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ABSTRACT

In many clinical follow-up studies, patients are observed at irregular intervals for more than

one biomarker of disease severity. Although these biomarkers are often meant to measure the

same disease severity, they may differ due to the instruments or reagents used as well as the

scale of measurements. They could show different patterns for treatment because clinicians

prescribe medications based on the severity of disease. Moreover, if these markers are modeled

separately to determine the factors that are associated with disease progression over time

or to predict the event of interest given different treatments, they may yield misleading or

inefficient results. Joint modeling of correlated biomarkers alone or with time-to-event data

leads to efficient results, hence better clinical decisions.

In this study, we have first developed a joint model to analyze multivariate unbalanced

repeatedly measured outcomes of mixed types, in particular, continuous and ordinal outcomes.

Secondly, we have extended the first model to include time-to-event data. The postulated

models assumes that the outcomes are from distributions that are in the exponential family

and hence modeled as a multivariate generalized linear mixed effects model linked through

random effects. The Markov Chain Monte Carlo (MCMC) Bayesian approach is used to

approximate the posterior distribution and draw inference on the parameters. These joint

models provide a flexible framework to account for the hierarchical structure of the highly

unbalanced data as well as the association between the multiple mixed types of outcomes and
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time-to-event. Moreover, the simulation studies show that estimates obtained from the joint

models are consistently less biased and more efficient than those obtained from the separate

models. We applied our models to diabetes data from an observational study.

Diabetes and its associated complications such as heart attack and stroke are of serious

public health concerns across the globe. Proper treatment can help control and prevent the

development of these complications and hence improve the quality of life of millions of people.

This work proposes to efficiently estimate the treatment effect by introducing state-of-the-art

statistical methods. This will help researchers identify effective treatments that can slow

down the disease progression.

Keywords: Diabetes; Generalized Linear Mixed Effects Models; Hierarchical Modeling; Joint

Modeling; Mixed Biomarkers; MCMC; Time-To-Event.
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1.0 INTRODUCTION

In the first part of this dissertation, we present a Bayesian hierarchical joint model of

repeatedly measured continuous and ordinal markers of diseases severity for highly unbalanced

data. The two outcomes are assumed to be from distributions that are in the exponential

family and hence modeled as a multivariate generalized linear mixed effects model linked

through correlated and/or shared random effects. The Markov Chain Monte Carlo (MCMC)

Bayesian approach is used to approximate the posterior distribution and draw inference on

the parameters. In the second part of this dissertation, we extend the joint model to include

time-to-event data. We employ same Bayesian methods for parameter estimation.

This dissertation is organized as follows. In Chapter 1, we give a background to our study

that includes both the clinical and statistical motivation. Chapter 2 shows the methods

for longitudinal data modeling and time-to-event or survival analysis in the univariate and

multivariate settings. We plan to write Chapter 3 and Chapter 4 of this dissertation as

independent papers, and because Chapter 4 builds on Chapter 3, there are likely to be some

repetitions in some sections.

1.1 BACKGROUND

In many clinical studies, more than one biomarker of disease severity is obtained and some

may be easier and cheaper to obtain than others. Although these biomarkers are often meant

to measure the same disease severity, they may differ due to the instruments/reagents used as

well as the scale of measurements. They could show different patterns for treatment because

clinicians prescribe medications based on the severity of disease. Moreover, if these markers
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are modeled separately to determine the factors that are associated with disease progression

over time or to predict the event of interest (i.e., time-to-remission) given different treatments,

they may yield different, misleading or inefficient results. Modeling these markers jointly

while accounting for their correlation is likely to provide more accurate and efficient results.

The motivation for our study is based on data collected retrospectively from medical

registries of diabetic patients in three Ugandan hospitals. These patients were recruited in

the diabetic clinics between January 1992 and December 2004. Diabetes is a progressive

illness occurs when the pancreas does not produce enough insulin or when the body does

not respond properly to varying levels of insulin. This results in increased concentrations of

glucose in the blood, which in turn damages many of the body’s systems, in particular the

blood vessels and nerves. Thus, the amount of glucose in the blood determines the state of

the disease at a point in time. In addition, the amount of glucose in the urine is used to detect

if the individual’s blood glucose level is above the renal threshold of 180 mg/dl. The amount

of glucose in the urine is interpreted using the + symbolic method or the actual amount in

the urine(mg/dl) depending on the manufacturer of the urine glucose reagent strips. That

is, Nil (no urine sugar), +(≈ 100 mg/dl), + + (≈ 250 mg/dl), + + +(≈ 500 mg/dl), and

+ + + + (≈ 1000 mg/dl), respectively. Thus, the two main biomarkers used to determine

the severity of the disease at any given time were blood glucose and urine glucose levels.

Of the two biomarkers, blood glucose which is measured by the fasting plasma glucose test

(FPG) or the oral glucose tolerance test (OGTT) is more accurate and hence recommended

by both the World Health Organization (WHO) and the American Diabetes Association

(ADA). The urine glucose tests to detect Glycosuria/Glucosuria (glucose in urine) are used

as an alternative to blood glucose tests especially in developing countries because they are

fast, do not require many reagents, easy to carry out and generally economical (Carter and

Lema, 2003)[10]. However, the urine glucose test for diabetes may be contaminated by drugs

and individual variations in the renal threshold for glucose. Thus, making a clinical decision

based on a urine test alone may be invalid or misleading.

According to the ADA, normal blood glucose level for diabetics is between 70 and 180 mg/dl.

Specifically, normal fasting blood glucose (before a meal) is between 70 and 130 mg/dl and

after a meal is less than 180 mg/dl. Blood glucose level below 70 mg/dl is referred to as

2



hypoglycemia and above 180 mg/dl is referred to as hyperglycemia. Thus, the clinical interest

is to detect that the blood glucose lies in the normal range of 70-180 mg/dl. Thus, a diabetic

person is said to be well if the blood glucose level is in the normal range. In addition,

having normal blood pressure can circumvent most of the common diabetes complications

that include diabetic retinopathy (which is damage to the back of the eye) and kidney

damage medically known as diabetic nephropathy. Studies have indicated that individuals

with adequately controlled blood pressure possess lower risk of mortality related to diabetes

complications such as heart attack and stroke. Moreover, body mass index (BMI) which is a

measure of body fat, is positively associated with Type 2 diabetes mellitus and hypertension

(high blood pressure). Thus, having normal blood pressure for diabetics is as important as

having good control of blood glucose levels and BMI.

During their hospital visits, the patients in the Ugandan study were periodically tested for

the amount of glucose in the blood or urine or both to determine the severity of the disease

so as to prescribe appropriate medication. Other measures that are associated with diabetes

like diastolic and systolic blood pressure, and body mass index (BMI) were also taken. The

data are highly unbalanced because this was an observational study where patients reported

for checkup at irregular intervals with the number of hospital visits varying from patient

to patient. Specifically, the number of hospital visits per patient varied from 2 to 78 with

a mean of 29 and standard deviation of 15. Out of 1010 patients, 301 were treated with

Sulphonyureas, 299 with Biguanides, 402 with Insulin, and 8 were on diet and exercise at

baseline. Clinically, blood glucose and urine glucose measure the same diabetes severity

although blood glucose is continuous and urine glucose is ordinal with five levels. In addition,

blood glucose, which is expensive to measure is associated with inexpensive biomarkers such

as blood pressure levels and body mass index. Joint modeling of the two markers (blood

glucose and urine glucose) simultaneously will produce efficient estimates because the two

markers are highly correlated. Moreover, a joint model that combines time to normalization

of blood glucose, blood pressure levels, and body mass index will lead to a more optimal way

of caring for diabetic patients. This will be beneficial to the patients, and to the health-care

personnel and institutions.
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Statistically, joint modeling allows for the assessment of the overall impact as well as the

separate and joint effects of a risk factor or treatment on all the outcomes while adjusting for

the correlation that exists between or among these outcomes. Joint modeling avoids multiple

testing by calculating an overall test of the effect of the predictor without having to resort

to ad hoc methods such as Bonferroni adjustment. Overall, joint modeling leads to more

efficient estimates than separate analyses.

The goal of this study is to propose a joint model that handles unbalanced repeatedly

measured outcomes of mixed types and time-to-event. Specifically, we propose to develop

two models:

Aim 1: Joint model for unbalanced repeatedly measured continuous and ordinal outcomes

that are measures of disease severity.

Aim 2: Joint model for repeatedly measured mixed outcomes and time-to-event data.

In the next chapter (Chapter 2), we give a critical review of the literature related to modeling of

longitudinal outcomes of mixed types and time-to-event, and briefly describe our contribution.

Chapters 3 and 4 shows the completed work on Aim 1 and Aim 2, respectively.
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2.0 METHODOLOGICAL REVIEW

Joint modeling of continuous and ordinal response variables are of primary interest in Part 1

(Chapter 3) of this study. The two outcome variables (e.g., urine glucose and blood glucose)

are measured repeatedly on each study participant at the same or varying time-points. The

important feature of our data is that it is highly unbalanced, and therefore, the methods that

handle these kinds of data are of paramount interest. Part 2 (Chapter 4) of this study extends

the joint model in Part 1 (Chapter 3) to include time-to-event. Thus, an understanding

of the treatment effects on both markers over time and time-to-event as well as modeling

the correlation between and/or among them are of interest. In this chapter, methods for

analyzing longitudinal continuous and discrete (binary, ordinal) outcomes, and time-to-event

(separately and jointly) are reviewed. These include marginal, generalized linear mixed effects,

survival, joint modeling of continuous and discrete (binary or ordinal) outcomes, and joint

modeling of longitudinal outcomes and time-to-event.

2.1 METHODS FOR LONGITUDINAL DATA MODELING

In longitudinal or repeated measured studies, the key issues are to capture the change in

a response over time as well as the within subject change or to account for the correlation

between the measurements. In addition, follow-up studies may have staggered entry, dropout,

intermittent missing data, and mistimed visits, which results in unbalanced datasets. Thus,

in longitudinal data analysis, appropriate or realistic methods that handle unbalanced

data should be employed to obtain reliable results. Modern linear mixed effects models

(Laird and Ware, 1982)[57] or generalized estimating equations (Zeger and Liang, 1986)[103]
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approaches accommodate these unbalanced data sets, subject to assumptions about the

missing data mechanism (Little and Rubin, 1987)[62]. Older standard methods for univariate

and multivariate analysis of repeated measures data are more restrictive in that they require

balanced datasets.

2.1.1 Notation

Let yij be the response variable and xij a vector of length p of explanatory variables observed at

the jth time-point, j = 1, . . . , ni on the ith subject, i = 1, . . . , n. The set of repeated outcomes

for subject i are collected into an ni-vector and can be written as y′i = [yi1,yi2, . . . ,yini ]
′,

with mean E(yi) = µi. The set of explanatory variables or covariates are grouped into an

ni × p matrix xi = [x′i1,x
′
i2, . . . ,x

′
ini

]′.

2.1.2 Marginal models

Marginal or population averaged models are widely used in the biomedical sciences and are

very flexible in that they require no distributional assumption for the vector of responses,

only a model for the mean response. They are marginal in that the mean response depends

only on the covariates of interest and not on any random effects. The frequentist estimation

methods, Generalized Estimating equations (GEE) by Liang and Zeger (1986)[60] were

specifically developed for parameter estimation in these models. In case of independent

repeated measurements, the classical score equations for the estimation of β are given as :

Sk(β) =
k∑
i=1

dµi
dβk

ν−1i (yi − µi) = 0 k = 1, . . . , p, (2.1.21)

where β is a vector of unknown regression coefficients and νi is a diagonal matrix with

νij = V ar(yij) on the main diagonal. For longitudinal data, Liang and Zeger (1986)[60]

extended the score equations (2.1.21) to multivariate setting:

k∑
i=1

dµi
dβk

(A
1/2
i Ri(α)A

1/2
i /φ)(yi − µi) = 0, (2.1.22)

where Ri(α) is an ni × ni fully specified “working correlation” matrix which may depend

on a vector of unknown parameters α, which is assumed to be the same for all subjects,
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νi = (A
1/2
i Ri(α)A

1/2
i /φ) is the ”working covariance” matrix for yi , Ai is an ni × ni diagonal

matrix consisting of a function of the mean g(µij) along the main diagonal, and φ is a scale

parameter. The term ”working” is used to imply that the model assumes that the form of the

covariance may not be correctly specified (Zeger and Liang, 1986)[103]. The GEE estimator

of β is the solution to
k∑
i=1

dµi
dβk

(A
1/2
i Ri(α̂)A

1/2
i /φ̂)(yi − µi) = 0, (2.1.23)

where α̂ and φ̂ are consistent estimates of α and φ, respectively. The solution to Equation 2.1.41

is obtained via iteratively weighted least squares method (for more details see McCullagh

and Nelder, 1983[68]).

The strength of the GEE method is that it is robust to the choice of the “working

correlation” structure and only requires that the mean response be correctly specified. This

robustness property holds if data are complete or missing completely at random (MCAR)

(Rubin, 1976)[81]. A major limitation is that the GEE approach is not a likelihood-based

method and hence it is difficult to determine the goodness of fit, compare models, and to

draw statistical conclusions on the model parameters.

2.1.3 Generalized linear mixed effects model (GLMM)

In Section 2.1.2 we introduced marginal models where the GEE accounts for the within

individual correlation. Alternatively, random effects are incorporated into the mean model

to account for the association between repeated measurements within an individual. The

difference between random effects and marginal models is that the latter is population-specific

while random effects are subject-specific. Marginally, conditional on the random effects, the

repeated measurements within an individual are assumed to be independent observations

from a distribution belonging to the exponential family. This is known as the “conditional

independence assumption” (Laird and Ware, 1982)[57]. In general, the model with random

effects (i.e., Generalized linear mixed effects model) has three parts:

1. The conditional distribution of the jth response yij, given a vector of random effects bi

belongs to the exponential family, V ar(yij|bi) = V ar{E[yij|bi]}φ is a function of the

conditional mean, where φ is a scale parameter, and given bi the y′ijs are independent.
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2. The conditional mean depends on fixed covariates and random effects through the linear

predictor: ηij = x′ijβ + z′ijbi with g{E(yij|bi)} = ηij = x′ijβ + z′ijbi for a pre-specified

link function, g(.).

3. The random effects are assumed to have a multivariate distribution with mean vector 0

and q × q covariance matrix G and independent of the covariates.

2.1.4 Estimation in Generalized Linear Mixed Models

In contrast with marginal models the joint distribution of the vector of responses and the

vector of random effects is fully specified, hence inference and estimation are based on the

likelihood function. Based on the conditional independence assumption, the joint distribution

of the response yi and the random effects, bi can be written as

f(yi|bi) =
n∏
i=1

f(yi|bi)f(bi). (2.1.41)

The frequentist maximum likelihood estimates are then obtained by integrating out or

averaging over the unobserved random effects bi from (2.1.41) to obtain the marginal

likelihood which does not depend on bi (Equation 2.1.42):

L(β, φ,G) =
n∏
i=1

∫
f(yi|bi)f(bi)dbi, (2.1.42)

The maximum likelihood (ML) estimates are therefore the estimates of G, β and φ that

maximize Equation 2.1.42. In most cases, the likelihood in (2.1.42) can not be evaluated

analytically, therefore, numerical approximations are required. Numerical iterative methods

such as the Newton-Raphson (NR) method, the Fisher scoring method, and the EM and

modified EM algorithms are employed to obtain the ML estimates. The NR method is faster

but very sensitive to starting values hence unstable compared to EM algorithms. All in all,

these methods are analytically and computationally very intensive. In the next section, we

introduce the Bayesian Markov Chain Monte Carlo (MCMC) methods of estimation that are

computationally easier.
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2.1.5 Bayesian Methods

In the Bayesian approach, the unknown parameters are treated as random quantities, and

therefore assigned a prior probability distribution that describes the uncertainty about the

parameter values. Bayesian inferences are then based on the posterior distribution, the

conditional probability distribution of the parameters of interest θ, given the observed data

y. The posterior distribution is given by

π(θ|y) =
L(θ|y)π(θ)∫∞

0
π(θ)L(θ|y)dθ

, (2.1.51)

where π(θ) is the prior distribution of θ and L(θ|y) is the likelihood function. By ignoring

the normalizing constant (denominator) in 2.1.51, the posterior distribution is

π(θ|y) ∝ L(θ|y)π(θ),

which is a function of the likelihood and prior information/distribution. Originally, the EM

and modified algorithms were employed in Bayesian estimations but they can only estimate

the posterior mode and because Bayesian functions are more complex with inclusion of prior

distribution, these estimation methods made Bayesian methods very unattractive. However,

the introduction of MCMC methods has made Bayesian methods very appealing.

The MCMC methodology provides enormous scope for realistic statistical modeling of com-

plex models because they do not use direct integration methods such as Gaussian quadrature

and Laplace approximation (Tierney and Kadane,1986[91]; Shun and McCullagh,1995[84]),

which are computationally very intensive. The MCMC methods simulate direct draws from

some complex distribution of interest, where previous sample values are used to randomly

generate the next sample value, generating a Markov chain (as the transition probabilities

between samples values are only a function of the most recent sample value). From the

Markov chain theory, this chain in the long run converges to a stationary or equilibrium

distribution which is precisely the posterior distribution. There are many ways of constructing

these chains, but most of them, including the Gibbs sampler (Geman and Geman, 1984[29];

Gelfand and Smith,1990[23]), are special cases of the general framework of Metropolis et al.

(1953)[70] and Hastings (1970)[35]. Many MCMC algorithms are hybrids or generalizations

of the simplest methods: the Gibbs sampler and the Metropolis-Hasting algorithm.

9



2.1.5.1 The Gibbs Sampler Many statistical applications of MCMC have used the

Gibbs sampler, which is easy to implement. Gelfand and Smith (1990)[23] gave an overview,

and suggested the approach for Bayesian computation. The Gibbs sampling algorithm is

described as follows: Let θ = (θ1, . . . , θq) be the parameters in the model of interest p(θ). Given

an arbitrary set of initial values θ0 =
(
θ01, . . . , θ

0
q

)
, we draw θ

(1)
1 from conditional distribution

P
(
θ1|θ(0)2 , . . . , θ

(0)
q

)
, then θ

(1)
2 from conditional distribution P

(
θ2|θ(1)1 , θ

(0)
3 , . . . , θ

(0)
q

)
and so

on up to θ
(1)
q from P

(
θq|θ(1)1 , . . . , θ

(1)
q−1

)
to complete one iteration of the scheme. This scheme

is a Markov chain, with equilibrium distribution p(θ) . After t such iterations, we would

arrive at the tth value θ(t) =
(
θ
(t)
1 , θ

(t)
2 , . . . , θ

(t)
q

)
. Thus, for t large enough, θ(t) can be viewed

as a simulated observation from p(θ). In essence, sampling long enough from this scheme will

result in sampling from the posterior distribution itself. So, after discarding an initial set of

samples (called burn-in) the remaining samples constitute the posterior sample from which

all inferences can be drawn.

2.1.5.2 The Metropolis-Hasting algorithm Although, the Gibbs sampler works well

for complex hierarchical models, it is limited to sampling from the full conditionals. When

the conditional distribution is not in closed form, a more general and powerful algorithm

is the Metropolis-Hastings (MH) algorithm formulated by Hastings (1970)[35], which is a

generalization of the method first proposed by Metropolis et al. (1953)[70]. This algorithm

also constructs a Markov Chain, but does not necessarily care about full conditionals. Let

p(θ) be the distribution of interest but suppose it is hard to sample from. Suppose at time

t, θt+1 is chosen by first sampling a candidate point v from a proposal distribution q(·|θt),

which is easy to sample from. The candidate v is accepted with probability

α(θ, v) = min

(
1,
p(v)q(θ|v)

p(θ)q(v|θ)

)

If the candidate point is accepted, the next state becomes θt+1 = v. If it is rejected, the

chain does not move. The proposal distribution can be any kind of continuous probability

density, however, empirical evidence suggests that the more it incorporates the structure

of the problem the faster is the convergence. Several possible proposals are discussed and
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compared by Tierney (1994)[90]. Again, for large enough t and sufficient burn-in period, the

stationary distribution of the chain will be p(θ).

2.1.5.3 Other sampling schemes In addition to these algorithms in pure form, a

number of hybrid schemes are available. For instance, one such scheme consists of combining

the Metropolis steps within the Gibbs sampler (Muller, 1991)[71] when the full conditionals

are formed but difficult to sample from. Here, a Metropolis step can be used to draw

samples from p(θ) by forming proposal densities q(θ|v) and acceptance probabilities α(θ, v)

based on the proposal and conditional posterior distributions of each parameter of interest.

In addition, several algorithms have been developed to improve the convergence of the

MCMC iterations. These include blocking of components (Liu et al.,1994; Cowles,1996;

Gamerman,1997)[63, 13, 20]. Gamerman [20], notes that for Gibbs sampler in pure forms

blocking correlated quantities generally speeds up convergence but the same is not necessarily

true for the Metropolis-Hastings algorithms. Accordingly, he developed an MCMC approach

that uses Metropolis-Hasting algorithm to sample from the posterior distributions of blocks

of correlated parameters (based on their conditional independence structure), which we adopt

in our study. This approach incorporates the structure of the model, that is, the form of

the likelihood and prior, leading to an algorithm requiring a single iterative procedure. In

addition, prior distributions for the regression coefficients and random effects distribution

are not restricted to normality with non-informative cases providing a link with frequentist

approaches. The resulting inference is based on samples from the posterior distribution of

all model parameters and standard assessments such as parameter significance and residual

analysis can be made without having to resort to asymptotic normality results.

2.2 METHODS FOR SURVIVAL ANALYSIS

In survival analysis, the exact survival times of the subjects are not known in most cases.

These are called censored observations or censored times which require special statistical

techniques to handle them. There are different forms of censoring but the most common form

11



is right-censoring where an individual may withdraw from the study, be lost to follow-up, or

for economic or practical reasons it may require that the study ends before the outcome has

occurred. This is the censoring we are concerned about in this study.

2.2.1 Notation

Let Ti = min(T ∗i , Ci) be the failure time and δi = I(T ∗i ≤ Ci) an event indicator which

indicates whether the observed failure time is a true failure time, T ∗i , or a censoring time Ci

for the ith individual. In addition, let xi
′ = (xi1, xi2, · · · , xip) be a vector of baseline covariates

associated with the ith individual.

2.2.2 Likelihood for Right Censored Data

Given that xi
′ and the pairs of random variables (Ti, δi), i = 1, · · · , n, are independent, the

likelihood for (Ti, δi) conditional on xi
′ can be expressed as:

L(θ) ∝
n∏
i=1

f(ti, θ, xi)
δiS(ti, θ, xi)

1−δi , (2.2.21)

where θ are the parameters to be estimated, f(ti, θ, xi) is the probability density function for

a failure time, and S(ti, θ, xi) is the survival distribution for censored time. Because we can

write f(ti, θ, xi) = h(ti, θ, xi)S(ti, θ, xi) and S(ti, θ, xi) = exp{−H(ti, θ, xi)} the likelihood

(2.2.21) can written as

L(θ) ∝
n∏
i=1

h(ti, θ, xi)
δi exp{−H(ti, θ, xi)}, (2.2.22)

where h(ti, θ, xi) and H(ti, θ, xi) are the hazard and cumulative hazard functions for the ith

individual, respectively. Simplifying (2.2.22) further gives the likelihood as

L(θ) ∝
n∏
i=1

h(ti, θ, xi)
δi exp

− ti∫
0

h(s, θ, xi)ds

 . (2.2.23)
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2.2.3 Cox proportional hazard model

The Cox proportional hazards model developed by Cox in 1972 is the most widely used

analytic tool for survival analysis [14]. This model has a strong assumption called the

“proportional hazard assumption” which is often violated. The class of accelerated failure

time models is an alternative when the proportionality assumption does not hold. Under the

proportional hazard assumption, the hazard function for the ith individual is

hi(t) = h0(t) exp (x′iβ) , (2.2.31)

where β is the vector of regression coefficients and h0(t) is the baseline hazard, which can be

fully parametric, or left unspecified. Maximum likelihood estimates of β in Equation 2.2.31

are obtained from the Cox’s partial likelihood function, L(β)(2.2.32), assuming independence

of failure times.

L(β) =
D∏
j=1

exp
(
x′jβ
)∑

l∈Rj
exp (x′lβ)

, (2.2.32)

where D is the number distinct event times, Rj is called the risk set (individuals who are at

risk at time j), and xj denotes the p× 1 vector of covariates for the individual who has the

event at time j. The estimator β̂ has been shown to be a consistent estimator for β and is

asymptotically normal as the marginal models are correctly specified (Lin, 1994 [61]). The

partial likelhood 2.2.32 can be extended to include time-dependent covariates and rewritten

as

L(β) =
D∏
j=1

exp
(
x′j (tj) β

)∑
l∈Rj

exp (x′l (tl) β)
, (2.2.33)

which can be maximized by iterative techniques, such as the Newton Raphson algorithm but

the Bayesian MCMC methods work best. However, this would imply complete knowledge

of the covariate at each unique event time, which is problematic when one would wish to

include a covariate measured longitudinally over time and examine its effect on an outcome.

The solution to this problem is one of our main goals for this study (see Chapter 4).
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2.2.4 Frailty Models

In the traditional survival analysis models, observations are assumed to be heterogeneous

and the population they come from is assumed to be homogeneous with respect to failure.

In a situation where this is questionable i.e., where some members are more failure-prone

(frail) than others due to unobserved heterogeneity, these models can lead to under- or

over-estimated standard errors of estimates.

Frailties are unobserved effects or unmeasurable genetic factors of an individual (individual-

specific or unshared) or shared by all members of the cluster or group (group-specific or

shared). Hougaard (1995)[47] pointed out that the impact of unmeasured covariates can

lead to transformation of the hazard function and the coefficients of the measured covariates.

There is also strong evidence that the hazard functions often converge in contradiction to the

proportional hazards assumption of the traditional Cox model. Thus, an introduction of a

frailty parameter in the traditional model to handle dependence between survival times is

much realistic (Keiding et al., 1997 [55] and Vaupel et al., 1979 [95]). The hazard for the jth

subject in ith cluster or subgroup, given the frailty wi = (wi1, · · · , wini)′, is defined as

hij(t) = h0(t) exp
(
σwi + x′ijβ

)
, i = 1, · · · , G, j = 1, · · · , ni, (2.2.41)

where h0(t) is an arbitrary baseline hazard rate, σ is a vector of parameters associated with

the frailties, xij is a vector of covariates, and β is the vector of coefficients. The frailties

are assumed to be from some distribution with mean zero and variance 1. The Gamma

distribution is the most common (where wij = 1, i.e., exp(σ) ∼ gamma(ζ, ζ) ) due to its

mathematical convenience but other distributions like Uniform, inverse Gaussian and Log-

normal can be considered. We note that when σ = 0 2.2.41 reduces to the proportional

hazards model 2.2.31.

Alternatively, 2.2.41 can be written as

hij(t) = h0(t)wi exp
(
x′ijβ

)
, i = 1, · · · , G, j = 1, · · · , ni. (2.2.42)

From 2.2.42, it is clearly seen that when wi > 1 individuals within a given group tend to

fail faster than those with wi < 1. Because the w′is are unobserved, estimation methods in

GLMM (Sections 2.1.4 and 2.1.5) are employed to estimate the parameters in frailty models.
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2.2.5 Common Parametric Survival Distributions

While in a Cox model (nonparametric), h0(t) is left unparameterized, in the parametric

approach a functional form for h0(t) is specified. The only requirement is that the survival

distribution be bounded between 0 (S(∞) = 0) and 1 (S(0) = 1). For instance, if

h0(t) = exp(α),

for some α then we have an exponential distribution. Here the baseline hazard is assumed

constant over time. If we assume

h0(t) = λtλ exp(α),

then we have the Weibull model (see Klein and Moeschberger[56] for a more distributions).

Parameter estimation in parametric models is much easier than in semi-parametric ones. By

assigning prior distributions to parameters, the Bayesian methods in Section 2.1.5 are also

employed to estimate parameters by sampling from their respective full conditionals.

2.3 JOINT MODELING

In Sections 2.1 and 2.2, we introduced the general methods for modeling longitudinal and

survival data in a univariate setting, respectively. However, in biomedical studies where more

than one biomarker of the disease is measured over time on each individual as well as a set

of random times at which events of interest occur (time-to-event), joint modeling of either

longitudinal biomarkers together or longitudinal biomarker(s) with time-to-event has been

employed to improve the efficiency of the parameter estimates as they tend to account for

the variability that exists between or among the different processes.

2.3.1 Joint modeling of multiple longitudinal outcomes of mixed types

Joint modeling of longitudinal outcomes of mixed types has been shown to lead to efficient

estimates. For instance, Guerguieva and Sanacora (2006)[33] who studied joint models of

repeatedly observed continuous and ordinal measures of the same underlying disease severity

noted that when the trajectories over time may be related but measure distinct underlying
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trends, separate analyses may be more appropriate. However, accounting for the associations

between various outcomes through joint modeling leads to more efficient estimates compared

to separate analyses. Similar results were observed by McCulloch (2008)[69] who showed that

joint modeling leads to efficiency gain while separate analyses of mixed types longitudinal

outcomes can be inefficient. Also, when the data on one of the outcomes are more complete

than another then joint modeling can accommodate data that are missing at random instead

of the stronger assumption of missing completely at random (MCAR).

Several approaches have been proposed to jointly model multiple outcomes of mixed

types but there are two key approaches. The first approach uses the product of marginal

and conditional distributions. Letting y1 and y2 represent the continuous and discrete

outcome, respectively. Using the product of marginal and conditional distributions, the joint

distribution of y1 and y2 can be written as

f(y1,y2) = f(y1)f(y2|y1) = f(y2)f(y1|y2).

In this formulation, it is possible to have different results depending on whether the condi-

tioning variable is discrete or continuous. A major drawback of this method is that it is hard

to get easy expressions for the association between both continuous and discrete outcomes,

and it does not directly lead to marginal inference. In addition, in case of more than two

outcomes, there will be many more possible factorizations instead of only the two associated

with two outcomes. In this regard, the conditional model may not be the best choice in high

dimensional longitudinal data.

The second approach is that of random effects. In this method, different outcomes are

joined by imposing a common distribution for their random effects. These can be shared

(i.e., bi2 = γbi1) where bi2 is assumed proportional to bi1 with a restrictive correlation

structure between the two outcomes or correlated where bi1 and bi2 are assumed to follow a

multivariate distribution with a nonrestrictive covariance structure, which can be unstructured,

Toeplitz, exchangeable, etc. In general, the correlated random effects model allows for flexible

correlation structure but it has a disadvantage of high-dimensional vector of random effects

as the number of outcome variables gets large.

Catalano and Ryan (1992)[12] used the concept of a latent variable to derive the joint

distribution of a continuous and binary outcome for clustered data. The joint distribution
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was a product of a standard random effects model for the continuous variable and a correlated

Probit model for the discrete (binary) variable. Thus, they considered a linear regression

mode1 (2.3.11) on the latent variable yij:

yij = β0 + β1di + εij, εij ∼ N(0, σ2), (2.3.11)

where di is a vector of covariates for the ith individual. The observed binary variable y∗ij and

the latent variable yij are such that:

y∗ij =

 1 if yij > 0

0 if yij ≤ 0,
(2.3.12)

Then from the normal model (2.3.11), it follows that y∗ij follows a probit model

P (y∗ij = 1|di) = Φ

(
β0 + β1di

σ

)
(2.3.13)

They considered the bivariate model (2.3.14) for the observed continuous variable y1ij and

unobserved latent variable y2ij:

y1ij = α0 + α1di + ε1ij

y2ij = β0 + β1di + ε2ij
(2.3.14)

where,

εij =

 ε1ij

ε2ij

 ∼ N

 0

0

 ,

 σ2
1 τσ1σ2

τσ1σ2 σ2
2

 .

And a probit model (2.3.15) for the unobserved latent variable y∗2

P (y∗2ij = 1|di) = Φ

(
β0 + β1di

σ

)
(2.3.15)

The joint distribution of the observed continuous y1ij and observed binary y∗2ij was formed as

a product of marginal and conditional distributions,

fy1ij ,y∗2ij(y1, y
∗
2) = fy1ij(y1)fy∗2ij(y

∗
2|y1),

The two processes were linked through the residual errors. Parameter estimation was done

in two steps using Generalized Estimating equations (Liang and Zeger, 1986; and Zeger

and Liang, 1986)[60, 103]. In the first step they estimated the parameters of the marginal
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distribution and in the second step they estimated the parameters of the correlated probit

model. Catalano (1997)[11] extended this approach to jointly model continuous and ordinal

outcomes, where the ordinal response was modeled using a correlated Probit model.

Fitzmaurice and Laird (1995)[19] also used the same product method to jointly model

binary and continuous outcomes with clustering but conditioned on the discrete outcome.

They assumed a Bernoulli distribution for the binary response Yi and a Gaussian distribution

for the continuous response Xi. The joint model was a product of marginal distribution of

binary and conditional distribution of the continuous response, i.e.,

fXi,Yi
(xi,yi) = fYi

(yi)fXi|Yi
(xi|yi).

The marginal distribution of the binary response was related to covariates using a logit

link function, whereas the conditional distribution of the continuous response was related

to covariates using a linear link function with a conditional mean that depends on the

binary response. Thus, this dependence induced association or correlation between the two

responses. The parameters were estimated using GEE (Liang and Zeger, 1986)[60]. Here,

the regression parameters have a marginal interpretation because the models do not include

random (subject–specific) effects.

Furthermore, Gueorguieva and Agresti (2001)[32] proposed a correlated probit model for

joint modeling of clustered binary and continuous responses by employing a linear mixed

effects model for the continuous observed and unobserved latent variable as suggested by

Catalano and Ryan [12] but instead modeled the two outcomes through shared random effects.

In addition, they used Monte Carlo Expectation-Conditional maximization (ECM) algorithm

which is a modification of EM algorithm for parameter estimation. While Gueorguieva and

Sanocora (2006)[33] extended the method of Gueorguieva and Agresti to model the ordinal

and continuous responses. These models were rewritten so as to be fit using maximum

likelihood with standard software using procedures like NLMIXED in SAS or GLLAMM in

STATA.

In summary, other than Fitzmaurice and Laird who modeled the binary outcome as a

Bernoulli linked to its covariates by a logit link and the continuous outcome as a Gaussian

with a linear link function, the other authors employed the latent variable approach where the
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binary/ordinal observed response is modeled with a Probit/correlated Probit model and its

underlying latent continuous variable and the observed continuous response with linear mixed

effects model. This enabled the two responses to be modeled jointly as a bivariate normal,

linked through either correlated residual errors or shared random effects. However, much as

the Probit and Logistic models are both used in modeling binary or ordinal data and both

have symmetric S-shape cumulative distributions, the logistic places more probability in the

tails than does the Probit and hence more stable when dealing with outlying data. In addition,

the logistic link function is more popular in the biomedical field and the interpretation is

easier than the probit link function.

2.3.2 Joint modeling of longitudinal outcomes and time-to-event

In Section 2.3.1, we gave a review of literature in relation to joint modeling of longitudinal

outcomes of mixed types, however, the concept of joint modeling has been widely used in

simultaneous modeling of longitudinal outcomes and time-to-event data. The goal of joint

modeling in this context include (1) Modeling the distribution of the time to a terminal

event conditional on a longitudinal measurement sequence. This kind of modeling was first

used in AIDS research, where CD4 cell count or estimated viral load was used to predict

the time to onset of clinical AIDs (e.g. Tsiatis, DeGruttola, and Wulfsohn, 1995)[94]. The

primary interest here was in survival time but the longitudinal measurements were used as

time-varying covariate. (2) Adjusting inference about a longitudinal measurement sequence

to allow for informative dropout. That is, the absence of longitudinal observations beyond

the event time is a form of non-ignorable missingness, so that a joint distribution is specified

for the longitudinal and missingness (survival) processes (e.g. Hu and Sale, 2003)[48]. (3)

Modeling the joint evaluation of a measurement and an event-time process. For instance, in

the Diabetes study, our interest is to model jointly the time to when blood glucose reaches

normal range and the longitudinal evolution of cheaply measured markers that are associated

with diabetes progression such as systolic and diastolic blood pressure and body mass index

(BMI).

19



Joint models that combine the longitudinal and time-to-event processes have been widely

studied by different authors. Hogan and Laird (1997a)[44], Tsiatis and Davidian (2004)[93],

and Ibrahim, Chen, and Sinha (2001, Chapter 7)[51] give a detailed discussion of joint

modeling. Pawitan and Self (1993)[73], DeGruttola and Tu (1994)[16], Tsiatis, DeGruttola,

and Wulfsohn (1995)[94], Faucett and Thomas (1996)[18], Lavalley and De Gruttola (1996)[58],

Wulfsohn and Tsiatis (1997)[100], Henderson, Diggle, and Dobson (2000)[42], Xu and Zeger

(2001a)[101], Tsiatis and Davidian (2001)[92], Wang and Taylor (2001)[97], Guo and Carlin

(2004)[34], Brown and Ibrahim (2003) [6, 7], Ibrahim, Chu, and Chen(2010)[52], Wang, Shen,

and Boye (2012)[96], Huang, Hu, and Dagne (2014)[49] all have worked on one longitudinal

outcome and time-to-event processes. Rizopoulos and Ghosh (2010)[79] and Hatfield, Boye,

and Carlin (2011)[36] extended the longitudinal outcome to the multivariate case.

