumption, the expected fisher information

can be simplified as:

Fg = −E(
∂2Lg

∂(βg0, βg1)
) =

 n0Reβg0

1+δ−1Reβg0
+ n1Reβg0+βg1

1+δ−1Reβg0+βg1
n1Reβg0+βg1

1+δ−1Reβg0+βg1

n1Reβg0+βg1

1+δ−1Reβg0+βg1
n1Reβg0+βg1

1+δ−1Reβg0+βg1

 (2.6)

Cov

(
β̂g0

β̂g1

)
= F−1

g (β̂g0, β̂g1) (2.7)

And consequently,

V ar(β̂g1) =
1

n0

× (
1 + θeβ̂g1

θReβ̂g0+β̂g1
+

1 + θ

θδ̂
) (2.8)

where θ is n1

n0
.

Here, the dispersion parameter is assumed to be common across all genes and is estimated

by conditional maximum likelihood in “edgeR”[Robinson and Smyth, 2008]. The reason for

using common dispersion parameter is that when sample size is small, (which is usually the

case in pilot studies) estimating tag-wise dispersion parameter for each gene separately is

impractical. We could consequently compute the p-value corresponding to each Z statistics

by pg = 2× Φ(Z ≥ |Zg|) based on the pilot data.

2.2 MIXTURE MODEL FITTING

According to the literature review in chapter 1, we saw that a lot of existing power calcula-

tion methods for RNA-seq did not consider the heterogeneity of genes with respect to gene

expression variability and effect size. Here, we want to directly model p-value distribution by
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parametric or semi-parametric model to preserve the heterogeneity. This is argued to pro-

vide a reasonable model for distribution of p-value in microarray experiment [Allison et al.,

2002], and we assume the same for RNA-seq experiment.

The idea of modeling p-value distribution from microarray study by finite parametric

mixture model was proposed by David and others[Allison et al., 2002]. Assuming indepen-

dence of gene expression levels across genes, under null hypothesis that there’s no difference

between gene expression of two groups, the distribution of p-value is Uniform(0,1) regard-

less of the test being used. Under the alternative hypothesis, on the other hand, p-value

distribution will tend to concentrate close to 0. Consequently, a useful way in presenting the

p-value distribution is by a mixture model. We call the following model as “Beta-Uniform

mixture model”(BUM model).

f(p|r, s, λ) = λf0(p) + (1− λ)f1(p|r, s), (2.9)

where f0(p) is a uniform density; f1(p|r, s) is a beta distribution density with parameter r

and s (0 < r < 1 ≤ s), λ ∈ (0, 1) is the proportion of non-DE genes. (The constraints are

required to guarantee proper shape of beta distribution for DE genes). Figure 2 showed a

stacked histogram of p-values with red being the DE gene p-values and blue being non-DE

gene p-values from simulated data.

Here, we discussed five alternative approaches in estimating mixture model of p-values

distribution. Among them, the first four methods were based on BUM model with parameter

λ, r and s. While the fifth method was based on a semi-parametric mixture model, where

density of DE component(f1) was estimated by adaptive kernel smoothing method.

(1)Three parameter BUM model: We used maximum likelihood method to estimate λ, r

and s with the above constraints by “L-BFGS-B” method in R function “optim”, which

allows for box constraints (each variable can be given a lower and/or upper bound). We

selected 10 initial points for optimization(9 sets of random initial and 1 set being the estimate

of Storey and Tibshirani’s method for λ and method of moment estimates for r and s), and

choose the solutions corresponds to the largest likelihood.
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DE gene p-value follow roughly a beta distribution and non-DE gene p-value follow a

uniform distribution.

Figure 2: Stacked histogram: p-value distribution by mixture model.

26



(2)Storey and Tibshirani’s method BUM model: Storey and Tibshirani [Storey and

Tibshirani, 2003] proposed an approach to estimate λ though their final goal is to compute

q-values given a set of p-values by fitting function of λ to a natural cubic spline.

(3)Two parameter BUM model: This model was introduced in Pounds’s work. [Pounds

and Morris, 2003] The beta-uniform mixture density was constrained by s=1. So the two

parameter BUM model is :

f(p|λ, r) = λ+ (1− λ)rp(r−1) (2.10)

This method was implemented by “Bum” in R package “ClassComparison”.

(4)CDD BUM model: Ferkingstad and others [Langaas et al., 2005] proposed another

method to estimate λ by nonparametric maximum likelihood. We implemented their method

by function “convest” in R package “limma”. The shape parameter of beta distribution was

then estimated by maximum likelihood method.

(5) Semi-parametric BUM model: In previous work, people had observed the alternative

distribution sometimes could not be modeled by beta distribution well. So we now introduce

a semi-parametric model for p-value distribution. This is called “semi-parametric” since the

non-DE gene p-value distribution is still assume to be uniform, but the DE gene p-value

distribution will now be modeled by a non-parametric density. This is usually a decreasing

density.

Represent the mixture density as f(p|λ) = λf0(p) + (1− λ)f1(p), our goal is to estimate

f̂1(p). We proposed the following procedure:

1. Estimate λ by Storey and Tibshirani’s method;

2. Apply logit transformation: P = logit(p) to avoid boundary effect of density estimation.

The mixture model density becomes g(P |λ) = λ eP

(1+eP )2
+ (1− λ)g1(P );

3. Estimate g(P |λ) by adaptive kernel smoothing method; [Silverman, 1986]

4. Given λ, compute ĝ1(P );

5. Transform ĝ1(P ) back to f̂1(p).
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With any of these five methods, we will finally come up with the fitted mixture density:

f̂(p|λ̂) = λ̂f̂0(p) + (1− λ̂)f̂1(p) (2.11)

2.3 GENOME-WIDE POWER(EDR) PREDICTION

The ultimate goal of our approach is to predict EDR under targeted sample size(N’) with

FDR controlled at false discovery rate α%. Given a fitted p-value mixture model, we were

able to perform a re-sampling procedure in estimating EDR. The procedure will be repeat

for many times for the power prediction. Originally, we proposed both frequentist and

bayesian approach. For the convenience of statistics transformation, we determine to use

bayesian approach described below. Since previously we had applied both parametric and

semi-parametric ways in the estimation procedure, the re-sampling method could also be

parametric sampling and non-parametric sampling(e.g., Metropolis Hasting). In both ap-

proach, we proposed method to sample DE status based on posterior probability for purpose

of power prediction.

2.3.1 Posterior sampling approach based on parametric model

We already computed the Z statistics (Z1, ..., Zg) for a given pilot data. Given fitted mixture

density (2.11), we can compute posterior probability of whether a certain gene comes from

DE gene:

P (Ig = 1|λ̂, r̂, ŝ, pg) =
(1− λ̂)f̂1(pg|r̂, ŝ)

(1− λ̂)f̂1(pg|r̂, ŝ) + λ̂
(2.12)

where Ig is a binary variable indicating the DE gene status. When Ig = 1, gth gene comes

from DE component. Otherwise, it comes from non-DE component. r̂, ŝ and ˆlambda were

estimated from mixture model fitting. We then implement the following procedure:
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1. In the bth simulation, I(b) = {I(b)1 , ..., I
(b)
2 , ..., I

(b)
G } are randomly generated from P (Ig =

1|λ̂, r̂, ŝ, pg). (1 ≤ g ≤ G)

2. Only p-values from alternative distribution will be transformed by:

Z(b)
g = I(b)g × Zg ×

√
N ′

N
+ (1− I(b)g )× Zg (2.13)

where N ′: predicted sample size. Remember that in formula (2.8), V ar(β̂1) could be

written as a function of sample size N. Therefore, if we assume effect size of DE gene

remains the same as sample size increases, we can apply transformation (2.13). It is

also based on the assumption that, as sample size increases, p-value of non-DE gene will

remain non-significant, yet DE gene will be more significant.

