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JOYAL’S CONJECTURE IN HOMOTOPY TYPE THEORY

Krzysztof Ryszard Kapulkin, PhD

University of Pittsburgh, 2014

Joyal’s Conjecture asserts, in a mathematically precise way, that Martin-Löf dependent type

theory gives rise to locally cartesian closed quasicategory. We prove this conjecture.
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1.0 INTRODUCTION

Let me ask you the following: when boarding an airplane or saving money in a bank account

for retirement, would you like to know that the—often fairly sophisticated—software used on

this airplane or by your bank is bug-free? Or will you settle for knowing that the programmer

who wrote it promised—or maybe even double-promised—that it is bug-free? (Although,

frankly, the buggy moral code of the bankers can probably do you more harm then the buggy

software they may be using.)

Formal verification of software typically amounts to the verification of the mathematics

that underlies it [Hal08]. This mathematics is often very intricate, common examples being

elliptic curve cryptography and sheaf-theoretic network sensoring.

Unfortunately, many mathematicians tend to think that formal verification is not worth

their time and many hope to delegate this task to computer scientists. This is due to the

fact that working from the very first axioms of mathematics towards a theorem in, say,

algebraic geometry would require one to redevelop hundreds of years of mathematics, but in

more detailed way. I have some empathy for the people who, faced with this problem, say

“whatever.”

So is the formal verification of ongoing, cutting edge research only an unrealistic dream?

While it is not quite yet a reality, it is not far away. To understand its recent advances we

need to delve into the area of foundations of mathematics.

The development of foundations of mathematics was the project of many leading mathe-

maticians at the beginning of the 20th century. Of the several foundations proposed at that

time, set theory (or, more precisely, Zermelo–Fraenkel set theory with the axiom of choice,

also known as ZFC ) became and remains the most prominent foundation used. Its simple

language consisting of only one primitive relation ∈ turned out to serve well as a common
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basis for all of mathematics.

In hindsight, however, bare set theory may not be the best system in which to formally

develop mathematics. Indeed, in set theory, everything is a set, and therefore most state-

ments of ZFC are mathematically meaningless. It does, for example, make sense to ask

whether the number π is a group with 5 elements. On a more serious note, rebuilding math-

ematics from just one relation and a small set of axioms is highly impractical! The quest

for a practical and widely implementable proof assistant calls for the need to change the

system from set theory to type theory. Whereas the basic object of study in set theory is a

set, type theory is concerned with types and their elements, called terms. The key change

is that in type theory, every term has exactly one type, and hence π, a term of the type of

real numbers, cannot even conceivably be considered as a group.

It is important to point out that set theory and type theory are not necessarily competing

choices for the foundation of mathematics. In fact, type theory can be seen as a layer of

notation on top of set theory, as suggested in the previous paragraph. This is indeed a

commonly shared view best exemplified by the proof assistant Mizar which is based on set

theory, but implements aspects of type theory on top of this base for practical and notational

convenience.

Historically, the first usage of type theory goes back to Russell [Rus08, WR62] who saw

it as a way to block certain paradoxes of set theory (such as the existence of a set of all

sets). It was, however, not until Church [Chu33, Chu40, Chu41] that type theory started to

be seen as a unifying foundation of mathematics and computation.

Martin-Löf dependent type theory (see, for example, [ML72]; more references will be

provided in Chapter 2, where we discuss a specific type theory) goes a step further by

enriching the language of type theory to allow types to depend on other types. It gives rise to

several other similar systems (for example, Calculus of Inductive Constructions) that underlie

many now-prominent proof assistants, including Coq and AGDA. Indeed, the suitability

for large-scale implementation is now a major motivation for considering systems that build

upon Martin-Löf type theory. The current frontiers in the usage of such systems include the

verification of the Four-Color Theorem [Gon08] and the very recently formally checked proof

of the Feit–Thompson (Odd Order) Theorem, due to a large team of mathematicians and

2



computer scientists working under the leadership of Gonthier [GAA+13].

The way in which Gonthier’s team approached this formal proof (and the choice of the

theorem itself) deserves a mention in our context. It built a large repository of formally

verified mathematics ranging over several areas that other mathematicians can later use and

contribute to. And besides formal verification as a goal in itself, creating such repositories

is one of the main goals of formal verification.

1.1 HOMOTOPY TYPE THEORY

The program of Univalent Foundations of Mathematics extends these ideas further. Syntac-

tically, it is a further extension of Martin-Löf type theory; however, it drastically differs in

its intended semantics. That is to say, it gives a different answer to the question of what the

meaning of the word “type” is.

The program was proposed by Voevodsky, a Fields medalist working in the areas of

algebraic geometry and homotopy theory. Voevodsky often mentions that what drove him

to propose this new program was the fact that some of his already published papers were

later found to contain mistakes. A particular example of this is his paper with Kapranov

[KV91]; indeed, seven(!) years after publication, Simpson [Sim98] found a counterexample to

its main theorem. Interestingly enough, in his paper, Simpson says that he cannot identify

exactly where the mistake occurred. Reading the proof of, say, Lemma 3.4 of [KV91] one can

see why: the statements are vague and the details are omitted. This is by no means criticism

of Kapranov and Voevodsky’s paper; it is just the style that the majority of research papers

are required to obey.

Returning to the question at hand, Voevodsky suggested to interpret types not as bare

sets, but as more highly structured entities, homotopy types. He emphasized its treatment

of equality, which at the time was a comparatively unexploited feature of Martin-Löf type

theory. In mathematics based on set theory, equality does not carry any information be-

yond its truth value: two sets are either equal or not. In type theory, equality can carry

more information; this resembles the notion of homotopy equivalence familiar from algebraic
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topology: two spaces can be homotopy equivalent in many different ways, and indeed, the

homotopy equivalences between two given spaces form a space in their own right.

Voevodsky’s advancement of the program of Univalent Foundations was in parallel with

the work of Awodey and Warren [AW09] and their collaborators (see [Awo12] for a survey

of these results). In an attempt to understand the mysterious nature of equality in Martin-

Löf type theory, they constructed models of equality types in model categories, categories

equipped with a (cloven) weak factorization systems and so on; they also used a higher-

categorical perspective to study structures arising from the syntax of type theory. We will

survey this work in Chapter 2.

Voevodsky started building a library of results in type theory with this interpretation in

mind [V+] and indeed his naming conventions (weak equivalences, homotopy fiber products,

. . . ) mirror the vocabulary of homotopy theory. However, without any further axioms, type

theory merely allows types to behave like higher-dimensional categories, but it still allows the

types-as-sets interpretation. Voevodsky therefore decided to add an axiom to type theory,

called the Univalence Axiom.

In a nutshell, the Univalence Axiom identifies the type of equality proofs between two

given types with the type of equivalences between them. While satisfied by the model of

type theory in simplicial sets [KLV12], it is fundamentally not true under the types-as-sets

interpretation, as it would imply that any two sets of a given cardinality must be equal. It

also bears a resemblance to Rezk’s completeness condition for Segal spaces [Rez01] and the

descent condition from higher topos theory [Lur09a]. We will discuss both of these later on

(in Chapters 3 and 4, respectively).

A further extension, by Higher Inductive Types, was later proposed by Lumsdaine and

Shulman. It adds more general schemes for inductive definitions, allowing one to define

several homotopy-theoretic objects and constructions directly in type theory. Using these

results, a large number of results from homotopy theory were formalized during the special

year 2012-13 on Univalent Foundations at the Institute for Advanced Study in Princeton.

These included: Freudenthal’s Suspension Theorem, Blakers–Massey Theorem, computa-

tions of πk(S
n) for k ≤ n, basic results on covering spaces, and many more. It is worth

mentioning that some of these proofs are new and suggest techniques that may be of interest
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not only for people interested in formalization, but for active researchers in the area of ho-

motopy theory. It promises a new approach to homotopy theory that can be called synthetic

homotopy theory. An excellent survey of these results is given in [Uni13]; a survey of other

results obtained during the special year at the IAS can be found in [APW13].

1.2 HIGHER CATEGORY THEORY AND JOYAL’S CONJECTURE

The connection between type theory and higher category theory was mentioned, although not

emphasized, in the previous section. As the present thesis is concerned with some aspects of

this connection, let us briefly review the main ideas of higher category theory. (One reference

worth mentioning here is a survey article [Lur08].)

Higher category theory, in its present form, arose from the structures appearing in ho-

motopy theory. In algebraic topology one defines the fundamental groupoid Π1(X) of a

space X by declaring the objects of Π1(X) to be the points of X and the morphisms to be

homotopy classes of paths between these points. One is forced to take homotopy classes of

paths, rather than the paths themselves, since the concatenation of paths is associative only

up to homotopy, and hence the resulting structure would not otherwise obey the axioms of

category theory. The passage from paths to homotopy classes thereof is, however, highly

unsatisfying, and conceals much information about the space at hand.

The solution is to allow higher morphisms (that is, 2-morphisms between morphisms,

3-morphisms between 2-morphisms, and so on) and require that composition be associative

and unital only up to a higher morphism. The question of how best to implement these ideas

in a mathematically precise way remains to be answered. Partial answers were given in the

case of so-called (∞, n)-categories, that is higher categories that have morphisms in arbitrary

degree and morphisms in degrees k > n are invertible in the appropriate up-to-homotopy

sense. Surveys of such definitions can be found in [Ber10] for n = 1 and [BR13] for arbitrary

n.

Higher categories therefore provide a convenient language for describing homotopy-

universal properties, that is properties that define objects up to homotopy equivalence. This
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renders higher categories a very useful tool in topology (see, for instance, [CJ13]). Since

notions of equivalence weaker than isomorphism are present in many other areas of mathe-

matics, the use of higher categories has become widespread. For example, in geometry and

mathematical physics, one is interested in the notion of cobordism between manifolds, and

the language of higher categories allows one to address some resulting fundamental questions

[FHLT10, Lur09b].

Among higher categories, ∞-groupoids play a special role. They are (∞, 0)-categories,

that is ∞-categories in which all morphisms in all dimensions are (weakly) invertible. For

Grothendieck [Gro83], ∞-groupoids were the true object of study in homotopy theory. This

statement was known as the Homotopy Hypothesis, and has been used as a benchmark for

the definition of a higher category.

In this thesis, we will be concerned only with (∞, 1)-categories. Among many possible

(but equivalent) definitions, one has in some sense become prominent, namely the definition

asserting that an (∞, 1)-category is a quasicategory. (A quasicategory is a simplicial set

having the inner horn filling property.) Even though it was defined back in 1973 by Boardman

and Vogt [BV73], it is only in the last 10–15 years that its great applications have been

developed by Joyal [Joy02, Joy09] and Lurie [Lur09a, Lur12].

Dwyer and Kan showed [DK80c, DK80a] that, given a category with a notion of a weak

equivalence, one can extract from it a quasicategory. Later work of Barwick and Kan [BK12a]

shows that this assignment (called localization) is itself an equivalence of categories equipped

with the notion of a weak equivalence.

The connections between higher category theory and homotopy type theory are manifold.

Indeed, higher categories with appropriate structure should provide models for type theory:

as we will discuss in Chapter 4, every locally cartesian closed quasicategory can be turned into

a model of a fragment of Martin-Löf type theory. However this is by no means immediate:

a model for type theory is a category with certain, very strict, extra structure, which is not

immediately possessed by a category extracted from a quasicategory. Thus more work is

needed.

One may also ask the opposite question: is every model of type theory a locally cartesian

closed quasicategory? The model itself would be a (1-)category equipped with certain extra
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structure sufficient to endow it with a notion of weak equivalence. One can therefore apply

the localization construction to obtain a quasicategory. The question then becomes: is the

resulting quasicategory locally cartesian closed?

An affirmative answer to this question is known as Joyal’s Conjecture, formulated in

2011 during the Oberwolfach MiniWorkshop 1109a: Homotopy Interpretation of Construc-

tive Type Theory [AGMLV11]. Joyal’s conjecture begins to unwind the variety of higher-

categorical structures present in type theory (as suggested in [Awo12, Sec. 3]). The proof of

this conjecture is the main result of the present thesis.

It should be said, however, that the fact that type theory should in some way give rise

to locally cartesian closed quasicategories occurred to other people before Joyal formulated

his conjecture. For example, the author of this thesis heard it mentioned in a conversation

between Steve Awodey and Peter LeFanu Lumsdaine back in 2009. Joyal’s conjecture is

therefore a way of making this anticipated connection precise.

1.3 ORGANIZATION OF THE THESIS

After this rather high-level overview, let us now return to planet Earth and discuss the

organization of the thesis.

In Chapter 2 we will review type-theoretic preliminaries. We will carefully describe the

syntax of the type theory under consideration (Section 2.1). It is a fragment of Martin-Löf

type theory with a limited number of logical constructors. We will also discuss possible

extensions of the theory considered there. In Section 2.2, we describe categorical semantics

of type theory. In particular, we say precisely what we mean by a model of type theory and

what some properties of such models are. Finally, in Section 2.3, we will review the basics

of homotopy type theory. The content of this chapter is not original and parts of the texts

are taken almost verbatim from [KLV12] and [AKL13].

Chapter 3 is devoted to an introduction to abstract homotopy theory. In Section 3.1 we

describe various models of higher categories. That is, we give four possible definitions of what

a higher category could be. These are: homotopical categories (i.e. categories equipped with
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a suitable class of weak equivalences), simplicial categories, quasicategories, and complete

Segal spaces. Besides giving basic definitions, we also put these notions in a broader context,

describing their properties and applications. In Section 3.2 we show that all these notions

are equivalent in a suitable sense and the ways of translating between them are essentially

equivalent. Finally, in Section 3.3, we review basic quasicategory theory, showing how to lift

certain categorical notions (slices, limits, adjoints, . . . ) to quasicategories. The content of

this chapter is not original.

Building on the developments of the previous chapter, in Chapter 4 we define locally

cartesian closed quasicategories and study their basic properties (Section 4.1); we, in pre-

cise mathematical terms, explain the already existing connections between type theory and

locally cartesian closed quasicategories (Section 4.2); and we state Joyal’s conjecture, and

discuss our proof strategy (Section 4.3). The content of this chapter is not original; however,

some of the results presented there exist only as comments on some mathematical blogs and

some of the proofs are new.

Our proof strategy is based on an observation from [AKL13] that models of type theory

carry more structure than just that of a homotopical category: they are fibration categories.

While localizations of arbitrary homotopical categories can be difficult to work with, the

situation simplifies when the category in question is known to possess the structure of a

fibration category. Szumi lo [Szu14] defined a functor associating to a fibration category the

quasicategory of frames in it, and showed that this quasicategory possesses finite limits.

The use of this construction plays a fundamental role in our proof. We identify the

structure that one has to equip a fibration category with in order for the resulting qua-

sicategory to be locally cartesian closed. We furthermore prove that the construction of

Szumi lo is equivalent to the standard localization functor, as used in the formulation of

Joyal’s conjecture.

To this end, in Chapter 5 we review the theory of fibration categories and Szumi lo’s

construction. Fibration categories of diagrams play an important role in this development

and therefore, after reviewing the basic definitions in Section 5.1, we turn in Section 5.2

towards the rich theory of fibration categories of diagrams. Next, we review the results of

Szumi lo (Section 5.3), in particular the construction of the quasicategory of frames. Section
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5.4 serves as a repository of technical results on extending Reedy fibrant diagrams along sieve

inclusions. This section can easily be skipped at first reading and referred to when necessary.

The results of this chapter are mostly not original. We believe that the statements and proofs

of the last section exist in folklore, but we could not find them in the existing literature,

thus we gave our own proofs.

Chapter 6 is devoted to a technical result regarding the preservation of equivalences

under a certain operation on fibration categories. This result will later be used in Chapter

8, but we dedicate a separate chapter to it in order to emphasize a rather interesting and

intricate technique used to prove it. Indeed, in Section 6.2 we introduce and study partial

Reedy structures ; while our use of them is limited to one proof, we present them in detail

as we believe they may in the future lead to more powerful applications. The main result of

Section 6.2 depends also on the basic theory of homotopy pullbacks; we review this theory

in the framework of fibration categories in Section 6.1. The results of this and subsequent

chapters contain original research.

The convenience of working with the quasicategories of frames is best demonstrated in

Chapter 7. This is where we establish the main properties of the quasicategory of frames.

Recall that a locally cartesian closed category is a category with a terminal object all of

whose slices are cartesian closed (i.e. the product functor has a right adjoint). We therefore

show that slices of quasicategories of frames are equivalent to quasicategories of frames in the

corresponding slices of fibration categories (Section 7.2); and moreover, adjunctions between

fibration categories preserving enough structure (that is, some or all of the structure of a

fibration category) are carried to adjunctions between quasicategories (Section 7.3). The

first of these results uses a lemma (proven in Section 7.1) simplifying the criterion for a map

to be an equivalence of quasicategories, when the quasicategories in question are known to

arise from fibration categories.

Chapter 8 contains a technical result used later (Section 9.1) to establish an equivalence

between the quasicategory of frames and the standard version of localization. Even though

the result is not of independent interest, a particular lemma used to prove it (from Sec-

tion 8.1) may have applications going beyond the scope of this thesis. In Chapter 9, after

establishing the aforementioned equivalence, we introduce the notion of a locally cartesian
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closed fibration category and prove, using the results of Chapter 7, that the quasicategory of

frames in such a category is a locally cartesian closed quasicategory (Section 9.2). Finally,

in Section 9.3, we verify that every categorical model of type theory carries the structure of

a locally cartesian closed fibration category, thus proving Joyal’s conjecture. (In particular,

the verification that each such model is a fibration category is taken almost verbatim from

[AKL13].)

1.4 PREREQUISITES

This thesis contains a mixture of logic and abstract homotopy theory, with the vast majority

being the latter. Thus in order to understand all the statements, some background in both

of these areas is required. It was my intention to keep the logical and homotopy-theoretic

aspects separate. Therefore, Chapters 3 and 5–8 require no knowledge of logic and type

theory, while Chapter 2 requires no knowledge of homotopy theory. The two areas mix,

however—and they genuinely have to—in two chapters: the one giving the statement of the

conjecture (Chapter 4) and the one containing its proof (Chapter 9).