In most of the literature cited above, the joint modeling of the survival and longitudinal

components is usually done by assuming that the longitudinal model follows a linear mixed

effects model and that the survival model depends on the random effects from this process.

Inference is then based on the integrated conditional joint likelihood where the random

effects usually follow a multivariate normal distribution. Initially the two processes are

assumed to be conditionally independent given the data and parameters of interest and

only correlated through the induced random effects or the underlying latent process. For

instance, Henderson, Diggle, and Dobson (2000)[42] linked the longitudinal and survival

model with two correlated latent Gaussian processes allowing the trend to vary with time.

They assumed that longitudinal and survival data are conditionally independent given

the linking latent process and covariates. Given there are n subjects with longitudinal

measurements {yij : j = 1, · · · , ni} at times {tij : j = 1, · · · , ni}. When the interval of

follow-up is [0, τ), let {Ni(s) : 0 ≤ s ≤ τ} denote a counting process for the events and

{Hi(s) : 0 ≤ s ≤ τ} denote an indicator for whether the subject is at risk of an event at

time s. Let Wi(t) = {W1i(t),W2i(t)} denote a latent zero-mean bivariate Gaussian process,

which is realized independently in different subjects. They considered the following model for

longitudinal data:

yij = µi(tij) +W1i(tij) + εij,

where εij is a measurement error term assumed to be mean-zero normally distributed with
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var(εij) = σ2
ε and µi(tij) is the mean response assumed by a linear model

µi(tij) = x1i(t)
Tβ1

in which the vectors x1i(t) and β1 represent possibly time-varying covariates and their

corresponding regression coefficients, respectively. For the survival model, they considered a

semi-parametric multiplicative model:

λi(t) = Hi(t)α0(t) exp{x2i(t)
Tβ2 +W2i(t)},

with the form of α0(t) left unspecified. In contrast with Tsiatis, DeGruttola, and Wulfson

(1995)[94], Faucett and Thomas (1996)[18], and Wulfsohn and Tsiatis (1997)[100] worked

with similar models but assumed W1i(t) = U1i + U2it and W2i(t) proportional to W1i(t),

Henderson et al.[42] defined W1i(t) and W2i(t) respectively as

W1i(t) = Z1i(t)
TU1i + V1i(t) and W2i(t) = γ1U1i + γ2U2it+ γ3(U1i + U2it) + U3i,

where Z1i(t) is a vector of covariates, U1i is a corresponding vector of random effects that

follow a multivariate normal distribution with mean zero and variance-covariance matrix Σ1,

V1i(t) is a stationary Gaussian process with mean zero, variance σ2
v1 and correlation function

r1(s) = cov{V1i(t), V1i(t− s)}/σ2
v1, and the frailty term U3i ∼ N(0, σ2

3) is independent of the

(U1i, U2i). The parameters γ1, γ2, and γ3 measure the association between the longitudinal

and survival models induced through the random intercepts, slopes, and the current value of

W1i at time t. They estimated the parameters using EM algorithm proposed by Wulfsohn

and Tsiatis [100] in 1997 and noted the identifiability problems which can arise when W2i(t) is

allowed to be time-varying in conjunction with a non-parametric specification of the baseline

intensity λ0(t).

Other authors have used similar general methods but with different distributions for

the survival and/or longitudinal process or estimation procedures. For instance, Faucett

and Thomas (1996)[18] used a linear mixed model and Bayesian methods for the parameter

estimation. Xu and Zeger (2001a)[101] used a latent variable approach and implemented a

Markov Chain Monte Carlo Algorithm for the estimation, and De Gruttola and Tu (1994)[16]

implemented a fully parametric joint model by assuming that the survival and longitudinal
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processes follow a multivariate normal distribution by transformation of the survival times to

follow a normal distribution and estimation was via the EM algorithm. Tsiatis et al.(1995)[94]

used a two stage approach (Partial likelihood approach), where the true value of the covariate

at the event time was estimated by a linear mixed effects model in the first stage and then

substituted into the hazards model in the second stage. Guo and Carlin (2004)[34] used the

flexible joint model proposed by Henderson et al. (2000)[42] but used Bayesian approach

via MCMC for parameter estimation. While Rizopoulos and Ghosh (2010)[79] proposed a

Bayesian semiparameteric multivariate joint model that relates multiple longitudinal outcomes

(Continuous and binary) and time-to-event. They used a spline-based approach to model the

subject specific longitudinal evolutions and the baseline risk function in the Cox model for

time-to-event outcome was assumed piece-wise constant.

Most of the joint models in the literature above (Section 2.3.2) are for one continuous

longitudinal outcome and time-to-event. To the best of our knowledge, no one has worked on

joint modeling of continuous, ordinal, and time-to-event outcomes.

2.4 OUR CONTRIBUTION

In Section 2.3.1, we noted that all of the previously proposed joint models for continuous and

ordinal outcomes employed the Probit link function to model the ordinal outcome because of

its flexibility (underlying normal framework) to reduce the computational burden. However,

there are several disadvantages of using a Probit link as compared to Logit link functions. In

addition, EM or modified EM algorithms were employed for parameter estimation which are

computationally very intensive. Furthermore, no work has been done on joint modeling of

continuous, ordinal, and time-to-event outcomes (Section 2.3.2). Thus, we propose a joint

model for unbalanced repeatedly measured continuous and ordinal outcomes and time-to-event

data. In the first part we develop a model for continuous and ordinal outcomes (Aim 1).

Here, we employ a Cumulative Logit link function for the ordinal outcome and identity link

function for the continuous outcome and model the two outcomes jointly as a multivariate

generalized linear mixed effects model linked through correlated and/or shared random effects.

22



Secondly, we extend the model in Aim 1 to include time-to-event (Aim 2). Time-to-event is

modeled parametrically using a Weibull distribution with an unshared frailty model. The

Bayesian approach (i.e. MCMC) is employed for parameter estimation in both parts because

it has the capacity to handle complex models with ease. The Aim 1 of this work is described

in Chapter 3, while Aim 2 work, is discussed in Chapter 4.
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3.0 BAYESIAN HIERARCHICAL JOINT MODELING OF REPEATEDLY

MEASURED CONTINUOUS AND ORDINAL MARKERS OF DISEASE

SEVERITY

3.1 INTRODUCTION

In many clinical studies, more than one biomarker of disease severity is obtained and some

may be easier and cheaper to obtain than others. Although these biomarkers are often meant

to measure the same disease severity, they may differ due to the instruments/reagents used

as well as the scale of measurements. They could show different patterns for treatment

because clinicians prescribe medications based on the severity of disease. Moreover, if these

markers are modeled separately to determine the factors that are associated with disease

progression over time or to predict the event of interest (i.e. time to remission) given different

treatments, they may yield different or misleading results. Modeling these markers jointly

while accounting for correlation between the two markers is likely to provide more valid

results.

The motivation for our study is based on data collected retrospectively from medical

registries of diabetic patients in three Ugandan hospitals. These patients were recruited in the

diabetic clinics between January 1992 and December 2004. Diabetes which is a progressive

illness occurs when the pancreas does not produce enough insulin or when the body does

not respond properly to varying levels of insulin. This results in increased concentrations of

glucose in the blood, which in turn damages many of the body’s systems, in particular the

blood vessels and nerves. Thus, the amount of glucose in the blood determines the state of

the disease at a point in time. In addition, the amount of glucose in the urine is used to detect

if the individual’s blood glucose level is above the renal threshold of 180 mg/dl. The amount
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of glucose in the urine is interpreted using the + symbolic method or the actual amount in

the urine(mg/dl) depending on the manufacturer of the urine glucose reagent strips. That

is, Nil (no urine sugar),+(≈ 100 mg/dl), + + (≈ 250 mg/dl), + + +(≈ 500 mg/dl), and

++++(≈ 1000 mg/dl), respectively. Of the two biomarkers, blood glucose which is measured

by fasting plasma glucose test (FPG) or oral glucose tolerance test (OGTT) is more accurate

and hence recommended by both the World Health Organization (WHO) and the American

Diabetes Association (ADA). The urine glucose tests to detect Glycosuria/Glucosuria (glucose

in urine) are used as an alternative to blood glucose tests especially in developing countries

because they are fast, do not require many reagents, easy to carry out and generally economical

(Carter and Lema, 2003)[10]. However, it is important to note that the urine glucose test

for diabetes may be contaminated by drugs and individual variations in renal threshold for

glucose. Thus, making a clinical decision based on a urine test alone may be invalid or

misleading.

During the hospital visits (follow-up period), the patients in the Ugandan study were

periodically tested for the amount of glucose in the blood or urine or both to determine

the severity of the disease so as to prescribe appropriate medication. The data are highly

unbalanced because this was an observational study where patients reported for checkup

at irregular intervals with the number of hospital visits varying from patient to patient.

Clinically, the two markers measure the same diabetes severity although blood glucose is

continuous and urine glucose is ordinal with five levels. Thus, for analysis purposes, joint

modeling of the two markers simultaneously will produce optimal results because the two

markers are highly correlated. In addition, an appropriate way of handling the unbalanced

data will result in efficient estimates.

Joint modeling of longitudinal outcomes with mixed types have been studied by many

authors. Catalano and Ryan (1992)[12], Guergieva and Agresti (2001)[32], Fitzmaurice

and Laird (1995)[19] have worked on the combination of binary and continuous responses.

Guerguieva and Sanacora (2006)[33], and Catalano (1997)[11] have dealt with a combination

of ordinal and continuous responses. In modeling the relationship between the two processes,

they used random effects (Guerguieva and Sanacora, 2006)[33] or the product of marginal

distribution and conditional distributions where the association is induced through the mean
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responses (Fitzmaurice and Laird, 1995) or correlated residual errors (Catalano and Ryan,

1992[12]; Guergieva and Agresti, 2001[32]; Catalano, 1997[11]). Although, the random effects

approach has the disadvantage of handling high-dimensional vectors of random effects, the

product distribution approach can lead to very different results depending on whether the

conditioning variable is discrete or continuous. It can also be difficult to obtain easy expressions

for the association between both continuous and discrete outcomes and it does not directly lead

to marginal inference. Fitzmaurice and Laird[19], Catalano and Ryan[12], and Catalano[11]

used the generalized estimating equations (GEE) approach of Liang and Zeger (1986)[60]

for parameter estimation whereas Guerguieva and Sanacora[33] parameterized their models

to be fit using NLMIXED procedure in SAS (Wolfinger, 1999)[99] which employs Gaussian

quadrature methods to obtain the maximum likelihood (ML) estimates. Gueorguieva and

Agresti[32] employed a modified EM algorithm or Monte Carlo ECM algorithm for parameter

estimation. Compared with ML approaches, the GEE method is computationally easy to

implement and leads to consistent parameter estimates even when the working correlation

structure is misspecified under mild regulatory conditions. However, GEE is not a likelihood-

based method and hence it is difficult to determine the goodness of fit of a model, to compare

models, and to draw statistical conclusions on the model parameters. In addition, it will only

produce consistent estimates for unbalanced data or missing data when the data are missing

completely at random (Little and Rubin, 1987)[62]. On the other hand, both the Gaussian

quadrature and the Monte Carlo ECM algorithm methods are computationally very intensive.

This computational burden grows exponentially with the number of random effects in the

model. In this paper, we propose a hierarchical joint model to handle unbalanced repeatedly

measured continuous and ordinal markers of disease severity. We employ the Markov Chain

Monte Carlo (MCMC) method for parameter estimation because it has the capacity to handle

high-dimensional data with ease.

The remainder of this chapter is organized as follows: Section 3.2 presents the formulation

of the multivariate generalized linear mixed effects model, the associated joint likelihood, and

the prior and posterior distributions. Sections 3.3 and 3.4 show the estimation procedures

of the parameters from their full conditionals and the convergence diagnostics and model

assessment tools, respectively. Section 3.5 shows the simulation study and Section 3.6

indicates the application of the proposed joint model to diabetes data.
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3.2 MODEL SPECIFICATIONS

3.2.1 Model formulation

Let yi = (y′i1,y
′
i2, . . . ,y

′
iL)′, denote the L-variate response vector for ith subject (i = 1, . . . , n),

where yil, l = 1, . . . , L, is an nil × 1 vector of longitudinal biomarker for a certain disease

severity taken at time points, j = 1, . . . , nil. For instance, yi1 and yi2 can be a vector of blood

glucose and urine glucose levels for the ith patient, respectively. Because these responses

are assumed to have different scales of measurements (i.e., continuous, ordinal), for each

response, we adopt a generalized linear mixed effects model (GLMM) which is an extension of

generalized linear model (GLM) (Nelder and Wedderburn, 1972[72]; McCullagh and Nelder,

1989[68]). In particular, marginally, the conditional distribution of yil given a vector of

random effects bil is assumed to be a member of exponential family, with linear predictor

given by

gl(µij,l) = gl(E[yij,l|bil]) = ηij,l, (3.2.11)

where gl(·) denotes a known one-to-one monotonic link function, and yij,l denotes the value

of the lth longitudinal outcome for the ith subject at jth time point. The unknown function

ηij(·) is assumed to describe the true, presumably nonlinear, longitudinal profile for the lth

outcome (Rizopoulos and Ghosh, 2011)[79].

In general, the distribution of the jth component of the lth vector yil is given by

fl(yij,l|bil) = exp

[
yij,lθij,l − b(θij,l)

φl
+ c(yij,l, φl)

]
, (3.2.12)

where θij,l is the canonical parameter, φl is the scale parameter for the lth outcome. The

conditional mean µij,l = E(yij,l|bil) is related to the canonical parameter θij,l via µij,l = b′(θij,l)

and to the regression coefficients via the link relation gl(µij,l) = ηij,l = x′ij,lβl + z′ij,lbil,

where xij,l is an p × 1 covariate vector and zij,l is an r × 1 design vector for random

effects. The conditional variance vij,l = Var(yij,l|bil) is a function of the mean, that is,

vij,l = b′′(θij,l)φl = vl(µij,l)φl. The link and variance functions gl and vl, respectively, and

the scale parameter φl are assumed to be known. Because we have repeatedly measured

outcomes where observations are correlated, the linear predictor includes the fixed effects
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and random effects and hence is modeled as a multivariate GLMM. Conditional on these

random effects, the outcomes are assumed to be independent and the repeated measurements

within an individual are assumed to be independent observations from a distribution fl(·).

This is referred to as the “conditional independence assumption” (Laird and Ware, 1982)[57].

Thus, the shared latent terms or the random effects bil account for all dependencies among

the observed data (Diggle et al., 2002, pp.129)[17]. The random effects bil are mutually

independent with a common underlying multivariate distribution gl(bil; Γl).

Let θ denote a vector of parameters, which is a conglomerate of outcome-specific parame-

ters θ1, θ2, . . . , θL, i.e., θ = (θ1, θ2, . . . , θL). Then we model the joint distribution of yi based

on full conditional independence assumption as

f(yi|bi, θ) =
L∏
l=1

fl(yil|bil, θl). (3.2.13)

To estimate the parameters of interest using Bayesian methods, we specify the priors for the

parameters and then the posterior inference is obtained by using the likelihood to convert

prior uncertainty into posterior probability statements. The joint posterior of the parameters

based on the observed data y and random effects bi is

π(θ|y,bi) ∝
n∏
i=1

L∏
l=1

fl(yil|bil, θl)× π(θ1, θ2, . . . , θL), (3.2.14)

where π(θ1, θ2, . . . , θL) denotes the prior distribution of θ. Because random effects are

unknown, they need to be included in the posterior distribution and then integrated over

to obtain the marginal posterior distributions of the parameters of interest. Thus, the joint

posterior distribution for bi and other parameters of interest is given by the hierarchical

model

π(θ,bi|y) ∝
n∏
i=1

L∏
l=1

fl(yil|bil, θl)g(bi|Γ)× π(θ1, θ2, . . . , θL)π(Γ). (3.2.15)

Motivated by our data set, we consider two response variables, continuous and ordinal and

hence, yi = (yi1,yi2) with identity and logit links, respectively. Specifically, for the continuous

outcome, we have

yij,1 = x′ij,1β1 + z′ij,1bi1 + εij,1, (3.2.16)
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where εi1 ∼ N(0, σ2
e1

) is the measurement or intra-subject error and the linear predictor or

mean is given as

µij,1 = E [yij,1|bi1] = ηij,1 = x′ij,1β1 + z′ij,1bi1.

For the ordinal response variable yi2 with K ordered categories coded as k = 1, 2, · · · , K, we

define the conditional cumulative probabilities for the K categories as

pijk,2 = Pr(yij,2 ≤ k) =
k∑

m=1

pijm,2, (3.2.17)

where pijk,2 represents the conditional probability of response being in category k, k =

1, . . . , K, of the ith subject at the jth time point. Then the logistic GLMM for the conditional

cumulative probabilities is given in terms of the cumulative logit as

log

[
pijk,2

1− pijk,2

]
= ηijk,2 = αk −

[
x′ij,2β2 + z′ij,2bi2

]
, (3.2.18)

with K − 1 strictly increasing model thresholds αk (i.e., α1 < α2 · · · < αK−1). The thresholds

allow the cumulative response probabilities to be different. For identifiability, either the first

threshold α1 or the model intercept β20 ∈ β2 is usually set to zero. In this formulation, we

are assuming the proportional odds assumption (McCullagh, 1980 [67]) where the covariates

do not vary across categories. The conditional probability of a response in category k is

obtained as the difference of two conditional cumulative probabilities:

πijk = Pr(yij,2 = k|bi2, xi2, zi2) = Ψ(ηijk,2)−Ψ(ηijk−1,2), (3.2.19)

where Ψ(ηijk,2) is the logistic cumulative distribution function (cdf) given as

Ψ(ηijk,2) =
exp(ηijk,2)

1 + exp(ηijk,2)
=

1

1 + exp(−ηijk,2)
.

Here, α0 = −∞ and αK =∞ , and so Ψ(ηij0,2) = 0 and Ψ(ηijK,2) = 1. Thus, the proposed

multivariate generalized linear mixed effects model assumes

yij,1|bi1 ∼ N
(
x′ij,1β1 + z′ij,1bi1, σ

2
e1
Ini
)
,

(yij1,2, . . . , yijK−1,2)|bi2 ∼ multinomial(πij1, . . . , πijK−1).
(3.2.110)

The random effects bi1 and bi2 are assumed to follow a Gaussian distribution with mean

vectors of zeros and precision matrices Γ1
−1 and Γ2

−1, respectively. In this paper, we
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investigate both the shared and correlated random effects. In the shared random effect

model, bi2 is assumed proportional to bi1 (e.g. bi2 = γbi1) with a restrictive correlation

structure between the two outcomes while in the correlated random effects model, bi1 and bi2

are assumed to follow a multivariate distribution with a nonrestrictive covariance structure,

which can be unstructured, Toeplitz, exchangeable, etc. In this particular case, with just two

processes we considered the simple correlation structure.

3.2.2 Likelihood, Prior, and Posterior distribution for the proposed model

Let θ1 =
{
β1, σ

2
e1

}
, θ2 = {β2, α} where α = (α1, . . . , αK−1) are the ordered threshold parame-

ters for ordinal process, θ = (θ1, θ2), and Γ = (Γ1,Γ2) denote the parameters associated with

the continuous, ordinal, combined processes, and random effects, respectively. In addition, let

y1 and y2 be the observed continuous and ordinal data, and b the combined random effects.

Under the correlated normal random effect model, the joint likelihood of the two processes is

then given as

L(θ,Γ|b,y) = L1(θ1|b,y1)L2(θ2|b,y2)g(b1,b2|Γ)

=
n∏
i=1

[
ni1∏
j=1

1

(2πσ2
e1

)1/2
exp

{
−(yij,1 − µij,1)2

2σ2
e1

}]
×[

ni2∏
j=1

K∏
k=1

{Ψ(ηijk,2)−Ψ(ηijk−1,2)}yijk,2
] [
|Γ|−1/2

2π
exp

{
−bi

′Γ−1bi

2

}]
,

(3.2.21)

where

µij,1 = x′ij,1β1 + z′ij,1bi1, Ψ(ηijk,2) =
exp(αk−µij,2)

1+exp(αk−µij,2)
, Ψ(ηijk−1,2) =

exp(αk−1−µij,2)
1+exp(αk−1−µij,2)

, and

µij,2 = x′ij,2β2 + z′ij,2bi2.

Furthermore, let β̊1 and β̊2 , Σ̊1 and Σ̊2 denote the mean vectors and variance-covariance

matrices for β1 and β2, respectively. We assume non-informative multivariate normal priors

for the β′s, β1 ∼ MVN
(
β̊1, Σ̊1

)
, β2 ∼ MVN

(
β̊2, Σ̊2

)
and truncated normal prior for

the thresholds α, αk ∼ N (µαk , σ
2
α) I(αk−1, αk+1) k = 1, . . . , K − 1, where I(·, ·) denotes

truncation to specified interval, by having large variances or small precision. Alternatively,

a uniform prior could be used for the thresholds. Furthermore, an Inverse Wishart prior is
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assumed for the variance-covariance matrix of the random effects (Γ ∼ IW (ν,Λ)) and an

Inverse Gamma for the error variance σ2
e1

, that is, σ2
e1
∼ IG(ζ, ω), which are both conjugate

priors for the variance-covariance matrix in the multivariate and univariate normal likelihoods,

respectively (Carlin and Louis, 2009)[9]. We choose non-informative priors so that the priors

will have little impact relative to the data on the inferences made. Then given the prior

distributions of all unknowns, and the observed data, the full conditional assumption presented

in Section 3.2 implies that the joint posterior distribution can be expressed as

π (θ,Γ,b|y) ∝ L(θ,Γ|b,y)π (θ) π (Γ)

∝ L(θ,Γ|b,y)×
(
σ2
e1

)−(ζ+1)
exp

{
− ω

σ2
e1

}
× exp

{
−1

2

(
β1 − β̊1

)′
Σ̊−11

(
β1 − β̊1

)}
×

K−1∏
k=1

exp

{
−(αk − µα)2

2σ2
α

}
I[.,.] (αk)

× exp

{
−1

2

(
β2 − β̊2

)′
Σ̊−12

(
β2 − β̊2

)}
× |Γ|−ν/2 exp

{
−1

2
tr
(
Γ−1Λ

)}
,

(3.2.22)

where L(θ,Γ|b,y) is given by Equation (3.2.21). For ease of sampling, the parameters are

divided into blocks of correlated parameters based on their conditional independence. The

full conditional posterior distributions for the blocks β1, σ2
e1

, (α, β2), b, and Γ are then

determined by averaging the joint posterior distribution (3.2.22) over or integrating out the

remaining parameters. Let π(θ|.) represent the full conditional distribution of parameter θ

given other parameters in the model. The full conditionals for the blocks β1 and (α, β2) are

given as:

π
(
β1|σ2

e1
,bi1

)
∝ exp

{
−1

2

(
β1 − β̊1

)′
Σ̊−11

(
β1 − β̊1

)}
× exp

{
− 1

2σ2
e1

n∑
i=1

ni1∑
j=1

(yij,1 − µij,1)2
}

∝ N (β1
∗,Σ1

∗) ,

(3.2.23)

where β∗1 = Σ1
∗ ×

[
Σ̊−11 β̊1 +X ′1σ

−2
e1
ε
]
,Σ1

∗ =
[
Σ̊−11 +X ′1X1σ

−2
e1

]−1
,

ε =
n∑
i=1

ni1∑
j=1

(yij,1 − zij,1bi1).
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π (α, β2|bi2) = π (α|bi2) π (β2|α,bi2)

∝
K−1∏
k=1

exp

{
−(αk − µα)2

2σ2
α

}
I[αk−1,αk+1] (αk)×

n∏
i=1

ni2∏
j=1

K∏
k=1

{
exp(αk − µij,2)

1 + exp(αk − µij,2)
− exp(αk−1 − µij,2)

1 + exp(αk−1 − µij,2)

}yijk,2
× exp

{
−1

2

(
β2 − β̊2

)′
Σ̊−12

(
β2 − β̊2

)}
(3.2.24)

The full conditional posterior distributions for blocks σ2
e1

, b, and Γ are derived in the similar

manner as:

π
(
σ2
e1
|β1,bi1

)
∝
(
σ2
e1

)−n(ζ+1)
exp

{
− ω

σ2
e1

}
×

n∏
i=1

ni1∏
j=1

1

(σ2
e1

)1/2
exp

{
−(yij,1 − µij,1)2

2σ2
e1

}

∝
(
σ2
e1

)−n(ζ+1)
exp

{
− ω

σ2
e1

}
× (σ2

e1
)−n/2 exp

{
− 1

2σ2
e1

n∑
i=1

ni1∑
j=1

(yij,1 − µij,1)2
}

∝
(
σ2
e1

)−( 2ζ+n
2

+1)
exp

{
− 1

σ2
e1

[
ω +

1

2

n∑
i=1

ni1∑
j=1

(yij,1 − µij,1)2
]}

∝ IG

(
ζ +

n

2
, ω +

1

2

n∑
i=1

ni1∑
j=1

(yij,1 − µij,1)2
)

(3.2.25)

π (b|.) ∝ |Γ|−n/2 exp

{
−1

2

n∑
i=1

b′iΓ
−1bi

}
× |Γ|−ν/2 exp

(
−1

2
tr
(
Γ−1Λ

))

× exp

{
− 1

2σ2
e1

n∑
i=1

ni1∑
j=1

(yij,1 − µij,1)2
}

×
n∏
i=1

ni2∏
j=1

K∏
k=1

{
exp(αk − µij,2)

1 + exp(αk − µij,2)
− exp(αk−1 − µij,2)

1 + exp(αk−1 − µij,2)

}yijk,2
(3.2.26)
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π (Γ|b) ∝ |Γ|−n/2 exp

{
−1

2

n∑
i=1

b′iΓ
−1bi

}
× |Γ|−ν/2 exp

(
−1

2
tr
(
Γ−1Λ

))

∝ |Γ|−(n+ν)/2 exp

(
−1

2
tr

[
Γ−1

(
Λ +

n∑
i=1

bib
′
i

)])

∝ IW

(
ν + n,Λ +

n∑
i=1

bib
′
i

)
.

(3.2.27)

3.3 ESTIMATION

The parameters of interest are estimated by drawing random variates from their full condi-

tional posterior distributions. To estimate, the variance-covariance parameters σ2
e1
,Γ, Gibbs

sampling is employed, while for the fixed and random effects parameters, (β1, α, β2) and

bi, Gamerman’s one step Metropolis-Hasting (M-H) method is employed to sample from

their respective conditional posterior distributions (Gamerman, 1997)[20]. In this one step

M-H method, the full conditionals of the parameters of interest are approximated by a

Gaussian distribution, which is obtained by accomplishing one Fisher scoring step in every

iteration of the sampler. In essence, to estimate parameter ϕ using a single iterative method

of Gamerman[20], the following steps are taken.

Step 1: Start with ϕ = ϕ(0) and set t = 1;

Step 2a: Sample ϕ∗ from N(m(t), c(t)) proposal density and

Step 2b: Accept it with probability λ(ϕ(t−1), ϕ∗) and set ϕ(1) = ϕ∗; Otherwise, stay at

ϕ(t) = ϕ(t−1);

Step 3: Increase t by 1 and return to Step 2.

The moments of the proposal density are given by

m(t) = (Σ−1ϕ +X ′W (ϕ(t−1))X)−1 ×
{

Σ−1ϕ µϕ +X ′W (ϕ(t−1))[ỹ(ϕ(t−1))− η̃]
}

c(t) = (Σ−1ϕ +X ′W (ϕ(t−1))X)−1 (3.3.01)
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where µϕ and Σϕ are respectively, the mean and variance-covariance matrix of the prior

distribution for ϕ, W (ϕ(t−1)) = diag(W11, · · · ,Wnni) is the usual weight matrix for iterative

weighted least squares (IWLS) algorithm. The vector η̃ known as the offset in GLM is the

part of the predictor associated with all the remaining effects in the model. The components

of the weight matrix Wij and the transformed observations ỹij are defined as

ỹij(ϕ) = ηij + (yij − µij)g′(µij) and

W−1
ij (ϕ) = Vij {g′(µij)}2 , i = 1, . . . , n; j = 1, . . . , ni, (3.3.02)

where Vij is the conditional variance function of the outcome variable, and g′(µij) is the

derivative of the link function with respect to the the mean value function. The acceptance

probability is defined as

λ(ϕ(t−1), ϕ∗) = min

(
1,

π(ϕ∗)q(ϕ(t−1), ϕ∗)

π(ϕ(t−1))q(ϕ∗, ϕ(t−1))

)
, (3.3.03)

where π(ϕ∗) and π(ϕ(t−1)) is the posterior density of ϕ evaluated at ϕ∗ and ϕ(t−1), respectively;

q(ϕ(t−1), ϕ∗) is the density specified in Step 2a evaluated at ϕ∗ and q(ϕ∗, ϕ(t−1)) is a N(m∗, c∗)

density evaluated at ϕ(t−1). Thus, to draw samples from the full conditionals π(β1|.), π(α, β2|.),

and π(bi|.) = π (bi1, bi2|.), the steps above are followed.

For the β1 block, the transformed observations are ỹij,1(β1) = x′ij,1β1+(yij,1−x′ij,1β1)g′(x′ij,1β1)

which gives the original observations, yij,1; the offset is the random effect part, z′ij,1bi1,

and the weights are Wij,1(β1) = σ2
e1
Ini1 , i = 1, . . . , n; j = 1, . . . , ni1. The proposal density

N(m1
(t), c1

(t)) has moments

m1
(t) = (Σ̊−11 +X ′1W1(β

(t−1)
1 )X1)

−1 ×
{

Σ̊−11 β̊1 +X ′1W1(β
(t−1)
1 )

[
ỹ1(β

(t−1)
1 )− z′1b1

]}
c1

(t) = (Σ̊−11 +X ′1W1(β
(t−1)
1 )X1)

−1 (3.3.04)

where W1 = diag(W11,1, . . . ,Wnni1,1);X1 is the design matrix of fixed effects for outcome y1.

For the θ2 = {α, β2} block associated with the ordinal outcome y2 with response vector

for the ith subject defined as yi2 = (yi1,2, · · · , yij,2, · · · , yini2,2)′, we define y∗ij,2 = 1 if yij,2 = k, 0

otherwise, with its expectation πij,2 = E(y∗ij,2) defined as in Equation (3.2.19). Thus, the

ni2 × 1 dimensional ordinal response vector yi2 is transformed into a ni2(K − 1) dimensional
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binary vector y∗i2 = (yi11, · · · , yi1K−1, yi21, · · · , yini2K−1)′ with expectation πi2 = E(y∗i2). The

variance-convariance matrix Vi2 of the dichotomized binary response vector y∗i2 has typical

elements

cov(yijk, yij′k′) =


πijk(1− πijk) if j = j′, k = k′,

−πijkπijk′ if j = j′, k 6= k′,
corr(yijk,yij′k′ )

[πijk(1−πijk)πij′k′ (1−πij′k′ )]
−1/2 if j 6= j′, any k, k′

(3.3.05)

Let µθ2 = (µα, β̊2) and Σθ2 =

 σ2
αIK−1 0

0 Σ̊2

 be the mean vector and variance-

covariance matrix of θ2, respectively. Thus, the transformed observations used in estimating

θ2, are ỹij,2(θ2) = ηij,2(θ2) + (y∗ij,2 − πij,2(θ2))g′(πij,2(θ2)), where ηij,2(θ2) = αk − x′ij,2β2. The

offset and weights are z′ij,2bi2 and Wij,2(θ2) = [ni2Vij,2 {g′(πij,2(θ2))}2]−1, respectively, where

[g′(πij,2(θ2))]
−1 is the derivative of the mean function with respect to the linear predictor

whose elements are given as follows:

[g′(πij,2(θ2))]
−1 =


exp(αk−x′ij,2β2)

(1+exp(αk−x′ij,2β2))2
k = 1,[

exp(αk−x′ij,2β2)
(1+exp(αk−x′ij,2β2))2

− exp(αk−1−x′ij,2β2)
(1+exp(αk−1−x′ij,2β2))2

]
k ≥ 2.

(3.3.06)

The proposal density N(m2
(t), c2

(t)) has moments

m2
(t) = (Σ−1θ2 +X ′2W2(θ

(t−1)
2 )X2)

−1 ×
{

Σ−1θ2 µθ2 +X ′2W2(θ
(t−1)
2 )[ỹ2(θ

(t−1)
2 )− z′2b2]

}
c2

(t) = (Σ−1θ2 +X ′2W2(θ
(t−1)
2 )X2)

−1 (3.3.07)

where W2 = diag(W11,2, . . . ,Wnni2,2) and X2 is the design matrix of fixed effects for the binary

outcome associated with y2.

Following the same steps, for the bi = (bi1, bi2) block, when estimated separately, then for the

bi1 block, we draw samples from the full conditional π(bi1|.). The transformed observations

and weights are ỹij,1(bi1) = z′ij,1bi1 + (yij,1 − z′ij,1bi1)g′(z′ij,1bi1) = yij,1 and Wij,1(bi1) = σ2
ε Ini1 ,

respectively. The proposal density is N(m
(t)
i1 , c

(t)
i1 ) with moments

m
(t)
i1 = (Γ−11 + Z ′i1Wi1(b

(t−1)
i1 )Zi1)

−1Zi1Wi1(b
(t−1)
i1 )×

{
ỹi1(b

(t−1)
i1 )−X ′i1β1

}
c
(t)
i1 = (Γ−11 + Z ′i1Wi1(b

(t−1)
i1 )Zi1)

−1 (3.3.08)
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where Wi1 = diag(Wi1,1, . . . ,Wini1,1) and Zi1 = (zi1,1, . . . , zini1,1)
′.

And for the bi2 block, we draw samples from the full conditional π(bi2|.). The transformed

observations and weights for bi2 are ỹ∗ij,2(bi2) = ηij,2(bi2) + (y∗ij,2 − πij,2(bi2))g′(πij,2(bi2)) and

Wij,2(bi2) = [ni2Vij,2{g′(πij,2(bi2))}2]−1, respectively. The proposal density is N(m
(t)
i2 , c

(t)
i2 )

with moments

m
(t)
i2 = (Γ−12 + Z ′i2Wi2(b

(t−1)
i2 )Zi2)

−1Zi2Wi2(b
(t−1)
i2 )×

{
ỹ∗i2(b

(t−1)
i2 )− (αk −X ′i2β2)

}
c
(t)
i2 = (Γ−12 + Z ′i2Wi2(b

(t−1)
i2 )Zi2)

−1 (3.3.09)

where Wi2 = diag(Wi1,2, . . . ,Wini2,2) and Zi2 = (zi1,2, . . . , zini2,2)
′.

Our goal is to estimate the random effects from a multivariate distribution. Thus, following

the same steps above, we draw samples from the full conditional π(bi|.). The proposal density

is

qbi ∼MVN

 m
(t)
i1

m
(t)
i2

 ,

 c
(t)
i1 ρ

√
c
(t)
i1

√
c
(t)
i2

ρ

√
c
(t)
i1

√
c
(t)
i2 c

(t)
i2

 , (3.3.010)

where ρ is the correlation between the continuous and ordinal processes, which is estimated

from the data.

3.4 CONVERGENCE DIAGNOSTICS AND MODEL ASSESSMENT

3.4.1 Convergence Diagnostics

From the theory of Markov chains governing the MCMC methods of estimation, the chains

are expected to converge to the stationary distribution, which is also the target distribution,

in the long run. In addition, as noted earlier, the first samples are discarded as burn-in, and

inferences are made from the remaining samples. Thus, determining how much burn-in is

optimal and whether the chains are mixing well or converged to the distribution of interest are

of paramount interest in Bayesian analysis. Several methods that include visual inspection

and statistical tests have been developed to diagnose convergence. These methods are full

implemented in CODA (Convergence Diagnosis and Output Analysis) package (Best et al.,

1996; Plummer et al., 2006)[3, 74] available in R software[75].
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3.4.1.1 Visual Inspection One way to see if the chain has converged is to see how well

that chain is mixing, or moving around the parameter space. If the chain is taking a long

time to move around the parameter space, then it will take longer to converge. In this study,

we employed trace and density plots, and autocorrelations to visually examine the mixing of

the chains for each of the parameters, and to determine the optimal burn-in (Gilks et al.,

1996)[31].

Trace and Density plots

A trace plot is a plot of the iteration number against the value of the draw of the parameter

at each iteration. Proper mixing of the chains, hence convergence is exhibited if the chains

remain stable for a longer period of time. A density plot on the other hand shows a smoothed

probability density curve of the draws or the distribution of the parameters. A multimodal

density may indicate non-convergence of the chain.

Autocorrelation

Another way to assess convergence is to assess the autocorrelations between the draws of the

Markov chain. The lag k autocorrelation ρk is the correlation between every draw and its kth

lag:

ρk =

n−k∑
i=1

(xi − x̄)(xi+k − x̄)

n∑
i=1

(xi − x̄)2

The kth lag autocorrelation is expected to be smaller as k increases (e.g., the 2nd and 50th

draws should be less correlated than the 2nd and 4th draws). If autocorrelation is still relatively

high for higher values of k, it is an indication of high degree of correlation between the draws

and slow mixing.

