
A MODEL-BASED CLINICALLY-RELEVANT

CHEMOTHERAPY SCHEDULING ALGORITHM

FOR ANTICANCER AGENTS

by

Thang Ho

B.S., Chemical Engineering, University of Arkansas, 2007

M.S., Chemical Engineering, University of Arkansas, 2009

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2014



UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Thang Ho

It was defended on

November 24, 2014

and approved by

Robert S. Parker, Ph.D., Professor, Department of Chemical and Petroleum Engineering

Ipsita Banerjee, Ph.D., Assistant Professor, Department of Chemical and Petroleum

Engineering

Gilles Clermont, Ph.D., Professor, Department of Critical Care Medicine

Sanjeev Shroff, Ph.D., Distinguished Professor, Department of Biological Engineering

Dissertation Director: Robert S. Parker, Ph.D., Professor, Department of Chemical and

Petroleum Engineering

ii



A MODEL-BASED CLINICALLY-RELEVANT CHEMOTHERAPY

SCHEDULING ALGORITHM FOR ANTICANCER AGENTS

Thang Ho, PhD

University of Pittsburgh, 2014

Chemotherapy is the most commonly employed method for systemic cancer treatment of

solid tumors and their metastases. The balance between cancer cell elimination and host

toxicity minimization remains a challenge for clinicians when deploying chemotherapy treat-

ments. Our approach explicitly incorporates treatment-induced toxicities into the schedule

design. As a case study, we synthesize administration schedules for docetaxel, a widely

used chemotherapeutic employed as a monoagent or in combination for the treatment of a

variety of cancers. The primary adverse effect of docetaxel treatment is myelosuppression,

characterized by neutropenia, a low plasma absolute neutrophil count (ANC). Through the

use of model-based systems engineering tools, this thesis provides treatment schedules for

docetaxel used alone and in combination therapies with platinum-based agents that reduce

toxic side effects and improve patient outcomes.

The algorithm employs models of tumor growth, drug pharmacokinetics, and pharmaco-

dynamics for both anticancer effects and toxicity, as characterized by ANC. Also included

is a toxicity-rescue therapy, granulocyte colony stimulating factor (G-CSF), that serves to

elevate ANC. The single-agent docetaxel chemotherapy schedule minimizes tumor volume

over a multi-cycle horizon, subject to toxicity and logistical constraints imposed by clinical

practice.

This single-agent chemotherapy scheduling formulation is extended to combination chemother-

apy using docetaxel-cisplatin or docetaxel-carboplatin drug pairs. The two platinum agents

display different toxicities, with cisplatin exhibiting loss of kidney function as measured by
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creatinine clearance and carboplatin demonstrating the same myelosuppressive effects as

docetaxel. These case studies provide two different challenges to the algorithm: (i) cis-

platin scheduling significantly increases the number of variables and constraints, as well as

an additional toxicity, thereby challenging the computational engine and formulation; (ii)

carboplatins overlapping toxicity tests the ability of the algorithm to schedule drugs with

different mechanisms of action (they act in different phases of the cellular growth cycle)

with the same toxic side effects. The simulated results demonstrate the algorithms flexibil-

ity in scheduling both docetaxel and cisplatin or carboplatin treatments for effective tumor

elimination and clinically acceptable toxicities.

Overall, a clinically-relevant chemotherapy scheduling and optimization algorithm is pro-

vided for designing single-agent and combination chemotherapies, when toxicity and phar-

macokinetic/pharmacodynamic information is available. Furthermore, the algorithm can be

extended to patient-specific treatment by updating the pharmacokinetic/pharmacodynamic

models as data are collected during treatment.
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1.0 INTRODUCTION

The cost of healthcare has become a burden for many families in the United States. In

2012, the countrys total health expenditure was $2.8 trillion, with a cost per capita of $9,000

[10, 11], and U.S. healthcare spending was 17.9% of the national gross domestic product

[11]. From 2008-2011, the average annual growth in healthcare cost was 3.9% [11]. With

the Affordable Care Act (ACA) taking effect in the beginning of 2014, national healthcare

spending is projected to grow at an average of 6% annually from 2014-2020 [12]. Moreover,

by 2020, the U.S. population is projected to be at 334 million with 18% of the population

greater than 65 years old [13]. The implementation of ACA and the aging population will

not only impact the national healthcare cost but also burden the current healthcare system.

More specifically, the U.S. is projected to experience a shortage of 91,500 doctors by 2020 [14].

In order to aid the current healthcare system and ease the burden for clinicians and nurses,

systems medicine is an emerging field that bridges mathematics, computer science, and

engineering and applies these tools to problems in the clinical setting. The tools developed by

systems researchers can help clinicians to understand patient dynamics, disease progression,

and drug interactions so that they can design the best treatment for patients.

A main focus in the field of systems medicine is to develop a decision support system

(DSS) – a model-based tool employing patient-specific or patient-tailorable mathematical

models and systems engineering tools that can help clinicians improve treatment decision-

making by providing treatment recommendations, and the underlying rationale, through a

clinician-friendly interface. A schematic of how a typical DSS would be implemented in

current clinical settings is shown in Figure 1. Patient data and clinician input are entered

into the DSS through the interface, where the mathematical representation of the patient and

treatment design algorithm are executed to provide suggested treatments or interventions.
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Figure 1: Schematic of systems medicine role in current healthcare settings

The DSS, through its patient-tailored mathematical models, is able to predict the patient’s

disease trajectory and response to modeled interventions over a clinician-selected future time

window in order design treatments and minimize complications over that span.

A model plays an important role in designing model based DSS because it is a commu-

nication gate between the clinicians and the DSS developers. It helps to capture patient

and disease dynamics and predict future dynamics for the optimization algorithm to design

treatment. A successful model would be a key in DSS development. Patient dynamics are

often modeled by different types of mathematical models from empirical to biologically based

models. Empirical models are often correlation between effects and outcomes represented by

one or two equations and often lack predictive ability [15, 16]. Compartmental models are

also used to capture the patient dynamics. In this case, each compartment is represented

by a differential equation (i.e. change in drug concentration versus time), and more com-

partments are added to capture different dynamics [17, 18]. Compartmental models have

better predictive capacities than empirical models but can only be used to capture simple
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systems (i.e. pharmacokinetic model) [17, 18]. Physiologically-based models are also used

to capture patient dynamics [5, 19]. Tissues in a patient body are modeled as different

compartments (set of differential equations) with blood flow connecting each compartment.

The physiologically-based model captures different local dynamics at tissue level [5, 19].

Biologically-based models are also used to capture patient dynamics. In this case, the each

equation (often ordinary differential equation) represents an element (i.e. cells, biomarkers)

in a signaling cascades [8, 20]. Physiologically-based models and biologically-based models

not only accurately capture patient dynamics but also have better patient dynamic prediction

than empirical models and simple compartmental models [8, 5].

While physiologically based models and biologically models accurately capture patients

dynamics, they often have a large number of equations and parameters with nonlinearities

inherent in the nature of the biological system. These large models create difficulties in cap-

turing patient specific dynamics and treatment optimization. The difficulty is the challenge

in real-time tailoring patient dynamics because existences of local minima in parameter op-

timization landscape. Another challenge is the number of variables and constraints increases

dramatically during optimization when these models are used [21]. Therefore, the num-

ber of equations and parameters in a physiologically based model and a biologically based

model should be reduced in order to facilitate implementation into a DSS more effectively.

Physiologically based models and biologically-based models are often used as the starting

point for model reduction and parameter reduction due to their large equation dimension

and complex parameter interaction space. Through mathematical methods [22, 23], a model

is reduced to the smallest number of equations that are still able to capture the data, or in

the case of dynamic models, the process response. The output sensitive parameters are then

identified for model adjustment to capture patient-specific dynamics. Model reduction and

parameter identification helps a model to be easily implement an optimization algorithm to

design patient treatment action.

Another important aspect of the DSS is the treatment design. The treatment design

algorithm should be clinically driven rather than just theory driven. This is because in a

clinical setting, the treatment decisions made by clinicians are discrete in time (act/do not)

and follow certain protocols or experience. Therefore, the goal of the DSS is to aid clinicians
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in patient treatment design and to help the current healthcare system. A DSS should then

be able to design a clinically-relevant treatment that can be deployed in clinical settings

without major modifications to current practice.

The synthesis of a mathematical model from biological information will be provided

through an example of neutrophil response to both an inflammatory challenge and myelosuppression-

inducing chemotherapy. From this biologically-based model structure, formal model reduc-

tion reduction will provide a lower-order model that can be more readily used within an

optimization algorithm for chemotherapy scheduling. A clinically-relevant chemotherapy

scheduling problem with docetaxel alone and in combination with platinum agents provides

a generalizable DSS design for chemotherapy scheduling. This combination of dynamic mod-

eling, analysis, and systems engineering tools are a demonstration of how mathematical tools

can be translated to address clinical problems with the goal of improving patient outcome,

reducing healthcare costs, and lowering the tedious work burden for caregivers.

1.1 NEUTROPHIL DYNAMICS AND MODELS

1.1.1 Neutrophil Biology

Neutrophils comprise 55-70% of all leukocytes [24]. As core components of the innate im-

mune response, their main biological functions include chemotaxis to sites of inflammation,

phagocytosis of microbial products or particles, and microbial killing [24, 25]. Under the in-

fluence of the Granulocyte-Colony Stimulating Factor (G-CSF), pluripotent hematopoietic

stem cell types commit to becoming granulocytes or precursor cells [25]. These precursor

cells mature continuously through different cell phases and become circulating neutrophils

[26]. Stem cells committed to becoming granulocytes are converted into mature neutrophils

andreside in the bone marrow [27]. The mature neutrophil count in plasma is tightly regu-

lated by G-CSF [28]. G-CSF also maintains neutrophils, known as the marginal pool, that

are ready for rapid recruitment in case of an infection. However, neutrophils only circulate

for 6-8 hours in the blood stream before undergoing apoptosis [26].
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Apoptotic neutrophils are digested by macrophages. A decrease in neutrophil degra-

dation rate (resulting from depletion of the circulating neutrophil count, from any cause)

causes macrophages to release interleukin-23 (IL-23) [29]. The increase in IL-23 production

activates T-cells to secrete interleukin-17 (IL-17) [29]. The increase in IL-17 production acti-

vates stromal cells, which produce G-CSF to increase neutrophil production and ultimately

circulating neutrophil count [29].

1.1.1.1 Inflammatory Response of Neutrophils:

1.1.1.2 Inflammatory Response of Neutrophils When the host has been invaded

by bacteria or pathogens, macrophages first come into contact with them [30]. Macrophages

release inflammatory cytokines, including TNF-α, IL-1α, and IL-6. These inflammatory

cytokines activate the endothelial layer and recruit neutrophils toward the site of infection

[31, 32]. Neutrophils are activated by these cytokines and kill bacteria or pathogens at the

site of infection by its apoptotic mechanism. When bacteria or pathogens are eliminated

from the host, anti-inflammatory cytokines, including IL-12, IL-1ra, and IL-10, are secreted

to deactivate or neutralize the inflammatory response [32]. Neutrophils undergo apoptosis

when the body begins to return to its homeostasis state.

When an injury or infection is severe, the inflammatory response could be overactivated.

In this case, the resulting cytokine release leads to elevated circulating (systemic) levels,

which results in the activation of remote endothelial layers in non-infected tissues [26]. As

a side-effect, neutrophils migrate into these tissues and cause damage to them as a result of

activated neutrophils creating a cell-killing local environment with no pathogen to attack.

In a severe case, it could lead to multi-organ failure, as seen in sepsis [24].

A balance in the inflammatory response needs to be maintained for patients with in-

fection or trauma to improve outcomes and survival rates. Understanding neutrophils and

inflammatory response dynamics through experiments and mathematical models provides

information to develop new treatments and interventions. For example, the mouse model

has been used to study how sepsis can occur [32]. The cecal ligation and puncture (CLP)

procedure has been used to mimic the effects of sepsis injury in the patient [32]. The CLP
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model includes a punctuation of the cecum allowing the release of fecal material into the

peritoneal cavity to trigger to immune response due to a polymicrobial infection [32]. Time

series blood samples are drawn and analyzed for inflammatory and anti-inflammatory mark-

ers. The hypothesis of CLP challenge could trigger the same inflammatory response in

sepsis. The data observed in this study suggested that CLP is a good model to capture the

inflammatory response observed in sepsis.. However, the mouse inflammatory system does

not represent the human system. Although certain differences in inflammatory responses

between mice and humans have been established [33, 34, 35], the CLP mouse model can be

used to explain certain inflammatory response in human sepsis and test the effectiveness of

sepsis treatments.

The human inflammatory response is also studied through the infusion of bacterial en-

dotoxin (lipopolysaccharide (LPS)) into healthy volunteers to trigger the inflammatory re-

sponse [32, 7, 36]. The infusion of endotoxin triggers the inflammatory response, and blood

samples are drawn to analyze different inflammatory markers during the experiment [7].

LPS challenge is believed to trigger the same inflammatory cascade as sepsis. However,

since endotoxin challenge is the injection of a very small quantity of gram-negative bacterial

membrane components into the patient, recovery will always occur, meaning that the inflam-

matory system will always return to homeostasis. The advantage of the LPS challenge in

humans is that it can elucidate certain key mechanisms specific to the human inflammatory

response. Neutrophil and G-CSF time series data can be used to develop a mathematical

model to capture the neutrophil and G-CSF responses to the inflammatory challenge.

1.1.1.3 Chemotherapy-Induced Neutropenia: Cancer chemotherapy is a systemic

treatment targeting the elimination of cancerous cells, but often having negative side-effects

(i.e., toxicity) on other cells in the body. Toxicity is the main limitation imposed on cancer

chemotherapy, and the side-effects vary among chemotherapeutic agents [1, 37, 38]. Doc-

etaxel and paclitaxel cause myelosuppression, often manifesting as neutropenia (low absolute

neutrophil count (ANC)) [1, 38]. Cisplatin causes kidney damage referred to as nephrotoxic-

ity [39]. Clinicians often monitor the toxicity profile, as it impacts the timing and magnitude

of the following chemotherapeutic dose.
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Myelosuppression, as measured by ANC, is one of the common toxic effects of doc-

etaxel, paclictaxel, topotecan, and carboplatin chemotherapies[1]. Neutropenic toxicity is

divided into different grades in the clinic. The toxicity grades range from 0 to 5, with 0

being no toxicity and grade 5 being death [40]. High neutropenia grades could cause an

immune system breakdown in patients, and in extreme cases, it could lead to death [41].

Neutropenic toxicity is often observed during chemotherapy between days 5 and 7 after drug

infusion. Chemotherapeutic agents do not eliminate circulating neutrophils in the body but

instead target the neutrophil progenitor cells. As the progenitor population decreases during

chemotherapy, the number of cells that can mature into neutrophils becomes low, and this

effect eventually causes the drop in ANC. The ANC recovers after chemotherapy because the

depletion of neutrophils triggers the release of G-CSF, which triggers stem cells to produce

more neutrophil progenitors as described in Section 1.1.1. In the cases where patients suffer

severe neutropenic toxicity, clinicians use G-CSF prophylactically to increase neutrophil pro-

duction and recruitment to circulation [42]. Models of ANC data can be used to understand

neutrophil dynamics during chemotherapy.

1.1.2 Neutrophil-GCSF Models

G-CSF has been successfully used by clinicians in the prevention of neutropenia related

to myelosuppressive chemotherapy [43, 44, 45, 46, 47]. Numerous trials have evaluated

the efficacy of G-CSF in patients receiving high-dose chemotherapies for a variety of solid

tumors (i.e docetaxel- metastatic cancer , methotrexate head and neck cancer)[43, 44, 45,

46, 47]. These studies concluded that G-CSF therapy is associated with significantly shorter

hospital stays and reduced rates of severe neutropenia. For example, in a study of 44

women with metastatic cancer, patients receiving G-CSF had shorter hospital stays and

achieved an ANC of at least 500/µL earlier than patients who did not receive G-CSF [44].

A study performed by Bergh et al., showed that G-CSF allows higher doses of a fluorouracil,

epirubicin, and cyclophosphamide (FEC) combination chemotherapy [47]. Patients were

given drugs every three weeks for nine courses either with G-CSF or without G-CSF. The

drug dose was increased at every cycle. The chemotherapy was able to be administered to
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patients receiving G-CSF therapy at significantly higher doses, but with comparable levels

of haematological toxicity compared to patients not receiving G-CSF therapy [47]. G-CSF

promotes neutrophil production and recruitment, which allows clinicians to treat with higher

doses of chemotherapy. Understanding the impact of G-CSF on neutrophil dynamics would

help develop better G-CSF administration guidelines resulting in improved chemotherapy

scheduling that helps to avoid severe neutropenia.

Malka et al. built a six parameter model to analyze the bistability of neutrophils and

bacteria for an in vitro system [48]. The bacterial elimination rate depends on both the

neutrophil and bacteria concentrations. When the author scaled the model up for in vivo

systems, the neutrophils were integrated with G-CSF dynamics via a two state model. How-

ever, there is no interaction between the bacteria and neutrophil states. Although the authors

recognized G-CSF as an important part of the neutrophils dynamics, G-CSF alone does not

contribute to all of the dynamics of neutrophils during an inflammatory challenge.

G-CSF effects on neutrophil dynamics have been studied in different models during

chemotherapy to capture neutrophil production and recruitment when G-CSF is injected into

the body. Most of the models incorporate G-CSF in neutrophil dynamics implicitly, and few

include the effects of neutrophils on endogenous G-CSF production dynamics. Sochat et al.

developed a two state model to capture neutrophil-G-CSF dynamics after a G-CSF injection

[49]. In this model, the G-CSF endogenous production is a function of neutrophil count in the

plasma. As the number of neutrophils in the plasma decreases, the rate of G-CSF production

increases. In turn, more neutrophils are produced to return the system to steady state.

This model was able to capture both neutrophil and G-CSF dynamics after intravenous and

subcutaneous infusion, as seen in the data published by Wang et al. [6]. The model developed

by Sochat et al. was one of the few models that incorporated G-CSF production explicitly.

However, the model described the direct effect of G-CSF on circulating neutrophils and was

unable capture the effects of chemotherapy on G-CSF dynamics. During chemotherapy,

the drug affects the neutrophil precursor population, and the model does not include any

neutrophil precursor state(s). Nevertheless, the model explicity captures the interaction

of neutrophils and G-CSF. While G-CSF has showed an impact on neutrophil dynamics

during chemotherapy, there is few models are able to capture this dynamics. Therefore, to
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capture neutrophil and G-CSF dynamics after myelosuppessive chemotherapy and how G-

CSF infusion impact ANC, certain biological information about the signaling cascade must

be retained in a neutrophils GCSF dynamic model.

1.1.3 Dynamic Neutrophil Models Responding to Inflammatory Challenges

Modeling the inflammatory response, especially the innate immune response, is of great in-

terest theoretically and clinically [50, 51, 52]. Capturing the inflammatory response in math-

ematics would help aid clinicians in designing interventions that improve patient outcomes

and survival rates. The inherent problem is that early intervention aimed at down-regulating

the inflammatory response increases the risk of infection that could overwhelm the immune

system, while later intervention may be too late – attempting to prevent damage that has al-

ready been done. Thus, the timing for intervention in the case of the inflammatory response

is critical for successful treatments. One of the first inflammatory models was developed by

Hamers et al. [53]. This model studied how human neutrophils clear Escherichia coli in

vitro. The three state of the model represent free bacteria, ingested bacteria, and perforated

bacteria with linear dynamics. The neutrophil concentration was held constant throughout

the simulation and the model was able to capture the population of bacteria over time. How-

ever, in vivo, the neutrophil population varies in the presence of infection. Thus, the constant

neutrophil population and linear models describing the bacteria dynamics by Hamers et al.

are not applicable. Despite these shortcomings, the model was one of the first to describe

the rate of bacterial clearance by neutrophils.

Chow et al. studied the inflammatory response in different shock states with mathe-

matical models using mouse data to calibrate the dynamics [52]. For calibration, mice were

subjected to the following challenges: LPS intraperitoneal injection at 3 mg/kg, 6 mg/kg,

12 mg/kg, surgical trauma, and surgical trauma plus hemorrhaging. The available exper-

imental data includes concentrations of TNF-α, IL-10, IL-6, and NO−
2 /NO−

3 . The model

has 15 differential equations representing the different components in the inflammatory re-

sponse such as cytokine concentrations, LPS dynamics, levels of both resting and activated

macrophages and neutrophils, blood pressure, and tissue damage. Note that both the resting
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and activated neutrophil populations are modeled as function of LPS, TNF-α, IL-6, and IL-

10, and the activated neutrophils contribute to cytokines and nitric oxide production. This

model was able to capture the dynamics of cytokines in the different LPS challenge levels

and trauma challenges. In the model, the resting neutrophil population is represented by the

number of neutrophils in circulation and those recruited during the inflammatory challenge.

The activated population is comprised of the neutrophils that are able to clear out endo-

toxin. The two neutrophil states represent the dynamics of neutrophils in circulation, but

do not account for neutrophil maturation and production. In this model, neutrophil states

are supplementary states to capture dynamics of cytokines.

Reynolds et al. developed a reduced-order mathematical model of the inflammatory

response [54]. The model has 4 ordinary differential equations representing pathogen dy-

namics, neutrophil dynamics, tissue damage, and anti-inflammatory cytokine concentration.

Their study examined different stabilities within the model and patient outcome based on

model parameters. The neutrophil dynamics are represented by only one equation, which

describes the activated neutrophil population. Again, the neutrophil equation only captures

the dynamics of neutrophils after recruitment and migration to the site of infection. Like

the previous models of an inflammatory challenge that have been developed, this model is

limited to only neutrophil dynamics at the site of infection.

In 2006, Day et al. used the same model structure of Reynolds et al. [54] to analyze

the inflammatory response under repeated endotoxin administration [55]. The model was

able to recapitulate different endotoxin infusion scenarios including lethal and non-lethal

endotoxin doses. The model was able to capture the less severe inflammatory response

found in preconditioned mice, as well as the more severe inflammation dynamics displayed

by non-preconditioned groups. Here the preconditioned group received more than one dose

of endotoxin while non-preconditioned group received only one dose of endotoxin. Like in

the work of Reynolds et al., the neutrophil dynamics captured in the model only account for

the activated neutrophil population. The other neutrophil dynamics are neglected although

they play important roles in the inflammatory response.

Similar model structures have also been developed by others to capture different endo-

toxin and other inflammatory challenges [27, 51, 56, 57, 58]. Common to all of these models
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is a neutrophil functionality that captures the circulating neutrophil dynamics. Most of the

models use either bacteria or cytokines as a recruiter to increase the neutrophil count in

the plasma. The assumption is that neutrophils are not depleted in bone marrow. These

models do not include any feedback mechanism in neutrophil production when the circulat-

ing neutrophil count drops. Due to the fast dynamics of the inflammatory response, these

assumptions are plausible; however, to extend these models to accurately capture the dy-

namics of neutrophils, the biological response of neutrophils and the associated signaling

cascade should be considered.

During a severe injury or pathogenic invasion, a number of different neutrophil groups

are recruited to the circulation and eventually the site of infection: mature circulating neu-

trophils, neutrophils from the marginal pool, and immature neutrophils – neutrophils that

are maturing in the bone marrow but are not yet fully mature. As the severity of injury

increases, the number of premature neutrophils migrating to circulation increases. Orr et

al. developed a model to capture this phenomenon [15, 16]. The model has one equation to

capture the number of neutrophils in circulation where the recruitment rate of neutrophils

to circulation is a function of neutrophils along the maturation trajectory. The experimental

data were collected every two hours each day for a period of 7 days. The authors were then

used piecewise linear function to fit data for each day. Thus, seven linear functions were

used to capture experimental data. Although the model was able to capture the piecewise

data, the piecewise approximation cannot be extended to different systems for the lack of

generalized structure. Nevertheless, this model began to take into consideration the recruit-

ment of different neutrophil populations to circulation and account for the fact that there

are a limited number of neutrophils residing in bone marrow.

Song et al. developed a 19 state model to capture cecal ligation and puncture (CLP)-

induced sepsis in rats. CLP-induced sepsis in rats was initiated via ligation of 25% of the

length of the cecum and two punctures with a 20-gauge needle [50]. The hypothesis was

that dysregulated neutrophil trafficking in severe sepsis may contribute to mortality. The

models main focus is neutrophil trafficking and phenotype variation. The three main spatial

compartments in the model are blood, peritoneum, and lung. The neutrophil phenotypes

were resting, primed, and systemically activated. The model captured the inflammatory
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response between the survivor and non-survivor rat populations. Blood purification was

incorporated into the model to evaluate its benefits and it was found that 18% of rats from

the non-survivor group can be saved when treated using blood purification. The Song et al.

model was one of the few models to include different neutrophil phenotypes and explicitly

account for neutrophil trafficking in different tissues. The authors did not consider the effects

of neutrophil production and maturation on these dynamics.

A mathematical description of neutrophil dynamics during an inflammatory challenge

in most models takes into consideration the process of neutrophil recruitment to the site of

infection and also functionality to produce inflammatory and anti-inflammatory cytokines.

When neutrophils become the main focus of the models, they are often modeled as an infi-

nite source (no depletion), with an accurate description of recruitment and migration toward

to site of infection as the primary concern. Neutrophil production through the G-CSF sig-

naling cascade has not been modeled explicitly in inflammatory challenges. Modeling this

cascade will improve understanding of neutrophil dynamics during inflammatory challenge

and elucidate how the neutrophil production cascade contributes to the neutrophil recruit-

ment process.

1.1.4 Neutropenic Toxicity Models

Mathematical models have been developed by several authors to capture neutrophil dy-

namics during chemotherapy treatment [1, 37, 59, 60]. Zamboni et al. developed a three-

compartment model to represent neutrophil dynamics in pediatric patients [59]. The three

compartments represent the stem cell population, a delay compartment, and neutrophils in

peripheral blood. Twenty one children were administered topotecan (1.2-2.4 mg/m2/day).

Ten of the children were not treated with G-CSF after topotecan infusion, and 11 were treated

with G-CSF following topotecan infusion. Although the children treated with G-CSF had a

higher topotecan dose (30%) than children without G-CSF treatment, the neutrophil nadir

of the two populations was within the same grade. The model results showed that the

maturation rate of neutrophils is the same for the two populations; however, the toxicity pa-

rameters of topotecan on neutrophil production for patients receiving G-CSF is twice as high
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as the patients not receiving G-CSF for more topotecan was administered. During topotecan

chemotherapy, G-CSF does not help to increase the maturation rate; however, it helps to

increase neutrophil production from stem cells. The increase in neutrophil production allows

more drug to be administered to the patient. The Zamboni et al. model provides insight into

how G-CSF impacts neutrophil dynamics. Friberg et al. posed a semi-mechanistic model

to capture the myelosuppressive effects of different chemotherapeutic drugs [1]. The model

addresses the slow effect of chemotherapeutic drugs on ANC and was able to capture the neu-

trophil response to five different chemotherapeutics. Although the maturation of neutrophils

from progenitors in this model is biological grounded, the effects of circulating neutrophils

on the progenitor production of neutrophils is represented by a nonlinear feedback term

with the mathematical function, (Circ(t)/Circ0)
γ. Circ(t) is circulating neutrophil con-

centration as a function of time, Circ0 is the basal/steady state neutrophil concentration,

and γ is a factor to capture the effect of this ratio on progenitor cell proliferation rate. In

subsequent papers, the authors acknowledged the ratio is a heuristic interpretation of the

effects of G-CSF on neutrophil production. The Friberg et al. model has been used widely

in modeling myelosuppression for various drugs and patient populations. However, when

the model is used to capture the effects of G-CSF injection, it requires recalibration (change

of parameters). Nevertheless, this model recognizes that neutrophil prercursors needs to be

modeled to accurately capture the neutropenic toxicity effects of chemotherapy. A Friberg

et al. model with the easy to implement structure has been utilized by various authors to

capture the neutrophil response for different chemotherapy agents in a variety of different

studies [37, 38, 61, 62, 60]. Kathman et al. studied the effects of ispinesib and docetaxel

for 24 patients using the model developed by Friberg et al. [62]. The models toxicity and

neutrophil proliferation rates were adjusted accordingly to capture docetaxel and ispinesib

toxicity effects as well as patient-specific toxicity dynamics. The Kathman et al. parameters

set is able to capture the neutrophil dynamics under ispinesib and docetaxel combination

chemotherapy.

Panetta et al. studied neutrophil dynamics in pediatric patients after topotecan infusion

[60]. The neutrophil model employed by the authors has five compartments, with a similar

structure to that of Friberg et al., where circulating neutrophils drive stem cell proliferation.
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When G-CSF is infused into the patients, it increases the neutrophil maturation rate and the

stem cell proliferation rate. Topotecan was infused daily over 30 minutes for five consecutive

days over two consecutive weeks. G-CSF was given subcutaneously at 5 µg/kg/day beginning

24 h after the last topotecan dose of each cycle for a minimum of 10 days or until the ANC

exceed 500/µL in two consecutive measurements after the expected nadir. The model was

able to capture the neutrophil dynamics of twenty five pediatric patients over two cycles

of topotecan chemotherapy. Engel et al. studied the response of neutrophils during the

administration of 10 different multidrug multicylce chemotherapy treatments [63]. A similar

structure to that of the Friberget al. model was used. The five compartments in the model

represent different neutrophil precursor populations. In this model, toxicity effects eliminate

cells from all of the neutrophil precursor compartments except for circulating neutrophils.

There are two main differences between this model and previously published models with

similar structures. The first being the incorporation of a basal production of G-CSF in

the model and the second being that the neutrophil states regulate the G-CSF dynamics.

When the neutrophil cell counts are low, G-CSF is cleared out of the plasma more slowly

than when neutrophil cell counts are high. The Engel et al. model was one of the first

to incorporate the effects of neutrophils on G-CSF dynamics, and although the model did

not capture the exact dynamics between neutrophils and G-CSF, it began to acknowledge

the explicit importance of G-CSF in neutrophil models. Vainas et al. developed a model

to capture the neutrophil dynamics of 38 breast cancer patients treated with docetaxel [64]

. The model has 5 compartments that represent different neutrophil cell types. The model

has a similar structure to the Friberg et al. model. The differences are that in the Vainas

model the neutrophil precursors can proliferate, a portion of neutrophils are eliminated in

the bone marrow, G-CSF affects the transition rates between compartments and slows the

neutrophil degradation rate, and docetaxel eliminates cells from the three precursor states.

The model was able to capture the dynamic response of 38 patients under 100 mg/m2 every

three weeks docetaxel chemotherapy. Pastor et al. capture the toxicity effects of carboplatin

for patients with and without G-CSF treatment [4]. Out of 375 patients in this study, 47

received G-CSF. Using the Friberget al. model, Pastor et al. recalibrated the parameters to

successfully capture patients both with and without G-CSF dynamics (no G-CSF dynamics

14



were modeled. The Friberg et al. model recognized the slow neutrophil maturation process,

and successfully described that phenomena via a mathematical model. The maturation

structure has been used in various models, some of which were described above. However,

the lack of G-CSF dynamics incorporated in these models limits their use to cases where

the decision to use G-CSF or not is a priori (if [4] is used). Engal et al. made an effort to

incorporate the endogenous G-CSF dynamics into the model [63]. However, improvements

can be made in the current neutrophil-G-CSF models to better represent the true dynamics

observed in this signalling cascade. Moreover, with a more biologically-relevant model, it

would be unnecessary to recalibrate the parameters governing neutrophil dynamics when

G-CSF is infused.

1.2 CHEMOTHERAPY SCHEDULE DESIGN

The design of chemotherapy schedules for the safe and efficient treatment of cancer has long

been a challenge for clinicians. The balance between efficacy and toxicity makes chemother-

apy scheduling difficult. Since patient dynamics change throughout the treatment, the

chemotherapy schedules may require re-adjustment throughout the treatment to maximize

tumor elimination while maintaining a tolerable toxicity profile in the patient. Schedule

design for chemotherapy has been an interest in engineering, and engineers have been try-

ing to solve the chemotherapy scheduling problem in order to aid clinicians in treatment

design [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78]. However, engineering solutions

to the clinical problem have often been optimal in simulation, but lacking in their clinical

implementability as a result of requiring extended-duration low-dose infusion, withholding

treatment at the start of therapy, and/or incorporating toxicity effects implicitly as dosing

limits rather than providing an explicit model representing the side effects. Within a last

decade, engineer solutions begun to address the explicit modeling of toxicity and its impact

in chemotherapy treatment scheduling [76, 79, 80].To minimize the gap, thereby yielding a

clinically-deployable DSS, the constraints imposed by clinical reality have to be explicitly

incorporated into the design algorithm.
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1.2.1 Clinical Chemotherapy Treatment Design

The development of chemotherapy schedule is a process from the testing anticancer agent

in vitro to clinical trials to establish its specific standard schedules. Promising cancer agent

in in vitro study (eliminating cancer cells on the dish) is then tested with animal models in

preclinical trials to established treatment administration, drug efficacy with different cancer

types, and toxicity measurements . The drug with high efficacy and manageable toxicity is

then entered clinical trials. In phase I, the drug toxicity is examined to determine the toxicity

constraints in human. Phase II determines the drug efficacy for specific cancer types based

on schedules developed from experience with drug, toxicity profile, and logistical constraints.

The successful drug with manageable toxicity in Phase I and high efficacy in Phase II enters

Phase III to compare its performance against current standard chemotherapy for a specific

cancer type. The drug can be used as single agent or in combination with other approved an-

ticancer agents. A successful drug schedule would be more efficacious than current standard

chemotherapy. Thus, the optimal clinical schedule of anticancer chemotherapy is determined

through a series of experimentation and clinical trials yielding a better performance than

current schedule.

In the clinic, chemotherapy schedules are designed for a specific drug or drug combination

and then oncologists use that specific protocol to administer the chemotherapy drugs [60, 4].

Based on the response of the patient, clinicians adjust the dose magnitude and schedule. The

patient response is evaluated for both tumor elimination and toxicity profile. If, after several

cycles, the drug or drug combination does not reduce tumor size, the treatment is stopped,

and the patient is switched to a different drug or perhaps an agent in clinical trials. Regard-

less of antitumor effect, the toxicity profile of the patient is carefully monitored throughout

treatment. The method by which drug toxicity is evaluated is drug-dependent. For instance,

when docetaxel is used, neutropenia is the primary toxicity concern in the clinic. However,

when docetaxel is used in combination with cisplatin, clinicians also evaluate nephrotoxicity

during the treatment [39], a direct result of adding cisplatin to the regimen. Thus, specific

toxicities for each drug and drug combination are considered throughout patient treatment.

If the patient suffers significant toxicity, the clinician either decreases the amount of drug
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administered per dose or withholds a dose to make sure the toxicity becomes manageable

prior to administering the next dose. Chemotherapy treatment continues until the patient

suffers an untreatable toxicity, becomes cancer free, or fails to respond to treatment.

1.2.2 Model-Based Design of Chemotherapy Treatment Schedules

The mathematical models representing patient dynamics (Figure 1) are often integrated

into an optimizer or an algorithm to design a treatment using patient current dynamics

and model predictions. The use of patient dynamic models to design a treatment regimen

(drug delivered, intervention) to achieve an objective goal (patient recovery, fastest tumor

elimination) is called model-based control. Model-based design of chemotherapy schedule is

the used of patient pharmacokinetic, pharmacodynamic, and toxicity models to manipulate

the amount of drug administered and the timing of drug administration to minimize tumor

volume within a set of toxicity and logistical constraints [75].

Model-based design of chemotherapy schedules has been a topic of study for more than

30 years [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 81, 82]. From an early work

of Swan et al. [81] to recent works of Harrold et al. [76] and Pefani et al. [80], model

based design of chemotherapy has advanced in patient models, problem formulation, and

clinically relevant toxicity and logistical constraints inclusion to bring algorithm optimal

solutions closer to clinical settings. Since the early work of Swan et al. [81], all of the

chemotherapy optimization problems include equation/equations to describe tumor growth.

Logistical growth model was used by Swan [81]. Gompertizian growth model was used by

Martin and Teo [77, 78], Ziet and Nicolini [82], Iliadis and Barbolosi [74], and Nanda et al.

[83], and different cell cycles is used by Pereira et al. [84], Panetta et al. [85], Ledzewicz and

Schättler[86, 87], and Pefani et al. [80]. These tumor growth models described the dynamics

of cancer cells in the chemotherapy scheduling optimization.

The drug dynamic model in patients and how it affects tumor dynamics are also included

in chemotherapy scheduling problems. The drug pharmacokinetics were modeled by using a

system of (non)linear equations [65, 66, 72, 75, 81]. The drug efficacy on tumor dynamics

is modeled as a saturating function [81, 80] or a bilinear kill function depending on drug
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concentration and tumor size with the rate constant calculated from in vitro experiment

[65, 66, 67, 76]. In the works by Swan [81], Martin and Teo [77, 78], Costa et al. [71], Pereira

et al. [84], Tse et al. [88], the drug pharmacokinetics and dynamics were non specific to

any particular drug-tumor pairs. Realizing drug-tumor pairs are specific in clinical settings,

specific drug and its mechanism are considered in recent works by Iliadis and Barbolosi [74],

Harrold et al. [76], Nanda et al. [83], and Pefani et al, [80]. Iliadis and Barbolosi considered

in the dynamics of etoposide [74]. 9-nitrocamptothecin (9-NC) was used in Harrold et al.

work. Nanda analyzed the combination of dasatinib and nilotinib effects on chronic leukemia.

Combination chemotherapy of daunorubicin (DNR) and cytarabine (Ara-C), a standard drug

combination used to treat acute myeloid leukemia (AML), was studied by Pefani et al..

Departing form using the general anticancer dynamics in chemotherapy, the patient models

associating with drug pharmacokinetics and its efficacy in model-based chemotherapy design

has begun to address the specificity in drug-tumor pairs used in clinics. This is the first

advancement in model-based chemotherapy design in an effort to bring its solution to the

clinics.

Toxicity and efficacy drive patient chemotherapy schedule. Toxicity models are also

included into patient models in model-based design in chemotherapy. Swan [81], Martin and

Teo [77, 78], Costa et al. [71], Swierniak et al. [89], and Tse et al. [88] did not model the

toxicity of chemotherapy explicitly. Swan used the maximum dose can be delivered as the

place holder for patient toxicity [81]. Martin and Teo [77, 78], Costa et al. [71], Swierniak

et al. [89], and Tse et al. [88] posted the implicit toxicity constraint by setting an upper

limit in total drug exposure. These implicit toxicity constraints provided a convenience in

modeling patient dynamics (no additional equations needed to capture patient toxicity).

Clinically motivated toxicity measurements in chemotherapy can not be captured in the

implicit models; therefore, explicit toxicity models were incorporated in later works by Iliadis

and Barbolosi [74], Harrold et al. [76], and Pefani et al. [80]. Iliadis and Barbolosi developed

a one equation model to capture the toxicity effect of etoposide in white blood cell dynamics

[74]. Harrold et al. modeled weight loss as the toxicity effects in 9-NC chemotherapy.

Normal cell population model with one equation was used as a toxicity model in the work

of Pefeni et al. [80] in DNR and Ara-C combination chemotherapy. The change from
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implicit toxicity models to explicit toxicity models in model-based chemotherapy design

provides better representation of patient dynamics during chemotherapy;thus, bring the

design algorithm solution closer to the clinical treatment schedule.

Beside improvements in patient dynamic models, chemotherapy design objective function

and constraints have been changing in the past 30 years [65, 66, 67, 68, 69, 70, 71, 72, 73, 74,

75, 76, 77, 78, 81, 82]. Swan et al. objective is to achieve homeostasis with no logistical and

toxicity constraints [81]. The algorithm yielded a continuous drug infusion which can lead to

toxicity and become prohibitively expensive. The number of agents and clinical acceptability

of continuous infusion are low. Nevertheless, Swan et al. work initiates the motivation of

using engineering solution to aid clinicians in patient chemotherapy design.

A series of engineering chemotherapy treatment designs were published following Swan

et al. [81] work [82, 84, 85]. These works did not provide any toxicity or logistical constraints

in their problem formulation. Thus, the solutions of these problems yielded similar type of

chemotherapy solution seen in Swan et al. [81], continuous drug infusion for a long period

of time.