It was also my intention for this thesis to be as self-contained as possible, but making it

fully self-contained was simply not possible. I therefore assume that the reader is familiar

with basic category theory as presented in [ML98a], basic notions of type theory as presented

in [Uni13, Ch. 1], and basic definitions and properties of model categories, including Quillen

model structure on simplicial sets (for Kan complexes), for which the reference [Hov99,

Ch. 1–3] is sufficient.

Finally, in the parts of thesis that were crucial for the proof of Joyal’s conjecture each

statement is given in full and is either proven in detail, or a specific reference is given (that

is, a reference that includes either the number of a specific theorem or of the page that

the statement can be found on). The only departure from this occurs in Chapter 4 when

providing the motivation for Joyal’s conjecture. In these cases we do not give the statements

of some theorems, but only specific references where both the statement and the proof can

be found. We afford ourselves this liberty as these issues have no impact on the proof of
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Joyal’s conjecture, but only the mathematics surrounding it.

1.5 ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Tom Hales. His support, his guidance,

and his patience were invaluable during my time in graduate school. Not only has he taught

me a tremendous amount of mathematics, but he has also genuinely shaped the way I

think about mathematics. Undoubtedly, he has been the single greatest influence in my

development as a mathematician. For this and much more, I am and will always be deeply

grateful.

Special thanks are due to Steve Awodey for his generous support and, especially, for

making it possible for me to attend the Special Year 2012–13 on Univalent Foundations at

the Institute for Advanced Study in Princeton. He introduced me to the field of Homotopy

Type Theory and was my first mentor therein. Without his help and encouragement on the

early stages of my academic career this thesis would not have been.

I would also like to thank the other members of my thesis committee: Jeremy Avigad,

Bogdan Ion, and Hisham Sati, who were great teachers, mentors, and collaborators of mine.

I have greatly benefited from conversations with Peter Arndt, Dan Grayson, Bob Harper,
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2.0 HOMOTOPY TYPE THEORY

2.1 MARTIN-LÖF TYPE THEORY

2.1.1. Martin-Löf Dependent Type Theory is a formal system of logic, designed as an alter-

native foundation of mathematics. In this section, we will discuss the specific theory under

consideration and its relation to other systems, in particular Calculus of Inductive Construc-

tions. We will therefore introduce briefly the syntax of type theory. (We note however that

this is not a comprehensive introduction to type theory; for this we refer the reader to [SU06]

for general type theory, and to [NPS90], [Uni13, Ch. 1] for the dependent type theory.)

2.1.2. First, one constructs the raw syntax—the set of formulas that are at least parsable,

if not necessarily meaningful—as certain strings of symbols, or alternatively, certain labeled

trees. On this, one then defines α-equivalence, i.e. equality up to suitable renaming of bound

variables, and the operation of capture-free substitution. This first stage is well standardized

in the literature; see e.g. [Hof97] for details.

Second, one defines on the raw syntax several multi-place relations—the judgements

of the theory. These relations are defined by mutual induction, as the smallest family of

relations satisfying a bevy of specified closure conditions, the inference rules of the theory.

The details of the judgements and inference rules used vary somewhat and in fact Martin-Löf

could not quite settle on a single formulation of the theory, making multiple changes over

time [ML72], [ML75], [ML84], [ML82], [ML98b]; we therefore set our choice out in full in

Appendix A. For the structural rules, our presentation is based largely on [Hof97]; as for

the logical rules, we present only those mentioned explicitly in Joyal’s Conjecture. Their

statements are taken from [ML84].
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2.1.3. Let us mention, however, that Joyal’s Conjecture will be formulated for any extension

of the theory presented here; it is the extensions that make the conjecture difficult and

interesting at the same time. We will return to this point in Paragraph 4.3.3.

2.1.4. We take as basic the judgement forms

Γ ` A type Γ ` A = A′ type Γ ` a : A Γ ` a = a′ : A.

We treat contexts as a derived judgement: ` Γ cxt means that Γ is a list (xi:Ai)i<n, with xi

distinct variables, and such that for each i < n, (xj:Aj)j<i ` Ai type.

2.1.5. Let us finally mention some possible extensions that we have in mind. The most

natural one is Martin-Löf Type Theory as presented in [ML84]; it adds to the rules of

Appendix A.1 and A.2 more logical constructors (W-types, the unit type 1, the empty type

0, and coproduct types +) and a (sequence of) universe(s). Another extension is Calculus

of Inductive Constructions [CH88, PPM90, PM93, Wer94], which the Coq proof assistant

is based on. CIC differs from Martin-Löf Type Theory, most notably in its very general

scheme for inductive definitions and its treatment of universes. In the case of extensional

type theory, the inductive definitions of CIC are known to reduce to the aforementioned

logical constructors of MLTT (see e.g. [PM96] or [Bar12]). For intensional type theory, this

only exists in folklore, but some discussion is present in [Voe10b, Sec. 6.2].1

2.1.6. Besides these, we may also want to consider Higher Inductive Types [Uni13, Ch. 6] and

the Univalence Axiom [Voe10a]. And indeed, these possible extensions are what stands be-

hind Joyal’s Conjecture. It is really only the first step in unwinding the variety of homotopy-

theoretic structures behind the new foundations, coming from the above extensions.

2.2 CATEGORICAL MODELS OF TYPE THEORY

2.2.1. In this section, we will review the basics of categorical semantics of type theory. Before

delving into the definitions, a few comments are in order. Instead of interpreting type theory

1The last reference seems to reduce all inductive constructions of CIC to Σ, Id, 1, 0, +, and a dependent
version of W-types, as studied, from the semantics viewpoint in [GH04].
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in categories directly, we introduce an intermediate notion of a categorical model. In fact,

there is no we as different authors use different notions of a categorical model; and so, there

are: comprehension categories [Jac93, Jac99], categories with families [Dyb96, Hof97],

categories with attributes [Car78, Mog91] (also referred to as type categories [Pit00]).

We choose to work with yet another notion of contextual categories (also referred to as

C-systems in [Voe10b]), originally introduced by Cartmell [Car78, Sec. 2.2] and studied

extensively in [Car86] and [Str91].

2.2.2. It should be said, however, that all of these notions are essentially equivalent and

the only differences lie in the adjectives. For example, contextual categories are the same

as full, split comprehension categories with unit. Our choice of contextual categories as the

framework to work with arose primarily due to the convenient fact that they are the only

notion of a model not requiring any further adjectives. Moreover, the structure of contextual

categories appears to resemble the notion of a fibration category that will be used in the

proof.

Definition 2.2.3 (cf. [Str91, Def. 1.2]). A contextual category consists of the following

data:

1. a category C;

2. a grading of objects as ObC =
∐

n∈N Obn C;

3. an object 1 ∈ Ob0 C;

4. maps ftn : Obn+1 C→ Obn C (whose subscripts we usually suppress);

5. for each X ∈ Obn+1 C, a map pX : X → ftX (the canonical projection from X);

6. for each X ∈ Obn+1 C and f : Y → ft(X), an object f ∗(X) and a map q(f,X) : f ∗(X)→

X;

such that:

1. 1 is the unique object in Ob0(C);

2. 1 is a terminal object in C;
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3. for each X ∈ ObC and f : Y → ft(X), we have ft(f ∗X) = Y , and the square

f ∗X

pf∗X

��

q(f,X) // X

px
��

Y
f // ft(X)

is a pullback (the canonical pullback of X along f); and

4. these canonical pullbacks are strictly functorial: that is, for X ∈ Obn+1 C, 1∗ftXX = X

and q(1ftX , X) = 1X ; and for X ∈ Obn+1 C, f : Y → ftX and g : Z → Y , we have

(fg)∗(X) = g∗(f ∗(X)) and q(fg, x) = q(f,X)q(g, f ∗X).

2.2.4. Note that these may be seen as models of a multi-sorted essentially algebraic theory

[AR94, 3.34], with sorts indexed by N + N × N. This definition is best understood via the

following example.

Example 2.2.5. Let T be any type theory. Then there is a contextual category C`(T),

described as follows:

• Obn C`(T) consists of the contexts [x1:A1, . . . , xn:An] of length n, up to definitional

equality and renaming of free variables;

• maps of C`(T) are context morphisms, or substitutions, considered up to definitional

equality and renaming of free variables. That is, a map

f : [x1:A1, . . . , xn:An]→ [y1:B1, . . . , ym:Bm(y1, . . . , ym−1)]

is represented by a sequence of terms

x1:A1, . . . , xn:An ` f1 : B1

...

x1:A1, . . . , xn:An ` fm : Bm(f1, . . . , fm−1)

and two such maps [fi], [gi] are equal just if for each i,

x1:A1, . . . , xn:An ` fi = gi : Bi;

• composition is given by substitution, and the identity Γ → Γ by the variables of Γ,

considered as terms;
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• 1 is the empty context [·];

• ft[x1:A1, . . . , xn+1:An+1] = [x1:A1, . . . , xn:An];

• for Γ = [x1:A1, . . . , xn+1:An+1], the map pΓ : Γ→ ftΓ is the dependent projection context

morphism

(x1, . . . , xn) : [x1:A1, . . . , xn+1:An+1]→ [x1:A1, . . . , xn:An],

simply forgetting the last variable of Γ;

• for contexts

Γ = [x1:A1, . . . , xn+1:An+1(x1, . . . , xn)],

Γ′ = [y1:B1, . . . , ym:Bm(y1, . . . , ym−1)],

and a map f = [fi(~y)]i≤n : Γ′ → ftΓ, the pullback f ∗Γ is the context

[y1:B1, . . . , ym:Bm(y1, . . . , ym−1), ym+1:An+1(f1(~y), . . . , fn(~y))],

and q(Γ, f) : f ∗Γ→ Γ is the map

[f1, . . . , fn, yn+1].

2.2.6. For an object Γ, we will write e.g. (Γ, A) to denote an arbitrary object with ft(Γ, A) =

Γ, and will then write the dependent projection p(Γ,A) simply as pA; similarly, (Γ, A,B), and

so on.

2.2.7. The plain definition of a contextual category corresponds precisely to the basic judge-

ments and structural rules of dependent type theory (Appendix A.1). Similarly, each logical

rule or type- or term-constructor corresponds to certain extra structure on a contextual cat-

egory. We make this correspondence precise in Theorem 2.2.18 below, after we have set up

the appropriate definitions.

Definition 2.2.8. A Π-type structure on a contextual category C consists of:

1. for each (Γ, A,B) ∈ Obn+2 C, an object (Γ,Π(A,B)) ∈ Obn+1 C;

2. for each such (Γ, A,B) and section b : (Γ, A)→ (Γ, A,B), a section λ(b) : Γ→ (Γ,Π(A,B));

3. for each pair of sections k : Γ→ (Γ,Π(A,B)) and a : Γ→ (Γ, A), a section app(k, a) : Γ→

(Γ, A,B) such that pB · app(k, a) = a,
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4. and such that for a : Γ→ (Γ, A) and b : (Γ, A)→ (Γ, A,B), we have app(λ(b), a) = b · a;

5. and for f : Γ′ → Γ, and all appropriate arguments as above,

f ∗(Γ,Π(A,B)) = (Γ′,Π(f ∗A, f ∗B)),

f ∗λ(b) = λ(f ∗b), f ∗(app(k, a)) = app(f ∗k, f ∗a).

2.2.9. Given a Π-structure on C, and (Γ, A,B) as above, write appA,B for the morphism

q(q(pΠ(A,B) · pp∗
Π(A,B)

A, A), B) ·

app(pΠ(A,B)·pp∗
Π(A,B)

A)∗A, (pΠ(A,B)·pp∗
Π(A,B)

A)∗B

(
(1, pp∗

Π(A,B)
A), (1, q(pΠ(A,B), A))

)
: (Γ,Π(A,B), p∗Π(A,B)A)→ (Γ, A,B);

the general form appA,B(k, a) can be re-derived from these instances. Also, for objects (Γ, A),

(Γ, B) in C, write (Γ, [A,B]) for (Γ,Π(A, p∗AB)).

Definition 2.2.10. A Σ-type structure on a contextual category C consists of:

1. for each (Γ, A,B) ∈ Obn+2 C, an object (Γ,Σ(A,B)) ∈ Obn+1 C;

2. for each such (Γ, A,B) a morphism pairA,B : (Γ, A,B)→ (Γ,Σ(A,B)) over Γ;

3. for each such (Γ, A,B), each object (Γ,Σ(A,B), C), and each morphism d : (Γ, A,B)→

(Γ,Σ(A,B), C) with pC · d = pairA,B, a section splitd : (Γ,Σ(A,B)) → (Γ,Σ(A,B), C),

with splitd · pairA,B = d;

4. such that for f : Γ′ → Γ, and all appropriate arguments as above,

f ∗(Γ,Σ(A,B)) = (Γ′,Σ(f ∗A, f ∗B)),

f ∗pairA,B = pairf∗A,f∗B, f ∗splitd = splitf∗d.

Definition 2.2.11. An Id-type structure on a contextual category C consists of:

1. for each (Γ, A), an object (Γ, A, p∗AA, IdA);

2. for each (Γ, A), a morphism reflA : (Γ, A) → (Γ, A, p∗AA, IdA), such that pIdA
· reflA =

(1A, 1A) : (Γ, A)→ (Γ, A, p∗AA);

3. for each (Γ, A, p∗AA, IdA, C) and d : (Γ, A) → (Γ, A, p∗AA, IdA, C) with pC · d = reflA, a

section JC,d : (Γ, A, p∗AA, IdA)→ (Γ, A, p∗AA, IdA, C), such that JC,d · reflA = d;
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4. such that for f : Γ′ → Γ, and all appropriate arguments as above,

f ∗(Γ, A, p∗AA, IdA) = (Γ′, f ∗A, (pf∗A)∗(f ∗A), Idf∗A),

f ∗reflA = reflf∗A, f ∗JC,d = Jf∗C,f∗d.

Definition 2.2.12. Say that C satisfies the Π-η rule if for any (Γ, A,B), the “η-expansion”

map

q(pΠ(A,B),Π(A,B)) · λ(1p∗
Π(A,B)

A, appA,B) : (Γ,Π(A,B))→ (Γ,Π(A,B))

is equal to 1(Γ,Π(A,B)).

A Π-ext structure on C is an operation giving for each (Γ, A,B) a map

extA,B : (Γ,Π(A,B), p∗Π(A,B)Π(A,B),HtpA,B)→

(Γ,Π(A,B), p∗Π(A,B)Π(A,B), IdA,B)

over (Γ,Π(A,B), p∗Π(A,B)Π(A,B)), stably in Γ, where HtpA,B is the object

(
Γ, Π(A,B), p∗Π(A,B)Π(A,B), Π

((
pΠ(A,B) · pp∗

Π(A,B)
Π(A,B)

)∗
A,(

appA,B · q(pΠ(A,B), A), appA,B · q(q(pΠ(A,B),Π(A,B)), A)
)∗

IdB
))
.

Given a Π-ext structure on C, a Π-ext-comp-prop structure for it is an operation

giving, for each (Γ, A,B) and section f : Γ→ (Γ,Π(A,B)), a map

ext-comp(f) : Γ→

(Γ, Π(A,B), p∗Π(A,B)Π(A,B), IdΠ(A,B), p
∗
IdΠ(A,B)

IdΠ(A,B), IdIdΠ(A,B)
)

over the pair of maps

extA,B(f, g) · λ(1A, reflB · pp∗AB · app((1A, f), (1A, 1A))) , reflΠ(A,B) · f

: Γ→ (Γ, Π(A,B), p∗Π(A,B)Π(A,B), IdΠ(A,B)),

stably as ever in Γ.

Example 2.2.13. If T is a type theory with Π-types, then C`(T) carries an evident Π-type

structure; similarly for Σ-types and Id-types.
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2.2.14. Note that all of these structures, like the definition of contextual categories them-

selves, are again essentially algebraic.

Definition 2.2.15. A map F : C → D of contextual categories, or contextual functor,

consists of a functor C → D between underlying categories, respecting the gradings, and

preserving (on the nose!) all the structure of a contextual category.

Similarly, a map of contextual categories with Π-type structure, Σ-type structure, etc.,

is a contextual functor preserving the additional structure.

2.2.16. These are exactly the maps given by considering contextual categories as essentially

algebraic structures.

2.2.17. We are now equipped to state precisely the sense in which the structures defined

above correspond to the appropriate syntactic rules:

Theorem 2.2.18. Let T be the type theory given by just the structural rules of Section A.1.

Then C`(T) is the initial contextual category.

Similarly, let T be the type theory given by the structural rules, plus the logical rules of

Sections A.2, A.3. Then C`(T) is initial among contextual categories with the appropriate

extra structure.

2.2.19. This is essentially the Correctness Theorem of [Str91, Ch. 3, p. 181], with a slightly

different selection of logical constructors.

In other words, Theorem 2.2.18 says that if C is a contextual category with structure

corresponding to the logical rules of a type theory T, then there is a functor C`(T) → C

interpreting the syntax of T in C. This justifies the definition:

Definition 2.2.20. A model of dependent type theory with any selection of the logical

rules of Sections A.2 and A.3 is a contextual category equipped with the structure corre-

sponding to the chosen rules.

Examples 2.2.21.

• The category Set of sets and functions is a contextual category (with an arbitrary grading

on objects and arbitrary choice of ft maps) equipped with all the structures discussed

in Appendix A. Given a map f : B → A of sets, we may view it as an A-indexed family
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(Ba | a ∈ A), where Ba = f−1(a). In this presentation, we have:

f ∗(Xa | a ∈ A) = (Xf(b) | b ∈ B)

Σf (Yb | b ∈ B) = (
∑

b∈Ba
Yb | a ∈ A)

Πf (Yb | b ∈ B) = (
∏

b∈Ba
Yb | a ∈ A)

This yields the interpretations of the canonical pullback, Σ-, and Π-structures. The

Id-structure is given by the diagonal ∆: A→ A× A.

• One may observe that the structures described above generalize to all locally cartesian

closed categories. Recall that a category C is locally cartesian closed if it has a

terminal object, and for any map f : B → A, the pullback functor f ∗ : C/A → C/B

admits a right adjoint (typically denoted f∗ or Πf ). This is equivalent to asking for C to

have a terminal object and each of its slices C/A to be cartesian closed. In particular, a

locally cartesian closed category has all finite limits. For the details of the interpretation,

see [See84] and [Hof95b].