3.4.1.2 Statistical Diagnostic Tests To substantiate the visual inspection results, we 

carried out statistical diagnostic tests that included Gelman and Rubin Multiple Sequence 

(Gelman and Rubin, 1992)[26], Geweke (Geweke, 1992)[30], and Heidelberg and Welch 

(Heidelberger and Welch, 1983) [41] diagnostic tests.

Gelman and Rubin Multiple Sequence Diagnostic

The Gelman and Rubin Multiple Sequence Diagnostic is based on comparing two or more 

parrallel chains drawn from different starting points and checking to see if they are not different
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Comparison of the within and between chain variances for each parameter is carried out, 

where convergence is assumed to be reached when the within variance is equal or not less 

than the between chain variance. To implement Gelman and Rubin test, the following steps are 

carried out for each parameter:

1. Run m ≥ 2 chains of length 2n from overdispersed starting values.

2. Discard the first n draws in each chain.

3. Calculate the within-chain and between-chain variance.

4. Calculate the estimated variance of the parameter as a weighted sum of the within-chain

and between-chain variance.

5. Calculate the potential scale reduction factor.

The within-chain variance is defined as

W =
1

m

m∑
j=1

S2
j

where

S2
j =

1

n− 1

n∑
i=1

(θij − θ̄j)2,

is the variance of the jth chain. Thus, W is the mean of the variance of each chain. To

some extent, the within-chain variance underestimates the true variance of the stationary

distribution because the chains may have not reached all the points of the stationary

distribution.

The between-chain variance B is

B =
n

m− 1

m∑
j=1

(θ̄j − ¯̄θ)2

where

¯̄θ =
1

m

m∑
j=1

θ̄j.

Thus, B is the variance of the chain means multiplied by n because each chain is based on n

draws.
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The estimated variance of the stationary distribution is by

ˆV ar(θ) =

(
1− 1

n

)
W +

1

n
B

Because of overdispersion of the starting values, the estimated variance overestimates the

true variance, but is unbiased if the starting distribution equals the stationary distribution

(if starting values were not overdispersed).

The potential scale reduction factor is

R̂ =

√
ˆV ar(θ)

W

When R̂ is high (i.e., greater than 1.1 or 1.2), the chains should be run longer to improve

convergence to the stationary distribution. The potential reduction factor is calculated for

each parameter of interest. Brooks and Gelman (1997) proposed a multivariate potential

scale reduction factor which is computed for all parameters [5].

Geweke Diagnostic

The Geweke diagnostic takes two nonoverlapping parts (usually the first 10% and last 50%)

of the Markov chain and compares the means of both parts, using equality of the means

test. If the samples are drawn from the stationary distribution of the chain, the two means

are equal and Geweke’s statistic has an asymptotically standard normal distribution. The

test statistic is a standard Z-score: the difference between the two sample means divided

by its estimated standard error. The standard error is estimated from the spectral density

at zero and so takes into account any autocorrelation. The Z-score is calculated under the

assumption that the two parts of the chain are asymptotically independent, which requires

that the sum of first proportion and last proportion be strictly less than 1.

Heidelberg and Welch Diagnostic

The Heidelberg and Welch diagnostic calculates a test statistic (based on the Cramer-von

Mises test statistic) to accept or reject the null hypothesis that the Markov chain is from a

stationary distribution. The diagnostic consists of two parts.

• First Part:

1. Generate a chain of N iterations and define an α level.

39



2. Calculate the test statistic on the whole chain. Accept or reject null hypothesis that

the chain is from a stationary distribution.

3. If null hypothesis is rejected, discard the first 10% of the chain. Calculate the test

statistic and accept or reject null.

4. If null hypothesis is rejected, discard the next 10% and calculate the test statistic.

5. Repeat until null hypothesis is accepted or 50% of the chain is discarded. If test still

rejects null hypothesis, then the chain fails the test and needs to be run longer.

• Second Part:

– If the chain passes the first part of the diagnostic, then it takes the part of the chain

not discarded from the first part to test the second part.

– The halfwidth test calculates half the width of the (1− α)% credible interval around

the mean.

– If the ratio of the halfwidth and the mean is lower than some ε, then the chain passes

the test. Otherwise, the chain must be run out longer.

3.4.2 Model Assessment

To asses the model fit and compare different models, we employed the Deviance Information

Criterion (DIC) (Spiegelhalter et al., 2002)[87]. This model assessment tool was chosen

because it is readily available in BUGS software and can be used with informative priors,

noninformative priors, or improper priors. Let θ denote the vector of the model parameters

and y denote the observed data, then the deviance D(θ) is defined as

D(θ) = −2 log f(y|θ) + log h(y),

where f(y|θ) is the likelihood function and h(y) is a standardizing function of the data alone

(Carlin and Louis, 2009)[9]. The DIC is then computed with the formula:

DIC = θ + 2PD,

where PD = D(θ)−D(θ) is the effective number of parameters that measure model complexity.

Smaller values of DIC are better as with other known model selection tools like Akaike
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Information Criterion (AIC) and the Bayesian Information Criterion (BIC), and a difference

of 10 is said to be meaningful. DIC is a generalization of AIC and BIC is more suitable for

assessing goodness of fit for hierarchical models[9].

Other appropriate model assessment tools partly explored in this study include the

Conditional Predictive Ordinate (CPO) statistic and the logarithm of the Pseudomarginal

likelihood (LPML) statistic or its average value (ALPML). For the ith observation, the CPO

statistic is defined as

CPOi = f(yi|D(−i)) =

∫
f(yi|θ,xi)π(θ|D(−i))dθ,

where yi denotes the response variable and xi is the vector of covariates for case i, D(−i)

denotes the data with the ith case deleted, and π(θ|D(−i)) is the posterior density of θ based

on the data D(−i) (see Ibrahim et al.(2001), Chapter 6.3 for more details)[51]. The LPML

statistic (Geisser and Eddy, 1979)[21] is derived from the CPO as

LPML =
n∑
i=1

log(CPOi).

To compare LPML’s from two different studies for a given model, the average LPML, given

by

ALPML =
LPML

n
,

where n is the sample size is preferred. In contrast with DIC, larger values of CPO or LPML

or ALPML imply a better fitting model.

3.5 SIMULATION STUDY

To examine the performance of the regression estimators from the proposed joint model and

to compare them to the estimators from the separate regression models, we performed a series

of simulation studies. The data were simulated from the proposed joint model of continuous

and ordinal outcomes correlated through correlated and/or shared random effects. From

each of the joint models, we simulated 500 data sets of sample sizes n = 100 and n = 50.
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In all simulations, number of repeated measures per subject ranged randomly from 1 to

10. For each subject, time t between successive visits were generated uniformly between 0.5

and 2.0 to mimic the motivating dataset. In addition, we generated one baseline covariate

(treatment variable indicator) x from a Bernoulli (0.5) distribution. Motivated by the dataset,

the models included only random intercepts. For the correlated random effects models, the

random effects were generated from a multivariate normal distribution with mean vector zero

and variance-covariance matrix Γ =

 σ2
b1

= 5.87 ρσb1σb2

ρσb1σb2 σ2
b2

= 4.89

. We considered different

correlation values, ρ = (0.9, 0.6, 0.0) which formed Part I of our simulations. For the shared

random effects models (bi2 = γbi1), we considered γ = (0.9, 0.6) in Part II of our simulations.

The models for constructing the continuous and ordinal outcomes are as in Equation (3.2.110).

The error εij,1 for the continuous outcome was simulated from N
(
0, σ2

ε1
= 7.4

)
. For the

ordinal outcome, we considered three categories; the first threshold value was set to zero

to guard against identifiability issues. Let the β′s, (β10, β11, β12, β13) and (β20, β21, β22, β23)

denote the regression coefficients for the fixed effects (intercept, time, treatment, and time

by treatment interaction) for the continuous and ordinal outcomes, respectively, and α2

the threshold parameter for the ordinal outcome. The true values for all the variance and

regression parameters were chosen based on the results of a joint correlated random effects

model fit to the motivating dataset, namely, β10 = 15.34, β11 = −0.56, β12 = −0.50, β13 = 0.3,

and α2 = 1.25, β20 = 1.8, β21 = −0.35, β22 = −0.50, β23 = 0.1. Once the latent parameters

(bi1,bi2) were generated from their respective distributions, we generated yij,1|bi1 from a

normal distribution with mean µij,1 = β10 + β11 × tij + β12 × xi + β13 × tij × xi + bi1 and

standard deviation σε1 . For the ordinal outcome, we simulated data from a multinomial

distribution. The multinomial probabilities were the marginal probabilities constructed

from the cumulative logit model as specified in Equation (3.2.19), where ηijk,2 = αk −

[β20 + β21 × tij + β22 × xi + β23 × tij × xi + bi2].

After generating the data, we fitted the joint (correlated through correlated and shared

random effects) and separate models to each data set. For the MCMC sampling we ran two

chains of 10,000 iterations with 2,000 iterations of each chain used as burn-in period. The initial

values for MCMC sampling were taken from a linear mixed model fit to the continuous data and
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a generalized linear mixed model fit to the ordinal data. The following priors were considered

for the different parameters: β1 ∼ N4 (0, 100I4), β2 ∼ N4 (0, 100I4), α2 ∼ N (0, 106) I(0, ),

σ2
e1
∼ IG (0.001, 0.001), σ2

b1
∼ IG (0.001, 0.001), σ2

b2
∼ IG (0.001, 0.001), γ ∼ N (0, 100), and

Γ ∼ IW (3, 1I2), where Iq indicates an q×q identity matrix, and N, IG, and IW , respectively

stand for Normal, Inverse Gamma, and Inverse Wishart. The MCMC sampling was done

using OpenBUGS (version 3.2.2) software and its R interface BRugs Version 0.4-1.

The simulation results for Part I are shown in Tables 1-3. In each of the tables, the

estimated Bias, Posterior Standard Deviation (SD), Coverage Probabilities (CP) of the 95%

highest posterior density (HPD) intervals, and the Relative Efficiency (RE) are shown. RE is

calculated as the ratio of the mean squared error (MSE) of estimates from the fitted models

to the mean squared error (MSE) of estimates for the same parameters from the true model.

All estimates were calculated based on 500 replicates.

The results in Table 1 (ρ = 0.9), indicate that when the true processes were correlated

through correlated random effects both joint model and separate model fits provided unbiased

estimates but the estimated posterior means were more biased for separate models with larger

SD. These biases were larger for the ordinal outcome which may be due to the less informative

nature of ordinal data as compared to continuous data. The gain in efficiency using joint

model relative to the separate model was as high as 15% and was more pronounced in the

ordinal outcome. However, when a shared random effects model was fitted to this correlated

random effects data, the estimates from the shared random effects were smaller with similar

SD with virtually no gain in efficiency when compared to estimates from correlated random

effects model. In addition, the results in Table 1 indicate that nominal coverage of 95% HPD

intervals was maintained for all the fitted models. The coverage probabilities were robust to

the sample size as seen from the bottom panel of Table 1.

The results for moderate correlation of ρ = 0.6 are shown in Table 2. The results showed

a similar trend as in Table 1. Specifically, when we fitted the correct model (JC) the biases

were smaller than those when fitted the JS model. The standard errors (SD) were smaller

for the JC (true) model compared to the JS model. In most cases there were considerable

gain in efficiency as high as 2.35 for the threshold parameter α2 with sample size n = 100

and extremely high for the variance parameters (highlighted in red). Coverage of 95% HPD
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intervals were adequate except some subject–specific covariates for the ordinal outcome

modeled through shared random effects.

Table 3 also indicates that when the true processes were uncorrelated (ρ = 0) the estimates

from the separate and joint correlated random effects models were quite similar, though there

was still some gain in efficiency for ordinal outcome estimates. Meanwhile, if a shared random

effects model was fitted to this uncorrelated data, most of estimates were more biased and

the trend of results was similar to those when ρ = 0.6.

Similar results were seen when separate models were fitted to data that were correlated

through shared random effects (see Appendix A: Tables 19 & 20). Although fitting joint

correlated random effects model to the shared random effects data resulted in more biased

estimates, less efficient estimates, and slightly larger standard errors (SD) for some of the

parameters for the ordinal outcome, the coverage of 95% HPD intervals were quite similar in

all scenarios. In general, a joint correlated random effects model did not perform as poorly

as a shared random effects model did in Part I simulations.

In essence, the estimates from fitting true models became less biased with smaller standard

errors as the sample size increased in all scenarios. The coverage probabilities were quite

robust to the sample size. The gain in efficiency, which was more pronounced in the ordinal

outcome, reduced with the increase in sample size keeping the correlation constant, and

decreased with the decrease in correlation between the two outcomes.
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Table 1: Results when data were correlated under a correlated random effects model with strong correlation (ρ = 0.9): SD and

CP, stand for posterior standard deviation and coverage probabilities of the 95% HPD intervals, respectively.

Fitted Model

Joint-Correlated (JC) Joint-Shared (JS) Separate (SP)

True Model
(n) Parameter Truth Bias SD CP Bias SD CP RE1 = MSEJS

MSEJC
Bias SD CP RE2 = MSESP

MSEJC

Correlated

Continuous Process

(n=50)

β10: intercept 15.34 -0.032 0.581 0.94 -0.096 0.595 0.94 1.02 -0.051 0.601 0.94 0.98
β11: time -0.56 0.001 0.070 0.94 0.001 0.070 0.94 1.02 0.001 0.072 0.94 1.07
β12: treatment -0.50 0.017 0.841 0.95 0.132 0.851 0.94 1.00 0.060 0.850 0.94 1.00
β13: time×treatment 0.30 -0.003 0.099 0.95 -0.003 0.100 0.95 1.01 -0.002 0.102 0.95 1.10

Ordinal Process
α2: threshold 1.25 0.038 0.164 0.94 0.007 0.164 0.95 0.93 0.045 0.165 0.94 1.05
β20: intercept 1.80 0.069 0.561 0.95 -0.062 0.559 0.95 0.98 0.096 0.614 0.95 1.15
β21: time -0.35 -0.013 0.073 0.95 -0.003 0.069 0.96 0.99 -0.012 0.076 0.94 1.13
β22: treatment -0.50 -0.076 0.788 0.95 0.079 0.789 0.95 0.99 -0.102 0.841 0.94 1.13
β23: time×treatment 0.10 0.003 0.099 0.95 -0.003 0.092 0.95 1.01 0.001 0.103 0.95 1.11

Association Parameters & Variances
ρ 0.90 0.012 0.050 0.97 - - - - - - - -
γ 0.91 - - - 0.064 0.148 0.93 - - - - -
σ2
b1

: bi1 5.87 -0.136 1.464 0.95 -0.202 1.520 0.95 1.20 0.202 1.586 0.95 1.20
σ2
b2

: bi2 4.89 0.379 1.730 0.94 - - - - 0.984 2.081 0.89 1.94
σ2
e1 : error 7.40 0.121 0.651 0.95 0.414 0.680 0.91 1.45 0.079 0.649 0.95 0.98

Correlated

Continuous Process

(n=100)

β10: intercept 15.34 -0.009 0.417 0.95 -0.003 0.410 0.95 0.98 -0.036 0.425 0.94 1.01
β11: time -0.56 0.000 0.048 0.96 0.001 0.048 0.96 1.01 -0.001 0.050 0.96 1.06
β12: treatment -0.50 0.024 0.598 0.94 0.039 0.583 0.95 1.00 0.047 0.605 0.94 1.01
β13: time×treatment 0.30 -0.001 0.069 0.94 -0.001 0.069 0.94 1.02 -0.001 0.071 0.94 1.04

Ordinal Process
α2: threshold 1.25 0.016 0.115 0.94 -0.015 0.114 0.96 0.99 0.028 0.119 0.94 1.06
β20: intercept 1.80 0.030 0.400 0.95 -0.023 0.376 0.95 0.96 0.011 0.404 0.96 1.07
β21: time -0.35 -0.004 0.050 0.95 0.005 0.049 0.96 1.00 -0.004 0.053 0.95 1.10
β22: treatment -0.50 -0.013 0.556 0.95 0.031 0.517 0.95 0.97 0.042 0.553 0.94 1.05
β23: time×treatment 0.10 0.003 0.066 0.96 -0.001 0.065 0.96 1.01 -0.002 0.071 0.94 1.14

Association Parameters & Variances
ρ 0.90 0.010 0.038 0.96 - - - - - - - -
γ 0.91 - - - 0.017 0.096 0.95 - - - - -
σ2
b1

: bi1 5.87 -0.084 1.026 0.95 -0.291 1.012 0.93 1.29 0.103 1.076 0.95 1.12
σ2
b2

: bi2 4.89 0.142 1.139 0.95 - - - - 0.443 1.283 0.93 1.56
σ2
e1 : error 7.40 0.057 0.449 0.95 0.369 0.476 0.88 1.81 0.020 0.446 0.95 0.98
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Table 2: Results when data were correlated under a correlated random effects model with moderate correlation (ρ = 0.6): SD

and CP, stand for posterior standard deviation and coverage probabilities of the 95% HPD intervals, respectively.

Fitted Model

Joint-Correlated (JC) Joint-Shared (JS) Separate (SP)

True Model
(n) Parameter Truth Bias SD CP Bias SD CP RE1 = MSEJS

MSEJC
Bias SD CP RE2 = MSESP

MSEJC

Correlated

Continuous Process

(n=50)

β10: intercept 15.34 -0.066 0.589 0.94 -0.107 0.568 0.93 1.03 -0.075 0.603 0.94 0.98
β11: time -0.56 -0.004 0.072 0.95 -0.001 0.075 0.95 1.23 -0.004 0.072 0.95 1.01
β12: treatment -0.50 0.048 0.838 0.94 0.138 0.809 0.95 1.02 0.082 0.850 0.95 0.99
β13: time×treatment 0.30 0.005 0.101 0.95 0.002 0.106 0.96 1.21 0.005 0.102 0.95 1.01

Ordinal Process
α2: threshold 1.25 0.029 0.165 0.94 -0.079 0.159 0.93 1.29 0.048 0.166 0.94 1.09
β20: intercept 1.80 0.031 0.575 0.95 -0.193 0.524 0.93 1.02 0.085 0.624 0.95 1.05
β21: time -0.35 -0.006 0.075 0.94 0.024 0.068 0.94 1.07 -0.011 0.076 0.94 1.11
β22: treatment -0.50 -0.051 0.790 0.95 0.104 0.733 0.95 0.87 -0.091 0.852 0.96 1.06
β23: time×treatment 0.10 0.000 0.101 0.94 -0.008 0.090 0.95 0.97 0.002 0.103 0.96 1.12

Association Parameters & Variances
ρ 0.60 0.033 0.122 0.93 - - - - - - - -
γ 0.91 - - - 0.133 0.232 0.93 - - - - -
σ2
b1

: bi1 5.87 -0.229 1.466 0.94 -1.511 1.334 0.73 4.39 0.189 1.579 0.94 1.05
σ2
b2

: bi2 4.89 0.292 1.782 0.94 - - - - 1.092 2.119 0.90 1.88
σ2
e1 : error 7.40 0.153 0.661 0.95 1.585 0.858 0.68 7.55 0.093 0.649 0.96 0.94

Correlated

Continuous Process

(n=100)

β10: intercept 15.34 -0.029 0.420 0.95 -0.013 0.394 0.95 1.01 -0.046 0.426 0.95 1.01
β11: time -0.56 0.001 0.050 0.95 0.001 0.052 0.96 1.12 0.001 0.050 0.94 1.02
β12: treatment -0.50 0.037 0.597 0.95 0.037 0.558 0.95 1.02 0.047 0.605 0.95 1.01
β13: time×treatment 0.30 -0.002 0.070 0.95 -0.001 0.073 0.94 1.16 -0.003 0.071 0.96 1.01

Ordinal Process
α2: threshold 1.25 0.004 0.115 0.94 -0.124 0.110 0.81 2.35 0.019 0.119 0.94 1.06
β20: intercept 1.80 0.023 0.407 0.94 -0.163 0.349 0.91 1.12 0.017 0.405 0.95 1.05
β21: time -0.35 -0.001 0.052 0.95 0.036 0.048 0.91 1.45 -0.004 0.053 0.94 1.06
β22: treatment -0.50 -0.035 0.567 0.95 0.045 0.472 0.95 0.84 0.021 0.553 0.95 1.04
β23: time×treatment 0.10 -0.003 0.069 0.94 -0.016 0.063 0.94 1.02 -0.006 0.071 0.95 1.06

Association Parameters & Variances
ρ 0.60 0.008 0.088 0.94 - - - - - - - -
γ 0.91 - - - 0.033 0.142 0.95 - - - - -
σ2
b1

: bi1 5.87 -0.085 1.032 0.96 -1.513 0.906 0.57 8.11 0.133 1.081 0.95 1.08
σ2
b2

: bi2 4.89 0.162 1.192 0.95 - - - - 0.510 1.296 0.92 1.42
σ2
e1 : error 7.40 0.049 0.451 0.96 1.536 0.612 0.45 13.94 0.020 0.446 0.96 0.98
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Table 3: Results when data were uncorrelated (ρ = 0.0): SD and CP, stand for posterior standard deviation and coverage

probabilities of the 95% HPD intervals, respectively.

Fitted Model

Joint-Correlated (JC) Joint-Shared (JS) Separate (SP)

True Model
(n) Parameter Truth Bias SD CP Bias SD CP RE1 = MSEJS

MSEJC
Bias SD CP RE2 = MSESP

MSEJC

Uncorrelated

Continuous Process

(n=50)

β10: intercept 15.34 -0.041 0.586 0.94 -0.032 0.530 0.96 1.04 -0.049 0.599 0.94 0.99
β11: time -0.56 0.001 0.071 0.96 0.004 0.079 0.95 1.51 0.002 0.071 0.96 1.00
β12: treatment -0.50 0.006 0.831 0.94 0.013 0.749 0.95 1.04 0.037 0.847 0.94 0.99
β13: time×treatment 0.30 0.002 0.101 0.95 0.001 0.111 0.95 1.51 0.001 0.101 0.95 1.00

Ordinal Process
α2: threshold 1.25 0.021 0.164 0.96 -0.183 0.164 0.92 3.62 0.038 0.165 0.95 1.06
β20: intercept 1.80 0.079 0.579 0.95 -0.248 0.487 0.94 1.24 0.115 0.628 0.95 1.13
β21: time -0.35 -0.019 0.077 0.94 0.038 0.071 0.95 1.67 -0.023 0.077 0.93 1.07
β22: treatment -0.50 -0.066 0.786 0.95 0.063 0.654 0.95 0.72 -0.113 0.858 0.95 1.11
β23: time×treatment 0.10 0.013 0.102 0.95 0.000 0.088 0.93 0.88 0.015 0.103 0.95 1.06

Association Parameters & Variances
ρ 0.00 -0.002 0.175 0.95 - - - - - - - -
γ 0.91 - - - -0.668 3.144 0.96 - - - - -
σ2
b1

: bi1 5.87 -0.225 1.468 0.93 -2.941 1.278 0.64 19.04 0.176 1.575 0.94 1.04
σ2
b2

: bi2 4.89 0.388 1.827 0.93 - - - - 1.199 2.162 0.90 1.91
σ2
e1 : error 7.40 0.096 0.650 0.95 2.858 1.204 0.73 32.26 0.061 0.643 0.96 0.97

Uncorrelated

Continuous Process

(n=100)

β10: intercept 15.34 -0.010 0.419 0.95 0.007 0.398 0.96 1.01 -0.018 0.426 0.95 1.00
β11: time -0.56 -0.001 0.050 0.96 -0.002 0.053 0.95 1.24 -0.001 0.050 0.96 1.00
β12: treatment -0.50 -0.004 0.595 0.96 -0.018 0.568 0.96 1.00 -0.005 0.606 0.95 0.99
β13: time×treatment 0.30 0.003 0.071 0.95 0.004 0.075 0.94 1.17 0.002 0.072 0.94 1.00

Ordinal Process
α2: threshold 1.25 0.005 0.116 0.94 -0.377 0.096 0.44 15.17 0.018 0.119 0.95 1.04
β20: intercept 1.80 0.039 0.416 0.94 -0.520 0.262 0.77 3.57 0.022 0.406 0.95 1.00
β21: time -0.35 -0.007 0.053 0.95 0.101 0.045 0.76 5.77 -0.009 0.053 0.96 1.03
β22: treatment -0.50 -0.049 0.568 0.94 0.121 0.335 0.93 0.60 0.021 0.555 0.94 1.01
β23: time×treatment 0.10 0.006 0.071 0.94 -0.025 0.056 0.93 1.03 0.002 0.071 0.94 1.01

Association Parameters & Variances
ρ 0.00 -0.001 0.124 0.95 - - - - - - - -
γ 0.91 - - - -1.130 0.980 0.89 - - - - -
σ2
b1

: bi1 5.87 -0.097 1.036 0.95 -1.258 1.072 0.80 16.68 0.121 1.080 0.94 1.05
σ2
b2

: bi2 4.89 0.200 1.214 0.94 - - - - 0.548 1.304 0.91 1.41
σ2
e1 : error 7.40 0.073 0.452 0.95 1.322 0.717 0.81 28.80 0.053 0.449 0.95 0.98
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The results in Tables 1-3 further indicated very high efficiency gain in variances, which

could have been due to the choice of prior distributions assigned to them. To determine

their (i.e. the prior distribution for variance parameters) effect on the the main effects

regression parameters, we performed a sensitivity analysis. The priors considered were

Gamma(.001,.001), Gamma(0.5,0.5), Gamma(1,1), Pareto(0.5,.0001), and Pareto(0.5,0.01)

for the precision, and half-Cauchy(s=25) and half-Cauchy(s=20) for the standard deviations.

We simulated 200 data sets of size n = 50 from a joint model correlated through correlated

random effects but with ρ = 0.0 and then fitted a joint and separate models to the data

generated. We chose ρ = 0.0 for better comparison of the performance of the priors through

relative efficiency. Evidence of no gain in efficiency of the estimates from the joint and

separate models would imply a more appropriate prior distribution. We employed the models

used in the main simulation study to simulate the data. In fitting the models, we also

maintained same prior distributions for the regression parameters β. For the joint models,

Inverse Wishart prior was employed for the variance-covariance matrix Γ of the random

effects while we varied the priors for the error variance. For the separate models, we varied

the priors for the error variance and random effects variances.

The results are summarized in Figures 1, 2, and 3. The variance estimates differed when

we varied the hyper-parameters for Gamma and half-Cauchy but not Pareto (Figure 1).

The effect was more pronounced in the estimates of random effects variances and when we

varied hyper-parameters of Gamma prior (right panel of Figure 1). However, the regression

coefficient estimates remained similar under all the above prior distributions (Figures 2 & 3).
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The priors 1A, 1B, 1C, 2A, 2B, 3A, 3B, stand for Gamma(.001,.001), Gamma(0.5,0.5), Gamma(1,1),
Pareto(0.5,.0001), Pareto(0.5,0.01), half-Cauchy(s=25), half-Cauchy(s=20), respectively. In the joint model
(left panel) where we varied the prior for the error variance keeping the prior for the precision matrix of
random effects as Wishart(3, 1I2), the estimates are quite similar to each other. Meanwhile, in the separate
models (right panel) where we varied the priors for the error and random effects variances, the variance
estimates for random effects varied when we varied the hyper-parameters for Gamma prior (1A, 1B, 1C).

Figure 1: Box plots of estimates for the error variance, σ2
e1

, and random effects variances, σ2
b1

and σ2
b2

, under different priors.

49



Beta11

Beta12

Beta13

−2

−1

0

1

B12B12B12B12B12B12B12B13B13B13B13B13B13B13B14B14B14B14B14B14B14

Parameter

E
st

im
at

ed
 M

ea
n

 V
al

u
e

Continuous

Beta21

Beta22

Beta23

−2

−1

0

1

B22B22B22B22B22B22B22B23B23B23B23B23B23B23B24B24B24B24B24B24B24

Parameter

E
st

im
at

ed
 M

ea
n

 V
al

u
e

Prior

1A
1B
1C
2A
2B
3A
3B

Ordinal

The effect of error variance prior on the regression parameter estimates. The horizontal dotted,
solid, and dashed lines represent the true values for Beta11/Beta21, Beta12/Beta22, and Beta13/Beta23,
respectively. The priors 1A, 1B, 1C, 2A, 2B, 3A, 3B, stand for Gamma(.001,.001), Gamma(0.5,0.5),
Gamma(1,1), Pareto(0.5,.0001), Pareto(0.5,0.01), half-Cauchy(s=25), half-Cauchy(s=20), respectively.
The regression parameter estimates are similar across different priors.

Figure 2: Mean estimates and 95% credible intervals for the Joint Model.
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The effect of error and random effects variance priors on the regression parameter estimates.
The horizontal dotted, solid, and dashed lines represent the true values for Beta11/Beta21, Beta12/Beta22,
and Beta13/Beta23, respectively. The priors 1A, 1B, 1C, 2A, 2B, 3A, 3B, stand for Gamma(.001,.001),
Gamma(0.5,0.5), Gamma(1,1), Pareto(0.5,.0001), Pareto(0.5,0.01), half-Cauchy(s=25), half-Cauchy(s=20),
respectively. The regression parameter estimates are similar across different priors.

Figure 3: Mean estimates and 95% credible intervals for the Separate Models.
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3.6 ANALYSIS OF UGANDAN DIABETES DATA

In this section, we present the analysis of the diabetes data introduced in Section 3.1. Our

interest is to jointly model the continuous and ordinal measures of disease severity. We

considered diabetes data that were collected retrospectively from three hospitals (Mulago,

Nsambya, and Rubaga all in Kampala, Uganda). The data were monthly records of 321

diabetic patients from the medical registries in the three hospitals (for details see Buhule

et al., 2007 [8]) who had at least two measurements of both blood and urine glucose and

taken on the same occasions. The covariates of interest included treatment (Biguanides,

Sulphonyureas, and Insulin (baseline)), baseline age in years, gender (male=1, female=0),

time of hospital visits in months, and time and treatment interaction. The profile plots of

the 321 individuals grouped by treatment are shown in Figure 4. We observed that both

blood glucose and urine glucose levels tended to increase over time for individuals who were

treated with Biguanides at baseline. For those on Insulin, blood glucose levels were fairly

constant over time while the urine glucose showed slight decline. Lastly for individuals on

Sulphonyureas, blood glucose seemed to remain constant but urine glucose showed a U-shape

trend based on the smooth lowess plot. The U-shape trend might be due to outliers or

sparsity of data at large time values. The summary statistics for baseline characteristics of

the 321 patients are also indicated in Table 4. Most of the patients were Type 2 diabetics

because it is the main form of diabetes. They were all adults although Type 1 diabetics were

younger on average. Their BMI levels were about 29 on average indicating majority of these

patients were overweight at baseline. The majority of the patients were female, and were

mostly treated with Insulin at baseline; however, considering type of diabetes, Sulphonyureas

treatment was only given to Type 2 diabetics.

The two biomakers (blood glucose and urine glucose) were modeled jointly through

correlated random effects and shared random effects and then compared to separate models.

To improve normality, we used square root transformation of blood glucose levels which were

linked to the linear predictor (covariates) with an identity link. That is,

yij,1 = β10 + β11 × timeij + β12 ×Biguanidesij + β13 × Sulphonyureasij + β14 × agei + β15

× genderi + β16 ×Biguanidesij × timeij + β17 × Sulphonyureasij × timeij + bi1 + εij,1,
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treatment. The thick lines represent the lowess smooth curves.

Figure 4: Distribution of Blood/Urine glucose by treatment over time.

where, yij,1 is the square root of blood glucose (mg/dl) for the ith subject measured at the jth

occasion/hospital visit, bi1 is the random intercept and εij,1 ∼ N(0, σ2
e1

) is the measurement

error independent of bi1.

The marginal probabilities of urine glucose levels were linked to the covariates through a

cumulative logit link as follows:

log

(
Pr(yij,2 ≤ k)

1− Pr(yij,2 ≤ k)

)
= αk − [β21 × timeij + β22 ×Biguanidesij + β23 × Sulphonyureasij

+ β24 × agei + β25 × genderi + β26 ×Biguanidesij × timeij

+ β27 × Sulphonyureasij × timeij + bi2] ,

where k = 1, . . . , 5 and bi2 is the random intercept. In this cumulative logistic model, a
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Table 4: Descriptive statistics for baseline characteristics

All Type 1 Type 2

Variable n = 321 n = 69 n = 252

Age (years), x̄ (s) 49.7 (13.1) 37.4 (12.6) 53.1 (11.1)

BMI (kg/m2), x̄ (s) 28.6 (5.9) 28.9 (5.2) 28.5 (6.1)

Gender

Male, n (%) 70 (21.8) 16 (23.2) 54 (21.4)

Female, n (%) 251 (78.2) 53 (76.8) 198 (78.6)

Treatment

Biguanides, n (%) 116 (36.1) 20 (29.0) 96 (38.1)

Sulphonyureas, n (%) 85 (26.5) 0 (0.0) 85 (33.7)

Insulin, n (%) 120 (37.4) 49 (71.0) 71 (28.2)

positive regression coefficient indicates a higher probability of being in higher category of

urine glucose level.

For all parameters, we assumed similar priors as those used in the simulation study.

Time was standardized while age was centered to improve estimation. The MCMC was run

for 30, 000 iterations with the first 5, 000 discarded as burn-in. The models were fitted in

OpenBUGS (version 3.2.2) and its R interface BRugs Version 0.8.3. The standard MCMC

diagnostic tests (Table 5) indicated that all parameters estimated converged according to

the Gelman and Rubin diagnostics test [26] and its multivariate test proposed by Brook and

Gelman[5]. The few parameters that marginally failed the Geweke[30] and the Heidelberg and

Welch[41] diagnostic tests could be improved by running longer chains. The diagnostic plots

further indicated proper mixing of the chains and convergence to the stationary distributions

(see Appendix D Figures 5-7).
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Table 5: Convergence Diagnostic tests results for analysis of Diabetes data

Joint-Correlated (JC) Joint-Shared (JS) Separate (SP)

Gelman Geweke Heidelberg Gelman Geweke Heidelberg Gelman Geweke Heidelberg

Parameter Estimate Z-score Stationarity Halfwidth Estimate Z-score Stationarity Halfwidth Estimate Z-score Stationarity Halfwidth

Continuous Process: blood glucose levels

Intercept 1.00 1.137 passed passed 1.00 2.286 passed passed 1.00 -1.440 passed passed
Time 1.00 1.348 passed passed 1.00 -1.333 passed passed 1.00 -0.315 passed passed
Treatment

Biguanides 1.00 -1.925 passed passed 1.00 -1.265 passed passed 1.00 -0.416 passed passed
Sulphonyureas 1.00 -1.211 passed passed 1.00 -1.697 passed passed 1.00 0.668 passed passed

Age 1.00 1.247 passed failed 1.00 -0.144 passed failed 1.00 -1.778 passed failed
Male 1.00 -1.188 passed passed 1.00 -1.386 passed passed 1.00 0.699 passed passed
Treatment×Time

Biguanides×Time 1.00 0.186 passed failed 1.00 1.960 passed failed 1.00 -0.924 passed passed
Sulphonyureas×Time 1.00 -0.294 passed passed 1.00 -0.031 passed passed 1.00 0.247 passed passed

Ordinal Process: urine glucose categories

Threshold-1 1.01 -0.971 passed passed 1.00 -1.799 passed passed 1.00 -0.494 passed passed
Threshold-2 1.01 -1.016 passed passed 1.00 -1.702 passed passed 1.00 -0.531 passed passed
Threshold-3 1.01 -1.088 passed passed 1.00 -1.606 passed passed 1.00 -0.565 passed passed
Threshold-4 1.00 -1.319 passed passed 1.00 -1.396 passed passed 1.00 -0.673 passed passed
Time 1.00 -0.465 passed passed 1.00 -0.622 passed passed 1.00 1.774 passed passed
Treatment

Biguanides 1.00 -1.814 passed passed 1.00 -0.712 passed passed 1.00 -1.798 passed passed
Sulphonyureas 1.00 -0.977 passed passed 1.00 -1.282 passed failed 1.00 -0.932 passed passed

Age 1.00 1.677 passed passed 1.00 0.134 passed passed 1.00 0.976 passed passed
Male 1.00 -2.381 passed passed 1.00 -1.471 passed passed 1.01 0.958 passed passed
Treatment×Time

Biguanides×Time 1.00 1.787 passed passed 1.00 -0.042 passed passed 1.00 -1.174 passed passed
Sulphonyureas×Time 1.00 0.575 passed passed 1.01 0.315 passed passed 1.00 -2.740 passed passed

Association Parameters & Variances

ρ 1.00 1.124 passed passed - - - - - - - -
γ - - - - 1.00 1.016 passed passed - - - -
σ2
b1

1.00 -1.264 passed passed 1.00 -1.287 passed passed 1.00 0.290 passed passed
σ2
b2

1.00 -0.297 passed passed - - - - 1.00 -0.973 passed passed
σ2
e1 1.00 1.472 passed passed 1.00 1.063 passed passed 1.00 -1.138 passed passed

Multivariate Test 1.01 - - - 1.01 - - - 1.01 - - -
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The posterior estimates of the regression coefficients and their 95% credible intervals (CI)

for the joint (correlated random effects or shared random effects) versus separate analyses

are summarized in Table 6. The point estimates from the separate and joint analyses were

quite similar but the CIs somewhat differed. Time and gender were found to be significantly

associated with urine glucose levels in all the three models, such that the urine glucose levels

declined over time, and the males tended to have higher urine glucose levels compared to

females. In addition, gender was significantly associated with blood glucose levels in the

shared random effects model, implying, male patients had lower blood glucose levels as

compared to female patients. Although Biguanides treatment was found to be significantly

associated with urine glucose levels in the joint correlated model and separate models, the

interaction between Biguanides and time was not statistically significant in these two models.

