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Discovering the distinctive photophysical properties of semiconductor 
nanomaterials has made these a popular subject in recent advances in 
nanotechnology-related analytical methods. Semiconductors are well-known 
materials that have been widely used in photovoltaic devices such as optical 
sensors and bioimaging, and dye-sensitized solar cells (DSSCs), as well as for 
light-emitting diodes (LEDs). The use of a narrow-bandgap semiconductor such 
as cadmium sulfide nanoparticles (CdS NPs) in the photoelectrochemical (PEC) 
sensor of chemicals and biological molecules plays a key role as a 
photosensitizer and promotes some specific advantages in light-harvesting 
media. Their size-controlled optical and electrical properties make nanomaterials 
fascinating and promising materials for a variety of nanoscale photovoltaic 
devices. Moreover, charge injection from the narrow bandgap to the adjacent 
material leads to efficient charge separation and prolongs the electron lifetime 
by the elimination of the charge carrier recombination probability. In this regard, 
a single photon enables the production of multiple photogenerated charge 
carriers in CdS NPs, which subsequently boosts the effectiveness of the 
photovoltaic devices. In particular, this thesis highlights the recent emerging PEC 
detection based on CdS NPs, specifically related to the interactions of CdS NPs 
with target analytes of copper ions (Cu2+). The investigation and justification of 
different CdS nanocomposites were discussed in terms of different structural 
morphologies, and its impact on sensitivity and selectivity towards the targeted 
Cu2+ ions. Thus, it eventually provides a significant insight in achieving real-world 
applications of CdS-based PEC sensing.

In the first studies, the nanospherical-like morphology of CdS with a narrow 
diameter distribution of about 350–400 nm was being employed and assembled 
with a transparent ultrathin reduced graphene oxide (rGO) layer. The 
nanostructured CdS adhered securely to a continuous network of rGO that also 
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acted as an avenue to facilitate the transfer of electrons from the conduction 
band (CB) of CdS. The CdS-rGO photoelectrode response for Cu2+ ion detection 
had a linear range of 0.5–120 μM, with a limit of detection (LoD) of 16 nM. The 
low LoD demonstrated the favourable structure of CdS-rGO as photoactive 
materials in PEC sensing platform.  
 
 
In the second studies, the smaller particle diameters in an average of 25−30 nm 
of nanospherical CdS was obtained. The hydrothermal synthesis of CdS NPs 
were decorated with gold quantum dots (Au QDs) via stepwise in situ 
approaches, along with notable PEC performance. The introduction of Au which 
induced a plasmonic effect on photoactive materials like CdS semiconductors 
has prompted an intensive interest in PEC sensing applications. The hybrid 
structure of CdS-Au resulted in the amplification of the photocurrent signal 
because of the enhanced absorption of photon-generated photoelectron on the 
CdS. Therefore, it contributed to a sensitive Cu2+ ions detector with the lowest 
LoD of 6.73 nM in a linear range of 0.5−120 nM.  
 
 
In the third studies, huge efforts have been dedicated to intensifying the PEC 
performance by modifying the morphology and structure of CdS. One-
dimensional (1D) nanostructure (e.g. nanotubes, nanorods, nanofiber and 
nanowire) of CdS were found to have a practical and substantial potential due to 
its specific directionality for the transportation of charge carrier, thus decreasing 
the probability of the recombination of charge carrier. In this regards, the 1D 
nanorods (NRs) structure of CdS was prepared and the outcomes consistently 
portray a much better PEC performance than the other counterpart particulate 
nanostructure. A multi-functional hybrid nanostructure of CdS NRs with Au NPs 
and graphene quantum dots (GQDs) has been successfully designed. The 
calculated LoD was 2.27 nM in a range of 0.1-290 nM. A clear trend can be 
observed based on the obtained LoD from all the three studies, and ultimately 
proven that the structure, particle size and the nanocomposite materials- based 
CdS could greatly influence the PEC sensing performance of Cu2+ ions. 
 
 
It has been a pressing need to develop a new materials for simultaneous 
detection and removal of Cu2+ ions from water sources, due to its acute and 
chronic effect on human health upon exposure to excessive copper. Thus, in the 
final studies, a ternary hybrid of cellulose acetate (CA) with CdS and methylene 
blue (MB) in a bead composition was synthesized and investigated as a 
photosensor-adsorbent of Cu2+ ions. The PEC detection of Cu2+ ions possessed 
a lower LoD of 16.9 nM and a notable removal efficiency of 96.3% in the linear 
range of 0.1-290 nM. 
 