Realizing current chemotherapy clinical practice is cyclically and intermittently (with

recovery intervals of up to week), Martin et al. assumed the drug administered weekly

[77, 78]. The objective is also changed to minimize the tumor at the end of 52 weeks (1

year), without violating toxicity constraints (implicit toxicity limits on drug dose magnitude

and total exposure),by determining the amount of drug to administer each week over a one

year treatment horizon formulated as a an optimal control problem [77, 78]. Control vector

parameterization was used to determine magnitude of the dose given weekly. The solution

developed by Martinet al. suggested withholding treatment for a significant period of time

after an initial dose, which was administered only because of a tumor volume constraint in

the formulation. At the end of the treatment horizon, the algorithm delivered as much drug

as possible without violating the toxicity constraints, would be given up to the total exposure

constraints. This bang-bang treatment schedule at a critical point in the treatment horizon

is a common characteristic of optimal control problems when the objective is to minimize or

maximize states at the end of the horizon. The solution of this problem type is mathematical

optimal but completely ignores clinical practice, where toxicity and efficacy drive treatment
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[90, 91]. It would be unethical for a clinician to withhold treatment for a long period of time

(up to six months, the calculated solution for a ”high efficacy” drug) based on an engineering

algorithm suggestion without any supporting evident.

The final point objective with implicit toxicity constraints formulation posted by Martin

et al. [77, 78] were employed by other works by Costa et al. [71], Swierniak et al. [89],

Ledzewicz and Schättler [86, 87], and Tseet al. [88]. The differences between the later

works and Martin et al. work lay on the modeling of the cancer cell dynamics and the

drug efficacy. Costa et al. divided cancer cells into a susceptible and a drug resistant cell

populations [71]. Swierniak et al. considered the same two cancer cell populations with Costa

et al.[71]. In this case, the drug resistant cells contained a distribution of drug resistances.

A cell-cycle model of cancer tumor growth used in conjunction with cycle specific drugs were

described in Ledzewicz and Schättler [86, 87]. Tse et al. extended the two drug algorithm

[78] to capture the three drug dynamics [88] . Because there are almost no difference in the

objective function formulation and implicit toxicity constraints (maximum drug exposure,

maximum drug amount), the solution of these works gave a similar profile with Martin et

al. dosing profile where drug is given toward the end of the treatment period [77, 78], not

clinically applicable. Nevertheless, these works provided information to be considered in

chemotherapy optimal design like drug resistance, cell cycle specific drug mechanism, and

the generalizable structure of the algorithm.

The balance of efficacy and toxicity in chemotherapy scheduling optimization was con-

sidered by various authors for both theoretical and specific drug/tumor pairs [74, 66, 73, 92,

93, 94, 88, 95, 96, 97, 83] just like in the clinics where toxicity and efficacy drive chemother-

apy schedule. Iliadis and Barbolosi were the first to consider explicit toxicity model in the

chemotherapy [74]. They used one equation to describe white blood cell (WBC) concentra-

tion in plasma. The effect of the drug was captured by the bilinear kill term with a lag before

the effect on the WBC population. The objective was minimized tumor cell population at

the end of the treatment. The lower limit of WBC was used as a toxicity constraint. The so-

lution yielded a several days infusion of etopside while WBC population remain at the lower

limit for several days. The continuous infusion of etopside for several days are not practical

in clinical setting due to a prolonged neutropenia grade 4 toxicity profile. Nevertheless, Il-
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iadis and Barbolosi work is one of the first few considered explicit toxicity constraints. The

inclusion of explicit toxicity constraints provide the chemotherapy schedule solution from

the optimization problem becomes more clinically relevant.

Recognizing chemotherapy treatment end point is unknown in clinical practice, Harrold

et al. [76] and Pefani et al. [80] reformulated the objective of the model based chemotherapy

design to become more practical in clinical settings. Harrold et al. [76] posed the treatment

scheduling problem with an engineering objective and clinically-relevant constraints. Mini-

mization of tumor size every week along the treatment horizon, rather than just tumor size

at the end of treatment, was the objective. Design of treatment was formulated as a receding

horizon control problem [98], thereby allowing the algorithm to update its dosing schedule

at intervals throughout the treatment. The drug considered was 9-nitrocamptothecin (9-

NC), and the disease focus was a preclinical model of subcutaneous HT-29 colon carcinoma

xenografts in severe combined immune deficient (SCID) mice. While the use of a preclin-

ically relevant drug/tumor combination is an advantage, the drug was ultimately killed in

Phase 2 clinical trials making translation to the clinic impossible. The toxicity model forthe

drug was weight loss, modeled as being driven by 9-NC PK, due to the effect of 9-NC on

intestinal mucosa (sloughing results from oral administration, which was used in the mice).

The nonlinear PK model was converted to precalculated dynamic constraints as a result of

not having dose-to-dose accumulation of the agent in the bloodstream. After a mathemat-

ical transformation, the PD model could be made linear; when combined with the linear

toxicity model and the integer-programming constraints imposed by the PK, the resulting

optimization problem was a mixed integer linear program (MILP). The work by Harrold et

al. was able to move engineering approaches to cancer chemotherapy scheduling closer to

clinical deployability in that the dosing decision is posed as the balance between efficacy

and toxicity and the constraints limit 9-NC usage on toxicity and logistical grounds. The

preclinical animal data testing the algorithm showed that the algorithm did well for the first

cycle, but a more accurate toxicity model was needed for it to successfully design therapies

of clinically-relevant duration (most mice were too sick to receive 9-NC doses on day 29, the

first day of cycle 2 of therapy). Overall, the receding horizon formulation of the problem pro-

vides good clinical translatability for the algorithm; its key limitation were in the solution,
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which required specialized transformations to address nonlinearities in PK and PD these

are not generally applicable to arbitrary drug and tumor combinations thereby limiting the

deployability of the algorithm.

Pefani et al. formulated the chemotherapy scheduling problem for acute myeloid leukemia

(AML) using a combination chemotherapy of daunorubicin (DNR) and cytarabine (Ara-C),

a standard drug combination used to treat AML [80]. Both DNR and Ara-C act on two

different cell phases; therefore, a cell-cycle model is utilized to capture the tumor growth and

drug effect dynamics. The PK model is a PBPK model with a bone marrow compartment in

which the drug effects are captured by a sigmoid-Emax model: EmaxC(t)
EC50+C(t)

; Emax is a maximum

drug effectiveness rate, EC50 is the drug concentration at which the effectiveness is at its

half maximum, and C(t) is the drug concentration in the bone marrow compartment. The

objective was the minimization of the number of leukemic cells over the treatment horizon.

Constraints were posed such that the healthy cell population remained higher than the

leukemic cell population at the end of each infusion. DNR is infused for one hour, and Ara-

C is infused continuously for 24 hours are the optimal treatment schedule for their hypothesis

patient dynamics without violating toxicity constraints. The optimal solutions yield better

treatment with a less severe toxicity profile that current clinical practice; however, it is

not clinically practical to implement continuous infusion of Ara-C when the standard of

care in practice is two injections per day. The difference between Pefani et al. solution

in the usage of Ara-C schedule and current clinical usage and the prolong toxicity profile

with no recovery period are the discrepancies between the problem solution and clinical

settings. Nevertheless, Pefani et al. work was able to target combination chemotherapy in

optimal control with clinically relevant drugs and clinically motivated logistical and toxicity

constraints.

Over the past 30 years, the improvement from in model-based chemotherapy in patient

dynamic models (PK, efficacy, toxicity), problem formulation, and the inclusion of clinically

relevant toxicity and logistical constraints has brought the solution of engineering optimal

problem closer to clinical settings. The works in the past 30 years provide stepping stones

for model-based chemotherapy design to be clinical ready and clinician friendly and to aid

with patient dynamics to improve patient outcomes during chemotherapy.
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1.3 THESIS OVERVIEW

Toxicity and efficacy drive chemotherapy treatment decisions, and treatment endpoints are

not easily predicted in cancer chemotherapy. In chemotherapy, treatment is typically given

in cycles, which allows clinicians to evaluate the response of patients and use the information

as feedback to alter treatment accordingly. While the use of generic “drug and “tumor can

provide some insight into engineering solutions for chemotherapy treatment design, such

abstraction severely limits the clinical potential for impact of such work [76]. Therefore,

drug/tumor combinations must be treated independently from a modeling perspective, and

patient-specific parameters may have to be derived when developing treatment schedules.

While a clinically realizable formulation requires specific drug/tumor models for chemother-

apy dosing optimization, a generalizable structure of the optimization problem would reduce

the effort required to develop new algorithms for each drug/tumor pair. Linear models,

though often used, cannot be assumed, and the toxicity effects must be captured specifically

for clinically relevant measurements of the drug and its induced responses. The toxicity

effect models are often nonlinear as well. A further challenge is the decision to dose or not (a

discrete variable), coupled to a dose magnitude (a continuous variable) when drug is admin-

istered. As a result, a generalizable and clinically-relevant chemotherapy dosing optimization

formulation is a mixed-integer nonlinear programming problem (MINLP). Solving the gen-

eralizable MINLP for chemotherapy dosing optimization is formidable, though successful

solution could significantly impact drug development and (pre)clinical practice.

The remaining 4 chapters of this thesis entail the following. Chapter 2 presents a math-

ematical model of the neutrophil signaling cascade to capture its response to inflammation

(an LPS challenge) and chemotherapy (absolute neutrophil count decrease as a result of doc-

etaxel administration). Model reduction techniques and results for both linear and nonlinear

models will be presented with examples of physiologically-based docetaxel pharmacokinetics

and a nonlinear neutrophil-G-CSF model in Chapter 3. Chapter 4 presents the generaliz-

able chemotherapy scheduling problem with docetaxel and its combination with cisplatin

or carboplatin. The results of that include a treatment schedule for optimal tumor elim-

ination without violating clinically-motivated toxicity constraints. The final chapter will
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include perspectives and future research directions in neutrophils modeling to have a better

mathematical representation of patient dynamics and in model-based chemotherapy design

to bring the optimal solution to clinical settings and ultimately improve patient outcomes.
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2.0 MODELING NEUTROPHIL RESPONSE TO AN INFLAMMATORY

CHALLENGE AND CHEMOTHERAPY INDUCED MYELOSUPPRESSION

Understanding neutrophil dynamics through mathematical modeling can help predict the

response to an inflammatory challenge as well as chemotherapy induced myelosuppression.

The mathematical model can help to design timely intervention in the case of sepsis, or

severe toxicity prevention in the case of chemotherapy. While the neutrophil response to an

inflammatory challenge is rather fast, the impact of chemotherapy on neutrophil dynamics

is on a slower timescale. To capture both of these dynamics, the biologically-based model

of neutrophils and G-CSF dynamics is derived from the signaling cascade and available

biological information. The model is calibrated using G-CSF injections, an LPS challenge

and docetaxel induced myelosuppression.

2.1 BIOLOGICALLY-MOTIVATED MODEL OF NEUTROPHIL

DYNAMICS

2.1.1 Friberg el al. Neutrophil Model [1]

Friberg et al. [1] developed a phenomenological model to capture neutrophil dynamics fol-

lowing marrow-toxic chemotherapy. The model was developed to capture patient neutrophils

dynamics during different chemotherapy regimen [1].The model captures absolute neutrophil

count (ANC) by using 5 differential equations and a nonlinear feedback mechanism, which

depends on the ratio of plasma neutrophil concentration to its nominal value, to drive pro-

liferation (see Figure 2, Equations (2.1)-(2.5), and Table 1). The model does not represent
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G-CSF explicitly, though the authors note their feedback structure implicitly incorporates

the effects of G-CSF among other activators [1, 37, 38]. The toxic effect of anticancer drugs

on the progenitor cells is described using a sigmoid Emax model [37], where progenitor cell

elimination is a function of the drug concentration in the bone marrow (
(

k37
k38+D(t)

)
Pr(t), as

seen in Equation (2.6). The model captures neutrophil response data of several marrow-toxic

chemotherapeutics (e.g., paclitaxel, docetaxel, vinfluine) [1]. However, the dynamics of this

(T3)Progenitor
(Pr)

(T1) (T2)

Chemotherapy

Circulating
Neutrophil

Death

Nonlinear feedback

Figure 2: Friberg et al. [1] neutrophil model.

model are too slow to capture the neutrophil response to an inflammatory challenge. Neu-

trophils play an important role in inflammatory cascade [24]. Understanding the neutrophils

dynamics during an infection would help to design an appropriate intervention to control its

dynamics, especially for the case of sepsis, thereby motivating the construction of a unifying

model of neutrophil dynamics applicable to multiple challenges.

dProl

dt
= kprolProl

(
1− Emax

EC50 +D

)(
Circ0
Circ

)γ
− ktrProl (2.1)

dTransit1

dt
= ktrProl − ktrTransit1 (2.2)

dTransit2

dt
= ktrTransit1− ktrTransit2 (2.3)

dTransit3

dt
= ktrTransit2− ktrTransit3 (2.4)

dCirc

dt
= ktrTransit3− kcircCirc (2.5)
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Table 1: Parameter values (P) for the Friberg et al. model [1]

P. Value Unit P. Value Unit

kprol 7.5× 10−4 1
min

Emax 83.9 −

EC50 7.17 µM γ 0.163 −

ktr 7.5× 10−4 1
min

Circ0 5.05× 106 cells/ml

kcirc 7.5× 10−4 1
min

− − −

2.1.2 Maturation Chain Modification

The model developed herein retains the progenitor state, the maturation chain structure, and

the circulating neutrophil pool from [1] (Pr(t), T1(t), T2(t), T3(t), and Nc(t) respectively

in Figure 2) . However, we expand the biology of the feedback regulation to explicitly

incorporate the G-CSF signaling cascade. The production of the progenitor population

becomes a function of G-CSF as shown in Equation (2.6).

dPr(t)

dt
=

(
k41 +

k32GCSF (t)

k33 +GCSF (t)

)
S − ktrPr(t)−

(
k37D(t)

k38 +D(t)

)
Pr(t) (2.6)

Here k41 is the minimal production rate of progenitors when G-CSF concentration is low, k32

is the maximum G-CSF stimulation production rate of progenitors, and k33 is the G-CSF

concentration at which inducible progenitor production is at half its maximum value. The

chemotherapeutic drug toxicity is represented by the last term in Equation (2.6). In this

term, k37 is the maximum toxicity rate corresponding to the Emax term in the Friberg model

[1]. The drug concentration at which the toxicity is at its half maximum effect is k38, and

corresponds to the EC50 term in the Friberg model [1]. The drug plasma concentration is

used as a driven force in the chemotherapeutic toxicity effect because there is no drug bone

marrow concentration measurement available.
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dT1(t)

dt
= ktrPr(t)− ktr

(
1 + 1.5

I1(t)

k36 + I1(t)

)
T1(t) (2.7)

dT2(t)

dt
= ktrT1(t)− ktr

(
1 + 1.5

I1(t)

k36 + I1(t)

)
T2(t) (2.8)

dT3(t)

dt
= ktrT2(t)− ktr

(
1 + 1.5

I1(t)

k36 + I1(t)

)
T3(t) (2.9)

where

ktr = k1

(
1 + k2

GCSF (t)

k4 +GCSF (t)

k3
k3 +D(t)

)
(2.10)

The maturation chain structure is represented in Equations (2.7)- (2.9). In this case, the

transport from one compartment to the next is dictated by the transport rate, ktr, and the

inflammatory response state, I1. The transport rate ktr (Equation (2.10)) includes a minimal

constant, k1, and a saturation function depending on G-CSF concentration with maximum

rate, k2, and half maximum G-CSF concentration, k4. When affected by chemotherapy-

induced myelosuppression, the maturation rate is slowed by the function k3
k3+D(t)

where k3 is

the drug concentration that inhibits the maturation rate by half. The inclusion of G-CSF,

the inflammatory response, and drug toxicity should facilitate the use of the model not only

in the case of chemotherapy-induced neutropenia but also to capture the dynamics of other

challenges such as the immune response to sepsis.

2.1.3 Circulating Neutrophils and the Neutrophil Marginal Pool Model

dNc(t)

dt
= ktrT3(t)− kdNc(t) + 1.5ktr

(
I1(t)

k36 + I1(t)

)
(T1(t) + T2(t) + T3(t))

−ktr
(

1− I1(t)

k36 + I1(t)

)
Nc(t)

+ktr

(
1 + 10

I1(t)

k36 + I1(t)
+ k34

GCSF (t)

k35 +GCSF (t)

)
Np(t) (2.11)

The circulating neutrophils are modeled by Equation (2.11).Here the first term is matura-

tion of neutrophils from the T3 state. The second term is the first order degradation rate of

neutrophils as they undergo apoptosis. The third term in the equation is the recruitment of
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young neutrophils to the circulation during an inflammatory response, induced by inflamma-

tory signal I1(t). The two final terms are rates setting the equilibrium between circulating

neutrophils and the marginal pool. The circulating neutrophil state is used to capture the

absolute neutrophil count in plasma.

A neutrophil marginal pool has been included to capture rapid repletion dynamics for

circulating neutrophil levels. The marginal pool is comparable in size to the circulating

pool, and neutrophils from this pool are available for immediate mobilization in response to

external stimuli (i.e.:infection, trauma) [37, 15, 16, 27]. The marginal pool is modeled using

an equilibrium process, with the equilibrium constant heavily dependent on the external

stimuli. The dynamics of the marginal pool are described in Equation (2.12).

dNp(t)

dt
= ktr

(
1− I1(t)

k36 + I1(t)

)
Nc(t)− ktr

(
1 + 10

I1(t)

k36 + I1(t)

+k34
GCSF (t)

k35 +GCSF (t)

)
Np(t) (2.12)

Here the neutrophil equilibrium between the marginal pool and circulation is modeled by

rate ktr to create an equal amount of neutrophil count in marginal pool and in circulation

[15, 16]. The equilibrium rate shifts from marginal pool to circulation in the presence of

inflammatory signal or an increase in G-CSF concentration. The shift in equilibrium is

modeled by the inhibition of neutrophil transport to the marginal pool and an increase in

neutrophil migration rate from the marginal pool to circulation.

2.1.4 Biological Feedback in Neutrophil Production

G-CSF has been identified as the key stimulating factor that triggers neutrophil production

and maturation [25, 29]. G-CSF production from stromal cells is the end product of an intri-

cate signaling cascade (Figure 3). Neutrophil apoptosis and envelopment by macrophages

is modeled by Equation (2.13):

dNd(t)

dt
=

k5Nc(t)

k8 +Nc(t)

(
1− k6GCSF (t)

k7 +GCSF (t)

)
N(c)− k9Nd(t) (2.13)
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Here Nd(t) represents the amount of neutrophils engulfed by macrophages. The rate of

neutrophil elimination by macrophages is modeled with respect to Nc(t) by a Michaelis-

Menten saturating function with maximum rate k5 and half maximum rate concentration

k8. The rate of neutrophils undergoing apoptosis decreases in the presence of G-CSF [25].

This effect is incorporated into the model by G-CSF inhibiting Nd(t) degradation rate,(
1− k6GCSF (t)

k7+GCSF (t)

)
. The rate of Nd(t) clearance is modeled using first order kinetics, with the

clearance rate k9. Interleukin-23 (IL-23) is secreted by macrophages. When the amount

of circulating neutrophils engulfed by macrophages decreases, the rate of IL-23 released by

macrophages increases [29]. Thus the rate of IL-23 production is modeled as a function of

Nd as shown in Equation (2.14):

dIL23(t)

dt
=

(
k10 −

k11Nd(t)

k7 +Nd(t)

)
− k12IL23(t) (2.14)

In the absence of Nd(t) or neutrophil depletion, IL-23 is produced by a zero order rate, k10.

When neutrophils are being replenished, the amount of Nd(t) increases, which in turn de-

creases the IL-23 production through the function,
(
k11Nd(t)
k7+Nd(t)

)
. IL-23 degradation is modeled

using first order kinetics with rate constant, k12. An increase in the amount of IL-23 acti-

vates T-cells. To capture the saturation effects of IL-23 on the T-cell population, the T-cell

population is represented using two states: the activated state (Ta(t)) and the inactivated

state (Ti(t)).

dTa(t)

dt
=

(
k15 +

k16IL23(t)
2

k217 + IL23(t)2

)
Ti(t)−

k13k
2
14

k214 + Ta(t)2
Ta(t) (2.15)

dTi(t)

dt
=

k13k
2
14

k214 + Ta(t)2
Ta(t)−

(
k15 +

k16IL23(t)
2

k217 + IL23(t)2

)
Ti(t) (2.16)

Equation (2.15) describes the dynamics of the activated T-cells, while Equation (2.16)

shows the dynamics of inactive T-cells. The rate of T-cell conversion from inactive to active

is modeled as basal rate k15 and a second-order Hill function depending on the concentration

of IL-23 present with rate k16 and half maximum constant k17,. T-cell deactivation from

an active to inactive state has the basal rate of k13. When IL-23 concentration increases,

the rate decreases, governed by the second order Hill function with half maximum constant

k14. Activated T-cells secrete IL-17 to increase the stromal cell production of G-CSF. The
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Figure 3: Neutrophil and G-CSF biologically-based model.
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activated T-cells secrete IL-17 as shown in Equation (2.17).Production of IL-17 is modeled as

first order with respect to the number of activated T-cells, with the rate k18. The degradation

of IL-17 is represented using first-order kinetics with the rate constant k19. The increase in

IL-17 triggers the activation of stromal cells, modeled in Equation (2.18).

dIL17(t)

dt
= k18Ta(t)− k19IL17(t) (2.17)

dSc(t)

dt
=

k20IL17(t)

k21 + IL17(t)
IL17(t)−

k22k23
k23 + Sc(t)

Sc(t) (2.18)

Here a Michaelis-Menten function with maximum rate k20 and half maximum constant k21 is

used to model the number of stromal cells being activated by IL-17. Stromal cell deactivation

is also modeled as a saturating function of the number of activated stromal cells, with the half

maximum constant k23 and maximum deactivation rate k22. Activated stromal cells release

G-CSF in order to increase neutrophil production and maturation. The G-CSF dynamics are

modeled as a system of two equations to capture plasma dynamics as well as tissue dynamics

when G-CSF is administered via subcutaneous injection, as shown in Equations (2.19)-(2.20):

dGCSF (t)

dt
=

k24Sc(t)
2

k225 + Sc(t)2
Sc(t)−

(
k26 +

k27Nc(t)

k28 +Nc(t)

)
GCSF (t)

+k29GCSFT
(t)− k30GCSF (t) (2.19)

dGCSFT
(t)

dt
= k30GCSF (t)− k29GCSFT

(t)− k31GCSFT
(t) (2.20)

The production rate for G-CSF is a second order Hill function with maximum rate k24 and

half maximum constant k25, with respect to the number of activated stromal cells. The

degradation rate of G-CSF is the sum of a basal rate k26 and a Michaelis-Menten function

of circulating neutrophil concentration with maximum rate k27 and half maximum constant

k28. The G-CSF in the plasma is at equilibrium with the G-CSF in the tissue with forward

rate k30 and reverse rate k29. The G-CSF in the tissue is also metabolized at the constant

rate k31 (Figure 3).
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2.2 DISRUPTIONS TO CIRCULATING NEUTROPHIL DYNAMICS

Under external stimuli such as infection, endotoxin challenge, and myelosuppression chemother-

apy, the homeostasis of circulating neutrophils is disrupted; thereby, the dynamics of the

signaling cascade are changed. In the endotoxin challenge, the change in the neutrophils dy-

namics are within 24 hours after the induce of challenge [7]. In myelosuppression chemother-

apy, the neutrophil dynamic change is occurred for a long period time (weeks) [1]. Using the

two different dynamic challenges, the biological based neutrophil model will be calibrated

and tested its ability to capture different dynamics.

2.2.1 Lipopolysaccharide (LPS) Challenge

LPS, an inflammatory challenge, has been used in healthy volunteers to activate the neu-

trophil response [7]. The LPS challenge is believed to trigger the inflammation cascade

through the same mechanisms as those activated in sepsis [7]. Three dynamic elements

are added to the model to capture the effects of LPS on the neutrophil response: (i) rapid

mobilization of the neutrophil marginal pool (Equation (2.12) ;(ii) recruitment of immature

neutrophils (T1, T2, T3) to the circulation (Equations (2.7)- (2.9); and (iii) LPS-induced

clearance of neutrophil-LPS complexes (LPS bound to neutrophils)(Equation (2.11). LPS

effects are modeled as two compartments to capture the temporally disparate effects of the

challenge. The first compartment (Equation (2.21) represents circulating LPS after intra-

venous (IV) injection, which drives neutrophil-LPS clearance and neutrophil mobilization

from the marginal pool. The second LPS compartment (Equation (2.22) ) governs the

slower inflammation dynamics that stimulate neutrophil migration from bone marrow. The

clearance of LPS is modeled as first-order, as follows:

dLPS(t)

dt
= −k39LPS(t) (2.21)

dI1(t)

dt
= k39LPS(t)− k40I1(t) (2.22)
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2.2.2 Docetaxel Physiologically Based Pharmacokinetics Model (PBPK)

A PBPK model was developed by Florian et al. [5] with 35 linear differential equations

to represent different tissues in the body. The model not only captures docetaxel plasma

concentration, but also captures tissue concentrations and bound/unbound drug amounts

with intracellular tissue in each tissue compartment. The schematic of the model is shown

in Figure 4 and the model equations and parameters are shown in Appendix A.

Figure 4: Docetaxel PBPK model [5].
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2.3 PARAMETER ESTIMATION

Quality of fit is assessed by the sum of squared residuals between model predictions and

experimental data, as follows:

J(p) =
N∑
i=1

1

σ2
i

(y(i)− ysim(i, p))2 (2.23)

Here, the sum is over the number of data points, N , in the experimental data set y(i). Time-

matched simulation data, ysim(i, p) is used to calibrate the parameters, p, that can be varied

in order to reduce the error between predicted (ysim(i, p)) and actual (y(i)) data. Weighting

of data across time points is accomplished using the residual variance of the data, 1
σ2
i
, at

time points i. Numerically, the residual sum of squares minimization was implemented in

MATLAB ( c©2014, The Mathworks, Natick, MA) using the lsqnonlin function. To mitigate

the impact of finding a local minimum, multi-start optimization using different parameter

vectors was employed to identify a “best fit parameter vector that provided good agreement

between y(i) and ysim(i, p) for each parameter vector-data set pair. Some parameter values

were taken directly from the literature (see Table 2). In order to identify the remaining

model parameters, the following procedure was implemented:

• using steady state levels of neutrophils [26], calculate parameters k5, k8, k9, k10, k12, k13,

k15, k17, k18, k19, k20, k21, k22, k23, k24, k25, k26, and k41

• subcutaneous (SC) G-CSF injection data [6] are used to determine parameters k2, k4,

k6, k7, k27, k28, k29, k30, k31, k34 ,and k35

• docetaxel chemotherapy challenge data [1] are used to calibrate parameters k3, k11, k14,

and k16

• LPS challenge data [7] are fitted by adjusting parameters k36, k39, and k40

Table 2 summarizes the model parameters, including a brief description of each parameter

contribution, the state equation to which the parameter contributes, the value of the param-

eter, and the method by which the parameter value was established (literature or fitted).

Table 3 provides a corresponding summary of the state equations in the model.
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Table 2: Neutrophil model parameters (P). SS fitted:

fitted to steady state data, Dyn. fitted: fitted to dynamic

response data

P Value Unit Description Source

k1 0.0006 pg
ml

Neutrophil maturation rate [1]

k2 14.5511 − Neutrophil production and recruitment Dyn. fitted

k3 2.36× 10−8 pg
ml

Doxetacel concentration at half max rate Dyn. fitted

k4 8000 pg
ml

G-CSF concentration at half max rate Dyn. fitted

k5 0.0016 1
min

Apoptotic neutrophil at half max rate SS fitted

k6 0.25 − G-CSF inhibited neutrophil apoptosis Dyn. fitted

k7 105 pg
ml

G-CSF concentration at half max rate Dyn. fitted

k8 107 cell
min

Neutrophil concentration at half max rate SS fitted

k9 0.0858 1
min

Apoptotic neutrophils clearance SS fitted

k10 0.11843 1
min

IL-23 production SS fitted

k11 0.1184 1
min

IL-23 production inhibition Dyn. fitted

k12 0.0253 1
min

IL-23 degradation SS fitted

k13 0.3603 1
min

T cell deactivation SS fitted

k14 106 cell
min

T cell at half max rate Dyn. fitted

k15 8.48× 10−7 1
min

basal T cell activation SS fitted

k16 24.9738 1
min

T cell activation Dyn. fitted

k17 50000 pg
ml

IL-23 concentration at half max rate SS fitted

k18 0.0062 pg
cell.ml

IL-17 production SS fitted

k19 0.0922 pg
ml

IL-17 degradation SS fitted

k20 0.002 pg
cell.ml

Stromal cell activation SS fitted

k21 5× 104 pg
ml

IL-17 concentration at half max rate SS fitted

k22 0.0188 1
min

Stromal cell deactivation SS fitted

k23 3.2× 104 cell
min

Stromal cell at half max rate Dyn. fitted

k24 0.0085 pg
cell.ml

G-CSF production SS fitted

k25 2.5× 103 cell
min

Stromal cell at half max rate SS fitted
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Table 2 (continue)

k26 0.001 1
min

G-CSF clearance SS fitted

k27 0.0066 1
min

G-CSF clearance by neutrophils Dyn. fitted

k28 107 cell
min

Neutrophil concentration at half max rate Dyn. fitted

k29 0.004 1
min

G-CSF transport from tissue to plasma Dyn. fitted

k30 9× 10−11 1
min

G-CSF transport from plasma to tissue Dyn. fitted

k31 0.00073 1
min

G-CSF tissue clearance Dyn. fitted

k32 0.00159 1
min

Progenitor cell production [49]

k33 6× 104 pg
ml

G-CSF concentration at half max rate [49]

k34 8.4170 − Marginal pool mobilization Dyn. fitted

k35 104 pg
ml

G-CSF concentration at half max rate Dyn. fitted

k36 3.5× 109 pg
ml

neutrophil recruitment by IL-1 Dyn. fitted

k37 77.5 pg
ml

Progenitor elimination [1]

k38 0.0015 pg
ml

drug concentration at half max rate [1]

k39 0.00045 1
min

LPS clearance Dyn. fitted

k40 0.0091 1
min

Inflammation clearance Dyn. fitted

k41 0.000035 1
min

Basal progenitor production SS fitted
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Table 3: Model equations and vorresponding biological states

Equation Number State Biological Meaning

(2.21) LPS Plasma LPS concentration

(2.22) I1 Inflammation dynamics activated by LPS

(2.6) Pr Progenitor population

(2.7) T1 Metamyelocyte population

(2.8) T2 Band population

(2.9) T3 Mature neutrophil population

(2.11) Nc Circulating neutrophil concentration

(2.12) Np Marginal neutrophil pool

(2.13) Nd Apoptotic neutrophils

(2.14) IL-23 IL-23 population

(2.15) Ta Activated T cells by IL-23

(2.16) Ti Inactive T cells

(2.17) IL-17 IL-17 population

(2.18) Sc Active stromal cells

(2.19) GCSF Plasma G-CSF concentration

(2.20) GCSFT Tissue G-CSF concentration

2.4 RESULTS

The overall model of the biologically-motivated neutrophil-G-CSF signaling cascade has 14

differential equations. This model can be used to capture the neutrophil-G-CSF dynamics

during an inflammatory challenge (LPS) and docetaxel chemotherapy induced myelosup-

pression.
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2.4.1 Response to Intravenous and Subcutaneous G-CSF Injections

The effects of G-CSF on neutrophil production and recruitment were studied in healthy

human volunteers (n=16) by administering G-CSF subcutaneously (SC) or IV at doses of

375 µg and 750 µg [6]. Serial blood samples measured plasma neutrophil and G-CSF levels.

Experimental data and simulation results for SC administration are shown in Figure 5. The

model parameters were calibrated against data from the 750 µg SC dose, and the model fit

in terms of both neutrophils and G-CSF was good. The model was then used to predict

the G-CSF and neutrophil concentration profiles following a 375 µg SC dose. Although the

model underpredicted the peak circulating neutrophil concentration, the model successfully

captured the peak G-CSF concentration, as well as the dynamic response of G-CSF and

neutrophils for the 375 µg dose. The ability of the model to be predictive for G-CSF effects on

neutrophil production and recruitment was further evaluated with IV G-CSF administration.

No parameters in the model were changed when simulating IV injections. Experimental

data and simulation results are shown in Figure 6. For the 750 µg injection, the model

overpredicted the average peak neutrophil concentration in the plasma and underpredicted

the neutrophil clearance after peak concentration. However, the main neutrophil dynamics

after G-CSF IV injection were captured by the model. The model also successfully captured

G-CSF concentration after IV administration. For the 375 µg injection, the model predicted

plasma neutrophil and G-CSF concentrations matching the experimental results. Overall,

without additional adjustment in parameters, the effects of IV G-CSF administration on

neutrophil production and recruitment were accurately captured by the model.

2.4.2 LPS Challenge

Neutrophils play an important role in the innate immune response. Understanding the re-

cruitment and production of neutrophils during an infection or other inflammatory challenge

could help in the design of treatments to combat sepsis and other inflammatory infections.

To study human neutrophil dynamics under inflammatory challenge, Suffredini et al. [7]

conducted a study in which endotoxin from Escherichia coli was administered IV (4 ng/kg

of body weight, 6 human subjects) over 1 min. Serial blood samples measured plasma

39



0 20 40 60
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

7

C
o

n
c
e

n
tr

a
ti
o

n
,(

C
e

lls
/m

l)

Time, (Hours)

Neutrophils@Blood

 

 

750 ug
375 ug

Model Fitted
Model Predicted

0 5 10 15 20
0

2

4

6

8

10

12

14
x 10

4

C
o

n
c
e

n
tr

a
ti
o

n
,(

p
g

/m
l)

Time, (Hours)

GCSF@Blood

ba

Figure 5: Published (mean ± std. dev., [6]) data and model fit of neutrophil and G-CSF

concentrations in response to G-CSF SC injections.
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Figure 6: Published (mean ± std. dev., [6]) data and model fit of neutrophil and G-CSF

concentrations in response to G-CSF IV injections.

neutrophils, G-CSF levels, and other inflammation-associated cytokines and chemokines.

Experimental data and simulation results are shown in Figure 7. The observed neutrophil

dynamics are captured well, although the model slightly underpredicts the neutrophil con-

centration at 2 hr, (Figure 7, left). Some discrepancy is also observed between the G-CSF

experimental data and simulation results (Figure 7, right) in terms of peak timing, though

the large error bars from the measurement data – likely a result of interpatient variability –

reduce the confidence in the mean value of the 3 hr time point. Although the large error bars

provide some uncertainty about how well the model is able to capture G-CSF concentration,

the fast response of G-CSF in the LPS challenge (within 3 hours) is successfully predicted

by the model. On the whole, the G-CSF model captures the experimental data.

The simulation results also provide insight into the complicated dynamics of the physio-

logical inflammatory response, especially neutrophil production and recruitment dynamics.

Figure 8 shows simulated LPS levels in the blood as well as the response of different neutrophil

compartments. Although the LPS concentration is almost zero after 3 hours (Figure 8a), the

effects of the LPS challenge on neutrophil production and recruitment continue for more than
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Figure 7: Published (mean ± std. dev., [7]) data and model fit of neutrophil and G-CSF

concentration in response to an LPS challenge.

25 hours (Figure 8b and c). Under the LPS challenge, neutrophils quickly bind LPS lead-

ing to clearance; the resulting inflammation signal leads to the mobilization of neutrophils

from the marginal pool (Figure 8d). The inflammation signal also triggers the recruitment

of neutrophil precursors (T1(t)-T3(t)) to the circulation, which causes a drop from baseline

of 10% (T1(t)), 23% (T2(t)), and 30% (T3(t)) in their respective populations. The drop in

circulating neutrophils leads to an increase in the population of progenitor cells through

the G-CSF signaling cascade (Figure 8b). In response to the LPS challenge, homeostasis in

neutrophil and precursor levels returns after 36 hours.

2.4.3 Docetaxel Chemotherapy

To study the effects of chemotherapy treatment on ANC, Friberg et al. [1] investigated ANC

response to a variety of drugs that induce myelosuppresion; our study focuses on docetaxel.

Pharmacokinetics (PK) are modeled using a physiologically-based PK model (PBPK) pre-
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Figure 8: Dynamics of different neutrophil states and LPS. (a) LPS concentration, (b)

progenitor population (left axis) and circulating neutrophil concentration (right axis), (c)

maturation train population (T1(t), T2(t), and T3(t)), (d) marginal pool population
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Figure 9: Data [1] and model fit of ANC after 1 hr docetaxel infusion at 100 mg/m2.

viously developed in our lab [5]. Predictions of circulating docetaxel concentrations are

identical to those produced by [99, 100], and docetaxel concentration is used to drive the

neutrophil model. The neutrophil model prediction (simulation) is compared to docetaxel

response data from patients receiving 100 mg/m2 docetaxel by 1 hr infusion, as shown in

Figure 9. Our model matches the experimental data, but it does not quite capture the nadir

of ANC at day 8. The simulation results also show that the ANC level returns to baseline

about one month after treatment. Comparing our model with the Friberg et al. model in

response to 100 mg/m2 docetaxel infusion, the Friberg et al. model was able to capture the

nadir ANC but unable to capture the peak ANC. The average absolute error of our model

compared to experimental data is 8% while the Friberg et al. model average absolute error

is 12%. Moreover, our model explicitly includes the G-CSF effects on neutrophil dynam-

ics rather than using the implicit nonlinear feedback observed in the Friberg et al. model

(Figure 2). G-CSF has been used as a rescue agent for low ANC during chemotherapy.

Our model has the ability to represent this effect without changing model parameters, while

the Friberg et al. model would require an adjustment in the model parameters within the

nonlinear feedback mechanism to capture the effect of G-CSF on ANC.
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2.4.4 Docetaxel Schedule Comparison

Docetaxel is approved for administration at 60-100 mg/m2, infused over one hour every

three weeks (triweekly schedule) as either a single agent or in combination [101, 102]. An

alternative schedule uses 30-45 mg/m2 infused over 30 minutes every week for 6 weeks,

followed by two weeks without treatment (the so-called weekly schedule) [103, 104]. These

two schedules exhibit different toxicity profiles while having similar efficacy results [103, 105].

The percentage of patients experiencing grade 3 or 4 neutropenia is much lower on the

weekly treatment (49%) compared to the triweekly schedule treatment (76%) [103, 104]. The

simulated neutrophil and G-CSF profiles for triweekly docetaxel at 100 mg/m2 (2 cycles)

and weekly docetaxel at 33.3 mg/m2 (1 cycle) are shown in Figure 10. The total docetaxel

dose administered for both cases is 200 mg/m2. The simulation results show that the nadir of

neutrophil concentration is greater on the weekly schedule. After an initial nadir (1.5×106)

at day 14, the plasma neutrophil concentration remains above 2×106 cells/ml through week

8 on the weekly schedule, while the neutrophil concentration drops to below 1×106 at both

days 14 and 35 on the triweekly schedule.

2.4.5 G-CSF Rescue in Chemotherapy

G-CSF has been used to stimulate neutrophil production and maturation to mitigate neu-

tropenia resulting from chemotherapy [106, 107]. G-CSF is administered via SC injection

from days 2 to 12 for patients on the triweekly chemotherapy schedule; research has shown

that delivery prior to day 2 or after day 12 does not provide significant benefit [108, 107].