However, there was a statistically significant interaction effect between Biguanides and time

in the shared random effects model; indicating patients who were treated with Biguanides

at baseline had higher urine glucose levels over time as compared to those treated with

Insulin, which is also evident in the profile plot (Figure 4). Moreover, the posterior estimates

of the association parameters ρ and γ in the joint analyses were positive and significantly

different from zero, providing strong evidence of association between the blood glucose and

urine glucose sub-models and indicating that the initial level of blood glucose was positively

associated with the urine glucose levels. The credible intervals shrunk in the joint models

with the shared random effects model having more shrinkage. All the measures of fit , that

is, DIC, LPML, and ALPML showed that the joint correlated random effects model fitted

the data better than the shared random effects model. Although DIC indicated that the

joint correlated random effects model fitted the data better than the separate models, the

LPML and ALPML measures showed no significant difference between the joint correlated

and separate models.

We also analyzed only type 2 diabetics data and the results (see Appendix A: Table 22)

were not very different those from the combined (type 1 and type 2 diabetics) data in Table 6.

Moreover, the convergence diagnostic results (see Appendix A: Table 21 and Appendix D:

Figures 8-10) indicated proper mixing of the chains and/or convergence of parameters to

their target distributions. Because age was not significantly associated with any of the two
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Table 6: Analysis of Diabetes Data

Joint-Correlated Random Effects Joint-Shared Random Effects Separate

Parameter Mean 95% CI Mean 95% CI Mean 95% CI

Continuous Process: blood glucose levels

Intercept 15.68 (15.20, 16.17) 15.86 (15.43, 16.28) 15.66 (15.15, 16.16)
Time -0.10 (-0.42, 0.22) 0.18 (-0.12, 0.48) -0.20 (-0.53, 0.12)
Treatment

Biguanides -0.15 (-0.71, 0.41) -0.35 (-0.86, 0.16) -0.15 (-0.74, 0.43)
Sulphonyureas -0.33 (-0.96, 0.29) -0.48 (-1.05, 0.09) -0.23 (-0.88, 0.42)

Age in years 0.00 (-0.02, 0.02) 0.00 (-0.02, 0.02) 0.00 (-0.03, 0.02)
Male -0.75 (-1.53, 0.03) -1.11 (-1.76, -0.45) -0.64 (-1.43, 0.15)
Treatment×Time

Biguanides×Time -0.01 (-0.44, 0.44) -0.02 (-0.46, 0.41) 0.07 (-0.39, 0.52)
Sulphonyureas×Time 0.22 (-0.35, 0.79) 0.19 (-0.35, 0.73) 0.23 (-0.36, 0.81)

Ordinal Process: urine glucose categories

Threshold-1 -0.90 (-1.28, -0.54) -0.81 (-1.16, -0.46) -1.02 (-1.41, -0.66)
Threshold-2 -0.42 (-0.79, -0.07) -0.35 (-0.69, -0.00) -0.54 (-0.93, -0.18)
Threshold-3 0.46 (0.09, 0.82) 0.49 (0.15, 0.84) 0.34 (-0.05, 0.70)
Threshold-4 2.64 (2.24, 3.04) 2.57 (2.20, 2.95) 2.53 (2.13, 2.93)
Time -0.36 (-0.59, -0.14) -0.40 (-0.62, -0.19) -0.25 (-0.49, -0.01)
Treatment

Biguanides -0.43 (-0.83, -0.04) -0.37 (-0.74, 0.01) -0.59 (-0.98, -0.19)
Sulphonyureas -0.20 (-0.65, 0.23) -0.18 (-0.58, 0.26) -0.26 (-0.73, 0.19)

Age in years -0.01 (-0.03, 0.01) -0.01 (-0.03, 0.01) -0.01 (-0.03,0.01)
Male 0.90 (0.33, 1.48) 1.00 (0.45, 1.56) 0.78 (0.18, 1.36)
Treatment×Time

Biguanides×Time 0.16 (-0.16, 0.48) 0.16 (0.14, 0.46) 0.15 (-0.18, 0.49)
Sulphonyureas×Time 0.30 (-0.10, 0.68) 0.28 (-0.10, 0.65) 0.29 (-0.13, 0.71)

Association Parameters & Variances

ρ 0.61 (0.49, 0.72) - - - -
γ - - 0.98 (0.75, 1.23) - -
σ2
b1

5.86 (4.60, 7.34) 3.05 (2.05, 4.25) 5.99 (4.68, 7.52)
σ2
b2

3.17 (2.35, 4.17) - - 3.11 (2.30, 4.09)
σ2
e1 8.02 (7.34, 8.74) 10.15 (9.23, 11.13) 7.98 (7.30, 8.70)

Goodness of Fit

Outcome DIC LPML (ALPML) DIC LPML (ALPML) DIC LPML (ALPML)

Continuous 6913 -2098 (-1.539) 7109 -2259 (-1.657) 6930 -2096 (-1.538)
Ordinal 3432 -1604 (-1.177) 3482 -1649 (-1.210) 3455 -1605 (-1.178)

Total 10350 -3702 (-2.716) 10590 -3908 (-2.867) - -
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outcomes in Table 6 results, we excluded it from this second analysis but instead included

BMI. Sulphonyureas treatment and gender were significantly associated with blood glucose

levels in the shared random effects model. Patients who were treated with Sulphonyureas at

baseline had their blood glucose levels decrease as compared to those treated with Insulin.

Male patients had lower blood glucose levels compared to their female counterparts. On

the other hand, Biguanides treatment was found to be significantly associated with urine

glucose levels in all the three models, and gender and time were significant in the joint models

(correlated and shared). The patients who were treated with Biguanides had lower urine

glucose levels compared to those treated with Insulin, and males tended to have higher urine

glucose levels compared to females. Overall, these patients had lower urine glucose levels

over time. Again,the posterior estimates of the association parameters ρ and γ in the joint

analyses were positive and significantly different from zero, providing strong evidence of

association between the blood glucose and urine glucose sub-models and indicating that the

initial level of blood glucose was positively associated with the urine glucose levels. The DIC

also indicated that the joint correlated random effects model fitted the data better than the

shared random effects model and the separate models.

3.7 DISCUSSION

In this dissertation we have proposed a full Bayesian hierarchical multivariate generalized

linear mixed effects model for multiple repeatedly measured mixed outcomes (continuous

and ordinal) that are measures of disease severity. The key features of our model are the

Bayesian hierarchical formulation for modeling the subject-specific random effects when data

are highly unbalanced. We employed the nested indexing approach of handling unbalanced

data (Lunn, Thomas, and Spiegelhalter, 2000) [65] in formulating the proposed model.

Furthermore, the use of Bayesian approach that is fully implemented in freely available

software like WinBUGS (Lunn et al., 2000) [65] and OpenBUGS (Lunn et al., 2009)[64]

avoids the difficulties of routinely implementing maximum likelihood-based methods to these

complex and useful models. Currently, probit models are very widely used in complex
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applications involving categorical ordinal data due to ease of modeling and computation using

the underlying normal framework. Our approach uses the cumulative logit model which is

more stable especially in handling outlying data and easier to interpret than the probit models,

particularly for biomedical researchers who routinely use logistic regression in analyses of

binary outcomes. We have considered the cumulative logit model (proportional odds model)

but this proportional odds assumption can be relaxed by fitting a non-proportional or partial

proportional cumulative logit model as proposed by Hedeker and Mermelstein (1998)[40].

This extension allows the covariates to vary across the cumulative logits or cut points. As it

is straight forward to generalize our approach to essentially any data structure, the proposed

methodology would be a useful toolkit in the statistician’s toolbox.

The simulation study results demonstrated that joint modeling leads to efficient estimates

and adequate 95% coverage probabilities for the population parameters. The efficiency gain

was larger for the ordinal outcome estimates compared to that for the continuous outcome.

Overall, ordinal outcome regression coefficient estimates gained more efficiency when the the

joint model was correlated through correlated random effects than through shared random

effects. The efficiency gain was justified as modeling of mixed outcome types using shared

random effects is disadvantages to outcomes having non-normal distributions especially those

that have a natural tie between the mean and variance (McCulloch, 2008)[69]. In general,

our results agreed with those of Guerguieva and Sanacora (2006)[33] who found more efficient

gain in the ordinal outcome than the continuous outcome when they jointly modeled balanced

longitudinal data. Moreover, our real data example indicated improved efficiency when

blood glucose and urine glucose were modeled jointly. Finally, varying priors for variance

parameters was found to have no effect on the parameters of interest, although differences

in the estimates of the variance parameters were observed especially when we varied the

hyper-parameters for Gamma priors as indicated by Gelman (2006) [25].

In the next chapter (Chapter 4) we extend the proposed joint model to include time-to-

event data.
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4.0 BAYESIAN HIERARCHICAL JOINT MODELING OF REPEATEDLY

MEASURED MIXED BIOMARKERS OF DISEASE SEVERITY AND

TIME-TO-EVENT

4.1 INTRODUCTION

Joint modeling has been widely used in simultaneous modeling of longitudinal outcomes and

time-to-event data. When repeatedly measured markers over time are used as time-dependent

covariates in survival analysis, they are likely to lead to biased estimates. Bias occurs because

these markers are prone to measurement errors and have increased within patient variability

due to biological fluctuations. Modeling these markers and time-to-event data jointly leads

to unbiased and more efficient estimates. The goal of joint modeling in this context may

include: modeling the distribution of the time to a terminal event conditional on longitudinal

measurement sequence, adjusting inference about a longitudinal measurement sequence to

allow for informative dropout or joint evaluation of a measurement and an event-time process.

Most of the work in this field has focused on joint modeling of a single longitudinal outcome

and time-to-event data. However, in clinical studies where associations between the event

process and more than one biomarker are of interest, joint modeling of all the markers and

the event process is likely to increase the efficiency of the estimates.

This study is motivated by data for diabetic patients that were collected retrospectively

from three Ugandan hospitals. These patients attended the diabetic clinics between January

1992 and December 2004 during which several clinical measurements were taken. Blood

glucose in mg/dl was taken as the main biomaker reflecting disease severity. In addition,

urine glucose levels were taken as a compliment or substitute to blood glucose because the

urine glucose test is cheaper and faster. Other variables that are known to be associated with
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Type 2 diabetes like body mass index (BMI) and blood pressure in mm Hg (both systolic

and diastolic) were also collected often during hospital visits. These patients were mostly

treated with Sulphonyureas or Biguanides or Insulin at baseline (the first time they visited the

diabetes clinic). Because diabetes is a chronic illness with no known cure, these treatments

are only used to control and prevent the development of diabetes complications. Thus, they

slow down diabetes progression by reducing the rate of further injury to the biological system

without necessarily improving the current level of functioning.

The normal range for blood glucose is between 70 to 130 mg/dl or 70 to 180 mg/dl

depending on whether someone is fasting or not at the time of testing. The clinical interest

is to ensure the blood glucose is in the normal range. In addition, maintaining normal

blood pressure and BMI for diabetics is known to reduce the risk of mortality from diabetes

compilations such as heart attack and stroke. Of the three biomarkers (i.e., blood glucose,

blood pressure, and BMI), blood glucose is expensive to measure and yet it is the main

biomarker of disease severity for diabetes. Normalization of the blood glucose levels is one

important objective for all diabetic patients. However, since blood glucose levels are more

expensive to measure it may be reasonable to establish the association between normalization

of it and other biomarkers such as blood pressure levels and BMI.

Joint models that combine the longitudinal and time-to-event processes have been widely

studied by many authors. Hogan and Laird (1997a)[44], Tsiatis and Davidian (2004)[93],

and Ibrahim, Chen, and Sinha (2001, Chapter 7)[51] give a detailed discussion of joint

modeling. Pawitan and Self (1993)[73], DeGruttola and Tu (1994)[16], Tsiatis, DeGruttola,

and Wulfsohn (1995)[94], Faucett and Thomas (1996)[18], Lavalley and De Gruttola (1996)[58],

Wulfsohn and Tsiatis (1997)[100], Henderson, Diggle, and Dobson (2000)[42], Xu and Zeger

(2001a)[101], Tsiatis and Davidian (2001)[92], Wang and Taylor (2001)[97], Guo and Carlin

(2004)[34], Brown and Ibrahim (2003) [6, 7], Ibrahim, Chu, and Chen(2010)[52], Wang, Shen,

and Boye (2012)[96], Huang, Hu, and Dagne (2014)[49] all have worked on one longitudinal

outcome and time-to-event. While Rizopoulos and Ghosh (2010)[79] and Hatfield, Boye, and

Carlin (2011)[36] extended the longitudinal outcome to multivariate case.

In this literature, the models employed for each outcome included mainly a proportional

hazards model (semi-parametric or parametric) for the survival times and a linear mixed
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effects model for the longitudinal measurements. The two outcomes were jointly modeled

through partial likelihood models or joint likelihood models. In the partial likelihood models,

the longitudinal measurements are taken to be time-dependent covariates in the hazard

function of survival times. This method also known as two-stage approach was used by

Tsiatis, DeGruttola, and Wulfsohn (1995) [94], who first estimated the true longitudinal

measurements at each event time by method of moments and then plugged the fitted

values into the Cox’s partial likelihood before maximizing it to obtain the estimates of

the regression parameters. This method does not make use of all the information and is

known to lead to biased estimates because covariate values are often measured with error

(Prentice, 1982)[76]. In the joint likelihood models approach, on the other hand, the model

for survival is conditioned on the observed longitudinal covariate or the other way around,

depending on whether the interest is in the survival or longitudinal outcome, respectively.

The random effects model (Laird and Ware, 1982 [57]) is often used to model the longitudinal

outcome and the individual random effects are included in the survival model. This leads to

more efficient estimates than the two-stage approach because it uses the full likelihood in

estimation and hence makes more use of the data. Parameter estimation is carried out using

maximum likelihood (ML) methods like EM algorithms or Bayesian Markov Chain Monte

Carlo (MCMC) methods; however, ML methods are computationally very intensive.

Faucett and Thomas (1996) [18], Xu and Zeger (2001a) [101], DeGruttola and Tu (1994) [16],

Henderson, Diggle, and Dobson (2000) [42], Wang and Taylor (2001)[97], Guo and Carlin

(2004) used the likelihood approach to jointly model the longitudinal marker and time-to-

event; however, Faucett and Thomas (1996) [18], Xu and Zeger (2001a) [101], Wang and

Taylor (2001)[97], Guo and Carlin (2004) [34] employed the Bayesian MCMC methods for

parameter estimation while others implemented EM algorithms. Henderson, Diggle, and

Dobson (2000) [42] and Xu and Zeger (2001a) [101] introduced a stationary Gaussian process

(as part of random effects) to allow the longitudinal trajectory to vary with time, while Wang

and Taylor (2001)[97] incorporated an integrated Ornstein–Uhlenbeck (IOU) process to moni-

tor the biological fluctuations in the longitudinal process about a smooth trend. Furthermore,

Rizopoulos and Ghosh (2010) [79] proposed a Bayesian semiparameteric multivariate joint

model that relates multiple longitudinal outcomes (continuous and binary) and time-to-event.

62



They used a spline-based approach to model the subject-specific longitudinal evolution, and

the baseline risk function in the Cox model for time-to-event outcome was assumed piece-wise

constant.

Although these joint models are very complex and computationally intensive, ignoring the

association between processes leads to inefficient if not biased estimation of the parameters

involved. Irrespective of the methods employed, joint modeling in most cases results in

efficient and unbiased parameter estimates when compared to separate modeling. As noted

earlier, most of the joint models have focused on one longitudinal outcome and time-to-event,

and to the best of our knowledge, no one has worked on joint modeling of mixed longitudinal

outcomes (e.g. continuous, ordinal) and time-to-event. Therefore, we propose a hierarchical

joint model to handle unbalanced repeatedly measured continuous and ordinal markers of

disease severity, and time-to-event. We use Bayesian methods to construct the posterior

distribution of the parameters of interest. Markov Chain Monte Carlo (MCMC) methods

are employed for parameter estimation because they avoid the difficulties of dealing with

high-dimensional integrals by sampling from the posterior distribution.

The remainder of this chapter is organized as follows: Section 4.2 presents the formulation

of the multivariate generalized linear mixed effects model, the associated joint likelihood, and

the prior and posterior distributions. Section 4.3 shows the derivation of the full conditionals

and estimation procedures of the parameters from these full conditionals, Section 4.4 shows

the simulation study, and Section 4.5 indicates the application of the proposed joint model to

diabetes data.

4.2 MODEL SPECIFICATIONS

4.2.1 Model formulation

Let yi = (y′i1,y
′
i2, . . . ,y

′
iL)′, denote the L-variate response vector for ith subject (i = 1, . . . , n),

where yil, l = 1, . . . , L, is an ni × 1 vector of longitudinal biomarker for a certain disease

severity taken at time points, j = 1, . . . , ni. In addition, let Ti = min(T ∗i , Ci) be the failure
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time and δi = I(T ∗i ≤ Ci) an event indicator which indicates whether the observed failure

time is a true failure time, T ∗i , or a censoring time Ci for the ith subject. For example,

in the Ugandan Diabetes data set, yi1 is a vector of systolic blood pressure levels, yi2 is

a vector of BMI levels, and Ti is time to normalization of blood glucose levels, for the ith

patient. Because these responses are assumed to be of mixed types, we employ generalized

linear mixed effects models (GLMM) to unify them. Under this framework (GLMM), the

conditional distribution of each response is assumed to be a member of exponential family. In

particular, the conditional mean µ is linked to the linear predictor η (including fixed effects

and random effects) through a known one-to-one monotonic link function g(·).

Motivated by our data set, we consider two repeatedly measured response variables (con-

tinuous and ordinal) and one time-to-event outcome. Thus, yi = (yi1,yi2) for the continuous

and ordinal outcomes, respectively. For the continuous outcome, the jth component is linked

to the linear predictor through an identity link as in 4.2.11

yij,1 = x′ij,1β1 + z′ij,1bi1 + εij,1, (4.2.11)

where εi1 ∼ N(0, σ2
e1

) is the measurement error, xij,1 and zij,1 are vectors of fixed covariates

and random effects, respectively, β1 are the regression parameters for the fixed part and bi1

is random effect of the ith subject. The linear predictor or mean is given as

µij,1 = E [yij,1|bi1] = ηij,1 = x′ij,1β1 + z′ij,1bi1.

For the ordinal response variable yi2 withK ordered categories k = 1, 2, · · · , K, the conditional

cumulative probabilities pijk,2 for the K categories defined as

pijk,2 = Pr(yij,2 ≤ k) =
k∑

m=1

pijm,2, (4.2.12)

are linked to the linear predictor ηijk,2 through a cumulative logit 4.2.13

log

[
pijk,2

1− pijk,2

]
= ηijk,2 = αk −

[
x′ij,2β2 + z′ij,2bi2

]
, (4.2.13)

with K − 1 strictly increasing model thresholds αk (i.e., α1 < α2 · · · < αK−1). In this

cumulative logit, we are assuming the proportional odds assumption (McCullagh, 1980) [67],

and a positive regression coefficient implies a higher probability of being in higher category.
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The first threshold α1 or the model intercept β20 is set to zero to guard against identifiability

problems. The conditional marginal probability πijk for category k is given by a difference

between two conditional cumulative probabilities as

πijk = Pr(yij,2 = k|bi2, xi2, zi2) = Ψ(ηijk,2)−Ψ(ηijk−1,2), (4.2.14)

where Ψ(ηijk,2) is the logistic cumulative distribution function (cdf) given as

Ψ(ηijk,2) =
exp(ηijk,2)

1 + exp(ηijk,2)
=

1

1 + exp(−ηijk,2)
.

The thresholds α0 and αK are respectively set to −∞ and ∞, such that Ψ(ηij0,2) = 0 and

Ψ(ηijK,2) = 1.

For the time-to-event Ti, we define the hazard for the ith individual by the proportional

hazards model

hi(t) = h0(t)wi exp (x′i3β3) , (4.2.15)

where xi3 is a vector of baseline covariates, β3 is a vector of regression coefficients of covariates,

and h0(t) is baseline hazard function, which can be assumed to be of parametric form or left

unspecified. The latent parameter wi is the unshared (individual-specific) frailty accounting

for unobservable heterogeneity and is assumed to have a log-normal distribution. By letting

bi3 = exp(wi), Equation 4.2.15 is rewritten as

hi(t) = h0(t) exp (x′i3β3 + bi3) , (4.2.16)

where bi3 is now assumed to be normally distributed. We assume a parametric Weibull

distribution describes the errors in a proportional hazards model (4.2.16), such that the hazard

for the ith individual at time t, hi(t), is a product of baseline hazard function h0(t) = λtλ−1

and µi3(t) = exp (x′i3β3 + bi3). Thus, every individual has a survival time that is Weibull

with a fixed shape parameter (λ) and a scale parameter (µi3), which depends on the covariates.

A Weibull distribution is chosen because of its flexibility. It allows a monotonous increasing

and decreasing hazard rate and by setting λ = 1 we have an Exponential distribution, which
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assumes a constant hazard rate. Putting together, our proposed multivariate generalized

linear mixed model for the three processes is expressed as

yij,1|bi1 ∼ N
(
x′ij,1β1 + z′ij,1bi1, σ

2
e1
Ini
)
,

(yij1,2, . . . , yijK−1,2)|bi2 ∼ multinomial(πij1, . . . , πijK−1),

Ti|bi3 ∼ Weibull(λ, µi3),

log(µi3) = xi3
′β3 + bi3.

(4.2.17)

The random effects bi1, bi2, and bi3 are assumed to follow a Gaussian distribution with

mean vectors of zeros and variance-covariance matrices Γ1, Γ2, and Γ3, respectively. Given

these random effects, the three processes are assumed to be independent of each other and

the repeated measures within an individual are assumed to be independent observations

from a distribution fl(·). Thus, by having the latent parameters bi1, bi2, and bi3 correlated

induces the association among the three processes. In this dissertation, both the shared and

correlated random effects are explored. In the shared random effects model, the random

effects bi2 and bi3 are assumed proportional to bi1, that is, bi2 = γ1bi1 and bi3 = γ2bi1. This

formulation assumes a restrictive correlation structure among the outcomes. Meanwhile, in

the correlated random effects model, the random effects bi1, bi2, and bi3 are assumed to

follow a multivariate normal distribution with a nonrestrictive covariance structure, which

could be exchangeable or any other correlation structure.

4.2.2 Likelihood for the proposed model

Let θ1 =
{
β1, σ

2
e1

}
, θ2 = {β2, α} where α = (α1, . . . , αK−1) are the ordered threshold param-

eters for ordinal process, denote the parameters associated with the continuous and ordinal

processes, respectively. In addition, let θ3 = {β3, λ}, Θ = (θ1, θ2, θ3), and Γ = (Γ1,Γ2,Γ3)

denote parameters associated with survival process, combined three processes, and random

effects, respectively. Furthermore, let y1, y2, and y3 be the observed continuous, ordinal,

and survival data, respectively, and b be the combined random effects. The survival data are

right censored and we assume censoring is noninformative. The full conditional independence
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assumption (Laird and Ware, 1982)[57] is also assumed such that, under the correlated normal

random effects model, the joint likelihood of the three processes is given as

L(Θ,Γ|b,y, t) = L1(θ1|b,y1)L2(θ2|b,y2)L3(θ3|b,y3)g(b1,b2,b3|Γ),

where

L1(θ1|b,y1) =
n∏
i=1

f1(yi1|bi1; θ1) =
n∏
i=1

ni1∏
j=1

1

(2πσ2
e1

)1/2
exp

{
−(yij,1 − µij,1)2

2σ2
e1

}
,

µij,1 = x′ij,1β1 + z′ij,1bi1.

L2(θ2|b,y2) =
n∏
i=1

f2(yi2|bi2; θ2) =
n∏
i=1

ni2∏
j=1

K∏
k=1

{Ψ(ηijk,2)−Ψ(ηijk−1,2)}yijk,2

Ψ(ηijk,2) =
exp(αk − µij,2)

1 + exp(αk − µij,2)
, Ψ(ηijk−1,2) =

exp(αk−1 − µij,2)
1 + exp(αk−1 − µij,2)

,

µij,2 = x′ij,2β2 + z′ij,2bi2.

L3(θ3|b,y3) =
n∏
i=1

f3(ti, δi|bi3, θ3)
δiS3(ti, δi|bi3, θ3)

1−δi

=
n∏
i=1

[h0(ti) exp(x′i3β3 + bi3)]
δi × exp{−

ti∫
0

h0(s) exp(x′i3β3 + bi3)ds}

(4.2.21)

Likelihood (4.2.21) can be written as

L3(θ3|b,y3) =
n∏
i=1

[
µδii exp(−µi)

] [ h0(ti)
H0(ti)

]δi
,

where

µi = H0(ti)µi3, µi3 = exp(x′i3β3 + bi3), and H0(ti) =

ti∫
0

h0(s)ds.

By assuming Weibull distribution, h0(ti) = λt
(λ−1)
i , H0(ti) = tλi ,

h0(ti)

H0(ti)
=
λ

ti
.

Therefore,

L3(θ3|b, t) =
n∏
i=1

[
µδii exp(−µi)

]︸ ︷︷ ︸
A

[
λ

ti

]δi
︸ ︷︷ ︸

B

, µi = tλi exp(x′i3β3 + bi3).

(4.2.22)
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Part A in Equation (4.2.22) was first shown by Aitkin and Clayton (1980) [1] to be the kernel

of the likelihood function for n independent “Poisson variates” δi with mean µi . Thus, the

log-linear model for the hazard function implies a log-linear model for the Poisson mean:

log µi = log(tλi ) + x′i3β3 + bi3, where log(tλi ) is the offset. This formulation allows us to model

the three processes as multivariate GLMM. The joint distribution of b = (bi1,bi2,bi3) is

assumed to be a multivariate normal with mean vector of zero and variance-covariance matrix

Γ. That is, 
bi1

bi2

bi3

 ∼ N3




0

0

0

 ,Γ =


Γ1 Γ12 Γ13

Γ21 Γ2 Γ23

Γ31 Γ32 Γ3


 .

Combining the above, the joint likelihood for the three processes is given as

L(Θ,Γ|b,y) =
n∏
i=1

[
ni1∏
j=1

1

(2πσ2
e1

)1/2
exp

{
−(yij,1 − µij,1)2

2σ2
e1

}]

×

[
ni2∏
j=1

K∏
k=1

{Ψ(ηijk,2)−Ψ(ηijk−1,2)}yijk,2
]

×

[[
µδii exp(−µi)

] [λ
ti

]δi]
×
[
|Γ|−1/2

2π
exp

{
−bi

′Γ−1bi

2

}]
,

where,

bi = (bi1,bi2,bi3), µij,1 = x′ij,1β1 + z′ij,1bi1, µij,2 = x′ij,2β2 + z′ij,2bi2,

Ψ(ηijk,2) =
exp(αk − µij,2)

1 + exp(αk − µij,2)
, Ψ(ηijk−1,2) =

exp(αk−1 − µij,2)
1 + exp(αk−1 − µij,2)

, and

µi = tλi exp(x′i3β3 + bi3).

(4.2.23)

4.2.3 Prior Specifications and Posterior distribution

Bayesian inferences are based on the posterior distribution, which is a function of the likelihood

and prior distribution. Prior distributions are chosen to have less influence on the inferences

made and conjugate (i.e., prior whose kernel has same form as that of the likelihood) where pos-

sible. Let β̊1 β̊2, and β̊3 denote the mean vectors, and Σ̊1, Σ̊2, and Σ̊3 the variance-covariance

matrices for β1, β2, and β3, respectively. Non-informative multivariate normal priors were
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assumed for the β′s, β1 ∼MVN
(
β̊1, Σ̊1

)
, β2 ∼MVN

(
β̊2, Σ̊2

)
, β3 ∼MVN

(
β̊3, Σ̊3

)
and

truncated normal prior for the thresholds α, αk ∼ N (µαk , σ
2
α) I(αk−1, αk+1) k = 1, . . . , K−1,

where I(·, ·) denotes truncation to specified interval. For the variance parameters, an In-

verse Wishart prior was assumed for the variance-covariance matrix of the random effects

(Γ ∼ IW (ν,Λ)) and an Inverse Gamma prior for the error variance
(
σ2
e1
∼ IG(ζ, ω)

)
, which

are both conjugate priors in the multivariate and univariate normal likelihoods, respectively

(Carlin and Louis, 2009)[9]. In separate models, we assumed Inverse Gamma for the variance

of each random effects. Alternatively, a half-Cauchy prior is assumed for the standard

deviation of random effects (Gelman, 2006)[27]. Lastly, for the shape parameter λ if 6= 1 a

Gamma prior was assumed (i.e., λ ∼ G(%, ξ)) which is also a conjugate prior. By using vague

or non-informative priors we allow the likelihood or the data to dominate the inferences made.

Because random effects are unknown they are included as parameters in the posterior distri-

bution and hence estimated together with other parameters. Given the prior distributions of

all the unknowns and the observed data, the joint posterior distribution can be expressed as

π (Θ,Γ,b|y) ∝ L(Θ,Γ|b,y)π (Θ)π (Γ)

∝
n∏
i=1

[
ni1∏
j=1

1

(2πσ2
e1

)1/2
exp

{
−(yij,1 − µij,1)2

2σ2
e1

}
× ωζ

Γ(ζ)

(
σ2
e1

)−(ζ+1)
exp

{
− ω

σ2
e1

}
× |Σ̊1|

−1/2
exp

{
−1

2

(
β1 − β̊1

)′
Σ̊−11

(
β1 − β̊1

)}
×

ni2∏
j=1

K∏
k=1

{
exp(αk − µij,2)

1 + exp(αk − µij,2)
− exp(αk−1 − µij,2)

1 + exp(αk−1 − µij,2)

}yijk,2

×
K−1∏
k=1

(
2πσ2

α

)−1/2
exp

{
−(αk − µα)

2

2σ2
α

}
I[αk−1,αk+1] (αk)

× |Σ̊2|
−1/2

exp

{
−1

2

(
β2 − β̊2

)′
Σ̊−12

(
β2 − β̊2

)}
×
[
µδii exp(−µi)

] [λ
ti

]δi
× ξ%

Γ(%)
λ(%−1) exp {−ξλ}

× |Σ̊3|
−1/2

exp

{
−1

2

(
β3 − β̊3

)′
Σ̊−13

(
β3 − β̊3

)}
×|Γ|−1/2 exp

{
−b
′
iΓ
−1bi
2

}
× |Γ|−ν/2 exp

(
−1

2
tr
(
Γ−1Λ

))]
.

(4.2.31)
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Ignoring constants in Equation 4.2.31 gives the joint posterior as

π (Θ,Γ,b|y) ∝ L(Θ,Γ|b,y)π (Θ)π (Γ)

∝ L(Θ,Γ|b,y)×
(
σ2
e1

)−(ζ+1)
exp

{
− ω

σ2
e1

}
× exp

{
−1

2

(
β1 − β̊1

)′
Σ̊−11

(
β1 − β̊1

)}
×

K−1∏
k=1

exp

{
−(αk − µα)

2

2σ2
α

}
I[.,.] (αk)

× exp

{
−1

2

(
β2 − β̊2

)′
Σ̊−12

(
β2 − β̊2

)}
× exp

{
−1

2

(
β3 − β̊3

)′
Σ̊−13

(
β3 − β̊3

)}
× (λ)

(%−1)
exp {−ξλ}

× |Γ|−ν/2 exp

{
−1

2
tr
(
Γ−1Λ

)}
,

(4.2.32)

where, L(Θ,Γ|b,y) is given by Equation (4.2.23). From the joint posterior distribution

in Equation (4.2.32), we can draw inferences about the parameters of interest; however,

to determine the appropriate MCMC sampling method or specifically to implement Gibbs

sampling, the full conditionals or conditional marginal distributions for each parameter need

to be constructed. In the next section (Section 4.3), we show the derivation of the full

conditionals and estimation procedures for these parameters.

4.3 FULL CONDITIONAL DISTRIBUTIONS AND ESTIMATION

The conditional marginal posterior distributions or full conditionals are determined by

averaging the joint posterior distribution (4.2.32) over or integrating out the remaining

parameters. If a parameter distribution is proportional to some known, standard distribution,

then sampling can be done using standard Gibbs sampling method. However, if a distribution

is not standard and also to improve the convergence, we use the one iteration Metropolis-

Hasting algorithm (Gamerman, 1997) [20]. This method uses Metropolis-Hasting algorithm

with weighted least squares (WLS) proposal to draw samples from full conditional distributions.

Because some of these parameters are correlated, which can lead to slow convergence, the
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full conditional distributions are formed as blocks of correlated parameters according to their

conditional independence [57][20]. Thus, in our case we have blocks β1, σ2
e1

, (α, β2), λ, β3, b,

and Γ and their full conditional distributions are derived below.

Let π(θ|.) represent the full conditional distribution of parameter θ given as parameters,

then:

π
(
β1|σ2

e1
,bi1

)
∝ exp

{
−1

2

(
β1 − β̊1

)′
Σ̊−11

(
β1 − β̊1

)}
×

n∏
i=1

ni1∏
j=1

exp

{
−(yij,1 − µij,1)2

2σ2
e1

}

∝ exp

{
−1

2

(
β1 − β̊1

)′
Σ̊−11

(
β1 − β̊1

)}
× exp

{
− 1

2σ2
e1

n∑
i=1

ni1∑
j=1

(yij,1 − µij,1)2
}

∝ exp

{
−1

2

[(
β1 − β̊1

)′
Σ̊−11

(
β1 − β̊1

)
+

1

σ2
e1

n∑
i=1

ni1∑
j=1

(yij,1 − µij,1)2
]}

∝ exp

{
−1

2

[(
β1 − β̊1

)′
Σ̊−11

(
β1 − β̊1

)
+

1

σ2
e1

(y1 −X1β1 − Z1b1)
′
(y1 −X1β1 − Z1b1)

]}
∝ exp

{
−1

2

[
β′1Σ̊

−1
1 β1 − 2β′1Σ̊

−1
1 β̊1 + β̊1

′
Σ̊−11 β̊1 + σ−2e1 (y′1y1 − 2y′1X1β1 − y′1Z1b1

+β′1X
′
1X1β1 + 2β′1X

′
1Z1b1 − b′1Z ′1y1 + b′1Z

′
1Z1b1)]}

Ignoring the terms that do not involve β1 in the exponent above leads to

∝ exp

{
−1

2

[
β′1Σ̊

−1
1 β1 − 2β′1Σ̊

−1
1 β̊1 + σ−2e1 (−2y′1X1β1 + β′1X

′
1X1β1 + 2β′1X

′
1Z1b1)

]}
(4.3.01)

Simplifying 4.3.01 further gives

π
(
β1|σ2

e1
,bi1

)
∝ exp

{
−1

2

[
β′1Σ̊

−1
1 β1 + β′1X

′
1X1σ

−2
e1
β1 − 2β′1

(
Σ̊−11 β̊1 +X ′1σ

−2
e1

(y1 − Z1b1)
)]}

∝ exp

{
−1

2

[
β′1[Σ̊

−1
1 +X ′1X1σ

−2
e1

]β1 − 2β′1

(
Σ̊−11 β̊1 +X ′1σ

−2
e1

(y1 − Z1b1)
)]}

∝ exp

{
−1

2

[
β′1[Σ̊

−1
1 +X ′1X1σ

−2
e1

]β1 − 2β′1

(
[Σ̊−11 +X ′1X1σ

−2
e1

]−1 × [Σ̊−11 +X ′1X1σ
−2
e1

]

×
[
Σ̊−11 β̊1 +X ′1σ

−2
e1
ε
])]}

∝ N (β1
∗,Σ1

∗) ,

where,

β∗1 = Σ1
∗ ×

[
Σ̊−11 β̊1 +X ′1σ

−2
e1
ε
]
, Σ1

∗ =
[
Σ̊−11 +X ′1X1σ

−2
e1

]−1
,

ε =
n∑
i=1

ni1∑
j=1

(
yij,1 − z′ij,1bi1

)
.