 
Conclusively, these research have given rise to a neoteric finding and provided 
an important leap in the employment of CdS as potential semiconductor 
materials in PEC sensing applications. Even though, only a few CdS-based 
products that have successfully penetrated the market, but the thorough study 
and investigation of CdS- based nanocomposite in this thesis can eventually 
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disclose its real potential. Ultimately, it may become a kick-start to researchers 
and innovators to come up with new CdS-based photosensor device. 
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Penemuan ciri-ciri foto fizikal tersendiri bagi semikonduktor nanobahan telah 
menjadikan subjek ini terkenali dalam kemajuan nanoteknologi terbaru yang 
berkait rapat dengan kaedah analisis. Semikonduktor adalah bahan yang 
digunakan secara meluas dalam peranti fotovoltan seperti sensor optik dan bio-
pengimejan, sel suria tersintesis warna (DSSC), dan juga diod pancaran cahaya 
(LED). Penggunaan semikonduktor yang mempunyai jurang jalur sempit seperti 
kadmium sulfida nanozarah (CdS NPs) dalam sensor fotoelektrokimia (PEC) 
bagi molekul kimia dan biologi memainkan peranan penting sebagai pefotopeka 
dan menggalakkan beberapa kelebihan tertentu dalam media pungutan cahaya. 
Saiz nanobahan yang mampu mengawal ciri-ciri optik dan elektrik telah 
menjadikannya menarik dan berpotensi untuk digunakan dalam pelbagai peranti 
fotovoltan yang berskala-nano. Tambahan pula, penyuntikan cas daripada 
jurang jalur sempit ke bahan berdekatan telah menyebabkan pemisahan cas 
yang cekap dan memanjangkan jangka hayat elektron dengan penghapusan 
kebarangkalian penggabungan pembawa cas. Dalam hal ini, foton tunggal yang 
membenarkan pengeluaran berbilang cas dari foto-terjana di dalam CdS NPs 
telah meningkatkan keberkesanan peranti fotovoltan. Khususnya, thesis ini 
menekankan pengesanan PEC terkini berasaskan CdS NPs yang secara amnya 
berkaitan dengan interaksi CdS NPs dengan analit sasaran iaitu ion kuprum 
(Cu2+). Penyiasatan dan justifikasi bagi nanokomposit CdS yang berbeza akan 
dibincangkan dari segi struktur morfologi CdS, dan kesannya terhadap 
kepekaan dan pemilihan terhadap ion Cu2+ yang disasarkan. Akhirnya, ia akan 
memberikan pandangan yang penting dalam penghasilan peranti pengesanan 
PEC untuk penggunaan dunia yang berasaskan CdS. 
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Dalam kajian pertama, morfologi berbentuk seperti nanosfera dengan taburan 
diameter yang sempit kira-kira 350-400 nm telah digunakan dan dihimpunkan 
dengan lapisan lut sinar ultranipis grafin (rGO). Struktur nano CdS telah melekat 
dengan kuat pada rangkaian berterusan rGO yang juga bertindak sebagai 
saluran untuk memudahkan pemindahan elektron dari jalur pengaliran (CB) 
CdS. Gerak balas fotoelektrod CdS-rGO bagi pengesanan ion Cu2+ mempunyai 
julat linear 0.5-120 μM, dengan had pengesanan (LoD) sebanyak 16 nM. LoD 
rendah yang diperolehi menunjukkan bahawa struktur CdS-rGO yang baik 
sebagai bahan fotoaktif dalam platform pengesanan PEC. 
 
 
Dalam kajian kedua, diameter zarah bagi nanosfera CdS yang kecil dalam 
purata 25-30 nm telah diperolehi. Pensintesisan hidraterma CdS NPs yang 
dihiasi dengan titik kuantum emas (Au QDs) melalui pendekatan berperingkat 
in-situ, menunjukkan prestasi PEC yang ketara. Penggunaan Au yang 
mencetuskan kesan plasmonik pada bahan fotoaktif seperti semikonduktor CdS 
telah mendorong minat yang bersungguh-sungguh terhadap penggunaannya di 
dalam pengesanan PEC. Struktur kacukan CdS-Au menghasilkan isyarat 
fotoarus yang kuat kerana peningkatan penyerapan foton yang menjana 
fotoelektron pada CdS. Dengan itu, ia menyumbang kepada pengesanan peka 
bagi ion kuprum dengan LoD terendah sebanyak 6.73 nM dalam julat linear 0.5-
120 nM. 
 