2.3 HOMOTOPY TYPE THEORY

2.3.1. It can be shown [AW09, Prop. 2.1] that every model of a type theory T in the style

of [See84] will satisfy an additional rule, called reflection rule:

Γ ` p : IdA(a, b)

Γ ` a = b : A
Id-reflection

This rule is highly undesirable from the proof-theoretic point of view as it destroys several

good properties of the system, such as decidability of type-checking. The quest for models

that do not satisfy this rule gave rise to Homotopy Type Theory. Let us then turn now our

attention to this program, describing its origins and main milestones.
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2.3.2. There are two meanings of the term Homotopy Type Theory. One definition is as

the underlying type theory of the Univalent Foundations, which is Calculus of Inductive

Constructions together with the Univalence Axiom and Higher Inductive Types. The other

definition refers to the interpretation of Martin-Löf Type Theory into various categorical

structures arising from homotopy theory, as well as the study of the homotopy theory of

type theory. Since the type theories considered here are fairly minimalistic, it is the latter

definition that we will use.

2.3.3. In this section, we will review some basic results from the program of Homotopy

Type Theory, as they are relevant to our main result. To this end, let T be any type theory

satisfying the rules of Appendix A.

2.3.4. The development of Homotopy Type Theory derives from the work of Hofmann and

Streicher [HS98b] on the groupoid model of type theory. The groupoid model introduced the

structure of a contextual category with all the structures present in T on the category Gpd

of groupoids. It was the first model in which the reflection rule was not validated. This was

accomplished by interpreting the Id-type not as a the diagonal A→ A×A, but as the arrow

groupoid A→ → A×A. It hence made use of two notions of equality: the equality of objects

of groupoids as set-theoretic entities, and their isomorphisms as objects of a category. And

since not all isomorphisms are identities, this violated the reflection rule.

2.3.5. Awodey and Warren [AW09] noticed that the rules of Id-types correspond to the

axioms of a weak factorization system, forcing types to be interpreted as fibrations (or, more

generally, maps belonging to the right class of the factorization system in question). Their

paper was a genuine breakthrough and opened the gate for others to work on these topics.

2.3.6. Models of type theories with Id-types, based on model categories and weak factor-

ization systems, were found later by Warren [War08] and by Garner and van den Berg

[vdBG12].

2.3.7. Gambino and Garner [GG08, Thm. 10] identified a weak factorization system on

the classifying category C`(T), thus showing that every categorical model of dependent type

theory is in fact equipped with such a factorization system. Their construction uses Garner’s

Identity Contexts [Gar09b, Prop. 3.3.1].
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2.3.8. For completeness, we also mention the work of Lumsdaine [Lum09, Lum10] on con-

necting the structures present on C`(T) to Leinster’s definition of a weak ω-category [Lei04],

and that of Garner and van den Berg [vdBG11] on the same topic. From a slightly different

perspective, this connection was studied by Awodey, Hofstra, and Warren [AHW13, HW13]

2.3.9. At around the same time, Voevodsky suggested his Univalent Foundations Program

[Voe10c], which suggests using the system Coq, together with an additional axiom, called

the Univalence Axiom as foundations for mathematics. In this proposal, Voevodsky already

had the homotopy-theoretic interpretation in mind (see his earlier work, e.g. [Voe06]), but

he also managed to formally develop (in the system of Coq) sizeable portions of classical

homotopy theory [V+]. An excellent introduction to formalization in Homotopy Type Theory

can be found [PW12].

2.3.10. The ideas of Voevodsky planted the seed from which much research has grown. The

HoTT group now has its own repository of formally verified results [HoTa] and a blog [HoTb],

where a full list of papers can be found. Voevodsky identified a model of the Univalence

Axiom in the category of simplicial sets [KLV12] and this result was later extended by

Shulman [Shu14] to a larger class of models.

2.3.11. Let us now recall a few basic definitions from the Univalent Foundations. These

definitions will be necessary later, when formulating Joyal’s Conjecture. We adopt here the

informal style of presentation developed in [Uni13]. Thus it is important to point out that

for the next couple of definitions and theorems, we are working inside type theory.

Definition 2.3.12. A type X is contractible if there is some x0 : X, and a function giving

for each x : X a path in Id(x, x0). Formally, the proposition “X is contractible” is defined

as follows:2

isContr(X) :=
∑
x0:X

∏
x:X

Id(x, x0).

Definition 2.3.13. The homotopy fiber of a map f : X → Y over an element y : Y is defined

2One might at first read this as a definition of connectedness—for each x, there exists some path from x
to x0—but remember that one should think of the function sending x to the path as continuous, so as giving
a contraction of X to x0. Precisely, in the simplicial and similar interpretations, the Π-type becomes a space
of continuous functions, and so isContr gets interpreted as the property of contractibility; and moreover,
working within the theory, the logic forces isContr to behave like contractibility, not like connectedness.
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by:

hfib(f, y) :=
∑
x:X

IdY (f(x), y).

Definition 2.3.14. A map f : X → Y is an equivalence if for all y : Y the homotopy fiber

of f over y is contractible, i.e.:

isEquiv(f) :=
∏
y:Y

isContr(hfib(f, y)).

Theorem 2.3.15. The following are equivalent for a map f :

1. f is an equivalence.

2. there exists g : B → A together with a homotopy η:
∏

x:A IdA(x, gfx) and ε:
∏

y:B IdB(fgy, y).

3. there exists g1 : B → A together with η:
∏

x:A IdA(x, g1fx) and g2 : B → A with ε:
∏

y:B IdB(fg2y, y).

2.3.16. We will now move back to classical theory and study type theory T externally. Given

c:
∑

x:AB(x), using Σ-elim, we may obtain terms: π1(c):A and π2(c):B(π1(c)). We may then

add the following rule to type theory T:

Γ ` c : Σx:AB(x)

Γ ` c = pair(π1(c), π2(c)) : Σx:AB(x)
Σ-η

2.3.17. When working with the category C`(T) of contexts, it is often convenient to use the

internal reasoning. Thus, for convenience of exposition later on, we also assume the above

η-rules for Σ-types, so that every context is isomorphic to (a context consisting of just) a

single iterated Σ-type: for instance,

[x:A, y:B(x)] ∼= [p : Σx:AB(x)].

Indeed, the maps pair : [x:A, y:B(x)] → [p : Σx:AB(x)] and [π1, π2] : [p : Σx:AB(x)] →

[x:A, y:B(x)] can easily be seen as each other inverses, using the Σ-η rule. Thus, the in-

clusion of the subcategory of C`(T) consisting only of single type extensions (a.k.a. types,

a.k.a. objects of grading 1 in C`(T)) is an equivalence of categories. Therefore, any categor-

ical properties of C`(T) can be detected on the level of types, without a reference to more

general contexts.

23



2.3.18. Nothing here depends on that assumption, however; one may simply replace types

with contexts and Σ-types with context extensions.

2.3.19. To demonstrate the advantage of working with types, rather than contexts, let us

show that that the category C`(T) is a homotopical category (in the sense of Definition 3.1.3).

We defined the notion of a weak equivalence internally to type theory, so we may now say that

a morphism f : Γ → ∆ of contexts is a weak equivalence if the corresponding morphism

of iterated Σ-types is provably a weak equivalence (that is, the type isEquiv(f) is inhabited).

Moreover, one can easily show—working internally to type theory—that weak equivalences

are closed under composition and that every identity morphism is a weak equivalence. This

implies the desired external statement that these weak equivalences form a subcategory.
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3.0 ABSTRACT HOMOTOPY THEORY

Abstract homotopy theory traditionally has two incarnations: homotopical algebra and

higher category theory. The former deals with categories equipped with a class of weak

equivalences (e.g. model categories, Waldhausen categories), while the latter makes the in-

formation about higher-categorical structure explicit. However, both of these approaches

capture the same information. We will therefore discuss different models of what can be

called a homotopy theory (Section 3.1) and show that all these models are equivalent in a

suitable sense (Section 3.2). Finally in Section 3.3, we shall review, following [Joy09] and

[Lur09a], the basics of how to lift category theory to higher category theory.

3.1 MODELS OF (∞, 1)-CATEGORIES

3.1.1. In this section, we will briefly review the basics of four different models for (∞, 1)-

categories. They are: homotopical categories (Sec. 3.1.1), simplicial categories (Sec. 3.1.2),

quasicategories (Sec. 3.1.3), and complete Segal spaces (Sec. 3.1.4).

3.1.1 Homotopical categories

3.1.2. Recall that a subcategory C′ ⊆ C of a category C is called wide if C′ contains all

objects of C.

Definition 3.1.3. A homotopical category consists of a category C together with a wide

subcategory W ⊆ C, whose morphisms are called weak equivalences.
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3.1.4. Clearly, we could alternatively define a homotopical category as a category C together

with a class of maps W such that:

• all identity morphisms belong to W and

• the class W is closed under composition.

We shall mention that some other authors prefer calling what we call homotopical cate-

gories, relative categories (see, for example, [BK12b]). However, we find this terminology

to be somewhat unilluminating.

3.1.5. The significance of homotopical categories lies in the fact that every homotopical

category C admits the homotopy category Ho(C).

Definition 3.1.6 (cf. [GZ67, Ch. 1.1.1]). The homotopy category of a homotopical cat-

egory (C,W) is a category Ho(C,W) (or just HoC, if no confusion possible) together with a

identity-on-objects functor γ : C→ HoC, with γ(w) an isomorphism for all w ∈ W , satisfying

the following universal property: given any category D with a functor δ : C → D such that

δ(w) is an isomorphism for all w ∈ W , there exists a unique functor HoC → D making the

following triangle commute:

C

γ
��

δ // D

HoC

<<

3.1.7. Explicitly, one may construct the homotopy category of (C,W) as follows. The objects

of HoC are the objects of C and the morphisms of HoC are equivalence classes of zigzags built

from:

1. morphisms of C

2. inverted morphisms from W i.e. morphisms w : X → Y such that w : Y → X ∈ W

quotiented by the relations:

1. X
f // Y

g // Z ∼ X
g·f // Z ;

2. 1C
X ∼ 1HoC

X ;

3. for any w ∈ W ,

a. X w // Y w // X ∼ 1HoC
X ;

b. Y
w // X

w // Y ∼ 1HoC
Y .
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One then defines γ : C→ HoC as the identity-on-objects functor taking a morphism f to the

class [f ]∼, where we consider f as a zigzag of length 1. The verification that HoC satisfies

the required universal property is straightforward (see [GZ67, Ch. 1] for details).

Definition 3.1.8. Let C and D be homotopical categories. A homotopical functor

F : C→ D is a functor taking weak equivalences to weak equivalences.

3.1.9. Notice that if C is a homotopical category and J is any small category, then the

functor category CJ is again a homotopical category, whose weak equivalences are natural

weak equivalences i.e., natural transformations α : F → G such that αj : F (j) → G(j) is a

weak equivalence for all j ∈ J .

Proposition 3.1.10. A homotopical functor F : C → D induces a functor HoF : HoC →

HoD.

Proof. Since F preserves weak equivalences and the canonical map δ : D → HoD inverts

them, by the universal property of HoC we obtain the induced map:

C

γ
��

F // D
δ // HoD

HoC

66

Definition 3.1.11. Let C and D be homotopical categories. A homotopical functor F : C→

D is a homotopy equivalence if there exists a homotopical functor G : D → C and two

zigzags of natural weak equivalences connecting F ·G with 1D and G · F with 1C.

3.1.2 Simplicial categories

3.1.12. Simplicial categories were among the first models used to handle in a modular way

the infinite amount of coherence data required in many constructions in homotopy theory

[CP86, CP88]. Unlike homotopical categories, simplicial categories and all following models

belong to the higher-categorical approach.
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Definition 3.1.13. A simplicial category is a category enriched over the cartesian monoidal

category sSet of simplicial sets.

3.1.14. The category of simplicial categories (and simplicially-enriched functors) will be

denoted by sCat.

3.1.15. The term simplicial category is also sometimes used to describe a simplicial object in

the category Cat of small categories. As it turns out, the simplicial categories in the sense of

the above definition form a subcategory of the category Cat∆op
(of simplicial objects in Cat).

Indeed, there is a natural correspondence between simplicial categories and the simplicial

objects C : ∆op → Cat with a fixed set of objects (i.e. ObCn = O for some set O and the face

and degeneracy maps are identity-on-objects).

3.1.16. Let C be a simplicial category. We will typically write ObC for the collection of

objects of C and MapC(X, Y ) for the simplicial sets of morphisms from X to Y . We say that

a simplicial category is locally Kan if for all X, Y ∈ ObC, Map(X, Y ) is a Kan complex

(see Paragraph 3.1.32).

3.1.17. The homotopy category HoC of a simplicial category C is defined as the category

whose:

• objects are the objects of C;

• hom-sets are given by:

HomHoC(X, Y ) = π0(Map(X, Y )′),

where Map(X, Y )′ is the fibrant replacement of Map(X, Y ) in the Quillen model structure

on sSet.

By functoriality of π0, it is immediate that a simplicial functor F : C → D induces a

functor Ho(F ) : HoC→ HoD.

Definition 3.1.18. A simplicial functor F : C→ D is a Dwyer–Kan equivalence if Ho(F )

is an equivalence and for all X, Y ∈ C, the induced map of simplicial sets

MapC(X, Y )→MapD(FX,FY )

is a weak equivalence in the Quillen model structure on sSet (see [Hov99, Sec. 3.2]).
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3.1.19. We next describe a way to assign to each homotopical category, a simplicial category.

The construction and the in-depth study of its properties is due to Dwyer and Kan [DK80c,

DK80a, DK80b].

Definition 3.1.20. Let (C,W) be a homotopical category. The hammock localization of

(C,W) is the simplicial category LH(C,W) defined as follows:

• The objects of LHC are the objects of C;

• Given X, Y ∈ C, the set of n-simplices of the simplicial set Map(X, Y ) is given by

commutative diagrams of the form:

C1,1

��

C1,2

��

. . . C1,k

��
C2,1

��

C2,2

��

. . . C2,k

��

X
...

��

...

��

...

��

Y

Cn,1 Cn,2 . . . Cn,k

subject to the following conditions:

1. k ≥ 0.

2. all vertical maps are weak equivalences.

3. in each column all horizontal maps go in the same direction; if they all go to the

left, then they are weak equivalences.

4. the maps in the adjacent columns go in the opposite directions.

5. no column contains only the identity maps.

The i-th face map is obtained by omitting the i-th row and composing the vertical arrows;

and the i-th degeneracy is given by repeating the i-th row and inserting a vertical row

of identities.

3.1.21. One can easily check that this assignment extends to a functor LH : hCat → sCat.

We can therefore define the equivalences of homotopical categories.
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Definition 3.1.22. A homotopical functor F : C → D is a Dwyer–Kan equivalence (or

simply, DK-equivalence) if the induced simplicial functor LH(F ) is a Dwyer–Kan equiva-

lence.

Explicitly, F : C→ D is a Dwyer–Kan equivalence if HoF : HoC→ HoD is an equivalence

of categories and for any X, Y ∈ C, the induced map:

LH(F )X,Y : MapLHC(X, Y )→MapLHD(FX,FY )

is an equivalence in Quillen’s model structure on simplicial sets.

Examples 3.1.23.

• Let M and M′ be model categories and F : M → M′ a right Quillen functor which

is a Quillen equivalence. Then F does not have to be a Dwyer–Kan equivalence of the

underlying homotopical categories, but its restriction to the fibrant objects Ff : Mf →M′f

is.

• For any model category M, the inclusion of the full subcategory of fibrant objects Mf ↪→

M is a Dwyer–Kan equivalence.

Theorem 3.1.24 (Barwick–Kan, [BK12a, Sec. 1]). The hammock localization functor LH : hCat→

sCat is a Dwyer-Kan equivalence, where the weak equivalences in both hCat and sCat are

taken to be Dwyer-Kan equivalences.

3.1.25. The category sCat of simplicial categories carries more structure than just this of a

homotopical category; it is in fact a model category. In order to define its cofibrations and

weak equivalences, we need however a preliminary notion of a homotopy equivalence in a

simplicial category.

Definition 3.1.26. A map f : X → Y in a simplicial category C is a homotopy equiva-

lence if it becomes an isomorphism in HoC.

3.1.27 (cf. [Ber07, Thm. 1.1]). The category sCat carries a model structure, that we will

refer to as Bergner model structure, in which:

• weak equivalences are Dwyer-Kan equivalences.

• fibrations are simplicial functors F : C→ D such that:
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1. MapC(X, Y )→MapD(FX,FY ) is a Kan fibration of simplicial sets, for any X, Y ∈

C;

2. given any X ∈ C and a homotopy equivalence f : FX → A ∈ D, there exists a

homotopy equivalence f : X → Y ∈ C such that F (f) = f .

3.1.28. Using the Rezk model structure on bisimplicial sets, Barwick and Kan [BK12b]

were able to create a model structure on the category hCat and show [BK12a] that its weak

equivalences coincide with the Dwyer-Kan equivalences. The hammock localization is not a

right or left Quillen functor with respect to this structure, but it is equivalent to one.

3.1.3 Quasicategories

3.1.29. In this section, we will review the basic definitions and examples. It is worth men-

tioning that it is in quasicategories where the theory of higher categories is developed. That

is, they are the nicest model for the theory of (∞, 1)-categories. In a separate section 3.3,

we will discuss in more detail this internal development.

Definition 3.1.30. A quasicategory is a simplicial set C satisfying the following inner

horn filling condition: for each n ∈ N and any 0 < i < n, given a map Λi[n] → C, there

exists an extension ∆[n]→ C making the following triangle commute:

Λi[n] //
� _

��

C

∆[n]

>>

3.1.31. We shall next discuss two large classes of examples of quasicategories. They are:

Kan complexes and (nerves of) categories. The former can be seen as a way of embedding

weak ∞-groupoids (a.k.a. spaces, a.k.a. homotopy types) into the world of∞-categories and

the latter as an embedding of strict 1-categories.

3.1.32 (Kan complexes). Recall that a simplicial set K is a Kan complex, if it satisfies

the (general) horn filling condition: for each n ∈ N and any 0 ≤ i ≤ n, given a map
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Λi[n]→ C, there exists an extension ∆[n]→ C making the following triangle commute:

Λi[n] //
� _

��

C

∆[n]

>>

Thus, every Kan complex is a a quasicategory. In fact, quasicategories were first introduced

under the name of weak Kan complex in [BV73].