(4.3.02)
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π
(
σ2
e1
|β1,bi1

)
∝
(
σ2
e1

)−n(ζ+1)
exp

{
− ω

σ2
e1

}
×

n∏
i=1

ni1∏
j=1

1

(σ2
e1

)1/2
exp

{
−(yij,1 − µij,1)2

2σ2
e1

}

∝
(
σ2
e1

)−n(ζ+1)
exp

{
− ω

σ2
e1

}
× (σ2

e1
)−n/2 exp

{
− 1

2σ2
e1

n∑
i=1

ni1∑
j=1

(yij,1 − µij,1)2
}

∝
(
σ2
e1

)−( 2ζ+n
2

+1)
exp

{
− 1

σ2
e1

[
ω +

1

2

n∑
i=1

ni1∑
j=1

(yij,1 − µij,1)2
]}

∝ IG

(
ζ +

n

2
, ω +

1

2

n∑
i=1

ni1∑
j=1

(yij,1 − µij,1)2
)

(4.3.03)

π (α, β2|bi2) = π (α|bi2) π (β2|α,bi2)

∝
K−1∏
k=1

exp

{
−(αk − µα)2

2σ2
α

}
I[αk−1,αk+1] (αk)×

n∏
i=1

ni2∏
j=1

K∏
k=1

{
exp(αk − µij,2)

1 + exp(αk − µij,2)
− exp(αk−1 − µij,2)

1 + exp(αk−1 − µij,2)

}yijk,2
× exp

{
−1

2

(
β2 − β̊2

)′
Σ̊−12

(
β2 − β̊2

)}
(4.3.04)

π (β3|λ,bi3) ∝ exp

{
−1

2

(
β3 − β̊3

)′
Σ̊−13

(
β3 − β̊3

)}
×

n∏
i=1

µδii exp(−µi)

∝ exp

{
−1

2

(
β3 − β̊3

)′
Σ̊−13

(
β3 − β̊3

)}
×

n∏
i=1

(tλi exp(x′i3β3 + bi3))
δi exp(−tλi exp(x′i3β3 + bi3))

∝ exp

{
−1

2

(
β3 − β̊3

)′
Σ̊−13

(
β3 − β̊3

)}
×

n∏
i=1

exp(λδi log(ti))[exp(x′i3β3 + bi3)]
δi exp(−tλi exp(x′i3β3 + bi3))

(4.3.05)

72



π (β3|λ,bi3) ∝ exp

{
−1

2

(
β3 − β̊3

)′
Σ̊−13

(
β3 − β̊3

)}
×

exp
n∑
i=1

[
δi (x

′
i3β3 + bi3) + λδi log(ti)− tλi exp(x′i3β3 + bi3)

]
∝ exp

{
n∑
i=1

[
δi (x

′
i3β3 + bi3) + λδi log(ti)− tλi exp(x′i3β3 + bi3)

]
− 1

2

(
β3 − β̊3

)′
Σ̊−13

(
β3 − β̊3

)}
∝ exp

{
n∑
i=1

[
δi (x

′
i3β3 + bi3)− tλi exp(x′i3β3 + bi3)

]
− 1

2

(
β3 − β̊3

)′
Σ̊−13

(
β3 − β̊3

)}
,

which is a log-concave function.

(4.3.06)

Similarly, the conditional marginal distribution of π (λ|β3,bi3), and for the random effects

and their associated variance-covariance matrix are derived as

π (λ|β3,bi3) ∝ (λ)n(%−1) exp {−ξλ} ×
n∏
i=1

[
µδii exp(−µi)

] [λ
ti

]δi
∝ (λ)n(%−1) exp {−ξλ} × (λ)nδi

×
n∏
i=1

t−δii (tλi exp(x′i3β3 + bi3))
δi exp(−tλi exp(x′i3β3 + bi3))

∝ (λ)(%+δi−1) exp {−ξλ} × exp
n∑
i=1

[−δi log(ti)

+ δi (x
′
i3β3 + bi3) + λδi log(ti)− tλi exp(x′i3β3 + bi3)

]
∝ (λ)(%+δi−1) × exp

{
n∑
i=1

λδi log(ti)− ξλ

}
(By ignoring constants)

∝ (λ)(%+δi−1) × exp

{
nλ

n∑
i=1

δi log(ti)− ξλ

}

∝ (λ)(%+δi−1) × exp

{
−(ξ − n

n∑
i=1

δi log(ti))λ

}

∝ Gamma

(
%+ δi, ξ − n

n∑
i=1

δi log(ti)

)
.

(4.3.07)
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π (b|.) ∝ |Γ|−n/2 exp

{
−1

2

n∑
i=1

b′iΓ
−1bi

}
× |Γ|−ν/2 exp

(
−1

2
tr
(
Γ−1Λ

))

× exp

{
− 1

2σ2
e1

n∑
i=1

ni1∑
j=1

(yij,1 − µij,1)2
}

×
n∏
i=1

ni2∏
j=1

K∏
k=1

{
exp(αk − µij,2)

1 + exp(αk − µij,2)
− exp(αk−1 − µij,2)

1 + exp(αk−1 − µij,2)

}yijk,2
×

n∏
i=1

(tλi exp(x′i3β3 + bi3))
δi exp(−tλi exp(x′i3β3 + bi3))

(4.3.08)

π (Γ|b) ∝ |Γ|−n/2 exp

{
−1

2

n∑
i=1

b′iΓ
−1bi

}
× |Γ|−ν/2 exp

(
−1

2
tr
(
Γ−1Λ

))

∝ |Γ|−(n+ν)/2 exp

(
−1

2
tr

[
Γ−1

(
Λ +

n∑
i=1

bib
′
i

)])

∝ IW

(
ν + n,Λ +

n∑
i=1

bib
′
i

)
.

(4.3.09)

Following the same procedures as in Section 3.3 Chapter 3, the parameters of interest

are estimated by drawing random variates from their full conditional posterior distributions.

Because the the variance-covariance parameters σ2
e1
,Γ and the shape parameter λ have

standard distributions, Gibbs sampling is employed to estimate these parameters. While

for the fixed and random effects parameters, (β1, α, β2, β3) and bi, Gamerman’s one step

Metropolis-Hasting (M-H) method is employed to sample from their respective conditional

posterior distributions [20]. The following steps are taken to estimate for instance, parameter

ϕ using a single iterative method of Gamerman[20].

Step 1: Start with ϕ = ϕ(0) and set t = 1;

Step 2a: Sample ϕ∗ from N(m(t), c(t)) proposal density and

Step 2b: Accept it with probability λ(ϕ(t−1), ϕ∗) and set ϕ(1) = ϕ∗; Otherwise, stay at

ϕ(t) = ϕ(t−1);

Step 3: Increase t by 1 and return to Step 2.

74



The moments of the proposal density are given by

m(t) = (Σ−1ϕ +X ′W (ϕ(t−1))X)−1 ×
{

Σ−1ϕ µϕ +X ′W (ϕ(t−1))[ỹ(ϕ(t−1))− η̃]
}

c(t) = (Σ−1ϕ +X ′W (ϕ(t−1))X)−1 (4.3.010)

where µϕ and Σϕ are respectively, the mean and variance-covariance matrix of the prior

distribution for ϕ, W (ϕ(t−1)) = diag(W11, · · · ,Wnni) is the usual weight matrix for iterative

weighted least squares (IWLS) algorithm. The components of the weight matrix Wij and the

transformed observations ỹij are defined as

ỹij(ϕ) = ηij + (yij − µij)g′(µij) and

W−1
ij (ϕ) = Vij {g′(µij)}2 , i = 1, . . . , n; j = 1, . . . , ni, (4.3.011)

where Vij is the conditional variance function of the outcome variable, and g′(µij) is the

derivative of the link function with respect to the mean value function. The vector η̃ known

as the offset in GLM is the part of the predictor associated with all the remaining effects in

the model. The acceptance probability is defined as

∆(ϕ(t−1), ϕ∗) = min

(
1,

π(ϕ∗)q(ϕ(t−1), ϕ∗)

π(ϕ(t−1))q(ϕ∗, ϕ(t−1))

)
, (4.3.012)

where π(ϕ∗) and π(ϕ(t−1)) is the posterior density of ϕ evaluated at ϕ∗ and ϕ(t−1), respectively;

q(ϕ(t−1), ϕ∗) is the density specified in Step 2a evaluated at ϕ∗ and q(ϕ∗, ϕ(t−1)) is a N(m∗, c∗)

density evaluated at ϕ(t−1). Thus, to draw samples from the full conditionals π(β1|.), π(α, β2|.),

and π(bi|.) = π (bi1, bi2|.), the steps above are followed.

For the β1 block, the transformed observations are ỹij,1(β1) = x′ij,1β1+(yij,1−x′ij,1β1)g′(x′ij,1β1)

which gives the original observations, yij,1; the offset is the random effect part, z′ij,1bi1,

and the weights are Wij,1(β1) = σ2
e1
Ini1 , i = 1, . . . , n; j = 1, . . . , ni1. The proposal density

N(m1
(t), c1

(t)) has moments

m1
(t) = (Σ̊−11 +X ′1W1(β

(t−1)
1 )X1)

−1 ×
{

Σ̊−11 β̊1 +X ′1W1(β
(t−1)
1 )

[
ỹ1(β

(t−1)
1 )− z′1b1

]}
c1

(t) = (Σ̊−11 +X ′1W1(β
(t−1)
1 )X1)

−1 (4.3.013)

where W1 = diag(W11,1, . . . ,Wnni1,1);X1 is the design matrix of fixed effects for outcome y1.
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For the θ2 = {α, β2} block associated with the ordinal outcome y2 with response vector

for the ith subject defined as yi2 = (yi1,2, · · · , yij,2, · · · , yini2,2)′, we define y∗ij,2 = 1 if yij,2 = k, 0

otherwise, with its expectation πij,2 = E(y∗ij,2) defined as in Equation (4.2.14). Thus, the

ni2 × 1 dimensional ordinal response vector yi2 is transformed into a ni2(K − 1) dimensional

binary vector y∗i2 = (yi11, · · · , yi1K−1, yi21, · · · , yini2K−1)′ with expectation πi2 = E(y∗i2). The

variance-convariance matrix Vi2 of the dichotomized binary response vector y∗i2 has typical

elements

cov(yijk, yij′k′) =


πijk(1− πijk) if j = j′, k = k′,

−πijkπijk′ if j = j′, k 6= k′,
corr(yijk,yij′k′ )

[πijk(1−πijk)πij′k′ (1−πij′k′ )]
−1/2 if j 6= j′, any k, k′

(4.3.014)

Let µθ2 = (µα, β̊2) and Σθ2 =

 σ2
αIK−1 0

0 Σ̊2

 be the mean vector and variance-

covariance matrix of θ2, respectively. Thus, the transformed observations used in estimating

θ2, are ỹij,2(θ2) = ηij,2(θ2) + (y∗ij,2 − πij,2(θ2))g′(πij,2(θ2)), where ηij,2(θ2) = αk − x′ij,2β2. The

offset and weights are z′ij,2bi2 and Wij,2(θ2) = [ni2Vij,2 {g′(πij,2(θ2))}2]−1, respectively, where

[g′(πij,2(θ2))]
−1 is the derivative of the mean function with respect to the linear predictor

whose elements are given as follows:

[g′(πij,2(θ2))]
−1 =


exp(αk−x′ij,2β2)

(1+exp(αk−x′ij,2β2))2
k = 1,[

exp(αk−x′ij,2β2)
(1+exp(αk−x′ij,2β2))2

− exp(αk−1−x′ij,2β2)
(1+exp(αk−1−x′ij,2β2))2

]
k ≥ 2.

(4.3.015)

The proposal density N(m2
(t), c2

(t)) has moments

m2
(t) = (Σ−1θ2 +X ′2W2(θ

(t−1)
2 )X2)

−1 ×
{

Σ−1θ2 µθ2 +X ′2W2(θ
(t−1)
2 )[ỹ2(θ

(t−1)
2 )− z′2b2]

}
c2

(t) = (Σ−1θ2 +X ′2W2(θ
(t−1)
2 )X2)

−1 (4.3.016)

where W2 = diag(W11,2, . . . ,Wnni2,2) and X2 is the design matrix of fixed effects for the binary

outcome associated with y2.

Given the scale parameter λ, the transformed observations for β3 block are δ̃i(β3) =

x′i3β3+(δi−µi(β3))g′(µi(β3)). The offset is η̃(β3) = log(tλi )+bi3 and the weights are Wi3(β3) =
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[µi {g′(µi(β3))}2]−1, where µi = tλi exp(x′i3β3 + bi3) and [g′(µi(β3))]
−1 is the derivative of the

mean function µi(β3) with respect to the linear predictor x′i3β3. The proposal density

N(m3
(t), c3

(t)) has moments

m3
(t) = (Σ̊−13 +X ′3W3(β

(t−1)
3 )X3)

−1 ×
{

Σ̊−13 β̊3 +X ′3W3(β
(t−1)
3 )

[
δ̃i(β

(t−1)
3 )− η̃(β3)

]}
c3

(t) = (Σ̊−13 +X ′1W3(β
(t−1)
3 )X3)

−1 (4.3.017)

where W3 = diag(W13, . . . ,Wn3);X3 is the design matrix of fixed effects for time-to-event.

Following the same steps, for the bi = (bi1, bi2, bi3) block, when estimated separately,

then for the bi1 block, we draw samples from the full conditional π(bi1|.). The trans-

formed observations and weights are ỹij,1(bi1) = z′ij,1bi1 + (yij,1 − z′ij,1bi1)g′(z′ij,1bi1) = yij,1 and

Wij,1(bi1) = σ2
ε Ini1 , respectively. The proposal density is N(m

(t)
i1 , c

(t)
i1 ) with moments

m
(t)
i1 = (Γ−11 + Z ′i1Wi1(b

(t−1)
i1 )Zi1)

−1Zi1Wi1(b
(t−1)
i1 )×

{
ỹi1(b

(t−1)
i1 )−X ′i1β1

}
c
(t)
i1 = (Γ−11 + Z ′i1Wi1(b

(t−1)
i1 )Zi1)

−1 (4.3.018)

where Wi1 = diag(Wi1,1, . . . ,Wini1,1) and Zi1 = (zi1,1, . . . , zini1,1)
′.

And for the bi2 block, we draw samples from the full conditional π(bi2|.). The transformed

observations and weights for bi2 are ỹ∗ij,2(bi2) = ηij,2(bi2) + (y∗ij,2 − πij,2(bi2))g′(πij,2(bi2)) and

Wij,2(bi2) = [ni2Vij,2{g′(πij,2(bi2))}2]−1, respectively. The proposal density is N(m
(t)
i2 , c

(t)
i2 )

with moments

m
(t)
i2 = (Γ−12 + Z ′i2Wi2(b

(t−1)
i2 )Zi2)

−1Zi2Wi2(b
(t−1)
i2 )×

{
ỹ∗i2(b

(t−1)
i2 )− (αk −X ′i2β2)

}
c
(t)
i2 = (Γ−12 + Z ′i2Wi2(b

(t−1)
i2 )Zi2)

−1 (4.3.019)

where Wi2 = diag(Wi1,2, . . . ,Wini2,2) and Zi2 = (zi1,2, . . . , zini2,2)
′.

Similarly, for the bi3 block we draw samples from the full conditional π(bi3|.). The transformed

observations and weights for bi3 are δ̃i(bi3) = ηi3(bi3) + (δi − µi(bi3))g′(µi(bi3)) and Wi3(bi3) =

[µi {g′(µi(bi3))}2]−1, respectively. The offset is η̃(bi3) = log(tλi ) + x′i3β3. The proposal density

is N(m
(t)
i3 , c

(t)
i3 ) with moments

m
(t)
i3 = (Γ−13 + I ′i3Wi3(b

(t−1)
i3 )Ii3)

−1Ii3Wi3(b
(t−1)
i3 )×

{
δ̃i(b

(t−1)
i3 )− η̃(bi3)

}
c
(t)
i3 = (Γ−13 + I ′i3Wi3(b

(t−1)
i3 )Ii3)

−1 (4.3.020)
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where Wi3 = diag(Wi1, . . . ,Win) and I. is an identity matrix.

Because the random effects are assumed to be correlated, we estimate them jointly from a

multivariate distribution. Following the same steps above, we draw samples from the full

conditional π(bi|.). The proposal density is

qbi ∼MVN




m
(t)
i1

m
(t)
i2

m
(t)
i3

 ,


c
(t)
i1 ρ12

√
c
(t)
i1

√
c
(t)
i2 ρ13

√
c
(t)
i1

√
c
(t)
i3

ρ12

√
c
(t)
i2

√
c
(t)
i1 c

(t)
i2 ρ23

√
c
(t)
i2

√
c
(t)
i3

ρ13

√
c
(t)
i3

√
c
(t)
i1 ρ23

√
c
(t)
i3

√
c
(t)
i2 c

(t)
i3


 ,

where ρ12, ρ13, and ρ23 are the correlations between the continuous and ordinal, continuous

and survival, and ordinal and survival processes, respectively. All correlations are estimated

from the data.

4.4 SIMULATION STUDY

In order to examine the performance of the proposed joint model, we performed a series of

simulation studies. In particular, we compared the regression estimates from the proposed joint

model to the estimates from the separate regression models. The data were simulated from the

proposed joint model of continuous and ordinal outcomes and time-to-event correlated through

correlated and/or shared random effects. From each of the joint models, we simulated 500

data sets of sample sizes n = 100 and n = 50. In all simulations, number of repeated measures

per subject were randomly generated from a Poisson(1, 10) and time t between successive

visits from a Uniform(0.2, 2.0) distribution. In addition, one baseline treatment variable

indicator x was generated from a Bernoulli (0.5) distribution. For the correlated random

effects models, the random effects were generated from a multivariate normal distribution

with mean vector zero and variance-covariance matrix

Γ =


σ2
b1

= 5.87 ρ12σb1σb2 ρ13σb1σb3

ρ12σb1σb2 σ2
b2

= 4.89 ρ23σb2σb3

ρ13σb1σb3 ρ23σb2σb3 σ2
b3

= 3.2

 .
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To determine the effect of correlation on the estimates from the joint model, we considered

exchangeable with strong, moderate, and zero correlation values and unstructured correlation

structures, which formed Part I of our simulations. Specifically, we considered exchangeable

of (ρ12 = ρ13 = ρ23 = 0.9), (ρ12 = ρ13 = ρ23 = 0.6), and (ρ12 = ρ13 = ρ23 = 0.0), respectively

and unstructured of (ρ12 = 0.9, ρ13 = 0.6, ρ23 = 0.3) . Similarly, for the shared random effects

models (bi2 = γ1bi1, bi3 = γ2bi1), we considered (γ1 = γ2 = 0.9), (γ1 = γ2 = 0.6), and (γ1 =

γ2 = −0.5), respectively as Part II of our simulations. The error εij,1 for the continuous

outcome was simulated from N
(
0, σ2

ε1
= 7.4

)
. The true values for the variances (error and

random effects) were obtained by fitting a joint model to the motivating data set of Chapter 3

of this dissertation because they looked more reasonable. Meanwhile, the true values for the

regression parameters were chosen based on the results of a joint correlated random effects

model fit to the current motivating data set. The β′s, (β10, β11, β12, β13) and (β20, β21, β22, β23)

denote the regression coefficients for the fixed effects (intercept, time, treatment, and time

by treatment interaction) for the continuous and ordinal outcomes, respectively, (β30, β31)

the regression coefficients for the baseline covariates (intercept, treatment) for the survival

outcome, and α2 the threshold parameter for the ordinal outcome. The true values for

the β′s and the threshold α2 were: (β10 = 13.50, β11 = −0.56, β12 = −3.35, β13 = −0.57),

(α2 = 0.45, β20 = 1.7, β21 = −0.27, β22 = 0.65, β23 = −0.1), and (β30 = −3.31, β31 = 0.37)

for continuous, ordinal, and survival outcomes, respectively. After generating the latent

parameters from their respective distributions and specifying the true values, the three

outcomes were then constructed as in Equation (4.2.17). For the continuous outcome, we

generated yij,1|bi1 from a normal distribution with mean µij,1 = β10 + β11 × tij + β12 × xi +

β13 × tij × xi + bi1 and standard deviation σε1 . For the ordinal outcome, we considered three

categories and the first threshold value α1 was set to zero to ensure identification. We then

generated yijk,2|bi2 from a multinational distribution with probabilities given by the marginal

probabilities constructed from the cumulative logit model as in Equation (4.2.14). The linear

predictor, ηijk,2 = αk − [β20 + β21 × tij + β22 × xi + β23 × tij × xi + bi2].

For time-to-event data, the survival time, T ∗i , for the ith subject was generated from

a Weibul(λ, µi3) distribution, where log(µi3) = β30 + β31 × xi + bi3 and λ = 1, which is

essentially an exponential distribution with rate parameter µi3. The censoring time, Ci, was
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generated from a Uniform(0, 50) which accounted for about 40% censoring. The failure time,

Ti was taken as the minimum of survival time and censoring time, that is, Ti = min(T ∗i , Ci)

and the event indicator, δi, was defined as

δi =

 1 T ∗i ≤ Ci

0 otherwise

In summary, the following steps were taken for each simulation:

• For simulations in Part I, we generated data assuming the three processes are correlated

through correlated random effects bi1, bi2, and bi3 and then fitted the correlated and

separate models to the data sets generated.

• For simulations in Part II, we generated data assuming the processes are correlated

through shared random effects i.e., bi2 = γ1bi1 and bi3 = γ2bi1 and then fitted the shared

and separate models to the data sets generated.

The MCMC sampling was done using OpenBUGS (version 3.2.2) software and its R

interface BRugs Version 0.8.3. We ran two chains of 10,000 iterations with 2,000 iterations of

each chain used as burn-in period. The initial values for MCMC sampling were taken from a

linear mixed model fit to the continuous data and a generalized linear mixed model fit to the

ordinal data and time-to-event data. Let β1 = (β10, β11, β12, β13), β2 = (β20, β21, β22, β23), β3 =

(β30, β31). The following priors were considered for the different parameters: β1 ∼ N4 (0, 100I4),

β2 ∼ N4 (0, 100I4), α2 ∼ N (0, 106) I(0, ), σ2
e1
∼ IG (1.0, 1.0), σ2

b1
∼ IG (1.0, 1.0), σ2

b2
∼

IG (1.0, 1.0), γ ∼ N (0, 100), and Γ ∼ IW (3, 1I2), where Iq indicates an q × q identity

matrix.

The simulation results for Part I are shown in Tables 7-12 (exchangeable correlation

structure) and Tables 13-14 (unstructured correlation structure) . In each of the tables, the

estimated Bias, Monte Carlo Standard Deviation (MCSD), Posterior Standard Deviation

(SD), Coverage Probabilities (CP) of the 95% highest posterior density (HPD) intervals, and

the Relative Efficiency (RE) are shown. RE is calculated as the ratio of the mean squared

error loss (MSE) of estimates from the fitted models to the mean squared error loss (MSE) of

estimates for the same parameters from the true model. All estimates were calculated based

on 500 replicates.
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The results in Table 7 (ρ12 = ρ13 = ρ23 = 0.9 and n = 50), indicate that when the true

processes were correlated through correlated random effects both joint model and separate

model fits provided unbiased estimates but the estimated posterior means were more biased

for separate models with larger SD. These biases were larger for the ordinal outcome which

may be due to the less informative nature of ordinal data as compared to continuous data.

The gain in efficiency using joint model relative to the separate model was as high as 11% for

the fixed effects parameters and 52% for the variance parameters. The gain in efficiency was

more pronounced in the ordinal and survival outcomes. In addition, the results in Table 7

indicate that nominal coverage of 95% HPD intervals was maintained for the continuous

outcome in both joint and separate models but not for the ordinal and survival outcomes.

Increasing the sample size to n = 100 (Table 8) resulted in improved gain in efficiency, less

bias, and better coverage of 95% HPD intervals for the three outcomes in both joint and

separate models.

The results for moderate correlation of ρ12 = ρ13 = ρ23 = 0.6 and sample size n = 50 are

shown in Table 9. The results showed a similar trend as in Table 7. In particular, when we

fitted the correct model (JC) the biases were smaller than those when fitted the separate (SP)

models. The standard errors (SD) were smaller for the JC (true) model compared to SP model.

Apart from the survival outcome, the gain in efficiency reduced with reduced correlation

among the outcomes. In both models, coverage of 95% HPD intervals were adequate for

all estimates. Meanwhile, the results in Table 10 showed reduced gain in efficiency when

the sample was increased to n = 100 with same correlation of ρ12 = ρ13 = ρ23 = 0.6. The

coverage probabilities were robust to the sample size and bias reduced with sample size.

The results in Tables 11 & 12 when the true processes were uncorrelated, that is,

(ρ12 = ρ13 = ρ23 = 0) indicated the estimates from the separate and joint correlated random

effects models were quite similar, though there was some gain in efficiency for ordinal and

survival outcomes’ estimates.

The results for unstructured correlation structure (ρ12 = 0.9, ρ13 = 0.6, ρ23 = 0.3) in Ta-

bles 13 & 14 also indicated similar results as for strong exchangeable correlation structure in

Tables 7 & 8 with the estimates for the ordinal and survival outcomes having more gain in

efficiency compared to those of the continuous outcome.
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In all scenarios above, the MCSD and SD were quite similar implying the Monte Carlo

simulations performed as well as the MCMC sampling.

Similarly, when we fitted separate models to data that were correlated through shared

random effects (see Appendix A: Tables 23-28), the estimates had larger standard errors and

slightly more biased on average. There was gain in efficiency when a joint model (JS) was

fitted and was more pronounced in the ordinal outcome. The MCSD and SD were similar in

all scenarios and the coverage of 95% HPD intervals were adequate and robust to the sample

size.
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Table 7: Results when data were simulated under a correlated random effects model with strong correlation (ρ12 = ρ13 = ρ23 = 0.9)

and n = 50: MCSD, SD, and CP stand for Monte Carlo Standard Deviation, Posterior standard deviation, and Coverage

probability of 95% HPD intervals, respectively.

Fitted Model

Joint-Correlated (JC) Separate (SP)

True Model
(n) Parameter Truth Bias MCSD SD CP Bias MCSD SD CP RE = MSESP

MSEJC

Correlated

Continuous Process

(n=50)

β10: intercept 13.50 0.010 0.219 0.412 0.95 0.014 0.219 0.417 0.95 1.00
β11: time -0.56 0.001 0.027 0.029 0.96 0.000 0.028 0.030 0.96 1.03
β12: treatment -3.35 0.022 0.422 0.414 0.95 0.019 0.420 0.417 0.94 0.99
β13: time×treatment -0.57 0.000 0.030 0.029 0.95 0.000 0.030 0.030 0.94 1.02

Ordinal Process
α2: threshold 0.45 -0.025 0.076 0.078 0.93 -0.026 0.076 0.079 0.93 1.01
β20: intercept 1.70 -0.044 0.289 0.418 0.95 -0.064 0.300 0.425 0.96 1.10
β21: time -0.27 0.007 0.039 0.035 0.94 0.008 0.041 0.036 0.95 1.07
β22: treatment 0.65 0.005 0.422 0.409 0.93 0.016 0.433 0.419 0.95 1.06
β23: time×treatment -0.10 0.004 0.036 0.034 0.96 0.003 0.038 0.035 0.96 1.09

Survival Process
β30: intercept -3.31 0.104 0.290 0.381 0.93 0.078 0.303 0.391 0.95 1.04
β31: treatment 0.37 0.001 0.353 0.357 0.93 0.000 0.372 0.365 0.92 1.11

Association Parameters & Variances
ρ12 0.90 -0.010 0.034 0.043 0.97 - - - - -
ρ13 0.90 0.006 0.042 0.066 0.93 - - - - -
ρ23 0.90 0.006 0.043 0.066 0.95 - - - - -
σ2
b1

: bi1 5.87 0.013 0.655 1.375 0.94 -0.022 0.660 1.382 0.94 1.02
σ2
b2

: bi2 4.89 -0.407 1.209 1.554 0.92 -0.522 1.372 1.669 0.92 1.32
σ2
b3

: bi3 3.20 -0.439 1.282 1.488 0.92 -0.225 1.657 1.830 0.94 1.52
σ2
e1 : error 7.40 -0.077 0.442 0.476 0.95 -0.056 0.442 0.475 0.95 0.98
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Table 8: Results when data were simulated under a correlated random effects model with strong correlation (ρ12 = ρ13 = ρ23 = 0.9)

and n = 100: MCSD, SD, and CP stand for Monte Carlo Standard Deviation, Posterior standard deviation, and

Coverage probability of 95% HPD intervals, respectively.

Fitted Model

Joint-Correlated (JC) Separate (SP)

True Model
(n) Parameter Truth Bias MCSD SD CP Bias MCSD SD CP RE = MSESP

MSEJC

Correlated

Continuous Process

(n=100)

β10: intercept 13.50 0.020 0.161 0.286 0.95 0.007 0.162 0.293 0.95 1.00
β11: time -0.56 0.001 0.020 0.020 0.96 0.001 0.021 0.021 0.96 1.07
β12: treatment -3.35 -0.025 0.307 0.290 0.96 -0.029 0.308 0.292 0.96 1.01
β13: time×treatment -0.57 0.000 0.020 0.020 0.96 0.000 0.021 0.021 0.96 1.05

Ordinal Process
α2: threshold 0.45 -0.014 0.055 0.055 0.94 -0.016 0.056 0.055 0.94 1.02
β20: intercept 1.70 0.004 0.191 0.283 0.95 -0.021 0.194 0.292 0.95 1.04
β21: time -0.27 0.003 0.024 0.024 0.95 0.004 0.024 0.025 0.94 1.07
β22: treatment 0.65 -0.025 0.285 0.280 0.95 -0.034 0.292 0.287 0.95 1.06
β23: time×treatment -0.10 0.001 0.021 0.023 0.94 0.002 0.022 0.024 0.93 1.14

Survival Process
β30: intercept -3.31 0.044 0.199 0.256 0.95 0.019 0.204 0.264 0.95 1.01
β31: treatment 0.37 -0.004 0.235 0.241 0.95 -0.001 0.246 0.249 0.95 1.10

Association Parameters & Variances
ρ12 0.90 -0.009 0.026 0.032 0.95 - - - - -
ρ13 0.90 -0.008 0.033 0.047 0.97 - - - - -
ρ23 0.90 -0.002 0.037 0.049 0.96 - - - - -
σ2
b1

: bi1 5.87 0.028 0.410 0.945 0.95 -0.004 0.414 0.953 0.95 1.02
σ2
b2

: bi2 4.89 -0.101 0.703 1.017 0.96 -0.183 0.771 1.078 0.94 1.24
σ2
b3

: bi3 3.20 -0.080 0.795 0.943 0.96 0.064 1.064 1.175 0.95 1.78
σ2
e1 : error 7.40 -0.029 0.326 0.333 0.95 -0.010 0.325 0.332 0.95 0.98
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Table 9: Results when data were simulated under a correlated random effects model with moderate correlation (ρ12 = ρ13 =

ρ23 = 0.6) and n = 50: MCSD, SD, and CP stand for Monte Carlo Standard Deviation, Posterior standard deviation,

and Coverage probability of 95% HPD intervals, respectively.

Fitted Model

Joint-Correlated (JC) Separate (SP)

True Model
(n) Parameter Truth Bias MCSD SD CP Bias MCSD SD CP RE = MSESP

MSEJC

Correlated

Continuous Process

(n=50)

β10: intercept 13.50 0.030 0.231 0.412 0.95 0.027 0.231 0.416 0.96 0.99
β11: time -0.56 -0.002 0.029 0.030 0.95 -0.002 0.029 0.030 0.95 1.03
β12: treatment -3.35 -0.011 0.413 0.413 0.95 -0.014 0.411 0.416 0.95 0.99
β13: time×treatment -0.57 -0.001 0.030 0.029 0.95 -0.002 0.030 0.030 0.95 1.00

Ordinal Process
α2: threshold 0.45 -0.023 0.077 0.078 0.94 -0.027 0.078 0.079 0.94 1.05
β20: intercept 1.70 -0.024 0.280 0.415 0.96 -0.061 0.281 0.427 0.94 1.05
β21: time -0.27 0.006 0.037 0.036 0.94 0.010 0.037 0.036 0.94 1.05
β22: treatment 0.65 -0.007 0.410 0.410 0.94 -0.012 0.421 0.419 0.95 1.05
β23: time×treatment -0.10 0.001 0.034 0.034 0.95 0.002 0.035 0.035 0.95 1.05

Survival Process
β30: intercept -3.31 0.038 0.268 0.336 0.95 0.049 0.303 0.383 0.95 1.28
β31: treatment 0.37 0.019 0.364 0.321 0.95 -0.007 0.391 0.359 0.95 1.15

Association Parameters & Variances
ρ12 0.60 -0.016 0.074 0.110 0.95 - - - - -
ρ13 0.60 -0.099 0.125 0.148 0.89 - - - - -
ρ23 0.60 -0.094 0.132 0.152 0.91 - - - - -
σ2
b1

: bi1 5.87 0.083 0.682 1.363 0.95 -0.013 0.679 1.379 0.96 0.98
σ2
b2

: bi2 4.89 -0.233 1.164 1.560 0.95 -0.515 1.221 1.669 0.94 1.25
σ2
b3

: bi3 3.20 0.775 1.059 1.243 0.93 -0.064 1.521 1.754 0.95 1.34
σ2
e1 : error 7.40 -0.052 0.466 0.475 0.94 -0.030 0.462 0.472 0.94 0.97
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Table 10: Results when data were simulated under a correlated random effects model with moderate correlation (ρ12 = ρ13 =

ρ23 = 0.6) and n = 100: MCSD, SD, and CP stand for Monte Carlo Standard Deviation, Posterior standard deviation,

and Coverage probability of 95% HPD intervals, respectively.

Fitted Model

Joint-Correlated (JC) Separate (SP)

True Model
(n) Parameter Truth Bias MCSD SD CP Bias MCSD SD CP RE = MSESP

MSEJC

Correlated

Continuous Process

(n=100)

β10: intercept 13.50 0.016 0.165 0.289 0.96 0.007 0.165 0.292 0.96 0.99
β11: time -0.56 0.000 0.020 0.020 0.94 0.000 0.020 0.021 0.94 1.01
β12: treatment -3.35 0.015 0.285 0.290 0.94 0.012 0.284 0.291 0.94 0.99
β13: time×treatment -0.57 0.000 0.020 0.021 0.96 0.000 0.020 0.021 0.95 1.00

Ordinal Process
α2: threshold 0.45 -0.008 0.054 0.055 0.94 -0.010 0.054 0.055 0.94 1.02
β20: intercept 1.70 0.004 0.188 0.286 0.95 -0.018 0.189 0.293 0.94 1.02
β21: time -0.27 0.003 0.025 0.025 0.96 0.005 0.025 0.025 0.95 1.05
β22: treatment 0.65 0.022 0.278 0.283 0.95 0.014 0.283 0.288 0.95 1.03
β23: time×treatment -0.10 0.000 0.024 0.024 0.96 0.001 0.024 0.024 0.96 1.04

Survival Process
β30: intercept -3.31 0.008 0.197 0.241 0.95 0.016 0.213 0.266 0.94 1.17
β31: treatment 0.37 0.041 0.246 0.230 0.95 0.027 0.255 0.250 0.95 1.06

Association Parameters & Variances
ρ12 0.60 -0.005 0.049 0.079 0.95 - - - - -
ρ13 0.60 -0.086 0.096 0.112 0.84 - - - - -
ρ23 0.60 -0.080 0.104 0.115 0.87 - - - - -
σ2
b1

: bi1 5.87 0.076 0.401 0.941 0.96 0.027 0.405 0.949 0.96 0.99
σ2
b2

: bi2 4.89 -0.100 0.700 1.050 0.96 -0.240 0.726 1.089 0.94 1.17
σ2
b3

: bi3 3.20 0.622 0.961 0.982 0.94 -0.001 1.152 1.197 0.96 1.01
σ2
e1 : error 7.40 -0.022 0.326 0.333 0.95 -0.010 0.325 0.332 0.95 0.99
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Table 11: Results when data were simulated under a correlated random effects model but with ρ12 = ρ13 = ρ23 = 0.0 and n = 50:

MCSD, SD, and CP stand for Monte Carlo Standard Deviation, Posterior standard deviation, and Coverage probability

of 95% HPD intervals, respectively.

Fitted Model

Joint-Correlated (JC) Separate (SP)

True Model
(n) Parameter Truth Bias MCSD SD CP Bias MCSD SD CP RE = MSESP

MSEJC

Correlated

Continuous Process

(n=50)

β10: intercept 13.50 0.026 0.234 0.412 0.95 0.028 0.233 0.416 0.95 0.99
β11: time -0.56 -0.002 0.029 0.030 0.94 -0.002 0.029 0.030 0.94 1.00
β12: treatment -3.35 -0.004 0.408 0.414 0.95 -0.009 0.406 0.416 0.95 0.99
β13: time×treatment -0.57 -0.002 0.030 0.030 0.95 -0.002 0.030 0.030 0.95 0.99

Ordinal Process
α2: threshold 0.45 -0.027 0.075 0.078 0.94 -0.031 0.076 0.079 0.93 1.05
β20: intercept 1.70 -0.040 0.273 0.411 0.94 -0.067 0.277 0.422 0.93 1.07
β21: time -0.27 0.005 0.037 0.036 0.94 0.009 0.038 0.036 0.94 1.06
β22: treatment 0.65 -0.025 0.380 0.407 0.94 -0.031 0.385 0.415 0.95 1.03
β23: time×treatment -0.10 0.001 0.033 0.035 0.95 0.002 0.034 0.035 0.95 1.03

Survival Process
β30: intercept -3.31 0.002 0.253 0.312 0.95 0.062 0.301 0.387 0.95 1.18
β31: treatment 0.37 0.032 0.338 0.304 0.95 -0.014 0.376 0.362 0.96 1.08

Association Parameters & Variances
ρ12 0.00 -0.003 0.087 0.161 0.95 - - - - -
ρ13 0.00 0.015 0.230 0.277 0.95 - - - -
ρ23 0.00 0.000 0.254 0.282 0.96 - - - - -
σ2
b1

: bi1 5.87 0.072 0.686 1.363 0.96 -0.019 0.683 1.379 0.96 0.98
σ2
b2

: bi2 4.89 -0.140 1.170 1.545 0.95 -0.427 1.222 1.638 0.93 1.21
σ2
b3

: bi3 3.20 1.370 1.381 1.303 0.96 -0.138 1.642 1.794 0.95 0.72
σ2
e1 : error 7.40 -0.039 0.462 0.474 0.94 -0.030 0.462 0.473 0.94 0.99
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Table 12: Results when data were simulated under a correlated random effects model but with ρ12 = ρ13 = ρ23 = 0.0 and

n = 100: MCSD, SD, and CP stand for Monte Carlo Standard Deviation, Posterior standard deviation, and Coverage

probability of 95% HPD intervals, respectively.