 
Dalam kajian ketiga, usaha yang bersungguh-sungguh telah didedikasikan untuk 
meningkatkan prestasi PEC dengan mengubah morfologi dan struktur CdS. Satu 
dimensi (1D) struktur nano (contoh: nanotiub, nanorod, nanofiber dan 
nanowayar) CdS didapati bersesuaian dan mempunyai potensi yang besar 
kerana kaedah penghantaran casnya yang mempunya arah yang khusus, 
seterusnya menurunkan kebarangkalian untuk penggabungan semula 
pembawa cas. Dalam hal ini, struktur 1D nanorod (NRs) CdS telah dihasilkan 
dan ia menunjukkan prestasi PEC yang konsisten dan lebih baik daripada 
struktur nano partical yang lain. Kacukan pelbagai fungsian struktur nano CdS 
NRs dengan Au NPs dan titik kuantum grafin (GQDs) telah berjaya direka. LoD 
yang telah dikira adalah 2.27 nM dalam lingkungan 0.1-290 nM. Perkembangan 
yang jelas dapat diperhatikan berdasarkan LoD yang diperolehi dari ketiga-tiga 
kajian, dan akhirnya membuktikan bahawa struktur, saiz zarah dan bahan 
nanokomposit yang berasaskan CdS sangat mempengaruhi prestasi 
pengesanan PEC bagi ion Cu2+. 
 
 
Desakan untuk pengeluaran bahan baru bagi pengesanan dan penyingkiran ion 
Cu2+ secara serentak dari sumber air adalah semakin meningkat. Ini disebabkan 
oleh kesan buruk dan kronik terhadap kesihatan manusia apabila terdedah 
kepada kuprum yang berlebihan. Oleh itu, dalam kajian terakhir, kacukan 
pertigaan selulosa asetat (CA) dengan CdS dan metilina biru (MB) dalam 
komposisi manik telah disintesis dan disiasat sebagai foto pengesanan-zat 
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penjerapan ion Cu2+. Pengesanan PEC bagi ion Cu2+ mempunyai LoD yang 
rendah sebanyak 16.9 nM dan kecekapan penyingkiran ketara sebanyak 96.3% 
dalam julat linear 0.1-290 nM. 
 
 
Secara keseluruhannya, penyelidikan ini telah menimbulkan penemuan neoterik 
dan memberikan lonjakan penting dalam pengajian berkaitan CdS sebagai 
bahan semikonduktor yang berpotensi dalam penggunaan pengesanan PEC. 
Walaupun hanya beberapa produk berasaskan CdS yang berjaya menembusi 
pasaran, tetapi kajian menyeluruh terhadap nanokomposit CdS yang 
dilaksanakan di dalam tesis ini mampu mendedahkan potensi sebenarnya. 
Akhirnya, ia mampu menjadi titik permulaan bagi penyelidik dan inovator untuk 
menghasilkan peranti foto pengesanan baharu berasaskan CdS. 
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CHAPTER 1 

INTRODUCTION 

1.1 Copper Contamination  

Copper is a precious metal which is exceptional in conducting electricity and heat. 
It is found naturally in metallic form and it has been in use since millennia ago in 
alloys, tools, coins, food and beverage containers, automobile brake pads, 
electrical wiring and electroplating. Copper also appears as one of the essential 
elements that are required by the human and living organism. Only a tiny amount 
of copper is needed for living organism included human beings, which is around 
20 μg/L for the formation of haemoglobin and haemocyanin, the oxygen-
transporting pigments in the blood of vertebrates and shellfish (Solomon, 2009). 
However, excessive doses of copper (over 20 μg/L) can be toxic and affect the 
environment and humans unfavourably. 
 
