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Heart failure results in significant cardiomyocyte (CM) loss, and post-natal mammalian 

heart has limited regenerative capacity. Cellular cardiomyoplasty has emerged as a novel therapy 

to restore contractile function. A number of cell types illicit functional benefits through paracrine 

mechanisms, but cardiac stem cells are unique in their ability to preferentially differentiate down 

a cardiac lineage to replace lost CMs. However, cardiac stem cell isolation is highly invasive. 

Alternatively, skeletal myoblasts can be safely isolated and showed some benefits in clinical 

trials as donor muscle cells, but arrhythmias occurred due to lack of electric coupling with host 

cells. This limitation could be overcome by differentiating cells toward a cardiomyogenic 

lineage. Multipotent muscle derived stem cells (MDSC) are different from skeletal myoblasts 

and possess greater phenotypic plasticity. Our studies showed that cardiac and skeletal muscle 

share major genes/proteins during development in rodents, so it may be possible for human 

MDSCs to differentiate into CM-like cells under the appropriate conditions. My dissertation 

aims to develop approaches to differentiate human MDSCs into CM-like cells. Specifically, my 

work focuses on three aims: (I) to characterize the biochemical and functional properties of 

human MDSCs cultured in a 3-dimensional engineered muscle tissue (EMT) and examine 

whether it recapitulates properties of developing striated muscle; (II) to determine the potential 

for further CM differentiation under defined biophysical and chemical conditions; (III) to 

evaluate the potential of human MDSC derived cardiac progenitors to improve cardiac function 

in a human-rat xenograft model. 

The results of my studies showed that human MDSCs in EMT beat spontaneously, 

displayed calcium transients, expressed cardiac-specific genes/proteins, and exhibited 

pharmacological responses similar to iPS cell-derived CMs. They also possessed characteristics 

of skeletal muscle including expression of MyoD, myogenin, and sk-fMHC. Their electrical 
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coupling also remained immature. By temporally treating EMT with 4 chemical factors (4CF: 

miR-206 inhibitor, IWR-1, BMP4, and LiCl) and improving aggregation conditions, 4F-AEMT 

showed better muscle tissue formation and cardiac-like morphology with improved contractility, 

pharmacological responses, and electrical coupling. Although 4F-AEMT expressed MyoD and 

myogenin, it exhibited more cardiac-like function.   Finally, human MDSC-aggregates showed 

evidence of survival and improved cardiac function in vivo. 
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1.0  INTRODUCTION 

In the United States, an estimated 15.4 million people have coronary heart disease, of which 7.6 

million are affected by myocardial infarction and 2.1 million by congestive heart failure [1]. In 

the last two decades, the classic concept of the heart as an organ with extremely limited 

regenerative capacity has been analyzed. The cell therapy approaches were limited at the turn of 

the new millennia to the transfer of non-cardiac cell types like smooth muscle cells, embryonic 

stem cells, mesenchymal bone marrow stromal cells, and hematopoietic stem cells [2], and 

skeletal myoblasts [3] into an injured heart. The idea of these engraftments was to stimulate 

repair and regeneration of the injured myocardium [4-6]. The field of cardiac regenerative 

medicine was brought into greater focus with the recognition of cardiac stem cells in 2001 [7] 

and the ability to antigenically select cardiac progenitor cells experimentally [8]. The capacity to 

generate cardiomyocytes in the adult human heart is 1% at the age of 25, which decreases to 

0.45% at the age of 75 [9].  This rationale, together with published research reports and 

experimental studies [10], indicated that the heart is in fact capable of regeneration, but 

therapeutic strategies are needed to stimulate this process in cardiac pathologies. The use of fetal 

cardiac cells poses ethical, logistical, and technical issues, and there still is no means for 

effectively mobilizing a hypothetical pool of resident stem cells. Long term functional 

improvement requires stem cells with true cardiomyogenic properties and angiogenic potential. 

Presently, it is not clear whether such a ‘perfect’ stem cell exists. However, a number of stem 
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cell types show promise for autologous cardiomyoplasty, including multipotent muscle derived 

stem cells.  

1.1 STEM CELLS ARE A PROMISING SOURCE FOR CARDIOMYOPLASTY 

Unspecialized cells that are capable of continuous self-renewal, while maintaining the ability to 

differentiate into multiple different cell types, are defined as stem cells. There are broadly two 

major categories of stem cells: adult stem cells and pluripotent stem cells, which include 

embryonic (ES) and induced pluripotent (iPS) stem cells. Embryonic stem cells are 

undifferentiated cells, which are present during embryonic development and possess pluripotent 

differentiation capacity. Adult stem cells can be isolated from postnatal tissues and are 

multipotent. Reinecke et al in 2002 [3] and Murry et al in 2004 [11] concluded that none of the 

adult stem cell sources convincingly demonstrated a potential for significant long-term 

engraftment and differentiation into functional cardiomyocytes. The technique developed by 

Yamanaka in 2006 demonstrated that the introduction of quartet of transcription factors, Oct4, 

Sox2, Klf4 and c-Myc, into terminally differentiated cells (e.g. skin fibroblast) changed these 

cells into an embryonic stem cell-like state known as iPS cells. Human iPS cells are similar in 

morphology, proliferation, surface antigens, gene expression, telomerase activity, epigenetic 

status of pluripotent cell specific genes [12], and cardiac potential to human embryonic cells 

[13]. However, maturation of iPS cell derived cardiomyocytes remains non-uniform [14, 15]. 

Human implantation of embryonic and iPS cell derived cardiomyocytes is limited by significant 

safety and ethical issues. Studies have revealed significant genetic and epigenetic abnormalities 

in iPS cells, higher than embryonic stem cells or fibroblasts. The mutation rates are estimated to 
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be 10 times higher compared to fibroblasts [16]. Chromosome p12 has been found to be 

overrepresented in iPS cell cultures, a characteristic associated with testicular germ cell tumors 

[16]. Other mutations are also associated with cell cycle regulation and oncogenesis, which 

raises the risk of teratogenesis in vivo. High-throughput functional genomics approaches are 

needed to better understand the nature and consequences of these mutations. iPS technology 

avoids the ethical dilemma of embryo destruction related to ES cells, but other ethical issues 

including informed consent and genetic anonymity of donors must still be carefully considered. 

While iPS technology holds great promise for the regeneration of the heart and other organs, 

clinical use of iPS technology in ischemic heart disease remains untested. From this point of 

view, adult stem cells remain a more practical option at the present time.  

Significant efforts in the field of cardiac cell therapy have focused on bone-marrow 

derived cells, especially bone marrow mononuclear cells such as hematopoietic and 

mesenchymal stem cells. Mesenchymal stem cells have numerous desirable characteristics, 

including positive paracrine effects, angiogenic potential, and an immunoprovileged profile. 

Studies have shown that mesenchymal stem cells but not hematopoietic stem cells can 

differentiate into cardiomyocytes in-vivo [17, 18] with slightly to significantly positive results in 

clinical trials [19, 20]. However, bone marrow mesenchymal stem cells do not differentiate into 

cardiomyocytes in significant numbers in vitro, suggesting that their therapeutic benefit is 

predominantly paracrine rather than through transdifferentiation [21]. Challenges include 

expanding these stem cells in clinically relevant numbers and developing safe methods for 

cardiomyocyte differentiation. (5-azacytidine used for in vitro differentiation of mesenchymal 

stem cells into cardiomyocytes is toxic [17].) More recent work has focused on cardiac stem 

cells, which are found in niches within the heart and can be isolated by myocardial biopsies. 
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Studies using immunosuppressed rats have shown that human cardiac stem cells can give rise to 

myocardium with improved function [22]. In light of these results, clinical trials have been 

initiated [23, 24]. While initial results of the SCIPIO trial are promising, the CADUCEUS trial 

showed no difference in ventricular function compared to control despite a reduction of infarct 

size. While cardiac stem cells are unique and advantageous in their ability to preferentially 

differentiate into cardiac lineages, including cardiomyocytes, isolation of cardiac stem cells is 

also invasive and carries higher risk compared to isolation from other tissues. Further 

investigation is needed to safely and effectively isolate, expand, differentiate, and deliver these 

stem cells. 

Cellular cardiomyoplasty of autologous skeletal muscle cells into the myocardium to 

reinforce its structure and function can be used as an alternative to heart transplantation [25]. 

Transdifferentiation directly converts a specialized cell type to another specialized cell type, 

bypassing a pluripotent state. In the 1980s, it was shown that fibroblasts can be converted into 

skeletal muscle cells with the use of the MyoD transcription factor [26]. In recent years, direct 

reprogramming of cardiac fibroblasts into functional cardiomyocytes by transcription factors 

GATA4, Tbx5, and Mef2c both in vitro and in vivo has been reported [15, 27]. However, the low 

reprogramming efficiency of this approach and the use of viral vectors are undesirable 

characteristics. It is interesting to speculate that direct reprogramming to cardiomyocytes might 

be more effective in skeletal muscle stem cells, which are pre-endowed with myogenic potential. 

But once they are in one committed lineage, it is a challenge to make them convert to another 

unrelated cell type, and transdifferentiation efficiency is often low. Szabo et al. also proved that 

blood cells can be generated from fibroblasts, making it likely that transcription factors can 

induce 'large jumps' between distantly related cell types [28]. This opened up the prospect that 
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any desired specialized cell could be generated from essentially any other cell type. Since 

skeletal and cardiac muscle both arise from myogenic, mesodermal lineages and share some 

characteristics, transdifferentiation from skeletal muscle progenitors to cardiac muscle would 

require less comprehensive alteration compared to distantly related cell types, at least in theory. 

Cells are considered ideal if they are derived from relatively easy to obtain tissue, readily grown 

in large numbers, available “off the shelf” for acute indications, nonimmunogenic, 

nonarrhythmogenic, and able to regenerate healthy myocardium [29]. Although the cell isolation 

procedure is relatively invasive, skeletal muscle comprises the largest percentage of total body 

mass, thus providing a major pool of stem cells [30]. These desirable characteristics and 

developmental similarity to cardiac muscle, described below, make skeletal muscle derived cells 

a strong candidate to repopulate damaged myocardium.  

1.2 SKELETAL MUSCLE AND CARDIAC MUSCLE: DIFFERENCE AND 
SIMILARITY DURING DEVELOPMENT 

It is a widely accepted notion that terminally differentiated mature cardiac muscle does not 

express proteins that are specific to skeletal muscle. However, developing skeletal muscle has 

been proven to be similar to cardiac muscle by various studies, suggesting that they have a 

similar cell lineage. Different isoforms of myosin heavy chain (MHC) are present in different 

muscle fiber types to meet their functional needs. There are four major MHC isoforms in rat 

skeletal muscle. I/β is a slow type and IIa, IIx/IId, and IIb are fast types. These are equivalent to 

skeletal muscle specific fast MHC (sk-fMHC) [31-33]. In the adult myocardium, α-MHC and β-

MHC are present, with the latter being identical to I/β-MHC found in skeletal muscle. Non-

cardiac MHCs play a major role during the early myofibrillogenesis of nascent cardiomyocytes 
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in assembling sarcomere structure [34]. Recently, it was found sk-fMHC was expressed in 

developing rat myocardium, and its expression was attenuated in post-natal life [35].  

The thin filament system in skeletal and cardiac muscle is regulated by a family of 

proteins known as troponins, which form part of the troponin complex. Troponin I is encoded by 

three different genes. Cardiac troponin I was previously shown to be exclusively expressed in the 

myocardium in adults [36], but recently, it was revealed that it is also expressed in developing 

skeletal muscle [35]. It is distinct from the fast and slow forms in skeletal muscle [36]. Cardiac 

troponin T is a component of the troponin complex. It is encoded by the gene TNNT2 and allows 

actomyosin interaction and contraction to occur in response to Ca2+. TNNT2 is a common 

mutation in familial hypertrophic cardiomyopathy, but surprisingly, it has been found that 

distinct TNNT2 mutations also lead to dilated cardiomyopathy [37]. It is also expressed in 

skeletal muscle during injury. Apart from this, skeletal muscle specific troponins are transiently 

present in the immature heart [38]. In the early phases of myogenesis in skeletal muscle, cardiac-

like excitation-contraction coupling mechanisms dominate, while skeletal muscle-like excitation-

contraction coupling dominates in more mature muscle [39, 40]. Thus, between cardiac and 

skeletal muscle, there is a strong overlap in the genes encoding key proteins responsible for 

contractility, which is a hallmark of striated muscle. 

 Cardiac and skeletal muscles also share common metabolic regulatory proteins. Fatty 

acid binding protein 3 (FABP3) is a member of a family of binding proteins and is mainly 

expressed in cardiac and skeletal muscle cells, and it has been linked to fatty acid metabolism, 

trafficking, and signaling [41]. UDP-N-acetylglucosamine 2 epimerase/N-acetylmannosamime 

kinase (GNE) is involved in the early development of both cardiac and smooth muscle. GNE 

deficient cardiac cells degraded very soon, and their beating capacity decayed rapidly. Skeletal 
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muscle committed cells were identified in the GNE deficient embryonic stem cell cultures by the 

expression of Pax7, MyoD, and MHC markers. GNE is strongly involved in cardiac tissue and 

skeletal muscle early survival and organization as shown by these results [42].  

A common finding in certain types of muscular dystrophy, including Emery-Dreifuss, 

Duchenne, and Becker type dystrophies, is chronic cardiac diseases [43]. Some types are caused 

by mutations in the β-sarcoglycan associated proteins [44], which are expressed both in cardiac 

and skeletal muscle. Limb-girdle muscular dystrophy type 2E is caused by mutations in Sgcb 

gene, and Sgcb deficient mice develop severe cardiomyopathy and severe muscular dystrophy, 

suggesting that cardiac and skeletal muscle pathologies arise from a common origin [45]. All 

these studies indicate how closely cardiac and skeletal muscle are interlinked, especially in their 

immature phase. Recently, our group found that skeletal and cardiac muscle share similar 

transcription factors and structural proteins during development [35]. However, the molecular 

mechanisms that regulate the fate determination between these two lineages of striated muscle 

remain poorly understood.  

1.3 SKELETAL MYOBLASTS: AN EARLY CANDIDATE FOR CELLULAR 
CARDIOMYOPLASTY 

Given their phenotypic similarity to cardiac muscle, ease of isolation/expansion, and relative 

resilience to hypoxia, skeletal myoblasts were considered an appealing cell source for cellular 

cardiomyoplasty [46-53].  Skeletal myoblasts have shown promise for ischemic heart 

regeneration, making them potential candidates for early cardiomyoplasty studies [54]. Skeletal 

myoblasts were the first cell type to enter the clinical arena of heart regeneration. Lavine et al. in 

1937 performed the first of its kind surgery in which his team treated myocardial ischemia by 



 8 

using a skeletal muscle graft to the heart. The patient was typically acromegalic. Before the 

procedure, he could not walk 5 yards without any rest, but after the surgery, he was able to walk 

140 yards without any shortness of breath. [55]. Early animal studies conducted in porcine 

animal models showed that myoblast-derived muscle grafts remained functionally isolated from 

the surrounding myocardium. The outcome did not reveal an increased frequency in ventricular 

tachycardia or fibrillation [56]. Menasche et al in 2001 transplanted autologous skeletal 

myoblasts into the post infarction scar during coronary artery bypass grafting of remote 

myocardial areas. However, in the distinct case of skeletal myoblasts, the results of several 

preclinical and clinical studies have shown improved functional outcomes following 

transplantation of these myogenic progenitors into post infarction scar.  

Arrhythmogenic complications have raised concern over the safety of adoptive transfer of 

skeletal muscle cell therapy [3, 11, 45-47, 57].  There is a risk of ventricular arrhythmias [48, 58-

61]. The fact remains that myoblast transplantation has its limitations, as implanted cells have 

limited survival and do not spread uniformly at the site of injury [47]. Skeletal myoblasts do not 

differentiate into cardiomyocytes but rather into multinucleated myotubes after injection into the 

heart. These myotubes form islands of conduction block in the heart and lack gap junctions. This 

results in electrical inhomogeneities that slow conduction velocity and predispose patients to 

reentrant ventricular arrhythmias [62]. While skeletal myoblasts (and other skeletal muscle 

derived cells) show promise of improved myocardial contractile function, risk of arrhythmia is 

an issue that needs to be addressed to advance this therapy.  
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1.4 CARDIOMYOCYTE DIFFERENTIATION POTENTIAL FROM SKELETAL 
MUSCLE DERIVED CELLS 

Since skeletal myoblasts do not differentiate into functioning cardiomyocytes in vivo, efforts 

have been made to isolate cells from skeletal muscle which can differentiate into cardiomyocytes 

in vitro or in vivo. Skeletal muscle derived stem cell (MDSC) is a somatic stem cell that is 

different from skeletal myoblasts (satellite cell) in its multipotent properties [63-65]. MDSCs are 

obtained from skeletal muscle via a pre-plate method or fluorescent activated cell sorting of 

surface markers and are easily expanded under in vitro culture environment as an autologous cell 

source [53, 64, 65]. MDSCs differentiate into skeletal muscle, bone, tendon, nerve, endothelial, 

hematopoietic, and smooth muscle cells [53, 63-66]. They have long-term proliferation capacity 

and enhanced resistance to hypoxia. Several studies have shown that MDSCs can differentiate 

into functioning cardiomyocytes using various strategies. Clause et al. demonstrated that rat 

MDSCs could differentiate into cardiomyocyte-like cells expressing cardiac specific genes and 

proteins by combining cell aggregation with 3D culture in a collagen bioreactor [67]. Winitsky et 

al. isolated non-adherent cells; SPOC cells (skeletal-based precursors of cardiomyocytes), from 

adult murine skeletal muscle that become beating floating cells. They are CD34−/CD45−/c-

kit−.[68]. The muscle-derived Side Population (SP) cells express the surface marker Sca-1 (65%) 

and the beating cells develop out of the Sca-1− pool, which comprises 20%–40% of the total 

isolated cells. Cells expressing the cardiac-specific marker Nkx2.5 and spontaneously 

contracting in culture were detected in RT-PCR analysis. The presence of specific mRNA coding 

markers for skeletal (myogenin, Myf5) and cardiac muscle (GATA4) and smooth muscle actin 

was seen in differentiated cells. Interestingly, all the above-mentioned markers were also 

detected in floating proliferating progenitor cells. This supports the idea that stem cells can 

express markers of multiple lineages in their differentiating state [69]. 
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Skeletal Muscle Interstitium-Derived Multipotent Stem Cells (Sk-34 and Sk-DN cells) 

differentiated into cardiomyocytes in a cardiac environment [49, 70]. After 4 weeks, the 

transplanted cells became cardiomyocytes with desmosomes and intercalated discs associated 

with gap-junctions [49]. Myotube formation was not observed. Sk-34 and Sk-DN cell 

differentiation is based on a cardiac environment. Taken together, these studies emphasize the 

importance of isolation techniques and culture conditions in obtaining the desired target cell. For 

example, Parker et al. showed that activation of Notch signaling during ex vivo expansion of 

muscle derived cells can significantly improve their engraftment [71].  