One cycle of docetaxel therapy (100 mg/m2, triweekly schedule) was simulated. Three G-

CSF dose levels: 5, 10, and 15 µg/kg/day, were delivered from days 2 to 12. The simulation

results are shown in Figure 11. G-CSF rescue successfully reduces the depth of the nadir

– a key driver of treatment schedule changes for cancer chemotherapy patients. This effect

appears to be saturable, however, as an increase from 5 to 10 µg/kg/day G-CSF led to a

decrease in nadir depth, while a further increase to 15 µg/kg/day had no additional effect on

nadir mitigation. This is at least partially driven by suppression of endogenous G-CSF pro-

duction in the model; Figure 11 shows how circulating G-CSF increases with administration.
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Figure 10: Neutrophil and G-CSF dynamics with different docetaxel schedules: 100 mg/m2

every three weeks (blue solid) and 33.3 mg/m2 weekly for six weeks (red dashed). Arrows

indicate time of docetaxel administration (triweekly: days 0 and 28; weekly: days 0, 7, 14,

21, 28, 35)
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The decreasing peak height around day 16, however, is evidence of decreased endogenous

G-CSF production by stromal cells – a result of the increased number of circulating neu-

trophils and decreased feedback signal through the feedback cascade in Figure 3. In addition

to the aforementioned saturation in observable effect of G-CSF on circulating neutrophil

concentrations, the simulation results also suggest that higher doses may negatively impact

recovery from chemotherapeutic challenges by suppressing endogenous production.

2.5 DISCUSSION

The neutrophil dynamic model is built from the identified signaling cascade of G-CSF and its

effects on neutrophils. In order to capture the dynamics of the biological system, Michaelis-

Menten and second-order Hill functions were used to represent saturation phenomena, char-

acteristic of sensing and production limitations often encountered in biological systems. The

key difference between these nonlinear functions is the linear initial region observed in the

Michaelis-Menten kinetics versus the lag/switch-type response provided by the Hill function.

The use of these well-understood structures aids biological understanding of the signals and

responses, even though some parameters may be harder to estimate from available data (e.g.,

Michaelis-Menten half-maximum values).

LPS challenge has been used to study the physiological inflammation response, and it is

believed to provide some insight into sepsis response [7, 109]. The model captures neutrophil

response to LPS challenge and the resulting G-CSF signal response. The depletion of im-

mature neutrophils in the bone marrow compartments under inflammatory response, as in

Figure 7, explains the rapid rise of circulating neutrophil levels and the experimental detec-

tion of “young” neutrophils in the blood [110, 111]. Coupling the physiological model with

the neutrophil response to LPS may provide insight into both the migration and damage

caused by activated neutrophils in healthy tissues as well as the systemic response to inflam-

mation and sepsis. It should be noted that the uncertainty in the G-CSF concentrations at

peak response to LPS challenge is significant, and though our model is within the error bars

and approximates the mean data over the dynamic profile well, it does not capture the mean
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value of the peak concentration. The implication is that there are a variety of model struc-

tures or parameter vectors that could capture this individual data set. With a focus on linear

dynamics, we provide a comparatively simple representation that can capture the observed

response. While this may, or may not, capture the mechanistic accuracy of the LPS-induced

G-CSF response, further experiments would be required to elucidate these (in)accuracies.

Neutropenia/myelosuppression is a common chemotherapeutic toxicity. The ANC level

categorizes neutropenia in increasing severities from grade 1 to grade 4 [112]. Simulations of

the PBPK model of docetaxel, and the effect of this drug on neutrophil levels through the

model, demonstrate the differences in toxicity resulting from triweekly and weekly docetaxel

administration. Triweekly docetaxel results in grade 3 neutropenia (nadir between 0.5 to

1.0×106 cells/ml), which is consistent with observed clinical data [104, 103]. In contrast,

the weekly schedule nadir only generates grade 2 neutropenia (nadir <= 2×106 cells/ml),

in agreement with literature [104, 113]. Recovery dynamics also differ, in that ANC is high

on day 21 in response to triweekly docetaxel (so called “rebound”), which would return to

baseline around day 30 if a second dose were not administered on day 21.

The ANC profile after weekly docetaxel administration can be explained by the endoge-

nous G-CSF cascade. Day 0 and day 7 doses of docetaxel cause the neutrophil concentration

to reach its nadir. The G-CSF production dynamics, neutrophil production response, and

neutrophil maturation take 7-10 days from initial challenge [110, 111]. Hence, the innate

recovery system of the body has begun to respond before the second dose, leading to a

mitigated nadir depth; the magnitude of the drop in ANC after the second dose does not

match that of dose 1. The second docetaxel dose also serves to further upregulate G-CSF.

As a result of the increased neutrophil production already in the maturation chain (T1-T3),

docetaxel dose 3 does not cause a drop to the same level as the single triweekly dose, even

though an equivalent amount of docetaxel has been administered. The remaining doses on

the weekly schedule show a small recovery of ANC due to the upregulated neutrophil produc-

tion/maturation (a result of G-CSF signaling), a phenomenon unsustained in the triweekly

schedule where a second grade 3 nadir is observed in cycle 2.

G-CSF rescue has been shown to decrease neutropenia grade [106, 107]. The model shows

the effectiveness of exogenous G-CSF administration, while also indicating doses higher than
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10 ug G-CSF/kg/day may be ineffective at further reducing neutropenia. A possible expla-

nation of this observation is that at sufficiently high doses, the number of available un-

stimulated progenitor cells may become limiting. This explanation could be further studied

and validated experimentally, and this could be a useful tool to optimize G-CSF dosing for

neutropenia reduction. Another observation from the model is the reduction in endogenous

G-CSF production due to exogenous G-CSF administration, as can be seen from the maxi-

mum G-CSF peak around day 16 (decreasing peak magnitude with increasing G-CSF daily

dose). Although increasing dose from 10 µg G-CSF/kg/day to 15 µg /kg/day has no impact

on neutrophil dynamics, this increment in dose causes a reduction in endogenous G-CSF

production and circulating concentration after the final dose. One could imagine a scenario

where this reduction may be detrimental, leading to a testable hypothesis from the model.

Although the model was built on the biological foundation of neutrophils and the G-CSF

signaling cascade, the quality of the model parameters and structure in the feedback cascade

can be debated due to the sparsity in supporting data for these states. However, the feedback

G-CSF cascade is mainly driven by neutrophil apoptosis [114], and this is captured by the

proposed model. Furthermore, the model captures both fast responses (inflammation) and

slow dynamics (myelosuppressive therapeutic), lending credence to the structural choices.

Finally, as more data is collected within the feedback signaling cascade, the physiological

and biological framework can easily be (in)validated and refined.

2.6 SUMMARY

In this chapter, a model of neutrophil dynamics based on the biology of production and

signaling through the G-CSF cascade was developed. The model was calibrated to an in-

flammatory LPS challenge for both neutrophil and G-CSF dynamics. The model was then

tested with a myelosuppressive chemotherapy challenge, and it accurately predicted the much

slower neutrophil dynamics following IV docetaxel administration. Finally, the model was

used to study neutrophil dynamics after different chemotherapy schedules and G-CSF res-

cue during chemotherapy. The simulation results show that the model successfully captures
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literature-reported dynamics for different chemotherapy schedules and for G-CSF rescue.

This model of neutrophil dynamics, including the biologically-derived feedback of G-CSF

on cell proliferation, provides a more detailed view of neutrophil dynamics in response to

multiple disparate challenges. With its ability to capture both slow and fast neutrophil

dynamics, the biologically-motivated model may be useful in studying neutrophil response

and treatment design in a broad range of inflammatory and antineoplastic challenges, in-

cluding sepsis and other myelosuppressive chemotherapy regimens, where neutrophils play a

significant role in limiting treatment (cancer) or response (inflammation/sepsis).
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3.0 LINEAR AND NONLINEAR MODEL REDUCTIONS FOR

BIOLOGICALLY BASED MODELS

3.1 MODEL REDUCTION

Mathematical models, especially pharmacokinetic (PK) models, have been used in clinical

practice to aid physicians in patient treatment [18, 99]. With simpler structures (often two or

three compartments) and fewer parameters than mechanistic or physiological-bases models

[8, 5], PK models are easy to use and able to capture patient drug dynamics [17, 18, 99].

Moreover, with as few as one parameter adjustment, PK models can successfully capture

individual patient drug dynamics. For example, the three compartment model of docetaxel

published in 2001 [99] captures docetaxel dynamics in 200 patients after a drug injection

or infusion by adjusting only docetaxel clearance, which is a function of body surface area,

age, α1-acid glycoprotein, and albumin concentrations. Owing to their simple structures

and ability to capture patient-specific drug dynamics, PK models are widely accepted in the

clinical settings as tools to aid physicians in patient treatment.

However, the use of mathematical models in clinical settings is generally limited to PK

models, despite the fact that mathematical models have been developed to capture the

biological signaling cascades of different diseases [50, 115, 116], drug dynamics [117, 118],

and their interactions [119, 120]. Although these models have successfully represented the

biological information of various diseases and/or drug effects, the complex structure and large

number of parameters make it difficult to tune these models to capture individual patient

response without some guidelines or guidance regarding the impact of making adjustments

to model parameters [116, 118, 120]. The complex model structures with large number of

parameters discourage clinicians to apply these models in clinical settings.
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To expand the use of mathematical models in clinical settings, model complexity needs

to be reduced and key parameters identified so that clinicians will be able to efficiently

implement the models and capture patient dynamics without needing to be an expert in

the underlying model dynamics. In this work, we present a systematic method to reduce

complexity in a biologically-based model, where complexity is measured as state and param-

eter quantity. Through sensitivity analysis and parameter correlation matrices, we utilize

a technique developed by Daun et al. [23] to further reduce the parameter space to a key

parameter set dictating the main model dynamics. Using our previously published model of

the biological signaling cascade of neutrophils and Granulocyte-Colony Stimulating Factor

(G-CSF) [8] as the case study, we reduce the model to a lower-order structure and identify

the primary parameters necessary to capture the main dynamics of neutrophils and G-CSF

in both an inflammatory challenge and in myelosuppression during chemotherapy.

3.2 PHYSIOLOGICAL BASED DOCETAXEL PHARMACOKINETIC

MODEL REDUCTION

Although the docetaxel PBPK model is a linear model, 35 states could create difficulties in

model simulation, if model speed is an issue as well as difficulties in optimization if model

is used as dynamic constraints because number of constraints would scale with number of

time steps in the optimization, which could be large[20, 21]. Therefore, reducing the model

to a simpler structure would increase solution convergence rate and reduce the difficulty in

model simulation and model-based optimization while the model dynamics of interest are

preserved. The PBPK model is reduced by balanced truncation via the square root method

[22] to retain the dynamics of docetaxel concentrations in plasma and in tumor. The general

algorithm for this method can be outlined as the following for state space system (A,B,C,D)

with a desired reduced order k [22]:
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1. Find the single value decomposition (SVD) of the controllability (P) and observability

(Q) grammians:

P = UpΣpV
T
p (3.1)

Q = UqΣqV
T
q (3.2)

2. Find the square root of the grammians (left/right eigenvectors)

Lp = UpΣ
1/2
p (3.3)

Lq = UqΣ
1/2
q (3.4)

3. Find the SVD of the grammian eigenvectors

LTq Lp = UΣV T (3.5)

4. Compute the left (L) and right (R) transformation for final kth order reduced model

SL,BIG = LqU(; , 1 : k)Σ(1 : k, 1 : k)−1/2 (3.6)

SR,BIG = LpV (; , 1 : k)Σ(1 : k, 1 : k)−1/2 (3.7)

5. And then compute the Ar, Br, Cr, Dr matrix for the reduced the model

Ar Br

Cr Dr

=
STL,BIGASR,BIG STL,BIGB

CSR,BIG D
(3.8)

The algorithm is the built-in function balancmr from MATLAB. The detail of the algorithm

and mathematical proof can be found in [22]. The PBPK model of docetaxel is reduced

with plasma concentration as a single output, tumor concentration as a single output, and

plasma and tumor concentrations as two simultaneous outputs. The reduced model error

comparing to the original model is 2 times the sum of Hankel singular values of the truncated

states. The reduced model with both plasma and tumor concentration as the output is also

subjected to different docetaxel challenges to compare it to the original model result.
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3.3 BIOLOGICALLY-BASED NEUTROPHIL MODEL REDUCTION

3.3.1 Parametric Sensitivity Analysis by the Finite Difference Method

The neutrophil-G-CSF signaling cascade is a set of Nx = 14 differential equations with Nx

states and M = 55 parameters (denoted ki). The sensitivity matrix S = (si,j) (dimension

Nx ×M) is calculated using the finite difference method, in which the sensitivity coefficients,

si,j are calculated from the difference of nominal and perturbed solutions by [23, 121]:

si,j(t) =
∂xi(t)

∂kj
=
xi(t, kj + ∆kj)− xi(t, kj)

∆kj
(3.9)

where i ∈ [1, Nx], j ∈ [1,M ]. To facilitate direct comparison of sensitivities between param-

eters having different nominal magnitudes, the sensitivity coefficients si,j are normalized:

si,j(t) =
∂xi(t)

∂kj

kj
xi

(3.10)

The normalized sensitivity matrices at different times t inform the dynamic effects of the

parameters on the model outputs. If the sensitivity value is 1, then the output is highly

sensitive to the parameter. If the sensitivity value is 0, the parameter is not sensitive (e.g.,

the model output does not change if the parameter is changed). The normalized sensitivity

matrices are used to cluster the parameters for model reduction and to reduce the parameter

space.

3.3.2 Parameter Clustering via Sensitivity Analysis

We use the method developed by Chu et al. to compute the angle between the sensitivity

vectors within the sensitivity matrix [20]

cos(γi,j) =
sTi sj
si2 , sj2

(3.11)

where si and sj are sensitivity vectors associated with parameters ki and kj, respectively, and

cos(γi,j) is the cosine of the angle between the sensitivity vectors, which defines a similarity

measure. If the similarity is equal to unity then the effects of the two parameters on the

outputs are perfectly correlated. Parameter clustering via sensitivity analysis consists of the

following steps [20]:
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1. Calculate the sensitivity matrix using Equation (3.9)

2. Parameters that have sensitivity vector values less than 1% are removed from the analysis

as these parameters have negligible effect on the output.

3. The parameters that have a small angle between their sensitivity vectors are grouped

via agglomerative hierarchical clustering based on the similarity measurement given by

Equation (3.11). The similarity measurement provides the proximity of the parameters to

each other. The parameters close to each other (cosine value approximately equals to 1)

are paired into binary clusters. The newly formed clusters are grouped into larger clusters

until a hierarchical tree is formed. The clustering procedure results in a hierarchical tree

represented in a dendrogram.

4. The hierarchical tree threshold is selected to determine the grouping of parameters [20].

Parameters in the same group have highly correlated effects on the outputs (i.e., circu-

lating neutrophil concentration and plasma G-CSF concentration in this case study).

The outcome of this procedure is that the parameters are clustered into distinctive groups

where changes of a parameter in-group can be compensated for by changes of other parame-

ters in the same group. Due to this correlation, it is only possible to estimate one parameter

per group, which serves as an indicator that the model can be simplified without losing accu-

racy. However the correlation results do not provide guidance on how to simplify the model

like in the case of linear model reduction. The information provides by clustering analysis

is used to develop a guidance for nonlinear model reduction as described in Section 3.3.3.

3.3.3 Nonlinear Model Reduction Procedure

Nonlinear model reduction does not have a generalized procedure. In this thesis, we use the

procedure of model reduction based on clustering analysis described by Chuet al. with the

following steps [20]:

1. Only state variables involved in the signaling cascade containing the clustered parameters

are considered for reduction or retention in the reduced model.

2. The components retained in the reduced model are chosen by the following rationale

described by Chu et al. [20]: (a) at least one state is selected for each parameter cluster,
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(b) state variables with the possibility of having experimental measurements should be

retained. This step provides an general structure of the reduced model with dynamics of

interests.

The structure of the reduced model is determined by linking the chosen variables from

different clusters with the equations connecting these clusters or by lumping the reactions in

the same cluster into one equation associated with the representative state variable [20]. It

may be necessary to retain some states other than ones determined by this analysis in order

to satisfy conservation laws [20].

3.4 PARAMETER SPACE REDUCTION VIA IDENTIFIABILITY

ANALYSIS

3.4.1 Identifiability Analysis

A numerical method described by Jacquez and Greif is used to check a priori local identifia-

bility of the parameters at a given time point [122]. Using the nominal values of parameter

vector k, the Nx by M sensitivity matrices, S(ti), are calculated at all time points i at which

measurements of neutrophils and G-CSF have been taken, using equation 3.9. The matrix

G is then constructed by stacking the time dependent sensitivity matrices [23]:

G =



S(t1)

S(t2)

S(t3)
...

S(tn)


(3.12)

The M by M parameter sensitivity-dependent correlation matrix R is calculated as follows:

C = cov(G) = GTQG (3.13)

ri,j =
ci,j√
ci,icj,j

(3.14)
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Here Q is generally a square matrix of weighting coefficients, allowing the weighting of

matrix G depending on additional information available for this particular parameter or

particular time point (e.g., biologically relevant, literature published parameter, available

measurement at specific time). The remaining analyses herein employ Q as the identity

matrix (equal weighting across parameters and time). The sensitivity-dependent correlation

matrix is calculated via normalization of the matrix C with the geometric mean of its diagonal

elements to scale the sensitivity matrix between -1 and +1. Each parameter that is locally

identifiable has a correlation value between -1 and +1 with each of the other parameters.

Parameters that are not locally identifiable have a correlation of exactly -1 or +1 with at least

one other parameter. These parameters influence the model outcome in exactly the opposite

or exactly the same ways, respectively. The parameter sensitivity-dependent correlation

matrix, R is used to reduce the parameter space of the model.

3.4.2 Parameter Space Reduction Procedure

The number of free parameters in the K-reduced model is a K dimensional parameter set θ

that can be reduced using the following iterative process described by Daun et al. [23]:

1. Calculate the sensitivitydependent correlation matrix

2. Identify one highly correlated parameter pair (A,B)

3. If the model outcome is highly sensitive to both parameters, fix neither of them and

restart with step 2. Else, fix to its nominal value the parameter in the pair that the

model outcome is least sensitive to, and go back to step 1

The process continues until no more highly correlated, highly sensitive parameters remain.

The calculations within this process are equivalent to:

1. calculating the sensitivity vectors for each parameter

2. calculating the angle between each pair, and for a pair with a sufficiency small angle

between them,

3. calculating the magnitude of the vectors in the pair.
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3.5 RESULTS

3.5.1 Docetaxel Pharmacokinetic Model Reduction

The docetaxel PBPK model (Section 2.2.2, and Appendix A) was reduced via the balanced

truncation method of Section 3.2. Three reduced forms of the PBPK model, each charac-

terized by its output variables, were generated:

• plasma docetaxel concentration as the only output

• tumor docetaxel concentration as the only output

• both plasma and tumor docetaxel concentrations as outputs

The Hankel singular values and their graphs were used to evaluate the accuracy of the reduced

models with respect to the original model. When the docetaxel plasma concentration is the

only output, the Hankel singular values with respect to the number of states in the truncated

model are shown in Figure 12. Figure 12 suggests that the reduced model requires three

or four states to accurately capture the docetaxel plasma concentration. The error bound

(2
∑

i = 1NTσH(i)) for three states is 2.610−2 while the error bound for four states is 8.410−3.

Since the normalized peak docetaxel concentration in plasma after an infusion is in order

of 1, the three states model is used to capture docetaxel concentration in plasma. The

current model used in the clinical setting to capture docetaxel pharmacokinetics has three

compartments [99]. Our reduction shows that when only plasma dynamics are considered,

the PBPK model can be reduced to a three state model that can capture the same dynamics

as Bruno et al. [99].

The PBPK model is further evaluated under the same reduction technique when tumor

tissue concentration is the only output. The Hankel singular values versus number of states

in the truncated model are shown in Figure 13.

When tumor concentration is the only output of the model, Figure 13 suggests that a

three or four state model can be used to accurately retain the dynamics of the drug inside

the tumor. The error bound for the three state model is 7.2610−2 while the error bound

for the four state model is 6.8e10−3. Peak normalized docetaxel tumor concentration after
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Figure 12: Hankel singular value versus number of states in the truncated model for docetaxel

plasma concentration as output.
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Figure 13: Hankel singular value versus number of states for docetaxel tumor concentration

as output
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Figure 14: Hankel singular value versus number of states for docetaxel plasma and tumor

concentrations as outputs
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an infusion is in order of 1;therefore, the four states model is used to capture docetaxel

concentration in tumor.

In the clinical setting, the drug plasma concentration is often the only available mea-

surement. To evaluate drug efficacy, tumor concentration should be more informative, and

therefore would need to be retained in the reduced model. In the models constructed in this

dissertation, the plasma concentration drives toxicity while the tumor concentration drives

drug efficacy. Therefore, the plasma and tumor concentrations are preserved as outputs for

our reduced PK model. The Hankel singular values with respect to the number of states in

the truncated model are shown in the Figure 14 for the case where both outputs need to be

accurately captured upon reduction.

The Hankel singular values show that in order for the dynamics of the reduced model

to accurately represent the plasma and tumor concentrations, the number of states in the

reduced model should be between 3 and 5. The error bounds for 3,4, and 5 states are

0.23, 4.9010−2, and 2.6010−2 respectively. Thus, 4 or 5 states would be able to capture

the dynamics of interests. However, when the 4 states model is used, the docetaxel tumor

concentration does not capture the peak concentration of the PBPK model, thus we use the

five states model to capture both docetaxel concentrations in plasma and tumor. The final

state space reduced model equations are shown in Equations (3.15) and (3.16)
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ẋ = Ax+Bu (3.15)

y = Cx (3.16)

A =



−1.258× 10−4 −1.258× 10−4 5.422× 10−4 −1.825× 10−5 −1.147× 10−5

3.651× 10−4 −1.133× 10−3 −3.706× 10−4 2.44× 10−3 1.631× 10−3

−8.15× 10−4 4.922× 10−3 −1.027× 10−2 −7.773× 10−3 −5.653× 10−3

−4.65× 10−4 2.67× 10−3 1.128× 10−2 −3.372× 10−2 −3.837× 10−2

−2.971× 10−4 1.775× 10−3 −7.655× 10−3 −3.837× 10−2 −0.1122



B =



0.1104

−6.455× 10−2

0.135

0.07957

0.05083


C =

 3.1975× 10−4 −1.529× 10−3 2.332× 10−3 1.984× 10−3 −1.267× 10−3

7.672× 10−5 −1.529× 10−3 −6.8348× 10−5 −4.0005× 10−6 2.7321× 10−6


The original model and the reduced model with two outputs (reduced PBPK model)

were tested by challenging each with docetaxel infusions on two schedules, as follows:

• 100 mg/m2, one hour infusion every three weeks

• 35 mg/m2 thirty minute infusion three weeks on, one week off (or six weeks on two weeks

off)

The simulated plasma and/or tumor concentrations for the original and reduced models are

shown in Figures 15 and Figure 16, respectively. The reduced PBPK model and the PBPK

model results for two different docetaxel infusions show that the reduced model retains

the key dynamics of docetaxel for plasma and tumor concentrations. The sum of squared

residuals between the original model and the reduced model are 3.1310−6 µM2 and 9.2610−9

µM2 for docetaxel concentration in plasma and docetaxel concentration in tumor for a 100

mg/m2 IV infusion, respectively. For a 35 mg/m2 IV infusion, the sum square of the residuals

between the original model and the reduced model are 2.1210−6µM2 and 2.30 10−10 µM2
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Figure 15: Docetaxel plasma concentration (top left) and tumor concentration (top right)

for the original PBPK model (solid line, blue) and the reduced PBPK model (dashed line,

red) for 100 mg/m2 1 hour docetaxel IV infusion; docetaxel plasma concentration normalized

with respect to maximum docetaxel plasma concentration (middle left) and docetaxel tumor

concentration normalized with respect to maximum docetaxel tumor concentration (middle

right). Also plotted are the residuals between the original model and the reduced model

for plasma concentration (bottom left) and tumor concentration (bottom right). Note that

x-axis spans differ by a factor of 5 between the plasma and tumor profiles.
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Figure 16: Docetaxel plasma concentration (top left) and tumor concentration (top right)

for the original PBPK model (solid line, blue) and the reduced PBPK model (dashed line,

red) for 35 mg/m2 30 minutes docetaxel IV infusion; docetaxel plasma concentration normal-

ized with respect to maximum docetaxel plasma concentration (middle left) and docetaxel

tumor concentration normalized with respect to maximum docetaxel tumor concentration

(middle right) Y-axis values are scaled to the peak plasma or tumor concentration, respec-

tively, achieved after 100 mg/m2 IV infusion. Also plotted are the residuals between the

original model and the reduced model for plasma concentration (bottom left) and tumor

concentration (bottom right).
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for docetaxel concentration in plasma and docetaxel concentration in tumor, respectively.

,With the high level of dynamic agreement between the original model and reduced PBPK

model, all further docetaxel PK simulations and optimizations herein use the reduced model.

3.5.2 Neutrophil Model Reduction

The clustering method via sensitivity analysis (section 3.3.2) for the G-CSF production (from

Nc to G-CSF, as seen in Figure 3) yields a 20 parameter dendrogram, as seen in Figure 17.

Using a cosine similarity cutoff of 0.9 yields two parameter clusters. The two parameter
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Figure 17: Dendrogram of 20 Parameter Clustering for G-CSF Production

clusters are related to the measurable states of Interleukin-17 (IL-17) [123] and Interleukin-

23 (IL-23) [124], suggesting that two states can be used to capture the feedback mechanism

of G-CSF production.

The original neutrophil-G-CSF model assumed the transit rates between compartments

in the neutrophil maturation chain had the same value and mathematical representation

[8]. To reduce the model further, we assume the transit rates in the maturation chain are

independent of each other. The clustering method of parameters, revealed one cluster of
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maturation chain parameters. One cluster reveals that the maturation chain can be reduced

into one state. The final reduced neutrophil-G-CSF model is presented in Figure 18. Stem

cells produce progenitors that mature into the neutrophil precursor population. Neutrophil

precursor matures into circulating neutrophils, which are released to the vascular space.

Decreasing circulating neutrophil counts cause IL-23 production to increase. An increase in

IL-23 leads to IL-17 secretion. Increases in IL-17 cause more G-CSF to be produced. Thus,

the production of progenitors and neutrophil precursors increases due to the increase in G-

CSF concentration. The neutrophil and G-CSF dynamics are modeled by a set of states and

ordinary differential equations as outlined below.

• Stem cells (S): Originating in the bone marrow niche, hematopoietic stem cells mature

into progenitors in the presence of G-CSF [125, 126]. Stem cells in this model are assumed

to be a constant population of cells that can differentiate into the progenitor population.

The rate of differentiation from stem cells to progenitors is controlled by the G-CSF

concentration.

• Progenitor (Pr(t)): progenitor is the population representing the first differentiated

state of stem cells toward mature neutrophils [127]. The progenitor population is pro-

duced from stem cells, and the production rate is controlled by G-CSF concentration at

the basal rate k1 when G-CSF concentration is low, and at rate k2 when G-CSF concen-

tration is high. The maturation rate of the progenitor toward neutrophil precursors is

also affected by the amount of G-CSF present [128].

dPr(t)

dt
=

(
k1 +

k2GCSF (t)

k3 +GCSF (t)

)
S − ktrPr(t) (3.17)

where:

ktr = k21

(
1.0 +

k22GCSF (t)

k23 +GCSF (t)

)
(3.18)

Here the basal maturation rate is k21, and the increase in maturation rate is modeled using

Michaelis-Menten kinetics with respect to G-CSF concentration having the maximum

rate k22 and half maximum constant k23.
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Figure 18: Reduced model of neutrophil-G-CSF signaling cascade
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• Neutrophil Precursors (Npr(t)): The Npr(t) state represents the population of pre-

mature neutrophils residing in the bone marrow [126, 127]. The maturation of precursors

to circulating neutrophils depends on G-CSF concentration [128]. The maturation rates

of Pr(t) to Npr(t) and Npr(t) to circulating neutrophils are modeled as a function of

G-CSF:

dNpr(t)

dt
= ktrPr(t)−

ktr
3
Npr(t) (3.19)

Here the rate of progenitors maturing to neutrophil precursors is ktr, and the rate of

neutrophil precursors migrating to the circulation is ktr
3

.

• Marginal pool (Npm(t)): This is the portion of mature neutrophils residing within

the body (non-circulating) that can immediately mobilize in response to external stimuli

[129, 16]. The neutrophil marginal pool is comparable in size to the circulating pool

[129, 16]. The marginal pool is modeled in equilibrium with the circulating neutrophils

at rate ktr, where the equilibrium parameters depend on G-CSF concentration modeled

by using Michaelis-Menten kinetics having the maximum rate k4 and half maximum

constant k5.

dNpm(t)

dt
= ktrVPlasmaNc(t)− ktr

(
1.0 +

k4GCSF (t)

k5 +GCSF (t)

)
Npm(t) (3.20)

• Circulating Neutrophils (Nc(t)): The dynamics of circulating plasma neutrophils

are captured by the state Nc(t), which comes from the progenitor population. Nc(t) is

modeled in equilibrium with the Npm(t) state. Under external stimuli like trauma or

infection, circulating neutrophils are recruited towards the site of the stimuli, an effect

included in the model [129]. Circulating neutrophil degradation is modeled using first-

order kinetics to maintain neutrophil homeostasis, where the degradation rate decreases

with increasing G-CSF concentration (along a Michaelis-Menten kinetic)[130].

dNc(t)

dt
= −ktrNc(t) +

ktr
Vplasma

(
1.0 +

k4GCSF (t)

k5 +GCSF (t)

)
Np(t)

+
ktr

3Vplasma
Npr(t)− kdNc(t) (3.21)

where:
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kd = k24

(
1.0− k25GCSF (t)

k26 +GCSF (t)

)
(3.22)

• Interleukin-23 (IL23(t)): IL-23 is produced by macrophage when the concentration

of circulating neutrophils decreases below its normal level [124, 131]. IL-23 production

is modeled as zero order production, k9, with a second order Hill function inhibiting

the effect of circulating neutrophils on IL-23 production with half maximum constant

k10. When circulating neutrophil concentration is high, IL-23 production is low. The

degradation of IL-23 is modeled using first order kinetics with rate constant, k11.

dIL23(t)

dt
= k9

(
1.0− Nc(t)

2

k210 +Nc(t)2

)
− k11IL23(t) (3.23)

• Interleukin-17 (IL17(t)): IL-17 is produced by activated T-cells in the presence of IL-

23 [123, 132] . The production rate of IL-17 is modeled as a Hill function to capture the

saturation of the production rate at high IL-23 concentration with rate constant k12 and

half maximum constant k13. The high order (4) of this term furthermore provides the

fast response of IL-17 production to increased IL-23. However, IL-17 production is still

small when IL-23 levels remain low. The degradation of IL-17 is also modeled as a Hill

function with rate constant k14 and half maximum constant k15. The rationale is that

the clearance of IL-17 becomes zero order with excessive IL-17 to create in the saturating

clearance effect observed in biological systems[133]:

dIL17(t)

dt
=

k12IL23(t)
4

k413 + IL23(t)4
− k14IL17(t)

1.5

k1.515 + IL17(t)1.5
(3.24)

• G-CSF (GCSF (t)): G-CSF is produced by stromal cells in the presence of IL-17 [134,

133]. The GCSF (t) in this model represents G-CSF concentration in the plasma. The G-

CSF production rate is modeled as a second order Hill function in response to stimulation

by IL-17, with rate constant k6 and half maximum constant k7 .The G-CSF clearance

rate is modeled as first order with respect to G-CSF plasma concentration at rate k8. The

secondary clearance of G-CSF is driven by neutrophils. When the circulating neutrophil

concentration is high, the clearance of G-CSF increases following a Michaelis-Menten

function of circulating neutrophils with rate constant k16 and half maximum constant
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k17. The circulating G-CSF is in dynamic equilibrium with G-CSF in tissue (GCSFt(t))

with forward rate constant k19 and reverse rate constant k18 to capture G-CSF dynamics

after subcutaneous G-CSF administration [8].

dGCSF (t)

dt
=

k6IL17(t)
2

k27 + IL17(t)2
IL17(t)−

(
k8 +

k16Nc(t)

k17 +Nc(t)

)
GCSF (t)

+k18GCSFt(t)− k19GCSF (t) (3.25)

• G-CSF tissue (GCSFt(t)): The G-CSF tissue state is in dynamic equilibrium with

circulating G-CSF. The clearance of G-CSF in the tissue is modeled using first order

kinetics with rate constant k20 to capture tissue clearance [8]:

dGCSFt(t)

dt
= k19GCSF (t)− k18GCSFt(t)− k20GCSFt(t) (3.26)

The reduced neutrophil model consists of 8 states and 26 parameters. A 43% state reduction

and 54% parameter reduction is achieved via parameter clustering (section 3.3.2). The IL-23

and IL-17 states are retained as possible measurable states for further analysis if experimental

measurements of those species become available. The reduced neutrophil model structure

is used to capture the dynamics of neutrophils and G-CSF in LPS challenge and docetaxel

chemotherapy.

3.5.3 Parameter Space Reduction

Although the reduced model contains 54% fewer parameters than the original model, it is

still complex and difficult to fit all 26 remaining parameters. Among these parameters, some

are less sensitive than others, and the majority of parameters are highly correlated with each

other. As a result, sensitivity (Section (3.3.1)) and correlation analysis (Section (3.4.1)) are

used to further decrease the parameter set to a small space for use in fitting patient-specific

dynamics.

Examples of parameter sensitivity with respect to the plasma neutrophil concentration

and plasma G-CSF concentration at day 4, 8, 12, 16, 21, and 30 after docetaxel infusion are

shown in Figure (19). Most of the sensitive parameters are located between parameter k9
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Figure 19: Normalized sensitivity of circulating neutrophils (Circ. N.) and G-CSF outputs

at select time points versus parameters .

and parameter k15, while the remaining parameters are generally less sensitive. Therefore, it

is possible to remove the non-sensitive parameters from the parameter identification space.

The 27×27 correlation matrix of the parameters is shown in Figure 20. With at least

15 non-sensitive parameters and a correlated parameter matrix, the identifiability analysis

described in Section (3.4.1) is used to reduce the parameter space of the model. The iterative

process of removing one parameter at a time results in a 6×6 parameter correlation matrix
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Figure 20: Parameter correlation matrix of all parameters in the reduced model

with the 6 most sensitive parameters associated with both the LPS challenge and docetaxel

chemotherapy (Figure 21) where k29 and k37 are parameters associated with LPS challenge

(Equation (2.22)) and docetaxel toxicity (Equation (2.11)), respectively. The roles of

the six most sensitive parameters are examined in the context of neutrophil and G-CSF

responses. 5 are consistent across challenges. Neutrophil and G-CSF dynamics are impacted

by parameters k9, k10, and k11, which are associated with IL-23 production and clearance

(Equation (3.23)). Although these three parameters are highly correlated with each other

(Figure 21), it is not possible to remove them from the parameter space due to their high sen-

sitivity with respect to plasma neutrophil concentration and plasma G-CSF concentration.

Parameters k14 and k15 (Figure 21) are associated with IL-17 clearance (Equation (3.24)).

These two parameters are also highly correlated with each other; however, due to their sen-

sitivity, the two parameters have to remain in the parameter space to capture neutrophil
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Figure 21: Parameter correlation matrix of 6 most sensitive parameters in the reduced model
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Figure 22: Neutrophil and G-CSF dynamics in response to 4 ng/kg LPS challenge. Nominal

parameter value: solid line; ±50% variation of non-sensitive parameters: shaded area
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Figure 23: Neutrophil and G-CSF dynamics in response to 100 mg/m2 docetaxel chemother-

apy. Nominal parameter value: solid line; ±50% variation of non-sensitive parameters:

shaded area
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Figure 24: Neutrophil and G-CSF dynamics in response to 4 ng/kg LPS challenge. Nominal

parameter value: solid line; ±50% variation in sensitive parameters: shaded area
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Figure 25: Neutrophil and G-CSF dynamics in response to 100 mg/m2 docetaxel chemother-

apy. Nominal parameter value: solid line; ±50% variation of sensitive parameters: shaded

area
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and G-CSF dynamics. The “sixth parameter is actually a challenge-dependent parameter

pair, with clearance from the inflammation driven state (k29) in the LPS challenge (Equa-

tion (2.22)) or the toxicity parameter (k37) of docetaxel chemotherapy impacting neutrophil

and G-CSF response for their respective challenges.

To verify that only non-sensitive parameters were removed, the 20 non-sensitive param-

eters were varied by ±50% from their nominal values. Changes were “directional, in that

parameters were adjusted individually to maximize the increase or decrease in neutrophil

counts and G-CSF concentrations observed. The simulation results of the varied parameters

and the nominal values for 4ng/kg LPS challenges and 100 mg/m2 of docetaxel chemotherapy

are shown in Figure 22 and Figure 23, respectively.

The resulting comparison shows that the maximum difference in circulating neutrophil

concentration between the nominal parameter set and the varied parameter set for LPS

challenge is 30% and for docetaxel chemotherapy is 90%. The maximum difference in plasma

G-CSF concentration between the nominal value parameter set and the varied parameter

set is 15% for the LPS challenge and 180% for the docetaxel chemotherapy. Although 20

parameters from the model are varied 50% from their nominal values causing differences

between the simulation results for the two parameter sets, these differences are much smaller

than when sensitive parameters are varied. For example, a simultaneous 50% change in three

sensitive parameters (k29 (LPS) or k37(docetaxel), k11, and k14) yields a maximum change of

300% and 800% in neutrophil concentration for LPS challenge and docetaxel chemotherapy,

respectively (Figures 24 and 25).

For G-CSF concentration, the results show a 120% and 500% maximum difference for

LPS challenge and docetaxel chemotherapy, respectively. Hence, a small number of sensitive

parameters can be effectively varied to capture individual patient dynamics using the reduced

neutrophil model, rather than requiring the simultaneous estimation of 26 parameters a

significant benefit in terms of computational cost and uniqueness of parameter estimation.
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3.5.4 Model Parameter Estimation

As a result of the state and parameter reduction, re-calibration of the reduced neutrophil

model parameters is required. In order to avoid estimating an entirely new parameter set,

the following parameters from the original model are retained: k1-k8 and k16-k26 (result from

sensitivity analysis, Figure 19. Parameters k9-k15, associated with one point of reduction in

the model, are calibrated with two different dynamic studies: inflammatory response to LPS

challenge and myelosuppression resulting from docetaxel chemotherapy, using the method

described in Section 2.3.

LPS Challenge: the LPS challenge uses endotoxin infusion to trigger the bodys in-

flammatory response and generates a similar response to that seen in sepsis. The study by

Suffrendini et al, consisted of a 4ng/kg injection of E. coli endotoxin in six human volunteers

[7]. The experiment measured the response of neutrophils and different cytokines at various

time points. The reduced neutrophil model is used in combination with the LPS challenge

(Section (2.2.1)) to capture the neutrophil response in the human body. The experimental

and simulation results of the original model and reduced model are shown in Figure (26).

Right after the endotoxin injection, the plasma neutrophil concentration drops rapidly

for the first 2 hours before beginning to increase and overshoot its nominal value at 7-

10 hours. Plasma neutrophils finally return to homeostatic levels around 24 hours. The

reduced neutrophil model is able to capture the early response (0-5 hours after challenge)

better than the original model due to the removal of some of the states representing G-CSF

production. The fast G-CSF response in the reduced model helps accelerate the recruitment

of neutrophil precursors. After 5 hours, the performance of the two models vis-a-vis the

data are comparable. However, the G-CSF response of the reduced model is faster than

the data and the original model simulation in the first 2 hours after the challenge. The

fast G-CSF response of the reduced model compared to the data and the original model

is due to the removal of the intermediate states, which provide lag dynamics in the G-CSF

response. However, the 2 hour dynamical difference does not impact or change the circulating

neutrophil dynamics as seen in Figure 26. As the result of the 2 hour dynamical difference,

the reduced neutrophil model is able to capture the maximum G-CSF concentration better,
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Figure 26: Published data (mean ± std. dev., [7]) and model fit of neutrophil and G-CSF

concentrations in response to the LPS challenge. Original model (solid line)[8], reduced

neutrophil model (dashed line)

Figure 26. The sum of squared error of the original model and the sum of squared error

of the reduced neutrophil model with respect to G-CSF concentration data are 6.20×105

pg2/ml2 and 4.44×105 pg2/ml2, respectively Nevertheless, with the removal of 43% of states

and 54% of parameters, the reduced model is able to capture the key dynamics of neutrophils

and G-CSF in response to the LPS challenge in a similar manner to the original model with

less complexity.