Fitted Model

Joint-Correlated (JC) Separate (SP)

True Model
(n) Parameter Truth Bias MCSD SD CP Bias MCSD SD CP RE = MSESP

MSEJC

Correlated

Continuous Process

(n=100)

β10: intercept 13.50 0.010 0.165 0.291 0.95 0.008 0.165 0.292 0.95 1.00
β11: time -0.56 0.000 0.020 0.021 0.94 0.000 0.020 0.021 0.94 1.00
β12: treatment -3.35 0.021 0.287 0.291 0.95 0.018 0.286 0.292 0.95 1.00
β13: time×treatment -0.57 0.000 0.020 0.021 0.95 0.000 0.020 0.021 0.95 1.00

Ordinal Process
α2: threshold 0.45 -0.015 0.054 0.055 0.94 -0.017 0.055 0.055 0.94 1.03
β20: intercept 1.70 -0.011 0.193 0.285 0.95 -0.026 0.198 0.293 0.94 1.07
β21: time -0.27 0.002 0.026 0.025 0.94 0.004 0.026 0.025 0.93 1.05
β22: treatment 0.65 -0.001 0.284 0.283 0.96 -0.012 0.285 0.287 0.96 1.01
β23: time×treatment -0.10 0.001 0.023 0.024 0.95 0.003 0.023 0.024 0.96 1.00

Survival Process
β30: intercept -3.31 -0.026 0.190 0.240 0.95 0.014 0.205 0.265 0.95 1.14
β31: treatment 0.37 0.041 0.241 0.230 0.95 0.023 0.251 0.250 0.95 1.06

Association Parameters & Variances
ρ12 0.00 0.003 0.055 0.115 0.95 - - - - -
ρ13 0.00 -0.011 0.136 0.172 0.94 - - - - -
ρ23 0.00 0.000 0.143 0.178 0.95 - - - - -
σ2
b1

: bi1 5.87 0.069 0.403 0.943 0.95 0.021 0.403 0.950 0.95 0.97
σ2
b2

: bi2 4.89 -0.064 0.798 1.053 0.96 -0.216 0.821 1.084 0.95 1.13
σ2
b3

: bi3 3.20 0.733 1.145 1.095 0.91 0.022 1.076 1.183 0.96 0.63
σ2
e1 : error 7.40 -0.015 0.325 0.333 0.95 -0.010 0.324 0.332 0.95 1.00
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Table 13: Results when data were simulated under a correlated random effects model with unstructured correlation (ρ12 =

0.9, ρ13 = 0.6, ρ23 = 0.3) and n = 50: MCSD, SD, and CP stand for Monte Carlo Standard Deviation, Posterior

standard deviation, and Coverage probability of 95% HPD intervals, respectively.

Fitted Model

Joint-Correlated (JC) Separate (SP)

True Model
(n) Parameter Truth Bias MCSD SD CP Bias MCSD SD CP RE = MSESP

MSEJC

Correlated

Continuous Process

(n=50)

β10: intercept 13.50 -0.019 0.228 0.413 0.96 -0.027 0.233 0.416 0.95 1.05
β11: time -0.56 0.002 0.028 0.029 0.95 0.002 0.029 0.030 0.94 1.09
β12: treatment -3.35 0.008 0.408 0.416 0.94 0.011 0.409 0.416 0.95 1.01
β13: time×treatment -0.57 0.001 0.029 0.029 0.95 0.002 0.030 0.030 0.95 1.05

Ordinal Process
α2: threshold 0.45 0.027 0.078 0.079 0.94 0.028 0.078 0.079 0.94 1.01
β20: intercept 1.70 0.058 0.278 0.418 0.94 0.076 0.287 0.427 0.94 1.09
β21: time -0.27 -0.010 0.037 0.036 0.94 -0.011 0.038 0.036 0.93 1.07
β22: treatment 0.65 0.020 0.402 0.412 0.95 0.021 0.415 0.418 0.95 1.07
β23: time×treatment -0.10 -0.002 0.034 0.034 0.95 -0.002 0.036 0.035 0.95 1.12

Survival Process
β30: intercept -3.31 0.006 0.269 0.345 0.95 -0.022 0.289 0.378 0.95 1.16
β31: treatment 0.37 0.000 0.335 0.330 0.96 0.014 0.350 0.355 0.94 1.10

Association Parameters & Variances
ρ12 0.90 -0.007 0.036 0.047 0.95 - - - - -
ρ13 0.60 0.034 0.127 0.161 0.95 - - - - -
ρ23 0.30 0.104 0.178 0.208 0.91 - - - - -
σ2
b1

: bi1 5.87 0.023 0.675 1.377 0.96 0.018 0.683 1.380 0.96 1.02
σ2
b2

: bi2 4.89 0.380 1.141 1.550 0.94 0.533 1.247 1.673 0.92 1.27
σ2
b3

: bi3 3.20 -0.586 1.284 1.392 0.97 -0.028 1.543 1.705 0.96 1.19
σ2
e1 : error 7.40 0.023 0.459 0.470 0.94 0.030 0.461 0.472 0.94 1.01
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Table 14: Results when data were simulated under a correlated random effects model with unstructured correlation (ρ12 =

0.9, ρ13 = 0.6, ρ23 = 0.3) and n = 100: MCSD, SD, and CP stand for Monte Carlo Standard Deviation, Posterior

standard deviation, and Coverage probability of 95% HPD intervals, respectively.

Fitted Model

Joint-Correlated (JC) Separate (SP)

True Model
(n) Parameter Truth Bias MCSD SD CP Bias MCSD SD CP RE = MSESP

MSEJC

Correlated

Continuous Process

(n=100)

β10: intercept 13.50 -0.018 0.165 0.290 0.96 -0.008 0.166 0.292 0.95 1.00
β11: time -0.56 0.000 0.020 0.020 0.95 0.000 0.020 0.021 0.95 1.05
β12: treatment -3.35 -0.025 0.284 0.289 0.95 -0.020 0.286 0.292 0.95 1.01
β13: time×treatment -0.57 0.001 0.019 0.020 0.95 0.000 0.020 0.021 0.95 1.05

Ordinal Process
α2: threshold 0.45 0.012 0.052 0.055 0.95 0.013 0.052 0.055 0.94 1.00
β20: intercept 1.70 0.009 0.184 0.289 0.95 0.020 0.187 0.293 0.95 1.05
β21: time -0.27 -0.005 0.024 0.024 0.96 -0.005 0.025 0.025 0.95 1.05
β22: treatment 0.65 -0.019 0.270 0.282 0.96 -0.015 0.276 0.288 0.96 1.04
β23: time×treatment -0.10 -0.001 0.023 0.023 0.94 -0.002 0.024 0.024 0.95 1.09

Survival Process
β30: intercept -3.31 -0.017 0.199 0.255 0.95 -0.029 0.210 0.268 0.95 1.13
β31: treatment 0.37 -0.016 0.255 0.242 0.95 -0.013 0.262 0.252 0.95 1.05

Association Parameters & Variances
ρ12 0.90 -0.006 0.025 0.034 0.94 - - - - -
ρ13 0.60 0.025 0.088 0.112 0.94 - - - - -
ρ23 0.30 0.047 0.120 0.144 0.93 - - - - -
σ2
b1

: bi1 5.87 -0.020 0.394 0.947 0.96 -0.020 0.405 0.949 0.96 1.06
σ2
b2

: bi2 4.89 0.188 0.701 1.038 0.94 0.244 0.753 1.089 0.94 1.19
σ2
b3

: bi3 3.20 -0.215 0.971 1.081 0.97 0.058 1.126 1.216 0.96 1.28
σ2
e1 : error 7.40 0.008 0.323 0.331 0.94 0.011 0.324 0.332 0.95 1.01
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4.5 ANALYSIS OF UGANDAN DIABETES DATA

In this section, we apply our proposed joint model to the diabetes data introduced in

Section 4.1. These data were collected retrospectively from three hospitals (Mulago, Nsambya,

and Rubaga all in Kampala, Uganda) to determine the factors associated with time to

blood glucose normalization (Buhule et al., 2007) [8]. Because the blood glucose test is more

expensive than the urine glucose test, quite a number of individuals had no blood glucose

measurements taken on most of the hospital visits. About 825 of the 1010 patients had no

blood glucose measurements taken on most of the occasions but instead urine glucose was

taken. In the original 2007 study, only a survival (unshared frailty) model was fitted to these

data from which inferences were made. For the current study we considered data for type 2

diabetic patients who had blood glucose measurements taken and were not in the normal

range on the first hospital visit. We defined time-to-event as time to when blood glucose level

reached normal range of 70 − 180 mg/dl to include those who may have not been fasting

(scenario 1) and 70− 130 mg/dl the fasting glucose normal range (scenario 2). For scenario

1, we had a total of 500 patients and out of these, 314 experienced the event of interest

(37% censoring). While for scenario 2, we had 543 patients and 248 experienced the event of

interest, which was a 54% censoring rate.

Because high blood pressure and BMI are believed to be associated with type 2 diabetes

we used them as repeatedly measured biomarkers in this analysis. Our goal was to understand

how the biomarkers are related to time to normal blood glucose level for diabetic patients

given different treatments and other covariates. The covariates of interest included treatment

(Biguanides, Sulphonyureas, and Insulin (baseline)), baseline age in years, gender (male=1,

female=0), time of hospital visits in months, and time and treatment interaction. The

summary statistics of these covariates under the two scenarios are given in Table 15. We

observed similar distributions for all variables across the two scenarios. The average baseline

age was about 54 years with a standard deviation of 11 years and the majority of the patients

were female (about 70%). The median failure time was about 12 months while the median

censoring time was about 24 months. Most of the patients were treated with Biguanides at

baseline.
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Table 15: Descriptive statistics for baseline characteristics and survival times

Blood Glucose Normal Range (mg/dl)

70− 180 70− 130

Variable n = 500 n = 543

Age (years), x̄ (s) 53.8 (11.2) 53.9 (11.1)

Gender

Male, n (%) 151 (30.2) 159 (29.3)

Female, n (%) 349 (69.8) 384 (70.7)

Treatment

Biguanides, n (%) 198 (39.6) 212 (39.0)

Sulphonyureas, n (%) 149 (29.8) 166 (30.6)

Insulin, n (%) 153 (30.6) 165 (30.4)

Survival Times

Failure, x̃ (s) 11.9 (22.5) 12.3 (22.6)

Censoring, x̃ (s) 23.6 (29.9) 24.4 (28.5)

We jointly modeled the two biomarkers and time to normal blood glucose level (scenarios

1 & 2 separately) through correlated and shared random effects and compared the parameter

estimates to separate models.

For the continuous biomarker, we considered systolic blood pressure in millimeters of

mercury (mm Hg) which was square root transformed to improve normality. The conditional

transformed measurements were then modeled as Normal (yij,1|bi1 ∼ N(µij,1, σ
2
e1

) and thus

linked to the linear predictor with an identity link. That is,

yij,1 = µij,1 = β10 + β11 × timeij + β12 ×Biguani + β13 × Sulphoni + β14 × agei + β15

× genderi + β16 ×Biguani × timeij + β17 × Sulphoni × timeij + bi1 + εij,1,
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where, yij,1 is the square root of systolic blood pressure (mm Hg) for the ith subject measured

at the jth hospital visit, bi1 is the random intercept and εij,1 ∼ N(0, σ2
e1

) is the measurement

error independent of bi1.

Lastly, we defined the ordinal biomarker by grouping BMI into K = 4 categorizes as

below:

yijk,2 =



1 for BMI < 18.5 ⇒ Underweight

2 for 18.5 ≤ BMI ≤ 24.9 ⇒ Normal

3 for 25 ≤ BMI ≤ 29.9 ⇒ Overweight

4 for BMI ≥ 30 ⇒ Obesity

The conditional K − 1 measurements were modeled through a multinomial distribution

((yij1,2, . . . , yijK−1,2)|bi2 ∼ multinomial(πij1, . . . , πijK−1)). The marginal probabilities were

linked to the covariates through a cumulative logit link as follows:

log

(
Pr(yij,2 ≤ k)

1− Pr(yij,2 ≤ k)

)
= αk − [β21 × timeij + β22 ×Biguani + β23 × Sulphoni

+ β24 × agei + β25 × genderi + β26 ×Biguani × timeij

+ β27 × Sulphoni × timeij + bi2] ,

where k = 1, . . . , 4 and bi2 is the random intercept.

Lastly, time to normal blood glucose level T was modeled through a Weibull distribution

with frailty truncated to the left by the censoring times. Thus, Ti|bi3 ∼ Weibull(λ, µi3),

where log(µi3) = β30 +β31×Biguani +β32×Sulphoni +β33× agei +β34× genderi + bi3 and

bi3 is the frailty term. For simplicity, we set λ = 1 which gave an Exponential distribution.

For the correlated random effects joint model, the random effects were modeled as
bi1

bi2

bi3

 ∼ N3




0

0

0

 ,Γ =


σ2
b1

ρ12σb1σb2 ρ13σb1σb3

ρ12σb2σb1 σ2
b2

ρ23σb2σb3

ρ13σb3σb1 ρ23σb3σb2 σ2
b3


 .

While for the shared random effects joint model, we assumed bi2 = γ1bi1 and bi3 = γ2bi1 with

bi1 ∼ N(0, σ2
b1

).

For all parameters, vague or non-informative priors were employed to allow the data to

dominate the inferences made. Specifically, multivariate normal priors with mean zero and
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precision matrices 0.01I8, 0.01I7, and 0.01I5 were employed for β1, β2, and β3, respectively,

where Iq indicates an q × q identity matrix. For the thresholds or cut points αk, a truncated

normal N(0, 106)I(αk−1, αk+1) ; k = 1, . . . , K−1, where I(·, ·) denotes truncation to specified

interval was employed. In addition, an inverse gamma prior was assumed for error variance σ2
e1

,

that is, σ2
e1
∼ Inverse Gamma(1, 1) or 1/σ2

e1
∼ Gamma(1, 1) and an Inverse Wishart for the

variance convariance matrix of the random effects, which are both conjugate priors. For the

separate models, we assumed half-Cauchy(s=25) priors for σb1 , σb2 , and σb3 , and for the shape

parameter λ of the Weibull distribution a conjugate Gamma prior (λ ∼ Gamma(0.1, 0.1))

was assumed when we didn’t set it to 1. The association parameters for shared random effects

model had normal priors, that is, γ1 ∼ N(0, 100) and γ2 ∼ N(0, 100).

To accelerate computation, time was standardized while age was centered, and the MCMC

was run for 30, 000 iterations with the first 5, 000 discarded as burn-in. The models were fitted

in OpenBUGS (version 3.2.2) and its R interface BRugs Version 0.8.3 and based on standard

MCMC diagnostic plots (see Appendix D Figures 11-18) and diagnostic tests (Table 16)

the estimated parameters converged though more iterations would be required for better

convergence of the ordinal outcome regression estimates.

Tables 17 & 18 give a summary of the posterior estimates of the regression coefficients

and their 95% credible intervals (CIs) for the joint versus separate analyses under scenario 1

and scenario 2, respectively.

The results in Table 17 for normal blood glucose range of 70− 180 mg/dl showed similar

point estimates across the three models but subtle differences were observed in their credible

intervals (CIs). The CIs for the parameter estimates for the ordinal and survival outcomes

shrunk in both the joint correlated and joint shared analyses but all shrunk in the joint

shared analysis indicating improved efficiency of parameter estimates. Age was found to be

significantly associated with systolic blood pressure in all three models. Diabetes patients

had increasing systolic blood pressure levels with age, indicating increased risk of systolic

hypertension among the elderly. These findings are consistent with studies that have indicated

that hypertension which is associated with type 2 diabetes is more common in women than in

men and that the age-related increase in systolic blood pressure is steeper in women (Williams,

2003)[98]. The results in Table 17 also showed that age, gender, and the Sulphonyureas
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treatment were significantly associated with BMI levels in all three models and Sulphonyureas

and time interaction was significant in the joint correlated and separate models. Male patients

tended to have lower BMI levels as compared to their female counterparts, and the elderly

patients had lower BMI levels. Patients who were treated with Sulphonyureas had higher

BMI levels at baseline as compared to those treated with Insulin but over time their BMI

levels decreased. This is supported by the fact that Sulphonyureas causes weight gain in the

first years which levels off with time. For the survival outcome, Sulphonyureas treatment

was significantly associated with time to normal blood glucose level in all three models while

gender was significant in the shared random effects model. The patients who were treated

with Sulphonyureas had their blood glucose levels reach normal range faster than those

treated with Insulin. These finding are different from the original study [8] where Biguanides

was found to work better than Insulin and Sulphonyureas. However, Sulphonyureas is only

given to Type 2 diabetics, thus by including the Type 1 diabetics in the original analysis

could have masked the effect of Sulphonyureas. The male patients had their blood glucose

levels reach normal range later than the female patients, which is consistent with the original

study [8].

Furthermore, the posterior estimates of the association parameters ρ12 and ρ23 in the

joint correlated random effects model and γ1 and γ2 in the joint shared random effects model

were positive and significantly different from zero. Implying, positive association between

the systolic blood pressure and BMI sub-models (ρ12 and γ1), BMI and survival sub-models

(ρ23), and systolic blood pressure and survival sub-models (γ2). Thus, the initial level of

systolic blood pressure was positively associated with the BMI levels and also with time to

normal blood glucose levels. In addition, the initial levels of BMI were positively associated

with time to normal blood glucose levels. The goodness of fit measure (DIC), indicated that

the joint correlated random effects model fit our data better than the shared random effects

model.
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Table 16: Convergence Diagnostic tests results for analysis of Type 2 Diabetes Data: Normal blood glucose 70− 180 mg/dl.

Joint-Correlated (JC) Joint-Shared (JS) Separate (SP)

Gelman Geweke Heidelberg Gelman Geweke Heidelberg Gelman Geweke Heidelberg
Parameter Estimate Z-score Stationarity Halfwidth Estimate Z-score Stationarity Halfwidth Estimate Z-score Stationarity Halfwidth

Continuous Process: systolic blood pressure
Intercept 1.00 -1.015 passed passed 1.00 1.242 passed passed 1.00 -0.429 passed passed
Time 1.00 0.472 passed failed 1.00 -1.834 passed passed 1.00 0.673 passed passed
Treatment

Biguanides 1.00 -0.437 passed passed 1.00 -0.621 passed failed 1.00 0.076 passed passed
Sulphonyureas 1.00 -1.063 passed passed 1.00 -0.471 passed passed 1.00 -1.324 passed passed

Age in years 1.00 0.233 passed passed 1.00 2.267 failed < NA > 1.00 0.672 passed passed
Male 1.00 1.771 passed passed 1.00 -1.197 passed passed 1.00 1.666 passed passed
Treatment×Time

Biguanides×Time 1.00 1.374 passed passed 1.00 1.963 passed passed 1.00 -0.699 passed passed
Sulphonyureas×Time 1.00 1.473 passed passed 1.00 -0.043 passed passed 1.00 -0.371 passed passed

Ordinal Process: BMI categories
Threshold-1 1.02 0.137 passed passed 1.03 -0.647 passed passed 1.02 0.845 passed passed
Threshold-2 1.02 1.447 passed passed 1.03 -0.620 passed passed 1.06 1.848 passed passed
Threshold-3 1.01 1.279 passed passed 1.01 -0.541 passed passed 1.08 2.697 failed < NA >
Time 1.00 -1.561 passed passed 1.00 -1.457 passed passed 1.00 -0.992 passed failed
Treatment

Biguanides 1.03 1.960 passed failed 1.03 -0.267 passed failed 1.07 0.971 passed failed
Sulphonyureas 1.04 0.829 passed passed 1.02 -0.178 passed passed 1.08 -0.693 passed failed

Age in years 1.01 1.234 passed passed 1.01 1.621 failed < NA > 1.00 -0.183 passed passed
Male 1.06 2.267 passed passed 1.03 -0.521 passed passed 1.06 -0.979 passed passed
Treatment×Time

Biguanides×Time 1.00 1.236 passed passed 1.00 1.719 passed passed 1.00 -0.775 passed passed
Sulphonyureas×Time 1.00 0.490 passed passed 1.01 0.049 passed passed 1.00 0.336 passed passed

Survival Process: time to a normal blood glucose level
Intercept 1.00 -1.870 passed passed 1.00 0.833 passed passed 1.00 0.959 passed passed
Treatment

Biguanides 1.00 -1.971 passed passed 1.00 -0.370 failed < NA > 1.00 0.231 passed passed
Sulphonyureas 1.00 1.073 passed passed 1.00 0.240 passed passed 1.00 -1.215 passed passed

Age in years 1.00 1.314 passed passed 1.00 2.363 failed < NA > 1.00 1.447 passed passed
Male 1.00 1.620 passed passed 1.00 -0.157 passed passed 1.00 0.668 passed passed
Association Parameters & Variances
ρ12 1.00 -1.797 passed passed - - - - - - - -
ρ13 1.00 2.049 passed failed - - - - - - - -
ρ23 1.02 -1.054 passed passed - - - - - - - -
γ1 - - - - 1.05 -1.355 passed passed - - - -
γ2 - - - - 1.00 -1.598 passed passed - - - -
σ2
b1

1.00 1.099 passed passed 1.01 1.655 passed passed 1.00 1.306 passed passed
σ2
b2

1.00 -0.732 passed passed - - - - 1.00 1.226 passed passed
σ2
b3

1.01 1.483 passed passed - - - - 1.00 -0.703 passed passed
σ2
e1 1.00 -0.877 passed passed 1.00 0.521 passed passed 1.00 0.876 passed passed

Multivariate Test 1.10 - - - 1.07 - - - 1.06 - - -
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The results for normal blood glucose range of 70− 130 mg/dl are shown in Table 18. The

convergence diagnostic results (see Appendix D: Figures 15-18) indicated that all parameters

converged except for regression estimates of the ordinal outcome. The point estimates were

also quite similar across the three models but the CIs differed. There were slightly more

significant variables than in scenario 1 (Table 17) but the trends were similar. Sulphonyureas

treatment and age were found to be significantly associated with systolic blood pressure. The

patients who were treated with Sulphonyureas at baseline had systolic blood pressure that

were lower as compared to those treated with Insulin. Again, the elderly were associated with

higher levels of systolic blood pressure. For the ordinal outcome, the significant variables

remained the same as in Table 17 but Sulphonyureas treatment and time interaction was

significantly associated with BMI levels in all the three models. Similar results as in Table 17

were obtained for the survival outcome, with Sulphonyureas significant in all models and

gender in shared random effects model. Here, the only association parameters significantly

different from zero were ρ12 and γ1; indicating positive correlation between systolic blood

pressure and BMI but no association with survival outcome. Also, the DIC indicated joint

correlated random effects model fit the data better than the shared random effects model.
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Table 17: Analysis of Ugandan Type 2 Diabetes Data: Normal blood glucose 70−180

mg/dl

Joint-Correlated Random Effects Joint-Shared Random Effects Separate

Parameter Mean 95% CI Mean 95% CI Mean 95% CI

Continuous Process: systolic blood pressure
Intercept 11.88 (11.720, 12.050) 11.93 (11.800, 12.060) 11.88 (11.720, 12.050)
Time 0.015 (-0.095, 0.125) 0.028 (-0.078, 0.134) 0.033 (-0.072, 0.137)
Treatment

Biguanides -0.053 (-0.254, 0.148) -0.017 (-0.187, 0.153) -0.051 (-0.254, 0.152)
Sulphonyureas -0.127 (-0.346, 0.092) -0.131 (-0.304, 0.043) -0.119 (-0.336, 0.095)

Age in years 0.018 (0.011, 0.026) 0.022 (0.016, 0.029) 0.018 (0.010, 0.026)
Male -0.069 (-0.260, 0.120) -0.124 (-0.287, 0.040) -0.074 (-0.261, 0.112)
Treatment×Time

Biguanides×Time -0.056 (-0.215, 0.104) -0.016 (-0.177, 0.147) -0.079 (-0.236, 0.081)
Sulphonyureas×Time 0.112 (-0.066, 0.289) 0.157 (-0.001, 0.314) 0.115 (-0.061, 0.288)

Ordinal Process: BMI categories
Threshold-1 -14.4 (-17.55, -11.780) -12.1 (-14.25, -10.110) -14.71 (-17.73, -12.090)
Threshold-2 -4.294 (-6.108, -2.602) -3.822 (-5.155, -2.491) -4.506 (-6.134, -2.938)
Threshold-3 2.788 (1.233, 4.497) 2.105 (0.895, 3.407) 2.694 (1.209, 4.156)
Time 0.483 (-0.088, 1.057) 0.464 (-0.021, 0.943) 0.244 (-0.353, 0.810)
Treatment

Biguanides 1.499 (-0.305, 3.396) 0.99 (-0.531, 2.475) 1.343 (-0.500, 3.056)
Sulphonyureas 3.034 (1.219, 5.200) 2.283 (0.905, 3.767) 2.814 (0.834, 4.711)

Age in years -0.084 (-0.155, -0.014) -0.071 (-0.127, -0.014) -0.082 (-0.157, -0.011)
Male -3.712 (-5.409, -1.938) -3.226 (-4.593, -1.835) -3.697 (-5.598, -1.948)
Treatment×Time

Biguanides×Time -0.5 (-1.356, 0.356) -0.441 (-1.181, 0.305) -0.531 (-1.418, 0.353)
Sulphonyureas×Time -0.898 (-1.789, -0.068) -0.626 (-1.378, 0.132) -0.891 (-1.794, -0.034)

Survival Process: time to a normal blood glucose level
Intercept -3.922 (-4.239, -3.620) -3.882 (-4.128, -3.643) -3.893 (-4.211, -3.590)
Treatment

Biguanides 0.286 (-0.078, 0.654) 0.285 (-0.009, 0.580) 0.242 (-0.127, 0.610)
Sulphonyureas 0.925 (0.549, 1.305) 0.766 (0.475, 1.059) 0.894 (0.519, 1.283)

Age in years 0.003 (-0.011, 0.016) 0.002 (-0.009, 0.013) 0.002 (-0.011, 0.016)
Male -0.242 (-0.561, 0.079) -0.357 (-0.610, -0.110) -0.23 (-0.555, 0.107)

Association Parameters & Variances
ρ12 0.195 (0.071, 0.315) - - - -
ρ13 -0.032 (-0.289, 0.215) - - - -
ρ23 0.357 (0.160, 0.555) - - - -
γ1 - - 21.04 (17.590, 24.490) - -
γ2 - - 0.987 (0.488, 1.531) - -
σ2
b1

0.513 (0.415, 0.622) 0.092 (0.064, 0.127) 0.512 (0.415, 0.622)
σ2
b2

60.87 (42.970, 84.500) - - 63.25 (45.010, 89.450)
σ2
b3

0.764 (0.373, 1.233) - - 0.836 (0.003, 1.395)
σ2
e1 0.695 (0.631, 0.766) 1.297 (1.196, 1.406) 0.696 (0.631, 0.767)

Goodness of fit (DIC)
Continuous 3316 - 3815 - 3321 -
Ordinal 1091 - 1196 - 1083 -
Survival 2815 - 2880 - 2825 -
Total 7222 - 7890 - - -
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Table 18: Analysis of Ugandan Type 2 Diabetes Data: Normal blood glucose 70−130

mg/dl

Joint-Correlated Random Effects Joint-Shared Random Effects Separate

Parameter Mean 95% CI Mean 95% CI Mean 95% CI

Continuous Process: systolic blood pressure
Intercept 11.93 (11.780, 12.080) 11.94 (11.830, 12.050) 11.93 (11.770, 12.080)
Time 0.005 (-0.087, 0.097) 0.032 (-0.055, 0.119) 0.027 (-0.062, 0.116)
Treatment

Biguanides -0.091 (-0.279, 0.096) -0.061 (-0.203, 0.080) -0.083 (-0.274, 0.107)
Sulphonyureas -0.242 (-0.442, -0.041) -0.27 (-0.418, -0.125) -0.227 (-0.424, -0.027)

Age in years 0.017 (0.010, 0.024) 0.016 (0.011, 0.021) 0.017 (0.010, 0.024)
Male -0.116 (-0.292, 0.060) -0.125 (-0.260, 0.010) -0.124 (-0.300, 0.053)
Treatment×Time

Biguanides×Time 0.048 (-0.086, 0.182) 0.041 (-0.092, 0.174) 0.026 (-0.109, 0.158)
Sulphonyureas×Time 0.059 (-0.069, 0.188) 0.091 (-0.028, 0.211) 0.062 (-0.068, 0.189)

Ordinal Process: BMI categories
Threshold-1 -15.65 (-18.240, -13.300) -13.34 (-15.44, -11.380) -15.87 (-18.750, -13.400)
Threshold-2 -4.791 (-6.324, -3.281) -4.342 (-5.729, -2.896) -4.825 (-6.464, -3.348)
Threshold-3 2.73 (1.235, 4.210) 2.221 (0.924, 3.700) 2.789 (1.348, 4.187)
Time 0.261 (-0.227, 0.771) 0.236 (-0.181, 0.639) 0.183 (-0.340, 0.710)
Treatment

Biguanides 1.813 (-0.050, 3.537) 1.211 (-0.433, 2.889) 1.798 (0.185, 3.544)
Sulphonyureas 2.651 (0.832, 4.290) 2.161 (0.136, 3.960) 2.69 (0.932, 4.551)

Age in years -0.105 (-0.174, -0.031) -0.093 (-0.152, -0.038) -0.098 (-0.170, -0.022)
Male -4.177 (-5.891, -2.389) -3.564 (-5.225, -2.144) -4.05 (-5.919, -2.081)
Treatment×Time

Biguanides×Time 0.008 (-0.749, 0.764) -0.035 (-0.668, 0.620) 0.038 (-0.720, 0.830)
Sulphonyureas×Time -0.874 (-1.588, -0.174) -0.741 (-1.361, -0.102) -0.853 (-1.568, -0.114)

Survival Process: time to a normal blood glucose level
Intercept -4.268 (-4.631, -3.927) -4.15 (-4.412, -3.898) -4.283 (-4.658, -3.935)
Treatment

Biguanides -0.057 (-0.470, 0.363) 0.012 (-0.301, 0.331) -0.077 (-0.513, 0.361)
Sulphonyureas 0.554 (0.135, 0.987) 0.426 (0.112, 0.736) 0.562 (0.120, 1.002)

Age in years 0.008 (-0.007, 0.024) 0.005 (-0.007, 0.016) 0.009 (-0.007, 0.025)
Male -0.298 (-0.682, 0.083) -0.335 (-0.615, -0.062) -0.299 (-0.685, 0.086)

Association Parameters & Variances
ρ12 0.183 (0.071, 0.292) - - - -
ρ13 -0.107 (-0.314, 0.096) - - - -
ρ23 0.159 (-0.013, 0.332) - - - -
γ1 - - 24.42 (21.390, 28.080) - -
γ2 - - 0.402 (-0.103, 0.921) - -
σ2
b1

0.533 (0.445, 0.633) 0.086 (0.063, 0.115) 0.531 (0.444, 0.630)
σ2
b2

70.7 (53.830, 92.350) - - 73.29 (54.400, 95.570)
σ2
b3

1.249 (0.627, 1.978) - - 1.484 (0.832, 2.210)
σ2
e1 0.683 (0.635, 0.735) 1.256 (1.177, 1.340) 0.683 (0.635, 0.735)

Goodness of fit (DIC)
Continuous 5042 - 5886 - 5047 -
Ordinal 1426 - 1524 - 1421 -
Survival 2427 - 2529 - 2416 -
Total 8895 - 9938 - - -
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4.6 DISCUSSION

In this chapter we have developed a full Bayesian hierarchical multivariate generalized linear

mixed effects model for repeatedly measured continuous and ordinal measures of disease

severity and time-to-event outcome. This model extended the work in Chapter 3 to include

time-to-event data. Although this model is more complex, use of Bayesian MCMC methods

for parameter estimation makes it more user-friendly, given that in many clinical studies there

is more than one biomarker that is associated with the event of interest. Moreover, we have

used a parametric approach to model the baseline hazard in proportional hazards model for

survival outcome which is more flexible than the semi-parametric approach especially when

the Cox proportional hazards assumption is violated. In addition, we have illustrated how

the three outcomes can be modeled jointly through correlated and shared random effects with

a real data example after examining their performance through simulations. In addition, our

proposed joint model can easily be fit in OpenBUGS with code we provide (see Appendix F).

The results from the simulation study illustrated that joint modeling leads to efficient

estimates and adequate 95% coverage probabilities for the population parameters. For the

correlated random effects joint model, the efficiency gain was larger for the ordinal and

survival outcomes estimates than for the continuous outcome. While, for the shared random

effects joint model, the gain in efficiency was larger for the ordinal outcomes compared

to that of the continuous and survival outcomes. Overall, the gain in efficiency increased

with the increase in correlation among the three outcomes and decrease in the sample size.

Furthermore, the diabetes data analysis results showed improved efficiency or more precise

estimates when systolic blood pressure, body mass index, and time to normalization of blood

glucose were modeled jointly. However, the large treatment effects could be due to the fact

that these treatments are given at different stages of the disease.

While in the final stages of this dissertation, two papers by Luo (2014)[66] and Baghfalaki,

Ganjali, and Berridge (2014)[2] came out that have dealt with joint modeling of multivariate

longitudinal outcomes and time-to-event data. Luo [66] worked on joint modeling of binary,

ordinal, and continuous longitudinal outcomes, and time-to-event data and used Bayesian

approach for parameter estimation. In modeling the longitudinal outcomes, multilevel item
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response theory (MLIRT) model was employed where each of the outcomes was modeled first

as a function of latent measure of disease severity θij and then at the second level, θij was

regressed on the covariates of interest. For the time-to-event data, the accelerated failure

time (AFT) model was employed, and the longitudinal outcomes were linked to time-to-event

data through shared random effects. Baghfalaki et al. [2] on the other hand have worked on

continuous and ordinal longitudinal outcomes and time-to-event data, and have also employed

Bayesian approach for parameter estimation like we did. However, for the ordinal outcome,

they considered a continuous latent variable model (logistic) and for the time-to-event data

they employed AFT model, and linked the longitudinal and time-to-event processes through

shared random effects. Our work differs from the above two in several ways: first we employed

generalized linear mixed effects models and modeled the outcomes as multivariate generalized

linear mixed effects model linked through both correlated (general case) and shared random

effects. Secondly, time-to-event data was modeled through a parametric Weibull distribution

with unshared frailty to account for unobserved heterogeneity within individuals as well as

correlation with the longitudinal biomarkers.
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5.0 CONCLUSION

5.1 SUMMARY

In this dissertation, we have developed a multivariate joint model for repeatedly measured

mixed (continuous and ordinal) biomarkers of disease severity and time-to-event for highly

unbalanced data. This work was motivated by a diabetes observational study with highly

unbalanced data, because patients reported for check-ups at different time points and the

number of hospital visits varied from patient to patient. The main markers of diabetes

disease severity in this study were blood glucose in mg/dl (continuous) and urine glucose

levels (ordinal). Other markers taken that are associated with type 2 diabetes in particular;

included blood pressure in mmHG and body mass index.

This dissertation work was done in two parts, where in Part 1 (Chapter 3), we developed

a multivariate joint model for highly unbalanced repeatedly measured continuous and ordinal

markers of disease severity. Each of the outcomes was assumed to be from a distribution that

is in the exponential family, where the conditional mean function was linked to the linear

predictor through some known monotonic function. Thus, for the continuous outcomes, we

assumed an identity link function while for the ordinal outcome a cumulative logit link function

was assumed. Given the random effects, the two outcomes were assumed to be independent

of each other and the repeated measures within an individual were independent observations

from a known distribution in the exponential family. The two outcomes were then modeled

as multivariate generalized linear mixed models linked through correlated and /or shared

random effects. We employed the Bayesian MCMC methods for parameter estimation because

they have the capacity to handle these complex models with ease. Simulation studies were

conducted to assess the performance of our proposed joint model, and the results indicated
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gain in efficiency, unbiased estimates, and adequate 95% coverage probabilities when the two

correlated outcomes were modeled jointly. In addition, we fitted our proposed models to

the diabetes data, and the results showed improved efficiency when blood glucose and urine

glucose were modeled jointly. Lastly, a sensitivity analysis was conducted to asses the effect

of the priors for the variance parameters on the regression parameters. Although differences

were observed in the estimates of variance parameters especially when the hyper-parameters

for Gamma priors were varied, the regression parameters of interest were not affected.