There are a number of problems faced during isolation of these cells. Cell surface 

markers define Muscle-derived stem and progenitor cell populations. Some of these markers are 

restricted to these populations, whereas other markers are shared with other cell populations. The 

marker profile-based isolation methods exclusively depend on the expression of cell surface 

markers that are variable and may change under in vitro cell culture conditions. Thus, these 

methods have their limitations.  Presently, the most prevalent method for isolating MDSCs is the 

modified pre-plate technique. It is a marker profile-independent technique which is based on 

variable adherence of freshly dissociated muscle cells to collagen-coated flasks. However, the 

isolated populations are heterogeneous [72]. Multiple non-satellite stem cell fractions reside in 

skeletal muscle, though it remains unclear how these different populations are related. Okada et 

al. showed that slowly adhering cells showed greater regenerative potential and 

oxidative/inflammatory stress tolerance compared to rapidly adhering cells [73]. Myogenic-

endothelial cells, cells which express both myogenic and endothelial markers (CD56, CD34, and 

CD144), can be isolated from skeletal muscle and have been shown to have superior regenerative 

properties and stress tolerance compared to myoblasts [74, 75]. The blood vessels of skeletal 
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muscle also contain stem cells, perivascular stem cells, which demonstrate myogenic and 

multipotent potential [76]. They are isolated on the basis of CD146 expression and lack of CD34, 

CD45, CD144, and CD56 expression. 

In vitro generated MDSC derived cardiomyocytes are more similar functionally and 

biochemically to fetal cardiomyocytes [77]. However, the rate of cardiomyocyte differentiation 

alone is likely not sufficient to explain the functional improvements gained from MDSC 

transplantation. Another possible mechanism by which MDSCs exert therapeutic benefit is by 

acting as a reservoir to secrete paracrine factors which promote angiogenesis and cell survival 

within the injured microenvironment [53]. Transplanted undifferentiated human skeletal 

myoblasts (CD56+) in an immunodeficient nude rat model demonstrated expression of human-

specific MMP-2, TNNI3, CNN3, PGF, TNNT2, PAX7, TGF-β, and IGF-1 1 month after 

transplant. Gene expression showed upregulation of pro-angiogenic factors (PGF), antiapoptotics 

(BAG-1, BCL-2), heart development (TNNT2, TNNC1) and extracellular matrix remodeling 

(MMP-2, MMP-7) in skeletal myoblasts. The data suggested that myoblast-secreted factors may 

contribute to the beneficial effects of myogenic cell transplantation in infarcted myocardium 

[78].  

The “paracrine effect” exerted by MDSCs and other stem cells has a positive effect 

within the injured myocardium. Bioactive molecules such as bFGF, VEGF, PDGF, SDF-1, HGF, 

and IGF-1 confer cardioprotective effects. In addition, secretion of molecules such as VEGF, 

Angiopoietin, and bFGF increase blood vessel formation in the ischemic region, improving 

perfusion and function. HGF and IGF-1 also activate resident stem cells and promote 

endogenous repair mechanisms. Additional factors such as TGF-β, MMPs, and TIMPs reduce 

fibroblast proliferation, fibrosis, and left ventricular dilation [79, 80]. Okada et al. showed that a 
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subpopulation of slowly adhering MDSCs showed enhanced paracrine factor secretion, increased 

stress tolerance, engraftment, and angiogenesis compared to rapidly adhering MDSCs. They also 

found increased cardiomyocyte proliferation within the infarct region, suggesting the 

enhancement of endogenous repair mechanisms [81]. The selective enrichment of certain types 

of MDSCs may improve their regenerative effects through enhancement of paracrine effects. 

Studies of MDSC transplantation have shown that only a small fraction of donor cells 

demonstrate long-term engraftment, and the majority of cells within the regenerating tissue come 

from the host via the chemo-attraction of post-natal stem cells from the vasculature [82]. Thus, 

the paracrine or “by-stander” effect of MDSCs may be equally, if not more important than 

myogenic differentiation in contributing to cardiac repair.  

 

1.5 TISSUE ENGINEERING APPROACHES TO CARDIAC REPAIR 

Transvascular methods of cell delivery are commonly used to treat recently infarcted 

myocardium. Intracoronary artery infusion can deliver a high concentration of cells 

homogeneously to the site of injury. Direct needle injection into the ventricular wall is preferred 

for patients late in the disease process when occlusion of the coronary artery prevents 

transvascular delivery [83]. However, it often results in poor engraftment, survival, and further 

damage by needle injury. Tissue engineering approaches may provide a more effective means of 

cell transplantation. Two main engineered tissue transplantation approaches for cardiac tissue are 

three dimensional scaffolds and cell sheets. One of the most challenging issues in tissue 

engineering is the reconstruction of myocardium in three-dimensions (3-D). 3-D scaffolds are 

now available [84, 85]. Cell sheets are used for treating advanced heart failure. Myocardial cell 
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sheets decrease fibrosis and increase vascularization in the injured heart [81, 86-88]. In 2006, 

Zimmerman et al. produced convincing evidence that a heart tissue can be produced with enough 

contractile force to support a failing heart. Neonatal rat heart cells were seeded with liquid 

collagen type I and Matrigel in molds. The rings were grafted onto the infarcted rat heart and 

after a month showed positive results. Further dilation of the heart was prevented, and systolic 

wall thickness increased [89]. In 2010, Fujimoto et al. also proved that engineered cardiac tissue 

from immature cardiomyocytes can functionally integrate into damaged myocardium. In this 

study, engineered fetal cardiac tissue proved to be more successful than neonatal tissue.  

Engineered fetal cardiac tissue implantation increased left ventricle contraction and showed 

higher cardiomyocyte proliferation than engineered neonatal cardiac tissue [90]. 

The major issues concerning the therapeutic application of stem cells remain unresolved 

due to 3 primary factors: poor survival, marginal proliferation, and limited functional 

engraftment/commitment within the host tissue. Furthermore, the cells should be prepared to 

combat against apoptotic, necrotic, and hypoxic conditions prevalent within the damaged tissue. 

Finally, if cells manage to proliferate, they can be functionally incapable of appropriate lineage 

commitment and can end in an oncogenic transformation. [91].  

The in vivo studies with MDSCs show promising results for meeting some of these 

challenges. Repair of the infarcted heart with MDSCs is more effective than conventional 

myoblasts [53]. MDSCs injected into the myocardium of infarcted heart showed outstanding 

survival and engraftment, promoted angiogenesis, and increased left ventricular function in a 

more effective manner in comparison to the transplantation of skeletal myoblasts [92]. In a post-

infarcted myocardium, transplanted MDSCs sustained its contractile function, preventing left 

ventricular chamber remodeling. Some transplanted donor MDSCs differentiated into both sk-
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fMHC and/or cTn-I positive muscle cells [53, 74]. Clause et al. demonstrated that MDSCs 

cultured within a three-dimensional engineered tissue construct differentiated into an immature 

functioning cardiomyocyte phenotype [67]. Transplantation of tissue-engineered cell sheets has 

negated some of the limitations by eliminating use of trypsin, direct needle injury to the heart, 

and by covering larger infarcted area [93, 94]. Reduction in left ventricle (LV) dilation and 

sustained LV contraction were displayed with the implanted MDSC sheet. It yielded better 

functional recovery of chronic infarcted myocardium compared with direct MDSC injection 

without any significant arrhythmic events, indicating that this cell sheet delivery system could 

markedly improve the myocardial regenerative potential of the MDSCs [81]. These studies 

suggest that tissue engineering approaches may provide a means to further improve upon the 

functional benefits derived from MDSC transplantation.  

Tissue engineering approaches help to address one of the major limitations of current 

delivery modalities – the immediate and massive attrition of “naked” cells that occurs after cell 

delivery, which leads to low retention of implanted cells even 24 hours post-procedure.  

However, current tissue engineering approaches focus on building complex 3D structures, which 

precludes catheter-based delivery and necessitates surgery. Using the cell patch approach, 

transplanted cells are initially localized to the epicardial region. A recent development, which 

improves cell retention, is the delivery of hydrogel-cell liquid suspensions via catheter [95]. The 

hydrogel polymerizes en route and traps cells in the target tissue. If successful, this method can 

combine the demonstrated safety of catheter-based delivery with the ability of a tissue-

engineered scaffold to improve engraftment. 
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1.6 FUTURE CHALLENGES AND OPPORTUNITIES 

Although skeletal muscle stem/progenitor cells have benefits, a large number of injected cells 

undergo early death. The first prospective randomized placebo-controlled phase II skeletal 

myoblast trial (MAGIC trial) exhibited lack of efficacy and was discontinued prematurely [47]. 

The trial’s disappointing results were due to several reasons: a low rate of initial cell retention, a 

high rate of subsequent cell death, and the inability of engrafted myoblasts to establish functional 

electromechanical connections with the host cardiomyocytes [3]. In addition, a trend towards 

excess arrhythmias was observed in myoblast-treated patients despite the use of the prophylactic 

antiarrhythmic drug, Amiodarone.  This raised safety concerns that had already been raised by 

earlier phase 1 trials. In contrast, SEISMIC trial [62] argued that injection of autologous skeletal 

myoblasts in heart failure patients is safe and may provide symptomatic relief, as a trend towards 

increased exercise tolerance was observed in the cell-treated group. Nevertheless, no significant 

effect on global left ventricular ejection fraction (LVEF) was detected. All this taken together 

indicates that more work needs to be done to bridge the gap between preclinical animal models 

and clinical trials. 

In light of the mixed results from clinical trials, further work has gone into eliminating 

the heterogeneity of transplanted cells and improving electromechanical coupling between 

transplanted and host myocytes. Transplantation of Myogenic-endothelial cells which express 

CD56, CD146, and Ulex, purified from human skeletal muscle into the ischemic heart drastically 

improved left ventricular function, reduced scar tissue and promoted angiogenesis [53]. 

Connexin-43 is the predominant gap junction of the ventricular myocardium. Skeletal myoblasts 

lack connexin-43 after fusion into elongated contractile myotubes. In cellular monolayers, 

conduction velocity was slowed and reentry-induced arrhythmias were promoted when skeletal 
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myoblasts were co-cultured with neonatal cardiomyocytes in vitro and studied with high-

resolution optical mapping. The proarrhythmic effect was reduced when engineered cells over-

expressed connexin-43 [96]. The findings were later tested in an animal model [11]. Methods to 

improve electromechanical compatibility between engrafted muscle and host myocardium are 

currently under investigation. 

Issues related to electromechanical compatibility between cardiac and skeletal muscle 

tissue could be ameliorated by generating cells from MDSCs which have a cardiomyocyte-like 

phenotype. The heart also contains resident stem cells. Oh et al. identified in 2003 an 

independent population of Sca-1+ cardiac stem cells as a subgroup of cells (constituting ≈14%) 

isolated in the non-cardiomyocyte cell fraction of the adult mouse heart in a whole heart 

digestion. Sca-1+ cells co-expressed CD31 and CD38, and lacked c-Kit, CD34, and CD45 when 

freshly isolated. 93% of the side population were Sca-1+. Freshly isolated Sca-1+ cells did 

express the early cardiac-specific transcription factors GATA4, Mef2C, and Tef-1 but not 

Nkx2.5 or genes encoding cardiac sarcomeric proteins. Sca-1+ cells engrafted at a much higher 

rate than Sca-1− cells in a mouse model of ischemia-reperfusion after 2 weeks and could be 

found forming new cardiomyocytes [97].  Cardiac stem cells in bulk culture up-regulated 

GATA-4 expression resulting in enhanced cardiomyocyte differentiation, suggesting that the 

GATA-4 high c-kit+ cardiac stem cells have potent cardiac regenerative potential. The study also 

demonstrated spontaneous differentiation into skeletal myocytes [98]. Hasan et al. established 

cardiac pluripotent stem cell-like cells from the left atrium of adult rat hearts that could 

differentiate into beating cardiomyocytes in the methylcellulose-based medium containing 

interleukin-3 and stem cell factor, which contributed to the differentiation into cardiac troponin I-

positive cells. Distinctly small populations of pluripotent stem cell-like cells from the left atrium 
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co-expressed GATA4 and myogenin, which are markers specific to cardiomyocytes and skeletal 

myocytes, respectively. These could differentiate into both cardiac and skeletal myocytes [99]. 

These studies suggest the possibility that cardiac and skeletal muscle can arise from a common 

myogenic progenitor, and stem cells purified from skeletal muscle may have similar 

differentiation potential, as demonstrated by studies of cardiomyocyte differentiation from 

MDSCs. However, the pathways which determine if a cell differentiates into a cardiomyocyte or 

skeletal muscle cell are only beginning to be unraveled.  
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A hypothesis is presented in Figure 1-1 showing how skeletal muscle stem/progenitor 

cells can be induced to become cardiac muscle with post-transcriptional modification. 

Microribonucleic acids (micro-RNAs, miRs) are post-transcriptional regulators of cardiac and 

skeletal myogenesis, including miR206, which specifically promotes skeletal myogenesis [100-

102] as part of an intrinsic cell-regulatory program. Crippa et al. isolated cardiac progenitors 

from neonatal sarcoglycan-null mouse hearts affected by dilated cardiomyopathy, and they 

spontaneously differentiated into skeletal muscle fibers both in vitro and when transplanted into 

regenerating muscles or infarcted hearts. The absence of expression of miR669q and down-
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regulation of miR669a were associated with differentiation potential. Skeletal myogenesis was 

prevented by miR669a and miR669q acting upstream of myogenic regulatory factors by directly 

targeting the MyoD untranslated region. [103]. Successful conversion of cardiac cells into 

skeletal muscle fibers opened a huge area of discussion if the reverse is possible. MDSCs express 

similar genes to cardiac and skeletal muscle, and cardiac and skeletal muscles are 

interchangeable because of miR669. The physical environment may also present important 

environmental cues [104]. 3-dimensional cultures and cardiac-specific extracellular matrix 

(ECM) have been shown to promote cardiomyocyte induction [35, 67, 105]. 

Figure 1-1. MicroRNAs post-transcriptionally regulate myogenesis. miR-206 specifically promotes skeletal 

muscle differentiation, while miR-669 promotes cardiac differentiation by inhibiting MyoD, a skeletal muscle 

transcription factor. By modulating expression of these and other muscle-specific microRNAs, stem cells can 

be induced to differentiate into cardiac or skeletal muscle. The local microenvironment and soluble factors also 

play important roles in stem cell differentiation. 
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1.7 SUMMARY 

In any endeavor as complex and perplexing as stem cell research, controversies and 

disagreements are to be expected. While early clinical trials of skeletal myoblast transplantation 

yielded mixed results and did not meet initial expectations, more recent works have shown that 

improved isolation methods, novel tissue engineering approaches, and differentiation strategies 

may improve the efficacy of myogenic stem cell transplantation. Skeletal muscle derived stem 

cells remain the only class of stem cell which can preferentially differentiate into a muscle 

phenotype and can be isolated easily in abundant numbers. Cardiovascular regenerative medicine 

is still in its early stages but recent studies show renewed promise. The field of regenerative 

medicine has been quite progressive, as a search on PubMed for the key words “cardiac, stem 

cell, heart,” yields over 9000 references as of today with almost 2000 review articles to 

summarize all current understanding. This field was nonexistent a little over a decade ago.  

1.8 AIMS OF THE STUDY 

Given the multi-lineage potential of MDSCs, the overall goal of this thesis is to develop a 

functioning cardiac graft using human MDSCs with the long-term goal of treating congenital and 

acquired heart diseases. Specifically, the objectives of the study are to 1) characterize the CM 

differentiation potential of human MDSCs in a 3-dimensional engineered muscle tissue 

compared to pluripotent stem cell derived CMs, 2) modify the biophysical and soluble 

environment of 3-dimensional engineered muscle tissue to improve CM differentiation, and 3) 

determine the effect of MDSC graft implantation on recipient cardiac function. 



 21 

2.0  DEVELOPING CARDIAC AND SKELETAL MUSCLE SHARE FAST-
SKELETAL MYOSIN HEAVY CHAIN AND CARDIAC TROPONIN-I EXPRESSION 

2.1 INTRODUCTION 

Muscles are composed of different fiber types to fulfill various functional needs. Fiber types are 

categorized generally according to their specific myosin heavy chain (MHC) isoforms. In rats, 

there are four major isoforms of MHC, one slow type (type I/ß) and three fast types: IIa, IIx/IId, 

and IIb, which is equivalent to skeletal muscle specific fast myosin heavy chain (sk-fMHC). An 

individual muscle fiber can contain just one myosin isoform or mixtures of two or more different 

isoforms [31-33]. An additional MHC isoform, α, is present in the myocardium. Different MHC 

isoforms are expressed in both tissue and stage-specific manners, and much work has been done 

to show the relative change in the expression ratio of α-MHC: ß-MHC in the myocardium during 

development and with intervention. During the early myofibrillogenesis of nascent 

cardiomyocytes, non-cardiac MHC plays an important role in assembling sarcomere structure 

[34]. However, little investigation into the expression of skeletal muscle specific MHCs in the 

developing myocardium have been done.  

Troponins are proteins that regulate the thin filament system in skeletal and cardiac 

muscle and form part of the contractile complex. Troponin-I is encoded by 3 different genes and 

is expressed differentially in various types of tissue. However, cardiac troponin I (cTn-I) is 

uniquely expressed in the heart and is distinct from the fast and slow forms in skeletal muscle 

[36].  
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It has been widely accepted that terminally differentiated mature cardiac muscle does not 

express proteins that are specific to skeletal muscle. However, studies have shown that several 

skeletal muscle specific proteins, such as skeletal muscle specific troponins, are transiently 

present in the developing heart [38]. Similarly, “cardiac” and “skeletal” excitation-contraction 

coupling mechanisms co-exist in developing skeletal muscle with the “cardiac” type dominant in 

the early phases of myogenesis and the “skeletal” dominating in more mature muscle [39, 40]. 

These studies suggest the coexistence of many cardiac and skeletal muscle specific proteins and 

excitation-contraction coupling mechanisms within both developing tissue and cultured cells, 

particularly those that are considered to be immature. While the idea that skeletal and cardiac 

muscle share partially overlapping developmental profiles is not new, reports of expression of 

specific structural protein isoforms have varied across studies. For example, Fougerousse et al. 

concluded that the cardiac isoform of myosin binding protein C, cardiac MyBP-C, is strictly 

specific to the heart during murine and human development [106]. However, it is reported to be 

expressed in developing chick skeletal muscle [107-109]. Factors such as experimental 

conditions, differences across species, and developmental time points examined can lead to these 

differences in results. Moreover, while these phenotypic changes have been studied during early 

cardiac morphogenesis period, few have focused on the transition that occurs between late fetal 

and early postnatal life.  

In our previous studies of murine or human skeletal muscle derived stem cell (MDSC) 

transplantation into infarcted mouse myocardium, we found that MDSC transplanted post-

infarcted myocardium sustains its contractile function, preventing left ventricular chamber 

remodeling, and some transplanted donor MDSCs differentiate into both sk-fMHC and/or cTn-I 

positive muscle cells [53, 74]. We have recently shown MDSCs can differentiate into cells with 
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an immature functioning cardiomyocyte phenotype within a three-dimensional engineered tissue 

construct [67]. However, MDSC derived cardiomyocytes generated in vitro are biochemically 

and functionally more similar to neonatal rather than mature cardiomyocytes. While stem cell 

derived cardiomyocytes show promise, the sequence of events that lead to terminal 

cardiomyocyte differentiation and functional maturation is as of yet poorly understood [90]. The 

use of stem-cell derived cardiomyocytes for tissue engineering and regenerative medicine 

applications would clearly benefit from a better understanding of the biochemical and structural 

changes that lead to cardiac and skeletal muscle specification during natural development. 

However, it remains to be seen whether MDSC derived sk-fMHC positive cells are terminally 

differentiating skeletal muscle cells or potentially differentiating cardiomyocytes. In order to 

help address the question, we investigated the presence of sk-fMHC and cTn-I within the native 

developing myocardium and skeletal muscle in a rat animal model.  