3. Compute p-value based on 2-sided test: p
(b)
g (I

(b)
g = 1) = 2× (1− Φ(|Z(b)

g |))

4. Control empirical FDR at α%:

a. Order p-values so that: p(1) ≤ p(2) ≤ ... ≤ p(j) ≤ ... ≤ p(G)

b. For p(j), compute FDR(p(j)) =

∑G
g=1(1−I

(b)
g )×1

{p(b)g ≤p(j)}∑G
g=1 1{p(b)g ≤p(j)}

c. p(b) = argmax
p
(b)
g

(FDR(p
(b)
g ) ≤ α), where p(b) is the p-value cut-off for bth simulated

sample.

5. ÊDR
(b)

= R̂1
(b)

Ĝ1
(b) , at the mean time, we can compute: T̂P

(b)
= R̂1

(b)

R(b) , T̂N
(b)

= Â0
(b)

A(b) , where

R̂
(b)
1 =

∑G
g=1 I

(b)
g ·1{p(b)g <p(b)}, R̂

(b)
0 =

∑G
g=1(1−I

(b)
g )·1{p(b)g <p(b)}, Â

(b)
1 =

∑G
g=1 I

(b)
g ·1{p(b)g ≥p(b)}

and Â
(b)
0 =

∑G
g=1(1− I

(b)
g ) · 1{p(b)g ≥p(b)}, Ĝ

(b)
1 = Â

(b)
1 + R̂

(b)
1 , R(b) =

∑G
g=1 1{p(b)g <p(b)}, A

(b) =∑G
g=1 1{p(b)g ≥p(b)} according to Table 2.

We repeated step 1∼5 for B=100 times and computed estimated EDR and evaluate TN rate

by averaging across the B repeats:

ÊT̂P =
B∑
b=1

T̂P
(b)
/B, ÊT̂N =

B∑
b=1

T̂N
(b)
/B, Ê

ÊDR
=

B∑
b=1

ÊDR
(b)
/B (2.14)
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2.3.2 Metropolis Hasting approach based on semi-parametric model

It has been argued that the p-value distribution of DE component sometimes does not strictly

follow beta-distribution. In that case, the application of beta distribution will be harmful to

the inference of EDR. In the previous section, we proposed ways to model p-value distribution

by semi-parametric methods to address this problem. We simulated p-value from alternative

distribution by Metropolis Hasting:

2.3.2.1 Bootstrap p-value from estimated density

1. Assuming y ∈ f̂1, proposal distribution is N(ȳ, 5× V ar(y))

2. Initialize: Y0 = ȳ

3. In each iteration t, we simulate a number(Y ∗) from N(ȳ, 5 × V ar(y)), and compute

acceptance probability:

r =
f̂1(Y

∗)

f̂1(Yt−1)
(2.15)

We also generate a random number u from uniform distribution Uniform(0,1). If u ≤ r,

assign Yt = Y ∗, otherwise Yt = Yt−1. And tth number of generated sample is Yt−1.

4. The desirable acceptance rate is around 20 ∼ 50%.

In our simulations, we generated markov chain with 20,000 steps and remove the the first

2000 number generated. (burn in period) We implemented both (2.3.2.1) and (2.3.2.2) in

our simulation studies. Due to their similar performance, here we’ll only show the result of

(2.3.2.2).

2.3.2.2 Posterior sampling approach based on semi-parametric model Similar

with parametric approach, we generated posterior probability for each p-value (2.12) based

on semi-parametric model (substitute f̂1(pg|r̂, ŝ) with f̂1(pg)), and simulated DE gene status

for each bootstrap sample. After the simulation of p-values or DE status, we followed the

step (2) ∼ (5) as in section 2.3.1.
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2.4 SIMULATION STUDIES

To mimic the real world situation, parameters of our simulation settings was based on a real

data downloaded from SRA with relatively high read depth. (http://trace.ddbj.nig.ac.

jp/DRASearch/study?acc=SRP023266) We estimated the model parameters from real data

and simulated data with some variability of the estimated parameters.

2.4.1 SRA data description and preprocessing

This SRA data was based on a rat study, where the RNA-seq data of noninfectious HIV-1

transgenic (HIV-1Tg) rat was compared with F344 control rats. [Li et al., 2013c] The primary

goal of this study was to identify differentially expressed genes and enriched pathways affected

by the gag-pol-deleted HIV-1 genome. The authors sequenced RNA transcripts in three brian

regions (prefrontal cortex(PFC), hippocampus(HIP), and striatum(STR)) of HIV-1Tg and

F344 rats by RNA deep sequencing. A total of 72 RNA samples were sequenced (12 animals

per group × 2 strains × 3 brain regions). The differential expression signal in this data set

was relatively weak, with fold change cut-off specified ≥ 20%. The final number of declared

DE genes for the three brain regions were 197, 154, and 171 out of a total of 14,750 genes

from the original paper.

Following deep-sequencing of 50-bp paired-end reads of RNA-Seq, we used Bowtie /Tophat

/Cufflinks suites(version 2.0.10) to align these reads onto gene regions based on the Rn4 rat

reference genome. Then htseq-count was used to summarize number of reads aligned to

each gene. We further applied normalization method in “EDASeq” to perform within-lane

normalization procedures to adjust for GC-content effect (or other gene-level effects) on read

counts[Risso et al., 2011].
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2.4.2 Differential analysis and Compare Wald test with exact/likelihood ratio

test in real data analysis

To confirm the validity of Wald test when pilot sample size is small, we first compared the

p-value distribution of Wald test and exact/likelihood ratio test performed in “edgeR”. (R

function “exactTest” and “glmLRT” respectively.) Dispersion parameter δ was estimated

by “estimateCommonDisp” in “edgeR”. The results are shown in Figure 3.

Figure 3 indicated an almost perfect concordance of p-value distribution between (1)

Exact test vs. likelihood ratio test; and (2) Wald test vs. exact test for all three real

datasets. We fitted the p-value from Wald test into three parameter BUM mixture model

for all three real datasets. Figure 4 showed the fitted p-value density. (red: mixture density;

black: uniform component) p-value distributions of PFC and STR data were not ideal to be

fitted into mixture parametric model, while HIP data worked well under this assumption.

2.4.3 Simulation settings

To mimic data structure in real case, we simulated data based on model estimated from real

data. We started with HIP data (N=12, R=µG, G =14750, µ ≈600) since that its p-value

distribution had good fitting into p-value mixture model and therefore we computed the

mean counts per gene(µg) and generated data sets based on the its empirical distribution.

We also calculated log-fold-change(lfcg), which is simply, êg1/êg0, and lfcg was fitted into

a truncated normal distribution with four different cut-offs. Common dispersion parameter

δ was estimated by “edgeR”. See Table 4 for the notations for parameters in simulation

settings.

To evaluate predicted EDR under different simulation settings, we generated data with

slightly different dispersion and fold change parameters. Based on real data, we estimated

dispersion to be δ̂ = 50. We selected δ = 40, 45, 50, 55, 60 in our simulation. In real data

analysis, we estimated mixture model parameters of p-values. λ̂ by Storey’s method was

roughly 0.90, meaning 10% genes come from DE component. The distribution of lfc from
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(a) PFC data; (b) HIP data; (c) STR data. Left panel is Quantile-Quantile plot of p-value

from exact(x axis) and likelihood ratio test(y axis). Right panel is Quantile-Quantile plot

of p-value from exact(x axis) and Wald test(y axis).