Docetaxel Chemotherapy: Experimental data from a 1 hour infusion of 100 mg/m2

docetaxel [1] are used to evaluate the myelosuppressive effects of docetaxel on the model

during chemotherapy. The reduced model, coupled with the reduced PBPK model (Equa-

tions (3.15)- (3.16)) is used to capture the neutrophil data. The experimental and simulation

results of the original and reduced models are shown in Figure 27.
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Figure 27: Data [1] (circles) and model fit of absolute neutrophil count after 1 hr docetaxel

infusion at 100 mg/m2. Original model (solid line), reduced model (dash line).

The reduced model follows the experimental data for the first 7 days. The original model

contains many nonlinearities in its equations that cause the dip in circulating neutrophil dy-

namics observed around day 6. However, this phenomenon is not observed in the reduced

neutrophil model because the nonlinear dynamics generating the dip were removed during

model reduction. The model over-predicts the nadir neutrophil concentration (underpredict-

ing the nadir magnitude) at day 9 and slowly reaches nadir concentration at day 14, similar

to the original model. The models both capture the experimental data from day 14 to the

end of the experiment. The difference in simulation results between the original model and

the reduced model is pronounced after day 21. While the original model neutrophil count

decreases rapidly and causes undershoot of the steady state neutrophil count, the reduced

model neutrophil count slowly decreases toward its steady state value. Additional patient

data beyond day 21, ideally in the absence of another docetaxel dose, would be required

to (in)validate one of the model predictions/structures. Nevertheless, both models display

similar dynamics from the beginning of chemotherapy to day 21, where the last data point is
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available. G-CSF results from both models showed very similar dynamics and magnitude of

G-CSF concentration, though no experimental data was available for comparison. To within

the resolution of the data, the reduced model is able to capture experimental neutrophil

dynamics after 1 hour infusion of 100 mg/m2 of docetaxel. The final parameter set (Table 4)

provides the reduced model the ability to capture the fast (LPS) and slow (docetaxel) re-

sponse dynamics. Through the rigorous reduction of model states and parameters (43% and

54% respectively), the reduced model retains the key dynamics of the original model and

maintains consistency with the experimental data. Given its simpler structure and a fewer

number of parameters with key parameters identified, the model is used to implement into

the model-based algorithm for chemotherapy scheduling optimization.

Table 4: Parameter values for the reduced model

Parameter Value Unit Parameter Value Unit

k1 3.14× 10−4 1
min

k2 3.377× 10−3 1
min

k3 1850 pg
ml

k4 8.4170 −

k5 1.0× 105 pg
ml

k6 8.35× 10−4 1
min

k7 2.33× 104 pg
ml

k8 9.7× 10−4 1
min

k9 3.56× 106 pg
ml.min

k10 1.18× 106 cells
ml

k11 179.3 1
min

k12 437.0 pg
ml.min

k13 2689 pg
ml

k14 395 pg
ml.min

k15 3.22× 104 pg
ml

k16 0.0066 1
min

k17 1.0× 107 cells
ml

k18 0.004 1
min

k19 9× 10−11 1
min

k20 7.24× 10−4 1
min

k21 5.9× 10−3 1
min

k22 31.1862 −

k23 1.52× 103 pg
ml

k24 0.00155 1
ml

k25 0.2481 − k26 30900 pg
ml

S 1.5× 109 cells − − −
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3.5.5 Parameter Adjustment Suggestions to Capture Patient Specific Neutrophil

and G-CSF Dynamics

Capturing patient neutrophil and G-CSF dynamics during treatment in the case of chemother-

apy or during an inflammatory response such as sepsis would help clinicians make more

informed treatment decisions resulting in better patient outcome. Our reduced neutrophil

model has the ability to capture the patient neutrophil and G-CSF dynamics by varying 6

parameters (k29 or k37, k9, k10, k11, k14, and k15). However, it is unnecessary to vary all 6

parameters since most of them are highly correlated with each other. Guidelines are provided

to adjust parameters so that the model can capture the neutrophil response of an individual

patient based on our experience with the model and its dynamic response:

1. Use the toxicity parameter, in the case of chemotherapy (k37), or the inflammatory pa-

rameter (k29), in the case of inflammation, as the primary parameter to capture the

response. These parameters control how fast the neutrophil model will respond to chal-

lenges (e.g., provide the downward slope and nadir neutrophil count). If the model is

able to capture the patient dynamics then stop. If not, proceed to Step 2.

2. Vary parameters described in Step 1 simultaneously with parameters k11 and k14 to adjust

the model dynamics to capture the change in patient neutrophil and G-CSF dynamics.

These two parameters control the rate of neutrophil rebound and the peak of neutrophil

count after challenges, providing additional dynamic response distal to the particular

challenge.

3. If the fits are still not sufficiently accurate, parameter k9 should be simultaneously es-

timated along with the parameters from the previous step that are appropriate to the

challenge. In this case, k9 will help to increase the rate of progenitor production through

IL-23 and keeps this rate at elevated level to enhance the neutrophil rebound rate and

the peak neutrophil count when varying k37 or k29 with k11 and k12 does not capture the

dynamics of interest.
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3.6 DISCUSSION

Mathematical modeling of biological systems provides great insight information about dis-

eases, treatments, and patient dynamics [5, 8, 50]; however, due to their complexity, these

models have not been widely used in model-based controls or model-based decision support

systems. In this chapter, we provided a systematic approach to reduce a complex model to

a simpler structure for both linear and nonlinear models using examples of a physiological

based pharmacokinetic (PBPK) model of docetaxel and a biologically-based neutrophil-G-

CSF model.

The PBPK model of docetaxel is a linear model capturing the docetaxel concentrations

and dynamics in different organs after an IV drug dose. For a specific drug, concentrations

and dynamics in certain organs are of concern due to toxicity or where tumors reside. Re-

taining the dynamics of interests without including all of the model equations would help

to implement the model in model-based control or model-based decision support systems.

For the case of docetaxel, the drug concentrations in plasma and inside the tumor are the

key dynamics of the drug. While plasma concentration drives the toxicity profile of the drug

(no bone marrow concentration measurement), the tumor concentration dictates the drug

efficacy. Therefore, model reduction was applied to the PBPK model to decrease the number

of equations and the computational complexity of the model while retaining the dynamics of

plasma and tumor concentrations. The balanced truncation technique was applied to the 35

state PBPK model, yielding a 5 state linear model that conserves the dynamics of docetaxel

in plasma and tumor. When plasma concentration is the only output of interest, the PBPK

model can be reduced to a three states model. When tumor concentration is the only state

of interest, The PBPK model can be reduced to four states.

While linear model reduction has been widely applied in engineering, there is not an

existing generalized method for model reduction in nonlinear systems. Thus, reducing non-

linear models is not straightforward and requires the understanding of dynamic systems in

general, as well as characteristics of the particular system under study. Sensitivity analysis

was used to examine the parameters in the model and how they impact the model outputs.

In our neutrophil-GCSF model, we are interested in circulating neutrophil concentration and
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G-CSF concentration as outputs. The sensitive parameters were identified, and the states

associated with those parameters are preserved during the model reduction. Using the clus-

tering and reduction method developed by Chu et al.[20] suggests the possible number of

states for the reduced neutrophil model is 5. Although model reduction through parameter

sensitivity analysis and parameter clustering may suggest using fewer states, it may be diffi-

cult to achieve a full reduction to this number of states due to the potential loss of dynamics

if too few of the states are preserved. Thus, for the neutrophil-GCSF model, we took a piece-

wise approach to nonlinear model reduction and were able to reduce the number of model

states by 43%, and the number of parameters by 54%. The final reduced model contains 8

equations and 26 parameters without sacrificing its ability to capture neutrophil and G-CSF

dynamics after an inflammatory challenge or docetaxel chemotherapy treatment.

Sensitivity analysis identifies the 6 key sensitive parameters in the reduced neutrophil

model to be estimated to capture experimental data, Section 3.5.3. A key challenge in

employing biologically-based models is the ability to quantitate the parameters of the model,

some of which may be poorly informed by the data. Furthermore, when refining the model to

match a specific data set, biologically-motivated models often have multiple parameters that

can achieve an improvement in fit, leading to the possibility of overfitting. Parameter space

reduction can identify the key parameters that establish the dynamics of the system. In

our example (Section 3.3), the reduced neutrophil model was subjected to parameter space

reduction where key parameters dictating the main dynamics of the neutrophil response in

both chemotherapy and inflammatory challenge are retained. From 26 parameters, 6 key

parameters in the reduced model were identified via sensitivity analysis. The results show

that varying the 6 sensitive parameters changed the simulation outputs three-fold more than

varying the 20 non-sensitive parameters for both challenges. These results provide guidance

in which parameters to adjust in order to capture individual patient responses, in that the

model dynamics can be adjusted by varying only the sensitive parameters.
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3.7 SUMMARY

Although we are not able to reduce the number of key parameters to 1 or 2, the 6 most

sensitive parameters are identified to capture data instead of varying 26 parameters total.

Moreover, from our experience with the model, we provide guidelines for efficiently tuning

the model to fit individual patient data. With systematic model reduction methods and

key parameters identified, the model is more readily applicable to the clinical setting for

monitoring patient toxicity response to chemotherapy, for example. Furthermore, the sim-

plified structure of these mathematical models can be effectively used to aid clinicians with

treatment decisions to improve patient outcome through implementation in a model-based

decision support system, as we shall see in Chapter 4.
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4.0 AN ALGORITHM FOR CLINICALLY-RELEVANT SOLID TUMOR

CHEMOTHERAPY SCHEDULING

4.1 INTRODUCTION

Chemotherapy scheduling optimization problems have been posed and solved, primarily by

engineers and mathematicians, with the goal of aiding clinicians in designing dose magnitudes

and administration schedules that provide better patient outcomes in terms of tumor kill

under toxicity constraints. The translation of these model-based algorithms to the clinic has

generally not occurred to date due to some inconsistencies between the algorithm solutions

and clinical chemotherapy treatment practice:

1. Treatment schedules: Algorithm solutions often administer drug continuously for a long

period of time (more than 8 hours), while clinicians administer drug at higher rates over

a shorter infusion period (30 minutes to a few hours) followed by a longer intervals for

recovery.

2. Drug mechanism: Algorithms often calculate solutions based on administration of a

general (nonspecific) “drug, which has the ability to kill tumor cells based on plasma

concentration. In practice, chemotherapeutic agents are specific and their effect on dif-

ferent tumor cell types varies widely. Furthermore, the tumor concentration of drug is

often lower the plasma concentration [5], due to diffusion or transport limitations for

the particular drug, and the dynamics of drugs in tumor and plasma may occur over

different timescales as a result [5]. Therefore, successful translation to clinical practice

requires the use of models that are quantitatively accurate for the drug and tumor type

employed, and how different drugs targeted different cell types when drug combination is
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used; general solutions using nonspecific drugs and tumors can only provide a qualitative

understanding of the interactions between the drug and tumor model types with the

solution algorithm.

3. Toxicity measurements and constraints: Algorithm developers often pose adverse effects

of chemotherapy either as implicit constraints on drug dose, administration rate, or

interval (maximum drug concentration, maximum drug exposure) or as non-specific lim-

itations (number of normal cells or healthy cells must be greater than a value). Toxicity

measurements in clinical settings are explicit and drug specific (ANC, creatinine level,

maximum tolerated dose, etc.). As was previously observed above, the use of a simple

generalized equation and/or constraint to capture toxicity limits for the patient during

chemotherapy is a clear departure from clinical practice where toxicities are measurable

outcomes that limit treatment.

A few research teams have addressed this gap between engineering/mathematical theory

and clinical practice by incorporating explicit detail of tumor type and treatment into their

algorithms [76, 80]. A preclinical study by Harrold and Parker incorporated explicit drug

and tumor information with clinically-relevant logistical constraints and a preclinical toxicity

measure (body weight) to provide dosing recommendations for 9-nitrocamptothecin to SCID

mice bearing human HT29 colon carcinoma xenografts [76]. While the algorithm returned a

dosing regimen that was effective and in line with clinical practice, the toxicity model was

insufficient to capture the side-effects of the algorithm-derived therapy, and the drug was

killed in Phase 2 clinical trials.

Pefani et al. [80] developed an algorithm for treating acute myeloid leukemia (AML)

using a combination chemotherapy of daunorubicin (DNR) and cytarabine (Ara-C), a stan-

dard drug combination used to treat AML [135]. While quite clinically-relevant, the AML

study also uses implicit toxicity constraints that do not fully capture the measurable toxic-

ity response to treatment. As patient toxicity is the main limit on aggressive therapy, the

discrepancies between the models and practical settings are the primary hurdle to overcome

in implementing a model-based decision support system to aid clinicians in chemotherapy

schedule design.
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A balance between drug efficacy and drug toxicity drives chemotherapy decision-making

in the clinical setting. The goal of this chapter is to develop a clinically ready and generaliz-

able treatment scheduling algorithm to design patient-specific chemotherapy schedules using

both docetaxel as a mono-agent and in combination with cisplatin or carboplatin.

4.2 DOCETAXEL

Docetaxel, sold under the brand name TaxotereTM produced by Sanofi had sales of $556

million in 2013 [136]. Docetaxel is produced by esterifying 10-deacetyl baccatin III, which

is extracted from the leaves of the European yew tree [101]. Docetaxel is an anti-mitotic

chemotherapeutic drug that interferes with cell division by binding to tubulin in the M-

phase of cell growth [101]. Breast, ovarian, and prostate cancers are treated with docetaxel

as a mono-agent [101, 105], and it is combined with platinum-based chemotherapy (e.g.,

cisplatin) or cisplatin and 5-fluorouracil (5-FU) to treat non-small-cell lung cancer [137] and

head-and-neck cancer [39], respectively.

Table 5: Myelosuppression toxicity grade corresponding to absolute neutrophil count (ANC)

[2].

Neutropenia Grade ANC, ×106 Cells/ml

0 (No Toxicity) ANC ≥ 2.0

1 1.5≤ ANC < 2.0

2 1.0 ≤ ANC < 1.5

3 0.5 ≤ ANC < 1.0

4 ANC < 0.5

One of the main side effects of docetaxel is myelosuppression. Docetaxels interference in

cell division does not just disrupt cancer cells; it also impacts the neutrophil progenitors in

the bone marrow. Neutrophils are the main component of the white blood cell population

and are part of the innate immune response. Low absolute neutrophil count (ANC) can
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cause immune system breakdown and make the patient unable to fight off even low-level

pathogenic infections. Toxicity, as measured by ANC, is categorized into different neutrope-

nia levels as shown in Table 5. During docetaxel chemotherapy treatment, clinicians often

try to eliminate tumor at without causing severe toxicity in patients. Despite these efforts,

some patients exhibit grade 4 neutropenia because different patients have different efficacy

and toxicity responses to treatment. In other words, patients that are highly sensitive to do-

cetaxel chemotherapy could experience grade 4 neutropenia. When the ANC measurement

shows grade 4 neutropenia, the chemotherapy is stopped and/or G-CSF is administered to

bring patient ANC to 2.0 ×106 cells/ml before the next docetaxel dose can be administered.

Given the explicit primary toxicity of ANC for docetaxel, and the neutrophil model devel-

oped in Chapter 2, the remainder of this chapter addresses the synthesis of a chemotherapy

scheduling optimization problem for minimizing tumor size via docetaxel administration

under clinically-relevant constraints.

4.3 OPTIMIZATION PROBLEM FORMULATION

4.3.1 Objective Function

A common objective function in optimization-based problem formulations for chemotherapy

scheduling is minimizing the number of tumor cells at the end of the treatment [77, 80].

However, in actual clinical practice, the final treatment time in chemotherapy is not set

a priori. Efficacy of chemotherapy is evaluated along the course of the treatment, and

adjustments are made to maximize efficacy while mitigating toxicity until the patient is,

ideally, clinically cleared of cancer.

Harrold and Parker [76] were the first to pose a cancer treatment objective in a receding

horizon control form that minimized tumor volume along the treatment trajectory rather

than minimizing the tumor volume at the end point alone. Using this approach, we posed

the objective function of the chemotherapy optimization problem as shown in Equation 4.1:

min
Dd(q)

Nw∑
w=1

Γ(w)(Nd(w)) + Γu

mq∑
q=1

Dd(q)
2 (4.1)
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The objective is to minimize the tumor volume, Nd(w,Dd(q)), every week, w, for Nw weeks;

in the calculations below a horizon of Nw = 24 weeks was used. The weighting term Γ(w)

to design the drug administered early in the cycle; hence, eliminate the end point effect

observed in Martin et al. solution [77, 78] . For this work, Γw =1 for all w in Nw. The input

Dd(q) is the amount of drug delivered at time q to achieve the minimal objective function

value. Weeks, w, are the times that tumor size is evaluated (days 0, 7, 14, . . .), while q is

the time that drug is delivered (days 0, 1, 2, . . .). The second term, weighted by Γu, is a

penalty term that minimizes the utilization of small doses, which have little or no impact

on tumor elimination [76]. Equation 4.1 is the main objective function for both docetaxel as

a single agent treatment and when it is used in combination with other chemotherapeutics.

The objective is posed and solved in a receding horizon control formulation, where the model

in the algorithm has the ability to update its parameters to better match patient dynamics

when data (e.g., efficacy, ANC, etc.) becomes available.

4.3.2 Dynamic Constraints

Patient dynamics constrain the optimization algorithm used to design patient-specific chemother-

apy schedules. To capture patient dynamics during chemotherapy, models of drug pharma-

cokinetics, drug pharmacodynamic efficacy (PD efficacy), and drug pharmacodynamic toxi-

city (PD toxicity) are developed. A schematic of the interactions between these key patient

dynamics is shown in Figure 28. In our patient model, the pharmacokinetic (PK) model

describes the drug concentration in a patient ofer time after drug administration. The PK

model is utilized as the driving mechanism for the PD efficacy and PD toxicity models as

seen in Figure 28. The PD efficacy model describes the cancer tumor growth process and

the chemotherapeutic-driven tumor elimination and/or inhibited growth. The PD toxicity

describes how chemotherapeutic agents induce toxic responses in the patient. In the patient

model structure, the assumptions made are: i) the cancer tumor and the patient toxicity

do not alter the drug clearance (i.e., pharmacodynamics do not impact pharmacokinetics);

ii) there is no interaction between cancer tumor growth and toxicity; iii) when two or more

chemotherapeutic agents are used, the pharmacokinetic models of drugs do not interact
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Figure 28: Schematic of models presenting patient dynamics in chemotherapy

(i.e., the drugs used in combination do not have overlapping clearance mechanisms, meaning

that the PK of a drug does not alter the concentration-vs-time profiles of any other drug(s)

administered)

PK and PD models are often constructed using continuous-time ordinary differential

equations, but the optimization in Equation (4.1) is computed in discrete time steps. The

continuous-time differential equations in the models are therefore discretized using orthogo-

nal collocation on finite elements [138] into:

xi(k + 1) = F (x(k), D(k)) (4.2)

Objective : (4.1) (4.3)

s.t. : PK, PD efficacy, and PD toxicity models

clinically-motivated logistical constraints

where xi(k + 1), i ∈ N , is the state xi at time k + 1, and it is updated as a function of

states x and drug D at time k. These dynamic constraints are utilized in the optimization

problem to represent the patient dynamics during chemotherapy. The resulting generalized
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cancer chemotherapy scheduling problem can be formulated as Problem 4.3. Mathematically

posing and solving this problem requires explicit definition of the models, and their related

constraints. This is the topic of the remainder of this chapter.

4.4 TUMOR GROWTH MODELS

4.4.1 Self-Seeding Tumor Growth Model

Small tumors (e.g. those with a volume less than 1 mm3) grow exponentially. As tumor

size increases, the growth rate decreases due to a lack of space, increase in pressure (due to

tumor expanding into existing tissue space), and nutrient deprivation because of irregular

vasculature development inside the tumor. Norton et al. introduced a Gompertzian model

(Equation (4.4)), which was able to capture the progression of tumor size in breast cancer

patients and has since been widely used to describe tumor growth [139]. In Equation (4.4),

τg =1.0×10−3h−1 is the doubling time during experimental growth, ρg =1012 cells is the

plateau cancerous cell population, No =1.0×1010 cells is initial cancerous cell population

, and Ng(t) is tumor cell population at time t [139]. The Gompertzian model captures

exponential growth of tumor at short times and growth rate slows to zero as tumor volume

reach a maximum carrying capacity above the tumor volume generally accepted to result

in the death of a patient (1L, or 1012 cells) [139]. An alternative model, also proposed

by Norton et al., hypothesized the concept of cancer self-seeding and used this concept to

explain the dynamics of tumor growth and metastasis. In this hypothesis, the tumor size is

described as a fractal geometry where the tumor mass increases due to an imbalance in two

power-law processes. This new tumor growth model is as follows [140]:

dNg(t)

dt
= frac1τgln

[
(ln(ρg/No)

ρg/2No

]
Ngln

[ r
h
og/Ng(t)

]
(4.4)

dN(t)

dt
= kgrowthN(t)a/c − kdeathN(t)b/c (4.5)

N(t) is the number of cancer cells, kgrowth and kdeath are tumor growth and death rates,

respectively, and a, b, and c are constants satisfying 3 ≥ b ≥ c > a ≥ 2 (proliferation
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occurs in a mass region having lower fractal dimension than the region where apoptosis

occurs) [140]. The values for a/c and b/c deployed in our model are 0.9026 and 1.1079

respectively. The values for kgrowth and kdeath are 4.30×10−5 cells0.974/min and 1.4583×10−7

cells−0.1079/min. This power law tumor growth equation displays the same dynamics of tumor

growth represented by the Gompertzian model. Since there is no logarithmic function in the

power law model, it is easier to implement numerically, and the power law model is used to

capture the tumor dynamics in our single agent chemotherapy scheduling optimization.

4.4.2 Saturating Rate Cell-Cycle Model

Biologically motivated cell-cycle models provide greater insight into cell growth by capturing

the individual phases of growth [85]. The standard cell cycle has five total phases, as shown

in Figure 29; however, experimental techniques without extensive and destructive evaluation

(cells broken down to evaluate for RNAs [5]) prevent unique quantification of quiescence

(G0) and growth (G1) phases, in addition to the mitotic preparation (G2) and mitosis (M)

phases. These models are often exponential in structure, however, and the linear equa-

tions fail to capture the saturating tumor growth dynamics observed clinically. Recognizing

the difficulties in uniquely quantifying each cell phase population, but wanting to keep the

saturating growth rate behavior observed clinically, Florian et al. developed a three state

saturating-rate cell cycle model to capture the growth of cancer cells in different phases of

the cell cycle (Equations (4.6)- (4.9), Table 6) [5].

dXG(t)

dt
= −kGSXG(t)ln

(
θ

N(t)

)
+ 2kMGXM(t)

(
θ

N(t)

)
(4.6)

dXS(t)

dt
= −kSMXS(t) + kGSXG(t)

(
θ

N(t)

)
(4.7)

dXM(t)

dt
= −kMGXM(t)

(
θ

N(t)

)
+ kSMXS(t) (4.8)

N(t) = XG(t) +XS(t) +XM(t) (4.9)

Thus, in the model, G(t) represents the quiescence and growth phases, S(t) represents

the DNA synthesis phase, and M(t) represents the mitotic preparation and mitosis phases.

As in the Gompertzian tumor growth model, the cell-cycle model contains a saturation effect

that provides slower tumor growth as the size of the tumor increases.
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Table 6: Modified cell-cycle model parameters.

Parameters Value Units Parameters Value Units

kGS 1.30×10−3 1/hr kMG 1.69× 10−2 1/hr

kSM 3.90×10−2 1/hr θ 1.00×1012 cells

4.4.3 Modified Cell-Cycle Model with Self Seeding Hypothesis

Using the same power law hypothesis as in the tumor growth model of Equation (4.5), the

saturating-rate cell-cycle model is modified to a similar structure as the power law model.

The modified cell-cycle model is shown in Equations (4.10)-(4.13).

dXG(t)

dt
= −kGSXG(t)a/c + 2kMGXM(t) (4.10)

dXS(t)

dt
= −kSMXS(t) + kGSXG(t)a/c (4.11)

dXM(t)

dt
= −kMGXM(t) + kSMXS(t)− kdeathN(t)b/c (4.12)

N(t) = XG(t) +XS(t) +XM(t) (4.13)

In the modified cell-cycle model, Xi(t) (i ∈ {G,S,M})) corresponds to the number of cells (or

equivalently volume using 1012 cells = 1 L) in G (growth), S (DNA synthesis), or M (mitosis)

phases, kj (j ∈ {GS, SM,MG}) are the interphase transfer rate constants for each phase,

and a/c and b/c are the fractal constants associated with growth rate and apoptosis rate.

While it is rigorously correct to replace every transfer term between compartments in the

saturating cell-cycle model [5] with the fractal growth and death terms, additional analysis

of the model structure (i.e., sensitivity analysis) demonstrated that the fractal growth term

transitioning cells from the G to S states controls the overall dynamics of cell-cycle growth.

Therefore, we only incorporate the fractal growth term in the transition between G and S

phase (Equations (4.10) and (4.11). Moreover, the apoptosis rate is only included in the M

phase dynamics (Equation (4.12)) as a function of the total cancer cell population, rather

than the M phase fraction. The parameters for the modified cell-cycle model are shown in

Table 7
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Figure 29: The five phases of cell cycle. Lumped G (G0 + G1) and M (G2 + M) compart-

ments capture the easily resolvable cell cycle phases, forming a lower-order cell cycle model.

4.5 DOCETAXEL AS SINGLE AGENT CHEMOTHERAPY

4.5.1 Docetaxel PD Efficacy Model

Docetaxel is an M-phase active antitumor agent, when tumor growth is represented as cell

cycle specific. Alternatively, lumped tumor approximations (total number of cells) can be

used to describe cancer cell growth and death in aggregate. Under single chemotherapy

treatment, the tumor growth model in Equation (4.5) becomes:

dN(t)

dt
= kgrowthN(t)a/c − kdeathN(t)b/c − keffD(t)N(t) (4.14)

Here keff is the tumor cell elimination rate constant and D(t) is the drug concentration

inside the tumor described in Section 3.2. The bilinear kill term, keffD(t)N(t), depends on

drug concentration as well as the number of cancerous cells and captures the effect of a drug

on cancer cell growth during single agent chemotherapy in vitro [76, 78]. It is assumed that

this functionality scales to the in vivo scenario, though there exist alternate formulations,

with solid biological justification, for in vivo cell kill by chemotherapeutics [141, 142]. In
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Table 7: Modified cell-cycle model parameters.

Parameters Value Units Parameters Value Units

kGS 4.4139×10−5 cells0.974/min kMG 1.4× 10−3 min−1

kSM 5.8681×10−4 min−1 kdeath 7.583×10−8 cells−0.1079/min

a/c 0.9026 - b/c 1.1079 -

the absence of a generally accepted mathematical structure for drug-induced cell death,

the bilinear kill relationship is employed herein for both single agent chemotherapy and

combination chemotherapy.

4.5.2 Docetaxel Neutropenic Toxicity Model

When docetaxel is used as a single agent, the drug concentration in the plasma (Section 3.2)

affects the progenitor population (Equation (3.17)) through a dynamic lag, Equation (4.15).

Here, state Cbi(t)(i: docetaxel) represents the effect of the drug on bone marrow dynamics,

as driven by transport from the plasma compartment, Cpi(t) at the rate kvbmi
(Section 3.2).

The effect state is degraded follow the inhibition Michaelis-Menten kinetics with the half

maximum constant, k40 and the maximum degradation rate constant kbmvi . Progenitor cells

are killed by drug in Cbi(t) following sigmoid-Emax kinetics with a maximum rate Emaxi and

half maximum constant EC50i , the parameter values are shown in Table 8.

dCbi(t)

dt
= kvbmi

Cpi(t)− kbmvi
(

1.0− Cbi(t)

k40i + Cbi(t)

)
Cbi(t) (4.15)

dPr(t)

dt
=

(
k1 +

k2GCSF (t)

k3 +GCSF (t)

)
S − ktrPr(t)−

EmaxiCbi(t)

EC50i + Cbi(t)
Pr(t) (4.16)

99



Table 8: Docetaxel (D) neutropenia model parameters

Parameters Value Unit Parameters Value Unit

kvbmD
0.3017 min−1 kbmvD 0.0802 min−1

k40D 0.0005 µM EmaxD 0.0130 min−1

EC50D 0.7873 µM - - -

4.5.3 Docetaxel Chemotherapy Optimization Problem

4.5.3.1 Toxicity Constraints: The limiting factor in chemotherapy dosing is the clinically-

observed toxicity of the administered drugs. When the toxicity profile is too severe, the

chemotherapy schedule is interrupted or delayed until patient health improves (i.e., toxicity

measures return to within acceptable limits). To prevent patients from experiencing severe

toxicity-induced side-effects, toxicity constraints are considered in the optimization problem.

When docetaxel is administered, ANC is used as the primary toxicity measurement. In

a clinical setting, a blood sample is drawn and analyzed prior to the patient receiving their

next treatment dose. If ANC is within acceptable limits, drug is administered. Otherwise,

the chemotherapy schedule is delayed until the ANC of the patient reaches a safe level.

Equation (4.17) stipulates that a patient not suffer a grade 3 toxicity:

Nc(k) ≥ 1× 106 cells/ml (4.17)

7+q∑
q

Nc(q) ≥ 10.5× 106 cells/ml ∀q ∈ 1, 2..., 21 (4.18)

Nc(q) +Nc(q + 8) ≥ 3.0× 106 cells/ml ∀q ∈ 1, 2..., 21 (4.19)

Here Nc(k) is the ANC count at time step k through the discretization of the continuous-

time model (Equation (4.2), Section 4.3.2). The discrepancy between discrete-time and
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continuous-time model could cause the optimization solution violating the toxicity con-

straints when using the continuous-time model. To resolve this discrepancy between the

two models, the time step k has to be predetermined to ensure the simulation results be-

tween the discrete-time model and the continuous-time model are the same. To avoid a

treatment schedule that maintains a low ANC throughout the treatment, a further toxicity

constraint is imposed such that the ANC measurements 7 days apart must always have 1

that is better than grade 2 (i.e., the patient cannot spend a full week suffering from a grade

2 or more severe ANC toxicity) as shown in Equations (4.18)- (4.19).

In Equation (4.18), sum of ANC over seven days must be greater than or equal to

the sum of 7 times the ANC upper limit for grade 2 toxicity (1.5×106 cells/ml). This

constraint is applied over every 7-day window in the therapeutic optimization problem.

Equation (4.19) ensure the ANC measurements 7 days apart must have 1 better than

grade 2. Equations (4.17)- (4.19) are used in combination with the neutropenia model of

Equations (3.18)-(3.26) and Equations (4.15)-(4.16) to constrain the optimization problem

away from treatments that would induce acute severe, or longer-duration depressed, ANC.

4.5.3.2 Logistical Constraints: Logistical constraints are incorporated into the current

formulation to ensure the clinical applicability of the algorithm and improve the patient

treatment outcome. Drug infusion rate is held constant over the duration of a one-hour

infusion. The number of doses delivered, or the number of patient visits, per week is fixed

at one to limit patient hospital visits (implicitly improving patient quality of life). To

alleviate the burden on clinicians and hospitals, treatments are only administered during

business hours, Monday-Friday (8 AM-5 PM). The binary variable bd(k) is introduced to

denote when the drug is delivered at time step k, with delivery indicated by bd(k) = 1, and

bd(k) = 0 denoting no drug administration on a given day. The sum of bd over seven days

must be less than or equal to 1 as shown in Equation 4.20:

168∑
k=1

bd(24 ∗ k + 1) ≤ 1 (4.20)

This constraint is repeated for every week in the treatment scheduling problem. The total

amount of drug that can be administered is different for docetaxel, cisplatin, and carboplatin.
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For docetaxel, the maximum recommended amount of drug that can be intravenously deliv-

ered per three week period is 105 mg/m2 [103, 101]. The drug dose recommendation is used

as the upper bound on the amount of drug that can be administered in every 3 weeks period

by the algorithm:

21∑
q=1

Dd(q) ≤ 105 mg/m2 (4.21)

Here Dj(k) is the amount of drug j infused on day k. These logistical constraints are coupled

with the dynamic and toxicity constraints in the chemotherapy scheduling problem for single

agent docetaxel.

4.5.3.3 Scheduling Problem for Single-Agent Docetaxel: The problem formula-

tion for scheduling single-agent docetaxel chemotherapy is as follows:

Objective : (4.1) (4.22)

s.t. : PK: (3.15)− (3.16)

PD Efficacy: (4.14)

PD Toxicity: (3.18)− (3.26), (4.15)− (4.16)

Toxicity Constraints: (4.17)− (4.19)

Logistics: (4.20), and (4.21)

The objective in Problem 4.22 is the minimization of tumor volume along a treatment horizon

of 24 weeks with penalties for small drug dose usage. Problem 4.22 contains 408,000 variables

and 408,200 constraints respectively.

G-CSF is often used as a rescue agent when the patient experiences grade 4 neutropenia.

Allowing G-CSF usage for ten consecutive days during a 21 day docetaxel chemotherapy cycle

(consistent with clinical practice), we examined the impact of allowing G-CSF administration

on optimal docetaxel administration schedules. The G-CSF usage constraint can be added

to Problem 4.22 as follows:
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10∑
k=1

bg(k) = 10 (4.23)

In Equation (4.23), the binary variable, bg(k) is 1 when G-CSF is used, and 0 when no

G-CSF is administered. The sum of the number of G-CSF doses is set to be equal to 10 for 10

consecutive days over each 21 days docetaxel cycle. When G-CSF is used, the optimization

Problem 4.22 becomes:

Objective : (4.1) (4.24)

s.t. : PK: (3.15)− (3.16)

PD Efficacy: (4.14)

PD Toxicity: (3.18)− (3.26), (4.15)− (4.16)

Toxicity Constraints: (4.17)− (4.19)

Logistics: (4.20), (4.21), and (4.23)

4.5.4 Solution Methodology

The chemotherapy scheduling Problems (4.22) and (4.24) are formulated as mixed integer

nonlinear programming (MINLP) problems with a large number of variables and constraints

(up 585,000 variables and 850,000 constraints). MINLPs cannot be guaranteed to return

an optimal solution, and they are often difficult to solve for even local optima when the

number of variables and constraints are large (convergence is not guaranteed) [21, 143, 144].

To overcome these challenges, we repose the problem into an enumeration step addressing

the binary variable problem followed by a continuous nonlinear programming problem. A

two-step optimization is used to solve these problems:

1. Enumeration: the possible combinations of the binary variables in the logistical con-

straints, coupled with an integer variable grid of possible dose magnitudes (5 mg/m2

increment), are examined to determine the best time (days) to infuse the drug such that

the objective function would be minimized given the grid of dose magnitudes (large dose
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step size). The enumeration step is deployed in the C++ programming language with an

explicit Euler method as our ordinary differential equation integrator (Equation (4.25)):

x(k + h) = x(k) + h ∗ dx(f(x(k), D(k))) (4.25)

Here the state x(k + h) at time step k + h is updated by summing the state at previous

time step k and a product of step h and the state derivative at time k, dx(k), the time

step used in this integrator is 1 (h=1 min). The result of the enumeration step is a

chemotherapy schedule with an estimate dose magnitude at each infusion that yields

desirable objective function value

2. Dynamic optimization: The solution from the enumeration step is then used as the

initialization for the dynamic optimization where the exact dose magnitudes (0.1 mg/m2

precision) are determined for the optimal treatment schedule. The dynamic optimization

is modeled and solved in Pyomo (https://software.sandia.gov/trac/coopr/wiki/Pyomo).

Pyomo is a Python based modeling language that is part of the Coopr package developed

by the Sandia National Lab [145]. The discretization method used for the dynamic

optimization is orthogonal collocation on finite elements [138]:

x(k + 1,m) = x(k, ncp) + h

ncp∑
i=1

(a(i,m)dx(k + 1, i)) (4.26)

a =


0.1968 0.3944 0.3764

−0.0655 0.2921 0.5125

0.0238 −0.0415 0.1111

 (4.27)

Here the state x at finite element, k+1, and collocation point, m is calculated based on the

value of x at element k and the last last collocation point, ncp, following Equation (4.26).

The finite element step size is defined at h, a is a ncp × ncp parameters matrix, and

dx(f(x(k + 1, i), D(k + 1))) is the derivative of state x at finite element k + 1. In our

optimization problem, h=60 minutes step size, the number of collocation points ncp=3,

and parameter values for a are shown in Equation (4.27). Ipopt (https://projects.coin-

or.org/Ipopt) is used as the nonlinear program solver. The solution of the two-step

optimization is a set of drug infusion schedules that minimizes tumor size without causing

severe patient toxicity.
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4.5.5 Results

4.5.5.1 Clinical Standard of Practice Schedules vs. the Algorithm Optimal

Schedule The treatment schedule for nominal problem dynamics with single-agent doc-

etaxel chemotherapy, as posed in Equation (4.22) contains 408,000 variables and 408,200

constraints respectively. The optimization algorithm takes 40 minutes to find an optimal

treatment schedule. The result is compared to clinically-administered docetaxel schedules,

as seen in Figure 30. Two clinically-standard docetaxel schedules are considered in the com-

parison: 100 mg/m2 every 3 weeks (q3w) and 35 mg/m2 every week for 3 weeks followed by 1

week off (qw 3 of 4). Under the q3w schedule, the nominal patient is predicted to experience

grade 3 neutropenia during every cycle of treatment (Figure 30b). Dosing qw 3 of 4, the

nominal patient only experiences grade 2 neutropenia. The optimal treatment for the nomi-

nal patient, as generated by solution of Problem (4.22), administered 3 doses on days 1, 11,

and 15 of a 21-day period with doses of 57 mg/m2, 25 mg/m2, and 23 mg/m2, respectively

(Figure 30a). Under the optimal treatment schedule, this patient only experiences grade 2

neutropenia, which is the same toxicity grade as the qw 3 of 4 schedule.

The drug efficacy results for the three schedules are shown in Figure 30d. For the 100

mg/m2 q3w schedule, the tumor size is reduced to the detection limit, which is 105 cells

(horizontal dashed line), in 64 days, while for the 35 mg/m2 qw 3 of 4 schedule, the tumor

size reaches the detection limit after 96 days of treatment. The optimal solution is able to

reduce the tumor size to the detection limit by day 85, the same time to complete clinical

response (tumor size undetectable) as with the 100 mg/m2 q3w schedule. A summary of

treatment details for the nominal patient is shown in Table 9.

The 100 mg/m2 q3w schedule decreased tumor size at the fastest rate with the least

amount of drug administered among the three schedules, but it also causes increased neu-

tropenia toxicity. Although the nominal patient is similar to the population description [1],

we expect that individuals will have variable toxicity in response to treatment. Thus, an

explicit way to mitigate toxicity during the treatment would be a significant advantage. The

35 mg/m2 qw3 of 4 schedule decreases the severity of the toxicity, however, the treatment

duration until the tumor shrinks below the detection limit is longer. The algorithm suggests

105



0 50 100 150
0

20

40

60

80

100

Time (Day)

D
o

c
e

ta
x

e
l 

In
fu

s
io

n
 R

a
te

 (
m

g
/m

2
 h

)

0 50 100 150
0

2

4

6

8
x 10

6

Time (Day)

N
e

u
tr

o
p

h
il

s
 (

c
e

ll
s

/m
l)

0 50 100 150
0

0.5

1

1.5

2
x 10

4

Time (Day)

G
−

C
S

F
 (

µ
g

/m
l)

 

 

0 50 100 150
0

2

4

6

8

10

Time (Day)

L
o

g
 T

u
m

o
r 

C
e

ll
s

100 mg/m
2

35 mg/m
2

Opt. Sol.

a b

c d

Figure 30: Comparison of clinical standard-of-practice docetaxel administration schedules

versus the solution of Problem (4.22). Dashed line: 100mg/m2 every 3 weeks; dashed-

dotted line: 35 mg/m2 every week for 3 weeks followed by 1 week off; solid line: optimal

treatment schedule as provided by the algorithm. Panel a: drug infusion rate; panel b:

ANC (horizontal dashed lines: neutropenia grades 2, 3, and 4 from top to bottom); panel c:

G-CSF plasma concentration; panel d: log of number of cancer cells (horizontal dashed line:

clinical detection limit).
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Table 9: Summary of treatment results for different chemotherapy schedules.