2.2 MATERIALS AND METHODS  

The presence of sk-fMHC and cTn-I from embryonic day (ED) 13 and 20, neonatal day (ND) 0 

and 4, postnatal day (PND) 10, and 8 week-old adult female Lewis rat ventricular myocardium 

and skeletal muscle (hind limb in ED13, ED20, ND0 and ND4, and gastrocnemius and soleus 

muscles in PND10 and adult) was assessed using immunohistochemistry, western blot, and RT-

PCR. Our research protocol followed the National Institutes of Health (NIH) guidelines for 

animal care and was approved by the University of Pittsburgh's Institutional Animal Care and 

Use Committee. 
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2.2.1 Construction of 3-dimensional Collagen Gel Bioreactor from Rat Skeletal Muscle 
Derived Stem Cells (MDSC) 

We isolated skeletal muscle derived stem cells (MDSCs) from 3 post-natal day 10 Lewis rat 

gastrocnemius muscle using a preplate technique. Isolated MDSCs were expanded on a rat-tail 

collagen type-1 (Invitrogen, Carlsbad, CA, USA) coated flask (T-75, Fisher Scientific, 

Pittsburgh, PA) and a 3-dimensional collagen gel bioreactor was constructed using a mixture of 

MDSCs and rat tail collagen type-I (Invitrogen) with Matrigel (BD bioscience, San Jose, CA, 

USA), and a Flexcell 4000TT system (Flexcell International, Inc. Hillsborough, NC, USA). The 

constructed collagen gel tissue was cultured for 9 days and the tissue was harvested for 

histological assessment and the gene expression. 

2.2.2 Immunohistochemical staining  

Heart and skeletal muscle samples were fixed with 4% paraformaldehyde/PBS for 15 minutes 

(EDs 13 and 20) to 12 hours (ND0 to adult) and embedded in 13% polyacrylamide gel. The 100 

(ND4 and adult) to 150μm (ED13, ED20, ND0) thick sections were made using a vibratory 

microtome (Vibratome-1000, Vibrotome.com) [110] and stained for mouse monoclonal sk-

fMHC (Sigma MY32, St. Louis, MO, USA, 1:200 dilution) and mouse monoclonal cardiac 

specific Troponin-I [cTn-I, Abcam (19C7), Cambridge, MA, USA, 1:100 dilution] primary 

antibodies and Alexa Fluor 488 IgG2b or Alexa Fluor 594 IgG1 goat anti-mouse secondary 

antibodies (Invitrogen, Carlsbad, CA, USA, 1:200 final concentration).  All samples were 

scanned and visualized by Z-stack imaging protocol using a standard laser scanning confocal 

microscope (FV1000, Olympus, Tokyo, Japan) [110]. 
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2.2.3 SDS-PAGE and Immunoblotting  

Freshly frozen heart and skeletal muscle samples were used. Protein was extracted from pooled 

samples, and immunoblotting was carried out using routine protocols. Each lane contained 20µg 

of total protein. Mouse monoclonal α-sarcomeric actinin  (Sigma, EA53, 1:500 dilution), mouse 

monoclonal cardiac troponin-I (Abcam, 1:100 dilution), and mouse monoclonal sk-fMHC 

(Sigma MY32, 1:500 dilution) were visualized with IR-Dye 800 donkey anti-mouse secondary 

antibody (IgG1 and IgG2b, Rockland Immunochemicals, Gilbertsville, PA, USA, 1:10,000 

dilution). All proteins were visualized using an infrared western blot imaging system (Odyssey, 

LI-COR Biosciences Lincoln, NE, USA). Immunoblots were performed in either quintuplicate or 

triplicate (sample n=5 for ED 13, ED 20, and ND 4; n=3 for ND0, PND 10, and adult rats) [110]. 

2.2.4 RT-PCR and real-time RT-PCR  

Freshly frozen pooled ventricular myocardium and skeletal muscle samples were used. Total 

RNA was prepared using Trizol solution (Invitrogen) and treated with TURBO DNA-free kit 

(Ambion, Austin, TX, USA). Primers, whose target genes were, Nkx2.5, GATA4, MyoD, 

Myogenin, sk-fMHC (MYH4), α-MHC (MYH7), cardiac troponin-I (Tnn3), were obtained from 

Qiagen Quanti-Tect Primer Assay (Qiagen, Valencia, CA). One-step reverse transcription (RT) 

was performed with a total amount of 1µg RNA in a total volume of 25μL that used MuLy 

(Roches, Pleasanton, CA, USA). The following program was used for RT: 42oC 15 minutes, 

99oC 5minutes, 5oC 5minutes, for 1 cycle.  The produced cDNA (1µL) was used for RT-PCR 

(94oC 2minutes, 95oC 50seconds, 58oC 30 seconds, 72oC 1 minute, for 30 cycles followed by 

72°C 7 minutes extension) or real-time RT-PCR (50°C for 2 minutes, 95°C for 10 minutes, 95°C 

for 15 seconds, 60°C for 1 minute, 95°C for 15 minutes, 60°C for 15 minutes for 40 cycles). For 
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normalization of real-time PCR results, β-actin was used as an internal control. All PCR products 

were confirmed by University of Pittsburgh DNA Sequence Core Facilities, performed by 

Eppendorf Mastercycles. All real-time PCR assays were completed in triplicate (n=3 in each 

developmental stage). Real-time PCR samples were processed using Applied Biosystems 

HT7900 system. 

2.3 RESULTS 

Differentiating MDSCs in a 3-dimensional collagen/extracellular matrix gel construct displayed 

spontaneous beating activity from culture day 5 and formed a muscle tissue by culture day 7 

similarly to our previous study. Confocal microscopy showed that the differentiating 

cardiomyocyte-like cells co-expressed skeletal muscle specific fast myosin heavy chain (sk-

fMHC) and cardiac specific troponin-I (cTn-I) as a typical striated muscle pattern (Figure 2-1A). 

Real time RT-PCR showed that both cardiac and skeletal muscle transcription factors, cardiac 

sk-fMHC, cardiac α-myosin heavy chain, and cTn-I genes are up-regulated compared to 

undifferentiated MDSC (Figure 2-1B). 



 27 

 

Figure 2-1. sk-fMHC (green color) and cardiac troponin-I (red color) expression (Panel A) and gene 

expression (Panel B) of skeletal muscle derived stem cell 3D collagen gel bioreactor (MDSC-3DGB). 

MDSC-3DGB showed co-localized expression of sk-fMHC and cardiac troponin I. Transcription factor 

and structural gene expression was increased compared to 2D undifferentiated MDSCs. Scale in panel A 

indicates 20 µm. 
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In the native rat heart, sk-fMHC was expressed as a typical striated muscle pattern 

throughout the entire ventricular myocardium at ED13, and cTn-I was very weakly expressed 

(close to background) (Figure 2-2). Within ED13 somite, sk-fMHC was expressed as a striated 

thin fiber-like pattern, while cTn-I was diffusely expressed. At ED20 and ND0, striated sk-

fMHC expression was restricted to the ventricular papillary muscle and losing striated muscle 

pattern in the myocardial wall (Figure 2-2). cTn-I was very weakly expressed without striation 

in the majority of the myocardial wall and some striated cTn-I expression pattern was identified 

in the myocardium close to LV apex (Data not shown). At ND4, sk-fMHC was still expressed in 

the LV myocardium (Figure 2-2). However, striated pattern was completely lost. cTn-I 

expression increased. The PND10 LV myocardium did not express sk-fMHC, whereas cTn-I was 

expressed with a typical striated pattern. Conversely, PND10 skeletal muscle expressed sk-

fMHC as a typical striated muscle pattern and did not express cTn-I (Figure 2-2). 



 29 
     

Figure 2-2. sk-fMHC (green color) and cardiac troponin-I (red color) expression within developing ventricular 

myocardium and skeletal muscle. The skeletal muscle fast myosin heavy chain (sk-fMHC) and cardiac troponin-

I (cTn-I) expression within the embryonic day (ED13) heart (ED13 Ventricle insert, scale indicates 500 µm). 

The sk-fMHC was expressed as a typical striated muscle pattern in the developing ventricle and cTn-I 

expression was near background level at ED13. Somites also express sk-fMHC as a fiber structure and cTn-I 

was also expressed very weakly similar to the heart (ED13 somite panel). Scales in ED13 ventricle and somite 

panels indicate 20 µm. At ED20, both heart muscle (ED20 Left Vent Pap M) and skeletal muscle (not shown) 

express sk-fMHC and cTn-I as a striated muscle pattern. Scales in ED20 and ND4 Vent Pap M panels indicate 

20 µm. In the heart, sk-fMHC expression is significantly decreased, and cTn-I expression was increased with 

striation pattern after neonate day 4, and skeletal muscle significantly decreases its cTn-I expression after 

neonate day 4 (data not shown). At postnatal day 10 (PND10), left ventricular myocardium does not express sk-

fMHC and cTn-I displayed a typical striation pattern (PND10 Left Ventricle panel). Conversely, gastrocnemius 

muscle expressed sk-fMHC as a typical striation pattern and cTn-I was negative (PND10 skeletal muscle panel). 

Scales in PND10 panels indicate 20 µm. 
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Western blot analysis indicated that in the myocardium, sk-fMHC was expressed in 

decreasing amounts until PND10 (juvenile) and was not expressed in the adult myocardium (8 

week-old), whereas cTn-I was expressed in increasing amounts at all developmental stages. In 

skeletal muscle, sk-fMHC was expressed at all developmental stages, while cTn-I was expressed 

very weakly at ED13 and the expression increased at ED20, decreased at ND0, and became 

negative after ND4 (Figure 2-3). 

 

 

RT-PCR analysis (30 PCR cycles, Figure 2-4) showed that in ventricular myocardium, 

cardiac transcription factors, Nkx2.5 and GATA4, were expressed through all developmental 

stages and were also expressed in gradually decreasing levels in skeletal muscle. Skeletal muscle 

Figure 2-3. Western blot analysis of developing myocardium and skeletal muscle. Lane 1: ED13; Lane 2: 

ED20; Lane 3: ND0; Lane 4: ND4; Lane 5: PND10; Lane 6: Adult (8 week-old). Top panel: Left ventricular 

myocardium, Bottom panel: hind limbs at ED13, ED20, ND0, and ND4, and gastrocnemius muscle in 

PND10 and adult. At ED13 and ED20, left ventricular myocardium expressed sk-fMHC and cTn-I 

expression was very weak while skeletal muscle expressed sk-fMHC. During development, sk-fMHC 

expression in the left ventricular myocardium decreased and increased in skeletal muscle, whereas cTn-I is 

expressed in the left ventricular myocardium and was negative in skeletal muscle. α-sarcomeric actinin (α-

sarcActn) was used to adjust the total protein loading for the electrophoresis. 
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transcription factor MyoD was detected at 30 PCR cycles in skeletal muscle at all developmental 

stages and in ventricular myocardium until ND0. Another major skeletal muscle transcription 

factor, myogenin, was expressed in both ventricular myocardium and skeletal muscle in all 

developmental stages. The sk-fMHC mRNA was expressed in ND0 myocardium, and the 

expression was significantly decreased at ND4. It was then negative in PND10 and adult 

ventricular myocardium. The sk-fMHC mRNA was expressed at all developmental stages in the 

skeletal muscle. The cardiac specific α-myosin heavy chain (α-MHC) was present in the 

ventricular myocardium at all developmental stages and ED13 skeletal muscle. Conversely, 

postnatal and adult skeletal muscle did not express α-MHC. cTn-I mRNA was expressed in 

ventricular myocardium in all developmental stages and ED13, ED20 and ND0 skeletal muscle, 

and became negative in PND10 and adult skeletal muscle. 
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We semi-quantified the changes in mRNA levels of the genes described above by real-

time RT-PCR. Although the Ct value of each transcription factor and structural protein mRNA 

varied, these gene expression patterns overlapped between both types of muscle tissues. During 

development, cardiac transcription factor, Nkx2.5 and GATA4, expression levels in postnatal 

ventricular myocardium remained at the same levels as ED13. The mRNA level of the skeletal 

muscle transcription factor, MyoD in the ventricular myocardium was elevated at ND0 and ND4 

but remained the same as ED13 in postnatal stages, whereas the mRNA level of another skeletal 

muscle transcription factor, myogenin, was significantly decreased postnatally. In developing 

skeletal muscle, Nkx2.5 and GATA4 expression levels were significantly decreased, while 

Figure 2-4. RT-PCR analysis of cardiac and skeletal muscle transcription factors, sk-fMHC, cTn-I mRNA 

expression. Lane 1: ED13 ventricle, Lane 2: ED20 ventricle; Lane 3: ND0 ventricle; Lane 4: ND4 ventricle; 

Lane 5: PND10 ventricle; Lane 6: Adult ventricle; Lane 7: ED13 hind limbs; Lane 8: ED20 hind limbs, Lane 9: 

ND0 hind limbs; Lane 10: ND4 hind-limbs; Lane 11: PND10 gastrocnemius muscle; Lane 12: Adult 

gastrocnemius muscle. We note that ED20 skeletal muscle (hind limbs) mRNA expression patterns are similar to 

ED20 ventricular myocardium. 
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MyoD and myogenin expression levels were transiently decreased at ND4 and were maintained 

at the same levels during the development (Figure 2-5). The sk-fMHC level in the myocardium 

increased from ED13 to ED20 and maintained a steady level thereafter, while it continuously 

increased in skeletal muscle. Conversely, cTn-I and α-MHC levels were significantly increased 

in postnatal ventricular myocardium. In skeletal muscle, cTn-I was increased at ND4 and adult, 

while α-MHC was decreased at ED20 and thereafter it was unchanged in postnatal development 

(Figure 2-6).  
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Figure 2-5. Changes in mRNA levels of cardiac and skeletal muscle specific transcription factors within 

ventricular myocardium and skeletal muscle. Data are expressed as average ± SD. Cardiac transcription 

factors, Nkx2.5 and GATA4, and skeletal muscle transcription factor MyoD expression did not change in 

ventricular myocardium in adulthood, whereas myogenin expression was significantly decreased in 

ventricular myocardium (P<0.05, ANOVA). Nkx2.5 and GATA4 were significantly decreased during 

development, and MyoD and myogenin were significantly increased in skeletal muscle during the 

development (P<0.05). Log10RQ: Relative Quantification of mRNA level compared to the mRNA level in 

ED13. The ratio is expressed as logarithm with base value of 10 (Log10). 
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2.4 DISCUSSION  

In the current study, we found that skeletal muscle specific fast myosin heavy chain (sk-fMHC) 

is transiently expressed in the developing immature myocardium, and cardiac troponin I (cTn-I) 

is transiently expressed in developing skeletal muscle. A number of previous studies have looked 

at an assortment of myosin and troponin expression patterns in both the cardiac and skeletal 

muscle. α-MHC was found in both normal adult diaphragm and stimulated fast twitch muscles in 

the rabbit, human masseter and extraocular muscles, as well as the bag fibers of human, rat, and 

cat muscle spindles [111, 112].  From the opposite perspective, anti-anterior latissimus dorsi 

myosin antibodies showed specific reactivity with the cells of the conduction system in the rabbit 

Figure 2-6. Changes in mRNA levels of sk-fMHC, cTn-I, and cardiac α-MHC within ventricular 

myocardium and skeletal muscle. Data are expressed as average ± SD. The sk-fMHC mRNA level was 

significantly decreased and cTn-I and α-MHC levels were significantly increased in ventricular myocardium 

(P<0.05, ANOVA). Conversely, sk-fMHC mRNA level was significantly increased and cTn-I and α-MHC 

were significantly decreased in skeletal muscle. Log10RQ: Relative Quantification of mRNA level compared 

to the value in ED13. The ratio is expressed as logarithm with base value of 10 (Log10). 
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heart [113]. Similarly, there is abundant evidence that myosin expression undergoes transitions 

during the development of both skeletal and cardiac muscle in a number of species. Sweeney et 

al. found that the earliest MHC detectable in both forms of striated muscle in chick embryos 

(cardiac and skeletal) was indistinguishable from cardiac ventricular myosin expressed in the 

adult heart but immunologically distinct from myosins expressed in later embryonic and adult 

skeletal muscle. This suggests that the initial developmental program for myosin expression in 

differentiating skeletal muscle may be related to that for cardiac ventricular myosin [114].  In a 

similar study, cardiac ventricular MHC was found in developing as well as regenerating anterior 

latissimus dorsi avian skeletal muscle [115].  In the case of cardiac muscle though, it was unclear 

whether the developmental program involved the co-expression of skeletal as well as cardiac 

isomyosins.  In the current study, we found that skeletal muscle specific fast MHC was in fact 

transiently expressed during the initial developmental program of the developing fetal 

myocardium. 

Cardiac troponin-I and -T are normally specific to the adult cardiac muscle. However, 

cTn-T isoforms have been shown to be expressed in human skeletal muscle in individuals 

suffering from Duchenne muscular dystrophy, polymyositis, and end stage renal disease [36] and 

in developing and regenerating rat skeletal muscle [116]. Fredericks et al. showed that cTn-I and 

cTn-T are expressed in adult rat skeletal muscle in response to denervation, but the protein 

expression levels were several thousand times lower than in the heart [117]. Messner et al. 

showed that mRNA from cTn-T and cTn-I are expressed in skeletal muscle in patients with 

Duchenne muscular dystrophy and several other myopathies [118]. In the present study, we 

found that cTn-I was transiently expressed during the early development of skeletal muscle. To 

our knowledge, this is the first comprehensive study of the time course expression of cTn-I 



 37 

during the normal development of skeletal muscle. Sutherland et al. examined cTn-I mRNA 

expression in the developing rat hind limb by Northern blot but did not detect any cTn-I in 

skeletal muscle [119]. This may be due to the low sensitivity of Northern blot relative to RT-

PCR. We have shown that cTn-I is expressed in early developing skeletal muscle at both the 

gene and protein level (by immunohistochemical staining but not western blot) and visually 

shown changes in its structural organization. As for why cTn-I was detected in skeletal muscle 

by immunohistochemical staining but not western blot, it is possible that there are regional 

differences in cTn-I expression in skeletal muscle, and the total amount of cTn-I relative to total 

protein is below the detectable threshold of western blot. However, regional expression can still 

be visualized by immunohistochemical staining.  

As development of the myocardium progressed, sk-fMHC became negative, and the 

myocardium then expressed cTn-I. Conversely, as development of skeletal muscle progressed, 

cTn-I became negative, and the skeletal muscle then expressed sk-fMHC.  Fast skeletal muscle is 

more prone to fatigue, utilizes ATP quickly, and uses less oxygen, whereas cardiac muscle is 

made to resist fatigue and generally needs more oxygen. Thus, from a physiological standpoint, 

the benefit of sk-fMHC in the immature developing fetal myocardium may be shorter and 

quicker contraction for quicker blood ejection throughout the system, which is necessary for 

supporting rapid fetal growth prior to the establishment of coronary artery circulation, cardiac 

autonomic, and conduction systems. As the myocardium matures, the contraction pattern shifts 

towards less rapid but continuous contraction under aerobic conditions, at which point the 

coronary circulation and conduction as well as cardiac autonomic system are established, and sk-

fMHC expression decreases. Continued expression of sk-fMHC would be detrimental because if 

fast muscle tissue were to persist in the postnatal and adult myocardium, it would fatigue much 
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faster, potentially increasing the risk of cellular acidosis. A recent study by Rutland and 

colleagues reported the expression of embryonic myosin heavy chain (eMYH), a fast skeletal 

specific isoform, in the developing chick heart. Its functional homologue in humans is believed 

to be Myh3 [120]. While they did not detect the presence of other skeletal myosin heavy chain 

genes in human fetal and adult hearts, we speculate that sk-fMHC may serve a similar role in rats 

as Myh3 in humans during heart development. Moreover, while their study focused on changes 

that occur during early development, we place a specific emphasis on the events that occur 

during the transition from late fetal to early postnatal life. 