 
As one of the advanced metals of commerce, it is not surprising that copper 
found significantly in the environment is due to human activity, over than what 
might be found naturally. The copper mining can produce copper-rich dust which 
is then spread by the wind in the vicinity of the copper mine site. The ores 
obtained from the excavation activities are sulfide minerals, then oxidize in the 
air to form sulfates, thus producing sulfuric acid, which renders the highly soluble 
copper in the minerals (Baba et al., 2012). Besides, the manufacturing 
companies which involve extensively with copper such as in the production of 
metal, electrical appliances, pesticide and other products consisting copper, 
normally released the contaminated water into the drainage system, which 
hence flows out to the rivers, streams and other water bodies. The pesticide 
called “Bordeaux mix” which is rich with the copper compound is usually sprayed 
on the fruits or vegetables to control various pests. Hence, more copper has 
been introduced to the environment and may badly affect human health upon 
consuming unwashed fruits and vegetables sprayed with such pesticide. 
Moreover, in the plumbing system, the pipe made up of copper metal will be 
dissolved gradually and thus generating the metal into the water supply.  
 
 
All of the aforementioned source of copper pollution in the water will definitely 
give a negative impact on the environment and human health. In human, low 
level of copper is needed to maintain good health, and upon exceeding the 
permitted level, health will be affected by various chronic diseases such as 
diarrhea, chest pains, nausea, and irritation of the respiratory tract(Jaishankar et
al., 2014). The use of copper cookware in boiling milk will cause liver cirrhosis in 
children due to the toxicity of copper. Additionally, the illness such as Wilson’s 
disease might occur upon superfluous copper consumption, which then leads to 
damage to the brain. This illness is an inherited disease that hinders the 
excretion of copper into the bile by the liver (Purchase, 2013). Moreover, a very 
high copper level can be harmful to the kidney and liver and may lead to death. 



© C
OPYRIG

HT U
PM

2 
 

The adverse health effects due to long-term exposure to copper have become 
world concerns, and many different strategies have been proposed to prevent 
copper pollution in the industries. However, the prevention strategy to substitute 
the copper with other metals is found to be irrelevant in the copper metal 
manufacturing industries. This is because this metal is comparably lower in price, 
excellent conductivity behaviour, and naturally and readily available compared 
to other metals. In regards to this matter, monitoring of copper in water bodies is 
necessary to ensure that copper released into the drainage system is within the 
acceptable level. Therefore, it is an urgent need to develop a monitoring or 
sensor device that is highly sensitive to copper ions. 
 
 
1.2 Photoelectrochemical (PEC) Sensor 

The evolution of photoelectrochemistry from the electrochemical method has 
grown vigorously since the past few years, involving investigation on the effect 
of light on the photoelectrode, as well as the interaction between solar energy 
and electrical energy. There are two basic principles involved in PEC process: 
(1) the oxidation and reduction reactions between the electrochemically active 
species in the electrolyte, and (2) the excitation of photoactive materials in the 
electrode/electrolyte interface during irradiation of light. These principles have 
broadly been utilized in the research for photocatalyst, photovoltaic and solar cell. 
By applying the same principle, the PEC sensing for detecting chemical or 
biological analytes has evolved actively over time by combining the PEC 
technique with biochemical analysis, in which light served as an excitation source 
for photosensitive materials, and subsequently generating the current as signal 
readout (Ibrahim et al., 2018).  
 
 
Unlike the optical detection technique which suffers from signal attenuation, 
complex and high-cost detection system, very temperature-sensitive, as well as 
require precise installation procedures (Ahuja & Parande, 2012), the execution 
of electronic detection makes PEC measurement and instrument simpler, cost-
effective, strong signal and enabling detection in the complex samples. In 
addition, the total separation of the excitation source (light) and the detection 
signal (electric) in the PEC system have led to the advantages of a negligible 
background signal and ultra-sensitive sensor. Nevertheless, the regular 
photoactive species used in the existing research of PEC sensor is found to be 
restricted due to low photo-conversion efficiency which is related to the wide 
band gap energy of semiconductor, susceptibilities to photo-bleaching and 
unclear signalling mechanism. The aforementioned drawback of the PEC sensor 
has created a huge obstacle to realizing these principles in the practical and real-
world application. Therefore, the selection of photoactive semiconductor and the 
thorough reorganization of complex PEC strategies is compulsory to attract 
reader interest in understanding the inherent principle more systematically, and 
thus exploit a new detecting mechanism (Zang et al., 2017). 
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1.3 Cadmium Sulfide (CdS)  