3.1.33 (Nerve of a category). Let C be a category. Define a simplicial set N(C) called the

nerve of C by:

N(C)n = Fun([n],C)

where [n] denotes the linear order {0 ≤ 1 ≤ . . . ≤ n}, regarded as a category. It is easy

to see that N(C) is a quasicategory and moreover, such quasicategories are characterized by

satisfying the unique inner horn filling condition, which asserts that for each n ∈ N and

any 0 < i < n, given a map Λi[n] → C, there exists a unique extension ∆[n] → C making

the following triangle commute:

Λi[n] //
� _

��

C

∆[n]

∃!

>>

3.1.34 (cf. [Joy09, p. 158]). We recall moreover that the nerve functor is fully faithful and

has a left adjoint denoted τ1 : sSet → Cat. Explicitly, τ1(C) is the category whose objects

are 0-simplices of C and whose morphisms are freely generated by composites of 1-simplices

modulo, for each 2-simplex α, the relation s0(α) ·s2(α) = s1(α), where s0, s1, s2 : C2 → C1 are

the face maps. For a quasicategory C, the category τ1(C) is called the homotopy category

of C, and we will sometimes write HoC instead. Similarly as in the case of simplicial categories

(Def. 3.1.26), we define a 1-simplex f : x → y in C to be an equivalence if it becomes an

isomorphism in the homotopy category.

One can also verify that the nerve of a category N(C) is a Kan complex if and only if C is

a groupoid. Similarly, a quasicategory C is a Kan complex if and only if HoC is a groupoid.
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3.1.35 (cf. [Joy09, Ch. 6]). On a related note, recall that Kan complexes are fibrant objects

in the Quillen model structure on sSet. There is an analogous model structure, which we

will refer to as Joyal model structure, in which:

• cofibrations are monomorphisms;

• weak equivalences are weak categorical equivalences, i.e. maps w : X → Y such for

all quasicategories C, the induced map

τ1(Cw) : τ1(CY )→ τ1(CX)

is an equivalence of categories.

The fibrant objects of this model structure are quasicategories; we will call weak categorical

equivalences between quasicategories, categorical equivalences. Notice however that when

restricted to Kan complexes, categorical equivalences and weak equivalences (from Quillen’s

model structure) coincide.

3.1.36. The adjunction τ1 : sSet � Cat :N is a Quillen adjunction, where Cat is considered

with its natural model structure; that is, the one in which cofibrations are functors injective

on objects, and weak equivalences are equivalences of categories (cf. [Joy09, p. 162]).

3.1.37. Let Kan and qCat denote the full subcategories of sSet consisting of Kan complexes

and quasicategories, respectively. There is an obvious inclusion Kan ↪→ qCat.

Proposition 3.1.38 ([JT07, Prop. 1.16]). The inclusion Kan ↪→ qCat admits a right adjoint

J: qCat→ Kan.

Moreover, J takes categorical equivalences between quasicategories to weak homotopy equiva-

lences of Kan complexes.

3.1.39. Intuitively, J simply picks out the maximal subgroupoid of a quasicategory.

We now turn towards establishing the connection between quasicategories and two pre-

viously defined models of (∞, 1)-categories.
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3.1.40 (Homotopy coherent nerve). We will define a right Quillen functor N∆ : sCat→ sSet

(where the model structures on them are the ones defined by Bergner and Joyal, respectively).

Our definition will follow a similar idea as the one developed for the nerve functor N: Cat→

sSet. That is, we first construct a cosimplicial object C : ∆→ sCat by:

• ObC[n] = {0, 1, . . . , n};

• MapC[n](i, j) = N({I ⊆ {i, i+ 1, . . . , j} | i, j ∈ I}) (i.e. the nerve of the poset of subsets

of {i, i+ 1, . . . , j} that contain both i and j).

Now, we can define the homotopy coherent nerve N∆ : sCat→ sSet by setting:

N∆(C)n = HomsCat(C[n],C).

3.1.41. Since the category sCat of simplicial categories possesses all colimits, we may define

the left adjoint C : sSet→ sCat of N∆ as a left Kan extension:

sSet
⊥

C:=LanyC

((
sCat

N∆

oo

∆

y

aa

C

<<

The adjunction C ` N∆ is a Quillen equivalence between the category of simplicial cate-

gories with Bergner’s model structure and the category of simplicial sets with Joyal’s model

structure (see, for example, [Lur09a, Thm. 2.2.5.1] or [DS11, Cor. 8.2] for a proof).

3.1.42. Composing the hammock localization with the coherent nerve functor (and taking

fibrant replacement in the category of simplicial categories inbetween) assigns to each homo-

topical category (C,W) a quasicategory. Notice that the fibrancy assumption is important

since N∆ as a right Quillen functor returns the homotopically correct object only on fibrant

objects.

We will next give a more direct construction realizing this specification, but first we have

to define a simplicial set that we will use in our construction.
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3.1.43. Define a simplicial set I as the pushout:

∆[1] t∆[1] //
� _

[02,13]

��

∆[0] t∆[0]

��
∆[3] // I

Precomposing the ∆[3]→ I with the inclusion ∆[1]
[12]
↪−→ ∆[3], yields a map ∆[1] ↪→ I.

3.1.44. From the definition, it is easy to see that maps I → K classify morphisms in K

together with a choice of left and right quasi-inverses. Thus, for a quasicategory C, asking

whether a 1-simplex f : x→ y ∈ C is an equivalence is the same as asking whether the map

∆[1]
f−→ C factors through I.

Equivalently, we may give another description of equivalences. Let E[1] denote the nerve

of the contractible groupoid with two objects. A choice of equivalence in C is equivalent to

a map E[1]→ C.

3.1.45. Let (C,W) be a homotopical category. We will define a quasicategory L(C,W),

which will be called the standard localization of a homotopical category (C,W).

Since 1-simplices of the nerve N(C) are morphisms of C, we have W ⊆ N(C)1. By the

Yoneda Lemma, for each w ∈ W , there is a simplicial map ∆[1] → N(C), picking out w.

This gives a map ∐
w∈W

∆[1]→ N(C).

Taking the pushout of this map along the W-indexed coproduct of inclusions ∆[1] ↪→ I, we

obtain: ∐
w∈W

∆[1] //

� _

��

N(C)

��∐
w∈W

I // N(C)[W−1]

and we define L(C,W) as the fibrant replacement (in Joyal model structure) of N(C)[W−1].

Proposition 3.1.46 (cf. [HS98a, Prop. 8.7]). The functor L: hCat→ qCat is a Dwyer-Kan

equivalence, and for any homotopical category C, there is an equivalence:

L(C) ' N∆(LH(C)′),
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where LH(C)′ denotes the fibrant replacement of LH(C) in Bergner’s model structure on sCat

(Paragraph 3.1.27).

3.1.4 Complete Segal spaces

3.1.47. The last model for the theory of (∞, 1)-categories that we will consider is the com-

plete Segal spaces. While working inside a complete Segal space may not be as convenient as

working inside a quasicategory, a particular model category structure on the category ssSet

of bisimplicial sets is much better behaved.

3.1.48. Recall that a simplicial model category is a model category M together with a

tensor ⊗ : sSet ×M → M, which is required to be a left Quillen bifunctor (with respect to

Quillen model structure on sSet). A canonical example of such a simplicial model structure is

Quillen model structure on sSet. As simplicial model categories are in many respects better

behaved, we may ask whether the Joyal model structure on sSet is also simplicial. (Here, we

wish to consider the natural tensor sSet× sSet→ sSet given by the cartesian product.) We

shall see that this is not the case.

Let us write sSetQ for the category of simplicial sets with Quillen model structure and

sSetJ for the same category, but with Joyal model structure. In order for a model category

to be simplicial, it would have to satisfy the pushout-product axiom, asserting that for any

pair of cofibrations (i ∈ sSetQ, j ∈ sSetJ), their pushout-product i⊗̂j is again a cofibration,

and is acyclic if either i or j is. However, we have the following:

Λ0[2]� _

��
∆[2]

⊗̂
∅� _

��
∆[0]

=

Λ0[2]� _

��
∆[2]

but since Λ0[2] ↪→ ∆[2] is an acyclic cofibration only in Quillen model structure, sSetJ fails

to satisfy the pushout-product axiom, and hence is not a simplicial model category.

3.1.49. A remedy for this problem is the Rezk model structure on the category of bisimplicial

sets, that is on the functor category ∆op × ∆op → Set or equivalently ∆op → sSet. It

is Quillen equivalent to the Joyal model structure on sSet, but enjoys several categorical

properties (such as being simplicial) that Joyal model structure lacks.
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In this section, we will briefly review the basic properties of complete Segal spaces as

they will play a crucial role later in the proof. Our notation and terminology follows [Rez01]

for the first part and [JT07] for the second.

3.1.50. In our review, we will make use of the notion of Reedy fibrations and fibrant objects

for diagrams in model categories. The reader who is unfamiliar with these notions may want

to consult either [Hov99, Ch. 5] or Section 5.2 of the present thesis, where we discuss Reedy

fibrations in a more general framework that subsumes the model-categorical case.

Definition 3.1.51. A Segal space is a Reedy fibrant functor W : ∆op → sSet such that for

each n ∈ N, the canonical map:

Wn → W1 ×W0 W1 ×W0 . . .×W0 W1︸ ︷︷ ︸
n times

,

induced by n distance-preserving inclusions [1] ↪→ [n], is a weak equivalence.

3.1.52. A Segal space W : ∆op → sSet gives a functor W op : ∆→ sSetop. Let W̃ denote the

left Kan extension of W op along the Yoneda embedding:

∆ W op
//� _

y
��

sSetop

sSet W̃ :=LanyW op

HH

Application of W̃ to the unique map I→ ∆[0] yields a map of simplicial sets:

W0 = W̃ (∆[0])→ W̃ (I) =: hoequiv(W ),

where the equality W0 = W̃ (∆[0]) follows by the Yoneda Lemma.

Definition 3.1.53. A Segal space W : ∆op → sSet is complete if the canonical map W0 →

hoequiv(W ) is a weak equivalence.

3.1.54 (cf. [Rez01, Thm. 7.2]). There is a model structure on the category ssSet of bisim-

plicial sets, that we will refer to as the Rezk model structure, in which:

• cofibrations are the monomorphisms;

• fibrant objects are complete Segal spaces;
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• weak equivalences are morphisms s : X → Y such that for any complete Segal space W

the induced map

W s : W Y → WX

is a weak equivalence of simplicial sets, where WX denotes the simplicial set given by

(WX)n = WXn
n .

3.1.55. Having described complete Segal spaces, we will now relate them to all three pre-

ceding models.

Theorem 3.1.56 ([JT07, Thm. 4.11]). The functor (−)0 : ssSet→ sSet taking a bisimplicial

set (Xm,n) to the simplicial set (Xm,0) is a right Quillen functor, and part of a Quillen

equivalence.

3.1.57. A key lemma in the proof of the above theorem is the following result that establishes

an important property of the maximal subgroupoid functor J. We mention it here as we

shall need it in one of our later proofs.

Proposition 3.1.58 ([JT07, Thm. 4.10]). Let C ∈ qCat. Then the bisimplicial set J(C∆[−])

is a complete Segal space.

3.1.59. Let C be a simplicial category. In light of the discussion of Paragraph 3.1.15, we

can view it as a simplicial object C : ∆op → Cat with a constant set of objects. We define

the bisimplicial set LC(C) by setting LC(C)n = N(Cn). After possibly taking Reedy fibrant

replacement, this functor gives an DK-equivalence sCat → ssSet, where sCat is considered

with Bergner model structure and ssSet with Rezk model structure (cf. [Ber09, Sec. 6])

3.1.60. Let (C,W) be a homotopical category and let [m] = {0 ≤ 1 ≤ . . . ≤ m} be the

ordinal regarded as a category. The functor category C[m] is again a homotopical category

where weak equivalences are natural weak equivalences. We will denote it by (C[m],WC[m]).

The classification diagram N (C,W) of a homotopical category (C,W) is a bisimplicial

set ∆op → sSet, whose n-simplices are given by:

N (C,W)n = N(WC[m]).

3.1.61. In particular, we have:
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• N (C,W)0 = NW ;

• N (C,W)1 = N

(
diagrams

//

∼
��

∼
��//

in C

)

• N (C,W)1 = N

(
diagrams

//

∼
��

//

∼
��

∼
��// //

in C

)
3.1.62 (cf. [BK12b, Sec. 1]). Finally, we shall note that the functor N : hCat → ssSet is a

Dwyer-Kan equivalence and it is equivalent to a Quillen functor.

3.1.63. The category Cat is a full subcategory of the category hCat of homotopical categories,

whose weak equivalences are exactly isomorphisms. The restriction N|Cat : Cat ↪→ hCat→

ssSet is easily seen to be fully faithful. The Reedy fibrant replacement of NC is how the

category C was encoded in the formalization of category theory in the Univalent Foundations

[AKS13] after interpretation of type theory in the simplicial mode of [KLV12].

3.2 COMPARISON PROBLEM

3.2.1. In the previous section, we defined several models of (∞, 1)-categories: homotopical

categories, simplicial categories, quasicategories, and complete Segal spaces. Other models,

that were not discussed, are topological categories (categories enriched over Top) and Segal

categories (Segal spaces, in which W0 is discrete). We have also defined functors between

some of these categories. More precisely, the picture is:

hCat LH
//

N

��

L

""

sCat

N∆

��
LC

uu
ssSet

(−)0

// sSet

3.2.2. As we have verified, all of these maps are equivalences of homotopy theories, i.e. Quillen

equivalences between model categories or DK-equivalences of homotopical categories. Joyal’s

Conjecture will be a statement asserting something about the category L(C`(T)), the stan-

dard localization (Paragraph 3.1.45) of the classifying category of type theory, regarded as a
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homotopical category. We will be able to show the corresponding result about the classifica-

tion diagram (or more precisely, the functor (−)0 applied to its fibrant replacement). Thus

not only is it important to be able to compare these models of (∞, 1)-categories, but it is

also crucial to relate different localizations.

3.2.3. Toën showed [Toë05, Thm. 6.3] that the homotopy theory of homotopy theories (that

is, the homotopical category of homotopical categories with DK-equivalences) admits, up

to equivalence, only two autoequivalences: identity and the operation of taking the oppo-

site category. All of the localizations in the diagram of Paragraph 3.2.1 therefore induce

automorphisms of this homotopy theory. But examining them on the full subcategory of

hCat consisting of the terminal category and the category [1] (with two objects and one non-

identity arrow), we can tell whether they are equivalent to the identity or to the opposite

category functor.

• the simplicial category corresponding via LH to [1] ∈ hCat, will consist of two objects

{0, 1} and the only non-trivial mapping space will be Map(0, 1) = ∆[0]; the other ones

will contain either only identities or be empty;

• the corresponding quasicategory will be ∆[1];

• the corresponding bisimplicial set will consist of ∂∆[1] in dimension 0, ∆[1] in dimension

1; and higher simplicial sets will be degenerate (in the sense of diagram of simplicial

sets).

3.2.4. Given the above descriptions, it is immediate to see that the functors in the diagram

of Paragraph 3.2.1 preserve the orientation of the arrow in the aforementioned objects.1

Hence, for any homotopical category C and any two composites of functors in the diagram of

Paragraph 3.2.1 applied to it, the resulting objects will be weakly equivalent. In particular,

we obtain the following theorem:

Theorem 3.2.5. For every homotopical category (C,W), the quasicategories L(C,W) and

(N (C,W)′)0 are weakly equivalent in the Joyal model structure on sSet. (Here, N (C,W)′

denotes the fibrant replacement of N (C,W) in the Rezk model structure on ssSet.)

1I learned this argument from Chris Schommer–Pries on MathOverflow http://mathoverflow.net/

questions/92916/does-the-classification-diagram-localize-a-category-with-weak-equivalences.
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3.3 THEORY OF QUASICATEGORIES

3.3.1. As we mentioned before, quasicategories give an extremely nice model of (∞, 1)-

categories for the development of the theory. The profound work of Joyal [Joy09] and Lurie

[Lur09a, Lur12] lifted the existing category theory to higher category theory. In this section,

we will review the basics of the theory of quasicategories. Before doing that, let us recall the

following contractibility criterion.

3.3.2 (Contractibility criterion). Let X ∈ sSet. Since the monomorphisms of simplicial

sets are generated under (possibly transfinite) composition and pushouts from the boundary

inclusions, we see immediately that X is contractible if and only if for all n ≥ 0 and all maps

∂∆[n]→ X, there exists an extension:

∂∆[n] //
� _

��

X

∆[n]

<<

Definition 3.3.3. Let C be a quasicategory and x, y ∈ C. The mapping space MapC(x, y)

(or C(x, y)) is a simplicial set defined as a pullback:

C(x, y) //

��

C∆[1]

��
∆[0]

(x,y) // C× C

Proposition 3.3.4 ([Lur09a, Cor. 4.2.1.8]). For any 0-simplices x and y in a quasicategory

C, the mapping space MapC(x, y) is a Kan complex.

3.3.5. A quasicategory C is locally small if it is weakly equivalent to a small simplicial set.
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3.3.6 (Join of categories). The first notion that we wish to generalize to quasicategories is

the notion of a join. Recall that given two categories C and D, their C ?D is defined as a

category whose objects are ObCqObD and whose hom-sets are given by:

HomC?D(X, Y ) =



HomC(X, Y ) if X, Y ∈ C

HomD(X, Y ) if X, Y ∈ D

{∗} if X ∈ C, Y ∈ D

∅ if X ∈ D, Y ∈ C

As we shall see later, a big part of categorical notions can be defined in terms of joins. Thus,

since a generalization of joins from categories to simplicial sets is rather straightforward, this

is where we will begin.

Definition 3.3.7. Let K,L ∈ sSet. Define the join of K and L by:

(K ? L)n =
∐

i,j≥−1
i+j=n−1

Ki × Lj

where we assume that K−1 = L−1 = {∗}.

Examples 3.3.8.

• The join of the representables is given by ∆[n] ?∆[m] = ∆[m+ n+ 1].

• The unit of the join operation is given by the empty simplicial set, i.e. K ? ∅ = K.

• The join of nerves of categories reduces to the nerve of their join as categories (see

Paragraph 3.3.6), i.e. N(C) ? N(D) ∼= N(C ?D) [Joy09, Cor. 3.3].