One potential limitation of the current study is the use of the Sigma MY32 antibody and 

the lack of a more specific commercially available antibody. Sigma reports that it stains the fast 

(type II) and neonatal myosin molecules found in skeletal muscle. It is possible that MY32 may 

cross react with the embryonic and neonatal myosin heavy chain isoforms. The reactivity of this 

antibody with the embryonic and neonatal forms has not been fully characterized. However, 

Lyons et al. have reported that the embryonic and neonatal forms are not expressed in the 

developing mouse embryo heart [121], which would indicate that sk-fMHC is the only fast 

skeletal muscle MHC expressed in the developing heart in rats. 

The N-terminal extension of cTn-I contains two phosphorylatable serines (Ser-23 and 

Ser-24), which are targets of protein kinase A and protein kinase C and are not present in the fast 

and slow skeletal isoforms of troponin I [122]. These additional sites confer a greater degree of 

regulation of Calcium sensitivity and contractility [122, 123]. Thus, the presence of the cardiac 

isoform in developing skeletal muscle might provide an additional level of control of muscle 

activity prior to the full development of the nervous system, which would increase energy 

efficiency in the metabolically active developing fetus. 
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Real-time RT-PCR analysis of gene expression in the developing heart and skeletal 

muscle supports the idea of developmental commonality between both types of tissue. Cardiac 

specific genes such as Nkx2.5, GATA4, α-MHC, and cTn-I are expressed in developing skeletal 

muscle. Expression levels of certain genes within the heart and skeletal muscle change over time, 

while others, notably Nkx2.5 and GATA4 within the myocardium, remain relatively constant 

over time. Interestingly, sk-fMHC mRNA continues to be expressed at low levels in adult 

myocardium, and cTn-I mRNA continues to be expressed at low levels in adult skeletal muscle, 

despite the absence of protein expression. It is possible that these genes are post-transcriptionally 

suppressed in adulthood, but the continued expression at the transcript level provides a faster 

means of response in response to external events such as injury such as myocardial infarction, 

which leads to recapitulation of the fetal gene program. Sassoon et al. reported that MyoD and 

myogenin were detected by in-situ hybridization in embryonic skeletal muscle but not heart 

[124]. However, they only specify that they examined expression in the heart at embryonic day 

7.5 during heart tube formation. They do not specify the range of time points that they examined. 

MyoD and myogenin may only be expressed in the heart during later development, as our results 

indicate. Di Lisi et al. reported that GATA4 is expressed in C2C12 muscle cells at the transcript 

level but not at the protein level [125]. However, they used C2C12 cells terminally differentiated 

into myotubes in vitro under conventional 2D culture for their analysis, which does not 

accurately represent in vivo development. Overall, our results suggest a shared developmental 

program between skeletal and cardiac muscle, which is lost as they mature into distinct tissue 

types. We speculate that skeletal muscle development (maturation) occurs at later development 

compared to the cardiac muscle, and the skeletal muscle differentiation temporarily requires the 

cardiac muscle phenotype (cyclic twitch) to acquire the function towards highly controlled 



 40 

contraction and relaxation under the regulation of the nervous system, which may be supported 

by the previous report from Fredericks et al. [117].  

In our previous work, we showed that stem cells isolated from juvenile rat skeletal 

muscle could differentiate into cardiomyocyte like cells in a 3D collagen gel bioreactor (MDSC-

3DGB) [67]. With respect to the current work, we showed that MDSC-3DGB expresses cTn-I at 

higher levels than ED20 skeletal muscle but lower than ED20 myocardium. Skeletal muscle 

derived stem cells (MDSCs) isolated from skeletal muscle express biochemical markers present 

in both developing skeletal and cardiac muscle. The findings presented here support the idea that 

MDSCs have the capacity to differentiate into a more cardiac phenotype in-vitro. Fate decisions 

are ultimately influenced by biochemical and biomechanical signals from the environment. 

Providing the appropriate environment for stem cell differentiation remains a topic of ongoing 

research. 

2.5 CONCLUSION 

In conclusion, the current study provides novel evidence that skeletal muscle specific fast myosin 

heavy chain is transiently expressed in the developing immature myocardium, and cardiac 

troponin I is transiently expressed in developing skeletal muscle. The similarities between 

cardiac and skeletal muscle may be linked to their common mesodermal origin. These findings 

shed light on a previously unknown aspect of muscle development. Further studies are necessary 

to examine the role of these contractile proteins during development and how they are regulated. 
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3.0  ENGINEERED HUMAN MUSCLE TISSUE FROM SKELETAL MUSCLE 
DERIVED STEM CELLS AND INDUCED PLURIPOTENT STEM CELL DERIVED 

CARDIAC CELLS 

3.1 INTRODUCTION 

The adult heart is largely a non-regenerative organ. Although cardiomyocytes (CMs), the 

contractile cells of the heart, have a modest rate of turnover, ranging from 1% in youth to less 

than 0.5% in old age [9], this level is not enough to compensate for the large number of 

cardiomyocytes which are lost as a result of heart injury. Combined with the fact that heart 

disease is the leading cause of death in the United States [126], this has prompted the search for 

novel therapies to replace damaged myocardium. Muscle derived stem cells (MDSCs) and 

induced pluripotent (iPS) stem cells are among the types of stem cells under investigation for 

cardiac repair. MDSCs are a multipotent, somatic stem cell which can be obtained from skeletal 

muscle via a modified pre-plate method [127]. MDSCs can be rapidly expanded in vitro to obtain 

clinically relevant numbers of cells, which can be transplanted as an autologous graft. They are 

also advantageous because they are resistant to hypoxia, attenuate fibrosis, and readily 

differentiate into contractile cells [30]. We previously showed that rodent MDSCs differentiate 

into CM-like cells with cardiac-like electrophysiological, biochemical, and contractile properties 

using cell aggregate formation and 3-dimensional (3D) culture in a collagen-based scaffold [67], 

but engineered tissue models of human MDSCs in the context of their relationship to cardiac 

development and disease has not been investigated before. Studies have shown that cell 
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aggregate culture can enhance cell-cell interactions and modulate gene expression, facilitating 

differentiation. Use of 3D engineered tissues as a vehicle for cell transplantation has been shown 

to provide a microenvironment which is optimal for cell survival and integration [90]. The iPS 

cells can be obtained from theoretically any somatic cell type by virus-mediated transfection of a 

quartet of reprogramming factors [128, 129]. These cells can then be differentiated into CMs or 

other cell types using established protocols [130, 131], which combine 3-dimensional culture 

with sequential growth factor and cytokine treatments. This approach ideally provides an 

unlimited source of CMs, but the modification of the genome of the host cell poses a challenge to 

clinical translation [132]. While cell therapy for heart disease remains a long-term goal in the 

field, our current aim is to provide a versatile and robust test bed to study striated muscle 

differentiation from stem cells towards this long-term goal. 

Fetal gene expression is reactivated in the heart in response to various myocardial insults 

and disease states [133, 134], which includes expression of skeletal muscle specific proteins. 

However, this process remains poorly understood. The process may vary in different species, 

limiting the translatability of animal models, and conventional 2D in vitro models do not 

faithfully represent complex tissue architecture or allow for assessment of function at the tissue-

level. Direct biochemical and functional analyses on human myocardial tissue cannot take place 

due to limited tissue access in vivo. Therefore, it is necessary to develop better in vitro models of 

human cardiac muscle in order to better understand the relationship between striated muscle 

development (of both cardiac and skeletal muscle) and the pathogenesis of heart failure, which 

may lead to the development of better cell-based therapies. Creating better in vitro models to 

study human cardiac muscle development will not only broaden our understanding of 
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developmental biology, it may enable us to develop better cell-based therapies for heart disease 

in the future.    

Several studies have shown that developing cardiac and skeletal muscle share expression 

of major cardiac or skeletal muscle specific contractile proteins and transcription factors [35, 36, 

38, 135]. However, this phenomenon has not been investigated in ex vivo engineered muscle 

tissues (EMT). Our current understanding of the nature of engineered muscle tissues is based on 

established models of mature cardiac and skeletal muscle.  Thus, the objective of the current 

study was to investigate the occurrence of this “hybrid” phenotype in EMTs using two stem-cell 

based models, human MDSCs and iPS-cell derived cardiac cells. Our hypothesis was that both 

MDSC-EMT and iPS-EMT possess properties of cardiac and skeletal muscle. Our results 

indicate that MDSC-EMT and iPS-EMT share a number of biochemical similarities, but iPS-

EMT has a better degree of electrical coupling and adrenergic responsiveness.  

3.2 MATERIALS AND METHODS 

3.2.1 Cell Culture  

MDSCs of 3 different human subjects (from 10 to 30 years old) were purchased from Cook 

Myosite, Inc. Cells were cultured in Cook Basal Media (Cook Myosite, Inc., Pittsburgh, PA, 

USA) supplemented with 10% Growth Supplement (Cook Myosite, Inc., Pittsburgh, PA, USA) 

and 1% Antibiotic-Antimycotic solution (AAS, Invitrogen) on collagen-I coated flasks. Cells 

were used for no more than 4 passages and maintained below 50% confluence prior to initiation 

of differentiation. Human Y1 iPS cells were previously established in L.Y’s lab from healthy 

fibroblasts [131] and used as the control. iPS cells were maintained on mouse embryonic 
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fibroblast (MEF) feeder layers with regular human embryonic stem cell medium containing 10 

ng/mL FGF-2 [130]. iPS cells were differentiated into cardiomyocytes using our previously 

established protocol [130, 131]. All growth factors were from R&D systems. Following 

differentiation, embryoid bodies were dissociated using 0.05% trypsin (Invitrogen) and plated on 

Matrigel (BD Bioscience) coated 6 well plates in High-Glucose Dulbecco’s Modified Eagle 

Medium (DMEM, Cellgro) supplemented with 10% Fetal Bovine Serum (FBS), L-Glutamine 

(1:100, Invitrogen), and Penicillin Streptomycin (1:100, Invitrogen) (Figure 3-1A). 
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Figure 3-1. EMT Culture Platform. (a) Model system of 3D engineered muscle tissue culture. MDSCs undergo 

cellular aggregation prior to EMT construction. EMT is formed by mixing MDSC aggregates with collagen/ECM in 

a Flexcell Tissue Train Culture System. MDSC aggregates are cultured as EMT under low-serum conditions to 

induce differentiation. In an analogous manner, iPS-EMT is constructed by mixing dissociated iPS cardiac cells with 

collagen/ECM. (b) Composite phase contrast image of EMT. Cells in EMT aligned in the longitudinal direction and 

formed a muscle tissue during the 14-day culture period. Tissue morphology is maintained by anchors at each end of 

the tissue train plate.  

3.2.2 Fluorescence activated cell sorting  

Cryopreserved MDSCs from Cook Myosite were thawed and expanded to ~60% confluency. 

Cells were trypsinized and stained with CD45-APC (BD), CD56-PE-Cy7 (BD), CD146-PE 

(BD), and UEA-1-FITC (Ulex, BD) antibodies. Samples were analyzed on a Becton Dickinson 
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(San Jose, CA) FACS Aria flow cytometer. The sorter is equipped with a standard configuration 

of three excitation sources. The FACS Aria contains blue, red and violet lasers which excite at 

488, 633 and 407 nm respectively.  Dead cells were initially eliminated based on 7-AAD, a dead 

cell exclusion dye. Cells were then analyzed on the basis of forward scatter (FSC-A) vs side 

scatter (SSC-A) for the selection of single cells and for the elimination of debris and aggregates 

of cells. This population was also analyzed on the basis of height vs width for both forward 

scatter and side scatter.  Doublets of cells were eliminated on the basis of a high width 

measurement. Subsequent analysis of fluorescent populations was limited to this group. 

Unstained cells and isotype controls were used to set the background fluorescence.  Single 

fluorochrome stained cells were used as compensation controls to eliminate spectral bleed over 

between the dyes. Cells were separated into CD56(+) and CD56(-) subpopulations.  These were 

also determined to be CD45 (-), eliminating hematopoietic subpopulations.  The 

CD56(+)/CD45(-) and CD56(-)/CD45(-) were then analyzed for CD146 and Ulex expression. 

The FACSAria is equipped with an 85 micron nozzle and the cells were sorted at a pressure of 

35 psi. The larger nozzle size and lower pressure were used to increase the viability of the cells. 

Sterile PBS is run through the instrument as sheath fluid.  Cells are collected into Cook Basal 

Medium with the populations as previously described [75, 76, 136, 137]. 

3.2.3 Engineered Muscle Tissue (EMT) Construction  

MDSCs were trypsinized, and MDSC-cell aggregates were obtained by rotation culture (Labnet 

Orbit 1000) on a suspension culture plate at 50 rpm for 24 hours prior to tissue construction [67]. 

iPS cardiac cells were trypsinized and counted on the day of EMT construction. Liquid rat tail 

collagen type I (3 mg/mL, Invitrogen) was neutralized with 0.1N NaOH and mixed with Matrigel 
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(BD Bioscience) with a collagen: Matrigel ratio of 0.8 and a final collagen concentration of 0.67 

mg/mL. Cells were seeded in a collagen/Matrigel mixture at a density of 0.5 million cells per 

construct using a Flexcell Tissue Train Culture system (FX-4000, Flexcell International) with a 

total volume of approximately 200 µL per construct to form a linear shaped construct (Figure 3-

1B). To induce differentiation, MSDC-EMTs were cultured in Cook Basal Media supplemented 

with 5% growth supplement, 1% AAS, and human FGF-2 (5ng/mL, Sigma). iPS-EMTs were 

cultured in DMEM supplemented with 10% Fetal Bovine Serum (FBS), L-Glutamine (1:100, 

Invitrogen), and Penicillin Streptomycin (1:100, Invitrogen). 

3.2.4 Real-time Polymerase Chain Reaction  

Total RNA  was  prepared  using  Trizol  solution  (Invitrogen)  and  treated  with  TURBO  

DNA-free  kit  (Ambion, Austin, TX, USA). Primers, whose target genes are Nkx2.5, GATA4, 

Mef2A, Tbx5, GJA1, Myh6, Myh7, MyoD, myogenin, and Beta-Actin  were  obtained  from  

Qiagen  Quanti-Tect  Primer  Assay  with  the  target  fragment  sizes approximately 100 base 

pairs. One step RT was performed using Applied Biosystems High Capacity RNA-to-cDNA Kit 

(Applied Biosystems) with a total of 2 µg RNA in a total volume of 20 µL with the  following   

program:  37°C  for  1  hour,  95°C  for  5  minutes,  4°C  hold.  cDNA  (1  µL)  was  used  for  

RT- PCR  using  the following  program :   50°C  for  2  minutes,  95°C  for  10  minutes. This 

was followed by 95°C for 15   seconds and 60°C for 1 minute, repeated for 40 cycles.  The final 

stage was 95°C for 15 seconds, 60°C for 15 seconds. SYBR Green was used as a detector. 3 

samples were run for each target gene per group from pooled samples using Applied Biosystems 

7900HT system. Relative expression (RQ) was calculated using the ddCt method with β-actin as 

an internal control. A Ct threshold of 38 was set based on the vendor’s instructions.  
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3.2.5 Immunohistochemical Staining 

EMTs  were  fixed  using  4%  paraformaldehyde/PBS  for  30  minutes  and  embedded  in  13%  

polyacrylamide gel.  150 µm  thick  sections  were  made  using  a  vibratory  microtome  

(Vibratome-1000,  Vibratome.com)  and stained  for cardiac troponin-I (cTn-I, Abcam),  cardiac 

troponin-T (cTn-T, Abcam), fast-skeletal muscle heavy chain (sk-fMHC, Sigma), connexin-43 

(Cx-43, Abcam), CD31 (R&D Systems), Nkx2.5 (Santa Cruz), MyoD (Santa Cruz), and α–

smooth muscle actin (α-SMA, Abcam) primary  antibodies  and  Alexa  Fluor 488 or Alexa  

Fluor 594 secondary antibodies. Stained samples were scanned using a confocal microscope 

(Olympus Fluoview FV1000) and used to generate 3D projection images of the tissue sections in 

ImageJ.   

3.2.6 Mechanical Testing 

The  active  force  of  EMTs  was  measured  using  a  customized  setup.  Constructs  were  

transferred  to  a  muscle  testing  station  perfused  with warmed Ringer  solution containing 

2mM CaCl2, 135mM NaCl, 4mM KCl, 10mM Trizma-HCl, 8.3 mM Trizma-base, and 11mM 

glucose.  The constructs were attached to a force transducer (403A, Auroura Scientific, Auroura, 

Canada) using 10-0 monofilament nylon sutures. The other end of each construct was attached to 

a micromanipulator. Field stimulation was applied using a stimulator (Grass S48 Stimulator, 

Grass Medical Instruments) at 5ms duration, 100V. The parameters were set at 10% above the 

threshold required to induce visible contraction of all constructs. The construct length was 

adjusted from 0% to 15% elongation. Force was measured at stimulation rates of 1-5 Hz and in 

response to isoproterenol (ISP, 1µM) and extracellular calcium (Calcium Chloride, 5 mM). 
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Skeletal muscle stimulation was applied as follows to test if tetanus could be induced: 500ms 

train rate, 1000ms duration, 20Hz stimulation rate. 

3.2.7 Intracellular Calcium Transient Measurement 

Samples were loaded for 10 to 15 minutes at 37°C with Rhod 2-AM (Biotium) at a concentration 

of 5 µg/mL. After the dye was  loaded,  the  samples  were  placed  on  the  heated  stage  of  a 

Leica (DM LFSA) microscope. Optical mapping was performed with high spatiotemporal 

resolution (64x64 pixels, 176 fps) at 37°C using a Hamamatsu EM-CCD camera (Model C9100-

12).  Bipolar stimulation (20V, 5ms, 1-3Hz, Grass S48 Stimulator, Grass Medical Instruments) 

was applied to electrically pace EMTs when necessary. The parameters were set at 10% above 

the threshold required to induce visible transients of all constructs. Calcium transients were 

recorded during spontaneous beating and during bipolar stimulation. Changes in signal were 

measured in response to isoproterenol (ISP, 1 µM). Videos were processed in ImageJ (NIH) and 

analyzed using densitometry techniques. A 3x3 pixel area was selected within each cell. The 

average pixel intensity within the region was calculated and normalized to the baseline resting 

value. 

3.2.8 Statistical Procedures  

One-way ANOVA was used to compare gene expression among experimental groups. A paired 

t-test was used to compare changes in force in response to isoproterenol and changes in force in 

response to extracellular calcium. An independent t-test was used to compare changes in calcium 

transient frequency in response to isoproterenol. A two-way repeated measure ANOVA was 

performed to compare active stress-strain relations. Data were expressed as mean ± standard 
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error. Statistical significance was defined by a value of P<0.05. All calculations were performed 

using Sigma Stat 3.0 software (Systat Software Inc.). 