Figure 3: Compare distribution of p-values by using Wald test and ex-

act/likelihood ratio test.
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(a) PFC data; (b) HIP data; (c) STR data.

Figure 4: p-value distribution by Mixture model

Table 4: Notations of parameters in simulation settings

Parameter Explanation

N Number of biological replicates in each group in pilot study

N’ Number of biological replicates in each group in future study

G Total number of genes in pilot study

R Total number of reads for each sample in pilot study (R=µ×G)

R’ Total number of reads for each sample in future study

egij Observed reads for subject j in group i

µ Average reads per genes per sample

µg Average reads for gene g per sample

µg1 Average reads for gene g in group A

µg0 Average reads for gene g in group B

δ Common dispersion parameter

m% Percentage of DE gene

lfcg log-fold-change for gene g

34



DE genes followed N(0,0.04) truncated at certain cut-offs. If we selected the top 10% genes

with largest lfc then the corresponding cut-off was around 0.2 (fc=1.15). We also added in

several alternative cut-offs, including 0.26, 0.32 and 0.38. (corresponds to 1.2; 1.25 and 1.30

at fold change scale) In the original paper of HIP data, the reported significance of DE gene

was defined as p≤0.005 (FDR≤0.2) with a fold change (FC) ≥ 20%, which coincided with

our selection. The average number of reads for each gene was set to be 650. (µ = 650) This

corresponds to the data generated by 1 lane and with alignment rate 50%. The total number

of genes(G) is set to be 10,000. The total number of reads per sample is R=6.5M.

The simulation studies is summarized in Figure 5. The details of simulation steps to

generate data with (N, R) is as follows:

1. Randomly sample µg from empirical distribution estimated from real data.

2. Generate lfc from specified truncated normal distribution

3. Assign DE gene label: generate random number rg from Uniform(0,1), if rg ≤0.10 then

gth gene is DE, otherwise, it is non-DE gene.

4. Generate expression value for each sample: if gth gene is DE, eg1j ∼ NB(µg × 2lfcg/2, δ),

eg0j ∼ NB(µg × 2−lfcg/2, δ); otherwise egi. ∼ NB(µg, δ)

We simulated 50 datasets under each simulation setting with pilot data sample size(N)

N = 2, 4, 8, 16. For each pilot data with sample size N in the left flow chart of Figure 5,

EDR was predicted for targeted sample size(N’) N ′ = 5, 10, 20, 30, 40, 50, 100, which could

be denoted by TPN(N
′), TNN(N

′), EDRN(N
′). Posterior sampling procedure was repeated

for 20 times. On the right side of Figure 5, EDR(N ′) was computed from simulated data

under the target sample size (N’). The performance of power calculation was evaluated by

comparing EDRN(N
′) with EDR(N’).
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Figure 5: Flowchart of SeqDEsign when predicting EDR at targeted sample size

N’
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2.4.4 Compare ROC curve of Wald test and exact test

Wald test applies to approximations (plugged-in standard deviation and chi-squared approx-

imation) and sometimes raised concerns of accuracy compared to exact test. To demonstrate

the validity of Wald test, we first compared it with exact test under negative binomial dis-

tribution using “exactTest” function in “edgeR” package for the two simulation settings

described above. Since we know true labels of DE gene under simulation settings, we can

compare the Receiver operating characteristic (ROC) curve and area under curve (AUC) of

Wald test and exact test.

We compared the two tests in 12 of the total 20 simulation setting. (Dispersion is

choose to be 40, 50, 60; fc is choose to be ≥ 1.15, ≥ 1.20, ≥ 1.25, ≥ 1.30). In each

setting, we generated 50 datasets and performed the two tests. Pilot data sample size N

was fixed as N=4. For both methods, common dispersion parameter was estimated by

“estimateCommonDisp” due to the small sample size of pilot data. Then, we performed

the two tests separately for simulated data under each setting and generated ROC curve

by comparing the declared genes with the true labels. Figure 6 show the ROC curve(with

boxplot of 50 datasets). The ROC curves of exact and Wald test almost overlapped with

each other, indicating good concordance.
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Figure 6: ROC curve comparing exact and wald test under 12 simulation settings.
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Table 5: Summary table for AUC in 12 simulation settings

fold change(fc) δ=40 δ=50 δ=60

Exact Wald Exact Wald Exact Wald

≥ 1.15 0.7693(0.0099) 0.7711(0.0098) 0.7944(0.0088) 0.7967(0.0088) 0.8160(0.0098) 0.8186(0.0098)

≥ 1.20 0.8145(0.0086) 0.8172(0.0086) 0.8401(0.0075) 0.8430(0.0075) 0.8594(0.0071) 0.8625(0.0071)

≥ 1.25 0.8606(0.0074) 0.8631(0.0073) 0.8852(0.0074) 0.8881(0.0072) 0.9002(0.0053) 0.9032(0.0052)

≥ 1.30 0.8983(0.0057) 0.9008(0.0057) 0.9155(0.0061) 0.9182(0.0060) 0.9293(0.0050) 0.9322(0.0048)
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Table 5 showed the mean and standard deviation of AUC for both cases. In all cases,

Wald test had slightly higher mean AUC compared with exact test in edgeR. But there was

no statistically significant difference between the performance of Wald test and exact test.

2.4.5 Performance of BUM model estimation methods under different simula-

tion settings

Previously, we introduced several alternative approaches in modeling the mixture model

of p-value distribution. In any of these methods, we performed sampling scheme for DE

gene labels based on empirical Bayes method. In each simulation setting, we computed the

True EDR curve with its point-wise confidence interval by normal approximation(bounded

between 0 and 1). We compared it with predicted EDR curve and corresponding confi-

dence interval. We performed simulation studies to a total of 20 settings. (4 log-fold-

change settings(lfc∼N(0,0.04), truncated at +/-0.20; lfc∼N(0,0.04), truncated at +/-0.26;

lfc∼N(0,0.04), truncated at +/-0.32, lfc∼N(0,0.04), truncated at +/-0.38) and 5 dispersion

parameter settings(δ=40, 45, 50, 55, 60).)

To evaluate accuracy of power prediction with different pilot data sample size(N) in

simulations, we generated mean squared error of the 7 data points(N’=5, 10, 20, 30, 40, 50,

100) by comparing between predicted EDR and true EDR to evaluate the five approaches.

Figure 7 ∼ Figure 11 showed the predicted EDR when N=2 for all five different ap-

proaches. We observed that Storey and Tibshirani’s method BUM model and CDD BUM

model outperformed the other methods in most simulation settings. We further summarized

the performance of four approaches by mean square error(MSE) in Figure 15 and Table 6 ∼

Table 8, where Storey and Tibshirani’s method BUM model and CDD BUM model had the

best performance in most of the simulation settings. The MSE is computed by:

MSE(N) =
∑
N ′

(ÊDRN(N
′)− EDR(N ′))2 (2.16)

where ÊDRN(N
′) is the average of predicted EDR under (N’,R) given (N,R), and EDR(N ′)

is the average of true EDR.
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Figure 7: Predicted and True EDR curve for 3-parameter BUM model (N=2)
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Figure 8: Predicted and True EDR curve for Storey’s method BUM model

(N=2)

42



Figure 9: Predicted and True EDR curve for 2-parameter BUM model (N=2)
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Figure 10: Predicted and True EDR curve for CDD BUM model (N=2)

44



Figure 11: Predicted and True EDR curve for semi-parametric BUM model

(N=2)
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Figure 12: Predicted and True EDR curve for Storey and Tibshirani’s method

BUM model (N=4)
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Figure 13: Predicted and True EDR curve for Storey and Tibshirani’s method

BUM model (N=8)
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Figure 14: Predicted and True EDR curve for Storey and Tibshirani’s method

BUM model (N=16)
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Five rows indicate five different dispersion parameter setting: δ=40, 45, 50, 55, 60.