Treatment Schedule Total Drug Delivered Neutropenia Detection Limit

(mg/m2/21 Days) Grade Reached (Day)

100 mg/m2 (q3w) 100 3 64

35 mg/m2 (qw 3 of 4) 105 2 96

Optimal 105 2 64

a treatment schedule for the patient that is able to reduce the tumor size at the same rate as

the 100 mg/m2 q3w schedule without causing the patient to experience grade 3 neutropenia.

The optimization posed in Problem 4.22 produces the treatment schedule that maximizes

tumor elimination without inducing a severe toxicity profile.

4.5.5.2 Personalized Treatment Schedule for Different Patient Toxicity Profiles:

Interpatient variability is expected in pharmacokinetics as well as sensitivity to treatment

in terms of both efficacy (tumor kill) and toxicity. The ability of the algorithm to adapt to

individual patients is tested against simulated patients having different toxicity sensitivities

to treatment. The patient-specific dynamics in chemotherapy optimization are the drug

efficacy and the drug toxicity.

The drug toxicity profile is the limiting factor when it comes to patient response during

chemotherapy, because toxicity can lead to delays in administration. In the optimization

algorithm, the toxicity constraints often limit the amount of drug that can be administered

to the patient. Therefore, the patient toxicity profiles are varied by changing parameter

kvbmD
(Equation (4.15) to test the ability of the algorithm to tailor chemotherapy schedules

to individual patient response. As kvbmD
increases, the patient becomes more sensitive to

docetaxel; hence, docetaxel causes more neutropenic toxicity to the patient, leading to de-

pressed ANC levels. Three representative patient toxicity profiles are chosen: patients who

are insensitive to docetaxel (kvbmD
=0.3017 min−1, nominal patient), sensitive to doctaxel
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Figure 31: Comparison of docetaxel schedules for different patient toxicity profiles for Prob-

lem (4.22). Dashed line: insensitive to docetaxel (kvbmD
=0.3017 min−1, nominal patient);

dash-dotted line: sensitive to docetaxel (kvbmD
=0.5028 min−1); solid line: very sensitive to

docetaxel (kvbmD
=0.7542 min−1). Panel a: drug infusion rate; panel b: ANC (horizontal

dashed lines: neutropenia levels 2, 3, and 4 from top to bottom); panel c: G-CSF plasma

concentration; panel d: log of number of cancer cells (horizontal dashed line: clinical detec-

tion limit)
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Table 10: Summary of treatment results for different patient toxicity profiles

Treatment Schedule Total Drug Delivered Neutropenia Detection Limit

(mg/m2/21 Days) Grade Reached (Day)

Not Sensitive (Nominal) 105 2 64

Sensitive 69 2 109

Very Sensitive 47 2 172

(kvbmD
=0.5028 min−1), and very sensitive to docetaxel (kvbmD

=0.7542 min−1). Simulation

results are shown in Figure 31. The algorithm is able to scale the drug dose to account for

changes in sensitivity (Figure 31a). For the insensitive patient, the algorithm delivered the

maximum amount of drug that can be delivered in a 3 week period (105 mg/m2); clinically,

this amount might have been increased after several cycles of low toxicity in order to poten-

tially increase cell kill while keeping the patient at manageable toxicity. For the sensitive

patient, the algorithm scaled down the amount of drug delivered over 3 weeks to 69 mg/m2.

Finally, the very sensitive patient could be administered only 47 mg/m2 of docetaxel over a

three week period. A summary of the treatment plans for the three different toxicity profiles

is shown in Table 10.

None of the simulated patients treated by the algorithm experienced grade 3 neutropenia

(Figure 31b and Table 10). As the toxicity increases, the total amount of drug administered

per 21 days decreases (Figure 31a and Table 10). Since less drug can be administered, as

patients become more sensitive to the toxic side-effects of the drug, the number of days of

treatment until the tumor size decreases to the clinical detection limit increases from 64

(non-sensitive, low toxicity patient) to 172 (very sensitive, high-toxicity patient) (Figure 31d

and Table 10). The advantage of the algorithm is the ability to tailor dose to the expected

toxicity, while still maximizing tumor kill at various fixed sensitivities to the toxic effects of

docetaxel.
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Table 11: Summary of treatment results for different toxicity constraints.

Treatment Schedule Total Drug Delivered Neutropenia Detection Limit

(mg/m2/21 Days) Grade Reached (Day)

Less Restrictive Constraints 105 2 64

More Restrictive Constraints 91 1 81

4.5.5.3 More Conservative Toxicity Constraints: The flexibility of the algorithm is

further tested by adjusting the toxicity constraints of ANC to enforce lower toxicity grades.

Equations( 4.17) and (4.18) are modified to become:

Nc(k) ≥ 2.0× 106 cells/ml (4.28)
7∑
i=1

Nc(i) ≥ 17.5× 106 cells/ml (4.29)

Nc(1) +Nc(8) ≥ 5.0× 106 cells/ml (4.30)

Equation (4.28) ensures the ANC does not drop below 2× 106 (i.e., no grade 1 toxicity),

and Equation (4.29) forces the week to week neutrophil count level to be greater or equal to

2.5 × 106 cells/ml (no week-to-week toxicity of any grade). These two toxicity constraints

then replace Equations 4.17 and 4.18 in Problem 4.22 to become Problem 4.31. A revised

docetaxel treatment schedule is calculated by solving Problem 4.31. The optimal treatment

schedules for the less restrictive and more restrictive toxicity constraints and the nominal

patient response are shown in Figure 32 and Table 11. As the toxicity constraints become

more restrictive, the amount of total docetaxel infused is decreased from 105 mg/m2 every

3 weeks to 91 mg/m2 every 3 weeks (Figure 32a and Table 11) in order to satisfy the new

toxicity constraints ( 32b). The duration of the treatment prior to reaching the detection

limit also increases from 64 days to 81 days. (Figure 32d and Table 11). The simulation

results demonstrate the flexibility provided by the algorithm in incorporating or modifying

constraints and the resulting changes to the treatment design.
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Objective : (4.1) (4.31)

s.t. : PK: (3.15)− (3.16)

PD Efficacy: (4.14)

PD Toxicity: (3.18)− (3.26), (4.15)− (4.16)

Toxicity Constraints: (4.28)− (4.30)

Logistics: (4.20), and (4.21)

4.5.5.4 Targeted Tumor Size Control: Periodic feedback is used by clinicians to eval-

uate the efficacy of treatment and to adjust treatment as necessary to mitigate side effects.

After a patient is treated and “cured by chemotherapy, that patient often comes back pe-

riodically to ensure that neither the tumor, nor any metastases, have (re)appeared [146].

Using assumption that we can control the patient tumor size to target size for a long period

of time to avoid complication, we evaluate the algorithm in scheduling target tumor tracking

[147]. In the docetaxel chemotherapy problem, we set the target tumor size to be 103 cells

(106 cells= 1 mm3) which is below the current detection limit. The objective for the tumor

volume tracking problem is:

min
Dd(q)

96∑
w=1

(Nd(w)− 3)2 + Γu

mq∑
q=1

Dd(q)
2 (4.32)

Here the first term in Equation (4.32) is the sum of squared differences between the tumor

size and the targeted tumor size, minimized every week over 96 weeks. The second term in

Equation (4.32) is the penalty term for small drug doses (that typically contribute to toxicity
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Figure 32: Comparison of docetaxel schedules for different toxicity constraints for Prob-

lem (4.31). Dashed line: more restrictive toxicity constraints; solid line: less restrictive

toxicity constraints. Panel a: drug infusion rate; panel b:ANC (horizontal dashed lines: less

restrictive toxicity constraints, horizontal solid line: more restrictive toxicity constraints);

panel c: G-CSF plasma concentration; panel d: log of number of cancer cells (horizontal

dashed line: clinical detection limit)
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Figure 33: Targeted tumor size for Problem (4.33). Panel a: drug infusion rate; panel b:

ANC (horizontal dashed lines: neutropenia levels 2, 3, and 4 from top to bottom); panel c:

G-CSF plasma concentration; panel d: log of number of cancer cells (horizontal dashed line:

targeted tumor size).

113



0 50 100 150
0

10

20

30

40

Time (Day)

D
o

c
e
ta

x
e
l 
In

fu
s
io

n
 R

a
te

 (
m

g
/m

2
 h

)

0 50 100 150
0

1

2

3

4

5
x 10

6

Time (Day)

N
e
u

tr
o

p
h

il
s
 (

c
e
ll
s
/m

l)

0 50 100 150
0

0.5

1

1.5

2

2.5

3
x 10

4

Time (Day)

G
−

C
S

F
 (

p
g

/m
l)

 

 

0 50 100 150
2

4

6

8

10

Time (Day)

L
o

g
 T

u
m

o
r 

C
e
ll
s

no G−CSF

G−CSF

a b

c d

Figure 34: Comparison of docetaxel schedules and patient outcome to treatment without

(solid) and with (dashed) G-CSF administration. Panel a: drug infusion rate; panel b: ANC

(horizontal dashed lines: neutropenia levels 2, 3, and 4 from top to bottom); panel c: G-

CSF plasma concentration; panel d: log of the number of cancer cells (horizontal dashed

line: clinical detection limit).
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Table 12: Summary of treatment results without and with G-CSF administration.

Treatment Schedule Total Drug Delivered Neutropenia Detection Limit

(mg/m2/21 Days) Grade Reached (Day)

No-GCSF 80 2 107

G-CSF 87 1 95

but have little or no effect on tumor size). With the new objective function, the optimization

problem becomes:

Objective : (4.32) (4.33)

s.t. : PK: (3.15)− (3.16)

PD Efficacy: (4.14)

PD Toxicity: (3.18)− (3.26), (4.15)− (4.16)

Toxicity Constraints: (4.28)− (4.30)

Logistics: (4.20), and (4.21)

The solution for the targeted tracking problem is shown in Figure 33. The algorithm

results show that, the maximum drug dose (without violating toxicity constraints) is admin-

istered at the beginning of treatment when the tumor size (Figure 33d) is bigger than the

targeted size . This lasts for 7 cycles (Days 0-147 in Figure 33a) and reduces the tumor size

at a maximal rate, constrained by toxicity. When the difference between the actual tumor

size and the targeted tumor size is approaching the target (Days 140-170 in Figure 33d), the

amount of drug delivered is reduced, as seen in Figure 33a, to ensure that tumor size reaches

the target. After the target tumor size is reached (day 170 onward in Figure 33d), the drug

dose is further decreased to a maintenance amount that keeps the tumor size at the targeted

value, on average.
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4.5.5.5 Docetaxel and G-CSF Rescue: G-CSF is often used as a rescue agent when

patient ANC drops to very low levels (e.g., grade 4 neutropenia) and it can be designed

into treatment in advance if the drug is known to exhibit highly toxic responses in patients

(Emax=0.026 1/min , kvbm=0.377 1/min). The algorithm can be further enhanced to employ

G-CSF as an additional administered agent that mitigates neutropenia, thereby leading to

more aggressive docetaxel administration. When administered, G-CSF is dosed once a day

for 10 consecutive days per cycle, as seen in Equation 4.23. Optimization problems 4.22

and 4.24 are solved for the nominal patient to evaluate the impact of G-CSF on docetaxel

schedules and patient outcome. The optimization results are shown in Figure 34 and Ta-

ble 12.

Comparing the results between schedules utilizing G-CSF and schedules not administer-

ing G-CSF, G-CSF allows an increase in the amount of docetaxel administered from 80 to

87 mg/m2 every 21 days for the nominal patient (Figure 34a and Table 12). The increase

in the amount of drug that can be administered per cycle leads to a shorter treatment time

until the tumor is clinically not detectable when using G-CSF (95 days) as compared to

treatments not utilizing G-CSF (107 days), as shown in Figure 34d and Table 12. The

optimal G-CSF usage, when administration is limited to 10 consecutive days, is to begin

treatment on day 2 (finishing on day 11) after the first dose of docetaxel in a 21 day cycle.

Although the patient toxicity profiles satisfy the toxicity constraints in both cases, the pa-

tient treated with G-CSF has a higher nadir neutrophil count (1.45×106 cells/ml) compared

to the patient without G-CSF treatment (1.13× 106 cells/ml). Thus, the use of G-CSF in

docetaxel chemotherapy allows an increase in the amount of the drug infused and decreases

the neutropenia experienced by patients.
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Figure 35: Compartmental-based pharmacokinetic model structure for cisplatin and carbo-

platin.

4.6 DOCETAXEL COMBINATION CHEMOTHERAPY WITH

CISPLATIN OR CARBOPLATIN

4.6.1 Cisplatin and Carboplatin Pharmacokinetic Models

Compartmental PK models are often used to capture drug concentration in plasma after

dosing. Each compartment is governed by an ordinary differential equation to capture the

observed response of drug concentration over time. Compartments are added – as necessary

– to improve the quality of fit, such that drug concentration profiles with biphasic (two time

constants) elimination require the addition of a remote compartment to capture the plasma

profile using Compartment 1 [148, 3, 4]. A compartmental model, as shown in Figure 35, is

used to capture the dynamics of cisplatin [148, 3, 149] or carboplatin pas13,van91. A third

compartment is added to the existing model structure to represent the drug concentration

in the tumor.
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Mathematically, this model is represented using the ordinary differential equation de-

scription in Equations (4.34)-(4.36) and their corresponding parameters for cisplatin or car-

boplatin, as shown in Tables 13 and 14, respectively. The drug plasma concentration in

mg/L is represented by compartment 1, with distribution volume V1. The right-hand side

terms capture: (i) drug infusion (rate u(t), in mg/min); (ii) drug clearance via a first order

rate mechanism with rate constant kcl; (iii) drug transport in dynamic equilibrium (2 terms,

rate constants k12 and k21) with remote compartment 2; and (iv) drug transport in dynamic

equilibrium (2 terms, rate constants k13 and k31) with remote compartment 3, which rep-

resents the tumor in this compartmental model structure. These models will be used to

represent cisplatin or carboplatin concentration dynamics in the patient.

dCp(t)

dt
=

u(t)

V1
− kclCp(t)− k12Cp(t) + k21C2(t)− k13Cp(t) + k31Ct(t) (4.34)

dC2(t)

dt
= k12Cp(t)− k21C2(t) (4.35)

dCt(t)

dt
= k13Cp(t)− k31Ct(t) (4.36)

Table 13: Cisplatin PK model parameters [3]

Parameters Value Unit Parameters Value Unit

V1 41.87 L kcl 2.29×10−4 min−1

k12 0.0034 min−1 k21 0.0018 min−1

k13 0.012 min−1 k31 0.015 min−1

4.6.2 Combination Chemotherapy Efficacy Model

When combination chemotherapy is utilized, drugs may target different phases of the cell

growth cycle; therefore, the modified cell-cycle model should accurately capture how com-

bination chemotherapy affects the tumor growth dynamics through their respective mech-

anisms of action. For docetaxel in combination with cisplatin or carboplatin, these drugs
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Table 14: Carboplatin PK model parameters [4]

Parameters Value Unit Parameters Value Unit

V1 5.07 L kcl 0.20 min−1

k12 0.12 min−1 k21 0.027 min−1

k13 0.012 min−1 k31 0.015 min−1

target different cell phases in the cell cycle. While cisplatin/carboplatin target S-phase cells,

docetaxel acts in the M-phase of growth. Thus, the modified cell-cycle model is used to

capture the cycle-specific kill mechanisms of each drug, as shown in Equations (4.37)-(4.40):

dXG(t)

dt
= −kGS [XG(t)]a/c + 2kMGXM(t) (4.37)

dXS(t)

dt
= −kSMXS(t) + kGS [XG(t)]a/c − keff1D1(t)XS(t) (4.38)

dXM(t)

dt
= −kMGXM(t) + kSMXS(t)− kdeath ∗ [N(t)]b/c − keff2D2(t)XM(t) (4.39)

N(t) = XG(t) +XS(t) +XM(t) (4.40)

The two bilinear kill terms, keff1D1(t)XS(t) and keff2D2(t)XM(t), are used to model the

tumor elimination rate in the S- and M- phases when drugs are administered. The bilinear

kill terms are derived from in vitro cell study data, which might not completely capture the

dynamics of drug distribution and action in vivo; however, the bilinear kill terms are widely

employed as mathematical approximations for anticancer action of chemotherapeutics.

4.6.3 Cisplatin Nephrotoxicity Model

The main adverse effect of cisplatin is kidney damage (nephrotoxicity) [150, 151, 152]. A

toxicity model to capture this effect is necessary for the cisplatin chemotherapy scheduling

problem. During a cisplatin chemotherapy regimen, the concentration of creatinine in plasma

increases due to inhibited renal clearance [153, 154, 152]. Before each cisplatin cycle, the

concentration of plasma creatinine and its clearance rate are measured to make sure the
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patient does not have nephrotoxicity that would preclude cisplatin administration. In a

typical healthy subject, the plasma creatinine concentration normally ranges between 0.5-

1.0 mg/dl, and the clearance rate is 97-137 ml/min. When the plasma concentration of

creatinine is ≥1.2 mg/dl and/or creatinine clearance is ≤60 ml/min, cisplatin chemotherapy

is withheld until the creatinine level in the patient decreases and their clearance rate increases

to less toxic levels [153, 155]. For this study, creatinine plasma concentration and clearance

rate will be used as the toxicity markers.

One equation will be used to describe the creatinine concentration, Cr(t), in the plasma

[156]:

dCr(t)

dt
= k1cr −

CL(C(t))

Vd
Cr(t) (4.41)

where k1cr is the rate of endogenous creatinine production and CL(C(t)) is the creatinine

clearance rate, which is dependent on the cisplatin concentration, C(t), and Vd is a distribu-

tion volume. The clearance of creatinine is defined as:

CL(C(t)) = kclcis − kclred
C(t)

C50 + C(t)
(4.42)

Here kclcis is the nominal clearance rate of plasma creatinine, kclred is the maximum inhi-

bition in creatinine clearance rate, C50 is the cisplatin concentration at which the rate of

creatinine clearance inhibition is at half its maximum value, and C(t) is the cisplatin plasma

concentration. Equations (4.41) and (4.42) are coupled with the pharmacokinetic model

of cisplatin (Equations (4.34)-(4.36)) to establish a nephrotoxicity constraint when using

cisplatin in both single-agent and combination chemotherapy treatments.
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4.6.4 Docetaxel and Carboplatin Neutropenic Toxicity Model

Both docetaxel and carboplatin have a myelosuppressive effect. The reduced neutropenia

model, in the form from Section 3.5.2, is used to represent the patient neutrophil response

to docetaxel and carboplatin chemotherapy as single agents and in combination. When doc-

etaxel and carboplatin are used in combination, the effects of these drugs on the progenitor

population is modeled as:

dPr(t)

dt
=

(
k1 +

k2GCSF (t)

k3 +GCSF (t)

)
S − ktrPr(t)−

EmaxDCbD(t)

EC50D + CbD(t)
Pr(t)

− EmaxCCbC (t)

EC50C + CbC (t)
Pr(t) +

EmaxDCbD(t)

EC50D + CbD(t)

EmaxCCbC (t)

EC50C + CbC (t)
Pr(t) (4.43)

Here each drug affects progenitors at the rate Emaxi and half maximum constant EC50i . The

combination effect is corrected by the product of the two Michaelis-Menten functions, which

is the last term in Equation (4.43). The parameters for the toxicity effects of docetaxel and

carboplatin on neutrophil dynamics are shown in Table 15

Table 15: Docetaxel (D) and carboplatin (C) neutropenia model parameters for Equa-

tions (4.15)- (4.43.

Parameters Value Unit Parameters Value Unit

kvbmD
0.3017 min−1 kvbmC

0.1819 min−1

kbmvD 0.0802 min−1 kbmvC 0.4369 min−1

k40D 0.0005 µM k40C 0.0005 µM

EmaxD 0.0130 min−1 EmaxC 0.0053 min−1

EC50D 0.7873 µM EC50C 0.7873 µM

4.6.5 Nephrotoxicity Constraints

In the case where cisplatin is used as an anticancer agent, kidney damage must be considered

in the patient toxicity profile. Treatment elevates creatinine concentration and simultane-

ously decreases creatinine clearance rate. The creatinine concentration and its clearance
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rate are posed as toxicity constraints for cisplatin chemotherapy following Equations (4.44)

and (4.45). Here k is a discretization step. Equation (4.44) constrains the creatinine concen-

tration, Cr(k), beneath the maximum allowable level, which is 1.2 mg/dL. Equation (4.45)

constrains the creatinine clearance rate, CLCr(k), such that it does not drop below the

clinically allowed rate.

Cr(k) ≤ 1.2 mg/dl (4.44)

CLCr(k) ≥ 60 ml/min (4.45)

4.6.6 Additional Logistical Constraints

The recommended dose for cisplatin is 100 mg/m2 via IV infusion every three weeks [39, 137].

The carboplatin dose recommendation is 900 mg/m2 via IV infusion every three weeks [4,

157]. These drug dose recommendations are used as the upper bound on the amount of drug

that can be administered in every 3 week period (Equations (4.46) and (4.47)). Here Dj(k)

is the amount of drug j (j ∈ {cis, car}), infused on day k. These logistical constraints are

coupled with the dynamic and toxicity constraints in the chemotherapy scheduling problem

for single agent docetaxel and for combination chemotherapy in the cases of docetaxel-

cisplatin and docetaxel-carboplatin combinations.

21∑
q=1

Dcis(q) ≤ 100 mg/m2 (4.46)

21∑
q=1

Dcar(q) ≤ 900 mg/m2 (4.47)
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4.6.7 Combination Chemotherapy Problem Formulation

4.6.7.1 Docetaxel-Cisplatin Combination: When docetaxel and cisplatin are used

in combination, the optimization Problem 4.22 is modified to become:

Objective : (4.1) (4.48)

s.t. : Docetaxel PK: (3.15)− (3.16)

Cisplatin PK: (4.34)− (4.36)

Combination PD Efficacy: (4.37)− (4.40)

Docetaxel PD Toxicity: (3.18)− (3.26), (4.15)− (4.16)

Cisplatin PD Toxicity: (4.41), (4.45)

Docetaxel Toxicity Constraints: (4.28)− (4.30)

Cisplatin Toxicity Constraints: (4.44), (4.45)

Logistics: (4.20), (4.21), and (4.46)

Problem 4.48 contains 585,000 variables and 885,000 constraints, which is an increase

of 20% in the number of variables and 110% in the number of constraints when compared

to optimizing docetaxel treatment alone (Problem 4.22). Problem 4.48 is solved using the

method described in Section 4.5.4.

4.6.7.2 Docetaxel-Carboplatin Combination: When docetaxel and carboplatin are

used in combination, the optimization Problem 4.22 is modified to become:

Objective : (4.1) (4.49)

s.t. : Docetaxel PK: (3.15)− (3.16)

Carboplatin PK: (4.34)− (4.36)

Combination PD Efficacy: (4.37)− (4.40)

Combination PD Toxicity: (3.18)− (3.26), (4.15)− (4.43)

Combination Toxicity Constraints: (4.28)− (4.30)

Logistics: (4.20), (4.21), and (4.47)
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Problem 4.49 contains 585,000 variables and 598,000 constraints which is an increase in

20% number of variable and 48% number of constraints in comparing to optimize docetaxel

treatment alone. As above, the method described in Section 4.5.4 is used to solve this

problem.

4.6.8 Results

4.6.8.1 Docetaxel and Cisplatin Combination: The docetaxel-cisplatin scheduling

optimization in Problem (4.48) is solved for two different sets of nephrotoxicity dynamics,

one with high creatinine production (Patient 1) and one with low clearance rate (Patient

2), by changing toxicity model parameters in Equations (4.41) and (4.42). The parameter

values for the nephrotoxicity for these two patients are shown in Table 16. Problem 4.48

contains 585,000 variables and 885,000 constraints, and the algorithm takes 2 hours to find

the optimal treatment schedules for both docetaxel and cisplatin. The treatment schedules

and patient response during 8 cycles of treatment are shown in Figure 36 and Table 17.

Table 16: Parameter values for two different patient nephrotoxicity dynamics in Equa-

tions (4.41) and (4.45).

Patient k1cr kclcis kclred C50 Vd

mg/dL/min ml/min ml/min mg/ml ml

1 0.128 230 660 2.14 1000

2 0.654 109 230 2.14 1000

The total amount of docetaxel infused to both patients is 67 mg/m2 per 21 days (Fig-

ure 36a and Table 17), because they have the same neutropenic toxicity profile (Figure 36b).

When cisplatin is infused, the plasma creatinine level increases (Figure 36e) due to a decrease

in the creatinine clearance rate (Figure 36f). For Patient 1 (high creatinine production), the

plasma creatinine level reaches an upper limit of 1.2 mg/dL, at which point cisplatin infu-

sion is stopped. For Patient 2 (low creatinine clearance rate), the clearance rate drops to a

lower limit of 60 ml/min, which sets the maximum amount of cisplatin that can be infused
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Table 17: Summary of treatment results for Docetaxel and Cisplatin combination

Treatment Docetaxel Delivered Cisplatin Delivered Detection Limit

Schedule (mg/m2/21 Days) (mg/m2/21 Days) Reached (Day)

Patient 1 67 100 106

Patient 2 67 100 101

(Figure 36d). In both patients, tumor size is reduced to the detection limit 101-106 days

after treatment (Figure 36g and Table 17). As in the case of docetaxel used as a single agent,

the docetaxel-cisplatin combination schedules and dose magnitudes are governed by patient

toxicity profiles; neutropenia for docetaxel and nephrotoxicity for cisplatin. For this drug

comination, with no overlapping toxicities, administration schedules are optimized by the

algorithm such that toxicity and logistical constraints are satisfied.

4.6.8.2 Docetaxel and Carboplatin Combination: Combination chemotherapy does

not often utilize two or more drugs with the same adverse effects, even though these drugs

have different mechanisms of action. Clinicians are often concerned that drug combina-

tions with overlapping toxicities may cause severe side-effects that could interrupt treatment

schedules and negatively impact the patient. We hypothesize that the algorithm can opti-

mally dose two or more effective drugs with overlapping toxicities in combination without

inducing severe toxic side-effects.

Docetaxel and carboplatin have the same myelosuppressive effects on patients during

chemotherapy. While docetaxel effect targets the M-phase in the cell cycle, carboplatin tar-

gets the S-phase. Both drugs are effective as single-agent chemotherapeutics. A docetaxel-

carboplatin combination is used to test the ability of the algorithm to administer two drugs

with overlapping toxicities while satisfying toxicity constraints and maximizing treatment

effect. The optimization Problem 4.49 is solved for docetaxel, carboplatin, and their combi-

nation, in order to compare single-agent and combination effects.
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Figure 36: Docetaxel-cisplatin schedules for different nephrotoxic patient parameters. Solid

line: Patient 1 (high creatinine production rate); dashed line: Patient 2 (low creatinine

clearance rate). Panel a: docetaxel infusion rate; panel b: ANC (horizontal dashed lines:

neutropenia levels 2, 3, and 4 from top to bottom); panel c: G-CSF plasma concentration;

panel d: cisplatin infusion rate; panel e: creatinine plasma concentration (horizontal dashed

line: creatinine level upper limit, 1.2 mg/dL); panel f: creatinine clearance rate (horizontal

dashed line: lower limit in clearance rate, 60 ml/min); panel g: log of number of cancer cells

(horizontal dashed line: detection limit).
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Table 18: Patient 3 parameter values (docetaxel (D) and carboplatin (C))

Parameters Value Unit Parameters Value Unit

kvbmD
0.5028 min−1 kvbmC

0.1819 min−1

kbmvD 0.0802 min−1 kbmvC 0.4369 min−1

k40D 0.0005 µM k40C 0.0005 µM

EmaxD 0.0130 min−1 EmaxC 0.0053 min−1

EC50D 0.7873 µM EC50C 0.7873 µM

keffD 0.806 µM.min−1 keffC 0.0108 µM.min−1

Table 19: Patient 4 parameter values (docetaxel (D) and carboplatin (C))

Parameters Value Unit Parameters Value Unit

kvbmD
0.2514 min−1 kvbmC

0.0905 min−1

kbmvD 0.0802 min−1 kbmvC 0.4369 min−1

k40D 0.0005 µM k40C 0.0005 µM

EmaxD 0.0130 min−1 EmaxC 0.0053 min−1

EC50D 0.7873 µM EC50C 0.7873 µM

keffD 0.3636 µM.min−1 keffC 0.0108 µM.min−1
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Table 20: Summary of treatment results for docetaxel and carboplatin combination therapy

where docetaxel is more effective than carboplatin.

Treatment Docetaxel Delivered Carboplatin Delivered Day Reached

Schedule (mg/m2/21 Days) (mg/m2/21 Days) Detection Limit

Docetaxel (Doc.) 68.7 0 84

Carbopalatin(Car.) 0 452.7 130

Doc.+ Car. 63.4 369.1 53

Two patient cases, and their associated parameter values relating to drug toxicity in

Equations (4.15)-(4.43) and drug efficacy in Equations (4.37)-(4.40) are shown in Tables 18

and 19. The differences in their dynamics are bold in Tables 18 and 19 (bold parameters).

The optimal treatment design results for Patient 3 are shown in Table 20 and Figure 37e

while the optimal treatment design for Patient 4 is shown Table 21 and Figure 38e.

For Patient 3 starting from the same initial tumor size, 84 days are required to reach the

tumor size detection limit when 68.7 mg/m2/ 21 days of docetaxel is used as a single-agent.

Carboplatin alone requires 130 days to reach the detection limit with of 452.7 mg/m2/21

days of carboplatin infusion. When docetaxel and carboplatin are used in combination, the

optimal treatment schedule is able to reduce the tumor size to the detection limit 53 days

after treatment starts. The dose magnitudes are optimized by balancing the drug efficacy and

toxicity effects as seen in Table 20 and Figures 37a and d, where 63.4 mg/m2 of docetaxel

in combination with 269.1 mg/m2 of caborplatin are infused per 21 days. The doses are

adjusted by the algorithm to ensure that neutropenia constraints are not violated as shown

in Figure 37b.

To test the algorithm flexibility, Patient 4 dynamics were tested. In this patient, the

toxicity of carboplatin and docetaxel parameters, kvbmC
and kvbmD

, respectively, are reduced

by 50% comparing to Patient 3 parameters. Docetaxel efficacy in Patient 4 is also reduced
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Table 21: Summary of treatment results for docetaxel and carboplatin combination where

carboplatin is more effective than docetaxel.

Treatment Docetaxel Delivered Carboplatin Delivered Day Reached

Schedule (mg/m2/21 Days) (mg/m2/21 Days) Detection Limit

Docetaxel (Doc.) 105.0 0 127

Carbopalatin (Car.) 0 900.0 77

Doc.+ Car. 104.8 885.24 43

by 45% comparing to Patient 3. The optimal treatment algorithm results for Patient 4 are

presented in Table 21 and Figure 38e.

For Patient 4, it takes 127 days of treatment with docetaxel as a single-agent for the

tumor size to reach the detection limit at the dose level of 105 mg/m2/21 days, while only

77 days are needed for carboplatin alone to reduce the tumor size below the detection limit

at a dose rate of 900 mg/m2/21 days (Table 21 and Figures 38a and d). Increased amounts

of docetaxel and carboplatin can be delivered due to the reduction in the toxicity parameter

values (kvbmD
and kvbmC

) in Patient 2 (50% reduction in value versus Patient 1). Docetaxel

efficacy is also reduced by 45% in Patient 2. Therefore, we see an increase the amount

of docetaxel and carboplatin delivered to Patient 2 (the maximum amount of single-agent

drug can be delivered over 21 days: 105 mg/m2 docetaxel or 900 mg/m2 carboplatin). The

reduction in docetaxel efficacy causes the treatment using docetaxel alone to take 43 days

longer to reach the detection limit than Patient 1, even though more drug is administered.

When used in combination to treat Patient 4, docetaxel and carboplatin doses are scaled

down to 104.8 mg/m2 and 885.24 mg/m2, respectively on day 1, 10, and 15 from the treat-

ment to satisfy the toxicity constraints. Since more drugs were administered in combination

therapy, Patient 4 spent 9 days out of 21 days in grade 2 neutropenia while only 5 days out of

21 days in grade 2 neutropenia when single agent was used. Patient 4 is not sensitive to these
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Figure 37: Optimal docetaxel-carboplatin treatment for Patient 3, high sensitivity to

chemotherapeutic agents. Solid line: docetaxel as a single agent; dashed line: carboplatin

as a single agent; dashed-dotted line: docetaxel and carboplatin combination. Panel a: do-

cetaxel infusion rate; panel b: ANC (horizontal dashed lines: neutropenia levels 2, 3, and 4

from top to bottom); panel c: G-CSF plasma concentration; panel d: carboplatin infusion

rate; panel e: log of number of cancer cells (horizontal dashed line: detection limit)
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Figure 38: Optimal docetaxel-carboplatin treatment for Patient 4, low sensitivity to

chemotherapeutic agents. Solid line: docetaxel as a single agent; dashed line: carboplatin

as a single agent; dashed-dotted line: docetaxel and carboplatin combination. Panel a: do-

cetaxel infusion rate; panel b: ANC (horizontal dashed lines: neutropenia levels 2, 3, and 4

from top to bottom); panel c: G-CSF plasma concentration; panel d: carboplatin infusion

rate; panel e: log of number of cancer cells (horizontal dashed line: detection limit)
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drug toxicities due to the 50% reduction in toxicity parameters (kvbmD
and kvbmC

); hence,

there is only a small reduction in drug amount compared to the single agent therapy. When

docetaxel and carboplatin are used in combination for Patient 3, the tumor size reaches the

detection limit after 43 days. These combination therapy treatment schedules show that

the algorithm is able to adjust the drug doses in combination in order to maximize tumor

elimination without violating toxicity constraints.

4.6.8.3 Combination Therapy to Track a Tumor Volume Target: The ability

of the optimization algorithm to regulate tumor size (i.e., control to target size) is tested

using docetaxel and carboplatin in combination. Conceptually, this is related to metronomic

chemotherapy [147] , where it is postulated that a small dose of drug can keep cancer in check

over long periods of time without toxicity. This alternative formulation instead identifies a

therapy that will control the tumor volume to a target size less than the detection limit and

hold it there over time using the lowest dose of drug possible. The target tumor volume is set

to be 103 cells; the resulting problem formulation is shown in Problem 4.50. The algorithm

results are shown in Figure 39.

Objective : (4.32) (4.50)

s.t. : Docetaxel PK: (3.15)− (3.16)

Carboplatin PK: (4.34)− (4.36)

Combination PD Efficacy: (4.37)− (4.40)

Combination PD Toxicity: (3.18)− (3.26), (4.15)− (4.43)

Combination Toxicity Constraints: (4.28)− (4.30)

Logistics: (4.20), (4.21), and (4.47)

When the tumor size is significantly greater than the targeted tumor size, the algorithm

delivers the maximum allowable drug dose (Figures 39a and d) that does not violate toxicity

constraints (Figures 39b) in order to reduce the difference between the tumor size and target

(Figures 39e). When the tumor size reaches the target, the algorithm reduces the drug doses
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Figure 39: Docetaxel-carboplatin combination schedule for tracking a target tumor volume.

Panel a: docetaxel infusion rate; panel b: ANC (horizontal dashed lines: neutropenia levels

2, 3, and 4 from top to bottom); panel c: G-CSF plasma concentration; panel d: carboplatin

infusion rate; panel e: log of number of cancer cells (horizontal dashed line: target tumor

volume = 103 cells)
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for both docetaxel and carboplatin so as to maintain the tumor size at target (Figure 39e).

Throughout the 500 days of treatment, the ANC level of the patient does not violate the

toxicity constraints, as observed in Figure 39b. With the ability to track target tumor sizes

using combination chemotherapy, the algorithm demonstrates the flexibility needed to handle

different objectives for the design of combination chemotherapy treatments.

4.6.8.4 Drug Resistance in Combination Chemotherapy: The ability of the algo-

rithm to adapt to potential drug resistance is tested by changing the efficacy of docetaxel

throughout the treatment. A decrease in docetaxel efficacy, potentially related to the cancer

cells developing a resistance to docetaxel, can be achieved by decreasing keff2 of Equa-

tion (eq:XMK) stepwise in 20% increments every 2 cycles starting after cycle 4. The results

are shown in Figure 40. The algorithm implementation recalculates a revised optimal treat-

ment schedule after every cycle. The efficacy model parameters for docetaxel are re-estimated

cycle-wise, and modifications to the treatment schedule are made to maintain efficacy in the

presence of drug resistance. The efficacy of docetaxel changes begin at cycle 5, as shown

in Figure 40f. The docetaxel efficacy used by the algorithm is always one cycle behind the

patient response to treatment because the algorithm needs a “measurement” (the tumor

size deviating above the expected response to treatment, Figure 40e) in order to update the

model and alter treatment for the next cycle.

When docetaxel efficacy decreases, the docetaxel and carboplatin schedules are changed

in order to maximize tumor elimination rate. In this case, the amount of docetaxel ad-

ministered is decreased from cycle 5 to cycle 9 with decreasing efficacy of the drug, and

no docetaxel is infused when the drug no longer has any effect on tumor elimination (Fig-

ure 40a). As the amount of docetaxel infused decreases, the amount of carboplatin infused

increases, eventually reaching the maximum single-agent amount that can be administered

without violating toxicity constraints, Figures 40b and d.
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Figure 40: Docetaxel-carboplatin combination schedule with docetaxel resistance. Panel

a: docetaxel infusion rate; panel b: ANC (horizontal dashed lines: neutropenia levels 2,

3, and 4 from top to bottom; panel c: G-CSF plasma concentration; panel d: carboplatin

infusion rate; panel e: log of number of cancer cells (solid line: algorithm prediction; dashed

line: actual patient dynamics; horizontal dashed line: detection limit); panel f: normalized

docetaxel efficacy (solid line: algorithm prediction; dashed line: actual patient dynamics)
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4.7 DISCUSSION

Chemotherapy scheduling optimization problems have been developed with the goal of aid-

ing clinicians in achieving the best patient outcomes. Using docetaxel as a specific case of

a widely utilized chemotherapy agent (both as single-agent and in combination chemothera-

pies), we posed a generalizable chemotherapy scheduling optimization problem that addresses

not only explicit toxicity limits but also other differences between theoretical treatment al-

gorithms and clinical practice. The main adverse effect of docetaxel is myelosuppression

resulting in neutropenia. Docetaxel pharmacokinetic, pharmacodynamic, and neutropenia

models are incorporated into the optimization algorithm with toxicity constraints of no worse

than grade 3 neutropenia acutely, and a week-to-week ANC not worse than neutropenia grade

2. The results shown in Figure 30 and Table 9 demonstrate that the algorithm balances ef-

ficacy with the toxicity of docetaxel to yield the same treatment efficacy as current clinical

schedules. While simulated patients do not experience grade 3 neutropenia as a result of

treatment using our algorithm, patients following the actual clinical schedules experience

grade 3 or worse neutropenia (100 mg/m2 every 3 weeks) or sacrifice some efficacy to avoid

severe toxicity (35 mg/m2 weekly). With clinically motivated constraints, our algorithm has

the ability to produce an optimal docetaxel schedule balancing efficacy and toxicity.

Patients respond to chemotherapy differently; therefore an algorithm must have the abil-

ity to adjust chemotherapy schedules to capture individual dynamics and design optimal

patient-specific treatment schedules. Toxicity constraints limit the amount of drug that can

be administered in our algorithm. Therefore, patient toxicity profiles were varied for doc-

etaxel, cisplatin, and carboplatin to test the ability of the algorithm to perform as toxicity

constraints were tightened or relaxed over time. When patient toxicity profiles change (Fig-

ures 31, 36, 37, and 38), the algorithm maximizes tumor elimination rate for each patient by

changing the dosing schedules while ensuring that the toxicity constraints are not violated.