 

3.3 RESULTS 

3.3.1 Surface Marker Expression of MDSC 

We examined the surface marker expression profiles of undifferentiated MDSCs. MDSCs 

predominantly express CD56, a marker of myogenic lineage. A large number of cells also 

expressed CD146, a marker of mesenchymal stem cells. A smaller fraction of cells expressed 

endothelial cell marker Ulex (Figure 3-2, Table 3-1). The majority of cells were myogenic-

mesenchymal cells, co-expressing CD56 and CD146 but not Ulex. Smaller fractions of cells 

were myoblasts (CD45-/CD56+/CD146-/Ulex-) and myogenic-endothelial cells (CD45-

/CD56+/CD146+/Ulex+). Small populations of pericytes (CD45-/CD56-/CD146+/Ulex-) and 

endothelial cells (CD45-/CD56-/CD146-/Ulex+) were also present in sorted populations (Table 

3-1). These data indicate that MDSCs are a heterogeneous population, which contains myogenic 

and supporting non-myogenic cells.   
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Figure 3-2. Fluorescence Activated Cell Sorting Analysis of undifferentiated human MDSCs. The majority of 

cells expressed myogenic (CD56) and mesenchymal (CD146) markers. A small number of cells expressed 

hematopoietic (CD45) and endothelial (Ulex) markers. Human MDSC population is composed of myoblasts 

(CD45−/CD56+/CD146−/Ulex−), myogenic-endothelial cells (CD45−/CD56+/CD146+/Ulex+), pericytes 

(CD45−/CD56−/CD146+/Ulex−), endothelial cells (CD45−/CD56−/CD146+/Ulex−), and myogenic-mesenchymal 

cells (CD45−/CD56+/CD146+/Ulex−). 
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Table 3-1. FACS Analysis of MDSC 

 

3.3.2 Cardiac and skeletal muscle-specific gene and protein expression of EMT   

In this study, a healthy Y1 human iPS cell line was differentiated into cardiac cells using our 

established method [131], which was modified from our previous cardiac differentiation protocol 

with human embryonic stem cells [130]. iPS cell derived cardiac cells and MDSCs were cultured 

in EMTs for 14 days. 

We examined cardiac and skeletal muscle specific gene expression in MDSC-EMT and 

iPS-EMT at culture day 14 by quantitative RT-PCR. MDSC-EMT (Figure 3-3A) significantly 

upregulated expression of both cardiac (Nkx2.5, GATA4, MEF2A, Tbx5, Cx-43, Myh6, Myh7) 

and skeletal muscle (myogenin) genes compared to undifferentiated MDSCs. Note that relative 

quantification values  are expressed as log10 scale. Interestingly, a major skeletal muscle 

transcription factor, MyoD, was downregulated (n=9, p<0.05). iPS-EMT (Figure 3-3B) 

significantly upregulated expression of both cardiac and skeletal muscle related genes compared 
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to undifferentiated iPS cells (n=6). While expression levels of certain genes vary between the 

two tissues, the key point is that they share a common gene expression profile at the 

transcriptional level, which opens up the possibility that MDSCs can transdifferentiate into 

cardiomyocyte-like cells under the appropriate conditions. On a similar note, the expression of 

skeletal muscle specific genes in cardiomyocytes derived from iPS cells using a widely used, 

established protocol suggests that the cardiac and skeletal muscle lineages are not mutually 

exclusive. These data show that MDSC-EMT and iPS-EMT share a common gene expression 

profile of cardiac and skeletal muscle transcription factor and structural protein genes similar to 

developing cardiac and skeletal muscle [35] and differentiating mesenchymal stem cells [138].  
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Figure 3-3. RT-PCR analysis of EMT Gene Expression. (a) Cardiac and skeletal muscle specific mRNA 

expression of MDSC-EMT at culture day 14 after tissue construction. Values are normalized to undifferentiated 

MDSCs. (b) Cardiac and skeletal muscle specific mRNA expression of culture day 14 iPS-EMT. Values are 

normalized to undifferentiated iPS cells. *P<0.05 . **P<0.001 . Red line indicates twofold increase. (c) 

Representative Ct values for MDSC-EMT and iPS-EMT. Although expression levels vary between the tissues, their 

transcriptional and structural gene profiles overlap. 

 

Histologically, it is evident that MDSC-EMT and iPS-EMT co-express cardiac and 

skeletal muscle structural proteins. Both EMTs express cTn-T in a striated pattern with gap 

junction protein, Cx-43 (Figure 3-4A, Figure 3-5A). Notably, the expression pattern of Cx-43 in 
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iPS-EMT resembles neonate myocardium. On the other hand, Cx-43 in MDSC-EMT appears to 

be more diffusely expressed and with less discrete localization at cellular junctions mimicking 

immature fetal myocardium [67]. In line with our previous findings, cTn-I and skeletal muscle 

specific sk-fMHC were found to be co-expressed (Figure 3-4B, Figure 3-5B) similar to 

developing myocardium or skeletal muscle. Finally, non-muscle proteins are also expressed 

within the tissue. We detected endothelial (CD31) and smooth muscle/mesenchymal cell (α-

SMA) marker expression in iPS-EMT and MDSC-EMT (Figure 3-4C, Figure 3-5C). The 

presence of CD31 and α-SMA together with the detection of a mixture of endothelial, 

mesenchymal, and myogenic surface markers by FACS, support the notion that EMT is complex, 

containing multiple cell types, which support cellular processes at the tissue level. 
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Figure 3-4. Immunohistochemical Analysis of culture day 14 MDSC-EMT. (a) Cardiac troponin-T (green) and 

gap junction protein Cx-43 (red). (b) sk-fMHC (green) and cardiac troponin-I (red). (c) α-Smooth muscle actin 

(green) and CD31 (red). Arrow indicates tissue orientation. Blue staining (DAPI) indicates nuclei. Scale bar 

indicates 30μm. 
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Figure 3-5. Immunohistochemical Analysis of culture day 14 iPS-EMT. (a) Cardiac troponin-T (green) and gap 

junction protein Cx-43 (red). (b) sk-fMHC (green) and cardiac troponin-I (red). (c) α-Smooth muscle actin (green) 

and CD31 (red). Yellow arrow shows representative CD31 staining. Arrow indicates tissue orientation. Blue staining 

(DAPI) indicates nuclei. Scale bar indicates 30μm. 
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To investigate whether myocytes share cardiac and skeletal muscle-specific transcription 

factors at the protein level or exist as distinct populations of cells, we stained EMTs with 

Nkx2.5, a cardiac transcription factor, and MyoD, a skeletal muscle transcription factor (Figure 

3-6A, n=3 fields each). In both MDSC-EMT and iPS-EMT, many cells expressed both Nkx2.5 

and MyoD, suggesting that these cells have a true “hybrid” phenotype that does not simply arise 

from skeletal muscle contamination of cardiac cell cultures or vice versa. We did not observe any 

MyoD positive cells that did not express Nkx2.5 in iPS-EMT, demonstrating that MyoD 

expression is not the result of skeletal muscle contamination of iPS cultures. 15% of Nkx2.5 

expressing cells in MDSC-EMT did not express MyoD, which may be related to the 

downregulation of MyoD at the transcriptional level (Figure 3-6B). While it is tempting to 

speculate that these cells may be differentiating towards a more cardiac-like lineage, further 

studies are required to determine the final fate of these cells. A fraction of cells in MDSC-EMT 

expressed only MyoD, which was not observed in iPS-EMT. This fraction may contribute to 

some of the functional differences that were observed between MDSC and iPS-EMT. 
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Figure 3-6. Muscle Transcription Factor Expression in EMT. (a) Expression of Nkx2.5 and MyoD in MDSC-

EMT and iPS-EMT. Both MDSC-EMT and iPS-EMT expressed Nkx2.5 (green) and MyoD (red) transcription 

factors at the protein level. Scale bar indicates 20μm. (b) Distribution of Nkx2.5 and MyoD positive cells in EMT. 

The majority of cells expressed both Nkx2.5 and MyoD. DN denotes double negative cells. *P<0.05 by Chi-square 

test. 

3.3.3 Contractile properties of MDSC-EMT and iPS-EMT  

Both MDSC-EMT and iPS-EMT exhibited spontaneous beating activity. Single spontaneously 

beating cells were observed in MDSC-EMT as early as culture day 4, and spontaneous beating at 

the tissue level was observed by day 7 and sustained throughout the 14 day culture period. iPS-

EMT exhibited spontaneous beating at day 3 which was also maintained for the duration of 

culture. EMT was attached to a force transducer in order to measure contractile force (Figure 3-
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7A). In response to field stimulation, both MDSC-EMT and iPS-EMT demonstrated the ability 

to generate contractile force. Both MDSC-EMT (n=11) and iPS-EMT (n=7) exhibited a Frank-

Starling relationship, displaying a proportional increase in force with increasing construct length 

(Figure 3-7B, Figure 3-7C). Some reports have stated that the force-strain relation is steeper in 

cardiac vs. skeletal muscle [139], while others have found them to be similar [140]. Nonetheless, 

we have found that both share the same fundamental relationship with a similar slope. A greater 

steepness in cardiac muscle may manifest itself in mature tissues. iPS-EMT (0.179 ± 0.016 mN, 

n=7) and MDSC-EMT (0.166 ± 0.017 mN, n=11) exhibited similar contractile force at maximal 

length, Lmax (Figure 3-7D). Both MDSC-EMT (n=11) and iPS-EMT (n=7) displayed negative 

force-frequency relationships in the range of 1 to 5 Hz stimulation rates (Figure 3-7E). iPS-EMT 

failed to respond above stimulation rates of 2.5Hz, instead maintaining its own spontaneous 

cycling frequency. In response to non-selective β-adrenergic receptor agonist isoproterenol, iPS-

EMT (107.91 ± 3.07%, n=7, P<0.05) and MDSC-EMT (101.44 ± 3.19%, n=8, P<0.05) showed a 

modest but significant increase in contractile force (Figure 3-7F). MDSC-EMT (123.05 ± 

16.18%, n=11, P < 0.05) and iPS-EMT (110.99 ± 5.76%, n=7, P < 0.001) showed a significant 

increase in force in response to increased extracellular calcium ion (Figure 3-7G), suggesting that 

force generation is sensitive to extracellular calcium influx.  

The negative force-frequency relationship is indicative of immature excitation-

contraction coupling. Skeletal muscle can respond to adrenergic stimulation with increased 

inotropy [141], particularly under fatigued conditions [142]. However, under normal conditions, 

the response of skeletal muscle is small [143] but similar to early embryonic tissue [144]. On the 

other hand, the cardiac contractile response to ISP is much greater in later stages in cardiac 

muscle [144]. From this, we can infer that immature cardiac and skeletal muscle both respond to 
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ISP with modest positive inotropy. The extracellular calcium challenge is designed to test the 

acute response of the EMT to calcium influx. Addition of calcium leads to a transient increase in 

force [145] as calcium ions enter through cell membrane-bound calcium channels. Cardiac and 

skeletal muscle share isoforms of these calcium handling proteins during early myogenesis [146-

148], and expression of certain proteins, particularly SERCA, is weak in early embryogenesis 

and increases during development. As a result, contraction is more dependent on extracellular 

calcium entry during the early phases of both cardiac and skeletal myogenesis [149-151]. 

Although we did not examine the expression of calcium handling proteins in this study, the acute 

extracellular calcium response suggests that the ability of myocytes within EMT to regulate 

cytosolic calcium is still immature and similar to embryonic or fetal myocytes [144].  While 

mature cardiac or skeletal muscle can also respond to extracellular calcium, the small inotropic 

response to ISP relative to the greater response to calcium demonstrate that beta adrenergic 

receptor signaling and calcium cycling are not yet fully developed. Taken together with the 

negative force frequency relationship, these contractile responses to pharmacological and 

electrical stimulation indicate that EMT has contractile properties of immature striated muscle. 

To further investigate the dependence of contraction on extracellular calcium, we treated 

EMTs with Cadmium Chloride (1 mM), a calcium channel blocker. After 5 minutes, contraction 

was significantly suppressed. The majority of MDSC-EMT and iPS-EMT constructs stopped 

contracting by visual inspection under a light microscope. (Data not shown.) This behavior does 

not occur in mature skeletal muscle [68]. Train stimulation at 20Hz elicited a tetanic response 

from MDSC-EMT, while it did not in iPS-EMT (Figure 3-7H). In general, tetanus cannot be 

triggered in cardiomyocytes due to the unique electrical properties of myocardium, although it is 

possible under certain conditions [152, 153].  
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Figure 3-7. Biomechanical testing of EMT. (a) EMTs were mounted on a customized mechanical testing station 

using monofilament nylon sutures at the points indicated by the yellow arrows. (b) Representative contractile force 

traces of EMT at 0, 5, 10, and 15% strain. (c) Active force-strain relations of culture day 14 MDSC-EMT and iPS-

EMT at 0 to 0.15 strain. (d) Active force increased in response to increased strain (*P<0.05 , **P<0.001 versus 

baseline, ANOVA). (d) Active force at maximal strain, (15%). (e) Force frequency relationship of EMT. Culture day 

14 MDSC-EMT and iPS-EMT electrically field stimulated at rates of 1 to 5Hz at 100V and 5ms duration. EMTs 

showed decreased active force at increasing pacing rates. (f) Contractile response of EMT to ISP. Culture day 14 

MDSC-EMT (blue) and iPS-EMT (red) were treated with 1μM ISP for 3 minutes and showed increased active force 

*P<0.05 versus pretreatment. (g) Contractile response of EMT to extracellular calcium. Culture day 14 MDSC-EMT 

(blue) and iPS-EMT (red) were treated with 2mM CaCl2 for 3 minutes and showed increased active force. *P<0.05 

versus pretreatment. **P<0.001 versus pretreatment. (h) Representative train stimulation of MDSC-EMT and iPS-

EMT. 
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3.3.4 Intracellular Calcium Ion Transients 

To examine the electrophysiological properties of MDSC-EMT and iPS-EMT, we recorded 

intracellular calcium ion transients from culture day 14 EMTs. Transients were recorded using 

calcium indicator dye Rhod2-AM during spontaneous beating or under electrical pacing (1Hz, 

20V, 5ms). EMTs exhibited spontaneous calcium transients and responded to electrical pacing 

(Figure 3-8A). We noted that while iPS-EMT maintained steadier, rhythmic contractions (Figure 

3-8E) compared to MDSC-EMT, MDSC-EMT contained a mixture of cells whose transients 

were synchronized (Figure 3-8B) and not fully synchronized (Figure 3-8C) with surrounding 

cells within the same engineered muscle tissue. These responses indicate immature calcium 

handling. Positive chronotropic effects of ISP on calcium transients of randomly selected cells 

within each EMT were observed in both EMTs (Figure 3-8D, Figure 3-8E). We observed an 

increase in the frequency of calcium transients in both MDSC-EMT (P<0.05) and iPS-EMT 

(P<0.05).   
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Figure 3-8. Intracellular Calcium Transients of EMT. (a) MDSC-EMT calcium transient under electric pacing at 

1Hz, 20V, 5ms. (b) Synchronized calcium transients at rest (top) and during spontaneous beating (bottom) of cells 

within MDSC-EMT. (c) Unsynchronized spontaneous calcium transients in MDSC-EMT. Scale bar indicates 50μm. 

(d) Representative calcium transients of MDSC-EMT (blue) and iPS-EMT (red) at baseline and after addition of 

1μM ISP. (e) Chronotropic effect of ISP on calcium transient activity of EMT. Treatment of culture day 14 MDSC-

EMT and iPS-EMT with 1μM ISP increased spontaneous calcium transient activity. *P<0.05 versus baseline. 
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3.4 DISCUSSION 

The widespread burden of cardiovascular disease has prompted the investigation of cell sources 

for cellular cardiomyoplasty.  Among these, cells derived from skeletal muscle are an attractive 

source for cells. Unlike myocardium, which has limited regenerative ability, MDSCs have a 

robust potential for self-renewal as well as tolerance for hypoxic conditions and ability to reduce 

fibrosis and stimulate angiogenesis. In addition, unlike most other cell sources, they are naturally 

disposed to contractility. Although there are fundamental differences between mature cardiac and 

skeletal muscle (gap junction coupling, degree of multinucleation, morphology), there are 

multiple lines of evidence that support strong similarities between cardiac and skeletal muscle 

during development, which makes skeletal muscle a compelling source of stem cells. The Mef2 

family of genes regulates many genes related to cardiac and skeletal muscle. Mef2c is first 

expressed in cardiac mesoderm and is used as an early marker of the cardiac lineage [154], but it 

is also expressed in MDSCs. Cardiac isoforms of Tn-T (cTn-T) are present in fetal skeletal 

muscle but are not expressed in healthy adult skeletal muscle [155]. Cardiac and skeletal actin 

are co-expressed in developing cardiac and skeletal muscle [156]. Skeletal muscle specific 

troponins are expressed in the developing heart [38, 157]. Cardiac-like excitation-coupling 

mechanisms are present in early skeletal myogenesis, while the “skeletal” excitation-coupling 

mechanisms dominate in more mature skeletal muscle [39]. Among the various cell types, which 

have been investigated for cardiac cell therapy, several studies have shown that cells isolated 

from skeletal muscle can transdifferentiate into a CM-like phenotype [49, 68] or through fusion 

events. There have been several previous reports of CM differentiation from rodent MDSCs, 

including those from our lab [49, 67, 68, 158]. To our knowledge, cardiomyocyte differentiation 

from human skeletal muscle derived stem cells has only been reported once [159]. Invernici and 
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colleagues reported that retinoic acid induces cardiomyocyte differentiation in MDSCs. 

However, retinoic acid also enhances skeletal muscle differentiation in skeletal myoblasts [160], 

embryonic stem cells [161], and rhabdomyosarcoma cells [162]. While retinoic acid has been 

shown to accelerate CM differentiation [163], other studies have shown that it may even play an 

inhibitory role in cardiac specification [164]. Invernici et al. did not examine the potential for 

concurrent skeletal muscle differentiation. It is possible that skeletal muscle differentiation 

overlaps with cardiomyogenic differentiation, as we have reported here. An interesting study by 

Crippa et al. showed that MyoD expression in the heart is regulated by miR-669 [103], and 

ablation of this microRNA causes cardiac progenitor cells to differentiate into skeletal muscle. 

Taken together, these studies show that (1) developing cardiac and skeletal muscle share many 

similarities and (2) stem cells from skeletal muscle can differentiate into a cardiac-like 

phenotype and vice versa. However, the underlying mechanisms remain poorly understood. The 

current study was motivated by the need to develop a better model to study this phenomenon.  