Figure 15: Compare four different power prediction approaches by mean square

error (MSE)
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Table 6: Summary table for MSE for simulation settings δ = 40 and all lfc settings

Method N=2 N=4 N=8 N=16

3-parameter BUM model 0.0180 0.0035 0.0027 0.0031

Storey’s method BUM model 0.0241 0.0040 0.0009 0.0011

Semi-parametric model 0.0145 0.0040 0.0023 0.0027

2-parameter BUM model 0.0354 0.0426 0.0425 0.0304

CDD BUM model 0.0210 0.0033 0.0007 0.0020

Due to the good performance and computation simplicity, we sticked to Storey and

Tibshirani’s method BUMmodel as our approach for mixture model fitting for later methods.

Figure 12, Figure 13 and Figure 14 showed the predicted EDR curve for 3 parameter BUM

model when N increases to 4, 8, 16. The accuracy of EDR prediction was improved as pilot

sample size increased.

2.5 MODEL DIAGNOSTICS

Since our EDR prediction methods depend on the fitting of parametric mixture model,

it is important to evaluate the fitting of mixture model in two aspects: (1) Fitting of beta

component; (2) Estimation of λ by different methods. We focused on Storey and Tibshirani’s

method BUM model and CDD BUM model due to their good performance.

2.5.1 Fitting of beta component

We compared the distribution of fitted beta component with the empirical distribution of

true DE genes. Specifically, we extracted the true DE genes according to underlying true
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Table 7: Summary table for MSE for simulation settings δ = 50 and all lfc settings

Method N=2 N=4 N=8 N=16

3-parameter BUM model 0.0110 0.0044 0.0029 0.0031

Storey’s method BUM model 0.0099 0.0035 0.0005 0.0012

Semi-parametric model 0.0084 0.0027 0.0027 0.0031

2-parameter BUM model 0.0347 0.0410 0.0367 0.0240

CDD BUM model 0.0111 0.0030 0.0024 0.0021

label and compared with the distribution of fitted beta distribution f1(p|r̂, ŝ) by Quantile-

Quantile(QQ) plot of -log10 p-values. In Figure 16, the DE gene p-value distribution was

fitted well by estimated beta distribution using Storey and Tibshirani’s method BUM model

according to Quantile-Quantile plot of -log10 p-value. For CDD BUM model, the fitting of

beta component was good as well. (not shown here) Figure 17 showed the empirical p-value

distribution for each simulation setting when N=2. As dispersion and fold change cut-off

increased, p-value distribution of DE genes became sharper, while non-DE gene still followed

uniform distribution.

2.5.2 Estimation of λ

Here we compared the estimation of λ with our underlying truth (λ ≈0.9) under different

simulation settings for N=2.
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Table 8: Summary table for MSE for simulation settings δ = 60 and all lfc settings

Method N=2 N=4 N=8 N=16

3-parameter BUM model 0.0076 0.0027 0.0038 0.0022

Storey’s method BUM model 0.0078 0.0024 0.0011 0.0009

Semi-parametric model 0.0056 0.0020 0.0014 0.0040

2-parameter BUM model 0.0337 0.0382 0.0310 0.0194

CDD BUM model 0.0079 0.0017 0.0012 0.0016
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Five rows indicate different dispersion parameter (1) δ =40;(2) δ =45;(3) δ =50;(4) δ

=55;(5) δ =60. Four columns indicate different fold change cut-off (1) fc ≥ 1.15; (2) fc ≥

1.20; (3) fc ≥ 1.25; (4) fc ≥ 1.30.

Figure 16: Quantile-Quantile plot for 20 simulation settings

53



Five rows indicate different dispersion parameter (1) δ =40;(2) δ =45;(3) δ =50;(4) δ

=55;(5) δ =60. Four columns indicate different fold change cut-off (1) fc ≥ 1.15; (2) fc ≥

1.20; (3) fc ≥ 1.25; (4) fc ≥ 1.30.

Figure 17: p-value distribution in different simulation settings(N=2)

54



Five rows indicate different dispersion parameter (1) δ =40;(2) δ =45;(3) δ =50;(4) δ =55;(5) δ =60. Four columns indicate

different fold change cut-off (1) fc ≥ 1.15; (2) fc ≥ 1.20; (3) fc ≥ 1.25; (4) fc ≥ 1.30.

Figure 18: Lambda estimate of five methods in different simulation settings(N=2)
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For all four methods, λ tended to be over-estimated(Figure 18). As pilot sample size

increased, the estimation was more towards underlying truth(not shown here). To note,

CDD method actually gave the most accurate estimates among all methods, especially when

the data signal was stronger.

2.6 COMPARISON WITH OTHER EXISTING METHODS IN

SIMULATION SETTINGS

In chapter 1, we introduced several existing methods for the power calculation of RNA-Seq

data. Here, we compared our proposed method with four other methods: (1) Poisson model;

(2) RNASeqPower; (3) NB exact test; and (4) Scotty in the simulation setting when δ = 50

and lfc ≥ 0.26 (fc ≥ 1.2) with N=2, 4, 8 and 16. Since the methods depends on different

assumptions, we need to compare them in a more reasonable way. In general, we estimated

input parameters from pilot data or provided the underlying truth if favorable to the existing

method to facilitate a fair comparison.

Similar to what we did for SeqDEsign, in all the other tests, we first filtered out genes

with small mean counts across samples. Several cut-offs for mean counts(1,2,5,8,10) were

tested and compared. The basic rule is that we want to remove a small number of genes with

shallow coverage which influence the fitting of mixture model. Through the comparison, we

determined to use 5 reads/gene as the cut-off for all simulation studies. We implemented

power calculation by Poisson model based on R code provided by Li and others[Li et al.,

2013a]. In detail, we gave it the true proportion of prognostic genes, which is around 10%

of total genes, and assumed 80% of them are true rejections, which was suggested in the

example of the original paper. The FDR was set as 0.05. We gave the true minimum DE

gene fold change 1.2 as the input parameter. We then applied RNASeqPower method by

R function “rnapower” in package “RNASeqPower”. Depth was estimated by averaging the

read count align across to each gene and samples. Biological coefficient of variation(BCV) was
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estimated as BCV =
√
1/δ0.50, where δ0.50 was the 50% quantile across tag-wise dispersion

(δg) estimated by “estimateTagwiseDisp” in R package “edgeR”. We set effect size 1.20 and

the false positive rate 0.05. For NB exact test method, we implemented their R function

“est power” in package “RnaSeqSampleSize”. The parameter setting was similar as it was

in Poisson test. We only need to additionally specified the estimate of maximum tag-wise

dispersion parameter, which was estimated by “edgeR”. Lastly, we implemented “Scotty”

in MATLAB code downloaded from https://github.com/mbusby/Scotty. To compute

power, we need to provide p-value cut-off to use as the metric of power, which is simply the

declared DE gene cut-off. To make it comparable with all methods which have FDR control,

we estimated the the exact p-value cut-off corresponds to FDR at 5% for each pilot data and

input this for “Scotty”. The other parameters were specified the same as other methods.