In Part 2 of this dissertation, we extended the work in Part 1 to include time-to-event

data (Chapter 4). Following the same steps, the three outcomes were modeled as multivariate

generalized linear mixed models linked through correlated and/or shared random effects. For

time-to-event, we followed Aitkin and Clayton (1980) [1] and modeled the indicator variable δi

(i.e. whether event occurred or not) as a Poisson variate with mean µi, where the mean was

linked to the linear predictor through a log link function. The simulation study results also

indicated gain in efficiency for estimates from the proposed joint model compared to separate

models. The estimates from the proposed joint model were less biased and had adequate 95%

coverage probabilities. Finally, the results from fitting the proposed joint model to diabetes

data indicated more efficient estimates when systolic blood pressure, BMI, and time to when

blood glucose reached the normal range were modeled jointly than separately.

5.2 EXTENSIONS AND FUTURE WORK

5.2.1 Predictions

The work in this thesis has mainly focused on the joint evaluation of the repeatedly measured

biomarkers of disease severity and time-to-event data. However, one of the key aims of

modeling markers and time-to-event simultaneously, is to predict the event of interest after

adjusting for longitudinal or repeatedly measured markers. Thus, the immediate focus will

be on predictions of either an event of interest given both the longitudinal measurements and

survival data or vise verse. Specifically, we can predict the event of interest or longitudinal
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value for a new subject or individual from the posterior predictive distribution. Supposing

there are m individuals with full data on longitudinal markers (continuous and ordinal)

and time-to-event summarized as Dm = (y11, . . . ,ym1, y12, . . . ,ym2, y13, . . . ,ym3), where

yi1, yi2, and yi3 = (Ti, δi) are the continuous, ordinal, and time-to-event data for the ith

subject or individual, respectively. As defined earlier, Ti = min(T ∗i , Ci) is the failure time

and δi = I(T ∗i ≤ Ci) is an event indicator which indicates whether the observed failure time

is a true failure time, T ∗i , or a censoring time Ci for the ith subject. Now suppose we have a

new (m+ 1th) subject who has survived up to time s and provided continuous and ordinal

measurements up to this time all summarized as y =
(
y(m+1)1, y(m+1)2, y(m+1)3

)
, where,

y(m+1)3 = (Tm+1 = s, δm+1 = 0). Then, given this data, the predictive distribution for a

new observation ỹ (continuous or ordinal) from this distribution with random effects b̃ and

hyper-parameters Θ = (β1, β2, β3, α, σ
2
ε , λ,Γ) is

p(ỹ|Dm, y) =

∫ ∫
p(ỹ|y, b̃,Θ)p(b̃|y,Θ)p(Θ|Dm)dΘdb̃.

In the same way, the predicted survival probability for the time to event T̃ for the new

subject, at time t given survival up to time s is

p(T̃ ≥ t|Dm, T̃ > s,y(m+1)1,y(m+1)2) =

∫ ∫
p(T̃ ≥ t|T̃ > s,y(m+1)1,y(m+1)2, b̃)p(b̃|T̃ > s,y(m+1)1,y(m+1)2,Θ)p(Θ|Dm)dΘdb̃,

where p(b̃|T̃ > s,y(m+1)1,y(m+1)2,Θ) is the posterior distribution of the random effects for the

new subject conditional on their data and the hyper-parameters Θ (Sweeting and Thompson,

2011) [89]. We will compare predictions of survival probabilities given different scenarios (i.e.,

only survival data, survival and ordinal, survival and continuous, and (survival, ordinal, and

continuous)). In addition, several methods that include but limited to calibration measures

(Schemper and Henderson, 2000; Henderson et al., 2002) [82, 43] and discrimination measures

(Heagerty et al., 2000; Heagerty and Zheng, 2005) [37, 38] will be employed to assess the

accuracy of these predictions.
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5.2.2 Recurrent and multiple events

Based on our motivating diabetes data, diabetics always have their blood glucose levels

fluctuating given other conditions surrounding them. Thus, the blood glucose levels can

be normal, too low (hypoglycemia), or to high (hyperglycemia) and these conditions are

recurrent. One of our desirable future work will therefore include extending the survival

submodel to account for recurrent and/or multiple events.

5.2.2.1 Recurrent events Considering only the recurrent events (e.g. normal blood

glucose), one way would be to use a shared frailty model as defined by Equation 2.2.41

or 2.2.42. Because these events are assumed to be correlated, the shared frailty will account

for this correlation within individuals as well as among the outcomes when we jointly model

the biomarkers and time-to-event.

5.2.2.2 Multiple recurrent events For the multiple recurrent events, a possible way

will be to employ a Multistate Markov model (Huzurbazar, 2005) [50], where each of the

conditions, hypoglycemia, normal, and hyperglycemia is taken as a state. That is, we

depict the transitions among three possible states (1=hypoglycemia, 2=normal, and 3

=hyperglycemia ) as a Markov chain. Let λjk(s) denote the hazard of progression from

state j to k at time t. Then normal blood glucose is reached from hypoglycemia according

to hazard λ12(s), from hyperglycemia according to hazard λ32(s). Alternatively, someone

can move from having normal blood glucose to hypoglycemia according to hazard λ21(s) or

normal to hyperglycemia with hazard λ23(s). To include covariate information and link to the

longitudinal submodels, we will construct a proportional hazards model with frailty for each

transition. This allows great flexibility for different covariates and different linking functions

in each hazard submodel.
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5.3 PUBLIC HEALTH SIGNIFICANCE

Diabetes is one of the most challenging public health problems globally. Its associated

complications such as heart attack and stroke are the leading causes of death especially in the

developed world. Because diabetes is a chronic illness and the severity of its complications can

be so awful, it is a very costly disease to the individuals, families, and to the health-personnel

as well as institutions. Proper treatment, however, can control and prevent the development

of these complications and hence improve the quality of life of millions of people, and reduce

the associated costs. The work in this dissertation proposes more effective statistical methods

that can be employed to estimate the treatment effects efficiently. This will help researchers

as well as clinicians identify effective treatments that can slow down the disease progression.
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APPENDIX A

CHAPTER 3 SIMULATION RESULTS WHEN THE TRUE PROCESSES

ARE CORRELATED THROUGH SHARED RANDOM EFFECTS
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Table 19: Results when data were simulated under a shared random effects model (γ = 0.9): SD and CP, stand for posterior

standard deviation and coverage probabilities of the 95% HPD intervals, respectively.

Fitted Model

Joint-Correlated (JC) Joint-Shared (JS) Separate (SP)

True Model
(n) Parameter Truth Bias SD CP RE1 = MSEJC

MSEJS
Bias SD CP Bias SD CP RE2 = MSESP

MSEJS

Shared

Continuous Process

(n=50)

β10: intercept 15.34 -0.067 0.584 0.95 0.96 -0.129 0.606 0.94 -0.075 0.600 0.95 0.97
β11: time -0.56 0.001 0.069 0.95 1.00 0.002 0.068 0.95 0.002 0.072 0.95 1.10
β12: treatment -0.50 0.028 0.849 0.96 0.97 0.136 0.864 0.95 0.052 0.848 0.96 0.97
β13: time×treatment 0.30 -0.001 0.097 0.94 1.01 -0.001 0.097 0.94 -0.002 0.101 0.95 1.09

Ordinal Process
α2: threshold 1.25 0.073 0.167 0.92 1.05 0.059 0.169 0.94 0.056 0.166 0.94 1.00
β20: intercept 1.80 0.071 0.565 0.95 1.01 -0.031 0.582 0.95 0.090 0.615 0.94 1.10
β21: time -0.35 -0.026 0.074 0.94 1.06 -0.021 0.071 0.95 -0.020 0.076 0.95 1.10
β22: treatment -0.50 -0.054 0.805 0.94 1.01 0.080 0.819 0.95 -0.109 0.838 0.95 1.04
β23: time×treatment 0.10 0.012 0.100 0.96 1.03 0.010 0.094 0.96 0.011 0.103 0.95 1.10

Association Parameters & Variances
γ 0.9 - - - - 0.076 0.137 0.92 - - - -
σ2
b1

: bi1 5.87 0.142 1.503 0.96 0.87 0.276 1.603 0.95 0.276 1.596 0.95 1.00
σ2
b2

: bi2 4.75 0.847 1.776 0.92 - - - - 1.125 2.093 0.91 -
σ2
e1 : error 7.40 -0.047 0.623 0.94 0.98 0.041 0.631 0.94 0.044 0.644 0.94 1.06

Shared

Continuous Process

(n=100)

β10: intercept 15.34 -0.020 0.420 0.94 1.02 -0.025 0.415 0.94 -0.060 0.426 0.94 1.03
β11: time -0.56 0.006 0.048 0.96 1.00 0.006 0.048 0.96 0.006 0.050 0.95 1.08
β12: treatment -0.50 0.036 0.604 0.94 1.00 0.064 0.592 0.94 0.067 0.606 0.94 0.99
β13: time×treatment 0.30 -0.002 0.068 0.95 1.00 -0.002 0.068 0.95 -0.003 0.071 0.95 1.07

Ordinal Process
α2: threshold 1.25 0.030 0.116 0.95 1.04 0.021 0.116 0.95 0.020 0.118 0.95 0.99
β20: intercept 1.80 0.054 0.399 0.96 1.04 0.018 0.389 0.95 -0.023 0.402 0.96 1.05
β21: time -0.35 -0.011 0.050 0.95 1.02 -0.006 0.050 0.96 -0.004 0.053 0.94 1.07
β22: treatment -0.50 0.007 0.559 0.94 0.99 0.061 0.536 0.95 0.092 0.549 0.94 1.06
β23: time×treatment 0.10 0.003 0.066 0.94 1.00 -0.001 0.066 0.95 -0.004 0.070 0.96 1.07

Association Parameters & Variances
γ 0.9 - - - - 0.035 0.090 0.93 - - - -
σ2
b1

: bi1 5.87 0.102 1.046 0.94 0.96 0.108 1.060 0.94 0.137 1.083 0.94 1.06
σ2
b2

: bi2 4.75 0.472 1.151 0.93 - - - - 0.472 1.260 0.94 -
σ2
e1 : error 7.40 -0.010 0.436 0.95 0.95 0.069 0.447 0.95 0.064 0.449 0.95 1.02
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Table 20: Results when data were simulated under a shared random effects model (γ = 0.6): SD and CP, stand for posterior

standard deviation and coverage probabilities of the 95% HPD intervals, respectively.

Fitted Model

Joint-Correlated (JC) Joint-Shared (JS) Separate (SP)

True Model
(n) Parameter Truth Bias SD CP RE1 = MSEJC

MSEJS
Bias SD CP Bias SD CP RE2 = MSESP

MSEJS

Shared

Continuous Process

(n=50)

β10: intercept 15.34 -0.031 0.592 0.95 0.98 -0.079 0.609 0.95 -0.047 0.607 0.95 1.00
β11: time -0.56 0.002 0.071 0.94 1.00 0.003 0.070 0.94 0.002 0.073 0.94 1.06
β12: treatment -0.50 0.030 0.849 0.94 0.98 0.114 0.869 0.94 0.060 0.852 0.94 1.00
β13: time×treatment 0.30 0.000 0.099 0.94 1.00 -0.001 0.099 0.94 0.000 0.102 0.94 1.07

Ordinal Process
α2: threshold 1.25 0.075 0.151 0.91 1.16 0.048 0.152 0.94 0.045 0.150 0.94 1.01
β20: intercept 1.80 0.119 0.446 0.94 1.10 0.030 0.438 0.96 0.076 0.457 0.94 1.09
β21: time -0.35 -0.027 0.068 0.93 1.12 -0.016 0.064 0.93 -0.015 0.069 0.94 1.10
β22: treatment -0.50 -0.040 0.613 0.96 1.05 0.045 0.609 0.95 -0.032 0.613 0.96 1.04
β23: time×treatment 0.10 0.013 0.091 0.95 1.05 0.009 0.084 0.94 0.008 0.092 0.94 1.11

Association Parameters & Variances
γ 0.6 - - - - 0.044 0.097 0.92 - - - -
σ2
b1

: bi1 5.87 0.095 1.501 0.96 0.87 0.291 1.611 0.96 0.341 1.611 0.96 1.01
σ2
b2

: bi2 2.11 0.517 0.848 0.92 - - - - 0.432 0.927 0.93 -
σ2
e1 : error 7.40 0.032 0.637 0.95 0.96 0.100 0.645 0.95 0.086 0.649 0.95 1.04

Shared

Continuous Process

(n=100)

β10: intercept 15.34 -0.035 0.419 0.96 1.00 -0.042 0.418 0.96 -0.066 0.425 0.95 1.01
β11: time -0.56 0.002 0.049 0.95 1.00 0.001 0.049 0.95 0.002 0.050 0.95 1.07
β12: treatment -0.50 0.038 0.598 0.94 0.99 0.063 0.592 0.95 0.063 0.604 0.95 1.00
β13: time×treatment 0.30 -0.001 0.069 0.95 1.00 -0.002 0.069 0.95 -0.003 0.071 0.95 1.08

Ordinal Process
α2: threshold 1.25 0.039 0.105 0.93 1.11 0.021 0.105 0.95 0.021 0.108 0.95 1.03
β20: intercept 1.80 0.061 0.303 0.96 1.10 0.010 0.298 0.96 -0.008 0.305 0.96 1.07
β21: time -0.35 -0.016 0.045 0.93 1.12 -0.007 0.045 0.95 -0.007 0.048 0.95 1.12
β22: treatment -0.50 -0.013 0.416 0.94 1.06 0.036 0.401 0.94 0.055 0.408 0.94 1.04
β23: time×treatment 0.10 0.008 0.060 0.96 1.05 0.002 0.060 0.96 0.000 0.063 0.96 1.07

Association Parameters & Variances
γ 0.6 - - - - 0.020 0.063 0.95 - - - -
σ2
b1

: bi1 5.87 -0.003 1.033 0.95 0.95 0.046 1.052 0.95 0.100 1.075 0.95 1.06
σ2
b2

: bi2 2.11 0.289 0.542 0.92 - - - - 0.165 0.570 0.94 -
σ2
e1 : error 7.40 -0.029 0.438 0.95 0.97 0.030 0.450 0.94 0.015 0.446 0.95 1.01
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APPENDIX B

RESULTS FROM FITTING THE JOINT AND SEPARATE MODELS IN

CHAPTER 3 TO UGANDAN TYPE 2 DIABETES DATA
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Table 21: Convergence Diagnostic tests results for analysis of Type 2 Diabetes data.

Joint-Correlated (JC) Joint-Shared (JS) Separate (SP)

Gelman Geweke Heidelberg Gelman Geweke Heidelberg Gelman Geweke Heidelberg

Parameter Estimate Z-score Stationarity Halfwidth Estimate Z-score Stationarity Halfwidth Estimate Z-score Stationarity Halfwidth

Continuous Process: blood glucose levels

Intercept 1.00 -0.956 passed passed 1.00 0.053 passed passed 1.00 0.536 passed passed
Time 1.00 0.512 passed passed 1.00 -1.169 passed failed 1.00 0.908 passed passed
Treatment

Biguanides 1.00 1.806 passed passed 1.00 -0.063 passed passed 1.00 0.945 passed passed
Sulphonyureas 1.00 1.592 passed passed 1.00 -0.466 passed passed 1.00 1.575 passed passed

BMI 1.00 1.055 passed passed 1.00 -0.015 passed passed 1.00 0.561 passed passed
Male 1.00 -0.452 passed passed 1.00 -1.583 passed passed 1.00 -0.621 passed passed
Treatment×Time

Biguanides×Time 1.00 -0.821 passed passed 1.00 1.410 passed passed 1.00 0.191 passed passed
Sulphonyureas×Time 1.00 0.574 passed passed 1.00 1.528 passed passed 1.00 0.521 passed passed

Ordinal Process: urine glucose categories

Threshold-1 1.00 -1.760 passed passed 1.01 -0.160 passed passed 1.00 0.778 passed passed
Threshold-2 1.00 -1.512 passed passed 1.01 -0.186 passed passed 1.00 0.407 passed passed
Threshold-3 1.00 -1.654 passed passed 1.00 -0.266 passed passed 1.00 0.571 passed passed
Threshold-4 1.00 -1.401 passed passed 1.00 -0.353 passed passed 1.00 -0.631 passed passed
Time 1.00 0.032 passed passed 1.00 -0.990 passed passed 1.00 0.141 passed passed
Treatment

Biguanides 1.00 -1.719 passed passed 1.01 -0.191 passed passed 1.00 0.228 passed passed
Sulphonyureas 1.00 0.432 passed passed 1.00 -0.156 passed passed 1.00 -1.384 passed passed

BMI 1.00 1.065 passed passed 1.01 0.157 passed passed 1.00 1.281 passed passed
Male 1.00 -0.413 passed passed 1.00 -1.282 passed passed 1.00 -1.263 passed passed
Treatment×Time

Biguanides×Time 1.00 0.772 passed passed 1.00 1.517 passed passed 1.00 -0.494 passed passed
Sulphonyureas×Time 1.00 0.272 passed passed 1.01 1.203 passed passed 1.00 0.385 passed passed

Association Parameters & Variances

ρ 1.00 -0.838 passed passed - - - - - - - -
γ - - - - 1.00 -0.552 passed passed - - - -
σ2
b1

1.00 1.630 passed passed 1.00 1.124 passed passed 1.00 -1.077 passed passed
σ2
b2

1.00 1.412 passed passed - - - - 1.27 0.995 passed failed
σ2
e1 1.00 0.156 passed passed 1.00 -0.795 passed passed 1.00 0.607 passed passed

Multivariate Test 1.01 - - - 1.03 - - - 1.00 - - -
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Table 22: Analysis of Ugandan Type 2 Diabetes Data

Joint-Correlated (JC) Joint-Shared (JS) Separate (SP)

Parameter Mean 95% CI Mean 95% CI Mean 95% CI

Continuous Process: blood glucose levels

Intercept 15.82 (15.210, 16.440) 16.14 (15.570, 16.690) 15.74 (15.090, 16.380)
Time -0.39 (-0.793, 0.020) -0.08 (-0.474, 0.314) -0.42 (-0.825, -0.006)
Treatment

Biguanides -0.31 (-0.968, 0.344) -0.58 (-1.197, 0.041) -0.26 (-0.940, 0.430)
Sulphonyureas -0.39 (-1.118, 0.341) -0.79 (-1.461, -0.103) -0.20 (-0.942, 0.547)

BMI -0.03 (-0.096, 0.030) -0.04 (-0.097, 0.009) -0.03 (-0.093, 0.034)
Male -0.54 (-1.492, 0.451) -1.06 (-1.890, -0.232) -0.46 (-1.420, 0.523)
Treatment×Time

Biguanides×Time 0.39 (-0.117, 0.909) 0.36 (-0.145, 0.860) 0.41 (-0.108, 0.925)
Sulphonyureas×Time 0.54 (-0.082, 1.156) 0.46 (-0.156, 1.073) 0.48 (-0.150, 1.112)

Ordinal Process: urine glucose categories

Threshold-1 -0.91 (-1.391, -0.433) -0.73 (-1.137, -0.312) -1.08 (-1.519, -0.612)
Threshold-2 -0.45 (-0.926, 0.024) -0.30 (-0.701, 0.107) -0.62 (-1.059, -0.159)
Threshold-3 0.46 (-0.004, 0.935) 0.54 (0.149, 0.948) 0.29 (-0.145, 0.748)
Threshold-4 2.60 (2.102, 3.111) 2.51 (2.087, 2.963) 2.44 (1.959, 2.933)
Time -0.42 (-0.699, -0.145) -0.45 (-0.708, -0.199) -0.28 (-0.569, 0.010)
Treatment

Biguanides -0.58 (-1.061, -0.080) -0.44 (-0.864, -0.003) -0.76 (-1.253, -0.239)
Sulphonyureas -0.33 (-0.849, 0.188) -0.20 (-0.664, 0.270) -0.45 (-0.981, 0.101)

BMI -0.04 (-0.082, 0.009) -0.03 (-0.067, 0.015) -0.04 (-0.084, 0.009)
Male 0.72 (0.020, 1.410) 0.85 (0.231, 1.442) 0.52 (-0.148, 1.231)
Treatment×Time

Biguanides×Time 0.31 (-0.055, 0.668) 0.26 (-0.075, 0.599) 0.26 (-0.106, 0.628)
Sulphonyureas×Time 0.45 (-0.001, 0.895) 0.38 (-0.009, 0.782) 0.38 (-0.070, 0.830)

Association Parameters & Variances

ρ 0.60 (0.465, 0.716) - - - -
γ - - 0.83 (0.603, 1.085) - -
σ2
b1

6.97 (5.310, 8.889) 4.07 (2.697, 5.862) 7.02 (5.389, 8.972)
σ2
b2

3.46 (2.444, 4.719) - - 3.33 (2.364, 4.512)
σ2
e1 7.42 (6.713, 8.211) 9.53 (8.383, 10.720) 7.40 (6.684, 8.177)

Goodness of Fit (DIC)

Continuous 5160 5323 5170
Ordinal 2573 2639 2591

Total 7733 7962 -
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APPENDIX C

CHAPTER 4 SIMULATION RESULTS WHEN THE TRUE PROCESSES

ARE CORRELATED THROUGH SHARED RANDOM EFFECTS
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Table 23: Results when data were simulated under a shared random effects model (γ1 = γ2 = 0.9) and n = 50: MCSD, SD, and

CP stand for Monte Carlo Standard Deviation, Posterior standard deviation, and Coverage probability of 95% HPD

intervals, respectively.

Fitted Model

Joint-Shared (JS) Separate (SP)

True Model
(n) Parameter Truth Bias MCSD SD CP Bias MCSD SD CP RE = MSESP

MSEJS

Shared

Continuous Process

(n=50)

β10: intercept 13.50 -0.013 0.410 0.412 0.94 -0.020 0.411 0.414 0.95 1.01
β11: time -0.56 0.001 0.027 0.028 0.95 0.001 0.028 0.030 0.95 1.09
β12: treatment -3.35 -0.005 0.426 0.409 0.96 0.001 0.429 0.415 0.95 1.02
β13: time×treatment -0.57 0.000 0.030 0.028 0.96 0.000 0.031 0.030 0.95 1.10

Ordinal Process
α2: threshold 0.45 0.032 0.074 0.079 0.92 0.029 0.074 0.079 0.92 0.97
β20: intercept 1.70 0.062 0.403 0.419 0.94 0.051 0.409 0.422 0.94 1.02
β21: time -0.27 -0.011 0.036 0.035 0.95 -0.008 0.038 0.036 0.96 1.05
β22: treatment 0.65 -0.014 0.418 0.405 0.96 -0.019 0.421 0.414 0.95 1.02
β23: time×treatment -0.10 0.000 0.033 0.032 0.95 0.000 0.035 0.035 0.95 1.17

Survival Process
β30: intercept -3.31 -0.107 0.435 0.440 0.95 -0.046 0.433 0.450 0.95 0.95
β31: treatment 0.37 0.021 0.401 0.403 0.94 0.014 0.413 0.416 0.95 1.06

Association Parameters & Variances
γ1: bi2 ∝ bi1 0.90 0.062 0.109 0.106 0.92 - - - - -
γ2: bi3 ∝ bi1 0.90 0.064 0.151 0.150 0.93 - - - - -
σ2
b1

: bi1 5.87 -0.036 1.348 1.364 0.96 0.026 1.349 1.382 0.96 1.00
σ2
b2

: bi2 4.75 - - - - 0.571 1.660 1.650 0.92 -
σ2
b3

: bi3 4.75 - - - - 0.264 2.303 2.417 0.95 -
σ2
e1 : error 7.40 0.043 0.445 0.466 0.95 0.038 0.450 0.472 0.94 1.02
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Table 24: Results when data were simulated under a shared random effects model (γ1 = γ2 = 0.9) and n = 100: MCSD, SD, and

CP stand for Monte Carlo Standard Deviation, Posterior standard deviation, and Coverage probability of 95% HPD

intervals, respectively.

Fitted Model

Joint-Shared (JS) Separate (SP)

True Model
(n) Parameter Truth Bias MCSD SD CP Bias MCSD SD CP RE = MSESP

MSEJS

Shared

Continuous Process

(n=100)

β10: intercept 13.50 -0.024 0.293 0.291 0.96 -0.028 0.293 0.293 0.96 1.00
β11: time -0.56 0.002 0.020 0.020 0.95 0.002 0.021 0.021 0.94 1.06
β12: treatment -3.35 -0.003 0.285 0.290 0.94 -0.005 0.285 0.292 0.94 1.00
β13: time×treatment -0.57 0.000 0.021 0.020 0.95 0.000 0.022 0.021 0.96 1.12

Ordinal Process
α2: threshold 0.45 0.014 0.054 0.055 0.94 0.012 0.054 0.055 0.94 0.98
β20: intercept 1.70 0.025 0.275 0.287 0.95 0.016 0.283 0.290 0.95 1.05
β21: time -0.27 -0.006 0.024 0.024 0.93 -0.004 0.026 0.025 0.94 1.15
β22: treatment 0.65 0.017 0.268 0.280 0.95 0.011 0.278 0.286 0.95 1.07
β23: time×treatment -0.10 -0.003 0.023 0.022 0.94 -0.002 0.025 0.024 0.95 1.17

Survival Process
β30: intercept -3.31 -0.062 0.318 0.299 0.95 -0.048 0.332 0.315 0.94 1.07
β31: treatment 0.37 0.006 0.270 0.276 0.94 -0.008 0.281 0.291 0.94 1.08

Association Parameters & Variances
γ1: bi2 ∝ bi1 0.90 0.030 0.074 0.071 0.93 - - - - -
γ2: bi3 ∝ bi1 0.90 0.029 0.099 0.099 0.93 - - - - -
σ2
b1

: bi1 5.87 0.021 0.957 0.951 0.96 0.041 0.958 0.958 0.96 1.00
σ2
b2

: bi2 4.75 - - - - 0.322 1.127 1.080 0.94 -
σ2
b3

: bi3 4.75 - - - - 0.230 1.670 1.631 0.95 -
σ2
e1 : error 7.40 0.030 0.327 0.329 0.94 0.029 0.331 0.333 0.95 1.03
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Table 25: Results when data were simulated under a shared random effects model (γ1 = γ2 = 0.6) and n = 50: MCSD, SD, and

CP stand for Monte Carlo Standard Deviation, Posterior standard deviation, and Coverage probability of 95% HPD

intervals, respectively.

Fitted Model

Joint-Shared (JS) Separate (SP)

True Model
(n) Parameter Truth Bias MCSD SD CP Bias MCSD SD CP RE = MSESP

MSEJS

Shared

Continuous Process

(n=50)

β10: intercept 13.50 -0.014 0.408 0.412 0.95 -0.020 0.412 0.415 0.95 1.02
β11: time -0.56 0.001 0.028 0.029 0.95 0.001 0.028 0.030 0.95 1.05
β12: treatment -3.35 -0.004 0.426 0.410 0.95 0.002 0.429 0.415 0.95 1.01
β13: time×treatment -0.57 0.000 0.030 0.029 0.96 0.000 0.031 0.030 0.95 1.06

Ordinal Process
α2: threshold 0.45 0.025 0.070 0.072 0.94 0.023 0.071 0.072 0.94 1.00
β20: intercept 1.70 0.052 0.304 0.316 0.94 0.047 0.310 0.319 0.94 1.03
β21: time -0.27 -0.009 0.031 0.031 0.94 -0.007 0.033 0.033 0.95 1.10
β22: treatment 0.65 -0.006 0.313 0.305 0.95 -0.006 0.325 0.312 0.94 1.08
β23: time×treatment -0.10 -0.001 0.031 0.030 0.94 -0.001 0.034 0.032 0.95 1.19

Survival Process
β30: intercept -3.31 -0.088 0.344 0.342 0.94 -0.049 0.334 0.345 0.95 0.90
β31: treatment 0.37 0.023 0.320 0.315 0.94 0.017 0.329 0.327 0.95 1.05

Association Parameters & Variances
γ1: bi2 ∝ bi1 0.60 0.037 0.072 0.074 0.92 - - - - -
γ2: bi3 ∝ bi1 0.60 0.050 0.128 0.127 0.93 - - - - -
σ2
b1

: bi1 5.87 -0.044 1.348 1.364 0.95 0.025 1.349 1.381 0.96 1.00
σ2
b2

: bi2 2.11 - - - - 0.249 0.706 0.733 0.93 -
σ2
b3

: bi3 2.11 - - - - 0.268 1.280 1.366 0.93 -
σ2
e1 : error 7.40 0.049 0.447 0.470 0.95 0.038 0.450 0.472 0.95 1.01
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Table 26: Results when data were simulated under a shared random effects model (γ1 = γ2 = 0.6) and n = 100: MCSD, SD, and

CP stand for Monte Carlo Standard Deviation, Posterior standard deviation, and Coverage probability of 95% HPD

intervals, respectively.

Fitted Model

Joint-Shared (JS) Separate (SP)

True Model
(n) Parameter Truth Bias MCSD SD CP Bias MCSD SD CP RE = MSESP

MSEJS

Shared

Continuous Process

(n=100)

β10: intercept 13.50 -0.027 0.292 0.291 0.96 -0.028 0.293 0.293 0.96 1.01
β11: time -0.56 0.002 0.020 0.020 0.95 0.002 0.021 0.021 0.94 1.03
β12: treatment -3.35 -0.003 0.287 0.291 0.95 -0.005 0.286 0.292 0.94 0.99
β13: time×treatment -0.57 0.000 0.021 0.020 0.95 0.000 0.022 0.021 0.96 1.09

Ordinal Process
α2: threshold 0.45 0.013 0.048 0.050 0.95 0.012 0.048 0.050 0.95 0.97
β20: intercept 1.70 0.031 0.210 0.218 0.94 0.025 0.215 0.222 0.94 1.04
β21: time -0.27 -0.006 0.022 0.022 0.94 -0.005 0.024 0.023 0.94 1.10
β22: treatment 0.65 0.014 0.212 0.213 0.95 0.011 0.212 0.216 0.96 1.01
β23: time×treatment -0.10 -0.002 0.022 0.021 0.95 -0.002 0.023 0.022 0.96 1.08

Survival Process
β30: intercept -3.31 -0.055 0.242 0.231 0.93 -0.043 0.247 0.238 0.94 1.02
β31: treatment 0.37 0.008 0.216 0.215 0.95 -0.003 0.224 0.226 0.95 1.07

Association Parameters & Variances
γ1: bi2 ∝ bi1 0.60 0.018 0.051 0.050 0.93 - - - - -
γ2: bi3 ∝ bi1 0.60 0.025 0.090 0.084 0.95 - - - - -
σ2
b1

: bi1 5.87 0.019 0.960 0.953 0.96 0.041 0.959 0.958 0.96 1.00
σ2
b2

: bi2 2.11 - - - - 0.133 0.471 0.485 0.94 -
σ2
b3

: bi3 2.11 - - - - 0.137 0.923 0.943 0.95 -
σ2
e1 : error 7.40 0.032 0.329 0.331 0.94 0.029 0.331 0.333 0.95 1.01
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Table 27: Results when data were simulated under a shared random effects model (γ1 = γ2 = −0.5) and n = 50: MCSD, SD,

and CP stand for Monte Carlo Standard Deviation, Posterior standard deviation, and Coverage probability of 95%

HPD intervals, respectively.

Fitted Model

Joint-Shared (JS) Separate (SP)

True Model
(n) Parameter Truth Bias MCSD SD CP Bias MCSD SD CP RE = MSESP

MSEJS

Shared

Continuous Process

(n=50)

β10: intercept 13.50 -0.017 0.414 0.414 0.95 -0.020 0.412 0.415 0.95 0.99
β11: time -0.56 0.001 0.027 0.029 0.96 0.001 0.028 0.030 0.95 1.07
β12: treatment -3.35 0.001 0.428 0.411 0.95 0.001 0.428 0.415 0.95 1.00
β13: time×treatment -0.57 0.000 0.031 0.029 0.95 0.000 0.031 0.030 0.95 1.03

Ordinal Process
α2: threshold 0.45 0.019 0.068 0.069 0.94 0.017 0.068 0.069 0.95 0.98
β20: intercept 1.70 0.057 0.286 0.285 0.95 0.039 0.291 0.289 0.95 1.01
β21: time -0.27 -0.009 0.032 0.030 0.95 -0.008 0.033 0.032 0.94 1.05
β22: treatment 0.65 -0.008 0.262 0.274 0.95 -0.007 0.267 0.280 0.96 1.04
β23: time×treatment -0.10 0.001 0.029 0.029 0.95 0.001 0.032 0.031 0.95 1.16

Survival Process
β30: intercept -3.31 -0.071 0.312 0.307 0.94 -0.058 0.316 0.317 0.94 1.01
β31: treatment 0.37 0.040 0.301 0.287 0.95 0.041 0.320 0.303 0.95 1.13

Association Parameters & Variances
γ1: bi2 ∝ bi1 -0.50 -0.025 0.065 0.066 0.94 - - - - -
γ2: bi3 ∝ bi1 -0.50 -0.036 0.124 0.119 0.94 - - - - -
σ2
b1

: bi1 5.87 -0.041 1.340 1.366 0.96 0.026 1.349 1.382 0.96 1.01
σ2
b2

: bi2 1.47 - - - - 0.143 0.508 0.517 0.94 -
σ2
b3

: bi3 1.47 - - - - 0.293 0.850 1.081 0.93 -
σ2
e1 : error 7.40 0.047 0.443 0.471 0.95 0.038 0.450 0.472 0.95 1.03
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Table 28: Results when data were simulated under a shared random effects model (γ1 = γ2 = −0.5) and n = 100: MCSD, SD,

and CP stand for Monte Carlo Standard Deviation, Posterior standard deviation, and Coverage probability of 95%

HPD intervals, respectively.

Fitted Model

Joint-Shared (JS) Separate (SP)

True Model
(n) Parameter Truth Bias MCSD SD CP Bias MCSD SD CP RE = MSESP

MSEJS

Shared

Continuous Process

(n=100)

β10: intercept 13.50 -0.028 0.293 0.292 0.95 -0.028 0.292 0.293 0.96 0.99
β11: time -0.56 0.002 0.020 0.020 0.94 0.002 0.021 0.021 0.94 1.03
β12: treatment -3.35 -0.011 0.285 0.291 0.95 -0.005 0.286 0.292 0.94 1.00
β13: time×treatment -0.57 0.001 0.021 0.020 0.94 0.000 0.022 0.021 0.96 1.07

Ordinal Process
α2: threshold 0.45 0.012 0.049 0.049 0.95 0.011 0.049 0.049 0.95 0.99
β20: intercept 1.70 0.039 0.207 0.200 0.94 0.028 0.206 0.201 0.94 0.98
β21: time -0.27 -0.004 0.022 0.021 0.94 -0.003 0.023 0.022 0.95 1.01
β22: treatment 0.65 0.014 0.188 0.193 0.95 0.012 0.189 0.195 0.95 1.02
β23: time×treatment -0.10 -0.001 0.020 0.020 0.94 -0.001 0.021 0.021 0.94 1.08

Survival Process
β30: intercept -3.31 -0.036 0.214 0.209 0.95 -0.026 0.218 0.215 0.95 1.02
β31: treatment 0.37 0.023 0.190 0.195 0.94 0.013 0.202 0.206 0.94 1.11

Association Parameters & Variances
γ1: bi2 ∝ bi1 -0.50 -0.014 0.044 0.045 0.94 - - - - -
γ2: bi3 ∝ bi1 -0.50 -0.018 0.082 0.080 0.95 - - - - -
σ2
b1

: bi1 5.87 0.010 0.959 0.951 0.96 0.041 0.959 0.959 0.96 1.00
σ2
b2

: bi2 1.47 - - - - 0.086 0.331 0.349 0.95 -
σ2
b3

: bi3 1.47 - - - - 0.128 0.694 0.741 0.94 -
σ2
e1 : error 7.40 0.036 0.332 0.332 0.95 0.029 0.331 0.333 0.95 0.99
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APPENDIX D

CONVERGENCE DIAGNOSTIC PLOTS
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Marginal posterior densities (upper panel) and trace plots (lower panel) of β1: plots in the left,
middle, and right panels are from fitting, joint correlated random effects, joint shared random
effects, and separate models to Ugandan diabetes data, respectively (results in Table 6).

Figure 5: Marginal posterior densities and trace plots of β1 using joint and separate models
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Marginal posterior densities (upper panel) and trace plots (lower panel) of β2: plots in the left,
middle, and right panels are from fitting, joint correlated random effects, joint shared random effects,
and separate models to Ugandan diabetes data, respectively (results in Table 6).

Figure 6: Marginal posterior densities and trace plots of β2 using joint and separate models
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Autcorrelation function plots of parameter estimates using joint and separate models for Ugandan
diabetes data (results in Table 6): plots in the left, middle, and right panels are from fitting, joint
correlated random effects, joint shared random effects, and separate models, respectively.

Figure 7: Autcorrelation function plots of selected parameter estimates using joint and

separate models
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Marginal posterior densities (upper panel) and trace plots (lower panel) of β1: plots in the left,
middle, and right panels are from fitting, joint correlated random effects, joint shared random effects,
and separate models to Ugandan Type 2 diabetes data, respectively (results in Table 22).

Figure 8: Marginal posterior densities and trace plots of β1 using joint and separate models

for Ugandan Type 2 diabetes data
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Marginal posterior densities (upper panel) and trace plots (lower panel) of β2: plots in the left,
middle, and right panels are from fitting, joint correlated random effects, joint shared random effects,
and separate models to Ugandan Type 2 diabetes data, respectively (results in Table 22).