The simple composition of CdS by pairing one cadmium atom with one sulfur 
atom was emerged naturally both as a pure mineral. The cadmium and sulfur 
atom are frequently present as an impurity in zinc ores. In 1817, Stromeyer and 
Hermann, a German chemist, was credited for extracting CdS from zinc 
carbonate (calamine), which then heated to produce pure cadmium (Zang et al., 
2017). When first CdS is found in the relatively rare pure form in nature, it 
consists of two different crystal structures. The hexagonal crystal structure of 
CdS named Greenockite was found on Lord Greenock’s land in 1840, which 
reflects the internal mineral composition of CdS. Meanwhile, the second 
structure called a Hawleyite was named after the Canadian Mineralogist, James 
Hawley, who was the first person discovered this crystal structure. The Hawleyite 
is a cubic form of CdS with a similar structure to zinc sulfide, which sometimes 
called as a zinc blende structure. Soon after the discovery of CdS, it has drawn 
much attention among the artists due to the strong yellowish color of CdS. The 
vibrant yellow pigment of CdS is usually used in painting as the earlier colors for 
the range of yellow to red pigment. 
 
 
To date, cadmium sulfide still becomes a main source of metal, which commonly 
used in batteries such as rechargeable nickel-cadmium (NiCd) batteries to helps 
power out our mobile lifestyle (Lankey & McMichael, 2000). Moreover, CdS is 
widely been utilized as semiconductor materials for numerous form of application. 
CdS have a bandgap, which is the intrinsic properties for all the semiconductor 
materials. The bandgap of CdS enables the absorbed photon to promote the 
electron across this gap, under light illumination and thus allow flowing or moving 
of electron to produce conductivity. Exposing CdS to the light source will make 
use of this abundant energy (light energy) to facilitate the electron to cross to the 
conduction layer, then making CdS as an effective photoresistor. Furthermore, it 
can also be utilized as photovoltaic cells for solar panels by doping it with other 
semiconductor or noble metals. 
 
 
1.4 Cadmium Sulfide- based Nanomaterials  

Many endeavours have been focused on enhancing the PEC performance of 
CdS by modifying its structure (Xing et al., 2013b) and hybridizing it with other 
metal or semiconductor materials (Huo et al., 2015), carbon-based materials 
(Ibahim et al., 2016; Wang et al., 2015), and noble metals (Ibrahim et al., 2016a). 
A three-dimensional hexagonal CdS nanostructure had been fabricated by (Li et 
al., 2013b), and a notable enhanced PEC performance of hexagonal CdS was 
obviously found upon illumination if compared to the cubic CdS NPs. This was 
due to the large surface area and high charge transportability that resulted from 
the large band gap of hexagonal CdS compared to that of cubic CdS (Li et al., 
2013b), which revealed its predominant advantages in PEC applications. 
Additionally, much research has been devoted to comparing hexagonal and 
cubic CdS (Khatamian et al., 2014; Li et al., 2016; Matsumura et al., 1985), and 
the results have suggested that the high crystallinity of hexagonal CdS will lead 
to fewer surface defects in the crystals, thus efficiently enhancing the charge 
transport and separation. The hydrophilic CdS nanorods prepared by (Bao et al., 
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2015) displayed a broader light absorption and evident photocurrent intensity 
amplification at -0.2 V vs. Ag/AgCl, as compared to CdS nanoparticles, which 
used a spherical structure. Hence, the great PEC performance illustrated by CdS 
nanorods has become a potential candidate for PEC application. 
 
 
1.5 Problem Statements  

The agglomeration of NPs has become a common problem faced by 
nanomaterials researchers. Despite its excellent physical and chemical 
properties manifested by these nano-sized materials, the formation of cluster 
NPs becoming a major challenge involves in synthesizing of these nanomaterials 
due to its higher surface area to volume ratio. The large surface area of NPs may 
result in large surface energy. To diminish or minimize the surface energy, the 
particles tend to agglomerate uncontrollably due to van der Waals interaction 
between the particles (Saravanan et al., 2011). As a consequence, the 
agglomeration of NPs inhibits the real potential of NPs and subsequently tend to 
create problems such as poor electrochemical performance due to the difficulty 
for electron mobility and the existence of charge recombination. In this regards, 
the agglomerations of the NPs can be avoided by stabilizing them 
electrostatically, modifying with capping agents, and covering with inorganic 
shell or organic ligand. Nevertheless, encapsulating the surface of NPs to hinder 
the growing rate of NPs will lead to the presence of foreign species within it. 
Therefore, the additional fabrication process is needed, and it will consume much 
time for synthesis and post-treatment of NPs especially for the removal of by-
product. 
 