The adjustment of drug dosing schedules to balance efficacy with toxicity for patient-specific

dynamics will allow the algorithm to design individual patient schedules and update the

schedules if patient dynamics change during treatment.
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The problem structure is formulated for ease of implementation and computational effi-

ciency. Pharmacokinetic, pharmacodynamic, and toxicity models are explicitly incorporated

into the algorithm to optimize the patient chemotherapy schedule. The generalizability of

the algorithm is tested with two different combination chemotherapies: docetaxel-cisplatin

and docetaxel-carboplatin. Docetaxel and cisplatin have different toxicity profiles, which

increases the number of variables and constraints (20% and 110% respectively) in the al-

gorithm – a numerical challenge. As a result, the algorithm takes 2 hours to solve for the

docetaxel-cisplatin combination schedule rather than just 1 hour for the docetaxel schedule

alone. Docetaxel and carboplatin demonstrate overlapping toxicity, which creates a challenge

for the algorithm in finely tuning the treatment schedule by balancing between toxicity and

efficacy to achieve the smallest objective function during treatment. The suggested treatment

schedules provided by the algorithm for both combinations with different patient dynamics

(Figures 36, 37, and 38) confirm that the algorithm can be used to schedule different drug

treatments when models of these drugs are available.

Figures 37 and 38 show that when drug efficacy and toxicity are known, the algorithm

can design a schedule for each drug to minimize patient treatment time without violating

modeled toxicity constraints. In current clinical settings, drugs with overlapping toxicities

are avoided in combination chemotherapy so that patients are prevented from experiencing

severe toxicities. If two drugs with different mechanisms of action have overlapping toxicities,

the algorithm is able to adjust the schedules to ensure that the treatment benefits from the

optimal effects of the two drugs. This generalizability and adaptability opens the door for

clinicians and scientists to evaluate new combination schedules for drugs with overlapping

toxicities that maximize tumor elimination rate. Moreover, when one drug begins to develop

drug resistance, the algorithm is able to update the efficacy of the drug to maximize the

elimination of the tumor without violating toxicity constraints.
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4.8 SUMMARY

Discrepancies between algorithm solutions and clinical practice have prevented scheduling

algorithms from becoming helpful aids for the design of chemotherapy schedules. Here we

have developed a generalizable and clinically-relevant chemotherapy scheduling algorithm

and have shown through docetaxel, docetaxel-cisplatin, and docetaxel-carboplatin examples

that it is applicable to current clinical settings. The algorithm is ready to be tested in

a clinical environment and assist clinicians in understanding individual patient dynamics

and tailoring treatment design to achieve the best patient outcome (short-duration effective

treatment without dose-limiting toxicity). With clinical data, the algorithm and models can

be validated, extended, and improved into a powerful decision support system for the design

of personalized chemotherapy schedules based on individual patient dynamics.
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5.0 SUMMARY AND FUTURE RESEARCH

Mathematical models can be utilized to understand disease and patient dynamics. In this

thesis, different mathematical models are presented for different diseases ranging from in-

flammation to chemotherapy-induced myelosuppression. Mathematical models are developed

from knowledge of biology resulting in in both detailed mathematical descriptions of biology

such as in the case of the neutrophil signaling cascade and simple model structures as seen

in the case of the pharmacokinetic model for carboplatin and cisplatin. These models with

information about disease dynamics, drug dynamics, and patient responses to treatments

can be implemented into model-based control or model-based optimization to help clinicians

with patient treatment decision.

Most biologically-based models are limited in implementation in model-based control

and model-based optimization due to their complex structures (e.g., large state dimension,

large highly-correlated parameter space). However, the advantages of these complex biolog-

ically based models are their flexibility in capturing different disease dynamics through the

inclusion of different mechanisms acting on the different model states. Using a neutrophil

signaling cascade and two different acting mechanisms of the two challenges on the cascade,

inflammatory acting on circulating neutrophils and chemotherapy acting on progenitors,

the biological-based model of neutrophil signaling cascade was developed and successfully

captured the two different dynamics created by inflammatory challenge and chemother-

apy induced myelosuppression. The biologically-based model of neutrophils shows that a

biologically-based model has a capacity to capture different challenge dynamics basing on

their acting mechanisms on the biological cascade.

The large of number states and large number of parameters of biologically-based models

often prevent these models from being utilized in model-based control and model-based op-
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timization. Depending on the disease of interest, the model reduction method used in this

thesis can be applied to reduce a complex biological based model to a simpler structure while

still capturing the important dynamics without a loss in accuracy. Moreover, when two or

more dynamics are studied in one biological signaling cascade, the reduction method can

still be applied to produce a model that preserves all of the dynamics of interests. Through

a biologically-based model of neutrophils, we demonstrated that model order reduction and

parameter space reduction techniques will result a lower order model with key parameters

identified to reserve dynamics of neutrophils after an inflammatory challenge or chemother-

apy induced myelosuppression. The simpler model structure with key dynamic parameters

identified will make the reduced model to be more easily implemented in model-based control

and model-based optimization.

With their predictive ability, mathematical models can be used to aid clinicians in patient

specific treatment design through model-based control or model-based optimization. To

demonstrate how mathematical models can be utilized for treatment design, a generalizable

model-based chemotherapy optimization algorithm is developed to design a clinically relevant

dosing schedule with clinically motivated toxic and logistical constraints for docetaxel and

its combinations as examples. The algorithm can be extended to different drug and drug

combination dynamics to design a variety of patient specific chemotherapy schedules.

This research demonstrates a method for building mathematical models from biological

information, reducing them into simpler forms, and utilizing them for optimal patient specific

treatment design. This thesis provides an advanced step toward a clinically useful form of a

decision support system; however, further research is needed to advance the development of

these mathematical models and gain the acceptance of clinicians in using computers to aid

treatment design.
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5.1 BIOLOGICALLY BASED MODEL DEVELOPMENT AND

REDUCTION

An example of a biologically based neutrophil-G-CSF model and its reduced structure shows

that biologically based models have the flexibility to capture different dynamical challenges

(LPS for fast dynamics and docetaxel for slow dynamics). However, challenges in building

biologically based models are the lack of experimental data and an incomplete understanding

of the relevant signaling cascades. For instance, we use a simple differential equation to

capture the inflammatory response after an LPS challenge. However, this is not the case for

the inflammatory signaling cascade. Instead, it is a complex response of inflammatory and

anti-inflammatory cytokines that activates neutrophils and returns the immune response to

homeostasis. Modeling the biological response of cytokines is a significant challenge due

to the incomplete understanding of the role and function of each cytokine in the cascade,

the overlapping roles of the cytokines, and a lack of detailed time series data for these

cytokines. Moreover, biologically-based models often contain a large number of equations and

parameters and identifying these parameter values is difficult. Although biologically-based

models are powerful tools to capture different dynamical challenges, there are challenges in

building those models due to their complex structures and lack of supporting data.

In our biologically based neutrophil model, we assume that all neutrophil precursors have

the same functionality as mature neutrophils. However, studies have shown that neutrophil

precursors have different migration and phagocytic properties during an infection [50]. Thus,

to apply the model for local infection like in the case of sepsis, different neutrophil popula-

tions and their functionality should be considered to accurately capture neutrophil dynamics

during a non-LPS inflammatory challenge.

Neutrophil migration and recruitment following an LPS challenge is modeled as a single

term, as shown in Equation 2.21, since there is no inflammation causing organ damage like in

the case of sepsis. To expand our model to capture patient dynamics during sepsis, neutrophil

migration and recruitment have to be considered in greater detail. In sepsis, in addition to

recruitment to the site of infection, neutrophils are misdirected toward the lungs, kidneys,

and the liver, where they cause organ damage that can eventually lead to patient mortality
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if no intervention action is taken. One of the difficulties in modeling sepsis is accounting

for tissue damage. Most of the current techniques model damage as a heuristic function

of neutrophils and cytokines present in the local tissue. When this heuristic function value

is larger than some threshold then local tissue damage occurs. Although these heuristic

models are able to represent certain sepsis dynamics, they are unable to explain why certain

patients survive and why othersdie as a result ofsepsis. Understanding why neutrophils are

misdirected to select organs and how they cause local tissue damage would increase the

accuracy in capturing the dynamics of sepsis.

Neutrophil dynamics are the only consideration in our model for an LPS challenge. Al-

though neutrophils are one of the key players in innate immune response, neutrophil dynam-

ics are not the only factor that should be considered when trying to capture the biological

response to sepsis. Other immune response dynamics also contribute to the mechanism of

sepsis and play roles in the patient recovery process. The activation of macrophages and

their associated cytokine secreting mechanisms are important during the initial phase of

a local infection. The migration of cytokines and their activation of the endothelial layer

are important factors in describing the neutrophil migration mechanism to different organs.

The neutrophil (over-)activation by cytokines during sepsis also contributes to the outcome.

These processes and mechanisms can be added to our current neutrophil model to better rep-

resent the systemic inflammatory response of sepsis and to better capture patient dynamics

during sepsis. Ultimately, a detailed biologically-based model of the innate response should

be able to predict patient outcome and to be used as a tool for sepsis treatment design.

5.2 CLINICALLY RELEVANT CHEMOTHERAPY SCHEDULING

OPTIMIZATION

The chemotherapy optimization algorithm develops clinically-relevant personalized chemother-

apy schedules for docetaxel as a single-agent and its use in combination with carboplatin or

cisplatin. The schedules returned by the algorithm retain the same efficacy as current clin-

ical schedules with fewer adverse effects. For treatments involving two drugs with different
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toxicities, the algorithm solves these schedules without violating either logistical constraints

or drug toxicity constraints. For treatments with two drugs having the same toxicity, the

algorithm is able to maximize tumor elimination by finely tuning each drug dose without

violating constraints. The current algorithm brings a computer aided chemotherapy treat-

ment system closer to the clinical setting without significantly modifying current standard

treatment practices.

The current algorithm explicitly includes clinically-motivated toxicity constraints as rep-

resented by measurable quantities, which is a departure from many previously developed

chemotherapy scheduling algorithms. This improvement helps aid acceptance of computer-

aided chemotherapy scheduling by current clinical practitioners. Further improvements can

be made in the current algorithm by increasing its accuracy in capturing tumor dynamics

and (dis)validating the generalizability and the performance of the algorithm. The algorithm

applicability should be extended to different drugs and drug combinations beyond those ex-

amined in this thesis. For instance, a three-drug combination should be studied to test the

algorithm for its extensibility. A simple three drug combination test could be docetaxel, cis-

platin, and 5-fluorouracil (5-FU), since docetaxel and cisplatin dynamics are built into the

current algorithm. Examining alternate drug combinations with different toxicities would

help to test the algorithms extensibility and robustness. In our algorithm, the toxicity con-

straints are set at low toxicity grades to prevent patients from experiencing severe toxicities.

However to design the specific toxicity constraints for each drug, a detailed study is needed

to evaluate the cost of high toxicity constraints, the extent of treatment, and patient quality

of life after the treatment (survial rate, remission rate, and recurrence rate). These analyses

will help to design improved toxicity constraints for the best patient outcomes.

Our algorithm currently uses clinically-relevant toxicities for each drug to impose toxicity

constraints. The results show that in most patients, toxicity restricts the amount of drug

that can be delivered and the timing of administration (as determined by patient neutrophil

recovery dynamics). Most of currently used chemotherapeutic drugs have more than one

toxic effect on patients during chemotherapy. For instance, docetaxel and carboplatin in-

duce both anemia and thrombocytopenia. Cisplatin also causes nerve damage in addition

to kidney damage. Including additional clinically-relevant toxicity models and constraints
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would allow the algorithm to more accurately predict toxic effects and produce a scheduling

solution that maintains a high degree of efficacy while limiting or avoiding toxicity-induced

side-effects.

Drug effects on the tumor term in the current algorithm are modeled as a bilinear function

with respect to tumor size and drug concentration inside the tumor. The bilinear kill term is

derived from in vivo experiments, where cancer cells are incubated in petri dishes at different

drug concentrations. The drug concentration that kills 50% of the cells in 24 hours is called

the half maximal inhibitory concentration IC-50 level. The IC-50 data are used to calculate

the rate constant for tumor elimination when the drugs are present within the tumor. While

.descriptive, the bilinear kill term is not an ideal functionality for modeling drug effects

on tumor size in a system of ordinary different equations, especially for in vitro system ,

because the drug concentration changes with time in animal or human body. Improvements

in the tumor elimination term can increase the accuracy of the algorithm in capturing patient

dynamics. Understanding the drug acting mechanism on tumor cells and developing a detail

model to capture this mechanism will increase the accuracy of the algorithm in capturing

tumor dynamics during chemotherapy

Cancer cells often develop drug resistance during chemotherapy, and the current tumor

elimination model does not account for this effect. Understanding how cancer cells respond

to chemotherapy and eventually become resistant to chemotherapeutic drugs would increase

the model accuracy in predicting tumor dynamics compared to actual tumor dynamics.

The continuity assumption is made in this current algorithm to model tumor growth

dynamics. This assumption is valid when tumor size is larger than 104 cells. However, when

the tumor size is smaller than 103 cells, this assumption is no longer valid [158]. At this size,

tumor growth follows a stochastic process. The tumor can grow to be larger (recurrence),

or can be eliminated from the body (cure). The stochastic tumor growth process for small

tumors can be further examined to explain the different cancer responses observed in patients.

In addition to improvements of the models within the algorithm and a deeper under-

standing of the biological dynamics of tumors and their interaction with chemotherapeutic

drugs, the validation of the algorithm with actual clinical data is necessary to bring the algo-

rithm forward to deployment in clinical settings. The first validation step is the comparison
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of tumor growth dynamics and chemotherapeutic effects to actual clinical data. Current

published data do not include the time series data of tumor decrease during chemother-

apy. Obtaining tumor size time series data for different chemotherapeutic drugs will help to

calibrate the tumor model and develop a suitable function for the tumor elimination rate.

The second validation step is to ensure that patient toxicity profiles match the toxicity

model predictions produced by the optimization algorithm. Most of the clinical data cur-

rently reported in the literature are the overall nadir toxicity of the patient during chemother-

apy. However, patients experience different toxicity levels throughout their treatments. Pa-

tient toxicity time series measurements can be used to update patient toxicity models and

design the next treatment based on the available dynamics.

The first and second validation steps can be performed without additional clinical trials.

Data previously and currently obtained can be reformatted per patient treatment and be

used to calibrate the algorithm and evaluate its performance. Drug concentration inside a

tumor is an important factor in determining the efficacy of the drug. A clinical trial with

head and neck cancer patients can be run to measure drug concentration in tumors, because

biopsies of the head-and-neck can be performed less invasively in these patients. These

measurements will explain drug transport from plasma to tumor and increase the accuracy

of the tumor elimination rate prediction of the model.

A final validation step is to compare the algorithm with current clinical treatment sched-

ules in performance for both efficacy and toxicity measures. The efficacy of the algorithm

should be not inferior to the current clinical schedules while decreasing the number and/or

frequency of adverse effects compared to current clinical schedules. When the algorithm

schedules have comparable efficacy and superior toxicity profiles than current clinical stan-

dards, a graphical user interface (GUI) needs to be developed to aid clinicians in deploying

this computer-aided treatment design tool. The GUI should include, but not be limited to,

patient information (sex, age, height, weight, medical history, etc.), tumor volume, toxic-

ity measurement data (ANC, creatinine level, etc.), and other relevant information. The

output of the GUI should be the recommended drug dosage and the predicted tumor and

toxicity profiles of the patient. The GUI with the underlying optimization algorithm will

help clinicians visualize the patient dynamics throughout chemotherapy and suggest the next
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treatment schedule that maximizes the tumor elimination rate without causing severe toxi-

city. The clinically ready, clinician friendly and patient tailorable chemotherapy scheduling

algorithm will help clinicians to design patient-specific treatments with the hope of improving

patient outcomes during chemotherapy.
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APPENDIX A

FLORIAN ET AL. DOCETAXEL PBPK MODEL AND PARAMETERS

The complete set of equations for the docetaxel PBPK model are shown below [5]: Venous

Blood:

dCven
dt

=
1

Vven(1− fhem)
(FinCin − FtotCven) +

fhem
(1− fhem)

krbcplasCrbcv

−kplasrbcfunbCven +
u(t)

Vven(1− fhem)
(A.1)

dCrbcv
dt

= −krbcplasCrbcv +
(1− fhem)

fhem
kplasrbcfunbCven (A.2)

Lung:

dClv
dt

=
Ftot
Vlv

(Cven − Clv)− klvefunbClv +
Vle
Vlv

klevCle (A.3)

dCle
dt

=
Vlv
Vle

klvefunbClv − klevCle + kbindoutClb − kbindinCle (A.4)

dClb
dt

= −kbindoutClb + kbindinCle (A.5)

Arterial Blood:

dCart
dt

=
1

Vart(1− fhem)
(FtotClv − FtotCart) +

fhem
(1− fhem)

krbcplasCrbca

−kplasrbcfunbCart (A.6)

dCrbca
dt

= −krbcplasCrbca +
(1− fhem)

fhem
kplasrbcfunbCart (A.7)
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Gut:

dCgv
dt

=
Fg
Vgv

(Cart − Cgv) (A.8)

Brain:

dCbv
dt

=
Fb
Vbv

(Cart − Cbv)− kbvefunbCbv +
Vbe
Vbv

kbevCbe (A.9)

dCbe
dt

=
Vbv
Vbe

kbvefunbCbv − klevCbe + kbindoutCbb − kbindinCbe (A.10)

dCbb
dt

= −kbindoutCbb + kbindinCbe (A.11)

Spleen:

dCsv
dt

=
Fs
Vsv

(Cart − Csv)− ksvefunbCsv +
Vse
Vsv

ksevCse (A.12)

dCse
dt

=
Vsv
Vse

ksvefunbCsv − ksevCse + kbindoutCsb − kbindinCse (A.13)

dCsb
dt

= −kbindoutCsb + kbindinCse (A.14)

Liver:

dCliv
dt

=
1

Vliv
(FliCart + FgVgv + FsCsv − (Fg + Fs + Fli)Cliv)− klivefunbCliv

+
Vlie
Vliv

klievClie (A.15)

dClie
dt

=
Vliv
Vlie

klivefunbCliv − klievClie + kbindoutClib − kbindinClie − kclliClie (A.16)

dClib
dt

= −kbindoutClib + kbindinClie (A.17)

Kidney:

dCkv
dt

=
Fk
Vkv

(Cart − Ckv)− kkvefunbCkv +
Vke
Vkv

kkevCke (A.18)

dCke
dt

=
Vkv
Vke

kkvefunbCsv − kkevCke + kbindoutCkb − kbindinCke (A.19)

dCkb
dt

= −kbindoutCkb + kbindinCke (A.20)
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Muscle:

dCmv
dt

=
Fm
Vmv

(Cart − Cmv)− kmvefunbCmv +
Vme
Vmv

kmevCme (A.21)

dCme
dt

=
Vmv
Vme

kmvefunbCmv − kmevCme + kbindoutCmb − kbindinCme (A.22)

dCmb
dt

= −kbindoutCmb + kbindinCme (A.23)

Fat:

dCfv
dt

=
Ff
Vfv

(Cart − Cfv)− kfvefunbCfv +
Vfe
Vfv

kfevCfe (A.24)

dCfe
dt

=
Vfv
Vfe

kfvefunbCfv − kfevCfe + kbindoutCfb − kbindinCfe (A.25)

dCfb
dt

= −kbindoutCfb + kbindinCfe (A.26)

Tumor:

dCtv
dt

=
Ft
Vtv

(Cart − Ctv)− ktvefunbCtv +
Vte
Vtv

ktevCte (A.27)

dCte
dt

=
Vtv
Vte

ktvefunbCtv − ktevCte + kbindoutCtb − kbindinCte (A.28)

dCtb
dt

= −kbindoutCtb + kbindinCte (A.29)

Heart:

dChv
dt

=
Ft
Vhv

(Cart − Chv)− khvefunbChv +
Vhe
Vhv

khevChe (A.30)

dChe
dt

=
Vhv
Vhe

khvefunbChv − khevChe + kbindoutChb − kbindinChe (A.31)

dChb
dt

= −kbindoutChb + kbindinChe (A.32)

Other:

dCov
dt

=
Fo
Vov

(Cart − Cov)− kovefunbCov +
Voe
Vov

koevCoe (A.33)

dCoe
dt

=
Vov
Voe

kovefunbCov − koevCoe + kbindoutCob − kbindinCoe (A.34)

dCob
dt

= −kbindoutCob + kbindinCoe (A.35)
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Table A.1: Parameter values (P) for the PBPK model

[5]

P. Value Unit P. Value Unit

klive 10.253 min−1 kliev 0.0965 min−1

kclli 0.1023 min−1 klve 0.2662 min−1

klev 0.0365 min−1 ktve 0.110 min−1

ktev 0.0006 min−1 kmve 0.5952 min−1

kmev 0.0158 min−1 ksve 1.8667 min−1

ksev 0.0445 min−1 khve 2.246 min−1

khev 0.0495 min−1 kfve 0.2162 min−1

kfev 0.0079 min−1 kkve 2.924 min−1

kkev 0.1859 min−1 kbve 0.0547 min−1

kbev 0.0573 min−1 kove 0.7451 min−1

koev 0.0099 min−1 krbcplas 0.00128 min−1

kplasrbc 0.000348 min−1 kbindin 0.001015 min−1

kbindout 0.000895 min−1 funb 0.05 -

fhem 0.45 - Fli 0.45 L/min

Vli 1.80 L fli 0.16 -

Fl 5.60 L/min Vl 0.53 L

fl 0.30 - Ft 0.03 L/min

Vt 0.2 L ft 0.05 -

Fg 1.13 L Vg1.13 L

Fm 0.59 L/min Vm 28.0 L

fm 0.03 - Fs 0.02 L/min

Vs 0.18 L fs 0.20 -

Fh 0.26 L/min Vh 0.33 L

fh 0.02 - Ff 0.74 L/min

Vf 15.0 L ff 0.03 -

Fk 1.24 L/min Vk 0.31 L
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Table A.1 (continue)

fk 0.24 - Fb 0.78 L/min

Vb 1.40 L fb 0.04 -

Fo 0.36 L/min Vo 15.8 L

fo 0.05 - Ftot 5.60 L/min

Vven 3.318 L Vart 2.212 L
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APPENDIX B

ADDITIONAL OPTIMIZATION ALGORITHM RESULTS
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Figure B.1: Algorithm treatment schedule for changing drug efficacy during treatment.Panel

a: docetaxel infusion rate; panel b: ANC neutrophil count (horizontal dashed lines: neu-

tropenia levels 2,3,and 4 from top to bottom); panel c: G-CSF plasma concentration; panel

d:carboplatin infusion rate; panel e: log of number of cancer cells (horizontal dashed line:

tracking target); pane f: normalized drug efficacy ( solid line: docetaxel, dashed line: carbo-

platin)
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Figure B.2: Docetaxel-carboplatin combination schedule per 3 weeks for targeted tumor

tracking. Panel a: docetaxel infusion rate; panel b: ANC neutrophil count (horizontal

dashed lines: neutropenia levels 2,3,and 4 from top to bottom); panel c: G-CSF plasma

concentration; panel d:carboplatin infusion rate; panel e: log of number of cancer cells

(horizontal dashed line: tracking target)
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Figure B.3: Docetaxel-carboplatin combination schedule per 2 weeks for targeted tumor

tracking. Panel a: docetaxel infusion rate; panel b: ANC neutrophil count (horizontal

dashed lines: neutropenia levels 2,3,and 4 from top to bottom); panel c: G-CSF plasma

concentration; panel d:carboplatin infusion rate; panel e: log of number of cancer cells

(horizontal dashed line: tracking target)
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Figure B.4: Docetaxel schedule per 3 weeks for targeted tumor tracking. Panel a: drug

infusion rate; panel b: ANC neutrophil count (horizontal dashed lines: neutropenia levels

2,3,and 4 from top to bottom); panel c: G-CSF plasma concentration; panel d: log of number

of cancer cells (horizontal dashed line: tracking target)
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Figure B.5: Docetaxel schedule per 2 weeks for targeted tumor tracking. Panel a: drug

infusion rate; panel b: ANC neutrophil count (horizontal dashed lines: neutropenia levels

2,3,and 4 from top to bottom); panel c: G-CSF plasma concentration; panel d: log of number

of cancer cells (horizontal dashed line: tracking target)
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APPENDIX C

DATA DRIVEN GLUCOSE-INSULIN DYNAMICS MODELING FOR

CRITICALLY ILL PATIENT

C.1 GLUCOSE-INSULIN DYNAMICS IN CRITICALLY ILL PATIENTS

REVIEW

Patients in intensive care units (ICUs) often exhibit irregular blood glucose levels due to the

changing of the bodys dynamics in response to stress[159]. In critically ill patients glucose

dynamics are altered by changes in hormone responses, inflammatory responses to an injury

or surgery, and external medication [160, 161, 162]. These internal and external stimuli

cause decreasing insulin sensitivity in the body[163], decreasing insulin production[160], and

increasing endogenous glucose production [164]. The irregular glucose-insulin dynamics ex-

hibited by these patients requires clinicians to intervene and tightly control patient glucose

within a specific range.

In a healthy person, blood glucose is homeostatically regulated between 70 mg/dL and

120 mg/dL which is defined as the normoglycemic range [159]. In the ICU, patient blood

glucose is often controlled between 180 mg/dL and 200 mg/dL which is defined as the hyper-

glycemic range [159]. Controlling patients blood glucose in the hyperglycemic range decreases

the risk of moderate and severe hypoglycemia. When blood glucose drops to hypoglycemic

ranges morbidity and mortality rates increase in the ICU. Bellomo et al. showed that of 4946

patients in their study, 1109 patients experienced hypoglycemia, and hospital mortality was

36.6 % for these patient compared with 19.7% in those did not experience hypoglycemia
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[165]. Moreover, a study by Egi et al. showed that decreased blood glucose variability also

decreased the risk of death [166]. Thus, controlling patients blood glucose in a specific range

would help to reduce mortality and morbidity, especially when hypoglycemia can be avoided.

C.1.1 Targeted Glucose Control in ICUs

Targeted glucose control in the ICU was first introduced by Van den Bergh et al. in 2001

[159]. In this study, a total of 1548 patients were randomly distributed between two treat-

ments: intensive insulin therapy, where blood glucose levels were maintained between 80

mg/dL and 110 mg/dL or conventional treatment where blood glucose levels were main-

tained between 180 mg/dL and 200 mg/dL. The results showed that intensive insulin ther-

apy reduced mortality in the ICU from 8.0% with conventional treatment to 4.6% with

intensive treatment. The benefit of intensive insulin therapy showed the greatest value in

reducing mortality associated with death due to multi-organ failure with a proven septic

focus. The authors concluded that maintaining blood glucose between 80 mg/dL and 110

mg/dL reduced morbidity and mortality among critically ill patients in ICUs.

Since 2001, various authors have been studying targeted glucose in critically ill patients

and how it impacts patient outcomes in ICUs [167, 168, 169]. Van den Bergh et al. performed

a similar trial, in 2006 in the ICU of the same hospital [170]. The results show that there is

no significant reduction in hospital mortality. However, a reduction in morbidity was shown

through a reduction of mechanical ventilation usage time, acute kidney injury, and of patient

stay duration in the ICU and hospital.

The first multicenter trial to study the impact of targeted glucose control in patients

with severe sepsis was undertaken in 18 academic hospitals in Germany and was publish

by Brunkhorst et al. [167]. The trial was stopped early because the number hypoglycemic

incidents increased in patients who underwent targeted glucose control. There was no sig-

nificant evident of improved mortality on either the 28th or 90th day mortality evaluation

among two groups. Despite this result, in 2008 Dellinger et al. published an international

guidelines for management of severe sepsis and septic shock in which targeted glucose control

is recommended[168].
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Another multicenter study was published by Preiser et al. in 2009 [169]. The study

compared the effect of targeted glucose control and conventional glucose control (140-180

mg/dL) on the mortality of patients admitted to 21 medical surgical ICUs. The original

study design was to recruit 3500 patients; however, the study was stopped at 1078 patients

due to the high number of protocol violations. The trial also reported no significant difference

in ICU mortality between the two groups. An increase in hypoglycemic incident rates was

observed in the targeted glucose control group.

The Normal Glycemia in Intensive Care Evaluation-Survival Using Glucose Algorithm

Regulation (NICE-SUGAR) study was published in 2009 and changed the recommendation

for glucose control [171]. The NICE-SUGAR study evaluated the 90-day mortality rate in

6104 critically ill patients from 42 hospitals in Australia, New Zealand, Canada, and the

United States. Among 6022 available patient outcomes, targeted glucose control showed an

increased in risk of death (27.5% vs. 24.9%).

These clinical trials show contradicting results in targeted glucose controls impact on mor-

tality. However, these studies agree that there is a risk of increasing hypoglycemic incidents

when patients undergo targeted glucose control. Patients who experienced hypoglycemic

incidents have been shown to have an increased mortality rate compared to patients that did

not experience hypoglycemic incidents. Blood glucose variability also showed an association

in patient outcome. Increased blood glucose variability increased the risk of death. With

better glucose control systems where hypoglycemia can be avoided and patient blood glucose

variability can be reduced, targeted glucose control can be beneficial in improving patient

outcome by reducing mortality and morbidity.

C.1.2 Glucose-Insulin Dynamics Models

Mathematical models proposed in the literature have attempted to capture glucose-insulin

dynamics, including the Intravenous Gluocse Tolerance Test (IVGTT), Oral Glucose Test

(OGTT), and Frequently Sampled Intravenous Glucose Tolerance Test (FSIGT) [172, 173,

174, 175]. Bergman et al. were the first to model glucose-insulin dynamics using a minimal

model structure, in the early eighties [9]. The three states model describes the dynamics
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of glucose and insulin after an IVGTT. In this model, the authors introduced the idea of

insulin sensitivity which was varied to capture the differences in glucose and insulin dynamics

among healthy and obese populations. The same authors have further published papers to

complete, test, and validate the results of the minimal model [174, 176, 175]. The model has

been a benchmark for mathematical models of glucose-insulin dynamics.

Different variations and extensions of the minimal model have been published to cap-

ture glucose-insulin dynamics for both diabetic and non-diabetic population. According the

Bergman et al., in their perspective in 2007, there are approximately 50 major studies pub-

lished per year and more than 500 papers can be found in the literature which involve the

minimal model [176]. Tolić et al. extended the minimal model to a six-state model to

capture the delay effect of insulin on hepatic glucose production [177]. Moreover, the insulin

release is broken down into two states to represent the delay effects of glucose on insulin

production. The model simulated circadian insulin secretion oscillation.

Gaetano et al. proposed a two-state delay differential equation model where remote

compartments which mediate the insulin-dependent glucose uptake were removed. In the

model, the endogenous insulin release is proportional to the average glucose concentration

over b minutes following time t [172]. The model was calibrated and validated by means of

real data from a standard IVGTT procedure. After the Gaetano et al. model, subsequent

models with similar structure have been published and validated for different data sets.

These DDE models claim superior performance during IVGTT but have limited extensibility

to long term glucose-insulin dynamics.

The Bergman minimal model structure has been widely used to capture glucose-insulin

dynamics for both diabetic and non-diabetic patient populations. Roy and Parker published

the extend minimal model to include the dynamics of free fatty acid (FFA) for type I diabetic

patients[178]. There is no endogenous insulin production in the model; the only insulin source

is intravenous insulin delivery. The model included two new remote states to represent the

insulin effect on FFA dynamics and FFA effect on glucose dynamics. The model captured

in vivo data published from different studies. By incorporating the FFA dynamics and its

effects on plasma glucose, the models ability to predict glucose concentration dynamics after

a mixed meal (carbohydrate and fat) were increased.
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Using the extended minimal model as the core structure for glucose-insulin dynamics,

Roy and Parker extended the model to capture mixed meals as a disturbance [179]. The

model has three additional states to represent the input from a meal: proteins, fats, and

carbohydrates. In the model, protein is converted to a glucose equivalent to evaluate its

impact on glucose-insulin dynamics. The model was validated with experimental data from

mixed meal tolerance test. The model was then subjected to a controller algorithm to

evaluate the linear control performance with mixed meal disturbance rejection. With a long

term goal of developing closed-loop controllers to regulate blood glucose, it is necessary to

develop accurate models with easily identifiable parameters. The extended minimal model

with mixed meal model could be extended toward the development of wearable pancreas due

to its detailed structure and easily identifiable parameters.

Glucose-insulin mathematical models have been used to develop in silico patients to

test glucose control algorithm performance for type I diabetic patients [180, 181, 182]. An

in silico simulator was approved by the FDA in 2008 as a substitute for animal trials in

preclinical testing of control strategies during artificial pancreas studies [183]. The simula-

tor includes 300 simulated subjects in three age groups: 100 adults, 100 adolescents, and

100 children. Within the simulator, a mathematical model of glucose-insulin dynamics is

constructed as a glucose subsystem and insulin subsystem linked together by the control of

insulin on glucose utilization and endogenous production. The glucose subsystem consists of

a two-compartment model of glucose kinetics. The insulin subsystem has two compartments

to represent the liver and plasma. Endogenous glucose production, rate of glucose appear-

ance, and glucose utilization are the most important model processes. An in silico simulator

is the preclinical benchmark to test control algorithms in glucose regulator in type I diabetic

patients.

Glucose-insulin mathematical models are also implemented in model predictive control

algorithms to regulate type I diabetic patient blood glucose in artificial pancreases[184, 185,

186]. Heusden et al. published a third order model to capture the glucose response to

insulin [184]. The input of the model is the insulin being delivered and the output variable

is the blood glucose concentration (deviation from the steady state). The model has a

patient-specific gain and a safety factor to capture an individuals glucose-insulin response.
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The model is then deployed in a zone model predictive control algorithm and tested on 100

in silico patients from the FDA type I diabetic patient simulator. The control algorithm

was able to control the plasma glucose and handle meal disturbance without hypoglycemic

incidents. The simple model structure allowed model implementation into control algorithm

with minimal parameter adjustment to easily capture individual patients glucose-insulin

dynamics.

Glucose-insulin mathematical models have been widely applied toward glucose control

for type I diabetic patients [184, 185, 186]. The concept of applying mathematical models to

regulate glucose in critically ill patients began to develop after the benefits of targeted glucose

control were published by Van den Bergh et al. [159]. Wong et al. published a model-based

insulin and nutrient delivery controller to regulate glucose in critically ill patients [187].

The glucose-insulin model embedded in the controller is a three-state model with a similar

structure to that of Bergman et al. model [174]. The glucose uptake in the model is a

saturating function of the remote insulin compartment. The endogenous insulin production

is a function of plasma insulin by itself and not dependent on the glucose concentration. The

model is then used to capture and regulate blood glucose for 8 different patients.

The same group published an Intensive Control Insulin-Nutrient-Glucose (ICING) model

in 2011 [188]. The model was an extension of the previously published model. In the glucose

equation, the model included a constant glucose uptake from the central nervous system,

and a constant basal glucose production was also incorporated into the model. The insulin

dynamics were extended to include a first order kidney clearance rate and saturating liver

clearance rate. The endogenous insulin production was retained as a function of blood

insulin. The model was able to capture insulin and glucose dynamics for critically ill patients

whose blood glucose was measured hourly and regulated between 4.0 and 6.0 mmol/L. The

ICING model was able to reduce the fitting error between model value and measurement by

50% compared to the previously published model.

Hovorka et al. developed a nonlinear model for type I diabetic patients that contained

two compartments to represent glucose dynamics and four compartments to represent insulin

dynamics[189]. The two glucose compartments are the glucose gut compartment and plasma

glucose compartment. The four insulin compartments are the plasma insulin compartment
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and three remote insulin compartments. The three remote compartments control the glucose

uptake rate, endogenous glucose production, and the glucose transport rate from the gut to

plasma. The model was extended for use in a model predict control algorithm to regulate

plasma glucose in critically ill patients in subsequent papers. The use of the model in the

authors control algorithm resulted in regulated plasma glucose in the target range better

than without use of the control algorithm. There were no hypoglycemic incidents in 220

patients both with and without controller implementation.

A simulated model of glucose regulation was published in 2008 by Hovorka et al. [190].

The model is a combined model of five submodels: a submodel of endogenous insulin secre-

tion, a submodel of insulin kinetics, a submodel of enteral glucose absorption, a submodel of

insulin action, and a submodel of glucose kinetics. The model also included a time varying

insulin sensitivity parameter to capture the glucose-insulin dynamics of critically ill patients.

In the model, the insulin sensitivity controls glucose uptake and endogenous glucose produc-

tion. The model was evaluated against data from 6 critically ill patients. The average

difference between the model predictions and measured blood glucose was 1.9% for the best

fit patient. The model was then used to regenerate one patients dynamics using the control

algorithm. The authors acknowledged that a time varying insulin sensitivity parameter is

essential to capture the physiologic response of critically ill patients.

Models play an important role in model based control for glucose regulation in critically

ill patients. Although there are previously published models in the literature, these models

only capture a narrow range of plasma glucose concentrations due to the availability of the

data. Using the available models from Roy et al. [178, 179], this thesis will extend the model

to capture non diabetic critically ill patient glucose dynamics using data available from the

HIDENIC dataset [191].

C.2 INTRODUCTION

Critically ill patients often lose their ability to regulate glucose due to injury and/or trauma

[159]. Critically ill patients blood glucose levels are often controlled by clinicians in inten-
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sive care unit (ICU). Normally, clinicians regulate patient blood glucose levels between the

hyperglycemic range of 180-200 mg/dL defined as standard care of practice [159]. Control-

ling patient blood glucose in the hyperglycemic range would prevent patient blood glucose

from dropping into the hypoglycemic range of below 70 mg/dL. Hypoglycemia decreases

patient survival rate and increases mortality rate [192, 193, 194]. In a 2001 single center

trial with 1,546 patients, Van den Berghe et al. concluded that compared to standard care,

targeted glucose control between 80 mg/dL and 110 mg/dL resulted in a mortality reduc-

tion from (8.0% to 4.6%) [159]. However, subsequent single and multi-center studies were

not able to reproduce the same results, that targeted glucose control decreases mortality

[169, 170, 171, 192, 193, 195, 196, 197]. This is evident in the largest trial of targeted glucose

control in ICU, the Normaglycemia in Intensive Care Evaluation-Survival Using Glucose

Algorithm Regulation (NICE-SUGAR) trial, conducted with 6,104 patients in across 42 cen-

ters [198]. The targeted glucose control group in this trial had a 2.6% increase in mortality

rate compared to the control group [198]. Although different conclusions are drawn about

whether targeted glucose control improves patient outcome, all of the trial results show that

severe hypoglycemic incidence (<40 mg/dL) increase in the targeted glucose control group

by up to 28% [159, 170, 198]. This is crucial because hypoglycemia in critically ill patients

increase morbidity and mortality [192, 193, 194]. The inability to avoid hypoglycemia may

affect the benefits of targeted glucose control in patient outcome. Thus, targeted glucose

control benefits could be fairly evaluated by avoiding hypoglycemia. Hypoglycemia can be

eliminated during targeted glucose with the aid of mathematical modeling and a control

algorithm. Mathematical modeling captures the patient glucose-insulin dynamics while a

control algorithm uses glucose or insulin to regulate blood glucose levels within the targeted

range.

The concept of using mathematical models and control algorithms to regulate blood

glucose has been widely applied in type-I diabetic patients. These models and their respective

control algorithms have advanced to several successful clinical trials for outpatient supports

[182, 199, 200, 201, 202, 203]. The FDA approved an in silico patient simulator, which

has contributed to the success of these models and control algorithms [183]. The simulator

contains 100 virtual adults, 100 adolescents, and 100 children. These 300 patients represent
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variability present in the type-I diabetic population observed in vivo [183]. The simulator

helps to bench mark the performance of models and control algorithms for type-I diabetic

insulin treatment before clinical trials.

A similar in silico simulator for critically ill patients would enable the use of mathe-

matical models and control algorithms for targeted glucose control without hypoglycemia.

Mathematical models capturing glucose-insulin dynamics in the ICU have been created to-

ward developing a virtual patient bank to help with glucose control in critically ill patients.