Recently, iPS cell derived cardiac cells have garnered interest as a source of cells to 

repopulate damaged myocardium. However, issues such as teratogenicity and viral-based 

genome modification limit clinical translation of this technology. We recently showed that 

developing cardiac and skeletal muscle share expression of cTn-I and sk-fMHC and major 

transcription factors [35]. To date, the question of whether engineered tissues created in vitro 

also exhibit this hybrid cardiac-skeletal phenotype has not been explored in detail. Gaining a 

better understanding of the nature of human EMT in the broader context of skeletal and cardiac 

muscle development, rather than exploring each one exclusively, may provide key insights 

towards advancing current cell therapies. In order to further probe this question, we studied EMT 

constructed using human iPS cell derived cardiac cells and human MDSCs. 
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Our strategy for differentiation of human MDSCs builds on our previous work with 

differentiation of rodent MDSCs [67].  The combination of low-serum conditions, cell aggregate 

formation, and 3-D culture enhanced cardiac or skeletal muscle-specific gene expression and 

contractile properties in a way that better represents native cardiac or skeletal muscle tissue. This 

strategy, namely using 3D culture, is analogous, though not identical, to use of embryoid bodies 

(EB) to facilitate cardiac or skeletal muscle differentiation from pluripotent stem cells such as 

embryonic or iPS cells. It is worth noting that this strategy (EB formation) can be used to obtain 

both cardiac and skeletal muscle cells from pluripotent stem cells [165]. We found that both 

cardiac and skeletal muscle specific genes were upregulated during MDSC-EMT differentiation 

and iPS-EMT differentiation. This mirrors the co-expression of cardiac and skeletal muscle 

transcription factors that occurs during development of both muscle types, which become 

divergent in mature cardiac and skeletal muscle. The expression of skeletal muscle transcription 

factors in iPS cell derived CMs is interesting, since these transcription factors are generally 

considered to be skeletal muscle specific and not present in cardiac muscle [166]. The role that 

these transcription factors play in cardiac cells and their potential relation to the fetal gene 

program in heart failure remain to be investigated. We also found that most iPS cell-derived 

cardiomyocytes and MDSCs (>50%) co-expressed Nkx2.5 and MyoD protein, suggesting that 

these cells appear to be a hybrid phenotype of skeletal and cardiac muscle. The presence of 

MyoD in iPS-cell derived cardiomyocytes is interesting. There have been a few reports of MyoD 

expression in the hearts of adult, developing, or diseased organisms [103, 167, 168], but the 

prevailing consensus is that MyoD is specific to skeletal muscle [15, 169]. However, these 

reports are based on animal studies, and we are not aware of any reports of MyoD expression in 

the human fetal heart, either positive or negative. Thus, while there are numerous biochemical 
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and functional similarities between engineered and native tissue, there may be more subtle 

differences between in vitro stem cell differentiation and developmental courses seen in native 

embryonic tissue. It is also possible that human heart development differs from other species in 

some respects. While fibroblasts can be programmed to cardiomyocyte-like cells by 3 factors 

(GMT) in mice, generation of cardiomyocyte-like cells from human fibroblasts required a total 

of 7 factors to achieve a similar level of reprogramming [167]. This study highlights the as of yet 

poorly understood differences between cardiovascular development in humans and animals, 

which are important for translating basic research towards clinical therapies. Therefore, studies 

using human cells are important to complement the results of animal models.   

While there were differences in expression of cardiac and skeletal muscle genes between 

iPS-EMT and MDSC-EMT, gene expression tells only one part of a much bigger story. 

Fibroblasts can be directly reprogrammed into cardiomyocytes by constitutive overexpression of 

3 cardiac transcription factors (GATA4, Tbx5, and Mef2c) [15]. Yet, only a small subset of these 

transduced cells develops into functioning cardiomyocytes despite high levels of expression of 

transduced genes. In this case, it is possible that more is not necessarily better. Generation of 

functional cells requires an overall balance of gene expression in the context of the source cell, 

desired target cell, and posttranscriptional factors. It has been suggested that ratios of selected 

genes rather than their absolute levels allows them to contribute to the development of functional 

cellular phenotypes [169]. In accordance with this study, the cardiac transcription factors 

Nkx2.5, GATA4, and Tbx5 are expressed in a ratio of approximately 1:1:1 in both iPS-EMT and 

MDSC-EMT. This balance may contribute to the cardiac-like phenotypes that were observed in 

both EMTs.  
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These trends also manifest themselves histologically. We found that cTn-I and sk-fMHC 

are co-expressed by both MDSC-EMT and iPS-EMT, similar to developing cardiac and skeletal 

muscle [35]. Both EMT types also express cTn-T and Cx-43. A noteworthy difference is that the 

expression of Cx-43 in MDSC-EMTs at the cell-cell interface as discrete gap junctions is less 

pronounced compared to iPS-EMT. However, we did observe synchronous calcium transients 

between neighboring myocytes in MDSC-EMT, suggesting the potential for electrical coupling. 

Gap junction coupling is an important requirement for synchronized contraction between 

myocytes, and lack of electromechanical integration was identified as a major hurdle for the use 

of skeletal myoblasts for myocardial repair [170]. While cells in MDSC-EMT did not form gap 

junctions to the same extent as iPS-EMT during the culture duration in the current study, 

connexin-43 gap junction formation is upregulated prior to myoblast alignment, and 

overexpression of connexin-43 in myoblasts [171-173] and mechanical preconditioning [174, 

175] have been shown to enhance electrical coupling with cardiomyocytes. Thus, strategies to 

improve cell-cell coupling in skeletal muscle cells are ongoing. 

Both MDSC-EMT and iPS-EMT demonstrated a chronotropic response to ISP similar to 

cardiac tissue and distinct from mature skeletal muscle [68]. Both MDSC-EMT and iPS-EMT 

exhibit positive force-strain (Frank-Starling) and negative force-frequency relationships, which 

are indicative of immature excitation-contraction coupling. Taken together, our functional 

assessments show that MDSC-EMT and iPS-EMT mimic immature or developing striated 

muscle. 

A number of studies have shown that a mixture of cell types is optimal for efficient CM 

differentiation and tissue formation [176]. Our flow cytometry data indicates that MDSC is a 

predominantly myogenic-mesenchymal-like population with smaller numbers of skeletal 
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myoblasts, myogenic-endothelial cells, pericytes, and endothelial cells [136]. We also show 

expression of smooth muscle (α-SMA) and CD31 in the construct. iPS-EMT also contains a 

mixture of cardiomyocytes, smooth muscle, and endothelial cells [131]. Thus, both tissue types 

contain a naturally heterogeneous mixture of cells which supports efficient muscle differentiation 

and tissue formation. The role that these heterotypic cell interactions play in striated muscle 

development and growth requires further investigation. 

There are a number of limitations to the current study. Our study compared the properties 

of two types of artificial human striated muscle and showed that both share cardiac and skeletal 

muscle proteins/genes and functional properties. We did not have access to native human tissues 

for this study, so it remains to be seen if these properties are also present in either developing or 

mature human tissues. However, our findings are consistent with previous in vitro and animal 

studies, and we believe these findings provide new insight into previously unknown properties of 

engineered tissues. Given our previous findings, further studies are needed to better understand 

the role of the “hybrid” phenotype in cell fate decisions. Our study also calls into question the 

specificity of commonly used cardiac and skeletal muscle markers. When evaluating cell 

differentiation, the possibility of differentiation into other, closely related cell types should also 

be considered. This also adds complexity to evaluating cardiac and skeletal muscle 

differentiation. Differentiated myocytes likely express a combination of cardiac and skeletal 

muscle specific proteins. Post-transcriptional and epigenetic factors may be an important key in 

generating more functional CM-like cells. Finally, we identified both muscle and non-muscle 

cell types within each EMT as part of a heterogeneous population. Whether differentiated muscle 

cells arise from a single subpopulation or multiple subpopulations is unclear, and the role of 

these cell interactions in cell differentiation and tissue formation requires further investigation. 
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3.5 CONCLUSION 

In summary, we have shown that MDSC-EMT and iPS-EMT share major cardiac and skeletal 

muscle specific gene and structural protein expression patterns and highlighted their functional 

similarities/differences. These 3D muscle tissue models recapitulate elements of developing 

cardiac and skeletal muscle. While the optimization of cell sources for cardiomyoplasty remains 

an area of ongoing work in the field, our results show that EMT mimics developing cardiac and 

skeletal muscle and can serve as a versatile in vitro model to study and better understand cell 

differentiation and tissue development as a functional human engineered muscle towards the 

long-term goal of cellular cardiomyoplasty. 
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4.0  CARDIOMYOCYTE DIFFERENTIATION FROM HUMAN MUSCLE DERIVED 
STEM CELLS BY TEMPORAL MODULATION OF SOLUBLE AND BIOPHYSICAL 

FACTORS 

4.1 INTRODUCTION 

In chapter 2, we saw that developing cardiac and skeletal muscle share major transcription 

factors and structural proteins during development [35]. In chapter 3, we extended these findings 

and found that in vitro-based 3D engineered muscle tissues made using cardiac (iPS cardiac 

progenitors) and skeletal muscle derived stem cells (MDSC) also share these biochemical 

properties and are also functionally similar [177]. Keeping in mind the risks associated with 

native cardiac stem cell isolation and the untested nature of iPS cells for human cell therapy, 

MDSCs remain an important candidate cell source for replacing damaged myocardial tissue. 

However, in order to achieve more positive therapeutic outcomes, the transplanted cells/tissues 

should resemble those which they are intended to replace. Following this biomimetic approach, 

MDSCs should be induced to differentiate into cells which are similar to cardiomyocytes (CM). 

Unfortunately, significant knowledge gaps still exist regarding how stem cells are regulated at 

the genetic and epigenetic levels and particularly how the cardiac and skeletal myogenic 

programs are tied to one another. The goal of the current study is to integrate soluble and 

biophysical factors which are known to promote cardiomyogenesis in order to improve the 

existing EMT protocol. To that end, we have introduced a combination of biophysical and 

soluble factor-based stimuli in a controlled manner in order to provide an integrated approach for 
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induction of MDSCs into more functionally competent CM-like cells, which are capable of 

contraction and intercellular integration. We have identified a sequential treatment of four 

soluble factors, which, combined with optimized biophysical conditions, produced cardiac-like 

tissue capable of coordinated contractions, improved force generation properties, and better 

response to isoproterenol (ISP). While iPS cells are triggered to differentiate by similar signals, 

the use of MDSCs bypasses a pluripotent state and eliminates the need for viral reprogramming. 

4.1.1 miR-206 Inhibitor 

MicroRNAs (miRNAs) are small, non-coding RNAs averaging 22 nucleotides in length. They 

regulate gene expression at the transcriptional and post-transcriptional levels. While many 

miRNAs are ubiquitously expressed, others are tissue specific. Several miRNAs, including miR-

1, -133, -and -206, have been shown to be highly enriched in striated muscle and are termed 

myoMIRs [178]. Subsequent studies confirmed that miR-206 is primarily expressed in skeletal 

muscle. It plays a role in somite development, myogenesis, and fiber type specification [100]. 

One of the experimentally verified downstream targets of miR-206 is connexin-43 (cx-43) [179]. 

In the adult heart, cx-43 is the predominant gap junction protein in ventricular CMs [180] and is 

responsible for proper electrical propagation. In skeletal muscle, cx-43 is required for proper 

myoblast alignment and fusion, after which cx-43 is rapidly downregulated [179]. It is believed 

that abnormal, prolonged expression of cx-43 in skeletal muscle can interfere with 

neuromuscular junction function [100]. However, expression of cx-43 is desirable for stem cells 

to be used in the heart. The miR-206 inhibitor is a chemically modified, single stranded RNA 

that specifically binds to endogenous miR-206 and inhibits its activity.  By inhibiting its activity, 
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cx-43 gap junctions can be preserved and skeletal muscle differentiation and fusion could be 

abrogated in favor of a more cardiac-like phenotype. 

4.1.2 Lithium Chloride 

Lithium Chloride (LiCl) is an ionic compound with high water solubility. Lithium compounds 

are commonly used as psychiatric medication [181], suggesting that they can be safely used to 

treat cells in vitro. LiCl can activate Wnt signaling by inhibiting GSK-3β [182]. This allows for 

the accumulation of β-catenin and the activation of β-catenin dependent genes, including cx-43. 

LiCl treatment has been shown to enhance cx-43 gap junction expression in skeletal myoblasts 

[183] and differentiating ES-cell derived CMs [184]. GSK-3β is also involved in other signaling 

pathways, so it may also have effects in addition to Wnt activation. 

4.1.3 Inhibitor of Wnt Response-1 (IWR-1) 

IWR-1 is a small molecule that acts as a Wnt pathway inhibitor via interaction with Axin [185]. 

The Wnt pathway plays a critical role during cardiac differentiation. Temporal control of Wnt 

signaling by small molecule agonists and antagonists produces highly pure cultures of CMs from 

human pluripotent stem cells [186]. Wnt signaling is active during early cardiac differentiation 

and later suppressed during commitment of early mesoderm to cardiac mesoderm in directed 

pluripotent stem cell differentiation protocols [187] and in the embryo [188]. There is also 

evidence that Wnt inhibition can prevent hypertrophic myotube formation in skeletal muscle 

cells [189]. We reasoned that since MDSCs are already derived from adult mesoderm tissue, 

inhibition of Wnt at the onset of differentiation rather than later stages would aid in cardiac 

specification.  
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4.1.4 Bone Morphogenic Protein-4 (BMP-4) 

Bone morphogenic protein-4, BMP-4, is a cytokine of the TGF-β family that is involved in 

cardiac differentiation. BMP-4 can activate cardiac genes in combination with Wnt signals at the 

expense of other lineages such as skeletal muscle in mesenchymal stem cells [138]. The 

combination of small molecule Wnt inhibitors with BMP-4 can synergistically induce cardiac 

differentiation in iPS cells [190]. It has also been shown that Wnt and BMP signals activate 

distinct sets of cardiac transcription factors [191], suggesting that both are required for efficient 

cardiac differentiation. BMP signals also have a role in regulating cx-43 expression in 

osteoblasts [192], chondrocytes [193], and neurons [194]. Although it has not been 

experimentally verified, this suggests that BMP may also have a role in gap junction regulation 

in muscle. Appropriate timing and dosage are also important, since these signals can have stage-

dependent effects [195]. For example, higher dosages [196] or sustained treatment [197] can 

push cells toward the osteogenic lineage. 

4.1.5 Biophysical Aggregation 

Cell aggregate formation is important for CM differentiation from stem cells. ES cells are 

routinely aggregated into embryoid bodies and cultured in suspension using cardiac 

differentiation protocols for pluripotent stem cells [198]. It is believed that aggregate culture of 

stem cells recapitulates important physical aspects of embryonic development such as cell-cell 

interactions and can mediate processes including differentiation, proliferation, and apoptosis. For 

example, aggregate formation kinetics can affect β-catenin signaling and subsequent 

differentiation through cadherin junctions [199]. Rotary orbital suspension culture is a common 

method to generate stem cell aggregates. In addition to cell-cell contacts, this method also 
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introduces hydrodynamic shear, which can also alter gene expression [200]. Muscle derived stem 

cells cultured as 3D aggregates, termed myospheres, also display electrophysiological properties 

similar to CMs, which are modulated by culture conditions [201]. Aggregate culture can also 

significantly reduce proliferation [67], and affect apoptosis [202]. In light of these multivariate 

effects, aggregate culture conditions should be carefully selected to achieve the desired outcome. 

In the current study, we would that short-term aggregate culture for several hours proved 

superior to longer (24 hour) culture periods for generating functional tissue. 

Thus, the objective of the present study is to develop an advanced culture method that 

induces CM differentiation from human MDSCs at the tissue level in vitro. We tested the 

hypothesis that timed soluble factor and cell aggregate formation in conjunction with 3D culture 

could induce MDSCs to differentiate into CM-like cells as a functioning cardiac-like 3D tissue. 

While the full reconstitution of lost myocardial tissue by MDSCs, or any stem cell, remains more 

of an ideal than an attainable goal, our findings represent a stepwise advancement over existing 

cell therapy modalities. 

4.2 MATERIALS AND METHODS 

4.2.1 Cell Culture  

MDSCs of 3 different human subjects (from 10 to 30 years old) were purchased from Cook 

Myosite, Inc. Cells were cultured in Cook Basal Media (Cook Myosite, Inc., Pittsburgh, PA, 

USA) supplemented with 10% Growth Supplement (Cook Myosite, Inc., Pittsburgh, PA, USA) 

and 1% Antibiotic-Antimycotic solution (AAS, Invitrogen) on collagen-I coated flasks. Cells 
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were used for no more than 4 passages and maintained below 50% confluence prior to initiation 

of differentiation. 

4.2.2 Engineered Muscle Tissue (EMT) Construction and MDSC Differentiation  

Undifferentiated MDSCs underwent 4 different differentiation protocols. In the 2D 

differentiation protocol (2D, Figure 4-1A), undifferentiated MDSCs (Figure 4-1E) were plated at 

high density (40000 cells/cm2) and exposed to differentiation media (DM) consisting of Cook 

Basal Media supplemented with 5% growth supplement, 1% AAS, and human FGF-2 (5ng/mL, 

Sigma) for 14 days (Figure 4-1F). In the 3-dimensional engineered muscle tissue protocol (EMT, 

Figure 4-2B), MDSCs were cultured in DM within the 3D engineered muscle tissue (Figure 4-

2G). To construct EMT, Liquid rat tail collagen type I (3 mg/mL, Invitrogen) was neutralized 

with 0.1N NaOH and mixed with Matrigel (BD Bioscience) with a collagen: Matrigel ratio of 0.8 

and a final collagen concentration of 0.67 mg/mL. Trypsinized MDSCs were seeded in a 

collagen/Matrigel mixture at a density of 0.5 million cells per construct using a Flexcell Tissue 

Train Culture system (FX-4000, Flexcell International) with a total volume of approximately 200 

µL per construct to form a linear shaped construct. In the 4 factor engineered muscle tissue 

protocol (4F-EMT, Figure 4-1C), EMT was constructed as described, cultured in DM, and 

treated with 4 chemical factors:  miR-206 inhibitor (100pmol, Life Technologies), IWR-1 

(10uM, Sigma), LiCl (10mM, Sigma), and BMP-4 (25ng/ml, Prospec-Bio) at different time 

points as illustrated in Figure 4-1C. For transfection of miR-206 inhibitor, X-treme Gene siRNA 

transfection reagent (Roche) was used according to the manufacturer’s instructions. Using 

100pmol/construct, the majority of cells were transfected (~80% by Cy3 labeled small RNA, 

Supplementary Figure 4-8B). In the MDSC aggregate 4 factor engineered muscle tissue protocol 
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(4F-AEMT, Figure 4-1D), MDSCs were trypsinized, and MDSC-cell aggregates were obtained 

by rotation culture (Labnet Orbit 1000) on a suspension culture plate at 50 rpm for 4 hours prior 

to tissue construction (Figure 4-1H) [67]. Aggregates were mixed with collagen and matrix 

factors (Figure 4-1I) to form a construct as previously described and treated with 4 chemical 

factors as illustrated in Figure 4-1D. 14 days was used as the end point for all protocols, and the 

media was changed every other day. 

 

 

 

Figure 4-1. Differentiation of human MDSC. (A) 2D: MDSCs are seeded on a tissue culture flask at high density 

and allowed to differentiate. (B) EMT: MDSCs are cultured within 3D engineered muscle tissue. (C) 4F-EMT: 

MDSCs are cultured in 3D engineered muscle tissue and treated with 4 chemical factors. (D) 4F-AEMT: MDSC 
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aggregates are cultured in 3D engineered muscle tissue and treated with 4 chemical factors. (E) Undifferentiated 

MDSCs on tissue culture flask. (F) 2D Differentiated MDSCs at day 14. (G) MDSCs in EMT. (H) MDSC 

aggregates after 4 hours of rotary suspension culture. (I) MDSC aggregates in EMT immediately after tissue 

construction. Scale bar indicates 250 µm. 

4.2.3 Real-time Polymerase Chain Reaction  

Total RNA  was  prepared  using  Trizol  solution  (Invitrogen)  and  treated  with  TURBO  

DNA-free  kit  (Ambion, Austin, TX, USA). Primers, whose target genes are Nkx2.5, GATA4, 

Mef2c, Tbx5, GJA1, Myh6, Myh7, MyoD, myogenin, and β-Actin  were  obtained  from  Qiagen  

Quanti-Tect  Primer  Assay  with  the  target  fragment  sizes approximately 100 base pairs. One 

step RT was performed using Applied Biosystems High Capacity RNA-to-cDNA Kit (Applied 

Biosystems) with a total of 2 µg RNA in a total volume of 20 µL with the  following   program:  

37°C  for  1  hour,  95°C  for  5  minutes,  4°C  hold.  cDNA  (1  µL)  was  used  for  RT- PCR  

using  the following  program :   50°C  for  2  minutes,  95°C  for  10  minutes. This was 

followed by 95°C for 15   seconds and 60°C for 1 minute, repeated for 40 cycles.  The final stage 

was 95°C for 15 seconds, 60°C for 15 seconds. SYBR Green was used as a detector. 3 samples 

were run for each target gene per group from pooled samples using Applied Biosystems 7900HT 

system. Relative expression (RQ) was calculated using the ddCt method with β-actin as an 

internal control.  