According the results in Figure 19, our method performed overall the best, especially

for power prediction when N’ was smaller (N’≤40). When pilot sample size was two, the

prediction was a little conservative, but bias was removed if we increased pilot sample size to

N=4 or 8. As pilot sample size increased from N=2 to 4 and 8, the predicted EDR gradually

converged to true EDR curve. “Scotty” also had similar property but the convergence rate

was smaller and the prediction was not as accurate as SeqDEsign. Except for SeqDEsign,

RNASeqPower also had good accuracy for EDR prediction, but it tended to over-estimate

EDR in general. Especially for smaller N’, the bias was larger. For example, when N=8, to

attain EDR of 80%, RNASeqPower required about N’=10 samples, and SeqDEsign required

N’=18 samples. Methods based on Wald test of Poisson model (A) and exact test based on

negative binomial model (C) didn’t provide satisfying EDR prediction and the prediction

accuracy didn’t improve as pilot sample size increased.
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(A) Poisson model; (B) RNASeqPower; (C) NB exact test; (D) Scotty; (E) SeqDEsign.

Figure 19: Method comparison for setting (δ = 50 and fc ≥1.20).
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The three rows indicate (A)δ = 40;(B)δ = 50;(C)δ = 60, x axis of each figure is fc cut-off.

Figure 20: Comparisons between RNASeqPower and SeqDEsign for 12 simulation settings
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We further compared SeqDEsign with RNASeqPower in more simulation settings(Figure

20). In Figure 20, we showed the MSE of RNASeqPoewr(black circle) and SeqDEsign(red

triangle) in simulation settings with different N, fc cut-off(x axis) and δ (three rows). Se-

qDEsign outperformed RNASeqPower in almost all simulation settings.

2.7 REAL DATA APPLICATION

We applied our method to the real data HIP by assuming different pilot data sample size.

We randomly sub-sampled N=2, 3, 4, 5, ..., 11, 12. (when N ≤ 10, we sub-sampled D=100

data for each case) Then we predicted EDR at N’=N, N+1, ..., 12, 20, 30, 40, 50, 100.

We observed that when pilot sample size is very small(N=2), p-value distribution didn’t

strictly follow BUM model(Figure 21). For example, many p-value distribution had heavier

tail in the right hand size, In this case, if we still fit the mixture model, the corresponding

EDR will be over-estimated. However, this kind of p-value distribution indicated that there

were very few DE genes in the data. We defined the mean of all p-values as p̄. To recognize

the p-value distribution where mixture model estimation might fail, we compared p̄ with

0.5, which is mean of uniform(0,1). If p̄ ≥ 0.5, this indicates p-value distribution is not

skew to the right and doesn’t satisfy our model assumption. The associated EDR will be

set to 0. Follow the same procedure of EDR computation, we compared the EDR predicted

curve at each N with EDR curve generated under N=12(maximum pilot sample size). The

results was shown in Figure 22. When N ≥ 6, the EDR prediction ÊDRN(N
′) seemed to

converge well to ÊDR12(N
′). Although we did not know the underlying truth of EDR(N’),

in this dataset, the result reasonably suggested that N≥ 6 was needed and SeqDEsign was

performing well.

Furthermore, we also generated results for the other methods in Figure 23. (D=10)

Poisson model and NB exact test did not not look reasonable since their predicted EDR was

only 15∼25% even with sample size N’=100. For RNASeqPower and Scotty, the EDR curves
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Figure 21: p-value distribution in 10 subset of real data(N=2,4,6)
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were more reasonable but the result was suspicious since they claimed similar prediction

performance for small pilot sample size(N=2) and large pilot sample size(N=12). The result

of our SeqDEsign was more reasonable in that small pilot sample size(N=2,4,6) provided

variable and inaccurate power prediction and the performance converged once the pilot

sample size was large enough (N>6).
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Figure 22: Real Data Application:SeqDEsign
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(A) Poisson model; (B) RNASeqPower; (C) NB exact test; (D) Scotty; (E) SeqDEsign.

Figure 23: Real Data Application: Compare with four existing methods
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2.8 UNBALANCED EXPERIMENTAL DESIGN

Unbalanced design is very common in genomic and clinical studies. For example, in cancer

studies, due to the homogeneity of normal samples, researchers usually recruit less subjects

in normal groups. Previously we focused on balanced design, where both groups had pilot

sample size N0 = N1 = N and the predicted sample size was N’. Now, we will investigate how

to modify existing approaches to predict EDR at targeted unbalanced studies with sample

size (N ′
0 and N ′

1). The prediction of unbalanced experimental design involves the change

of sample size and allocation ratio simultaneously. Accordingly, there are two alternative

approaches to realize the power prediction.

2.8.1 Down-sampling(DS) method

From a pilot study with balanced design, we will first take sub-samples of pilot data that

have the targeted allocation ratio θ′. Then, we follow the same procedure as in Chapter 2

for EDR prediction at targeted sample size.

2.8.2 Model-based(MB) method

In chapter 2, we had introduced the resampling procedure based on posterior probability.

In the bth resampling, model-based method was solely based on the following two-way Z

statistic transformation:

Z(b)
g = I(b)g × Zg ×

√
N ′ × ( 1+θeβ̂g1

θReβ̂g0+β̂g1
+ 1+θ

θδ̂
)√

N × ( 1+θ′eβ̂g1

θ′Reβ̂g0+β̂g1
+ 1+θ′

θ′δ̂
)

+ (1− I(b)g )× Zg (2.17)

where θ is the allocation ratio of pilot data and θ′ is the allocation ratio for targeted design.
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2.8.3 Simulation study

We conducted a simulation study to test for the EDR prediction of unbalanced design. In this

setting, δ=50 and fc ≥ 1.20. We started with pilot data in balanced design (N=4,8,16) and

wanted to predict EDR in unbalanced design (N ′
1 = 2 ·N ′

0 and N ′
0 = 8, 10, 12, 20, 30, 40, 50).

Under this simulation setting, we generated 50 datasets. Resamping procedure was repeat

for B=50 times. We compared the performance of Down-sampling and Model-based method

for those simulation settings.
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(A) Model-based method; (B) Down-sampling method.

Figure 24: Predict EDR of unbalanced experimental design
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Table 9: Summary table for MSE of (A) Model-based and (B) Down-sampling method

Method N=2 N=4 N=8

Model-based 0.00365 0.00060 0.00028

Down-sampling 0.00419 0.00204 0.00075

SeqDEsign 0.0182 0.0174 0.0168

Figure 24 showed the performance of methods for the two approaches. (A) is model-

based method and (B) is Down-sampling approach. The x axis (N) is the sample size for

predicted case group. Since allocation ratio is constant(2), control group sample size is N/2.

In terms of MSE as indicated in Table 9, the two methods had similar good performances

in predicting EDR of unbalanced design. For computational convenience, consistency to our

previous approach and slightly better performance, we will adopt the model-based approach

for unbalanced design.