3.3.9. Given K,L ∈ sSet, there is a canonical morphism K → K ? L given by x 7→ (x, ∗).

Thus the operation of taking the join with a fixed simplicial set K defines a functor

K ?− : sSet→ K/sSet

to the coslice category of simplicial sets.

This functor admits a right adjoint K/sSet→ sSet taking a simplicial morphism X : K →

L to the simplicial set X ↓ L defined as:

(X ↓ L)n =
{
Y : K ?∆[n]→ L

∣∣∣ Y |K = X
}
.
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3.3.10 (Coslice of quasicategory). Let C be a quasicategory and x ∈ C be a 0-simplex. We

may view x as a map ∆[0] → C. Instantiating the construction X ↓ C of Paragraph 3.3.9

with X := x : ∆[0]→ C, we obtain the coslice quasicategory C/x as:

(x/C)n =
{
X : ∆[n+ 1]→ C

∣∣∣ X|∆{0} = x
}
.

3.3.11. Dually, given K,L ∈ sSet, there is also a canonical morphism L → K ? L given by

y 7→ (∗, y). We can therefore form another adjunction:

− ? L : sSet→ L/sSet

to the coslice category of simplicial sets.

This functor admits a right adjoint L/sSet→ sSet taking a simplicial morphism X : L→

K to the simplicial set L ↓ X defined as:

(L ↓ X)n =
{
Y : ∆[n] ? L→ K

∣∣∣ Y |L = X
}
.

Again, instantiating it with the inclusion of a 0-simplex, we obtain the notion of a slice

quasicategory

(C/x)n =
{
X : ∆[n+ 1]→ C

∣∣∣ X|∆{n+1} = x
}
.

3.3.12. Let C be a quasicategory and let x ∈ C be a 0-simplex. There is an obvious projection

map:

C/x −→ C

taking an n-simplex X : ∆[n+ 1]→ C of C/x to its restriction X|∆{0,1,...,n}.

Proposition 3.3.13 ([Joy09, Thm. 3.19]). The projection map C/x → C has the right

lifting property (see [Hov99, Def. 1.1.2]) with respect to the horn inclusions Λi[n] ↪→ ∆[n]

for 0 < i ≤ n. In particular, the slice of a quasicategory is again a quasicategory.

43



3.3.14. Given a functor X : J → C of 1-categories, one defines a cone over X as a object X̃

(vertex of the cone) together with morphisms πi : X̃ → X(i) such that for all α : i→ j in J ,

we have πj = X(α) · πi.

Alternatively, we can define a cone over X as an extension X̃ : {∗} ? J → C, where the

vertex of the cone is now the value X̃(∗). We will see that definition will generalize easily to

higher-categorical setting. To simplify the notation later on, we will write K/ = ∆[0] ? K,

where K is any simplicial set.

Definition 3.3.15.

• Let C be a quasicategory and X : K → C a map of simplicial sets. A cone over X is a

simplicial map Y : K/ → C such that Y |K = X i.e.

K
X //� _

��

C

K/
Y

>>

• A cone X̃ : K/ → C is universal (or a limit) if for all n > 0 and all Z : ∂∆[n] ? K → C

such that Z|K/ = X̃, there exists an extension:

∂∆[n] ? K Z //
� _

��

C

∆[n] ? K

::

3.3.16. Using the adjunction of Paragraph 3.3.11, we can alternatively describe limits using

slices. More precisely, a cone over X corresponds to a diagram Y : ∆[0] → C ↓ X. Such a

cone X̃ : ∆[0] → C ↓ X is universal if for all n > 0 and all Z : ∂∆[n] → C ↓ X such that

Z|∆{n} = X̃, there exists an extension:

∂∆[n] Z //
� _

��

C ↓ X

∆[n]

::

Example 3.3.17. The terminal object 1 in a quasicategory C is the limit of ∅ → C.

Combining the discussion of Paragraph 3.3.16 with the Contractibility Criterion 3.3.2, we

see that for any 0-simplex x ∈ C, the mapping space Map(x, 1) is a contractible Kan complex.
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Example 3.3.18. Let C be a quasicategory and x, y ∈ C be 0-simplices. The (binary)

product x× y in C is given as a limit of the functor [x, y] : ∂∆[1]→ C.

Example 3.3.19. A pullback in a quasicategory C is given as the limit of the diagram

Λ2[2]→ C.

3.3.20 (Colimits). All the notions above admit dual versions. One defines a cone under

X : K → C as an extension Y : K. → C, where K. := K ? ∆[0], with Y |K = X. A cone X̃

under X is universal if for all n > 0 and all Z : K ? ∂∆[n] → C such that Z|(K ? ∆{0}),

there exists an extension Z̃ : K ?∆[n]→ C.

Since join is not a commutative operation, we do not have K ? ∆[0] ∼= ∆[0] ? K, and

hence K/ 6∼= K.. (Notice that the triangles are facing opposite directions.)

3.3.21 (Uniqueness of limits). In (1-)category theory one proves that (co)limits, if they

exist, are unique up to a unique isomorphism. A similar statement is also true, although

appropriately refined, for quasicategories. Let X : K → C be a diagram that admits a

universal cone X̃. Then the simplicial subset of such universal cones forms a contractible

Kan complex. This follows easily by the Contractibility Criterion 3.3.2 and the equivalent

description of limits of Paragraph 3.3.16.

3.3.22. We will call a simplicial set finite if it has only finitely many non-degenerate cells.

Thus, for example, standard n-simplices are finite, but the nerve of any non-trivial group is

not.

We say that a quasicategory C has finite limits if for all finite simplicial sets K and all

functors K → C, there exists a universal cone.

A simplicial map (or a functor of quasicategories) F : C→ D is said to preserve (finite)

limits, if F takes universal cones (of finite diagrams) to universal cones.

3.3.23. We next turn towards adjunctions between quasicategories. The first definition that

we will give is perhaps the best-known one as it has a great advantage of being concise. It is

however difficult to work with in practice. Thus following Definition 3.3.24, in Proposition

3.3.26 we will give an equivalent characterization. Since in the subsequent chapters, we will

work only with the characterization and not Definition 3.3.24, we can treat this definition as a

black box. In particular, the definition uses the notions of cartesian fibration and opfibration
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that we have not introduced, but that can be found in [Lur09a, Ch. 2].

Definition 3.3.24. Let C, D be quasicategories. An adjunction between C and D consists

of a morphism p : M → ∆[1] of simplicial sets, which is both a cartesian fibration and

cartesian opfibration, together with equivalences C→ p−1(0) and D→ p−1(1).

3.3.25. Extracting from it the simplicial maps forming the adjunction involves using the

lifting properties of a cartesian (op)fibration. Thus we would like to have an explicit and

easily verifiable criterion whether a simplicial map F : C→ D between quasicategories admits

a left or right adjoint.

Proposition 3.3.26 (cf. [RV13, Obs. 4.3.8]). Let C and D be quasicategories and G : D→ C

be a simplicial map. Then G has a left adjoint if and only if for each x ∈ C the slice category

(x ↓ G) has an initial object.

3.3.27. Notice that Proposition 3.3.26 is exactly the most brute force generalization of

the standard 1-categorical characterization of adjunction to the world of higher category

theory. Indeed, in category theory, we say that F a G if there is a natural transformation

η : 1→ G · F such that for any X ∈ C and any map f : X → GA ∈ C, there exists a unique

map f : FX → A ∈ D, making the following triangle commute:

X
ηX //

f ##

GFX

G(f)
��

GA

3.3.28. Let J be a small category and C any category. Suppose that C has all limits of

shape J ; that is, for any X : J → C, the limit of X exists. This yields a well-defined functor

lim: CJ → C taking a diagram to its limit. We would like to establish a similar result for

quasicategories.

3.3.29. Now, let K be a simplicial set and C a quasicategory; and suppose that for any

X : K → C, the limit of X exists. Since the limits in quasicategories are unique only up to

a contractible ambiguity (more precisely, as explained in Paragraph 3.3.21, the subquasicat-

egory of universal cones over X is a contractible Kan complex), an arbitrary choice of limits

may not lead to a simplicial map CK → C.
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This issue can be resolved using [Lur09a, Prop. 4.2.2.7]. Suppose that each diagram

X : K → C admits a limit. Then applying Proposition 4.2.2.7 to the obvious maps:

K × CK −→ C× CK −→ CK

we obtain a map CK → CK
/

assigning to each X a universal cone over X.

3.3.30. The last notion discussed in this section will be an extremely useful criterion for

verifying that a map is a categorical equivalence. It is based on the following standard fact

from classical algebraic topology. A map f : X → Y of CW-complexes is a weak equivalence

if and only if for every n ∈ N and every commutative square:

Sn //� _

��

X

f
��

Dn+1 e // Y

there exists a map e : Dn+1 → X such that in the diagram:

Sn //� _

��

X

f
��

Dn+1 e //

e

<<

Y

the upper triangle commutes and the lower triangle commutes up to homotopy relative to

the boundary inclusion (that is, f · e ∼ e rel Sn).

Thus in order to translate the above result to quasicategories, we need to introduce an

appropriate notion of homotopy between quasicategories.

3.3.31. Let f, g : K → L be simplicial maps.

• An E[1]-homotopy from f to g is a map H : K × E[1]→ L such that

H|K × {0} = f and H|K × {1} = g.

• Suppose K ′ ↪→ K. An E[1]-homotopy H from f to g is relative to K ′, if the composite

K ′ × E[1] ↪→ K × E[1]
H−→ L

factors through the projection K ′ × E[1]→ K ′.
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Lemma 3.3.32 ([Szu14, Lem. 4.5]). Let F : C → D be a map of quasicategories such that

for any n ∈ N and any square of the form:

∂∆[n] //
� _

��

C

F
��

∆[n] // D

there exists a diagonal filler

∂∆[n] //
� _

��

C

F
��

∆[n] //

<<

D

making the upper triangle commute and the lower triangle commute up to E[1]-homotopy

relative to ∂∆[n]. Then F is a categorical equivalence.

48



4.0 LOCALLY CARTESIAN CLOSED QUASICATEGORIES AND JOYAL’S

CONJECTURE

This chapter will combine large parts of the previous two chapters. Our goal now is to

formulate Joyal’s Conjecture, explain its importance, and outline our proof strategy. To

this end, we first introduce and study in some detail the notion of a locally cartesian closed

quasicategory (Section 4.1) and afterwards explain the importance of locally cartesian closed

quasicategories in Homotopy Type Theory (Section 4.2). Finally, in Section 4.3, we formulate

the conjecture.

4.1 LOCALLY CARTESIAN CLOSED QUASICATEGORIES

Definition 4.1.1. A quasicategory C is

• cartesian closed if it has finite products and for all x ∈ C, the product functor

x×− : C→ C

has a right adjoint.

• locally cartesian closed if it has a terminal object and for every 0-simplex x ∈ C, the

slice quasicategory C/x is cartesian closed.

Example 4.1.2. If C is a (1-)category, then C is (locally) cartesian closed in 1-categorical

sense if and only if its nerve NC is (locally) cartesian closed in the quasicategorical sense.
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4.1.3. There seems to be a general disagreement in the literature about whether or not

to include the existence of a terminal object in the definition of a locally cartesian closed

category. There is, to the best of the author’s knowledge, only one natural example of a

category with no terminal object whose slices are cartesian closed, namely the category of

topological spaces with local homeomorphisms.

4.1.4. Before we can proceed with our investigation of locally cartesian closed quasicate-

gories, let us recall a basic fact from model category theory. Suppose that p : B → A is

an acyclic fibration in a model category M whose codomain is cofibrant. Then p admits a

section. Indeed, since the unique map 0→ A is a cofibration, by lifting:

0 //

��

B

p
��

A A

we obtain the desired section. In particular, every acyclic fibration in either Quillen’s or

Joyal’s model structure on sSet admits a section since all objects there are cofibrant.

4.1.5. As in the case of 1-categories, we have the following characterization of locally carte-

sian closed quasicategories.

Proposition 4.1.6. A quasicategory C is locally cartesian closed if and only if for any 1-

simplex f : x→ y ∈ C, the pullback functor f ∗ : C/y → C/x has a right adjoint.

4.1.7. The proof of Proposition 4.1.6 follows verbatim the proof of the very same statement

from ordinary category theory [Awo10, Prop. 9.20] and will be given after Paragraph 4.1.10.

However, the if direction in 1-category theory requires knowing that a slice of a slice is

again a slice. Formally, one has that for any morphism f : X → Y in a category C there is

an equivalence of categories:

(C/Y )/f ' C/X.

Lemma 4.1.8. Let C be a quasicategory and f : x→ y a 1-simplex in C. Then the canonical

projection (C/y)/f → C/x is an acyclic fibration, thus in particular a categorical equivalence.
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Proof. Since the boundary inclusions generate all monomorphisms, it suffices to show that

for all n ∈ N, every commutative square of the form:

∂∆[n] //
� _

��

(C/y)/f

��
∆[n] // C/x

admits a diagonal filler. By adjunction of Paragraph 3.3.11, this is equivalent to asking for

a filler in the square:

∂∆[n] ?∆[0] //
� _

��

C/y

��
∆[n] ?∆[0] // C

but since ∂∆[n] ?∆[0] ∼= Λn+1[n+ 1], this follows by Proposition 3.3.13.

4.1.9. In Paragraph 3.3.29, we showed that for any diagram K, one can always choose a

functor CK → CK
/

assigning to each diagram K → C a universal cone on it. In the case of a

pullback we get a simplicial map CΛ2[2] → C∆[1]×∆[1], picking out universal cones. Proposition

4.1.6 ask however for a functor C/y → C/x. Let CΛ2[2]f and C∆[1]×∆[1]f denote the subobjects

of CΛ2[2] and C∆[1]×∆[1], respectively, spanned by diagrams in which bottom 1-simplex is

mapped to f . The composite CΛ2[2]f ↪→ CΛ2[2] → C∆[1]×∆[1] factors through C(∆[1]×∆[1])f :

CΛ2[2]f //� _

��

C(∆[1]×∆[1])f� _

��
CΛ2[2] // C∆[1]×∆[1]

The canonical morphism CΛ2[2]f → C/y is an isomorphism of simplicial sets, hence admits

an inverse. The desired pullback functor is then given by the composite:

C/y −→ CΛ2[2]f −→ C(∆[1]×∆[1])f −→ C/x
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4.1.10. Also, similarly as in the 1-categorical case, the pullback functor f ∗ : C/y → C/x ad-

mits a left adjoint f! : C/x→ C/y, given essentially by composition with f . Since composition

in a quasicategory is defined only up to homotopy one has to choose the composites in order

to define a simplicial map. This can be done by first choosing a section of the acyclic fibra-

tion (C/y)/f → C/x of Lemma 4.1.8, and composing it with the projection (C/y)/f → C/y.

(A slightly different description can also be found in [Lur09a, Prop. 6.1.1.1].)

Proof of Prop. 4.1.6. First, let us assume that all pullback functors f ∗ : C/y → C/x have

right adjoints. We need to show that the product with a fixed object in every slice C/y

admits a right adjoint. Let f : x→ y be an object in C/y. Unwinding the definitions, we see

that the product functor in C/y is given by:

C/y
f∗−→ C/x

f!−→ C/y.

Thus its right adjoint is given by the composite:

C/y
f∗←− C/x

f∗←− C/y.

The converse repeats verbatim the standard 1-category theoretic proof, using Lemma

4.1.8.

4.1.11. The notion of a locally cartesian closed category plays an important role in higher

topos theory. In the remainder of the section, we will try to gather a few important facts

about locally presentable locally cartesian closed quasicategories. Some preliminary defini-

tions are in order.

4.1.12 (Filtered categories). Recall that a non-empty category J is called filtered, if it

satisfies the following conditions:

1. for any pair of objects j, j′ ∈ J , there exists an object i ∈ J with maps j → i and j′ → i;

2. for any pair of parallel morphisms f, g : j → j′, there exists a morphism h : j′ → i such

that h · f = h · g.

Equivalently, we may say that every diagram K → J admits a cocone. This equivalent

formulation can easily be generalized to the case of quasicategories.
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4.1.13. Let κ be a cardinal. A quasicategory K is κ-filtered, if for every κ-small S and

every map S → K admits an extension:

S //� _

��

K

S.

>>

The colimit of a functorK → C is called κ-filtered colimit, ifK is a κ-filtered quasicategory.

An object x ∈ C is called κ-compact, if the functor Map(x,−) : C → Kan commutes with

κ-filtered colimits.

4.1.14. A quasicategory C is κ-accessible, if:

1. it is locally small;

2. has all κ-filtered colimits;

3. the subquasicategory of κ-compact objects is essentially small ;

4. every object of C is a κ-filtered colimit of κ-compact objects.

A quasicategory is accessible, if it is κ-accessible for some cardinal κ.

Definition 4.1.15. A quasicategory is locally presentable if it has all small colimits and

is accessible.

4.1.16. The reader should be aware that what we call a locally presentable quasicategory

is sometimes called just a presentable quasicategory, most notably by Lurie [Lur09a]. We

choose the name ‘locally presentable’ as it is aligned with its 1-categorical part [AR94].

The importance of locally presentable quasicategories lies in the fact that the Adjoint

Functor Theorem holds in them.

Theorem 4.1.17 (Adjoint Functor Theorem, [Lur09a, Cor. 5.5.2.9]). Let F : C → D be a

morphism between locally presentable quasicategories. Then F has a right adjoint if and only

if F preserves (small) colimits.

4.1.18 (Universality of colimits). Let C be a quasicategory. We say that colimits in C are

universal if, for any diagram X : K → C and any map f : y → colimX, we have:

colim(f ∗X) = y.

In other words, colimits in C are stable under pullback.
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Theorem 4.1.19. A locally presentable quasicategory C is locally cartesian closed if and

only if the colimits in C are universal.

Proof. If C is locally cartesian closed, then each pullback functor is a left adjoint, hence it

preserves colimits. Conversely, if C is locally presentable, then so is each of its slices, and

the result now follows by the universality of colimits.

4.1.20. Notice that for the implication⇒, we did not have to use the presentability assump-

tion.

4.1.21. In the remainder of this section we will give equivalent characterizations of locally

presentable locally cartesian closed quasicategories. These presentations will be then used

later to show that, in a suitable sense, locally presentable locally cartesian closed quasicate-

gories are models of type theory.