For instance, Lin et al. developed a glucose insulin model to capture 173 patients glucose-

insulin dynamics under glycemic range between 4.4 to 6.1 mmol/L. The average patient

fitting error was 2.8% (1.18-6.41%)[188]. The model was able to capture a normal glycemic

range in critically ill patients. It was one of the few that confirmed the use of mathematical

models to capture the complex dynamics of glucose and insulin in critically ill patients.

Hovorka et al. examined the effectiveness of using an enhanced model predictive control

algorithm (eMPC) in targeted glucose control compared to a routine glucose management

protocol (RMP) in cardiac surgery patients [190]. There were 60 patients 30 for each case

- subjected to glucose control to maintain euglycemia (target range 4.4-6.1 mmol/liter).

The mean blood glucose, percentage of time in target range, and hypoglycemia events were

used as performance measurable outcomes. The mean blood glucose was 6.2 mmol/liter in

the eMPC group versus 7.2 mmol/liter in the RMP group. The percentage of time in the

target range was 60.4 % for the eMPC group versus 27.5% for the RMP group. No severe

hypoglycemia occurred in either group. The eMPC was able to control patient blood glucose

levels closer to the target range compared to RMP. Hovorka et al. proved that MPC can

help to maintain patient blood glucose within a targeted range without hypoglycemia.

Mathematical modeling of glucose-insulin dynamics in critically ill patients would help

create a virtual patient bank to test glucose control algorithms. It could also be used in

targeted glucose control algorithms for better patient glucose regulation. In this chapter, we

present a data driven-glucose insulin dynamic model capturing the dynamics of 200 critically

ill patients from the University of Pittsburgh Medical Center Database. The model can be

coupled with future high frequency patient data to create a virtual patient bank of glucose-

insulin dynamics in critically ill patients. The virtual patient bank can be used to test
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glucose control algorithm in its ability to regulate critically ill patient glucose within a

targeted range. The model can also be coupled with a control algorithm to help regulate

patient blood glucose within a targeted range with the hope of decreasing morbidity and

improving patient outcome.

C.3 METHODS

C.3.1 Intravenous Glucose Tolerance Test (IVGTT)

The Intravenous Glucose Tolerance Test (IVGTT) is used to evaluate patient insulin sen-

sitivity. The IVGTT protocol includes intravenously injecting glucose into the patient and

subsequently measuring plasma glucose and insulin concentrations. These insulin and glu-

cose concentrations are used to estimate the patient insulin sensitivity. The IVGTT is often

used in the healthy patient population. The IVGTT data is obtained from Bergman et

al.[9] where the volunteers (n=6) are injected with 300 mg/kg of glucose over 60 seconds

at t=20 minutes. Glucose and insulin concentrations are reported subsequently to capture

the change in glucose-insulin dynamics. The IVGTT test data are used to calibrate the

endogenous insulin release profile in healthy volunteers in our model.

C.3.2 Patient Selection

The HIgh-DENsity Intensive Care (HIDENIC) database contains patient data from ICU ad-

missions at the University of Pittsburgh Medical Center [191]. The database is an extensive

electronic medical record of 46,169 patients from 1991-2008, with > 97% of care collected

after 2001. All data are de-identified. The HIDENIC database includes ICU information (ob-

servations, measurements, interventions, and daily notes from all services except physicians)

and hospital medical information (laboratory results, medication prescribed, and hospital

discharge summaries).

The database query includes all patients older than 18 years without the diagnosis of

diabetic ketoacidosis or a non-ketonic hyperosmolar state. Complete electronic records be-
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Table C.1: Patient Information.

Information Average( Min-Max)

Number of Patients 200(119M)

Age 63.3(18-98)

Height (m) 1.71 (1.47-1.99)

Weight(kg) 82.3(40-181)

Hospital Duration (days) 5(2-25)

tween 2005-2008 in the surgical ICU are included for patient query. Patients who stayed in

the surgical ICU between 48 hours and 2 weeks are selected to have a representative pool

of ICU patient dynamics. A Python script automatically extracts patient data from the

database via MySQL.

The data between 2005 and 2008 in the surgical ICU allows us to extract a group of 200

patients with detailed records for use in the study. A summary of the patient information is

shown in Table C.1.

C.3.3 Glucose-Insulin Dynamic Model for Critically Ill Patients

An extended type I diabetic glucose-insulin dynamic model developed by Roy et al. [178]

is used as the main structure to capture critically ill patient dynamics. The model consists

of 6 equations of 15 parameters (Equations (D.1)- (D.6), Table D.1). The structure of the

model and the interactions between glucose, insulin, and free fatty acid (FFA) are shown in

Figure C.1. In this model, insulin and FFA impact glucose uptake by peripheral tissues and

the liver through their remote states, X and Z respectively from Figure C.1. Insulin affects

glucose and FFA transport rates to adipose and peripheral tissues through its remote states,

X and Y respectively from Figure C.1. The model does not have the effect of glucose on

insulin release or production because it is a type I diabetic patient model.
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Figure C.1: Block diagram of glucose-insulin dynamics model with insulin release model

built in. The original model is in blue and the addition for this study is in red with a zoomed

in view
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The mixed meal model [179] (Equations (D.7)- (D.9)) is incorporated into the extended

minimal model to capture oral nutrient administration to the patient. The mixed meal

model uses the nutrient intake in terms of carbohydrates, protein, and fat and captures their

effects on glucose, insulin, and FFA dynamics in the type I diabetic patient. Additional

details about the extended minimal model and the mixed meal model can be found in the

references section [178, 179].The full extended minimal model with the mixed meal model

and their parameters are shown in Appendix D.

The model also has the capability to handle intravenous delivery of nutrients and insulin

(u1, u2, and u3). Endogenous insulin release and exogenous insulin help to regulate plasma

glucose in critically ill patients. Therefore, an endogenous insulin release model is needed to

capture non-diabetic glucose-insulin dynamics of critically ill patients. In a healthy person,

endogenous insulin release has a biphasic profile under glucose stimuli [204, 205, 206]. The

first phase of insulin release is the fast pulse response. When plasma glucose concentration

rises, the pancreas releases insulin immediately to lower blood glucose[206]. This first pulse

response causes a fast rise in insulin concentration within the plasma. If plasma glucose

concentration remains above the normal glycemic range, then the pancreas synthesizes more

insulin and releases it into the plasma to lower blood glucose concentration [206]. Insulin

synthesis and release after the fast pulse response accounts for the second phase of the insulin

release profile.

Insulin resides in different pools as suggested by biological experiments [207, 208] and

recent mathematical models [209, 210, 211]. The increase in glucose concentration triggers

the release of insulin from the intermediately releasable pool via messengers such as Ca+2

and ATP [210]. The intermediately releasable pool is responsible for the first phase of the

endogenous release pool [210]. The increase of plasma glucose triggers the biosynthesis of

insulin in β cells and the mobilization of insulin in the reserve pool toward the docked pool

and to the readily releasable pool [211]. The insulin then migrates toward the intermediately

releasable pool [211]. The synthesis of new insulin and migration of insulin from the reserve

pool to different pools before being released accounts for the second phase of the insulin

release [211].
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A three compartment model representing the three biological states of insulin in the

pancreas are inserted into the glucose-insulin dynamic model to capture the biphasic re-

sponse of the endogenous insulin release profile as shown in Figure C.1. Insulin is produced

and located in three different pools: the docked pool, the readily releasable pool, and the

immediately releasable pool [206].

dID
dt

= pI1(G(t)−Gb)− pI2ID(t) + pI3IRR(t) (C.1)

dIRR
dt

= pI2ID(t)− pI3IRR(t)− pI4IRR(t) + pI5IIR(t) (C.2)

dIIR
dt

= pI4IRR(t)− pI5IIR(t)− pI6(G)IIR(t)− pI7IIR(t) (C.3)

Where

pI6(G) = pI8
G(t)n

pnI9 +G(t)n
(C.4)

In our model, the docked pool represents the process of insulin synthesis and migration

from the reserve pool to the docked pool. When plasma glucose elevates (G(t)) higher than

the basal glucose concentration,Gb, the docked pool produces insulin at the pI1 rate. Insulin

can transport back and forth between the docked pool and readily releasable pool at the

rates pI2 and p3 respectively. Equation (C.1) describes the docked pool insulin dynamics.

In addition, to equilibrate with the docked pool, the readily releasable pool is also in equi-

librium with the intermediately releasable pool at the forward rate pI4 and reverse rate pI5.

Equation (C.2) shows the insulin dynamics in the readily releasable pool. The intermediately

releasable pool insulin dynamics are shown in Equation (C.3. Besides being in equilibrium

with the readily releasable pool, the intermediately releasable pool secretes insulin into the

plasma at the basal rate pI7. When plasma glucose concentration is high, the intermediately

releasable pool increases its insulin release through pI6(G), where pI6(G) is the Hill function

described in Equation (C.4). The parameter, pI8 is the maximum insulin release rate, and

pI9 is the glucose concentration where insulin rate is at its half maximum. Equation (C.3)

describes the insulin dynamics in the intermediately releasable pool. The endogenous insulin

release model is shown in Equations (C.1) - (C.4).
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C.3.4 Parameter Estimation Capturing Changes in Glucose-Insulin Dynamics

Critically ill patients glucose and insulin dynamics change throughout their time in the ICU.

To capture the variations in patient glucose-insulin dynamics, the insulin dependent glucose

uptake (Insulin sensitivity, SI in Equation (D.3)) and basal glucose production (EGP0 in

Equation (D.3)) are changed throughout the patients stay in the ICU. The changes in SI and

EGP0 impacts the model dynamics through a first order filter for each parameter (Equations

(C.5) and (C.6)) to avoid sharp changes in glucose-insulin dynamics.

dSI

dt
= kf (pe1 − SI(t)) (C.5)

dEGP0

dt
= kf (pe2 − EGP0(t)) (C.6)

Parameters pe1 and pe2 in Equations (C.5) and (C.6) are updated, respectively, when

blood glucose is measured to minimize the sum of squared error between the model glucose

simulation and patient glucose measurement data (Equation (C.7)):

J(p) =
N∑
i=1

(y(i)− ysim(i, p))2 (C.7)

In Equation (C.7), the sum is over the number of data points, N , in the experimental

data set, y(i). Time-matched simulation data, ysim(i, p) is used to calibrate the parameter

set, p, those can be used to reduce the error between predicted (ysim(i, p)) and actual (y(i))

data. The objective, J(p), is the sum of the squared difference between the experimental

measurement and simulation result. In this work, the difference between the blood glucose

measurements and blood glucose simulation was minimized via the changes of parameters, pe1

and pe2. Parameters pe1 and pe2 impact the glucose-insulin model dynamics via the insulin

sensitivity (SI) and endogenous glucose production (EGP0) through Equations (C.5) and

(C.6), respectively. Numerically, the residual sum of squares minimization is implemented

in MATLAB ( c©2013, The Mathworks, Natick, MA) using the lsqnonlin function.
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Model performance is evaluated by calculating the Model Absolute Relative Error (MARE):

MARE =

∑N
i=1 |y(i)− ysim(i)|
N
∑N

i=1 y(i)
(C.8)

Here the absolute difference between experimental data set, y(i) and model result, ysim(i) are

summed over the number of data points, N . The difference is then divided by the product

of the experimental data sum and number of data points, N . Equation (C.8) is used to

calculate the MARE for 200 patients to establish the mean and the range of the error.

C.4 RESULTS

C.4.1 Insulin Release Calibration

The endogenous insulin release model is calibrated with the IVGTT test. The results of

model fitting and experimental data for both insulin and glucose are shown in Figure C.2.

The model is able to represent the fast rise in insulin response due to the sudden spike in

blood glucose concentration. While blood glucose concentration remains high, the secondary

response of insulin was shown around t=20 minutes after glucose was injected into the body.

When blood glucose began to approach the normal glycemic range (80-110 mg/dL), insulin

secretion slowed down and insulin concentration returned to its nominal value. The summary

of parameters of the insulin release model is shown in Table C.2.

C.4.2 Critically Ill Patients Glucose-Insulin Dynamics

An example of the model and experimental data are shown in Figures C.3 and C.4 for patients

number 4 and 55 out of 200 patients, respectively. Figures C.3a and C.4a show the glucose

measurements of experimental data (x) and simulation results (solid line). With the inputs

of insulin infusion (Figures C.3b and C.4b), intravenous nutrient infusion (Figures C.3c

and C.4c), and oral nutrient intake (Figures C.3d and C.4d), the model is able to capture

the experimental data with the residual error (the difference between model and data),

shown in Figures C.3e and C.4e. Figures C.3f and C.4f and Figures C.3g and C.4g show
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Table C.2: Model Parameters

Parameters Value Unit Parameters Value Unit

pI1 0.65*10−3 mU∗dL
mg∗min pI8 0.33 min−1

pI2 0.11 min−1 pI9 100 mg
dL

pI3 0.02 min−1 ki 0.49 -

pI4 0.025 min−1 Gb 85 mg
dL

pI5 0.005 min−1 n 4 -

pI7 0.003 min−1 pf 0.06 min−1
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Figure C.2: Intravenous glucose tolerance test data (circle, from Bergman et al. [9]) and

the model fits of glucose and insulin. IVGTT data of 6 healthy volunteer with 300 mg/kg

of glucose injection over 60 seconds.
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how the SI and EGP0 parameters are changed accordingly for each individual patient via

Equations (C.5)- (C.6). 200 different patient profiles of glucose-insulin dynamics in the first

48 hours after admission are evaluated individually. The model absolute relative error came

out to be 2.14% for 200 patients ( 5000 glucose measurement), with a minimum error of

0.014% and maximum of 8.31% per patient.

In order to evaluate how well the model performs against the experimental data, Clarke

error grid analysis (EGA) [212, 213] is used to plot the model results versus the experimental

measurements. The Clarke error grid is divided into 5 zones, A-E, with shifts from A to E

indicating performance losses between the model and patient data. The desired result of a

good model performance is that the model results, when plotted with the patient glucose data

or with the rate of glucose change, show ≥ 80% of the points fall into zone A. Using Clarke

EGA, we evaluate the performance of our model against 200 patients glucose data. The

results of the point-EGA (p-EGA) and the rate-EGA (r-EGA) are shown in Figures C.5 and

C.6 respectively. The p-EGA is the plot of the model blood glucose level versus the actual

glucose measurement. The r-EGA is the plot of the rate of the change in blood glucose

between two data points of simulation versus the actual measurement. The summaries of

percentage of data per zone for both p-EGA and r-EGA are shown in Table C.3. From this

result, the model captures the patient dynamics in the ICU (96.0% zone A agreement with

the experimental measurement). The model is able to capture not only the glucose value of

the measurement but also the rate of change of the glucose between the two measurement

values with the same confidence (98.57% zone A agreement).

C.5 DISCUSSION AND SUMMARY

The insulin release model coupled with the glucose-insulin dynamic model is calibrated with

its insulin release profile via IVGTT (Figure C.2). It is able to capture both insulin and

glucose dynamics after glucose injection. There are models developed to capture endogenous

insulin release in healthy volunteers or in β-cells. However, the insulin dynamic models

in healthy volunteers often capture the second phase of insulin release, like in the case of
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Figure C.3: Patient number 4 glucose-insulin dynamics captured by the model. N IV: in-

travenous nutrient infusion, N OR: nutrient intake orally, I IV: intravenous insulin infusion,

Res: residual error between model and experimental data. Panel a: glucose measurement(x)

and simulation result (solid line); panel b: intravenous insulin infusion rate; panel c: intra-

venous nutrient infusion; panel d: oral nutrition intake; panel e: residual error between model

and patient glucose measurement; panel f: change in insulin sensitivity; panel g: change in

endogenous glucose production
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Figure C.4: Patient number 55 glucose-insulin dynamics captured by the model. N IV: in-

travenous nutrient infusion, N OR: nutrient intake orally, I IV: intravenous insulin infusion,

Res: residual error between model and experimental data. Panel a: glucose measurement(x)

and simulation result (solid line); panel b: intravenous insulin infusion rate; panel c: intra-

venous nutrient infusion; panel d: oral nutrition intake; panel e: residual error between model

and patient glucose measurement; panel f: change in insulin sensitivity; panel g: change in

endogenous glucose production
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Table C.3: The summary of Clarke’s EGA results (percentage of data in a zone).

Zone p-EGA r-EGA

A 96.00 % 98.57 %

B 3.65 % 1.20 %

C 0.00 % 0.04 %

D 0.35 % 0.12 %

E 0.00 % 0.07 %
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Figure C.5: Clarke’s Error Grid Analysis of blood glucose(BG) level (p-EGA)
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the Bergman model. On the other hand, the β-cell insulin release models often focus on

the first fast pool release of insulin. However, in critically ill patients, the plasma glucose

concentration often remains in the hyperglycemic range for a long period time. Both fast

and slow insulin release dynamics contribute to the overall patient glucose-insulin dynamics.

The insulin release model is developed by using a three compartmental model in order to

capture both phases of the insulin release profile in healthy volunteers after IVGTT. The

insulin release model is incorporation into the current existing glucose-insulin dynamic model

for type I diabetic patients and helps to extend the model capability to capture the critically

ill patient population.

The glucose data from The HIDENIC data set is used to represent critically ill patients

glucose and insulin dynamics to evaluate the model performance [191]. The HIDENIC data

set contains 46,169 patients information during their time in the hospital. The challenge of

patient information extraction is that not all patient information is in one table. Therefore,

cross reference between different tables is needed to get the patient data. For instance, the

patient blood glucose measurements are in the glucose table, while the amount of glucose

delivered is in the nutrient table. Most of the drug and nutrient information delivered to

the patients are written in the product branch names. We develop a Python script that uses

the patient admission number to cross reference and extract the information of the patient

out of the database. The Python script also recognizes different nutrient information and

their branch names to put them into appropriate columns in the final patient table. The

columns include glucose, free fatty acids, and protein. The Python script automatically

queries 200 patients out of the surgical ICU with hospital stays between 48 hours and 2

weeks to carefully fit the model of glucose-insulin dynamics. For the purpose of this study,

we are only interested in the information pertaining to glucose-insulin dynamics. However,

this Python script can be also extended to extract patient information for different studies.

The information from 200 patients with different hospital lengths of stay (48 hours to 2

weeks), ages, sexes, and outcomes (survived or deceased non-survived), is used to calibrate

the model performance. We limit the model performance calibration to the first 48 hours

of the patient duration in the hospital because the patient data in the HIDENIC is not

specifically designed for this study. First, the patients glucose measurements are often missed
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after a long period of time ( ≥ 8 hours), especially after the first 48 hours if the patient is

recovering. Moreover, after the first 48 hours of recovery, patients often receive subcutaneous

infusion of insulin, whose dynamics the current model could not capture. Finally, information

regarding nutrients delivered orally after 48 hours is also often missing from the database.

Therefore, we decided to calibrate and evaluate the model performance using the first 48

hours after admission. This ensures the models ability to capture the patient glucose-insulin

dynamics with known external stimuli.

Glucose-insulin dynamics of ICU patients vary widely due to different factors such as

stress-induced hormone concentration [214, 215], cytokine concentration [216, 217], and

surgery or trauma [218, 219, 220]. These factors cause the insulin sensitivity (SI) and en-

dogenous glucose production (EGP0) to change in critically ill patients. Therefore, two pa-

rameters associated with insulin sensitivity (SI) and endogenous glucose production (EGP0)

are estimated in our model via (Equation (C.5)- (C.6)). These two parameters allow the

models blood glucose concentration to span the patient range (blood glucose level less than

400 mg/dL). Although one parameter variation is preferred to capture patient dynamics,

when only SIor EGP0 is varied to capture the patient plasma concentration, the models ab-

solute relative errors are 19% (8%-30%) and 15% (10%-29%), respectively. One parameter

estimation can not capture plasma glucose concentration when it is higher than 250 mg/dL.

Therefore, the variation of SI and EGP0 simultaneously is used to capture high plasma

glucose concentrations and accurately represent ICU patient glucose dynamics.

The model was used to fit 200 patients individually. The two examples of patient glucose

profiles are shown in Figures C.3 and C.4. The model takes insulin infusion rates and nutri-

ents (intravenous and oral) as inputs, and varies insulin sensitivity and endogenous glucose

production to fit the patient glucose dynamics. The model was able to capture the patient

glucose dynamics with 2.14% (0.01%-8.31%) model absolute relative error. The Clarke’s

point and rate EGAs are used to visually show how well the model performs against the

measurement data. In theory, the model and data would match perfectly with the exper-

imental data; in the EGA graphs, the simulation results plotted against the experimental

results would lie perfectly on the 45-degree line. However, discrepancies between model

prediction and measurement data often occurs. The EGAs allow us to evaluate the model
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performance in terms of whether the discrepancies between model and data are acceptable

for this work. The Clarkes EGA analyses of 200 patients are shown in Figures C.5 and C.6

for the blood glucose measurement and for the rate of change accordingly, the model was

able to capture more than 95% of the blood glucose measurements in zone A, and 99.6% of

the rates in zones A and B.

The glucose model results predict the concentration lower than the experimental mea-

surement when plasma glucose concentration is below 100 mg/dL, as seen in Figure C.5, and

in patient 4 dynamics around 26 hours (Figure C.3). The model often under predicts glucose

concentration when patient glucose concentration is in the hypoglycemic range. However,

the difference between the model and the patient data only accounts for 0.4% of unaccept-

able performance in Zones C,D, and E. For perspective, a good continuous glucose sensor,

when plotting sensor measurement versus actual blood glucose, has 97.9% of data in both

zones A and B (70.4% in zone A and 27.5% in zone B)[221]. From this pEGA result, the

model has the ability to successfully capture the patient plasma concentrations.

For the rate- EGA, the model was able to capture most of the rates of the experimental

results in Zones A and B (99.7%), and only 0.3% of the rate results are in zones C, D, and E,

as shown in Figure C.5 and Table C.3. A good glucose sensor, when plotting the sensor rate

versus the measurement rate, has 91.7% of the rate in both zones A and B (70.0% in zone

A, and 21.7% in zone B) [221]. From both pEGA and rEGA, the model is able to accurately

capture both blood glucose measurements and blood glucose rate of change in critically ill

patients.

Lin et al. published the ICING model, which is also calibrated against our 200 patients

data [188]. The p-EGA and r-EGA for the Lin et al. model results are shown in Table C.4.

The results show that the Lin et al. model is able to capture measurement glucose data

with 96.07% of the data falling in Zones A and B for p-EGA and with 98.69% of the rate

date falling in Zones A and B for r-EGA. The model absolute relative error is 5% (0.023%-

12.22%). The EGAs and the model absolute errors from the Lin et al. model showed that our

model has slightly better performance in capturing the critically ill patient glucose-insulin

dynamics.
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Table C.4: Summary of Clarke EGA results for Lin et al. model (percentage of data in a

zone).

Zone p-EGA r-EGA

A 92.00 % 96.44 %

B 4.07 % 2.25 %

C 2.20 % 1.04 %

D 1.73% 0.17 %

E 0.00 % 0.10 %

Fitting glucose-insulin dynamics is often followed by the assumption of glucose following

the straight-line interpolation between the two data points. This method allows the model to

capture the plasma glucose concentration accurately since the dynamics of the patient glucose

is a straight line between two data points. This assumption is valid when patient blood

glucose levels are measured frequently. In our 200 patient dataset, the patient blood glucose

measurements are rather sparse, and sometimes, the duration between two measurements is

greater than 90 minutes. Thus, this assumption is not the best way to fit patient glucose

dynamics for our 200 patients. Instead, we decided to vary the patient SI and EGP0 using

first order filter dynamics, and allow the patient glucose dynamics to vary following the

natural course of the model dynamics. Although some accuracy is sacrificed by fitting the

patient glucose dynamics by using our method, the model is still one of the better models

capturing glucose-insulin dynamics for critically ill patients.

Using the available glucose-insulin dynamic mathematical models for type I diabetic

patients, we extend the model to capture the glucose and insulin responses after an IVGTT

by incorporating the insulin release model. The final glucose-insulin model is then used

to capture the critically ill patient glucose-insulin dynamics. 200 surgical ICU patients

information from the HIDENIC data set are extracted to calibrate the glucose-insulin model

performance. The patient glucose-insulin dynamics change throughout their time in the
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hospital; therefore, the parameters associated with insulin sensitivity and endogenous glucose

production are varied to capture these dynamic changes. The model accurately captures 200

patients glucose data.

Glucose control in critically ill patients could potentially improve patient survival rates

and reduce morbidity when hypoglycemia can be avoided. In this work, we develop a glucose-

insulin dynamics model that has an ability to capture critically ill patient glucose-insulin

dynamics. The final model can be used with appropriate data to develop a virtual patient

bank for glucose dynamics in critically ill patients. Moreover, the model can also be used in

the controller for targeted glucose control without hypoglycemia.

C.6 FUTURE RESEARCH RECOMMENDATIONS

A model of glucose-insulin dynamics has been developed from an existing model for type

I diabetic patients and is able to capture glucose data from surgical ICU patients in the

HIDENIC database. The two parameters associated with insulin sensitivity and endogenous

glucose production are varied in the model to represent the impacts of different factors on

patient-specific glucose-insulin dynamics. Improvements can be made to accurately capture

glucose-insulin dynamics in critical care patients. Free fatty acids (FFAs) play a role in

regulating glucose in humans, Roy et al.[178] is able to capture how FFAs interact with

glucose and insulin in healthy type I diabetic patients. However, little information is available

explaining how these interactions change in critical care patients and how they contribute to

the overall glucose-insulin dynamics. Examining FFA interaction with glucose and insulin

and how it changes in critical care patients will increase the model accuracy in capturing

patient glucose-insulin dynamics.

Changes in critical care patients glucose-insulin dynamics are attributed to different inter-

nal and external factors. Endogenous stress-induced hormones: glucorticoids, epinephrine,

and cortisol alter plasma glucose levels by interfering with endogenous glucose production

and insulin driven glucose uptake. Moreover, glucorticoids, epinephrine, and cortisol are also

exogenously administered in the ICU to help patient recovery. These hormones contribute to
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plasma glucose fluctuations and increase the chance of hyperglycemia. Incorporating these

hormone dynamics and their effects onto glucose-insulin dynamics in the current existing

model will help to explain and capture the changes in a patients glucose levels during their

time in the ICU.

The inflammatory cytokines IL-1, IL-6, and TNF-α also play roles in the glucose-insulin

dynamics of critically ill patients. TNF-α and IL-1 interfere with insulin sensitivity by

decreasing the effect of insulin driven glucose uptake and IL-6 increases the effect of in-

sulin driven glucose uptake. Understanding these cytokine dynamics and how they interact

with the insulin driven glucose uptake signaling cascade would help explain the change in

glucose-insulin dynamics in critical care patients and aid glucose control algorithms in better

regulating patient glucose levels.

In addition to a deeper understanding at the biological level of the changes in glucose-

insulin dynamics in ICU patients, model improvements can also be made to increase model

accuracy in representing patient glucose dynamics. The current model does not capture

subcutaneously delivered insulin dynamics. Subcutaneously delivered insulin is often used

in patients recovering from injury or disease in the ICU. Subcutaneous insulin may have fast

or slow acting dynamics based on the chemical structure of the delivered insulin. Captur-

ing these different subcutaneous insulin dynamics will help to build better virtual patient

dynamics used to test glucose control algorithms for critical care patients.

Patient glucose databases should be improved to build a better glucose-insulin dynamic

model and better virtual patients to test glucose control algorithm. Although the HIDENIC

database contains critically ill patient data, the time between glucose measurements is rather

large. Moreover, nutrient information is often missing in the database. The data scarcity and

missing information present a difficulty in accurately determine patient glucose dynamics.

With better data glucose measurements (continuous glucose measurement or high frequency

glucose measurement) and nutrient intake records, the virtual patient database can be built

and utilized as a tool for testing and validating glucose control algorithms for critically ill

patients resulting in better glucose regulation without hypoglycemia.

The current model of glucose-insulin dynamics contains 14 equations with nonlinear

terms to capture patient data, Appendix D. The large number of equations and nonlinear
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terms create difficulties in implementing the model in a model-based control algorithm.

Model reduction can be applied to the current model of glucose-insulin dynamics to reduce

the number of states and nonlinear terms for ease of implementation. Moreover, during

the model reduction step, sensitivity analysis identifies the key parameter(s) that govern

model dynamics. The controller can estimate these sensitive parameters to capture patient

dynamics and by predicting future outcomes using these dynamics better regulate patient

glucose levels. As a result of research to advance a deeper understanding of the causes of

variation in glucose-insulin dynamics to the development of models and subsequent reduction

to simple forms for control algorithms, targeted glucose control can be achieved without

hypoglycemia to help improve patient outcomes and reduce patient morbidity in the ICU.
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APPENDIX D

EXTENDED MINIMAL MODEL WITH MIXED MEAL MODEL

EQUATIONS AND PARAMETERS

Extended Minimal Model:

dI(t)

dt
= −nI(t) + p5u1(t) + pI6(G)IIR(t) + pI7IIR(t) (D.1)

dX(t)

dt
= −p2X(t) + p3I(t) (D.2)

dG(t)

dt
= −p1G(t) + p1EGP0(t)(1− kiSI(t))(t)Gb − p4SI(t)X(t)G(t) + p6(G(t)Z(t)−GbZb)

+
u2(t)

V olG
(D.3)

dY (t)

dt
= −pF2Y (t) + pF3I(t) (D.4)

dF (t)

dt
= −p7(F (t)− Fb)− p8Y (t)F (t) + p9(G)(F (t)G(t)− FbGb)

+
u3(t)

V olF
(D.5)

dZ(t)

dt
= −k2Z(t) + k1F (t) (D.6)

Mixed Meal Model:

dNG(t)

dt
= xGGemp(t)− kGNG(t) (D.7)

dNP (t)

dt
= xPGemp(t)− kpNP (t) (D.8)

dNF (t)

dt
= xFGemp(t)− kFNF (t) (D.9)
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u2(t) = kGNG(t) + 0.6kPNP (t) + uGI(t) + 0.6uPI(t) (D.10)

u3(t) = kFNF (t) + uFI(t) (D.11)

Table D.1: Extended minimal model with mixed meal model parameters

Parameters Value Unit Parameters Value Unit

p1 0.06 min−1 pF1 0.17 min−1

p2 0.037 min−1 pF2 10−5 min−1

p3 0.12 ∗ 10−4 min−1 n 0.142 min−1

p4 1.3 ml
min∗µU Gb 98 mg

dL

p5 0.568 ∗ 10−3 mL−1 Fb 380 µmol
L

p6 0.6 ∗ 10−4 (min ∗ µmol)−1 V olG 117 dL

p7 0.03 min−1 V olF 11.7 L

p8 4.5 ml
min∗µU kG 0.022 min−1

k9(G) 0.00021e0.0055G dL
min∗mg kp 0.0097 min−1

k1 0.02 min−1 kF 0.015 min−1

k2 0.03 min−1 - - -
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APPENDIX E

CHEMOTHERAPY OPTIMIZATION CODE

E.1 ENUMERATION CODE

/∗ Thang Ho

∗ U n i v e r s i t y o f P i t t s b u r g h

∗ March 04 2014

∗/

//#d e f i n e min(a , b ) ( ( a ) < ( b ) ? ( a ) : ( b ) )

//##d e f i n e max(a , b ) ( ( a ) >= ( b ) ? ( a ) : ( b ) )

#include ” s t d i o . h”

#include ”math . h”

#include<f stream>

#include<iostream>

#include <ctime>

#include<omp . h>

const int NUM THREADS= 16 ;

us ing namespace std ;

stat ic void mdlDerivativesNL (double ∗dx , double ∗x , double ∗u)

{
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double C tumor , C plasma ;

double r c e l l , V ce l l , A tumor , V tumor , e po ro s i t y , k growth 1 ,

k death , r a t i o ;

double E max , EC 50 , k vbm , k bmv , k s c b l , k b l s c , k dgcs f ,

k d ;

double V ven , Bmin , Bmax, kG, BGmax, DGr, DGn, k tr , kN ;

/∗ This a cancer t h e r a p e u t i c model f o r Docetaxe l wi th G−CSF

rescue ∗/

/∗ u [ 0 ] : Docetaxe l In travenous i n f u s i o n ∗/

dx [ 0 ] = 0 . 0 ;

dx [ 1 ] = 0 . 0 ;

dx [ 2 ] = 0 . 0 ;

dx [ 3 ] = 0 . 0 ;

/∗ PYOMO ONLY USES FROM X[ 4 ] TO X[ 1 7 ] ∗/

/∗ drug c o n c e n t r a t i o n in Plasma and tumor∗/

C plasma =(0.01279∗x [ 5 ] −0.06116∗x [ 6 ] +0.09328∗x [ 7 ]

+0.07936∗x [ 8 ] +0.05068∗x [ 9 ] ) ∗0 . 0 2 5 ;

C tumor =(0.1096∗x [ 5 ] −0.02064∗x [ 6 ] −0.09764∗x [ 7 ]

−0.005715∗x [ 8 ] −0.003903∗x [ 9 ] ) ∗0 . 0007 ;

V c e l l =1.0∗pow(10 .0 , −3 .0) ; /∗ml , bas ing the h y p o t h e s i s 10ˆ6

c e l l s =1 L ; ∗/

r c e l l =1.0∗pow ( ( 3 . 0 / ( 4 . 0 ∗ 3 . 1 4 ) ∗V c e l l ) , ( 1 . 0 / 3 . 0 ) ) ; /∗mm∗ ,

Radius o f the c e l l ∗/

e p o r o s i t y =53.57;

A tumor =4.0∗3.14∗ r c e l l ∗ r c e l l ;

V tumor=V c e l l ∗ e p o r o s i t y ;

k growth 1 =.061/24 .0/60 .0 ; /∗1/min∗/

k death =0.00020/24 .0/60 .0 ; /∗1/min∗/
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r a t i o=A tumor/V tumor ;

dx [4 ]= k growth 1 ∗ r a t i o ∗pow ( 1 0 . 0 , ( r a t i o −1.0) / r a t i o ∗x [ 4 ] )−

k death∗ r a t i o ∗pow(10 .0 , (1 .0 − r a t i o ) /( r a t i o ∗ r a t i o )∗x [ 4 ] )

−1.212∗ r a t i o ∗C tumor ;

/∗Docetaxe l Five s t a t e s r e d u c t i o n model from Flor ian e t a l

p h y s i o l o g i c a l l y based model∗/

dx [5]=−0.0003227∗x [ 5 ] −0.0001258∗x [ 6 ] +0.0005422∗x [ 7 ]

−1.825∗pow(10 .0 , −5 .0) ∗x [ 8 ] −1.147∗pow(10 .0 , −5 .0) ∗x [ 9 ]

+0.1104∗u [ 0 ] ;

dx [6 ]=0.0003651∗x [ 5 ] −0.001133∗x [ 6 ] −0.0003706∗x [ 7 ]

+0.00244∗x [ 8 ] +0.001631∗x [ 9 ] −0.06455∗u [ 0 ] ;

dx [7]=−0.000815∗x [ 5 ] +0.004922∗x [ 6 ] −0.01027∗x [ 7 ]

−0.007773∗x [ 8 ] −0.005653∗x [ 9 ] +0.135∗u [ 0 ] ;

dx [8]=−0.0004651∗x [ 5 ] +0.00267∗x [ 6 ] −0.01128∗x [ 7 ]

−0.03372∗x [ 8 ] −0.03837∗x [ 9 ] +0.07957∗u [ 0 ] ;

dx [9 ]= −0.0002971∗x [ 5 ] +0.001775∗x [ 6 ] −0.007655∗x [ 7 ]

−0.03837∗x [ 8 ] −0.1122∗x [ 9 ] +0.05083∗u [ 0 ] ;

/∗N e u t r o p h i l Models ∗/

k s c b l =0.004;

k b l s c =9.5779∗pow(10 .0 , −11 .0) ;

k dgc s f =7.2434∗pow ( 1 0 . 0 , −4.0) ;

k t r =0.00043;

E max=0.0130∗2 .0 ;

EC 50 =0.7873;

k vbm =0.2514∗1 .5 ;

k bmv=0.0802∗(1.0−x [17 ]/ (0 .0005+ x [ 1 7 ] ) ) ;

k d =0.00155;

Bmin =0.0002;
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Bmax= Bmin∗1400 . 0 ;

kG=1.0;

kN=0.05;

BGmax=0.1;

DGr=0.00061297;

DGn=0.0015;

V ven =5.53/2 .0∗1000 .0 ;

/∗Maturation Train∗/

/∗ IL 17 ∗/

dx [10]=BGmax∗kN/(kN+x [ 1 6 ] ) −0.0014∗x [ 1 0 ] ;

/∗GCSF Plasma∗/

dx [11 ]=0.00092174∗x [10]−0.00022174∗x [11]+ k s c b l ∗x [ 1 8 ] ;

/∗Pr∗/

dx [12 ]=(Bmin∗kG + Bmax∗x [ 1 1 ] ) /(kG+x [ 1 1 ] )−E max∗x [ 1 7 ] / ( EC 50+x

[ 1 7 ] ) ∗x [12]− k t r ∗x [ 1 2 ] ;

/∗T 1∗/

dx [13]= k t r ∗x [12]−( k t r )∗x [ 1 3 ] ;

/∗T 2∗/

dx [14]= k t r ∗x [13]− k t r ∗x [ 1 4 ] ;

/∗T 3∗/

dx [15]= k t r ∗x [14]− k t r ∗x [ 1 5 ] ;

/∗N e u t r o p h i l s ∗/

dx [16]= k t r ∗x [15]− k d∗x [ 1 6 ] ;

/∗Bone Marrow∗/

dx[17]=−k bmv∗x [17]+ k vbm∗C plasma ;

/∗G−CSF−t i s s u e ∗/ /∗ Not used in Pyomo code∗/

dx[18]=− k s c b l ∗x [18]− k dgc s f ∗x [ 1 8 ] ; //+u [ 1 ] / V venus ;

}
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int main ( )

{

double s t a r t t i m e = omp get wtime ( ) ;

double Pr =161.945448133839;

double Train =161.945448133839;

double IL 17 =0.0794060143983421;

double GCSF=0.330078919631521;

double NC=44.9268017917568;

double∗ x0 = new double [ 1 9 ] ;

x0 [ 0 ] = 0 . 0 ;

x0 [ 1 ] = 0 . 0 ;

x0 [ 2 ] = 10000 . 0 ;

x0 [ 3 ] = 10000 . 0 ;

x0 [ 4 ] = 1 0 . 0 ;

x0 [ 5 ] = 0 . 0 ;

x0 [ 6 ] = 0 . 0 ;

x0 [ 7 ] = 0 . 0 ;

x0 [ 8 ] = 0 . 0 ;

x0 [ 9 ] = 0 . 0 ;

x0 [ 1 0 ] = IL 17 ;

x0 [ 1 1 ] = GCSF;

x0 [ 1 2 ] = Pr ;

x0 [ 1 3 ] = Train ;

x0 [ 1 4 ] = Train ;

x0 [ 1 5 ] = Train ;

x0 [ 1 6 ] = NC;

x0 [ 1 7 ] = 0 . 0 ;

x0 [ 1 8 ] = 0 . 0 ;
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int h = 1 ; // minutes

long int nSteps = 24∗7∗27∗60/h ;

f s t ream f i l e ;

f i l e . open ( ” Re su l t l o ng 3 . txt ” , i o s : : out ) ;

double d 1 s t a r t = 0 ;

double d1 end = 1 . 0 5 ;

double d 1 i n t e r v a l = 0 . 0 5 ;

unsigned long long d1 po int = ( d1 end − d 1 s t a r t ) / d 1 i n t e r v a l

+1;

double d 2 s t a r t = 0 ;

double d2 end = 1 . 0 5 ;

double d 2 i n t e r v a l = 0 . 0 5 ;

unsigned long long d2 po int = ( d2 end − d 2 s t a r t ) / d 2 i n t e r v a l

+1;

double d 3 s t a r t = 0 ;

double d3 end = 1 . 0 5 ;

double d 3 i n t e r v a l = 0 . 0 5 ;

unsigned long long d3 po int = ( d3 end − d 3 s t a r t ) / d 3 i n t e r v a l

+1;

int t s 1 s t a r t = 0 ;

int t s1 end = 10080 ;

int t s 1 i n t e r v a l = 1440 ;

unsigned long long t s 1 p o i n t = ( t s1 end − t s 1 s t a r t ) /

t s 1 i n t e r v a l +1;
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int t s 2 s t a r t = 0 ;

int t s2 end = 10080 ;

int t s 2 i n t e r v a l = 1440 ;

unsigned long long t s 2 p o i n t = ( t s2 end − t s 2 s t a r t ) /

t s 2 i n t e r v a l +1;

int t s 3 s t a r t = 0 ;

int t s3 end = 10080 ;

int t s 3 i n t e r v a l = 1440 ;

unsigned long long t s 3 p o i n t = ( t s2 end − t s 2 s t a r t ) /

t s 2 i n t e r v a l +1;

unsigned long long N simulat ion = d1 po int ∗ d2 po int ∗ d3 po int ∗

t s 1 p o i n t ∗ t s 2 p o i n t ∗ t s 3 p o i n t ;

double d 1 s t o r e [NUM THREADS] ;

double d 2 s t o r e [NUM THREADS] ;

double d 3 s t o r e [NUM THREADS] ;

double t s 1 s t o r e [NUM THREADS] ;

double t s 2 s t o r e [NUM THREADS] ;

double t s 3 s t o r e [NUM THREADS] ;

double o b j s t o r e [NUM THREADS] ;

for ( int i = 0 ; i< NUM THREADS; i++)