We further compared model-based approach with RNASeqPower which can also predict

power of unbalanced design under the simulation model. Figure 25 indicated that our method

had better performance.
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Figure 25: Comparison between SeqDEsign and RNASeqPower under unbalanced design setting
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2.9 SUMMARY AND DISCUSSION

In this chapter, we have proposed and compared several alternative approaches to predict

EDR at targeted sample size(N’) based on a pilot data (N, R). By evaluating each method in

terms of MSE, we found that Storey and Tibshirani’s method BUM model and CDD BUM

model gave us overall best EDR prediction. We further compared Storey and Tibshirani’s

method BUM model with four other existing methods. Our proposed methods gave asymp-

totically best EDR prediction as pilot sample size increased. Even when pilot sample size

was small (e.g., N=2), the prediction was only a little bit conservative which was acceptable.

In the comparative study with four other methods, our methods performed overall best in

the simulation settings.

For parametric model fitting, originally we also proposed parametric bootstrap approach

as in PowerAtlas[Gadbury et al., 2004]. But since posterior approach had similar and better

performance and is more convenient for two way EDR prediction, we decided to adopt

posterior approach.

Our methods showed superior characteristics over existing methods in the investigation of

EDR prediction of targeted sample size. To design a practical algorithm of power calculation

for RNA-Seq, we will also take consideration of the read depth in the EDR computation in

the next chapter.

70



3.0 SAMPLE SIZE, READ DEPTH AND GENOME-WIDE POWER

PREDICTION

So far, we have investigated the genome-wide power prediction in the direction of increas-

ing sample size. For Next Generation Sequencing data like RNA-Seq, higher read depth

generates more reads, which increases the statistical power to detect DE genes [Liu et al.,

2013, Tarazona et al., 2011]. Therefore, it is important that power calculation method

should consider the impact of read depth, yet only two existing methods (RNASeqPower

and Scotty) included this impact factor. Given the superior performance of SeqDEsign, we

now further extend the current framework to predict EDR in various read depth selections.

In this chapter, we will first discuss two alternative approaches proposed and compare their

performance. By fitting two-way inverse power law model, we will construct 3-dimensional

predicted power surface. A consequent cost benefit analysis of optimal experiment design

based on this 3-dimensional power surface will be discussed in chapter 4.

3.1 NESTED DOWN-SAMPLING(NDS) AND MODEL-BASED(MB)

APPROACH FOR GENOME-WIDE POWER PREDICTION FOR A

FUTURE READ DEPTH

Here we proposed and compared two approaches to extend power calculation to two-dimensional

EDR prediction including both sample size and sequencing depth (i.e. ÊDR(N,R)(N
′, R′)).

The first approach is nested down-sampling(NDS) procedure and the other approach is
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model-based(MB) method. In both methods, we used Storey and Tibshirani’s method in

mixture model fitting.

3.1.1 Nested down-sampling(NDS) method

Suppose we start with pilot data with sample size N and read depth R = 650G. We can

write the data matrix as S = {−→s01, ...,−→s0N , ...,−→s11, ...,−→s1N}. Each sample is consist of G

elements, each presenting the read counts aligned to a certain gene. For subject i in group

j, −→sij = {e1ij, ..., egij, ..., eGij}. We can expand all reads into a larger pool by rewriting

−→sij = {1, ..., 1︸ ︷︷ ︸
e1ij

, 2, ..., 2︸ ︷︷ ︸
e2ij

, ..., G, ..., G︸ ︷︷ ︸
eGij

}, indicating which gene each read is coming from. We

would then sample p% of reads without replacement from −→sij and collapse the reads into

gene level again so the resulting sample is spij. We could further perform downward sampling

from spij and repeat the procedure to generate sample with smaller read depth. Following

this fashion, we can represent the nested samples as −→sij650, −→sij500,−→sij400,−→sij300,−→sij200,−→sij100. The

superscript indicates the average coverage for each gene. Then we can follow the same steps

as proposed in chapter 2.3 and Figure 5. If we represent the pilot data as S: N × R, we

first down-sample it to S’:N × R’ and then estimate ÊDR(N,R′)(N
′, R′) and compared with

ÊDR(N ′, R′).

3.1.2 Model-based(MB) method

While the nested downward sampling approach is more straightforward, it requires more

computation time since we need to repeat the subsampling procedure for multiple times,

followed by repeated sampling of DE gene status. Besides, nested downward sampling pro-

cedure could only predict EDR at R’ ≤ R. We have to applied surface fitting procedure to

get predicted EDR at R’ ≥ R. In comparison, an easier way is to modified our previous

posterior procedure in the statistics transformation step. The underlying assumption is that

estimate of βg0 and βg1 will not be changed with sample size and read depth.
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Suppose we have a pilot data with sample size N and read depth R. If we perform the hy-

pothesis testing for each gene g with Z statistics Z
(b)
g in the bth simulation, the transformation

step is achieved by applying the following transformation:

Z(b)
g = I(b)g × Zg ×

√
N ′ × ( 1+θeβ̂g1

θReβ̂g0+β̂g1
+ (1+θ)

θδ̂
)

√
N × ( 1+θeβ̂g1

θR′eβ̂g0+β̂g1
+ (1+θ)

θδ̂
)
+ (1− I(b)g )× Zg (3.1)

After computation of the transformed Z statistics, we can follow the proposed steps to

compute predicted EDR(Pow(N’,R’)).

3.2 TWO-WAY INVERSE POWER LAW SURFACE FITTING

Inverse power law model is frequently fitted to model learning curve created by a small

training dataset in the machine learning field. Curve fitting is carried out by nonlinear least

square optimization[Figueroa et al., 2012]. Here we propose two-way inverse power law curve

fitting to model the power surface by a function of sample size and read depth. The power

function could be written as:

EDR = Pow(N ′, R′) = a− b×N ′−c − d×R′−e (3.2)

where a,b,c,d,e are all positive numbers. As N and R increase to infinity, EDR will be

approximate to 1. Therefore, we constrain a to be 1 exactly. Specifically, we estimate the

remaining four parameters by R function “optim” in “stats” R package using BFGS quasi-

Newton method. For NDS method, by fitting two-way inverse power law, we can extrapolate

EDR of experimental design with higher read depth(R’> R) than the pilot data.
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3.3 SIMULATION STUDIES

3.3.1 Simulation settings

The flowchart of SeqDEsign for two way EDR prediction was shown in Figure 26. As

described previously, here we want to compare two approaches to predict EDR(N’,R’): (1)

Nested downward sampling; (2) Transformation of statistics in bootstrapping step.

In simulation studies, we followed the similar settings as in chapter 2. The pilot data

was generated with sample size N=2, 4 and 8 with dispersion parameter δ=40, 50, 60. In

each combination of N and R, we had four different log-fold-change cur-off for DE genes.

(0.2, 0.26, 0.32 and 0.38) The read depth of pilot data was fixed at R=G×650. (G=104)

To generate the true EDR curve, we simulated data under each predicted setting (N’,R’).

N’ were selected to be 5, 10, 20, 30, 40, 50, 100, and R’ were selected to be 1M, 2M, 3M,

4M, 5M, 6M, 6.5M(pilot), 7M, 8M, 9M, 10M, 11M and 12M. In each pilot data setting,

D=10 data were generated. For true data, we also generated D=10 data follow the same

distribution. Posterior procedure was repeated for B=20 times.