I do not want to claim much originality here. In the remainder of this section, I gathered a

few facts about locally presentable locally cartesian closed quasicategories that are available

on-line: as comments on blogs or on wikis. The main theorem of the remainder of this section

(Theorem 4.1.25) was—at least its hardest part—proven in the comments under Shulman’s

post The mysterious nature of right properness on The n-Category Café. This is why I give

credit to Cisinski and Shulman, who were the most active participants of the discussion.

4.1.22. Recall that a model category is said to be combinatorial if it is locally presentable

(as a category) and the model structure is cofibrantly generated. A Cisinski model cate-

gory is a cofibrantly generated model structure on a (1-)topos E, in which cofibrations are

monomorphisms (cf. [Cis02] and [Cis06, Thm. 1.3.22]).

4.1.23. A locally cartesian closed model category is a model category M which—

perhaps unsurprisingly—is locally cartesian closed, and in addition, for any fibration p : B →

A between fibrant objects, the adjunction

M/A

p∗

**
⊥ M/B

p∗

jj

is a Quillen adjunction between corresponding induced model structures on slice categories.
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4.1.24. In Section 2.2, we discussed categorical models of type theory. Such models are 1-

categories with certain additional structure. Nevertheless, we would like to talk about models

of type theory in higher categories. In order to do so, we develop some more convenient

presentations of locally cartesian closed quasicategories. That is to say, we will show that to

each locally cartesian closed quasicategory C, one may associate a homotopical or simplicial

category that is taken to a quasicategory equivalent to C by the coherent nerve functor. Any

such category is called a presentation of C. Of course, we would like to establish rather

highly structured presentations, so that we can grant ourselves that the presentation will be

a model of type theory.

Theorem 4.1.25 (Cisinski–Shulman). The following conditions are equivalent for a quasi-

category C:

1. C is locally presentable locally cartesian closed quasicategory.

2. C admits a presentation as a right proper left Bousfield localization of the injective model

structure on simplicial presheaves.

3. C admits a presentation as a right proper Cisinski model category.

4. C admits a presentation as combinatorial locally cartesian closed model category.

Proof. 1 ⇒ 2. This is exactly [GK12, Thm. 6.7].

2 ⇒ 3. This is immediate from the definitions.

3 ⇒ 4. Every topos is a locally cartesian closed category, so it suffices to verify that for

each fibration p : B → A, the adjunction p∗ a p∗ is Quillen. The pullback of a monomorphism

is a monomorphism, which combined with right properness shows that p∗ is a left Quillen

functor, completing the proof.

4 ⇒ 1. The localization of a combinatorial model category is locally presentable by

[Lur12, Prop. 1.3.3.9]. By [Lur12, Cor. 1.3.3.13], the functor induced on the localization by

the pullback functor admits a right adjoint.

55



4.2 LOCALLY CARTESIAN CLOSED CATEGORIES AND TYPE THEORY

4.2.1. We will now briefly discuss the importance of locally cartesian closed categories in

establishing models of type theory.

Theorem 4.2.2 (Shulman). Every locally presentable locally cartesian closed quasicategory

admits a presentation as a model of type theory.

Proof. By 4.1.25, every such quasicategory admits a presentation as a right proper left Bous-

field localization of the injective model structure on simplicial presheaves and the indexing

category can always be chosen to be inverse. The category of simplicial sets admits a model

of type theory by [KLV12, Cor. 2.3.5]; and [Shu14, Thm. 11.11] shows how to lift it to

simplicial presheaves over an arbitrary inverse category.

4.2.3. One may therefore ask whether all models of type theory are presentations of locally

presentable locally cartesian closed quasicategories. By initiality of C`(T) that would mean

that a localization of C`(T) would have to be a locally presentable locally cartesian closed

quasicategory. Part of that is not true since C`(T) has only those homotopy colimits that

can be defined internally, so it is unlikely that the localization of C`(T) will have arbitrary

small colimits as required in the definition of a locally presentable quasicategory. It does

make sense, however, to ask whether the localization of C`(T) is a locally cartesian closed

quasicategory. This is precisely the statement of Joyal’s Conjecture and a positive answer

to this question is the content of the main theorem of this thesis.

4.2.4. Before stating Joyal’s Conjecture formally, let us briefly mention a further possible

extension that we will not address here. It is a deep and interesting connection with higher

topos theory. The subject of higher topos theory has been developed by multiple authors

[Lur09a, Rez05, TV05] and has found applications in areas such as algebraic topology and

algebraic geometry. It is a belief of many, including the author of this thesis, that under-

standing the connection between higher topos theory and type theory will benefit both areas

and allow them to interact in a similar way that 1-topos theory leads to a fruitful interaction

between the logic and geometry (see, for instance, [MLM94] or [Joh02b, Joh02a]).
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4.2.5. The addition to type theory of the rules corresponding to having a univalent universe

is what allows the encode-decode proofs to work (see [Uni13, Sec. 8.9]). In terms of higher

categorical semantics, that corresponds to the universal property of a small object classifier,

which is part of the definition of a higher topos. Indeed, one of the equivalent definitions

of a higher topos says that it is a locally presentable locally cartesian closed quasicategory

with a small object classifier.

4.3 STATEMENT OF JOYAL’S CONJECTURE AND PROOF STRATEGY

4.3.1. Joyal’s Conjecture is a statement about the classifying category of any sufficiently

rich type theory; more precisely, any type theory admitting the rules of Appendix A. It

was formulated by André Joyal during the Oberwolfach Mini-Wokshop 1109a: Homotopy

Interpretation of Constructive Type Theory in 2011 [Joy11].

Conjecture 4.3.2 (Joyal). For any dependent type theory T that admits the rules described

in Appendix A, the standard localization (see Paragraph ??) L(C`(T)) of its classifying cat-

egory is a locally cartesian closed quasicategory.

4.3.3. Notice that if T is the theory described only by the rules of Appendix A, then C`(T)

is the terminal category, and hence its localization is the terminal quasicategory ∆[0]. Of

course, it is trivially locally cartesian closed.

It is therefore really crucial that we allow extensions of this theory to allow e.g. universes,

inductive and higher inductive constructions, and axioms. This is where the significance of

the conjecture can be fully demonstrated.

4.3.4. The positive answer to Joyal’s Conjecture opens the door to the study of internal

languages of higher categories, as outlined in [Shu12]. Indeed, Shulman [Shu14, Sec. 4.2]

began this program by defining an internal type theory of a type-theoretic fibration category.

It follows from our proof of Joyal’s Conjecture that each such category presents a locally

cartesian closed quasicategory. This opens the possibility of lifting the results related to the

internal languages of categories (see e.g. [LS86]) to the world of higher category theory.
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4.3.5. We next explain our proof strategy. The main difficulty in proving this conjecture lies

in the fact that the construction of L(C`(T)) involves taking fibrant replacement. Because

of that, it is typically difficult to work with the quasicategory in question directly.

Instead, we need to look for a different construction of the standard localization. Unfor-

tunately, to the best of the author’s knowledge, for a general homotopical category C, there

does not exist a functorial construction assigning to C a quasicategory equivalent to L(C).

The situation changes, however, if C is known to possess more structure. For example, if C is

a fibration category, there is a functorial construction, due to Szumi lo, C 7→ Nf(C) assigning

to it, its quasicategory of frames [Szu14].

4.3.6. We will use Szumi lo’s construction and show that:

1. the slices of the quasicategory of frames in a fibration category C can be expressed using

slices of the fibration category C;

2. adjoint functors between fibration categories are mapped by Nf to adjunctions between

corresponding quasicategories, provided that they preserve enough structure;

3. the quasicategory of frames is equivalent to the standard localization in Joyal’s model

structure;

4. the classifying category of a type theory admitting the rules described in Appendix A

carries the structure sufficient for it to be mapped to a locally cartesian closed category

by Nf in light of what we will have proven.
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5.0 FIBRATION CATEGORIES

In this chapter, we will review several results from the theory of fibration categories. We

begin by introducing fibration categories in Section 5.1 and then move to the study of

fibration category structure on the diagram categories (Section 5.2). We then review the

work of Szumi lo and his results involving the quasicategory of frames in Section 5.3. We

end by gathering several lemmas regarding Reedy structures on the categories of diagrams

(Section 5.4).

5.1 DEFINITION AND FIRST PROPERTIES

Definition 5.1.1. A fibration category consists of a category C together with two wide

subcategories F (called fibrations) andW (called weak equivalences) such that (in what

follows, an acyclic fibration is a map that is both a fibration and a weak equivalence):

F1. W satisfies two-out-of-six property; that is, given a composable triple of morphisms:

X
f−→ Y

g−→ Z
h−→ Z

if hg, gf ∈ W , then all f, g, h ∈ W .

F2. all isomorphisms are acyclic fibrations.

F3. pullbacks along fibrations exist; fibrations and acyclic fibrations are stable under pull-

back.

F4. C has a terminal object 1; the canonical map X → 1 is a fibration for any object X ∈ C

(that is, all objects are fibrant).
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F5. every map can be factored as a weak equivalence followed by a fibration.

5.1.2. There is, of course, the dual notion of a cofibration category. A cofibration cate-

gory is a category equipped with two classes of maps: cofibrations and weak equivalences,

satisfying the dual versions of the above axioms

Example 5.1.3. Let M be a model category. Then the full subcategory Mf ⊆M of fibrant

objects in M with fibrations and weak equivalence from the model structure on M is a

fibration category. In particular, the category qCat of quasicategories is a fibration category,

as the full subcategory of fibrant objects in Joyal’s model structure on sSet.

Perhaps unsurprisingly, typical examples of cofibration categories are full subcategories

of model categories, consisting of cofibrant objects.

Example 5.1.4 (cf. [Sch84]). The category of C∗-algebras is naturally a fibration, but there

is no model category structure underlying it.

5.1.5. This definition differs from the one given by Brown [Bro73] in two ways. First, Brown

required the class of weak equivalencesW to satisfy only 2-out-of-3 axiom, rather than 2-out-

of-6. The latter implies the former, but not the other way round. In fact, Cisinski showed

[RB09, Thm. 7.2.7] that, in the presence of the Axioms F2–F5, the following conditions are

equivalent:

1. W satisfies 2-out-of-3 and is saturated (i.e. under passage to Ho(C), weak equivalences

are the only morphisms that become isomorphisms);

2. W satisfies 2-out-of-6.

5.1.6. In his axioms, Brown required only the existence of the factorization of the diagonal

maps ∆: A→ A× A, not all maps as in our F5. Our requirement is not any stronger than

Brown’s. He proves existence of factorizations for diagonals implies existence of factorizations

for all maps (see [Bro73, Factorization Lemma]).

5.1.7. The axioms of a fibration category imply several desirable properties. For example,

one can show that projections from the product A×B → A are fibrations, since the product
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can be defined as a pullback:

A×B //

��

A

��
B // 1

5.1.8. As all objects in fibration categories are fibrant, it is easy to show that fibration

categories are right proper.

Lemma 5.1.9 (Right properness, [Bro73, Lem. 2]). In a fibration category, the pullback of

a weak equivalence along a fibration is again a weak equivalence.

5.1.10 (Homotopy in a fibration category). A path object for A in a fibration category C

is any factorization of the diagonal map ∆A : A → A × A into a weak equivalence followed

by a fibration A
∼→ Ã→ A× A.

Let f, g : A → B be a pair of maps in C. A right homotopy between f and g is a

commutative square:

A′ //

W∩F3
��

B̃

��
A

(f,g)// B ×B
We say that f and g are right-homotopic if there is a right homotopy between f and

g.

Theorem 5.1.11 (Brown, [Bro73, Thm. 1]).

1. The relation of being right-homotopic is an equivalence relation on Hom(A,B) and is

respected by pre- and postcomposition.

2. If two morphisms f, g : A → B are right-homotopic, then they are homotopic (i.e. equal

in HoC).

Definition 5.1.12. Let C and D be fibration categories. A functor F : C→ D is exact if it

preserves fibrations, acyclic fibrations, pullbacks along fibrations, and the terminal object.

The category of fibration categories and exact functors will be denoted Fib.

Lemma 5.1.13 (Ken Brown, [Bro73, Lem. 4.1]). Let F : C → D be a functor between

fibration categories that takes acyclic fibrations to weak equivalences. Then F takes all weak

equivalences to weak equivalences.
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Proof. The well-known proof is typically given in the context of model categories [Hov99,

Lem. 1.1.12], but it works for fibration categories as well. Let f : A → B be a weak equiv-

alence and consider a factorization of (1A, f) : A→ A× B into a weak equivalence followed

by a fibration:

A
w−→ Ã

(p1,p2)−→ A×B

Both p1 and p2 must be acyclic fibrations and hence by assumption F (p1) and F (p2) are

weak equivalences. By 2-out-of-3 for 1FA = F (1A) = F (p1) · F (w), F (w) must be a weak

equivalence, and so must the composite F (f) = F (p2) · F (w).

Corollary 5.1.14. Every exact functor is homotopical.

Corollary 5.1.15. There is an obvious forgetful functor Fib→ hCat.

Definition 5.1.16. An exact functor F : C→ D is an equivalence of fibration categories,

if it induces a categorical equivalence Ho(F ) : HoC→ HoD of homotopy categories.

Theorem 5.1.17 (Waldhausen’s Approximation Criteria, [Cis10, Thm. 3.19]). Let C and

D be fibration categories. An exact functor F : C → D is an equivalence if and only if the

following two conditions are satisfied:

(App1) F reflects weak equivalences (that is, Ff being a weak equivalence in D implies that f is

a weak equivalence in C).

(App2) for any morphism f : Y → FA there exists a map p : B → A in C and a commutative

square:

Z
∼ //

∼
��

FB

Fp
��

Y
f // FA

Let us try to demystify the condition (App2) appearing in the theorem above. Substi-

tuting A = 1, we get that it is equivalent to the induced functor Ho(F ) being essentially

surjective. Similarly, we can show that Ho(F ) has to be full and faithful.

62



5.2 FIBRATION CATEGORIES OF DIAGRAMS

5.2.1. Suppose C is a fibration category and J a small category. One can then ask: can the

functor category CJ be equipped with the structure of a fibration category? The answer to

this question is affirmative, provided that J is sufficiently nice. More precisely, J has to be

an inverse category (see Definition 5.2.4 below).

5.2.2. In this section, we will introduce two fibration category structures on the functor

category CJ . In brief, they will be:

• the levelwise structure, in which a morphism (i.e. a natural transformation) is a weak

equivalence (resp. a fibration) if each of its components is a weak equivalence (resp. a

fibration);

• the Reedy structure, in which weak equivalences are still levelwise weak equivalences,

but fibrations are required to satisfy a slightly stronger condition;

5.2.3. The first structure that we will introduce is the Reedy structure. The reason for

delaying the introduction of the levelwise structure is that one uses the Reedy structure to

deduce the existence of factorizations (Axiom F5) in the levelwise structure.

Definition 5.2.4.

1. A category J is direct if there is a function, called degree, deg : Ob(J)→ N such that

for every non-identity map j → j′ in J we have deg(j) < deg(j′).

2. A category J is inverse if Jop is direct.

5.2.5. Two remarks are in order.

First, we shall notice that existence of the function deg is the above definition is a

property, not structure. Indeed, most maps between direct (and inverse) categories will not

preserve the degree.

Second, from the point of view of fibration categories, inverse categories are more natural

to consider. Indeed, it is the assumption that J is an inverse category that allows us to equip

CJ with the fibration category structure. However, most of our indexing categories will have

a natural description as direct categories and we will in some sense artificially force them to

be inverse by passing to the opposite category.
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Definition 5.2.6. Let J be an inverse category.

1. Let j ∈ J . The matching category ∂(j/J) of j is the full subcategory of the slice cate-

gory j/J consisting of all objects except 1j. There is a canonical functor cod: ∂(j/J)→

J , assigning to a morphism (regarded as object of ∂(j/J)) its codomain.

2. Let X : J → C and j ∈ J . The matching object of X at j is defined as a limit of the

composite

Mj(X) := lim(∂(j/J) −→ J
X−→ C),

where the first map sends an arrow in the slice to its codomain and the second is X. The

canonical map X(j)→Mj(X) is called the matching map.

3. Let C be a fibration category. A diagram X : J → C is called Reedy fibrant, if for all

j ∈ J , the matching object Mj(X) exists and the matching map X(j) → Mj(X) is a

fibration.

4. Let C be a fibration category and let X, Y : J → C be Reedy fibrant diagrams in C. A

map f : X → Y of diagrams is a Reedy fibration, if for all j ∈ J the induced map

X(j)→ Y (j)×MjY MjX is a fibration.

5.2.7. The notions of matching category, matching object, and Reedy fibrations and fibrant

objects is specific to diagrams defined on an inverse category J . All of these notions admit

dual formulations, when J is direct and C is a cofibration category. For example, if j ∈ J is

an object of direct category, we define its latching category ∂(J/j) as the full subcategory

of the slice category J/j consisting of all objects except the identity 1j.

Similarly, one defines the latching object, Reedy cofibrant objects, and Reedy

cofibrations. In this thesis, we will be dealing only with fibration categories, hence we will

not make much use of latching objects, Reedy cofibrant objects and cofibrations. The notion

of the latching category will be however useful to us; indeed, a since a lot of our examples

of inverse can be most naturally described as duals of some direct categories, we may prefer

to talk about latching categories, instead of matching caegories.

Examples 5.2.8.

• The constant diagram J → C taking the value 1 (terminal object) is Reedy.
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• If Y : J → C is Reedy fibrant and f : X → Y is a Reedy fibration, then X is also Reedy

fibrant.

• A diagram X : {1 ⇒ 0} → C is Reedy fibrant if and only if the induced map X(1) →

X(0)×X(0) is a fibration.

5.2.9. The advantage of Reedy fibrant diagrams over arbitrary diagrams lies in the fact that

one can always take the limit over a Reedy fibrant diagram.

5.2.10. Let J be a finite inverse category and choose the degree function deg : Ob J → N.

Then for some d ∈ N, we have J = J≤d, where J≤d is the full subcategory of J consisting of

those j ∈ J for which deg j ≤ d. The minimal d such that J = J≤d will be called the degree

of J . By induction with respect to the degree of J , we will construct the limit of a diagram

X : J → C (simultaneously for all fibration categories C, inverse categories J of degree, and

Reedy fibrant diagrams X : J → C).