 
Additionally, there are two mechanisms involved in PEC sensor which are based 
on the reductive property of the photoelectron or oxidative capacity of the 
photogenerated hole (Ibrahim et al., 2018).  Yet, it is still a great challenge for 
PEC sensors to distinguish the individual targeted species without the auxiliary.  
In order to achieve more accurate determination of target species, certain 
biomolecules such as DNA, enzyme, antibody, and aptamer were incorporated 
as auxillary means on the PEC platform. Even though it manifested a good 
selectivity with the assistance of those biomarkers, the sophisticated design 
process, harsh storage conditions and high cost have remarkably restricted its 
practical applications. Hence, it is substantial to execute the selective detections 
with label-free PEC sensors.  
 
 
CdS are II and IV semiconductor with a bandgap of ~2.4 eV, promoting an 
excellent visible light absorption under solar irradiation. Unfortunately, the 
problem of photocorrosion and rapid charge recombination of CdS in aqueous 
media have restricted its practical application in light-driven reaction. Therefore, 
to protect the CdS from photocorrosion, coupling CdS with other materials such 
as metal or semiconductor materials, carbon-based materials, and noble metals 
is an effective method to inhibit the photocorrosion and recombination of charge 
carries of CdS (Ibrahim et al., 2018).  Besides, the addition of hole scavenger to 
the electrolyte such as triethanolamine (TEA) and ascorbic acid is another 
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practical approach that can suppress the aforementioned limiting factor through 
kinetic competition (Dotan et al., 2011). 
 
 
Besides, there are numerous researches have reported on the detection of Cu2+ 
ions in contaminated water, but seldom was reported on simultaneous detection 
and removal of that hazardous metal. Vulnerable from superfluous Cu2+ ions in 
drinking water (guidelines value of copper ions in drinking water standardized by 
the World Health Organization (WHO) was limited to ~20 μM) or other 
environmental sources can cause detrimental effect to health and ecosystem. 
Therefore, there was a pressing need to come out with new materials for its 
simultaneous detection and removal from the water sources. The dual-functional 
material is not only able to monitor the level of Cu2+ ions, but it also can diminish 
the number of metal ions found in the water samples. 
 
 
Despite the fact that the utilization of CdS with other nanomaterials reveals 
promising results in promoting their overall physiochemical properties, but the 
understanding in the structural morphology of CdS and mechanism in PEC 
reaction is crucial. Therefore, it is important to investigate the correlation 
between the PEC performances with the structural evolution of CdS changing 
from zero-dimensional (0D, nanosperical) to one-dimensional (1D, nanorod) 
architecture.  
 
 
1.6 Scope of Research  
 
In this research, we aim to investigate the effect of manipulating the shape of 
CdS nanocrystals due to the importance of the morphology and texture of the 
materials in determining the PEC properties of CdS. It has remained as an 
important goal of modern materials science to conduct a comprehensive study 
on the influence of structural morphology towards the PEC performance such as 
the sensitivity, selectivity and limit of detection (LoD).  Moreover, the CdS 
synthesized via aerosol-assisted chemical vapor deposition (AACVD), hydro- 
and solvothermal approaches will be analysed to fabricate different CdS 
nanomaterials such as cadmium sulfide/reduce graphene oxide (CdS-rGO) 
nanocomposite, cadmium sulfide/gold (CdS-Au) nanocomposite, cadmium 
sulfide/gold/graphene quantum dots (CdS/Au/GQDs) nanocomposite and 
cellulose acetate/cadmium sulfide/methylene blue (CA/CdS/MB) nanocomposite, 
which will be employed as photosensitive species in visible-light induced PEC 
sensors of copper ions. The nanocomposite materials based on CdS will enable 
the inhibition of photo-corrosion as compared with pure CdS nanoparticles (NPs), 
and subsequently displayed an enhanced photo-to-current conversion efficiency.  
 