Figure 9: Marginal posterior densities and trace plots of β2 using joint and separate models

for Ugandan Type 2 diabetes data
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Autcorrelation function plots of parameter estimates using joint and separate models for Ugandan
Type 2 diabetes data (results in Table 22): plots in the left, middle, and right panels are from fitting,
joint correlated random effects, joint shared random effects, and separate models, respectively.

Figure 10: Autcorrelation function plots of selected parameter estimates using joint and

separate models for Ugandan Type 2 diabetes data
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Marginal posterior densities (upper panel) and trace plots (lower panel) of β1 using joint and separate
models for Ugandan Type 2 diabetes data (results in Table 17): plots in the left, middle, and right
panels are from fitting, joint correlated random effects, joint shared random effects, and separate models,
respectively.

Figure 11: Marginal posterior densities and trace plots of β1 using joint and separate models

(Normal blood glucose 70− 180 mg/dl)

127



Marginal posterior densities (upper panel) and trace plots (lower panel) of β2 using joint and separate
models for Ugandan Type 2 diabetes data (results in Table 17): plots in the left, middle, and right
panels are from fitting, joint correlated random effects, joint shared random effects, and separate models,
respectively.

Figure 12: Marginal posterior densities and trace plots of β2 using joint and separate models

(Normal blood glucose 70− 180 mg/dl)
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Marginal posterior densities (upper panel) and trace plots (lower panel) of β3 using joint and separate
models for Ugandan Type 2 diabetes data (results in Table 17): plots in the left, middle, and right
panels are from fitting, joint correlated random effects, joint shared random effects, and separate models,
respectively.

Figure 13: Marginal posterior densities and trace plots of β3 using joint and separate models

(Normal blood glucose 70− 180 mg/dl)
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Autcorrelation function plots of parameter estimates using joint and separate models for Ugandan
Type 2 diabetes data (results in Table 17): plots in the left, middle, and right panels are from fitting,
joint correlated random effects, joint shared random effects, and separate models, respectively.

Figure 14: Autcorrelation function plots of selected parameter estimates using joint and

separate models (Normal blood glucose 70− 180 mg/dl)
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Marginal posterior densities (upper panel) and trace plots (lower panel) of β1 using joint and separate
models for Ugandan Type 2 diabetes data (results in Table 18): plots in the left, middle, and right
panels are from fitting, joint correlated random effects, joint shared random effects, and separate models,
respectively.

Figure 15: Marginal posterior densities and trace plots of β1 using joint and separate models

(Normal blood glucose 70− 130 mg/dl)
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Marginal posterior densities (upper panel) and trace plots (lower panel) of β2 using joint and separate
models for Ugandan Type 2 diabetes data (results in Table 18): plots in the left, middle, and right
panels are from fitting, joint correlated random effects, joint shared random effects, and separate models,
respectively.

Figure 16: Marginal posterior densities and trace plots of β2 using joint and separate models

(Normal blood glucose 70− 130 mg/dl)
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Marginal posterior densities (upper panel) and trace plots (lower panel) of β3 using joint and separate
models for Ugandan Type 2 diabetes data (results in Table 18): plots in the left, middle, and right
panels are from fitting, joint correlated random effects, joint shared random effects, and separate models,
respectively.

Figure 17: Marginal posterior densities and trace plots of β3 using joint and separate models

(Normal blood glucose 70− 130 mg/dl)
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Autcorrelation function plots of parameter estimates using joint and separate models for Ugandan
Type 2 diabetes data (results in Table 18): plots in the left, middle, and right panels are from fitting,
joint correlated random effects, joint shared random effects, and separate models, respectively.

Figure 18: Autcorrelation function plots of selected parameter estimates using joint and

separate models (Normal blood glucose 70− 130 mg/dl)
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APPENDIX E

CODES USED TO FIT THE JOINT AND SEPARATE MODELS TO

DIABETES DATA IN CHAPTER 3

The following codes were used to fit the joint and separate models to diabetes data (Results

in Table 6)

# #####################################################

##### Model 3.1: Joint correlated  random effects #####

# #####################################################

sink("diab -model_4-6-13.txt") ## save model to file

cat("

###################################

# OpenBUGS program ###

###################################

model {# begin model

for (j in 1:Npat){ # loop over subjects (random effects)

U[j,1:2]~dmnorm(U0[],tau[,])

U1[j]<-U[j,1]

U2[j]<-U[j,2]

}

## Means for the continuous and ordinal variables

for (i in 1:Nobs){ # begin loop over observations

Z[i]<-sqrt(bglucse[i])

Z[i]~dnorm(mu1[i],tauz)

time[i]<-(month[i]-mean(month []))/(sd(month []))

mu1[i]<-beta1 [1]+ beta1 [2]*time[i]+beta1 [3]*biguan[i]+ beta1 [4]*sulphony[i]

+beta1 [5]*(age[i]-mean(age[]))+beta1 [6]*male[i]+beta1 [7]*sulphony[i]*time[i]

+beta1 [8]*biguan[i]*time[i]+U1[patient[i]]

mu2[i]<-beta2 [1]*time[i]+beta2 [2]*biguan[i]+ beta2 [3]*sulphony[i]

+beta2 [4]*(age[i]-mean(age[]))+beta2 [5]*male[i]+beta2 [6]*sulphony[i]*time[i]

+beta2 [7]*biguan[i]*time[i]+U2[patient[i]]

## cumulative logistic probabilities for the ordinal variable

logit(Q[i, 1]) <-alpha[1]-mu2[i]

p[i,1] <-Q[i,1]

for (k in 2:4) {

logit(Q[i,k])<-alpha[k]-mu2[i]

p[i,k]<-Q[i,k] - Q[i,k-1]
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}

p[i, 5]<-1- Q[i, 4]

ursugar[i]~dcat(p[i, 1:5])

}# end loop over observations

#priors for the threshold parameters for the ordinal outcome

alpha [1]~dnorm(0, 1.0E-06) T(, alpha [2])

alpha [2]~dnorm(0, 1.0E-06) T(alpha[1], alpha [3])

alpha [3]~dnorm(0, 1.0E-06) T(alpha[2], alpha [4])

alpha [4]~dnorm(0, 1.0E-06) T(alpha[3], )

#construct variance for the error

sigmaz <-1/tauz

# construct variance -convariance matrix for the random effects

sigma1 [1:2 ,1:2] <-inverse(tau[,])

sigma11 <-sigma1 [1,1]

sigma22 <-sigma1 [2,2]

sigma12 <-sigma1 [1,2]

cor1 <-sigma12/(sqrt(sigma11*sigma22))

#prior for error precision

tauz~dgamma (0.001 ,0.001)

#prior for the precision matrix for the random effects

tau [1:2 ,1:2]~dwish(R1[,],3)

#prior for the regression coefficients

beta1 [1:8]~dmnorm(betamu1 [],Sigma1 [,])# continuous outcome

beta2 [1:7]~dmnorm(betamu2 [],Sigma2 [,])# ordinal outcome

}# end model

",fill=TRUE)

sink()

# ##################################

# R program ###

# ##################################

#Bundle data

betamu1 <-c(0,0,0,0,0,0,0,0)

betamu2 <-c(0,0,0,0,0,0,0)

Sigma1 <-diag (0.01, nrow=8,ncol =8)

Sigma2 <-diag (0.01, nrow=7,ncol =7)

U0<-c(0,0)

R1<-diag(1,nrow=2, ncol =2)

# Place data in a list to be read by OpenBUGS

diab.data <-list(Nobs =1363 ,

Npat =321,

U0=U0,

R1=R1,

betamu1=betamu1 ,

betamu2=betamu2 ,

Sigma1=Sigma1 ,

Sigma2=Sigma2 ,

bglucse=data12[,1],

ursugar=data12[,2],

month=data12[,3],

sulphony=data12[,4],

biguan=data12[,5],

age=data12[,6],

male=data12[,8],

patient=data12 [,9])

# Initial values for MCMC sampling

inits <-function (){list(

beta1=c(15.905 , -0.024 , -0.2362 , -0.3229 , -0.00015 , -0.6978 ,0.0025 ,0.01017),

tauz=1,

alpha=c( -1.1512 , -0.8419 , -0.2657 ,1.260),
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beta2=c( -0.009 , -0.6985 ,0.0145 , -0.0052 ,0.7088 , -0.0088 ,0.0128))

}

# Parameters  to estimate

params <-c("alpha","beta1","beta2","cor1","sigma11","sigma22","sigmaz")

# Start MCMC Sampling

outdiab08v1 <- BRugsFit(data=diab.data ,

inits=inits ,

parameters=params ,

modelFile="diab -model_4-6-13.txt",

numChains=2,

nBurnin =5000,

nIter =30000 ,

nThin=1,

coda=FALSE ,

DIC=TRUE ,

digits=5,

BRugsVerbose=getOption("BRugsVerbose"))

# #####################################################

###### Model 3.2: Joint shared random effects ######

# #####################################################

sink("diab -model_4-7-13v2.txt")

cat("

###################################

# OpenBUGS program ###

###################################

model {# begin model

# random effects

for (j in 1:Npat) {U[j]~dnorm (0.0,tau)}

##Means for the continuous and ordinal variables

for (i in 1:Nobs){# begin loop over observations

Z[i]<-sqrt(bglucse[i])

Z[i]~dnorm(mu1[i], tauz)

time[i]<-(month[i]-mean(month []))/(sd(month []))

mu1[i]<-beta1 [1] beta1 [2]*time[i]+beta1 [3]*biguan[i]+ beta1 [4]*sulphony[i]

+beta1 [5]*(age[i]-mean(age[]))+beta1 [6]*male[i]+beta1 [7]*sulphony[i]*time[i]

+beta1 [8]*biguan[i]*time[i]+U[patient[i]]

mu2[i]<-beta2 [1]*time[i]+beta2 [2]*biguan[i]+ beta2 [3]*sulphony[i]

+beta2 [4]*(age[i]-mean(age[]))+beta2 [5]*male[i]+beta2 [6]*sulphony[i]*time[i]

+beta2 [7]*biguan[i]*time[i]+r*(U[patient[i]])

## cumulative logistic probabilities for the ordinal outcome

logit(Q[i, 1]) <-alpha[1]-mu2[i]

p[i,1] <-Q[i,1]

for (k in 2:4) {

logit(Q[i,k])<-alpha[k]-mu2[i]

p[i,k]<-Q[i,k]-Q[i,k-1]

}

p[i, 5]<-1-Q[i, 4]

ursugar[i]~dcat(p[i, 1:5])

}# end loop over observations

# prior for the threshold parameters for the ordinal outcome

alpha [1]~dnorm(0, 1.0E-06) T(, alpha [2])

alpha [2]~dnorm(0, 1.0E-06) T(alpha[1], alpha [3])

alpha [3]~dnorm(0, 1.0E-06) T(alpha[2], alpha [4])

alpha [4]~dnorm(0, 1.0E-06) T(alpha[3], )

# construct error variance and random effects variance

sigmaz <-1/tauz
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sigma <-1/tau

# priors for precision

tau~dgamma (0.001 ,0.001)

tauz~dgamma (0.001 ,0.001)

# priors for regresion coefficients

beta1 [1:8]~dmnorm(betamu1[],Sigma1 [,])

beta2 [1:7]~dmnorm(betamu2[],Sigma2 [,])

# prior for the association parameter under shared random effects

r~dnorm (0 ,0.1)

}# end model

",fill=TRUE)

sink()

# ##################################

# R program ###

# ##################################

# Bundle data

betamu1 <-c(0,0,0,0,0,0,0,0)

betamu2 <-c(0,0,0,0,0,0,0)

Sigma1 <-diag (0.01, nrow=8,ncol =8)

Sigma2 <-diag (0.01, nrow=7,ncol =7)

#Place data in a list to be read by OpenBUGS

diab.data <-list(Nobs =1363 ,

Npat =321,

betamu1=betamu1 ,

betamu2=betamu2 ,

Sigma1=Sigma1 ,

Sigma2=Sigma2 ,

bglucse=data12[,1],

ursugar=data12[,2],

month=data12[,3],

sulphony=data12[,4],

biguan=data12[,5],

age=data12[,6],

male=data12[,8],

patient=data12 [,9])

# Initial values for MCMC sampling

inits <-function (){list(

beta1=c(15.905 , -0.024 , -0.2362 , -0.3229 , -0.00015 , -0.6978 ,0.0025 ,0.01017),

tauz=1,

tau=1,

r=0.0,

alpha=c( -1.1512 , -0.8419 , -0.2657 ,1.260),

beta2=c( -0.009 , -0.6985 ,0.0145 , -0.0052 ,0.7088 , -0.0088 ,0.0128))

}

# Parameters  to estimate

params <- c("alpha","beta1","beta2","r","sigma","sigmaz")

# Start MCMC Sampling

outdiab08v3 <- BRugsFit(data=diab.data ,

inits=inits ,

parameters=params ,

modelFile="diab -model_4-6-13v2.txt",

numChains=2,

nBurnin =5000,

nIter =30000 ,

nThin=1,

coda=FALSE ,

DIC=TRUE ,

digits=5,

BRugsVerbose=getOption("BRugsVerbose"))
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# #####################################################

##### Model 3.3: Separate models ######

# #####################################################

sink("diab -model_4-7-13v3.txt")

cat("

###################################

# OpenBUGS program ###

###################################

model {# begin model

for (j in 1:Npat) {# loop over subjects (random effects)

U1[j]~dnorm (0.0, tau1)

U2[j]~dnorm (0.0, tau2)

}

## Means for the continuous and ordinal variables

for (i in 1:Nobs){# begin loop over observations

Z[i]<-sqrt(bglucse[i])

Z[i]~dnorm(mu1[i], tauz)

time[i]<-(month[i]-mean(month []))/(sd(month []))

mu1[i]<-beta1 [1]+ beta1 [2]*time[i]+beta1 [3]*biguan[i]+ beta1 [4]*sulphony[i]

+beta1 [5]*(age[i]-mean(age[]))+beta1 [6]*male[i]+beta1 [7]*sulphony[i]*time[i]

+beta1 [8]*biguan[i]*time[i]+U1[patient[i]]

mu2[i]<-beta2 [1]*time[i]+beta2 [2]*biguan[i]+ beta2 [3]*sulphony[i]

+beta2 [4]*(age[i]-mean(age[]))+beta2 [5]*male[i]+beta2 [6]*sulphony[i]*time[i]

+beta2 [7]*biguan[i]*time[i]+U2[patient[i]]

## cumulative logistic probabilities for the ordinal outcome

logit(Q[i, 1]) <-alpha[1]-mu2[i]

p[i,1] <-Q[i,1]

for (k in 2:4) {

logit(Q[i,k])<-alpha[k]-mu2[i]

p[i,k]<-Q[i,k]-Q[i,k-1]

}

p[i, 5]<-1-Q[i, 4]

ursugar[i]~dcat(p[i, 1:5])

}# end loop over observations

# prior for the threshold parameters for the ordinal outcome

alpha [1]~dnorm(0, 1.0E-06) T(, alpha [2])

alpha [2]~dnorm(0, 1.0E-06) T(alpha[1], alpha [3])

alpha [3]~dnorm(0, 1.0E-06) T(alpha[2], alpha [4])

alpha [4]~dnorm(0, 1.0E-06) T(alpha[3], )

# construct error variance and random effects variances

sigmaz <-1/tauz

sigma1 <-1/tau1

sigma2 <-1/tau2

# priors for precisions

tauz~dgamma (0.001 ,0.001)

tau1~dgamma (0.001 ,0.001)

tau2~dgamma (0.001 ,0.001)

# priors for regresion coefficients

beta1 [1:8]~dmnorm(betamu1[],Sigma1 [,])

beta2 [1:7]~dmnorm(betamu2[],Sigma2 [,])

} #end model

",fill=TRUE)

sink()

# ##################################

# R program ###

139



# ##################################

# Bundle data

betamu1 <-c(0,0,0,0,0,0,0,0)

betamu2 <-c(0,0,0,0,0,0,0)

Sigma1 <-diag (0.01, nrow=8,ncol =8)

Sigma2 <-diag (0.01, nrow=7,ncol =7)

# Place data in a list to be read by OpenBUGS

diab.data <-list(Nobs =1363 ,

Npat =321,

betamu1=betamu1 ,

betamu2=betamu2 ,

Sigma1=Sigma1 ,

Sigma2=Sigma2 ,

bglucse=data12[,1],

ursugar=data12[,2],

month=data12[,3],

sulphony=data12[,4],

biguan=data12[,5],

age=data12[,6],

male=data12[,8],

patient=data12 [,9])

# Initial values for MCMC sampling

inits <-function (){list(

beta1=c(15.905 , -0.024 , -0.2362 , -0.3229 , -0.00015 , -0.6978 ,0.0025 ,0.01017),

tauz=1,

tau1=1,

tau2=1,

alpha=c( -1.1512 , -0.8419 , -0.2657 ,1.260),

beta2=c( -0.009 , -0.6985 ,0.0145 , -0.0052 ,0.7088 , -0.0088 ,0.0128))

}

# Parameters  to estimate

params <- c("alpha","beta1","beta2","sigma1","sigma2","sigmaz")

# Start MCMC Sampling

outdiab08v4 <- BRugsFit(data=diab.data ,

inits=inits ,

parameters=params ,

modelFile="diab -model_4-6-13v3.txt",

numChains=2,

nBurnin =5000,

nIter =30000 ,

nThin=1,

coda=FALSE ,

DIC=TRUE ,

digits=5,

BRugsVerbose=getOption("BRugsVerbose"))
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APPENDIX F

CODES USED TO FIT THE JOINT AND SEPARATE MODELS TO

DIABETES DATA IN CHAPTER 4

The following codes were used to fit the joint and separate models to diabetes data (Results
in Table 17)

long.data ## Longitudinal  data

surv.data ## Survival data

# ###############################################

## Generating  initial values for MCMC sampling #

# ################################################

# Continuous  outcome

fit1 <-lme(sqrt(ubp)~month + biguan + sulphony + month*biguan + month*sulphony

+ mage + male ,data=long.data ,method="ML",random=~1| patient)

b1 <- unlist(fit1$coef [1])

# Ordinal outcome

fit2 < vglm(bmi_grp2~month + biguan + sulphony + month*biguan + month*sulphony

+ mage + male ,family=cumulative(parallel=TRUE),data=long.data)

b2 <- coef(fit2 , matrix=F)

# Survival outcome

temp <-ifelse(is.na(surv.data$surt ),surv.data$ cens2 ,surv.data$surt)

these <- temp >0

test.fit3 <-survreg(Surv(temp ,surv.data$cens2 ==0)~surv.data$biguan + surv.data$sulphony

+ surv.data$mage + surv.data$male ,subset=these ,dist="weibull")

b3<- -as.vector(test.fit3$coefficients)/test.fit3$scale

# #####################################################

###### Model 4.1: Joint correlated  random effects #####

# #####################################################

sink("diab -model_4-6-14.txt") # Save the model to file in your working directory

cat("

###################################

# OpenBUGS program ###

###################################

model { # begin model

for (i in 1:Nobs){ #Loop over observations to handle unbalanced data

Z[i]<-sqrt(ubp[i])## transform systolic blood pressure

Z[i]~dnorm(mu1[i], tauz)

time[i]<-(month[i]-mean(month []))/(sd(month [])) ## standardize time

mu1[i]<-beta1 [1]+ beta1 [2]*time[i]+beta1 [3]*Biguan[i]+ beta1 [4]*Sulphony[i]

+beta1 [5]*(age[i]-mean(age[]))+beta1 [6]*male[i]+beta1 [7]*Biguan[i]*time[i]
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+beta1 [8]*Sulphony[i]*time[i]+U1[patient[i]]

mu2[i]<-beta2 [1]*time[i]+beta2 [2]*Biguan[i]+ beta2 [3]*Sulphony[i]

+beta2 [4]*(age[i]-mean(age[]))+beta2 [5]*male[i]+beta2 [6]*Biguan[i]*time[i]

+beta2 [7]*Sulphony[i]*time[i]+U2[patient[i]]

## Cumulative logistic probabilities for the ordinal outcome

logit(Q[i, 1]) <-alpha[1]-mu2[i]

p[i,1] <-Q[i,1]

for (k in 2:3){

logit(Q[i,k]) <- alpha[k]-mu2[i]

p[i,k]<-Q[i,k]-Q[i,k-1]

}

p[i, 4]<-1- Q[i, 3]

bmi_grp2[i]~dcat(p[i, 1:4])

} #end loop over observations

for (j in 1:Npat) { # begin loop over subjects/patients

# Survival Model

log(mut[j])<-beta3 [1]+ beta3 [2]*biguan[j]+ beta3 [3]*sulphony[j]

+beta3 [4]*(mage[j]-mean(mage []))+beta3 [5]*malet[j]+U3[j]

surt[j]~dweib(lamda ,mut[j])C(cens[j],)

## Random effects

U[j,1:3]~dmnorm(U0[],tau[,])

U1[j]<-U[j,1]

U2[j]<-U[j,2]

U3[j]<-U[j,3]

} # end loop over subjects/patients

## Prior for the threshold parameters for the ordinal outcome

alpha [1]~dnorm(0, 1.0E-06) T(, alpha [2])

alpha [2]~dnorm(0, 1.0E-06) T(alpha[1], alpha [3])

alpha [3]~dnorm(0, 1.0E-06) T(alpha[2], )

## Prior for the shape parameter for the Weibull

lamda <-1 ## exponetial

lamda~dgamma (.1 ,.1) ## Weibull

## construct error variance

sigmaz <-1/tauz

## prior for error precision

tauz~dgamma (1.0, 1.0)

## construct variance -covariance matrix for random effects

sigma1 [1:3 ,1:3] <-inverse(tau[,])

sigma11 <-sigma1 [1,1]

sigma22 <-sigma1 [2,2]

sigma33 <-sigma1 [3,3]

sigma12 <-sigma1 [1,2]

sigma13 <-sigma1 [1,3]

sigma23 <-sigma1 [2,3]

cor12 <-sigma12/(sqrt(sigma11*sigma22))

cor13 <-sigma13/(sqrt(sigma11*sigma33))

cor23 <-sigma23/(sqrt(sigma22*sigma33))

## prior for precision of random effects

tau [1:3 ,1:3]~dwish(R1[,], 4)

## Priors for regression coefficients (Betas)

beta1 [1:8]~dmnorm(betamu1[],Sigma1 [,])# continuous outcome

beta2 [1:7]~dmnorm(betamu2[],Sigma2 [,])# ordinal outcome

beta3 [1:5]~dmnorm(betamu3[],Sigma3 [,])# survival outcome
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} # end model

",fill=TRUE)

sink()

# ##################################

# R program ###

# ##################################

## Bundle data

betamu1 <-c(0,0,0,0,0,0,0,0)

betamu2 <-c(0,0,0,0,0,0,0)

betamu3 <-c(0,0,0,0,0)

Sigma1 <-diag (0.01, nrow=8,ncol =8)

Sigma2 <-diag (0.01, nrow=7,ncol =7)

Sigma3 <-diag (0.01, nrow=5,ncol =5)

U0<-c(0,0,0)

R1<-diag(1,nrow=3,ncol =3)

# Place data in a list to be read by OpenBUGS

diab.data <-list(Nobs =1225 ,

Npat =500,

U0=U0,

R1=R1,

betamu1=betamu1 ,

betamu2=betamu2 ,

betamu3=betamu3 ,

Sigma1=Sigma1 ,

Sigma2=Sigma2 ,

Sigma3=Sigma3 ,

ubp=long.data$ubp ,

bmi_grp2=long.data$bmi_grp2 ,

month=long.data$month ,

Sulphony=long.data$sulphony ,

Biguan=long.data$biguan ,

age=long.data$mage ,

male=long.data$male ,

patient=long.data$patient ,

surt=surv.data$surt ,

cens=surv.data$cens2 ,

biguan=surv.data$biguan ,

sulphony=surv.data$sulphony ,

malet=surv.data$male ,

mage=surv.data$mage)

# Initial values for MCMC sampling

inits <-function (){list(

beta1=c(b1[1],b1[2],b1[3],b1[4],b1[5],b1[6],b1[7],b1[8]),

tauz=1,

tau=diag (3),

U=matrix(rnorm (500*3,0,0.5) ,500,3),

alpha=c(b2[1],b2[2],b2[3]),

beta2=c(-b2[4],-b2[5],-b2[6],-b2[7],-b2[8],-b2[9],-b2[10]) ,

beta3=c(b3[1],b3[2],b3[3],b3[4],b3[5]),

surt=ifelse(is.na(surv.data$surt),runif (500, surv.data$cens2 ,surv.data$cens2

+10),NA))

}

# Parameters  to estimate

params <-c("alpha","beta1","beta2","beta3","cor12","cor13","cor23","sigma11",

"sigma22","sigma33","sigmaz")

# Start MCMC Sampling

long.surv.out <-BRugsFit(data=diab.data ,

inits=inits ,

parameters=params ,

modelFile="diab -model_4-6-14.txt",

numChains=2,

nBurnin =5000,

nIter =30000 ,
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nThin=1,

coda=FALSE ,

DIC=TRUE ,

digits=5,

BRugsVerbose=getOption("BRugsVerbose"))

print(long.surv.out)

# #####################################################

###### Model 4.2: Joint shared random effects ######

# #####################################################

sink("diab -model_4-6-14v2.txt")

cat("

###################################

# OpenBUGS program ###

###################################

model { # begin model

for (i in 1:Nobs){ # begin loop over observations

Z[i]<-sqrt(ubp[i])

Z[i]~dnorm(mu1[i], tauz)

time[i]<-(month[i]-mean(month []))/(sd(month []))

mu1[i]<-beta1 [1]+ beta1 [2]*time[i]+beta1 [3]*Biguan[i]+ beta1 [4]*Sulphony[i]

+beta1 [5]*(age[i]-mean(age[]))+beta1 [6]*male[i]+beta1 [7]*Biguan[i]*time[i]

+beta1 [8]*Sulphony[i]*time[i]+U1[patient[i]]

mu2[i]<-beta2 [1]*time[i]+beta2 [2]*Biguan[i]+ beta2 [3]*Sulphony[i]

+beta2 [4]*(age[i]-mean(age[]))+beta2 [5]*male[i]+beta2 [6]*Biguan[i]*time[i]

+beta2 [7]*Sulphony[i]*time[i]+r1*(U1[patient[i]])

## cumulative logistic probabilities for the ordinal outcome

logit(Q[i, 1]) <-alpha[1]-mu2[i]

p[i,1] <-Q[i,1]

for (k in 2:3) {

logit(Q[i,k])<-alpha[k]-mu2[i]

p[i,k]<-Q[i,k]-Q[i,k-1]

}

p[i, 4]<-1-Q[i, 3]

bmi_grp2[i]~dcat(p[i, 1:4])

} # end loop over observations

for (j in 1:Npat) { # begin loop over subjects

# Survival Model

log(mut[j])<-beta3 [1]+ beta3 [2]*biguan[j]+ beta3 [3]*sulphony[j]

+beta3 [4]*(mage[j]-mean(mage []))+beta3 [5]*malet[j]+r2*U1[j]

surt[j]~dweib(lamda ,mut[j])C(cens[j],)

## Random effects

U1[j]~ dnorm (0.0,tau)

} # end loop over subjects

## Prior for the threshold parameters for the ordinal outcome

alpha [1]~dnorm(0, 1.0E-06) T(, alpha [2])

alpha [2]~dnorm(0, 1.0E-06) T(alpha[1], alpha [3])

alpha [3]~dnorm(0, 1.0E-06) T(alpha[2], )

## Prior for the shape parameter for the Weibull

lamda <-1

#lamda~dgamma (.1 ,.1)

## construct error variance

sigmaz <-1/tauz
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## prior for error precision

tauz~dgamma (1,1)

## construct variance for random effect

sigma <-1/tau

## prior (half -Cauchy(s=25)) for standard deviation of random effect

numertau~dnorm (0,1)

denomtau~dnorm (0 ,0.0016)

tau <-pow(numertau/denomtau ,2)

## Priors for regression coefficients (Betas)

beta1 [1:8]~dmnorm(betamu1[],Sigma1 [,])

beta2 [1:7]~dmnorm(betamu2[],Sigma2 [,])

beta3 [1:5]~dmnorm(betamu3[],Sigma3 [,])

# prior for the association parameters (gamma)

r1~dnorm (0.0 ,0.01)

r2~dnorm (0.0 ,0.01)

} # end model

",fill=TRUE)

sink()

# ##################################

# R program ###

# ##################################

# Bundle data

betamu1 <-c(0,0,0,0,0,0,0,0)

betamu2 <-c(0,0,0,0,0,0,0)

betamu3 <-c(0,0,0,0,0)

Sigma1 <-diag (0.01, nrow=8,ncol =8)

Sigma2 <-diag (0.01, nrow=7,ncol =7)

Sigma3 <-diag (0.01, nrow=5,ncol =5)

# Place data in a list to be read by OpenBUGS

diab.data <-list(Nobs =1225 ,

Npat =500,

betamu1=betamu1 ,

betamu2=betamu2 ,

betamu3=betamu3 ,

Sigma1=Sigma1 ,

Sigma2=Sigma2 ,

Sigma3=Sigma3 ,

ubp=long.data$ubp ,

bmi_grp2=long.data$bmi_grp2 ,

month=long.data$month ,

Sulphony=long.data$sulphony ,

Biguan=long.data$biguan ,

age=long.data$mage ,

male=long.data$male ,

patient=long.data$patient ,

surt=surv.data$surt ,

cens=surv.data$cens2 ,

biguan=surv.data$biguan ,

sulphony=surv.data$sulphony ,

malet=surv.data$male ,

mage=surv.data$mage)

# Initial values for MCMC sampling

inits <-function (){list(

beta1=c(b1[1],b1[2],b1[3],b1[4],b1[5],b1[6],b1[7],b1[8]),

tauz=1,

numertau=rnorm (1),

denomtau=rnorm (1),

r1=rnorm (1,0,.1),

r2=rnorm (1,0,.1),
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U1=rnorm (500 ,0 ,0.5),

alpha = c(b2[1], b2[2], b2[3]),

beta2=c(-b2[4],-b2[5],-b2[6],-b2[7],-b2[8],-b2[9],-b2[10]) ,

beta3=c(b3[1],b3[2],b3[3],b3[4],b3[5]),

surt=ifelse(is.na(surv.data$surt),runif (500, surv.data$cens2 ,surv.data$cens2

+10),NA))

}

# Parameters  to estimate

params <-c("alpha","beta1","beta2","beta3","r1","r2","sigma","sigmaz")

# Start MCMC Sampling

long.surv.out2 <-BRugsFit(data=diab.data ,

inits=inits ,

parameters=params ,

modelFile="diab -model_4-6-14v2.txt",

numChains=2,

nBurnin =5000,

nIter =30000 ,

nThin=1,

coda=FALSE ,

DIC=TRUE ,

digits=5,

BRugsVerbose=getOption("BRugsVerbose"))

print(long.surv.out2)

# #####################################################

##### Model 4.3: Separate models ######

# #####################################################

sink("diab -model_4-6-14v3.txt")

cat("

###################################

# OpenBUGS program ###

###################################

model { # begin model

for (i in 1:Nobs){ # begin loop over observations

Z[i]<-sqrt(ubp[i])

Z[i]~dnorm(mu1[i],tauz)

time[i]<-(month[i]-mean(month []))/(sd(month []))

mu1[i]<-beta1 [1]+ beta1 [2]*time[i]+beta1 [3]*Biguan[i]+ beta1 [4]*Sulphony[i]

+beta1 [5]*(age[i]-mean(age[]))+beta1 [6]*male[i]+beta1 [7]*Biguan[i]*time[i]

+beta1 [8]*Sulphony[i]*time[i]+U1[patient[i]]

mu2[i]<-beta2 [1]*time[i]+beta2 [2]*Biguan[i]+ beta2 [3]*Sulphony[i]

+beta2 [4]*(age[i]-mean(age[]))+beta2 [5]*male[i]+beta2 [6]*Biguan[i]*time[i]

+beta2 [7]*Sulphony[i]*time[i]+U2[patient[i]]

## Cumulative logistic probabilities for ordinal outcome

logit(Q[i, 1]) <-alpha[1]-mu2[i]

p[i,1] <-Q[i,1]

for (k in 2:3) {

logit(Q[i,k])<-alpha[k]-mu2[i]

p[i,k]<-Q[i,k] - Q[i,k-1]

}

p[i, 4]<-1- Q[i, 3]

bmi_grp2[i]~dcat(p[i, 1:4])

} # end loop over observations

for (j in 1:Npat) { # begin loop over subjects

# Survival Model

log(mut[j])<- beta3 [1]+ beta3 [2]*biguan[j]+ beta3 [3]*sulphony[j]

+beta3 [4]*(mage[j]-mean(mage []))+beta3 [5]*malet[j]+U3[j]

surt[j]~dweib(lamda ,mut[j])C(cens[j],)
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## Random effects

U1[j]~dnorm (0.0, tau1)

U2[j]~dnorm (0.0, tau2)

U3[j]~dnorm (0.0, tau3)

} # end loop over subjects

## Prior for the threshold parameters for the ordinal outcome

alpha [1]~dnorm(0, 1.0E-06) T(, alpha [2])

alpha [2]~dnorm(0, 1.0E-06) T(alpha[1], alpha [3])

alpha [3]~dnorm(0, 1.0E-06) T(alpha[2], )

## Prior for the shape parameter for the Weibull

lamda <-1 # exponetial

#lamda~dgamma (.1 ,.1) # Weibull

## construct error variance

sigmaz <-1/tauz

## prior for error precision

tauz~dgamma (1.0, 1.0)

## construct variances for random effects

sigma1 <-1/tau1

sigma2 <-1/tau2

sigma3 <-1/tau3

## prior (half -Cauchy(s=25)) for standard deviations of random effects

numertau1~dnorm (0,1)

denomtau1~dnorm (0 ,0.0016)

tau1 <-pow(numertau1/denomtau1 ,2)

numertau2~dnorm (0,1)

denomtau2~dnorm (0 ,0.0016)

tau2 <-pow(numertau2/denomtau2 ,2)

numertau3~dnorm (0,1)

denomtau3~dnorm (0 ,0.0016)

tau3 <-pow(numertau3/denomtau3 ,2)

## Priors for regression coefficients (Betas)

beta1 [1:8]~dmnorm(betamu1[],Sigma1 [,])

beta2 [1:7]~dmnorm(betamu2[],Sigma2 [,])

beta3 [1:5]~dmnorm(betamu3[],Sigma3 [,])

} # end model

",fill=TRUE)

sink()

# ##################################

# R program ###

# ##################################

# Bundle data

betamu1 <-c(0,0,0,0,0,0,0,0)

betamu2 <-c(0,0,0,0,0,0,0)

betamu3 <-c(0,0,0,0,0)

Sigma1 <-diag (0.01, nrow=8,ncol =8)

Sigma2 <-diag (0.01, nrow=7,ncol =7)

Sigma3 <-diag (0.01, nrow=5,ncol =5)

# Place data in a list to be read by OpenBUGS

diab.data <-list(Nobs =1225 ,

Npat =500,

betamu1=betamu1 ,

betamu2=betamu2 ,

betamu3=betamu3 ,

Sigma1=Sigma1 ,
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Sigma2=Sigma2 ,

Sigma3=Sigma3 ,

ubp=long.data$ubp ,

bmi_grp2=long.data$bmi_grp2 ,

month=long.data$month ,

Sulphony=long.data$sulphony ,

Biguan=long.data$biguan ,

age=long.data$mage ,

male=long.data$male ,

patient=long.data$patient ,

surt=surv.data$surt ,

cens=surv.data$cens2 ,

biguan=surv.data$biguan ,

sulphony=surv.data$sulphony ,

malet=surv.data$male ,

mage=surv.data$mage)

# Initial values for MCMC sampling

inits <-function (){list(

beta1=c(b1[1],b1[2],b1[3],b1[4],b1[5],b1[6],b1[7],b1[8]),

numertau1=rnorm (1),

denomtau1=rnorm (1),

numertau2=rnorm (1),

denomtau2=rnorm (1),

numertau3=rnorm (1),

denomtau3=rnorm (1),

alpha=c(b2[1],b2[2],b2[3]),

beta2=c(-b2[4],-b2[5],-b2[6],-b2[7],-b2[8],-b2[9],-b2[10]) ,

beta3=c(b3[1],b3[2],b3[3],b3[4],b3[5]),

U1=rnorm (500 ,0 ,0.5),

U2=rnorm (500 ,0 ,0.5),

U3=rnorm (500 ,0 ,0.5),

surt=ifelse(is.na(surv.data$surt),runif (500, surv.data$cens2 ,surv.data$cens2

+10),NA))

}

# Parameters  to estimate

params <-c("alpha","beta1","beta2","beta3","sigma1","sigma2","sigma3","sigmaz")

# Start MCMC Sampling

long.surv.out3 <-BRugsFit(data=diab.data ,

inits=inits ,

parameters=params ,

modelFile="diab -model_4-6-14v3.txt",

numChains=2,

nBurnin =5000,

nIter =30000 ,

nThin=1,

coda=FALSE ,

DIC=TRUE ,

digits=5,

BRugsVerbose=getOption("BRugsVerbose"))

print(long.surv.out3)
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