3.3.2 Comparisons between Model-based and Nested down-sampling method

We first compared the predicted EDR and true EDR by mean square error without surface

fitting. For Model based method, MSE under pilot study (N,R) was computed as

MSE(N,R) =
∑
N ′,R′

(ÊDR(N,R)(N
′, R′)− EDR(N ′, R′))2 (3.3)

For Nested down-sampling method, MSE under pilot study (N,R) was computed as

MSE(N,R) =
∑
N ′,R′

(ÊDR(N,R′)(N
′, R′)− EDR(N ′, R′))2 (3.4)

,where ÊDR(N,R)(N
′, R′) is the average of predicted EDR under setting (N’,R’), and EDR(N ′, R′)

is the average of true EDR.
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Figure 26: Flowchart of SeqDEsign when predicting EDR at targeted sample

size N’ and read depth R’
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(A)N=2; (B)N=4; (C)N=8; (D)N=16.

Figure 27: Compare between MB and NDS(fc≥1.15)
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(A)N=2; (B)N=4; (C)N=8; (D)N=16.

Figure 28: Compare between MB and NDS(fc≥1.20)
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(A)N=2; (B)N=4; (C)N=8; (D)N=16.

Figure 29: Compare between MB and NDS(fc≥1.25)
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(A)N=2; (B)N=4; (C)N=8; (D)N=16.

Figure 30: MB and NDS(fc≥1.30)
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Figure 27 ∼ Figure 30 showed the MSE of two methods comparing with predicted true

EDR under different simulation settings(4 different fc cut-off) separated by N’(MSE(N,R,N’)).

PS is nested down-ward sampling method and PS.2 is model-based method. Overall, model-

based method has smaller MSE in more scenarios comparing with nested down-sampling

method and have several appealing advantages: (1) it gives better EDR prediction; (2) it is

computationally more efficient; (3) it could predict EDR at a wider range of read depth.

3.3.3 Inverse power law fitting

Our ultimate goal is to predict best optimal experimental design(N*,R*) for RNA-Seq.

Therefore, it’s necessary for us to predict EDR surface, which is a function of N and R.

Here, given the estimated EDR from model-based method, we fitted two-way inverse power

law previously proposed. Under each simulation setting, we have D=10 pilot data simulated

from same underlying model. Then ten predicted EDR surface could be constructed.

Figure 31 showed the Goodness-of-fit of inverse power law fitting for predicted EDR

surface, true EDR surface and third column is the MSE of predicted EDR surface comparing

with true EDR surface. The EDR surface fitting for predicted EDR and true EDR was

pretty good. There was however a bump in MSE between predicted EDR surface and true

EDR surface when pilot sample size N=8 (A). After diagnosis of the problematic data, we

found that there’re some problem about the mixture model fitting when using Storey and

Tibshirani’s method under certain situation settings. Due to the previous equally good

performance of CDD method, we also tried this approach. It estimated λ by non-parametric

method and the resulting EDR prediction was shown in Figure 32. The result was much

better without any outliers.

3.3.4 Fitted EDR surface

Here we demonstrate the EDR surface prediction in several examples. Figure 33(N=2),

Figure 34(N=4) and Figure 35(N=16) are 3 dimensional plots with both true EDR sur-
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(A)fc≥1.15; (B)fc≥1.20; (C)fc≥1.25; (D)fc≥1.30.

Figure 31: Goodness-of-fit of inverse power law fitting model(Storey and Tishi-

rani’s method)
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(A)fc≥1.15; (B)fc≥1.20; (C)fc≥1.25; (D)fc≥1.30.

Figure 32: Goodness-of-fit of inverse power law fitting model(CDD)
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face(red) and predicted EDR surface(green). The increment of pilot study sample size

helps the EDR prediction according to our results. The estimated true EDR surface is

Pow(N ′, R′) = 1 − 21.07590 × N1.595355 − 106 × R1.173074, while predicted EDR surface for

N=2 is P̂ ow(N ′, R′) = 1 − 16.3058 × N1.75834 − 106 × R1.151303, for N=4, P̂ ow(N ′, R′) =

1 − 24.97404 × N−1.778650 − 106 ∗ R−1.137705, and for N=16, P̂ ow(N ′, R′) = 1 − 41.23273 ×

N−1.862118 − 106 ∗R−1.136118

3.4 SUMMARY

In this chapter, we extended EDR prediction to the direction of read depth and constructed

3-dimensional power surface by inverse power law fitting. Comparing with underlying true

EDR surface, our method had fairly good EDR prediction. Model-based method had advan-

tages of better prediction accuracy, wider EDR prediction coverage and higher computational

efficiency compared with nested down-sampling approach. We will adopt the model-based

approach in the later sections and the software package.
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red surface-True EDR; green-Predicted EDR.

Figure 33: Compare true EDR and predicted EDR surface(δ=50,fc≥1.20,pilot

N=2)
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red surface-True EDR; green-Predicted EDR.

Figure 34: Compare true EDR and predicted EDR surface(δ=50,fc≥1.20,pilot

N=4)
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red surface-True EDR; green-Predicted EDR.

Figure 35: Compare true EDR and predicted EDR surface(δ=50,fc≥1.20,pilot

N=16)
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4.0 COST BENEFIT ANALYSIS FOR RNA-SEQ EXPERIMENT

In RNA-Seq experiment, we usually have limited budget, which brings us to develop methods

for power calculation in designing a powerful and affordable experiment in detecting DE

genes. Therefore, it’s important to design the cost function and generate the optimal design

given cost constraints. In this chapter, we further defined a reasonable cost function. Based

on fitted three dimensional EDR surface and cost constraints, we conducted cost-benefit

analysis to compute the optimal design. By comparing our predicted optimal design with

the underlying true optimal design in simulation studies, we demonstrated the superiority

of our method. We also discussed ways to predict desirable experimental design to meet

certain criteria (a EDR lower bound, sample size upper bound, etc.) when there is no clear

constraint of cost function. Specifically, we want to answer the following practical questions

about desirable experiment design (N*,R*):

Q1: With a fixed maximum total cost C, what is the optimal design?

Q2: To reach a certain EDR level (EDR’), what are all possible experimental design?

Q3: With a maximum sample size Nmax and a targeted EDR (EDR’) to reach, what are

all possible experimental design?

Q4: Given a dataset with (N,R) from a RNA-Seq experiment, is it worthwhile to increase

the sample size or sequencing depth?

We designed cost functions and provided visualization tools to assist users to select the

optimal experiment design according to their specific needs.
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4.1 DESIGN OF COST FUNCTION

A reasonable cost function C could be defined as follows:

C = B(N ′, R′) = 2×N ′ × (A+B ×R′/106) (4.1)

Here N’ is the targeted sample size for each group and R’ is targeted total reads. To give

better interpretation, here we divide R’ by 106. So A is the sample collection cost per

sample(which includes cost to recruit a patient, collect and preprocess the sample and parify

mRNA etc.), and B is the sequencing cost for per sample per million aligned reads. We use

A=$570; B=$400 throughout this section to demonstrate the method.

4.2 OPTIMAL EXPERIMENT DESIGN WITH COST CONSTRAIN

With the cost function defined previously and the fitted three dimensional EDR surface

by two-way inverse power law, we can compute optimal RNA-Seq experiment design under

cost constraints. Below, we showed one simulation example of the computation of optimal

design(N∗,R∗).

Figure 36 showed the fitted three dimensional power surface. Both power and cost are

increasing functions of N and R. (EDR=Pow(N,R) and C=B(N,R)) There is a requirement

that the total cost of RNA-Seq experiment should not exceed Cmax. When cost function

intersects with power surface, the experimental design corresponds to the optimal power is

the optimal design.