{

d 1 s t o r e [ i ]=0;

d 2 s t o r e [ i ]=0;

d 3 s t o r e [ i ]=0;
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t s 1 s t o r e [ i ]=0;

t s 2 s t o r e [ i ]=0;

t s 3 s t o r e [ i ]=0;

o b j s t o r e [ i ]=1 e8 ;

}

omp set num threads (NUM THREADS) ;

#pragma omp p a r a l l e l for shared ( x0 , d1 s tore , d2 s tore , d3 s tore ,

t s 1 s t o r e , t s 2 s t o r e , t s 3 s t o r e , o b j s t o r e ) f i r s t p r i v a t e ( nSteps

, h , N simulat ion , d1 s ta r t , d1 end , d 1 i n t e r v a l , d1 point ,

d2 s ta r t , d2 end , d 2 i n t e r v a l , d2 point , d3 s ta r t , d3 end ,

d 3 i n t e r v a l , d3 point , t s 1 s t a r t , ts1 end , t s 1 i n t e r v a l ,

t s 1 po in t , t s 2 s t a r t , ts2 end , t s 2 i n t e r v a l , t s 2 po in t , t s 3 s t a r t ,

ts3 end , t s 3 i n t e r v a l , t s 3 p o i n t ) schedu le ( dynamic )

for ( unsigned long long s index = 0 ; s index < N simulat ion ;

s index++){

int TID = omp get thread num ( ) ;

double d1 = d 1 s t a r t + d 1 i n t e r v a l ∗ f l o o r ( ( s index%(d1 po int ∗

d2 po int ∗ d3 po int ∗ t s 1 p o i n t ∗ t s 2 p o i n t ∗ t s 3 p o i n t ) ) /(

d2 po int ∗ d3 po int ∗ t s 1 p o i n t ∗ t s 2 p o i n t ∗ t s 3 p o i n t ) ) ;

double d2 = d 2 s t a r t + d 2 i n t e r v a l ∗ f l o o r ( ( s index%(d2 po int ∗

d3 po int ∗ t s 1 p o i n t ∗ t s 2 p o i n t ∗ t s 3 p o i n t ) ) /( d3 po int ∗

t s 1 p o i n t ∗ t s 2 p o i n t ∗ t s 3 p o i n t ) ) ;

double d3 = d 3 s t a r t + d 3 i n t e r v a l ∗ f l o o r ( ( s index%(d3 po int ∗

t s 1 p o i n t ∗ t s 2 p o i n t ∗ t s 3 p o i n t ) ) /( t s 1 p o i n t ∗ t s 2 p o i n t ∗

t s 3 p o i n t ) ) ;

196



double t s1 = t s 1 s t a r t + t s 1 i n t e r v a l ∗ f l o o r ( ( s index%(

t s 1 p o i n t ∗ t s 2 p o i n t ∗ t s 3 p o i n t ) ) /( t s 2 p o i n t ∗ t s 3 p o i n t ) ) ;

double t s2 = t s 2 s t a r t + t s 2 i n t e r v a l ∗ f l o o r ( ( s index%(

t s 2 p o i n t ∗ t s 3 p o i n t ) ) / t s 3 p o i n t ) ;

double t s3 = t s 3 s t a r t + t s 3 i n t e r v a l ∗ f l o o r ( s index%(

t s 3 p o i n t ) ) ;

double∗ dx = new double [ 1 9 ] ;

double∗ x = new double [ 1 9 ] ;

double∗ u = new double [ 1 ] ;

double∗ x16 day end = new double [ 3 0 ∗ 7 ] ; // the v a l u e o f x

[ 1 6 ] a t the end o f each day , added by yankai

u [ 0 ] = 1 . 0 ;

for ( int j =0; j <19; j++) {

x [ j ] = x0 [ j ] ;

}

bool c o n s t r a i n t v i o l a t e d = f a l s e ;

long int con s e cu t i v e s t ep s be l ow 13p5 = 0 ;

double obj =0.0 ;

for ( int i =0; i<nSteps ; i++) {

i f ( i < 6 0 | | ( i>=30240+ts1 && i <30300+ ts1 ) | | ( i

>=60480+ts1&&i <60540+ ts1 ) | | ( i>=30240∗3+ ts1 &&

i <30240∗3+60+ ts1 ) | |

( i>=30240∗4+ ts1 &&i <30240∗4+60+ ts1 ) | | ( i

>=30240∗5+ ts1 &&i <30240∗5+60+ ts1 ) | | ( i

>=30240∗6+ ts1 &&i <30240∗6+60+ ts1 ) | |
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( i>=30240∗7+ ts1 &&i <30240∗7+60+ ts1 ) ){

u [ 0 ] = d1 ;

}

else i f ( ( i >= 10080+ ts2 && i < 10140+ ts2 ) | | ( i

>=30240+10080+ ts2 && i < 30240+10140+ ts2 ) | | ( i

>=30240∗2+10080+ ts2 && i < 30240∗2+10140+ ts2

) | |

( i >=30240∗3+10080+ ts2 && i <

30240∗3+10140+ ts2 ) | | ( i

>=30240∗4+10080+ ts2 && i <

30240∗4+10140+ ts2 ) | | ( i

>=30240∗5+10080+ ts2 && i <

30240∗5+10140+ ts2 ) | |

( i >=30240∗6+10080+ ts2 && i <

30240∗6+10140+ ts2 ) | | ( i

>=30240∗7+10080+ ts2 && i <

30240∗7+10140+ ts2 ) ){

u [ 0 ] = d2 ;

}

else i f ( ( i >= 20160+ ts3 && i < 20220+ ts3 ) | | ( i

>= 30240+20160+ ts3 && i < 30240+20220+ ts3 ) | | (

i >= 30240∗2+20160+ ts3 && i < 30240∗2+20220+

ts3 ) | |

( i >= 30240∗3+20160+ ts3 && i <

30240∗3+20220+ ts3 ) | | ( i >=

30240∗4+20160+ ts3 && i <

30240∗4+20220+ ts3 ) | | ( i >=

30240∗5+20160+ ts3 && i <

30240∗5+20220+ ts3 ) | |
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( i >= 30240∗6+20160+ ts3 && i <

30240∗6+20220+ ts3 ) | | ( i >=

30240∗7+20160+ ts3 && i <

30240∗7+20220+ ts3 ) ){

u [ 0 ] = d3 ;

}

else {

u [ 0 ] = 0 . 0 ;

}

mdlDerivativesNL (dx , x , u) ;

for ( int j =0; j <19; j++) {

x [ j ] += h∗dx [ j ] ;

}

i f ( ( i ==3000) | | i ==(3000+30240) | | ( i ==3000+30240∗2)

| | ( i ==3000+302040∗3) | | ( i ==3000+30240∗4) | | ( i

==3000+30240∗5) | | ( i ==3000+30240∗6) | | ( i

==3000+30240∗7) ){

obj=obj +10.0∗x [ 4 ] ;

}

i f ( i ==10080|| i ==20160|| i ==30240|| i

==10080+30240|| i ==20160+30240|| i

==30240+30240|| i ==10080+30240∗2|| i

==20160+30240∗2|| i ==30240+30240∗2||

i ==10080+30240∗3|| i ==20160+30240∗3|| i

==30240+30240∗3|| i ==10080+30240∗4|| i

==20160+30240∗4|| i ==30240+30240∗4|| i

==10080+30240∗5|| i ==20160+30240∗5|| i

==30240+30240∗5||
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i ==10080+30240∗6|| i ==20160+30240∗6|| i

==30240+30240∗6|| i ==10080+30240∗7|| i

==20160+30240∗7|| i ==30240+30240∗7) {

obj=obj+x [ 4 ] ;

}

// i f ( x [ 1 6 ] < 13.47) {

// commented by yankai

//// c o n s e c u t i v e s t e p s b e l o w 1 3 p 5 ++;

// }

// e l s e {

// c o n s e c u t i v e s t e p s b e l o w 1 3 p 5 = 0;

// }

int day number = i / 1440 ; // f o r i =0 ,1 , . . . 1439 , i t

i s day 0

i f ( ( i +1) % 1440 == 0 ) // i f i = 1439 1439+1440. . . . a t

the end o f day , added by yankai

{

x16 day end [ day number ] = x [ 1 6 ] ;

i f ( day number >=6)

{

double x16 week sum = x16 day end [ day number ] +

x16 day end [ day number−1] + x16 day end [

day number−2] + x16 day end [ day number−3] +

x16 day end [ day number−4] + x16 day end [

day number−5] + x16 day end [ day number−6] ;

i f ( x16 week sum <4 .49∗3 .0∗7 .0 )

{

// week week con c o n s t r a i n t v i o l a t e d

c o n s t r a i n t v i o l a t e d = true ;
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break ;

}

}

i f ( day number >=7)

{

double x16 plus week ago = x16 day end [

day number ] + x16 day end [ day number−7] ;

i f ( x16 p lus week ago < 4 . 4 9∗3 . 0∗2 . 0 )

{

// week week con c o n s t r a i n t v i o l a t e d

c o n s t r a i n t v i o l a t e d = true ;

break ;

}

}

}

i f ( x [ 1 6 ] < 8 .98 | | ( d1+d2+d3 ) >1.05) {

// c o n s t r a i n t v i o l a t e d

c o n s t r a i n t v i o l a t e d = true ;

break ;

}

}

i f ( c o n s t r a i n t v i o l a t e d ) {

// p r i n t f (”[% l f ,% l f ,% l f ] : Cons tra in t V i o l a t e d \n” ,

d1 , d2 , d3 ) ;

}

else {

obj=obj +5.0∗8.0∗( d1∗d1+d2∗d2+d3∗d3 ) ;
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i f ( obj < o b j s t o r e [ TID ] ) {

d 1 s t o r e [ TID]=d1 ;

d 2 s t o r e [ TID]=d2 ;

d 3 s t o r e [ TID]=d3 ;

t s 1 s t o r e [ TID]= ts1 ;

t s 2 s t o r e [ TID]= ts2 ;

t s 3 s t o r e [ TID]= ts3 ;

o b j s t o r e [ TID ] = obj ;

}

/∗

f i l e <<t s 1 ;

f i l e <<” ” ;

f i l e <<t s 2 ;

f i l e <<” ” ;

f i l e << d1 ;

f i l e <<” ” ;

f i l e <<d2 ;

f i l e <<” ” ;

f i l e <<d3 ;

f i l e <<” ” ;

f i l e <<obj<<end l ;

∗/// I want t h i s to output to a t x t or dat f i l e //

}

d e l e t e [ ] dx ;

d e l e t e [ ] x ;

d e l e t e [ ] u ;

}// p r i n t f (”% l f ,% l f ,% l f , %l f \n” , d1 , d2 , d3 , x [ 4 ] ) ;

for ( int i =0; i< NUM THREADS; i++){
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f i l e <<t s 1 s t o r e [ i ] ;

f i l e <<” ” ;

f i l e <<t s 2 s t o r e [ i ] ;

f i l e <<” ” ;

f i l e << t s 3 s t o r e [ i ] ;

f i l e <<” ” ;

f i l e <<d 1 s t o r e [ i ] ;

f i l e <<” ” ;

f i l e <<d 2 s t o r e [ i ] ;

f i l e <<” ” ;

f i l e <<d 3 s t o r e [ i ] ;

f i l e <<” ” ;

f i l e <<o b j s t o r e [ i ]<<endl ;

}

f i l e . c l o s e ( ) ;

d e l e t e [ ] x0 ;

p r i n t f ( ”yep\n” ) ;

double end time = omp get wtime ( ) ;

s td : : cout << ” time : ” << ( end time−s t a r t t i m e )<<” ( s ) ”<< std : :

endl ;

return 0 ;

}
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E.2 GENERATE DATA FILE FOR PYOMO

clc

clear a l l

close a l l

t ic

warning o f f

A=load ( ’ R e su l t l o ng 3 . txt ’ ) ;

[ Obj , index ]=min(A( : , 7 ) ) ;

B=A( index , : ) ;

mex Cance r ve r s i on 1 . c

Pr =161.945448133839;

Train =161.945448133839;

IL 17 =0.0794060143983421;

GCSF=0.330078919631521;

NC=44.9268017917568;

%I n i t i a l c o n d i t i o n s

x0 =[0 . 0 , 0 . 0 , 10000 ,10000 ,10 , 0 , 0 , 0 , 0 , 0 , IL 17 ,GCSF, Pr , Train , Train ,

Train ,NC, 0 , 0 ] ;

%tspan = [ 0 : 6 0 : 2 4∗6 0∗2 1 ] ’ ;

tspan=zeros (24∗21∗9+1 ,1) ;

tspan (1 ) =0;

for i =1:1:504∗9

tspan ( i ∗3−1)=(0.155+ i −1)∗60 ;

tspan ( i ∗3) =(0.645+ i −1)∗60 ;
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tspan ( i ∗3+1)=i ∗60 ;

end

ts im=tspan ;

u1=zeros ( s ize ( tspan ) ,1 ) ;

for i =1:1 :3

for j =1:8

i f j==1

u1 ( i +504∗3∗( j−1) )=B(4) ;

else

u1 ( i +504∗3∗( j−1)+B(1) /60∗3)=B(4) ;

end

u1 ( i +168∗3+504∗3∗( j−1)+B(2) /60∗3)=B(5) ;

u1 ( i +168∗2∗3+504∗3∗( j−1)+B(3) /60∗3)=B(6) ;

end

end

PARAMETERS=s imset ( ’ I n i t i a l S t a t e ’ , x0 , ’ So lve r ’ , ’ ode15s ’ , ’ MaxStep ’ ,1 ,

’ OutputPoints ’ , ’ s p e c i f i e d ’ ) ;

u=[ tspan , u1 ] ;

%whos

%pause

%u=[ tspan , dose , c o n s t a n t d o s e ] ;

[ t , x , y]= sim ( ’ sim Cancer ’ , tsim ,PARAMETERS, u) ;
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y ( : , 1 3 ) ;

f i d = fopen ( ’ data . py ’ , ’w ’ ) ;

fpr intf ( f i d , ’ x={ ’ ) ;

for i =1:1:504∗9

for j = 5 : 1 : 1 8

i f ( ( i ˜= 504∗9) | | ( j ˜= 18) )

fpr intf ( f i d , ’(%d,%d , 0 ) :%f , ’ , j −1, i −1, y ( i ∗3−1, j ) ) ;

fpr intf ( f i d , ’(%d,%d , 1 ) :%f , ’ , j −1, i −1, y ( i ∗3 , j ) ) ;

fpr intf ( f i d , ’(%d,%d , 2 ) :%f , ’ , j −1, i −1, y ( i ∗3+1, j ) ) ;

else

fpr intf ( f i d , ’(%d,%d , 0 ) :%f , ’ , j −1, i −1, y ( i ∗3−1, j ) ) ;

fpr intf ( f i d , ’(%d,%d , 1 ) :%f , ’ , j −1, i −1, y ( i ∗3 , j ) ) ;

fpr intf ( f i d , ’(%d,%d , 2 ) :% f ’ , j −1, i −1, y ( i ∗3+1, j ) ) ;

end

end

end

fprintf ( f i d , ’ }\n ’ ) ;

fpr intf ( f i d , ’ C plasma={ ’ ) ;

for i =1:1:504∗9

i f i ˜= 504∗9

fpr intf ( f i d , ’(%d , 0 ) :%f , ’ , i −1, y ( i ∗3−1 ,20) ) ;

fpr intf ( f i d , ’(%d , 1 ) :%f , ’ , i −1, y ( i ∗3 ,20) ) ;

fpr intf ( f i d , ’(%d , 2 ) :%f , ’ , i −1, y ( i ∗3+1 ,20) ) ;

else

fpr intf ( f i d , ’(%d , 0 ) :%f , ’ , i −1, y ( i ∗3−1 ,20) ) ;
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fpr intf ( f i d , ’(%d , 1 ) :%f , ’ , i −1, y ( i ∗3 ,20) ) ;

fpr intf ( f i d , ’(%d , 2 ) :% f ’ , i −1, y ( i ∗3+1 ,20) ) ;

end

end

fprintf ( f i d , ’ }\n ’ ) ;

fpr intf ( f i d , ’ C tumor={ ’ ) ;

for i = 1 :1 : 504∗9

i f i ˜= 504∗9

fpr intf ( f i d , ’(%d , 0 ) :%f , ’ , i −1, y ( i ∗3−1 ,21) ) ;

fpr intf ( f i d , ’(%d , 1 ) :%f , ’ , i −1, y ( i ∗3 ,21) ) ;

fpr intf ( f i d , ’(%d , 2 ) :%f , ’ , i −1, y ( i ∗3+1 ,21) ) ;

else

fpr intf ( f i d , ’(%d , 0 ) :%f , ’ , i −1, y ( i ∗3−1 ,21) ) ;

fpr intf ( f i d , ’(%d , 1 ) :%f , ’ , i −1, y ( i ∗3 ,21) ) ;

fpr intf ( f i d , ’(%d , 2 ) :% f ’ , i −1, y ( i ∗3+1 ,21) ) ;

end

end

fprintf ( f i d , ’ }\n ’ ) ;

fc lose ( f i d ) ;

E.3 PYOMO SIMULATION

from coopr . pyomo import ∗

from coopr . opt import So lverFactory

import data

########

### Model D e f i n i t i o n

# Parameter

# Number o f f i n i t e e lements
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nfe= 252∗2∗9

# Number o f c o l l o c a t i o n p o i n t s

ncp=3

FE=range ( n fe )

CP=range ( ncp )

# Total s i m u l a t i o n time

time =30240∗9

V c e l l =1.0∗10.0∗∗−3.0 #ml , bas ing the h y p o t h e s i s 10ˆ6 c e l l s =1 L ;

r c e l l =(3 . 0/ (4 . 0∗3 . 14 ) ∗V c e l l ) ∗∗ ( 1 . 0 / 3 . 0 ) # mm∗ , Radius o f the

c e l l

e p o r o s i t y =53.57

A tumor =4.0∗3.14∗ r c e l l ∗ r c e l l

V tumor=V c e l l ∗ e p o r o s i t y

k growth 1 =0.062/24 .0/60 .0 #1/ day

k death =0.00021/24.0/60.0 #1/ day

r a t i o=A tumor/V tumor

k e f f =1.212∗ r a t i o

EC 50=0.7873

E max=0.0130∗2.0

k s c b l =0.004

k dgc s f =0.00072434

k t r =0.00043

k d =0.00155

Bmin =0.0002

Bmax= Bmin∗1400.0

kG=1.0

kN=0.05

BGmax=0.1

DGr=0.00061297

DGn=0.0015
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V ven =5.53/2 .0∗1000.0

k vbm=0.2514∗1.5

Week range=range (1 ,21∗9−5)

S xRange=range (4 , 18 )

#Week 1 range=range (1 ,168+72+24)

#Week 2 range=range (169+72+24 ,168+168∗2)

#Week 3 range=range (168+168+1 ,168+168∗2)

#S e t t i n g up o b j e c t i v e sampling v e c t o r

Weeks 6 =[167 ,167+168 ,167+168∗2 ,167+168∗3 ,167+168∗4 ,167+168∗5 ,

167+168∗6 , 167+168∗7 , 167+168∗8 ,167+168∗9 , 167+168∗10 ,

167+168∗11 , 167+168∗12 , 167+168∗13 , 167+168∗14 , 167+168∗15 ,

167+168∗16 , 167+168∗17 , 167+168∗18 , 167+168∗19 , 167+168∗20 ,

167+168∗21 , 167+168∗22 , 167+168∗23]

Days 21 =[50 , 50+504 , 50+504∗2 , 50+504∗3 , 50+504∗4 , 50+504∗5 ,

50+504∗6 , 50+504∗7]

#S e t t i n g up the t o x i c i t y sampl ing v e c t o r

Weeks range dose={}

for i in range (9 ) :

Weeks range dose [ i ]=range (504∗ i , 504∗ ( i +1) )

Week={}

for i in Week range :

Week [ i ]=[24∗ i −1, 24∗( i +1)−1, 24∗( i +2)−1, 24∗( i +3)−1, 24∗( i +4)

−1, 24∗( i +5)−1, 24∗( i +6)−1]

Day range 7=range (1 ,21∗9−5)

Day={}

for i in Day range 7 :
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Day [ i ]=[24∗ i −1 ,24∗(6+ i )−1]

# I n i t i a l Condit ion

for k in Week range :

i f value (sum( data . x [ 1 6 , i , ncp−1] for i in Week [ k ] ) )

<4 .49∗3 .0∗7 .0 :

print ’ Week range [ ’ , k , ’ ] : ’

for k in Day range 7 :

i f value (sum( data . x [ 1 6 , i , ncp−1] for i in Day [ k ] ) )

<4 .49∗3 .0∗2 .0 :

print ’ Day range [ ’ , k , ’ ] : ’

x0={}

x0 [4 ]=10 .0

x0 [ 5 ]=0 .0

x0 [ 6 ]=0 .0

x0 [ 7 ]=0 .0

x0 [ 8 ]=0 .0

x0 [ 9 ]=0 .0

x0 [10]=0.0794060143983421

x0 [11]=0.330078919631521

x0 [12]=161.945448133839

x0 [13]=161.945448133839

x0 [14]=161.945448133839

x0 [15]=161.945448133839

x0 [16]=44.9268017917568

x0 [17 ]=0 .0

model=ConcreteModel ( )
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a i n i t = {}

a i n i t [ 0 , 0 ] = 0.19681547722366

a i n i t [ 0 , 1 ] = 0.39442431473909

a i n i t [ 0 , 2 ] = 0.37640306270047

a i n i t [ 1 , 0 ] = −0.06553542585020

a i n i t [ 1 , 1 ] = 0.29207341166523

a i n i t [ 1 , 2 ] = 0.51248582618842

a i n i t [ 2 , 0 ] = 0.02377097434822

a i n i t [ 2 , 1 ] = −0.04154875212600

a i n i t [ 2 , 2 ] = 0.11111111111111

model . a = Param(FE,CP, i n i t i a l i z e=a i n i t )

h = [ 6 0 . 0 ] ∗ nfe

def i n i t x (m, n , i , j ) :

return x0 [ n ]

x l bound={}

x u bound={}

# S e t t i n g up the bounds

for i in S xRange :

i f i <10:

x l bound [ i ]=None

x u bound [ i ]=None

else :

x l bound [ i ]=0.0

x u bound [ i ]=None

i f i == 16 :

x l bound [ i ]=4 .49∗2 .0

x u bound [ i ]=None
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def bound x (m, n , i , j ) :

# return [ None , None ]

return [ x l bound [ n ] , x u bound [ n ] ]

model . x=Var ( S xRange ,FE,CP, with in=Reals , i n i t i a l i z e=data . x ,

bounds= bound x )

model . xdot=Var ( S xRange ,FE,CP, i n i t i a l i z e =0.0)

model . C plasma=Var (FE,CP, with in=NonNegativeReals , i n i t i a l i z e =0.0)

model . C tumor=Var (FE,CP, with in=NonNegativeReals , i n i t i a l i z e =0.0)

model . u=Var (FE, with in=NonNegativeReals , bounds =(0.0 , None ) )

### ACTION RULE FIX VARIABLE##

def a c t i o n r u l e 1 ( model ) :

for i in range (0 ,504∗9) :

model . u [ i ] = 0 .0

model . u [ i ] . f i x e d = True

model . u [ 0 ] . f i x e d = False

model . u [ 168+72 ] . f i x e d = False

model . u [ ( 1 6 8 ) ∗2+24] . f i x e d = False

model . u [ 0 ] = 0 .30

model . u [168+72] = 0 .25

model . u [ ( 1 6 8 ) ∗2+24] = 0 .15

for i in range ( 1 , 8 ) :

model . u[0+504∗ i ] . f i x e d = False

model . u[168+72+504∗ i ] . f i x e d = False

model . u [ ( 1 6 8 ) ∗2+24+504∗ i ] . f i x e d = False

model . u[0+504∗ i ] = 0 .30
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model . u[168+72+504∗ i ] = 0 .25

model . u [ ( 1 6 8 ) ∗2+24+504∗ i ] = 0 .15

model . a c t i o n 1 = Bui ldAction ( r u l e = a c t i o n r u l e 1 )

# I n i t i a l i z e Simulat ion

def a c t i o n i n i t i a l ( model ) :

for i in FE:

for j in CP:

model . xdot [ 4 , i , j ]= r a t i o ∗k growth 1 ∗pow( 1 0 . 0 , ( r a t i o

−1.0) / r a t i o ∗data . x [ 4 , i , j ] )−r a t i o ∗k death∗pow

(10 .0 , (1 .0 − r a t i o ) /( r a t i o ∗ r a t i o )∗data . x [ 4 , i , j ] )−

k e f f ∗data . C tumor [ i , j ]

model . xdot [ 5 , i , j ]= −0.0003227∗ data . x [ 5 , i , j ] −

0.0001258∗ data . x [ 6 , i , j ] − 0.0003706∗ data . x [ 7 , i , j ] +

0.00244∗ data . x [ 8 , i , j ]− 1 .147 e−5∗data . x [ 9 , i , j ]+

0.1104∗ value ( model . u [ i ] )

model . xdot [ 6 , i , j ]= 0.0003651∗ data . x [ 5 , i , j ] − 0.001133∗

data . x [ 6 , i , j ] − 0.0003706∗ data . x [ 7 , i , j ] + 0.00244∗

data . x [ 8 , i , j ] + 0.001631∗ data . x [ 9 , i , j ] − 0.06455∗

value ( model . u [ i ] )

model . xdot [ 7 , i , j ]=−0.000815∗ data . x [ 5 , i , j ] + 0.004922∗

data . x [ 6 , i , j ] − 0.01027∗ data . x [ 7 , i , j ] − 0.007773∗

data . x [ 8 , i , j ] − 0.005653∗ data . x [ 9 , i , j ] + 0.135∗

value ( model . u [ i ] )

model . xdot [ 8 , i , j ]=−0.0004651∗ data . x [ 5 , i , j ] + 0.00267∗

data . x [ 6 , i , j ] − 0.01128∗ data . x [ 7 , i , j ] − 0.03372∗

data . x [ 8 , i , j ] − 0.03837∗ data . x [ 9 , i , j ] + 0.07957∗

value ( model . u [ i ] )

model . xdot [ 9 , i , j ]=−0.0002971∗ data . x [ 5 , i , j ] + 0.001775∗

data . x [ 6 , i , j ] − 0.007655∗ data . x [ 7 , i , j ] − 0.03837∗
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data . x [ 8 , i , j ] − 0.1122∗ data . x [ 9 , i , j ] + 0.05083∗

value ( model . u [ i ] )

model . xdot [ 1 0 , i , j ]=(BGmax∗kN/(kN+data . x [ 1 6 , i , j ] )

−0.0014∗data . x [ 1 0 , i , j ] )

model . xdot [ 1 1 , i , j ]=(0.00092174∗ data . x [ 1 0 , i , j

]−0.00022174∗ data . x [ 1 1 , i , j ] )

model . xdot [ 1 2 , i , j ]=((Bmin∗kG + Bmax∗data . x [ 1 1 , i , j ] ) /(

kG+data . x [ 1 1 , i , j ] )−k t r ∗data . x [ 1 2 , i , j ]−E max∗data . x

[ 1 7 , i , j ] / ( EC 50+data . x [ 1 7 , i , j ] ) ∗data . x [ 1 2 , i , j ] )

model . xdot [ 1 3 , i , j ]= k t r ∗data . x [ 1 2 , i , j ]− k t r ∗data . x [ 1 3 ,

i , j ]

model . xdot [ 1 4 , i , j ]= k t r ∗data . x [ 1 3 , i , j ]− k t r ∗data . x [ 1 4 ,

i , j ]

model . xdot [ 1 5 , i , j ]= k t r ∗data . x [ 1 4 , i , j ]− k t r ∗data . x [ 1 5 ,

i , j ]

model . xdot [ 1 6 , i , j ]= k t r ∗data . x [ 1 5 , i , j ]−k d∗data . x [ 1 6 ,

i , j ]

model . xdot [ 1 7 , i , j ]= (k vbm∗data . C plasma [ i , j ]−0.0802∗

data . x [ 1 7 , i , j ]∗(1.0− data . x [ 1 7 , i , j ]/(0 .0005+ data . x

[ 1 7 , i , j ] ) ) )

model . a c t i o n 2=Bui ldAction ( r u l e = a c t i o n i n i t i a l )

# S e t t i n g up Model

def C plasma cal (m, i , j ) :

return m. C plasma [ i , j ]==(0.01279∗m. x [ 5 , i , j ] − 0.06116∗m. x [ 6 , i ,

j ] + 0.09328∗m. x [ 7 , i , j ] + 0.07936∗m. x [ 8 , i , j ] + 0.05068∗m. x

[ 9 , i , j ] ) ∗0.025

model . C Plasma con=Constra int (FE,CP, r u l e=C plasma cal )
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def C tumor cal (m, i , j ) :

return m. C tumor [ i , j ]==(0.1096∗m. x [ 5 , i , j ] − 0.02064∗m. x [ 6 , i , j ]

− 0.09764∗m. x [ 7 , i , j ] − 0.005715∗m. x [ 8 , i , j ] − 0.003903∗m. x

[ 9 , i , j ] ) ∗0.0007

model . C Tumor con=Constra int (FE,CP, r u l e=C tumor cal )

#### Tumor growth model

def x d o t 4 c a l (m, i , j ) :

return m. xdot [ 4 , i , j ]==(( r a t i o ∗k growth 1 ∗pow( 1 0 . 0 , ( r a t i o −1.0) /

r a t i o ∗m. x [ 4 , i , j ] )−r a t i o ∗k death∗pow(10 .0 , (1 .0 − r a t i o ) /( r a t i o

∗ r a t i o )∗m. x [ 4 , i , j ] )−k e f f ∗m. C tumor [ i , j ] ) )

model . N tumor con=Constra int (FE,CP, r u l e=x d o t 4 c a l )

### Pharamacokinet ics model

def x d o t 5 c a l (m, i , j ) :

return m. xdot [ 5 , i , j ]==−0.0003227∗m. x [ 5 , i , j ] − 0.0001258∗m. x [ 6 , i

, j ] + 0.0005422∗m. x [ 7 , i , j ] − 1 .825 e−5∗m. x [ 8 , i , j ] − 1 .147 e−5∗

m. x [ 9 , i , j ]+ 0.1104∗m. u [ i ]

model . xdot 5 con=Constra int (FE,CP, r u l e=x d o t 5 c a l )

def x d o t 6 c a l (m, i , j ) :

return m. xdot [ 6 , i , j ]== 0.0003651∗m. x [ 5 , i , j ] − 0.001133∗m. x [ 6 , i

, j ] − 0.0003706∗m. x [ 7 , i , j ] + 0.00244∗m. x [ 8 , i , j ] + 0.001631∗

m. x [ 9 , i , j ] − 0.06455∗m. u [ i ]

model . xdot 6 con=Constra int (FE,CP, r u l e=x d o t 6 c a l )

def x d o t 7 c a l (m, i , j ) :

return m. xdot [ 7 , i , j ]==−0.000815∗m. x [ 5 , i , j ] + 0.004922∗m. x [ 6 , i ,

j ] − 0.01027∗m. x [ 7 , i , j ] − 0.007773∗m. x [ 8 , i , j ] − 0.005653∗m.

x [ 9 , i , j ] + 0.135∗m. u [ i ]

model . xdot 7 co=Constra int (FE,CP, r u l e=x d o t 7 c a l )

def x d o t 8 c a l (m, i , j ) :
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return m. xdot [ 8 , i , j ]==−0.0004651∗m. x [ 5 , i , j ] + 0.00267∗m. x [ 6 , i ,

j ] − 0.01128∗m. x [ 7 , i , j ] − 0.03372∗m. x [ 8 , i , j ] − 0.03837∗m. x

[ 9 , i , j ] + 0.07957∗m. u [ i ]

model . xdot 8 con=Constra int (FE,CP, r u l e=x d o t 8 c a l )

def x d o t 9 c a l (m, i , j ) :

return m. xdot [ 9 , i , j ]==−0.0002971∗m. x [ 5 , i , j ] + 0.001775∗m. x [ 6 , i

, j ] − 0.007655∗m. x [ 7 , i , j ] − 0.03837∗m. x [ 8 , i , j ] − 0.1122∗m. x

[ 9 , i , j ] + 0.05083∗m. u [ i ]

model . xdot 9 con=Constra int (FE,CP, r u l e=x d o t 9 c a l )

#### T o x i c i t y model

# IL−17

def x d o t 1 0 c a l (m, i , j ) :

return m. xdot [ 1 0 , i , j ]==(BGmax∗kN/(kN+m. x [ 1 6 , i , j ] ) −0.0014∗m. x

[ 1 0 , i , j ] )

model . xdot 10 con=Constra int (FE,CP, r u l e=x d o t 1 0 c a l )

# G−CSF

def x d o t 1 1 c a l (m, i , j ) :

return m. xdot [ 1 1 , i , j ]==(0.00092174∗m. x [ 1 0 , i , j ]−0.00022174∗m. x

[ 1 1 , i , j ] )#+k s c b l ∗m. x [18 , i , j ] )

model . xdot 11 con=Constra int (FE,CP, r u l e=x d o t 1 1 c a l )

# N e u t r o p h i l s Precursor ( This i s where the t o x i c i t y o f drug a c t s )

def x d o t 1 2 c a l (m, i , j ) :

return m. xdot [ 1 2 , i , j ]==((Bmin∗kG + Bmax∗m. x [ 1 1 , i , j ] ) /(kG+m. x

[ 1 1 , i , j ] )−k t r ∗m. x [ 1 2 , i , j ]−E max∗m. x [ 1 7 , i , j ] / ( EC 50+m. x [ 1 7 ,

i , j ] ) ∗m. x [ 1 2 , i , j ] )

model . xdot 12 con=Constra int (FE,CP, r u l e=x d o t 1 2 c a l )

# Trans i t ion s t a t e 1

def x d o t 1 3 c a l (m, i , j ) :

return m. xdot [ 1 3 , i , j ]==k t r ∗m. x [ 1 2 , i , j ]− k t r ∗m. x [ 1 3 , i , j ]

model . xdot 13 con=Constra int (FE,CP, r u l e=x d o t 1 3 c a l )
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# Trans i t ion s t a t e 2

def x d o t 1 4 c a l (m, i , j ) :

return m. xdot [ 1 4 , i , j ]==k t r ∗m. x [ 1 3 , i , j ]− k t r ∗m. x [ 1 4 , i , j ]

model . xdot 14 con=Constra int (FE,CP, r u l e=x d o t 1 4 c a l )

# T r a n s i s t i o n s t a t e 3

def x d o t 1 5 c a l (m, i , j ) :

return m. xdot [ 1 5 , i , j ]==k t r ∗m. x [ 1 4 , i , j ]− k t r ∗m. x [ 1 5 , i , j ]

model . xdot 15 con=Constra int (FE,CP, r u l e=x d o t 1 5 c a l )

# C i r c u l a t i n g n e u t r o p h i l s ( This i s where the measurement

a v a i l a b l e )

def x d o t 1 6 c a l (m, i , j ) :

return m. xdot [ 1 6 , i , j ]== k t r ∗m. x [ 1 5 , i , j ]−k d∗m. x [ 1 6 , i , j ]

model . xdot 16 con=Constra int (FE,CP, r u l e=x d o t 1 6 c a l )

# drug t o x i c i t y

def x d o t 1 7 c a l (m, i , j ) :

return m. xdot [ 1 7 , i , j ]== (k vbm∗m. C plasma [ i , j ]−0.0802∗m. x [ 1 7 , i

, j ]∗(1.0−m. x [ 1 7 , i , j ]/(0 .0005+m. x [ 1 7 , i , j ] ) ) )

model . xdot 17 con=Constra int (FE,CP, r u l e=x d o t 1 7 c a l )

# Maximum dose per week

def 3 weeks max (m, k ) :

return sum(m. u [ i ] for i in Weeks range dose [ k ] ) <=1.05

#model . weeks 3 con=Constra in t ( range (1) , r u l e= 3 weeks max )

#No T o x i c i t y l e v e l 3 Constra in t

def Neut roph i l s c (m, i , j ) :

return m. x [ 1 6 , i , j ]>= 4.49∗2 . 0

#model . n e u t r o p h i l s c o n=Constra in t (FE,CP, r u l e=N e u t r o p h i l s c )
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#Week to week N e u t r o p h i l Cons tra in t

def week week (m, k ) :

return sum(m. x [ 1 6 , i , ncp−1] for i in Week [ k ] ) >=4.49∗3.0∗7.0

#model . week week con=Constra in t ( Week range , r u l e= week week )

def 7 days (m, k ) :

return sum(m. x [ 1 6 , i , ncp−1] for i in Day [ k ] ) >=4.49∗3.0∗2.0

#model . seven days con=Constra in t ( Day range 7 , r u l e= 7 d a y s )

def f e c o l x r u l e (m, n , i , j ) :

i f i ==0:

return m. x [ n , i , j ]==x0 [ n ] + h [ i ]∗sum(m. a [ k , j ]∗m. xdot [ n , i , k ]

for k in CP)

else :

return m. x [ n , i , j ]==m. x [ n , i −1,ncp−1]+h [ i ]∗sum(m. a [ k , j ]∗m.

xdot [ n , i , k ] for k in CP)

model . f e c o l x =Constra int ( S xRange ,FE,CP, r u l e=f e c o l x r u l e )

#o b j e c t i v e : minimizing dose per week and p e n a l i z e the sma l l dose (

emphasis on the e a r l y tumor e l i m i n a t i o n )

def o b j r u l e (m) :

return \

sum ( (m. x [ 4 , i , ncp−1]) for i in Weeks 6 ) +5.0∗sum(m. u [ i ]∗∗2

for i in FE)

model . c o s t = Object ive ( r u l e=o b j r u l e , s ense=minimize )

opt = SolverFactory ( ’ ipopt ’ , s o l v e r i o=’ n l ’ )

i n s t ance = model . c r e a t e ( )
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i n s t ance . weeks 3 con=Constra int ( range (9 ) , r u l e= 3 weeks max )

in s t ance . week week con=Constra int ( Week range , r u l e= week week )

i n s t ance . seven days con=Constra int ( Day range 7 , r u l e= 7 days )

i n s t ance . p r ep roc e s s ( )

r e s u l t s = opt . s o l v e ( ins tance , k e e p f i l e s=False , t e e=True )

i n s t ance . load ( r e s u l t s )

#i n s t a n c e . x . p p r i n t ( )

# P r i n t i n g r e s u l t

f=open( ” r e s u l t n o g r a d e 4 t h m a x d o s e 1 l o n g 4 . txt ” , ”w” )

for i in FE:

print>>f , model . C tumor [ i , ncp−1] . value , ’ ’ ’ ’ ’ ’ . r j u s t (10) , model .

C plasma [ i , ncp−1] . value , ’ ’ ’ ’ ’ ’ . r j u s t (10) , model . u [ i ] . va lue
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