Base case. If all objects are of degree 0, then the limit is given by:

limX =
∏
j∈J

X(j).

Induction step. Suppose now that we have constructed the limit of X|J≤d and J is of

degree d+ 1. Then the limit of X is given by the pullback:

limX //

��

∏
deg j=d+1

X(j)

��
lim(X|J≤d) //

∏
deg j=d+1

Mj(X)

Definition 5.2.11. Let C be a fibration category and X, Y : J → C functors. A natural

transformation f : X → Y is called a levelwise fibration (resp. weak equivalence) if for

all j ∈ J , the map fj : X(j)→ Y (j) is a fibration (resp. weak equivalence).

Proposition 5.2.12. Let C be a fibration category and J and inverse category. Let f : X →

Y be a morphism in the category of diagrams CJ , whose codomain is Reedy fibrant. Then

f admits a factorization f = p · w, where p is a Reedy fibration and w is a levelwise weak

equivalence.
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Proof. We will proceed by induction on degree of j ∈ J . In each step we will define a

factorization X(j)
wj−→ X̃(j)

pj−→ Y (j) with X̃(j) Reedy fibrant. Suppose such factorizations

are already defined for all objects of degree smaller than deg(j) for some j ∈ J . Thus Mj(X̃)

exists. (Here, by Mj(X̃) we mean the limit of the composite ∂(j/J) → J → C, which is

well-defined even though X̃ is not yet defined on the whole J .) By the induction hypothesis

there is a map X(j)→Mj(X̃) making the following square commute:

X(j)
fj //

��

Y (j)

��
Mj(X̃) //Mj(Y )

Since Y is Reedy fibrant and thus the map Y (j) → Mj(Y ) is a fibration, we can form the

pullback Y (j)×M(Y )Mj(X̃) and by the commutativity of the above square, we obtain a map

X(j)→ Y (j)×Mj(Y )Mj(X̃). We define X̃(j) by choosing a factorization of X(j)→ X̃(j)→

Y (j)×Mj(Y ) Mj(X̃) into a weak equivalence followed by a fibration.

5.2.13. We are now ready to prove the existence of Reedy structure on the subcategory

CJR of Reedy fibrant diagrams in the functor category CJ . This restriction is required since

not every functor J → C is Reedy fibrant and hence CJ would not satisfy Axiom F4 of

Definition 5.1.1.

Theorem 5.2.14. Let J be an inverse category and C a fibration category. Then the category

CJR of Reedy fibrant diagrams J → C with Reedy fibrations as fibrations and levelwise weak

equivalences as weak equivalences is a fibration category.

Proof. The verification of Axioms F1–F4 is routine (see [RB09, Thm. 9.3.8.(2a)]). Axiom

F5 is exactly the statement of Proposition 5.2.12.

Proposition 5.2.15. Let C be a fibration category and I and J inverse categories. Then

there is a natural equivalence of fibration categories:

CI×JR ' (CIR)JR
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Proof. It suffices to show that a diagram I × J → C is Reedy fibrant if and only if its

transpose I → CJR is.

This follows readily by the following description of matching categories in the product,

which can be regarded as yet another incarnation of Leibniz rule:

∂((i, j)/I × J) ∼=
(
∂(i/I)× j/J

)
∪
(

(i/I)× ∂(j/J)
)

5.2.16. We can turn attention to the levelwise structure on the functor category.

Theorem 5.2.17. Let J be an inverse category and C a fibration category. Then the functor

CJ with levelwise fibrations and weak equivalences is a fibration category.

Proof. As in Theorem 5.2.14, F1–F4 are clear (see [RB09, Thm. 9.3.8.(2b)]). For F5, let

f : X → Y be the map to be factored. Let wY : Y
∼→ Ỹ be a Reedy fibrant replacement of

Y (i.e. factorization of Y → 1 of Proposition 5.2.12). By Proposition 5.2.12, we can factor

wY · f as a weak equivalence followed by a fibration:

X
f //

w
��

Y

wY
��

X̃
p // Ỹ

Since p : X̃ → Ỹ is a fibration, the pullback X̃ ×Ỹ Y exists and by the commutativity of the

above square we obtain the induced map X → X̃×Ỹ Y . We claim that X → X̃×Ỹ Y → Y is

the desired factorization of f . Indeed, the map X → X̃ ×Ỹ Y by a 2-out-of-3 argument and

right properness (Lemma 5.1.9) of the Reedy fibration category structure and X̃ ×Ỹ Y → Y

is a Reedy fibration (as a pullback of p), hence also a levelwise fibration.

Theorem 5.2.18. Given an inverse category J and a fibration category C, the inclusion

CJR ↪→ CJ is an equivalence of fibration categories.
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Proof. We will verify Waldhausen’s approximation criteria 5.1.17. (App1) is automatic since

weak equivalences are levelwise in both Reedy and levelwise structure. For (App2), by

Proposition 5.2.12, we have a factorization of every morphism f : X → A ∈ CJ whose

codomain is Reedy fibrant into a levelwise weak equivalence followed by a Reedy fibration

X
∼→ B → A. Then the diagram:

X
∼ //

1X
��

B

��
X

f // A

fulfils the requirement of (App2).

5.2.19. Next, we will investigate under what conditions a functor f : I → J between inverse

categories induces by precomposition an exact functor

f ∗ : CJ → CI and f ∗ : CJR → CIR.

5.2.20. For the levelwise structures the answer is immediate. The functor f ∗ : CJ → CI

given by f ∗(X) := X · f is always exact.

5.2.21 (Sieves). Sieves play an important role in verifying exactness of functors between

fibration categories. Recall that a functor F : C→ D is a sieve if it is fully faithful and for

any object c ∈ C and a morphism f : d → Fc, there exists a unique h : c′ → c such that

Fh = f .

Proposition 5.2.22 (Exactness Criterion). Let f : I → J be a homotopical functor between

homotopical direct categories with finite latching categories such that for all i ∈ I, the induced

map on the matching categories factors as:

• � q
sieve

##
I/i //

cofinal
>>

J/f(i)

Then the induced functor f ∗ : CJ
op

R → CI
op

R is an exact functor of fibration categories.

Proof. Preservation of weak equivalences, pullbacks, and the terminal object is clear. Since

the induced map on matching objects factors as cofinal followed by sieve, it will preserve

fibrancy of the diagram.
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5.2.23. Here, by a cofinal functor we mean a functor F such that precomposition with F

induces isomorphism on the colimits. That is, α : I → J is cofinal if for any C and any

F : J → C, colimF = colim(F · α).

5.2.24 (Cofinality Criterion). As we shall employ the above criterion frequently, we will

have to verify that a functor F : C → D is cofinal. Thus we give here a useful criterion

establishing cofinality of a functor (cf. [ML98a, Thm. IX.3.1]): F : C → D is cofinal if and

only if for every d ∈ D, the slice category d ↓ F is connected (that is, any two objects of

d ↓ F can be connected by a zigzag of maps).

Lemma 5.2.25. Let C be a fibration category and f : I → J be a homotopy equivalence (see

Definition 3.1.11) of homotopical direct categories. Then f ∗ : CJ
op → CI

op
is an equivalence

of fibration categories.

Proof. This follows easily by 2-out-of-3.

Proposition 5.2.26. Let C be a fibration category and f : I → J a map of homotopical

direct categories such that the induced map f ∗ : CJ
op

R → CI
op

R is exact. If f is a homotopy

equivalence, then f ∗ : CJ
op

R → CI
op

R is an equivalence.

Proof. By Lemma 5.2.25, f ∗ : CJ
op → CI

op
is an equivalence. Since, by assumption, f ∗ : CJ

op

R →

CI
op

R is exact, we have a square of fibration categories and exact functors:

CJ
op

R

f∗ //
� _

��

CI
op

R� _

��
CJ

op f∗ // CI
op

in which both vertical arrows are equivalences by Theorem 5.2.18, and the bottom arrow is

an equivalence by Lemma 5.2.25. Hence, by 2-out-of-3, all functors are equivalences.
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5.3 THE QUASICATEGORY OF FRAMES IN A FIBRATION CATEGORY

5.3.1. In this section, we will review relevant parts of the work of Szumi lo, who has recently

established a direct (i.e. not involving fibrant replacement) construction assigning to a fi-

bration category C a quasicategory NfC, and has managed to prove several properties of it.

Unless explicitly stated otherwise, all the results of this section are from [Szu14]. Let us just

mention that Szumi lo worked with cofibration categories and hence some of the results that

we state are dual to his, but the translations are in each case straightforward.

5.3.2. Szumi lo noticed that the category Fib of fibration categories and exact functors can

be equipped with the structure of a fibration category, in which weak equivalences are the

equivalences of fibration categories.

5.3.3. For convenience of exposition later on, let us introduce the following notations. For

n ∈ N, let:

• [n] be the linearly ordered set {0 ≤ 1 ≤ . . . ≤ n} that, when regarded as a homotopical

category, has only trivial weak equivalences;

• Pn([n]) be the set of proper non-empty subsets of [n];

• (n] be the linearly ordered set {1 ≤ 2 ≤ . . . ≤ n};

• [n) be the linearly ordered set {0 ≤ 1 ≤ . . . ≤ n− 1};

• [̂n] be the linearly ordered set [n], regarded as a homotopical category, in which all maps

are weak equivalences.

Definition 5.3.4. An exact functor F : C→ D between fibration categories is said to have

the lifting property with respect to:

• isofibrations if for any isomorphism f : FA → X in D, there exists an isomorphism

f : A→ B in C such that F (f) = f .

• factorizations if for any f : A → B in C and a factorization Ff = p · w as weak

equivalence followed by a fibration in D, there exists a factorization f = p′ ·w′ in C such

that F (w′) = w and F (p′) = p.
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• pseudofactorizations if for any f : A → B in C and any commutative square in D of

the form:

Z
w //

v
��

Y

p
��

FA
Ff // FB

where p is a fibration and w and v are weak equivalences, there exists a square:

Z ′
w′ //

v′

��

Y ′

p′

��
A

f // B

where p′ is a fibration, w′ and v′ are weak equivalences, and F (p′) = p, F (w′) = w, and

F (v′) = v.

Theorem 5.3.5 ([Szu14, Thm. 1.16]). The category Fib of fibration categories and exact

functors has itself the structure of a fibration category, in which:

• weak equivalences are equivalences of fibration categories (i.e. exact functors F : C→ D

such that Ho(F ) is an equivalence of categories);

• fibrations are functors having the lifting property with respect to factorizations, pseudo-

factorizations, and isofibrations.

5.3.6. The next theorem gives a useful characterization of acyclic fibrations between fibration

categories. For that, we need however a preliminary definition. An exact functor F : C→ D

has a Reedy lifting property with respect to the map f : I → J of inverse categories if

every commutative square of the form:

I //

f
��

C

F
��

J // D

in which the horizontal maps are Reedy fibrant, admits a diagonal filler J → C which is also

required to be Reedy fibrant.

Theorem 5.3.7 ([Szu14, Lem. 1.25]). A fibration F : C→ D between fibration categories is

acyclic if and only F has the Reedy lifting property with respect to the inclusions [0] ↪→ [1]

(picking out 1) and [1] ↪→ [̂1].
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5.3.8. Given a homotopical category J , we will construct a direct homotopical category DJ ,

together with a homotopical functor p : DJ → J . The objects of DJ are pairs ([n], ϕ : [n]→

J), where n ∈ N and ϕ is an arbitrary functor. A map

f : ([n], ϕ)→ ([m], ψ)

is an injective, order preserving map f : [n] ↪→ [m] making the following square commute:

[n]
ϕ //

� _

f

��

J

[m]
ψ // J

It is clear that DJ is a direct category (with deg([n], ϕ) = n). To define p : DJ → J we put

p([n], ϕ) = ϕ(n). This gives a contravariant functor and we can define WDJ := p−1(WJ). So

(DJ,WDJ) is a homotopical category and p is a homotopical functor.

We will sometimes refer to DJ as the fat barycentric subdivision of J .

Definition 5.3.9. Let C be a fibration category. We define the simplicial set Nf(C), called

the quasicategory of frames in C, by setting:

Nf(C)n := FunhR(D[n]op,C).

That is, the n-simplices of Nf(C) are homotopical, Reedy fibrant diagrams D[n]op → C.

5.3.10. The name quasicategory of frames is motivated by the fact that the category D[0]

is equivalent to the semisimplex category ∆inj of finite non-empty ordinals and injective

monotone functions. A homotopical, Reedy fibrant diagram ∆op
inj → C is called a frame

(see also [Hov99, Ch. 5] for the discussion in the context of model categories). Thus the

0-simplices of Nf(C) are exactly the frames in C.

5.3.11. Throughout the remainder of this thesis, we will be working with fibration categories

of homotopical, Reedy fibrant diagrams Jop → C, where J is a direct homotopical category.

The category of such diagrams CJ
op

hR is again a fibration category and all the results that we

had for CJ
op

R translate in a straightforward manner under the addition of the homotopicality

assumption.
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Theorem 5.3.12 ([Szu14, Thm. 3.2]). The functor Nf : Fib → sSet takes values in finitely

complete quasicategories and is exact as a functor between fibration categories Fib→ qCat.

5.3.13. A slightly more familiar version of the D-construction of Paragraph 5.3.8 is the

(ordinary) barycentric subdivision construction. Unlike D, however, it is only available

for posets. Given a homotopical poset P , define a homotopical direct category Sd(P ) as

follows:

• objects of Sd(P ) are injective monotone functions ϕ : [n] ↪→ P , i.e. linearly ordered

non-empty subsets of P ;

• a morphism from ϕ : [n] ↪→ P to ψ : [m] ↪→ P is an injective function f : [n] → [m]

making the following square commute:

[n]
ϕ //

� _

f

��

P

[m]
ψ // P

Finally, we set WSd(P ) := p−1(WP ), where p(ϕ : [n]→ P ) = ϕ(n).

5.3.14. Similarly, we may define D and Sd of simplicial sets, rather than of categories. Let

K ∈ sSet and define the underlying category of DK to be the category of elements of K,

considered as a semisimplicial set (i.e. without degeneracy maps). The weak equivalences

in DK are generated under composition from equivalences in K (i.e. maps ∆[1] → K that

factor through I or E[1]). One defines Sd of a simplicial set in the analogous manner, but

this construction is only available for those K ∈ sSet for which there exists an inclusion into

the nerve of a poset K ↪→ N(P ). (This still captures the crucial examples of simplices ∆[n],

boundaries ∂∆[n], and horns Λi[n].)

The usefulness of the Sd-construction is best demonstrated by the following theorem.

Theorem 5.3.15 ([Szu14, Lem. 3.19]). Let P be a poset, K ↪→ L ↪→ N(P ) inclusion of

simplicial sets, and C a fibration category. Then the inclusion DK ∪ SdL ↪→ DL induces an

acyclic fibration CDL
op

hR → C
(DK∪SdL)op

hR of fibration categories.
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5.3.16. This theorem is of particular importance when solving lifting problems (e.g. when

verifying that a map is a categorical equivalence using Lemma 3.3.32) involving Nf(C). Notice

that for L = ∆[n] and K = ∂∆[n],Λi[n], the canonical map

C
D∆[n]op

hR → C
(DK∪Sd∆[n])op

hR

is an acyclic fibration of fibration categories and hence admits a section. We will revisit this

situation frequently in subsequent chapters.

5.3.17. The last outstanding piece of Szumi lo’s work, that we will employ in the present

thesis, is the following fake adjunction. Indeed, it does look like an adjunction at first, but

after a closer inspection it is clear that there are no categories that can serve as its domain

and codomain.

Theorem 5.3.18 ([Szu14, Prop. 3.5]). Let C be a fibration category and K a simplicial set.

Then there is a natural bijection: simplicial maps

K → NfC

←→
 homotopical Reedy fibrant functors

DKop → C


In other words, the contravariant functor sSet → Set taking a simplicial set to the set of

homotopical Reedy fibrant diagrams DKop → C is representable, represented by NfC.

5.4 REEDY FIBRANCY AND SIEVES

5.4.1. In this last section of this introductory chapter to fibration categories, we gather

several lemmas about extending Reedy fibrant diagrams along inclusions of sieves. Most or

all of these exist in folklore, but are presented here for reference later in the thesis.

Lemma 5.4.2. Let C be a fibration category and I ↪→ J be a sieve of direct categories with

finite latching categories. Suppose given X : Jop → C such that X|Iop is Reedy fibrant. Then

there exists a Reedy fibrant diagram X̃ : Jop → C together with a natural weak equivalence

w : X → X̃ such that X̃|Iop = X|Iop and w|Iop = 1X|Iop.
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Proof. Let j ∈ J \ I be of minimal degree. Then the matching object Mj(X) exists and we

can factor X(j) → Mj(X) as a weak equivalence followed by a fibration: X(j) → X̃(j) →

Mj(X), obtaining the extension of X̃ to j ∈ J . We then repeat this procedure for the sieve

I ∪ {j} ↪→ J .

Lemma 5.4.3. Let I ↪→ J be a cosieve of inverse categories and let X : J → C and Y : I → C

be Reedy fibrant diagrams together with a natural weak equivalence w : Y → X|I. Then there

exists a Reedy fibrant diagram Ỹ : J → C such that Ỹ |I = Y and natural weak equivalence

w : Ỹ → X.

Proof. We will build both Ỹ (j) and wj : Ỹ (j)→ X(j) by induction with respect to the degree

of j ∈ J . Let j be of minimal degree such that Ỹ (j) and wj have not yet been defined. Then

Mj(Ỹ ) exists and the map Mj(Ỹ )→Mj(X) is a weak equivalence. We can define Ỹ as the

pullback:

Ỹ (j)
wj //

��

X(j)

��
Mj(Ỹ ) //Mj(X)

The matching map Ỹ (j)→Mj(Ỹ ) is a fibration as a pullback of a fibration and wj is a weak

equivalence by right properness 5.1.9.

Lemma 5.4.4. Let I ↪→ J be a sieve of direct categories with finite latching categories.

Suppose given a diagram X : Jop → C and a Reedy fibrant diagram Y : Iop → C together

with a natural weak equivalence w : X|Iop → Y . Then there exists a Reedy fibrant diagram

Ỹ : Jop → C such that Ỹ |Iop = Y and a natural weak equivalence w̃ : X → Ỹ such that

w̃|Iop = w.