4.2.4 Immunohistochemical Staining 

EMTs  were  fixed  using  4%  paraformaldehyde/PBS  for  30  minutes  and  embedded  in  13%  

polyacrylamide gel.  150 µm  thick  sections  were  made  using  a  vibratory  microtome  

(Vibratome- 1000,  Vibratome.com)  and stained  for cardiac troponin-T (cTn-T, Abcam), alpha 
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sarcomeric actinin (α-Actinin, Sigma), connexin-43 (Cx-43, Abcam), active caspase-3 (Abcam), 

and phospho histone H3 (P-histone3, Abcam) primary  antibodies  and  Alexa  Fluor 488 or 

Alexa  Fluor 594 secondary antibodies. Stained samples were scanned using a confocal 

microscope (Olympus Fluoview FV1000) and used to generate 3D projection images of the 

tissue sections in ImageJ.  Proliferation and apoptosis were assessed by calculating the 

percentage of total nuclei positive for phospho histone H3 and active caspase-3, respectively. 

Myotubes were identified as cells containing 5 or more nuclei, since human CMs can contain up 

to 4 nuclei [203]. 

4.2.5 Mechanical Testing 

The  active  force  of  EMTs  was  measured  using  a  customized  setup.  Constructs  were  

transferred  to  a  muscle  testing  station  perfused  with warmed Ringer  solution containing 

2mM CaCl2, 135mM NaCl, 4mM KCl, 10mM Trizma-HCl, 8.3 mM Trizma-base, and 11mM 

glucose.  The constructs were attached to a force transducer (403A, Auroura Scientific, Auroura, 

Canada) using nylon meshes. The other end of each construct was attached to a 

micromanipulator. Field stimulation was applied using a stimulator (Grass S48 Stimulator, Grass 

Medical Instruments) at 5ms duration, 100V. The parameters were set at 10% above the 

threshold required to induce visible contraction of all constructs. The construct length was 

adjusted from 0% to 15% elongation. Force was measured at stimulation rates of 1-5 Hz and in 

response to isoproterenol (ISP, 1µM) and extracellular calcium (Calcium Chloride, 5 mM).  
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4.2.6 Intracellular Calcium Transient Measurement 

Samples were loaded for 10 to 15 minutes at 37°C with Rhod 2-AM (Biotium) at a concentration 

of 5 µg/mL. After the dye was  loaded,  the  samples  were  placed  on  the  heated  stage  of  a 

Leica (DM LFSA) microscope. Optical mapping was performed with high spatiotemporal 

resolution (64x64 pixels, 176 fps) at 37°C using a Hamamatsu EM-CCD camera (Model C9100-

12).  Calcium transients were recorded during spontaneous beating. Videos were processed in 

ImageJ (NIH) and analyzed using densitometry techniques. A 3x3 pixel area was selected within 

each cell. The average pixel intensity within the region was calculated and normalized to the 

baseline resting value. 

4.2.7 Statistical Procedures  

One-way ANOVA was used to compare gene expression among experimental groups, 

proliferation rates, active caspase-3 expression, multinucleation percentages, changes in force in 

response to isoproterenol, and changes in force in response to extracellular calcium. A two-way 

repeated measures ANOVA was performed to compare active stress-strain relations. A post-hoc 

Tukey test was used to determine individual differences between experimental groups. Data were 

expressed as mean ± standard error. Statistical significance was defined by a value of P<0.05. 

All calculations were performed using Sigma Stat 3.0 software (Systat Software Inc.). 
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4.3 RESULTS 

4.3.1 Temporal Effects of MDSC Aggregate Formation 

First, we examined the effects of MDSC aggregate formation on cell death, proliferation, and 

differentiation. We noted that active caspase-3 expression increased significantly at 4 hours 

(3.6±0.4%, n=4 fields, p<0.05) and 24 hours (39.5±4.2%, n=4, p<0.001) of aggregate formation 

compared to 0 hours (0.9±0.5%, n=4) indicating that cells were entering an apoptotic fate at 

longer culture periods. We also examined proliferation by phospho histone H3 expression and 

noted that proliferation decreased in a time dependent manner at 4 hours (27.4±1.2%, n=3, 

p<0.05) and 24 hours (9.9±3.3%, n=6, p<0.001) relative to actively proliferating cells on a 

standard tissue culture surface (60.5±6.5%, n=8). To examine differentiation in aggregates, we 

looked at muscle specific gene expression at different stages of aggregate formation. Aggregate 

formation upregulated cardiac transcription factor (Nkx2.5, GATA4, and Tbx5) gene expression 

(n=6). It also upregulated later cardiac differentiation markers Myh6 and Myh7 (n=6). 

Interestingly, skeletal muscle transcription factors MyoD and myogenin were maximally 

suppressed at 4 hours but began to return to basal level by 24 hours (n=6). To determine if 

MDSCs can differentiate into a muscle phenotype within aggregates, we cultured aggregates for 

2 weeks in suspension culture in DM. We found that MDSCs within 2 week old aggregates 

stained positive for troponin-T (Supplemental Figure 4-8C). However, a striated muscle pattern 

was not present, and the cells did not beat spontaneously. These results suggest that aggregate 

formation is important for triggering the switch from proliferation to differentiation and early 

activation of muscle gene expression. Short term aggregate formation appears to maintain cell 

viability and favors CM differentiation at the gene level. While MDSC aggregate formation is 
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important for functional CM differentiation, long-term aggregate culture may not be the optimal 

environment for MDSCs. 

 

Figure 4-2. Temporal Effects of Aggregate Formation on MDSCs. (A) Aggregate formation markedly increased 

active caspase-3 expression (green) of MDSCs. (B) Aggregate formation significantly decreased MDSC phospho 

histone H3 (green) expression and proliferation. (C) Aggregate formation altered myocyte-specific gene expression 

patterns. * P < 0.05. ** P < 0.001 vs. baseline. Blue indicates nuclear DAPI staining. Scale bar indicates 20 µm.  

4.3.2 Gene and Protein Expression of EMT 

We examined gene expression of MDSCs differentiated under the 4 different protocols. All 

genes were expressed regardless of the protocol used. 4F-EMT increased expression of cardiac 

transcription factors Nkx2.5, GATA4, and to a lesser extent, Tbx5 (n=6). Aggregate formation 
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combined with 4 factor treatment (4F-AEMT) increased Mef2c, Myh6, and Myh7 expression in 

addition to the aforementioned genes (n=6). Interestingly, MyoD also increased under the 4F-

EMT and 4F-AEMT protocols (n=6). Myogenin was also elevated in the 4F-EMT protocol 

(n=6). Connexin-43 expression remained unchanged across the differentiation protocols (n=6). 

These data indicate that human MDSCs express both cardiac and skeletal muscle genes, a 

characteristic shared with iPS cell derived cardiomyocytes and immature developing cardiac and 

skeletal muscle [35, 177]. 

Histological assessments confirmed that MDSCs differentiate into a muscle phenotype in 

EMT (Figure 4-4A). MDSCs expressed α-actinin and cTn-T, both sarcomeric proteins, in all 

culture conditions (Figure 4-4B). However, a striated pattern was not visible under 2D 

differentiation by either α-actinin or cTn-T staining. MDSCs in 2D also formed elongated fibers 

containing many (more than 5) nuclei, which resemble myotubes (18.5±2.5%, n=18). In EMT, 

some cells retained the appearance of myotubes (13.1±2.1%, n=33). In EMT treated with 4 

factors (4F-EMT [1.6±0.6%, n=38] and 4F-AEMT [2.4±0.7%, n=38]), myotubes were not 

readily apparent. 4F-AEMT formed a muscle tissue with closely apposed muscle fibers that had 

a clear striated pattern by cTn-T staining, which was less apparent in the 4F-EMT (no aggregate) 

group. These findings suggest that a combination of MDSC aggregate formation and 4 chemical 

factors was necessary for optimal differentiation towards a CM-like phenotype. 
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Figure 4-3. Gene Expression of Day 14 Differentiated MDSCs. Muscle-specific gene expression of MDSCs is 

dependent on culture conditions. Values are expressed as fold change in gene expression and normalized to 2D 

differentiation protocol (2D). *P < 0.05. **P < 0.001. 
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Figure 4-4. Histological Analysis of Day 14 Differentiated MDSCs. (A) Low magnification image of EMT 

showing α-Actinin expression throughout the construct, indicating MDSCs acquire a muscle phenotype. (B) 

Expression of α-Actinin and cTn-T in MDSCs differentiated under various protocols. Scale bars indicate 10 µm or 

20 µm as stated in each image. Arrows point to multinucleated cells. Blue indicates nuclear DAPI staining. (C) 

Percentage of multinucleated cells (n > 4 nuclei). 4-factor treatment significantly reduced the percentage of 

multinucleated cells. ** P < 0.001. 

4.3.3 Contractile Properties of EMT 

All EMTs showed spontaneous beating activity from day 4, which gradually increased over the 

culture period and was sustained until day 14. We observed that the spontaneous beating activity 

of 4F-AEMT was visibly more vigorous than other groups. The presence of spontaneous beating 
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activity confirms the differentiation of MDSCs into a functioning muscle phenotype. EMTs in all 

groups generated contractile force in response to electrical stimulation. The isometric force 

increased with strain (Frank-Starling mechanism) in all groups. 4F-AEMT (0.23±0.02mN at 

Lmax, n=20) generated significantly higher force than EMT (0.16±0.02mN at Lmax, n=16), and 

4F-EMT generated less force than EMT (0.12±0.02mN at Lmax, n=15) (Figure 4-5A). EMT 

showed a negative force-frequency relationship. In contrast, 4F-EMT and 4F-AEMT displayed a 

modestly positive force-frequency relationship at low frequencies (1-2Hz) before becoming 

negative at higher stimulation frequencies (Figure 4-5B). 4F-EMT (134.7±5.4%, n=14, P<0.001) 

and 4F-AEMT (124.6±3.4% n=24, P<0.001) showed an increased positive inotropic response to 

isoproterenol compared to control untreated EMT (104.4±2.8% n=23, P<0.001) (Figure 4-5C). 

All EMTs had a positive inotropic response to increased extracellular calcium, but there was no 

significant difference among groups (Figure 4-5D).  
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Figure 4-5. Contractile Properties of Engineered Muscle Tissue. (A) Force-strain relation of EMT. EMT 

increased force in response to increasing strain (Frank-Starling). * P < 0.05 vs. baseline. † P < 0.05 vs EMT. (B) 

Force-frequency relation of EMT at stimulation rates of 1-5 Hz. (C) Contractile response of EMT to isoproterenol. 

Values are expressed relative to pre-treatment values. ** P < 0.001 vs. EMT. (D) Contractile response of EMT to 

extracellular calcium. Calcium concentration of the bathing solution was increased from 2mM to 5mM. 

4.3.4 Intercellular Coupling 

We assessed functional intercellular coupling by looking at intracellular calcium transients in 

EMT during spontaneous beating. EMT treated with 4 factors (4F-EMT and 4F-AEMT) showed 

that calcium transients in each cell were synchronous over the entire field of view (Figure 4-6A). 

We co-stained cells for connexin-43 and α-Actinin to identify gap junction intercellular coupling 
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between differentiated myocytes. We observed a distinct dot-like pattern of connexin-43 staining 

in cells treated with 4 factors, which included concentrated staining at the border between 

adjacent cells (Figure 4-6B, yellow arrows). In contrast, cells that were not treated stained 

positive for connexin-43 and α-Actinin, but a distinct staining pattern was not observed (Figure 

4-6C). Taken together, these data suggest that treatment of EMT with chemical factors can 

improve intercellular coupling. 

 

Figure 4-6. Intercellular Coupling of MDSCs. (A) Intracellular calcium transients of spontaneously beating 

MDSC-CMs recorded using Rhod-2 AM dye from 4 different locations. Trace shows that the transients begin and 

end in a synchronous manner (vertical lines). (B) Co-staining of 4-factor treated day 14 EMT with cx-43 (red), α-

Actinin (green), and DAPI (blue). Arrows show gap junction formation between cells. Scale indicates 10 µm. (C) 

Co-staining of day 14 2D Differentiated MSDCs with cx-43 (red), α-Actinin (green), and DAPI (blue). Scale bar 

indicates 10 µm. 



 92 

4.4 DISCUSSION 

The repair of predominantly non-regenerative organs such as the heart is the holy grail of 

regenerative medicine. Direct injection of stem cells and other cell types has yielded modest 

functional benefits through what are believed to be paracrine effects, which stimulate 

revascularization of the infracted area, promote cell survival, and reduce scarring [204]. 

However, true regeneration requires remuscularization of the infracted region. Despite recent 

advances, this goal remains elusive for the heart. Protocols exist to generate CMs from 

embryonic stem cells,  induced pluripotent stem cells, and fibroblasts (direct reprogramming), 

but the use of these cells clinically is limited by safety and ethical issues.  In the arena of adult 

stem cells, hematopoietic stem cells and bone marrow mesenchymal stem cells do not 

differentiate into muscle efficiently or require direct contact with CMs [205], which are already 

depleted in the injured area [206]. True regeneration requires cells which can readily differentiate 

into a muscle phenotype. Stem or progenitor cells from cardiac and skeletal muscle tissue meet 

this criterion. However, cardiac stem cells require invasive isolation and are difficult to expand 

in vitro, and skeletal myoblasts have limited functional integration with host tissue due to 

differences in terminally differentiated cardiac and skeletal muscle [207]. MDSCs, given their 

plasticity and myogenic nature, are a promising cell source and may have the potential to 

differentiate into CM-like cells.  

Realizing this goal requires recognition of the complexities of the stem cell niche and the 

factors that drive stem cell differentiation. Stem cell biology and tissue engineering have 

gradually moved away from traditional cell culture on a plastic dish and implemented novel 

approaches such as bioreactors and cell aggregate culture in order to better recapitulate 

physiological conditions.  In this study, we attempted to create a biomimetic environment for 
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MDSC differentiation by providing an external environment containing collagen and other 

extracellular matrix factors (EMT) and dynamically regulating cell-cell interactions and soluble 

factor signaling by temporally controlling cell aggregate formation and treatment of signaling 

molecules. By using this integrative approach, we have successfully generated functional CM-

like cells in vitro from human-origin MDSCs. 

Multiple pathways regulate heart organogenesis including BMP, Wnt, and Notch 

signaling [208]. These signals are delivered in a temporally controlled manner, and the same 

signal can have opposing effects at different stages of development [188, 209, 210]. Reflecting 

this idea, we found in our initial studies that addition of LiCl or BMP-4 at day 0 inhibited muscle 

differentiation if they were added too early (Supplemental Figure 4-8A). This is reasonable given 

that these pathways are also involved with maintenance or expansion of stem cell pools in certain 

contexts [211, 212]. However, they did not interfere with muscle differentiation if they were 

added sequentially after initial IWR-1 and miR-206 inhibitor treatment. We attempted to mimic 

this temporal aspect in vitro. While these signals may not be fully representative of in vivo 

conditions, we were able to generate cells which are able to generate force as a functional muscle 

tissue while preserving their intercellular connectivity. miR-206 inhibition should theoretically 

inhibit skeletal muscle differentiation and prevent subsequent fusion. This combination of 

cytokines and small molecules with miR-206 inhibition blocked terminal skeletal muscle 

differentiation while simultaneously promoting CM differentiation. 4-factor treatment increased 

expression of cardiac transcription factors Nkx2.5 and GATA4. Visually, we observed a reduced 

incidence of fusion into myotubes in 4 factor treated EMTs. We also saw a connexin-43 

distribution pattern similar to fetal CMs. With respect to function, we observed a cardiac-like 

force-frequency relationship with a small positive slope in the range of physiological human 
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heartbeat similar to neonate CMs [213]. The EMTs also showed an increased contractile 

response to isoproterenol, a cardiotropic compound. We also observed synchronous spontaneous 

calcium transient activity, which reflects improved spatial cx-43 expression at gap junctions. 

Without treatment, cells lose this distinct staining pattern and show a diffuse cytoplasmic 

distribution. Since we did not observe a difference in cx-43 expression at the mRNA level, the 

stability and localization of cx-43 and subsequent gap junction formation may be post-

transcriptionally regulated as it is after birth [214]. Taken together, these data suggest that timed 

cytokine/small molecule treatment and transient miR-206 inhibition were sufficient to produce 

the desired phenotype. 

Surprisingly, 4-factor treatment increased the expression of MyoD, a skeletal muscle 

specific transcription factor. Although MyoD is generally considered a skeletal muscle specific 

factor, we have previously reported that MyoD is expressed at the gene level in the heart during 

murine development and is upregulated during differentiation of human iPS cells and rat MDSCs 

into CMs [35, 177]. These findings have also been supported by studies in other species [215]. 

The role that MyoD may play during cardiac differentiation is unknown. Further studies are 

needed to elucidate its role. 4F-EMT also generated less force overall compared to EMT. This 

could be a result of differences in sarcomere length, which is proportional to force generation 

capacity. As cells differentiate into skeletal muscle, they elongate and some fuse, forming even 

larger fibers. However, the improvements in the force-frequency relationship and response to 

isoproterenol may reflect changes in excitation-contraction coupling and calcium handling at the 

cellular level. 

MDSC aggregate formation had dynamic effects on cell proliferation, apoptosis, and 

differentiation. We previously used 24 hour aggregate formation time in our studies with rat 



 95 

MDSCs [67]. However, in our current study with human MDSCs, we found that a short period of 

aggregate formation was sufficient to trigger early cardiac differentiation markers and suppress 

skeletal muscle differentiation markers. Although the mechanisms by which cell-cell contact 

within aggregates influence cell differentiation are not well understood, it is evident that it plays 

an important role. One study found that aggregate formation can directly impact β-catenin 

signaling within embryoid bodies during cardiac differentiation [199]. Direct contact of 

mesenchymal stem cells with CMs is also a prerequisite for their differentiation into CMs [216]. 

Cell aggregation occurs in two stages: an initial stage of aggregate formation driven by integrin-

ECM binding followed by a period of spheroid compaction driven by cadherin-cadherin 

interactions [217]. It is possible that downstream effectors of integrin-ECM binding can affect 

genes involved in CM differentiation. Cell death increased significantly in aggregates after 24 

hours. Cell death may occur as a result of diffusion limitations of nutrients and oxygen or by 

hydrodynamic shear during rotary suspension culture. Proliferation also decreased in a time 

dependent manner. While differentiation is the end goal of this study, maintenance of 

proliferative activity is desirable for tissue formation, and fetal-like proliferative myocytes have 

better therapeutic benefit in vivo [90]. We also tested long-term culture of MDSCs in aggregates 

to see if they could differentiate into CMs. After 2 weeks of culture as aggregates in suspension, 

MDSCs expressed cTn-T protein. However, they did not beat spontaneously, and a striated 

pattern was not visible. These findings suggest that aggregate formation is important, but 

additional factors are required to trigger full differentiation of MDSCs into functional CMs. 