 
In order to investigate the workability of the as-prepared CdS nanomaterials, the 
study on this precious materials will not be restricted to monitoring the copper 
level by the proposed PEC sensor technique but also removing this harmful 
metal from the environment especially in water bodies. The dual-function CdS 
nanocomposite for PEC detection and removal of copper will be incorporated 
with CA, which act as adsorbent materials for copper ions (Cu2+). Additionally, 
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the performance of the as-synthesized photoactive and bioadsorbent materials 
will also be evaluated by parameter optimization, performance comparison with 
other electrochemical detection methods and real-sample study for clarification 
and justification of the proof-of-concept study. 
 
 
1.7 Research Objectives 

This research is to fabricate a functional PEC sensor platform that relies on the 
nanocomposite of CdS. The primary objective of this thesis is to investigate the 
practicality of CdS-based nanomaterials in PEC detection as well as to remove 
Cu2+ ions from water bodies. Remarkable attention was devoted to addressing 
the current problems related to agglomeration of NPs, label-free sensor, 
enhancement in the PEC performance, and simultaneous detection and removal 
of Cu2+ ions device. The specific objectives of the study are outlined below: 
 
i. To construct a multi-functional hybrid nanomaterial with graphene 

derivatives and Au for enhancement in PEC performance of CdS modified 
electrode 

ii. To investigate the practical applicability and sensitivity of the proposed 
CdS-based photoelectrode in the real sample application. 

iii. To investigate the structural evolution of CdS from nanospherical to 
nanorod morphology in the overall performance of PEC study. 

iv. To analyse the performance of CdS with cellulose acetate as bioadsorbent 
materials and methylene blue for dual-functional based sensor-adsorbent 
materials.   

 
 

1.8 Thesis Outline 

In Chapter 1, brief introduction on copper contamination, PEC sensor and CdS 
nanomaterials are given, problem statements and the main objective of the 
thesis. A comprehensive literature review on visible-light induced 
photoelectrochemical sensors based on CdS nanoparticles is explained in 
Chapter 2.  
 
 
Chapter 3 covers the experimental works used for the synthesis of CdS-rGO 
photoelectrode via AACVD and dip-coated approach. The nanospherical 
structured CdS was adhered securely to the glass substrate by a continuous 
network of rGO that also acted as an avenue to intensify the transfer of electrons 
from the conduction band of CdS.  A study on the stability of photocurrent 
performance between the presence and absence of TEA for scavenging the 
photogenerated hole was carried out in this chapter. 
 
 
In Chapter 4, the modification of spherical CdS decorated with Au QDs was 
conducted. The influence of the amount of Au QDs loaded on the CdS NPs on 
the PEC performance was evaluated. The femtosecond transient absorption 
dynamics of the modified photoelectrode was also conducted to investigate the 
rate transfer of photoexcited electrons.  
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In Chapter 5, the incorporation of graphene quantum dots and gold on the CdS 
nanorods was developed to attain an ultra-sensitive PEC sensor device. The 
simplistic fabrication of CdS/Au/GQDs photoelectrode achieve a remarkable 
PEC response due to the assembly of precious carbon family of GQDs, which 
holds a role similar like semiconductor, and also the good distribution of 
plasmonic Au on the CdS NRs surface, thus contributing to excellent light 
scattering ability producing hot electron on the CdS NRs. The synergistically 
interaction of CdS/Au/GQDs enabling smooth transportation of charge carrier to 
the charge collector and providing a channel to inhibit the charge recombination 
reaction. To obtain a firm resolution on the selectivity and sensitivity of 
CdS/Au/GQDs photoelectrode, simultaneous determination of all ions mixture of 
Cu2+, Ba2+, Co2+, Li+, Ni2+, Mn2+, K+, Zn2+, Na2+, Mg2+, Ag+ and Fe2+ was feasible 
via differential pulse voltammetry  (DPV). 
 
 
In Chapter 6, a novel approach in fabricating multi-functional hybrid of 
CA/CdS/MB in the beads composition was synthesized and investigated as a 
photosensor-adsorbent for rapid, facile, selective and sensitive detection and 
adsorption of Cu2+ ions. A study of different precursor ratio of CdS and the 
difference in the morphology obtained was evaluated. The successful application 
of CA/CdS/MB in this research has provided new insight into the selection as 
excellent photoactive materials in PEC sensor as well as adsorbent materials for 
Cu2+ ions. 
 
 
Lastly, Chapter 7 contains the general conclusion and several future 
recommendations. The list of references cited in this thesis, appendices, biodata 
of students and a list of publications is listed in the post of Chapter 7.  
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