(N∗(C), R∗(C)) = argmax
N ′,R′,C<2×N ′×(A+B×R′/106)

(â− b̂×N ′(−ĉ) − d̂×R′(−ê)) (4.2)
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Figure 36: Three dimensional power surface

4.3 SIMULATION

We have conducted cost benefit analysis based on simulation settings in chapter 3, when

δ = 50, fc≥1.15;≥1.20;≥1.25;≥1.30, and N=2,4,8.

To address Q1 previously discussed, here we defined the cost function as in (4.1). The

total cost C was set to be 80,000. Figure 37 showed the result of optimal design under each

setting. In each sub-plot, the red curve is the cost function, orange star is the pilot study

design and purple star is the true optimal experimental design computed from simulated

true data. There are another 10 dots, which indicated our predicted pilot study design

from 10 pilot datasets simulated from the sample model. In all settings, the optimal design

predictions were pretty accurate. With increase of pilot data sample size, the accuracy of

optimal design prediction also improves.
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(A)fc≥1.15; (B)fc≥1.20; (C)fc≥1.25; (D)fc≥1.30.

Figure 37: Optimal Design given pilot study and cost function
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To illustrate the solution to Q2∼Q3, now we focus on setting (δ=50,fc≥1.20,N=4), where

the EDR surface is: P̂ ow(N ′, R′) = 1 − 32.588 × N1.998 − 106 × R−1.150. We now ask the

following specific questions:

(a) What experimental design(N*,R*) are favored to reach EDR’ (for example, 80%,

90%)? In Figure 38, we showed the predicted power under each experimental design. The

red lines indicates boundary of desirable design with power greater than EDR’.

(b) What experimental design(N*,R*) are favored to reach EDR’ (for example, 80%,

90%) with maximum sample size Nmax? Assume Nmax is 30, Figure 39 showed the resulting

desirable designs:

Now assuming that we already have a RNA-Seq dataset with (N’=8,R’=6.5× 106). The

question is that if we have already achieve our desirable power EDR’ (for example, 80%),

and if we need to sequence extra samples to reach that?

To answer the question, we first computed the predicted EDR at N’=8, which is EDR’=34%.

With fixed R’=6.5M, we then computed the minimum samples required to reach EDR=80%,

which is 14. (Figure 40)
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Figure 38: Desirable experiment design with constraint on minimum EDR
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Figure 39: Desirable experiment design with constraint on minimum EDR and

maximum N
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Figure 40: Desirable experiment design for a given RNA-Seq experiment
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5.0 DISCUSSION AND FUTURE WORK

5.1 DISCUSSION

In the existing and our methods, the definition of power actually varies. In SeqDEsign, we

focused on genome-wide power, which is similar to the concept of sensitivity (recall rate or

true positive rate(TPR)) in ROC analysis. We conducted more than 10,000 hypothesis tests

simultaneously and estimate genome-wide power as the proportion of true positive among the

true DE genes. It’s different from the concept of power as in RNASeqPower, where only one

test is conducted conceptually for the computation of power. To our knowledge, genome-wide

power definition is more appropriate for the case of genomic data since the heterogeneity

across genes could be maintained. Consequently, it’s somewhat unfair to compare these

different definitions of “power” together. But it’s already the best we can do to conduct the

comparison.

In our method, we defined R as the total reads from a pilot study. To be more specific,

this should be the total reads that could be mapped to gene regions. Consequently, when

considering the sequencing cost, one should divide B by the average alignment rate to be

realistic.

As is briefly mentioned in chapter 3, when we have a relatively some parameter space of

(N’,R’) for optimal experiment design, we can compute EDR of all possible design(EDR(N,R)(N
′, R′))

under the constraints. In this scenario, we do not have to fit two-way inverse power law

model. In cases when we have a much larger parameter space to search through, for ex-
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ample, Nmax is 100 or there is very weak signal for DE gene detection, we should instead

estimated EDR at selected (N’,R’) to reduce computation time and apply the inverse power

law model.

Our method can predict EDR hyperplane when a pilot data is available. If there’s no

pilot data, one can seek previous public datasets with similar platforms. Another possible

solution is to design RNA-Seq experiment in multi-phases. We can therefore estimated EDR

adaptively after the completion of each phase with higher accuracy.

5.2 FUTURE WORK

Here we discuss future works and directions for SeqDEsign:

FW1: Relax common dispersion assumption: Currently, our method is based on negative

binomial model with common dispersion across genes. To accommodate all possible data

structure, the next step will be to evaluate our method in data with tag-wise dispersion and

extend our method if necessary, for example, we can apply empirical Bayes methods. We

will provided test to determine whether common dispersion model is correct.

FW2: Further investigation in semi-parametric method: In the real data example of

chapter 2(Figure 21), we observed that when differential expression has very weak signal, p-

value distribution of data with small pilot sample size(N) will not satisfy our mixture model

assumption well. In this case, the performance of our method is not good due to model

mis-specification. One solution is to apply non-parametric method. We will have further

investigation in non-parametric approach under this scenario in the future.

FW3: Design of pilot study: So far, we have illustrated the impact of sample size and

read depth to power by simulation studies and real data examples. The influence of different

pilot data to the prediction of EDR surface, however, is not investigated sufficiently. For

example, if we specify a cost upper bound of $24,000 for pilot study. The following three
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setting of pilot study design have same cost: (a) N=4, R=6M; (b) N=8, R=3M; (c) N=16,

R=1.5M. By the three different pilot study, we will have different EDR surface predictions.

In future study, we will provide suggestions for the design of pilot study.

FW4: More real data applications: In the future, we will apply our method to TCGA

RNA-Seq data https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp. It is a rich database

with more than hundreds of tumor samples for each cancer. We can start with various

smaller pilot sample size, generate the predicted EDR hyperplane and compared with the

“true” EDR hyperplane generated by using data with larger sample size and evaluate their

performance.

FW5: Software preparation: We will prepare an R package “SeqDEsign” and a web

interactive tool based on java script, which could facilitate the application of our tool in real

world RNA-Seq experiment.
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6.0 CONCLUSION

Power analysis is of great importance in study design phase. Especially, with accruing

popularity of next generation sequencing technology, there’s an increasing need for statistical

solid and easy-to-implement power calculation method. Some existing power calculation

tools for microarray and NGS ignore genome-wide false discovery rate control and only

perform per-gene power calculation. Some others have utilized näıve modelling without

adequately borrowing information from pilot data.

In this thesis, we have proposed a new approach: SeqDEsign to predict genome-wide

power based on a RNA-Seq pilot study. Simulation studies and real data application showed

the superiority of our methods. Our approach provides several unique advantages over all

existing methods: (1) higher statistical reliability: our model is based on negative bino-

mial assumption of count data instead of poisson or gaussian assumption; (2) genome-wide

power(EDR): we define genome-wide power(EDR) which considers the DE gene detection

sensitivity in the realm of whole genome, instead of single gene level; (3) better accuracy:

simulation and real data analysis reveals the high accuracy of our methods; (4) optimal exper-

iment design: we consider the influence of both sample size and read depth on genome-wide

power. Consequently, given the cost constraints, one can predict the optimal experiment de-

sign (N*,R*) after EDR surface was constructed; (5) easy to implement: our method tends

to be model-based compared with existing methods. We don’t need to specify fold change

for DE gene detection or number of true rejections.

To our knowledge, SeqDEsign is the first statistical tool that address the power calcula-

tion and experimental design for RNA-Seq data with proper model assumptions. Considering
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the superior performance and capability in answering various research questions, we believe

it will provide researchers valuable suggestions in the experiment design of RNA-Seq data

in the future.
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