Combined with EMT culture and 4-factor treatment, short term aggregate formation 

resulted in robust differentiation of MDSCs into functional myocytes. In addition to Nkx2.5 and 

GATA4, 4F-AEMT upregulated cardiac transcription factor Mef2c and sarcomere related genes 
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Myh6 and Myh7 compared to other groups. 4F-AEMT also showed good tissue formation and 

prominent striations by both cTn-T and α-Actinin staining. In agreement with these results, we 

saw an overall increase in force generation in the 4F-AEMT group compared to other groups. 

These findings suggest that the 4F-AEMT protocol provided the best conditions for functional 

muscle differentiation, and the differentiated muscle cells were morphologically distinct from 

typical skeletal myotubes. In fact, human skeletal myotubes do not normally spontaneously 

contract in vitro [218]. Persistent, rhythmic spontaneous beating is further evidence of both 

functional differentiation and more cardiac-like behavior. Embryoid bodies and other stem cell 

aggregate systems recapitulate elements of early embryonic development. However, as tissues 

develop into more complex structures, additional factors may be required to drive their 

development into functional tissues. EMT contains collagen and other extracellular matrix 

factors, which may be critical for functional differentiation of MDSCs. 

Recent efforts in cardiac tissue engineering have focused on embryonic stem cells and 

induced pluripotent stem cells. While these cells may serve as useful models for developmental 

studies or drug screening, questions concerning their safety and genomic stability limit their 

clinical use [219, 220]. Adult stem cells such as bone marrow and adipose derived mesenchymal 

stem cells can be differentiated into CMs by co-culture with CMs or treatment with 5-azacytidine 

[205]. However, the rate of differentiation is low, and functional characterization has been 

limited. These cells may also co-express cardiac and skeletal muscle genes [138]. To our 

knowledge, we are the first group to report the creation of engineered cardiac tissue from human 

origin adult stem cells in vitro with the ability to generate contractile force and coordinated 

intracellular calcium transients at the tissue level. 
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There are a number of limitations to the current study. We were unable to perform 

detailed electrophysiological measurements of EMTs beyond measurement of calcium transients. 

However, others have reported that MDSCs cultured as aggregates display electrophysiological 

properties similar to bona-fide CMs [201]. We also did not assess the effects of each of the 4 

factors on an individual basis. We chose the timing and dosage of the 4 factors based on the 

combination that permitted functional muscle differentiation while preserving intercellular 

connectivity. Figure 4-7 illustrates the hypothetical effects of 4 factors on MDSC differentiation. 

They may also have overlapping effects. The idea of preconditioning adult stem cells with a 

cocktail of cardiogenic compounds to enhance their therapeutic performance has been tested in 

the C-CURE clinical trial [221]. It was found to be feasible and safe. Such lineage guided cell 

therapy could be further enhanced by introducing signals in a timed manner as we have done. 

Finally, MDSCs differentiated under our protocol continue to express a combination of cardiac 

and skeletal muscle markers. Additional factors such as physical (electrical stimulation, cyclic 

stretch) or chemical (miRNAs, cytokines) stimuli may be necessary to further increase 

differentiation and maturation of MDSCs towards the cardiac lineage. 
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Figure 4-7. Theoretical Framework for 4-factor Differentiation of MDSCs into Cardiomyocytes. Inhibition of 

miR-206 preserves gap junctions and prevents fusion. Modulation of Wnt and BMP signaling promotes CM 

differentiation. 

 

 

4.5 CONCLUSION 

In summary, we have built upon the established importance of EMT by temporally controlling 

direct cell contact and soluble signals, two of the mechanisms by which cells communicate. As a 

result, the engineered tissue showed better contractile properties and preserved intercellular 

connectivity. These findings highlight the importance of the temporal, physical, and soluble 

aspects of the cellular environment for functional cardiac tissue engineering. 
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Figure 4-8. Supplementary Information. (A) 2D Differentiated MDSCs at day 6 stained for α-Actinin (green) and 

cx-43 (red). Cells were treated for the following durations beginning at day 0: BMP4 (48 hrs), LiCl (24 hrs), miR-

206 inhibitor (48 hrs), IWR-1 (48 hrs). Forward arrow indicates sequential treatment. + sign indicates simultaneous 

treatment. Scale bar of low magnification images indicates 250 µm. Scale bar of high magnification indicates 10 

µm. (B) EMT transfected with Cy3 labeled 100pmol small RNA. Approximately 80% of cells were transfected. 

Scale bar indicates 20 µm. (C) MDSC aggregates cultured for 14 days and stained for cTn-T (green). Scale bar 

indicates 50 µm. 
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5.0  IN-VIVO POTENTIAL OF PRECONDITIONED HUMAN MDSC 3D 
AGGREGATE CELL SHEET PATCHES FOR CARDIAC REPAIR 

5.1 INTRODUCTION 

In previous chapters, we saw that human MDSCs have potential for CM differentiation in vitro. 

Others studies have shown that undifferentiated MDSCs have potential to improve cardiac 

function when introduced via direct injection or as engineered cell sheets in vivo [73, 81]. 

However, the delivery of preconditioned MDSC aggregates has never been tested in vivo. In this 

chapter, we seek to investigate if preconditioned MDSC aggregates can survive, differentiate, 

and improve cardiac function in vivo. Our preliminary results show potential for MDSC cell 

therapy. However, additional work is necessary to verify the results and better optimize cell pre-

conditioning and implantation techniques. Human MDSCs have already entered clinical trials for 

cardiac repair and urinary incontinence [222]. At the present time, it is unclear whether 

transplantation of undifferentiated MDSCs, which secrete paracrine factors, or differentiated 

MDSCs, which form new muscle tissue but may secrete fewer paracrine factors, is the better 

approach for cardiac repair. 
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5.2 METHODS 

5.2.1 Experimental animals 

8 week old female athymic nude rats weighing 140 to 170g were used as recipient animals for 

MDSC cardiac patches. The athymic nude rats were maintained within the animal facility of the 

Rangos Research Center Facility, Children’s Hospital of Pittsburgh of UPMC. All experimental 

protocols followed the National Institutes of Health guidelines for animal care and were 

approved by the University of Pittsburgh’s Institutional Animal Care and Use Committee. 

5.2.2 MDSC Patch Construction 

MDSCs were purchased from Cook Myosite, Inc. Cells were cultured in Cook Basal Media 

(Cook Myosite, Inc., Pittsburgh, PA, USA) supplemented with 10% Growth Supplement (Cook 

Myosite, Inc., Pittsburgh, PA, USA) and 1% Antibiotic-Antimycotic solution (AAS, Invitrogen) 

on collagen-I coated flasks. Cells were used for no more than 4 passages. Once cells reached 

~80% confluence, cells were treated with Inhibitor of Wnt Response-1 (IWR-1, Sigma, 10 µM) 

and miR-206 inhibitor (206inh, Life Technologies, 200pmol). MDSCs were then trypsinized and 

underwent rotary orbital suspension culture (Labnet Orbit 1000) at 50 rpm for 24 hours. During 

this time, MDSCs were treated with Lithium Chloride (LiCl, Sigma, 10 mM). To construct tissue 

patches, liquid rat tail collagen type I (3 mg/mL, Invitrogen) was neutralized with 0.1N NaOH to 

reach a final collagen concentration of 1.5 mg/mL. MDSC aggregates were seeded in collagen at 

a density of 2 million cells per construct using a Flexcell Tissue Train Culture system with the 

tissue mold removed (FX-4000, Flexcell International) with a total volume of approximately 600 

µL per construct to form a lens shaped construct (Figure 5-1A). 
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5.2.3 Chronic left ventricular infarction model 

The chronic left ventricular infarction was made as previously described [90]. Recipient adult 

athymic nude rats were anesthetized using 3.0% isoflurane inhalation with 100% oxygen gas. 

Next, rats underwent endotracheal intubation and connection to a rodent volume controlled 

mechanical ventilator (Model 683; Harvard Apparatus). The heart was exposed through a left 

thoracotomy. The proximal left anterior descending coronary artery was ligated using 7-0 

polypropylene sutures. Regional cyanosis and changes in electrocardiogram (ST-segment 

elevation) were used to confirm myocardial ischemia. The incision was then closed with 4-0 silk 

continuous sutures. A total of 10 rats underwent left coronary artery ligation, and 2 animals died 

within 24 h of permanent coronary artery ligation, and 8 animals survived. These surviving rats 

were recipient candidates for MDSC patches.  

5.2.4 MDSC Patch Implantation 

Animals were anesthetized with isoflurane, and the infarction size and cardiac function were 

assessed by 2 weeks after permanent coronary artery ligation. Left ventricle (LV) infarction size 

was estimated in a standard LV short-axis view by the percentage of scar area (akinetic or 

dyskinetic regions) to LV free wall area. Animals were studied at 6 weeks after graft 

implantation. The LV anterior wall was exposed through left thoracotomy, and the anterior 

infarcted myocardium was covered with the MDSC patch and sutured using 7-0 polypropylene 

(Figure 5-1B). For the infarction control group, a thoracotomy was performed 2 weeks after 

coronary ligation, but no implantation was performed. 
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Figure 5-1. Construction and Implantation of MDSC Patch. (A) Schematic representation of MDSC aggregates 

(blue) embedded in lens-shaped collagen construct (green). (B) MDSC patch implanted on top of infracted rat 

myocardium. (C) MDSC patch at day 0 stained negative for cTn-T (green), confirming the undifferentiated state of 

MDSCs prior to implantation. Nuclei are stained with DAPI (blue). Scale bar indicates 50 µm. 

5.2.5 Histological Assessment 

At 6 weeks after the MDSC patch implantation, the rats were exposed under 3.0% isoflurane 

inhalation with 100% oxygen gas, and the heart was arrested by apical injection of 2mL of a 

hypothermic arresting solution (28mM KCl). The embedded frozen LV tissues were sectioned in 

the LV transverse direction using a standard cryo-microtome (Leica). Sections were 

permeabilized with 0.1% Triton X-100 and stained with Alexa Fluor 488 conjugated human anti-

nuclei antibody (235-1, EMD Millipore), alpha sarcomeric actinin (α-Actinin, Sigma) with Alexa 

Fluor secondary antibodies, and DAPI (Vecta-Shield; Vector Labs). 

5.2.6 Assessment of in vivo recipient cardiac function 

LV function was measured by tagging cardiac MRI at preimplantation and 6 weeks after graft 

implantation. End-diastolic area (EDA) and end systolic area (ESA) of the LV cavity were 
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measured, and % LV fractional area change (FAC) was measured as [(LVEDA–

LVESA)/LVEDA]*100%.  

5.3 RESULTS 

5.3.1 Histological Assessment 

Six weeks after implantation, the MDSC patch was still visible on the surface of the myocardium 

(Figure 5-2A). We performed double-labeling for human nuclei (green) and α-Actinin (red) 

(Figure 5-2B). Due to high green auto fluorescence (possibly caused by lipofuscin accumulation 

[223]), detection of human nuclei was difficult. However, at higher magnification, we were able 

to detect cells which were double positive for human nuclear antigen and DAPI within α-Actinin 

positive regions, confirming their differentiation into a muscle phenotype. The α-Actinin  

staining lacked a clear striated pattern, indicating a nascent muscle phenotype. These results 

show that MDSCs can survive and differentiate into a muscle phenotype by tissue engineered 

transplantation of MDSC aggregates. 
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Figure 5-2. Histological Assessment of MDSC Patch Implantation. (A) Hematoxylin and Eosin staining of 

MDSC patch implanted rat myocardium. MDSC patch is outlined in black. Scale bar indicates 200 µm (B) 

Immunohistochemical staining of MDSC patch implanted rat myocardium for α-actinin (red), human nuclear 

antigen (green), and DAPI (blue). Scale bar indicates 500 µm. (C) High magnification image showing staining of 

MDSC patch implanted rat myocardium for α-actinin (red), human nuclear antigen (green), and DAPI (blue). Scale 

bar indicates 10 µm. 

5.3.2 Cardiac Function 

Cardiac function was assessed by MRI (Figure 5-3A). The fractional area change (FAC) of the 

MDSC aggregate implanted group (0.529±0.056, n=3) was higher than the infracted control 

(0.365±0.171, n=5) but lower than the non-infarcted control group (0.817±0.003, n=2). The end 
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diastolic area (EDA) of the MDSC aggregate implanted group (0.346±0.057, n=3) was lower 

than the infracted control group (0.407±0.046, n=5) but higher than the non-infarcted control 

group (0.817±0.003, n=2) (Figure 5-3B). These results suggest that MDSC patch implantation 

can potentially improve cardiac function, although function is not fully recovered to normal 

levels. 

 

Figure 5-3. In-vivo Evaluation of Cardiac Function. (A) Representative MRI recording of LV. Scale indicates 

5mm. (B) Cardiac performance parameters fractional area change (FAC) and end diastolic area (EDA). 

Abbreviations: n-cnt, non-infarcted control group; inf-cnt, infracted control group; aggregate, infracted group 

receiving MDSC patch.  
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5.4 DISCUSSION 

Previous small animal studies have demonstrated the feasibility and efficacy of MDSC 

transplantation for cardiac repair [73, 81]. However, current therapy modalities have their 

limitations. The benefits of MDSC transplantation are believed to be derived from secretion of 

paracrine factors that stimulate angiogenesis and promote survival of existing CMs [204]. Few 

MDSCs differentiate into CMs. Furthermore, cellular retention remains low due to a hostile 

environment and lack of an anchorage matrix. Tissue engineering offers an alternative to 

overcome some of these challenges. We have developed a novel tissue engineered construct for 

the delivery of MDSCs in vivo. Collagen provides a natural anchorage matrix and shields 

MDSCs from the surrounding hypoxic and pro-inflammatory environment. The circular lens 

shape allows for easier implantation and coverage of the infracted area compared to our 

previously used linear shaped construct. In the last chapter, we showed that aggregate formation 

and soluble factor pre-conditioning improved the cardiomyogenic potential of MDSCs. In this 

study, we tested whether preconditioned MDSC aggregates could survive, differentiate into a 

muscle phenotype, and improve cardiac function in a human-athymic nude rat xenograft model. 

Due to limitations on available resources, we were only able to perform a limited number of 

animal experiments. However, these preliminary data suggest that this method can potentially aid 

in MDSC survival and differentiation as well as restoration of cardiac function. 

A number of improvements can be implemented in future studies. First, the in vivo 

animal study was performed before the 4 factor treatment protocol described in chapter 4 was 

fully developed. We did not include BMP-4 pretreatment in the animal study. Adding BMP-4 

may further improve the effectiveness of the patch implantation. Second, we chose a 24 hour 

aggregation time based on our previous studies with rat MDSCs. However, we later found that a 
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shorter aggregation time (4 hours) was sufficient to trigger muscle differentiation while 

minimizing apoptosis and preserving some proliferative activity. Future studies should be 

performed with the 4 hour aggregate formation protocol. Third, intense endogenous green auto 

fluorescence made identification of human cells difficult. The human nuclei should be stained 

with a different color to facilitate their identification. Other important cellular processes such as 

angiogenesis, proliferation, and apoptosis should also be investigated. Finally, studies have 

shown that implantation of cell-free biomaterials can improve cardiac function without the 

addition of exogenous cells [224]. Although the mechanisms are not well understood, it is 

thought that functional improvement is at least partially attributable to the mechanical wall 

support afforded by the implanted biomaterial. In the case of this study, it is not clear if the 

functional benefits are due to muscle differentiation, paracrine secretion, the scaffold itself, or a 

combination of these factors. Future studies should include experimental groups for scaffold-

only and MDSC-only injection to better understand the contribution of each in addition to 

including more animals in all experimental groups. Treatment of MDSC patches with BMP4, 

IWR-1, LiCl, and miR-206 inhibitor may also improve its effect.   

5.5 CONCLUSION 

In summary, we have provided preliminary evidence that preconditioned MDSC aggregates can 

be safely delivered via collagen patch while retaining the ability to survive and differentiate. This 

study highlights the potential for cardiac tissue engineering using MDSCs.  
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6.0  CLOSING REMARKS AND FUTURE DIRECTIONS 

In this dissertation, we investigated the properties of cardiac and skeletal muscle as a means to 

galvanize the use of skeletal muscle stem cells (MDSCs), which are relatively more abundant 

and easier to isolate than their cardiac counterparts, for cardiac repair. (The rationale for using 

MDSCs has been discussed previously.) First, we studied developing rat cardiac and skeletal 

muscle and found that they share a similar, albeit not identical, set of transcription factors and 

contractile proteins, particularly cardiac troponin-I and fast skeletal myosin heavy chain, before 

birth. This was also true of MDSCs that were isolated and differentiated in vitro as an engineered 

tissue. Next, we extended these findings to humans, comparing human MDSC-derived 

engineered muscle tissue (MDSC-EMT) to cardiac tissue from human iPSc CMs. They were 

remarkably similar in terms of biochemical and contractile properties. However, MDSC-EMT 

suffered some deficits such as incomplete intercellular coupling. Then, we employed two 

strategies to improve CM differentiation of MDSCs. First, we improved the conditions for 

forming MDSC aggregates. Second, we introduced a sequence of factors which promote CM 

differentiation, stimulate gap junction formation, or prevent skeletal muscle differentiation. 

These approaches recapitulate important physical and temporal aspects of development and 

improve intercellular coupling and contractile function. Finally, we put human MDSCs to the 

test in vivo using a xenograft animal model. Although the data are preliminary, it suggests that 

cell therapy based on MDSCs holds promise. 
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 Thus, our contributions to the field are twofold. First, we have extended our previous 

results in rats to humans, which is a major step towards clinical translation. Second, we have 

created a growth factor and small molecule based protocol for functional differentiation of 

MDSCs into beating CM-like cells with intercellular coupling. (Lack of coupling was previously 

cited as a concern for use of myoblasts.) This has been achieved without the use of any genetic 

modification currently used in iPS cells and direct reprogramming. MDSC derived CMs in this 

protocol also demonstrate more advanced functional properties compared to other common adult 

stem cell (bone marrow, adipose stem cells) derived CMs, since they are able to contract as an 

integrated tissue and generate force.  

However, there are still numerous improvements to be made in the future. The contractile 

force of MDSC engineered tissue is still much lower than that of native CMs [67], though it is 

within the range reported for pluripotent stem cell derived engineered cardiac tissues [225]. 

Future advancements may come from manipulation of epigenetic factors and the environment. 4-

factor treatment induces changes in expression of a large number of miRNAs (Figure 6-1), which 

are post-transcriptional regulators. The environment is also a potent effecter of cellular changes. 

In addition to well-documented roles in differentiation, a recent study showed that changes in the 

environment are sufficient to induce pluripotency in somatic cells [226]. Along those lines, 

factors such as electrical stimulation, stretch, and flow may positively influence CM 

differentiation. Finally the in vivo potential of pre-conditioned human MDSCs should be 

investigated more rigorously.   BMP-4 expressing MDSCs may be more cardiogenic. In vitro co-

culture of MDSCs with CMs can be used to study interactions between stem cells and CMs in a 

controlled environment (Figure 6-2). For example, stress conditions could be simulated by 

culture in a hypoxic environment or addition of inflammatory cytokines.  
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Figure 6-1. microRNA analysis of 4F-EMT at culture day 5.  Values are normalized to EMT (untreated) and 

expressed as fold change. 4-factor treatment influences the expression of a large number of miRNAs. 

 

 

Figure 6-2. Co-culture of MDSCs with iPS CMs in EMT at culture day 21. 400,000 MDSCs were mixed with 

100,000 iPS-CMs per EMT. Co-cultures were stained for DAPI (blue), α-Actinin (yellow), iPS-CMs (green), and 

cx-43 (red). Scale bar indicates 10µm. 
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