Proof. We will construct Ỹ (j) and w̃j simultaneously by induction on the degree of j ∈ J . Let

j be of minimal degree such that Ỹ (j) and w̃j have not yet been constructed. The matching

object Mj(Ỹ ) exists (as formal limit) and there is a canonical map X(j) → Mj(Ỹ ). We

factor this map as a weak equivalence followed by a fibration obtaining the desired Ỹ (j) and

w̃j:

X(j)
wj−→ Ỹ (j) −→Mj(Y ).
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Lemma 5.4.5. Let C be a fibration category and I be a finite homotopical inverse category

with a terminal object 1 such that every morphism of I is a weak equivalence. Then for any

homotopical, Reedy fibrant functor X : I → C, the limit limX is weakly equivalent to X(1)

(and hence to every object in the image of X).

Proof. This follows directly by the construction of limits of Reedy fibrant diagrams, described

in Paragraph 5.2.10.
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6.0 PARTIAL REEDY STRUCTURES

The goal of this chapter is to prove Corollary 6.2.11. While this corollary is not of particular

interest outside of this thesis, the techniques used to prove it may find applications going

beyond the scope of this thesis. Indeed, in Section 6.2 we introduce a new fibration category

structure on the category of diagrams CJ , which depends on an additional parameter, namely

a map f : I → J of inverse categories. Before that, in Section 6.1 we review the basic theory

of homotopy pullbacks (the results of this section are to some extent known in folklore, but

there are no comprehensive references on the level of generality that we require).

6.1 HOMOTOPY PULLBACKS

6.1.1. Our treatment of homotopy pullbacks requires us to first establish the right notion

of slice of fibration categories.

6.1.2. Recall that, given a model category M and an object A ∈ M, one can easily show

that the slice category M/A is again a model category, in which a morphism is a fibra-

tion/cofibration/weak equivalence, if it is fibration/cofibration/weak equivalence, regarded

as a morphism of M (cf. [Hov99, Prop. 1.1.8]).

6.1.3. Let C be a fibration category and A ∈ C. The slice category C/A does not have to

be a fibration category since not every object of C/A (i.e. a morphism B → A in C) has to

be fibrant in C/A (i.e. a fibration in C). To resolve this issue, let us define C(A) as the full

subcategory of the slice category C/A whose objects are fibrations B → A.

Proposition 6.1.4. Declare a map in C(A) to be a fibration (respectively, a weak equivalence)
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if it is a fibration (resp. a weak equivalence) regarded as map in C. Then the category C(A)

with this choice of fibrations and weak equivalences is a fibration category.

Proof. Straightforward verification.

Lemma 6.1.5. Let f : X → Y be a morphism in a fibration category C. Then the functor

f ∗ : C(Y )→ C(X) given by pullback is exact.

Proof. Preservation of pullbacks and the terminal object is clear. Preservation of fibrations

and acyclic fibrations follows by the two-pullback lemma.

Definition 6.1.6. A square of the form:

U //

��

X

��
V // Y

in a fibration category C is a homotopy pullback if given any factorization X → X̃ → Y ,

the induced map U → X̃ ×Y V is a weak equivalence.

6.1.7. In order to show that the notion of homotopy pullback is well-defined, we need to

show that Definition 6.1.6 does not depend on the choice of factorization and the choice of

map to be factored (we could have chosen V → Y instead). We will address these issues in

Lemmas 6.1.8 and 6.1.9, respectively.

Lemma 6.1.8. Definition 6.1.6 does not depend on the choice of factorization.

Proof. Any two factorizations of X → Y can be connected by a zigzag of weak equivalences.

Indeed, given:

X
∼

  

∼

��

��

X̃

��

X̃ ′

~~
Y
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we can factor the induced map X → X̃×Y X̃ ′ into a weak equivalence followed by a fibration.

Thus, we have reduced the problem to showing that for any factorizations connected by a

weak equivalence:

X
∼

  

∼

��
X̃

��

∼ // X̃ ′

~~
Y

the induced map U → X̃ ×Y V is a weak equivalence if and only if the induced map

U → X̃ ′ ×Y V is. This follows by exactness of the pullback functor 6.1.5, Ken Brown’s

lemma, and 2-out-of-3.

Lemma 6.1.9. Definition 6.1.6 does not depend on the choice of morphism for factoriza-

tion. That is, the square of Definition 6.1.6 is a homotopy pullback if and only if for any

factorization V → Ṽ → Y of V → Y into a weak equivalence followed by a fibration, the

induced map U → Ṽ ×Y X is a weak equivalence.

Proof. It suffices to show that in the diagram:

U //

��

• //

∼
��

X

∼
��

• ∼ //

��

• //

��

•

��
V

∼ // • // Y

one of the dotted arrows is a weak equivalence if and only if the other one is. This is however

an immediate consequence of 2-out-of-3.
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Lemma 6.1.10. Given a commutative cube of the form:

U0
//

∼
~~

��

X0

∼
}}

��

U1
//

��

X1

��

V0
//

∼
~~

Y0

∼
}}

V1
// Y1

the front square is a homotopy pullback if and only if the back square is a homotopy pullback.

Proof. Let X1 → X̃1 → Y1 be any factorization of X1 → Y1 and let X0 → X̃0 → X̃1 ×Y1 Y0

be a factorization of the induced map X0 → X̃1×Y1 Y0. By Lemma 6.1.8, we can choose the

factorizations as we please, thus it suffices to show that in the diagram:

U0
//

∼
ww

��

X0

∼
}}

��

U1
//

��

X1

��

V0 ×Y0 X̃0
//

xx

X̃0

∼
��

V1 ×Y1 X̃1
// X̃1

the map U0 → V0 ×Y0 X̃0 is a weak equivalence if and only if the map U1 → V1 ×Y1 X̃1 is.

However, by the gluing lemma, the map V0 ×Y0 X̃0 → V1 ×Y1 X̃1 is a weak equivalence and

the result now follows by 2-out-of-3.

Corollary 6.1.11. A square of Definition 6.1.6 in a fibration category C is a homotopy

pullback if and only if it can be connected by a zigzag of natural weak equivalences (in the

category of commutative squares in C) with a pullback along a fibration.

Proof. The only if part is obvious and the if part follows from Lemma 6.1.10.
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Lemma 6.1.12 (Two-hopullback lemma). Suppose given a commutative diagram:

U //

��

X //

��

Z

��
V // Y //W

in a fibration category such that the right hand side square is a homotopy pullback. Then the

left hand side square is a homotopy pullback if and only if the outer rectangle is a homotopy

pullback.

Proof. This follows immediately by the standard two-pullbacks lemma.

6.2 PARTIAL REEDY STRUCTURES (IN ACTION)

6.2.1. Partial Reedy structures are fibration category structures on a (subcategory of a)

diagram category CJ , but they depend not only on J , but also on a functor f : I → J

of inverse categories. These structures are not necessarily of independent interest, but are

rather a technical device introduced to prove Corollary 6.2.11.

6.2.2 (Reedy f -fibrant diagrams). Given a map s : I → J of inverse categories and a fibration

category C, define CJf-R as the full subcategory of CJ consisting of diagrams X : J → C such

that f ∗X : I → C is Reedy fibrant. We will call such diagrams Reedy f-fibrant.

6.2.3. If f : I ↪→ J is an inclusion, then a Reedy f -fibrant diagram X : J → C is a diagram

whose restriction X|I is Reedy fibrant.

6.2.4 (Reedy f -fibrations). Let f : I → J and C be as above, a natural transformation

F : X → Y between two Reedy f -fibrant diagrams X, Y : J → C is a Reedy f-fibration if

it is a fibration in the levelwise structure on CJ and the induced map f ∗(F ) : f ∗(X)→ f ∗(Y )

is a Reedy fibration in CIR.

Theorem 6.2.5. Let C be a fibration category and f : I → J a functor between inverse

categories. Then the category CJf-R with Reedy f -fibrations as fibrations and levelwise weak

equivalences as weak equivalences is a fibration category.
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Proof. Analogous to the proof of Theorem 5.2.17.

Examples 6.2.6.

1. If I = ∅, that is, f is the inclusion of the empty category, then CJf-R is simply the levelwise

structure CJ .

2. If f = 1J : J → J , then CJ1J-R is the Reedy fibration category structure CJR.

Theorem 6.2.7. Let f : I → J be a map of homotopical inverse categories. Then the

inclusions

CJR ↪→ CJf-R ↪→ CJ

are equivalences of fibration categories.

Proof. The composite of these maps is an equivalence by Theorem 5.2.18, thus, by 2-out-of-3,

it suffices to show that one of the two maps is an equivalence. The proof of Theorem 5.2.18

shows that CJR ↪→ CJf-R is so.

6.2.8. Let us once again emphasize that partial Reedy structures are of no independent

interest; they are, however, a useful tool, allowing us to prove the following results.

Lemma 6.2.9. Let C be a fibration category and let

I �
� //

f
��

J

g
��

K �
� // L

be a pushout square of direct categories such that such that the maps I ↪→ J and K ↪→ L are

sieves, and I → K and J → L satisfy the assumptions of the Exactness Criterion 5.2.22.

Then there is an induced square homotopy pullback square of fibration categories and exact

functors:

CL
op

R

g∗ //

��

CJ
op

R

��
CK

op

R

f∗ // CI
op

R

82



Proof. A morphism ϕ : X → Y of Reedy g-fibrant diagrams X, Y : Lop → C is a Reedy g-

fibration, then its restriction ϕ|Kop : X|Kop → Y |Kop is a Reedy f -fibration. For it suffices

to show that the restriction ϕ|Iop is Reedy fibrant, but that follows from the fact that ϕ|Jop

is Reedy fibrant and the map I ↪→ J is a sieve. Similarly, if a diagram X : Lop → C is Reedy

g-fibrant, then X|Kop is Reedy f -fibrant.

It follows that the square:

CL
op

g-R

g∗ //

��

CJ
op

R

��
CK

op

f-R

f∗ // CI
op

R

is a pullback of fibration categories and exact functors. Thus, by Theorem 6.2.7, the outer

square

CL
op

R
� � ∼ //

��

CL
op

g-R

g∗ //

��

CJ
op

R

��
CK

op

R
� � ∼ // CK

op

f-R

f∗ // CI
op

R

is a homotopy pullback.

Corollary 6.2.10. In the situation of Lemma 6.2.9, if I ↪→ K is a sieve, then the resulting

square is a pullback (not just a homotopy pullback).

Proof. We need to show that a morphism f : X → Y of diagrams X, Y : Lop → C is a Reedy

fibration if and only if it is a Reedy fibration when restricted to both J and K. Given j ∈ J ,

we have that the canonical map ∂(J/j)→ ∂(L/j) is an isomorphism, since J ↪→ L is a sieve.

Similarly, for any k ∈ K, the map ∂(K/k) −→ ∂(L/k) is an isomorphism. This proves the

only if part. For the if part, we simply use the fact that L is a pushout and hence for each

l ∈ L, we have either l ∈ J or l ∈ K.

Corollary 6.2.11. Let C be a fibration category and consider a pushout square of direct

categories:

I �
� //

f
��

J

g
��

K // L
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in which I ↪→ K is a sieve and f satisfies the assumptions of the Exactness Criterion 5.2.22

and suppose that f ∗ : CK
op

R → CI
op

R is an equivalence. Then g∗ : CL
op

R → CJ
op

R is an equivalence

of fibration categories.

Proof. By Lemma 6.2.9, g∗ is a homotopy pullback of f ∗. But a homotopy pullback of a weak

equivalence is again a weak equivalence (Corollary 6.1.11), which completes the proof.
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7.0 PROPERTIES OF THE QUASICATEGORY OF FRAMES

We will now investigate the properties of the quasicategory of frames that are crucial from

the viewpoint of the proof of Joyal’s conjecture. In Section 7.1, we will prove an important

technical lemma establishing a criterion for a simplicial map to be a categorical equivalence

between quasicategories of frames. Then, we will show that the assignment C 7→ NfC, in

a suitable sense and under suitable assumptions, preserves slices (Section 7.2) and adjoints

(Section 7.3).

7.1 EQUIVALENCES INVOLVING QUASICATEGORIES OF FRAMES

7.1.1. In this section, we will prove only one lemma, but an extremely important one from

the point of view of the results that we are aiming to prove. Indeed, this lemma explains how

to combine the Criterion 3.3.32 with Theorem 5.3.18 to prove that a map of quasicategories

is an equivalence, by working on the level of fibration categories.

Almost every major theorem in the remainder of the thesis will in some way rely on this

lemma.

Lemma 7.1.2.

1. Let C be a fibration category, P a poset, and K ↪→ NP an inclusion of simplicial sets.

Let X, Y : K → NfC be maps of simplicial sets and f : X → Y a natural weak equiva-

lence between corresponding functors DKop → C. Then f induces a E[1]-homotopy (see

Paragraph 3.3.31) between X and Y .

2. Moreover, if there is L ↪→ K such that X|L = Y |L and for all ϕ ∈ DLop, fϕ = id ∈ C
[̂1]
h ,
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then this E[1]-homotopy can be chosen relative to L.

7.1.3. The proof of Lemma 7.1.2 will be preceded by a short discussion. Let C be a ho-

motopical category and J a small category. A natural transformation f between functors

X, Y : J → C can be seen as a functor

f : J × [1]→ C

such that f(j, 0) = X(j) and f(j, 1) = Y (j). Such a natural transformation is a natural

weak equivalence if it homotopical, regarded as functor f : J × [̂1] → C, where J has only

trivial weak equivalences.

Alternatively, we may view a natural transformation X → Y as a functor:

f : J → C[1]

such that f(j)(0) = X(0) and f(j)(1) = Y (j). Again, if we replace [1] with [̂1] and consider

only the subcategory C
[̂1]
h ⊆ C[1] of homotopical diagrams, we get an equivalent description

of a natural weak equivalence i.e. as a functor f : J → C
[̂1]
h .

In light of the above discussion, the additional condition in (2) of the Lemma 7.1.2,

asserts that f , regarded as a functor f : J → C[̂1], for each j ∈ J , takes value fj = 1X(j).

Proof. The composite

H : D(K × [̂1])op ↪−→ DKop × [̂1]
f−→ C

is a homotopical diagram and the restrictions H|D(K×{0})op = X and H|D(K×{1})op = Y

are Reedy fibrant. Moreover, the inclusions: D(K × {i}) ↪→ D(K × [̂1]) are jointly sieve for

i = 0, 1. Thus by Lemma 5.4.2, we may extend it to a homotopical Reedy fibrant diagram

H : D(K × [̂1])op → C such that H|D(K × {0})op = X and H|D(K × {1})op = Y .

By Theorem 5.3.18, this gives a simplicial map H : K ×∆[1]→ Nf(C) such that for each

x ∈ K, H|{x} ×∆[1] picks out an equivalence. By Paragraph 3.3.31 this gives the desired

E[1]-homotopy and hence proves (1).

For (2), we notice that the corresponding restriction D(L×∆[1])op → C must factor as:

D(L×∆[1])op → DLop → C.
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But by assumption f |(DLop × [̂1]) factors through:

DLop × [̂1]→ DLop → C.

The result thus follows by commutativity of the following triangle:

D(L×∆[1]) //

&&

DL× [1]

yy
DL

7.2 SLICES OF THE QUASICATEGORY OF FRAMES

7.2.1. Our main goal in this section is to show the following theorem, describing the slices of

the quasicategory Nf(C) in terms of the fibered slices C(A) as described in Proposition 6.1.4.

Theorem 7.2.2. Let C be a fibration category and let A : D[0]op → C be a 0-simplex in

Nf(C). Then there is an equivalence of quasicategories:

Nf(C)/A ' Nf(C(A0))

Proof. We will begin by defining a map F : Nf(C)/A→ Nf(C(A0)) that will be an equivalence.

By Theorem 5.3.18, an n-simplex in Nf(C)/A is given by a homotopical Reedy fibrant

diagram B : D[n+ 1]op → C such that

Bn . . . n︸ ︷︷ ︸
k times

= Ak−1,

where Bn . . . n︸ ︷︷ ︸
k times

denotes the value of B on a function [k] → [n] constant equal to n. In

particular, Bn = A0.

On the other hand, an n-simplex in Nf(C(A0)) is a homotopical, Reedy fibrant diagram

B : D[n]op → C(A0). Equivalently, it is a homotopical, Reedy fibrant diagram B : D[n]op →
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C, together with, for each ([k], ϕ : [k]→ [n]), a fibration Bϕ → A0 such that for any ϕ′ : [k′]→

[n] injective, order-preserving function f : [k]→ [k′] the following triangle commutes:

Bϕ′
Bf //

!!

Bϕ′

}}
A0

For an n-simplex B : D[n+ 1]op → C in Nf(C)/A, define F (B) : D[n]op → C by setting:

F (B)a1a2...ai := Ba1a2...ain

For every sequence of the form (a1a2 . . . ain), there is a canonical map Ba1a2...ain → Bn = A0.

Since B was Reedy fibrant, this map is a fibration and the map F is therefore well-defined.

Our next goal is to prove that F : Nf(C)/A → Nf(C(A0)) is an equivalence. By Lemma

3.3.32, we need to find a filler for the following diagram:

∂∆[n] X //
� _

��

Nf(C)/A

F
��

∆[n] X′ // Nf(C(A0))

As explained in Paragraph 3.3.9, a simplicial map X : ∂∆[n] → Nf(C)/A corresponds

naturally to a map ∂∆[n] ?∆[0] = Λn+1[n+ 1]→ Nf(C), whose restriction to the (n+ 1)-st

vertex is A. By Theorem 5.3.18, this in turn corresponds naturally to a diagram:

X : D(Λn+1[n+ 1])op → C.

We may view D(Λn+1[n+ 1]) as a subcategory of D[n+ 1], consisting of those monotone

functions ϕ : [k]→ [n+ 1] that skip some i ∈ [n] ⊆ [n+ 1]. That is,

D(Λn+1[n+ 1]) = {[k]
ϕ→ [n+ 1] | there exists i ≤ n s.th. i 6∈ im(ϕ)}

Via this representation:

X(n+ 1) . . . (n+ 1)︸ ︷︷ ︸
k times

= A0 . . . 0︸ ︷︷ ︸
k times

.
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By Theorem 5.3.18, X ′ : ∆[n]→ Nf(C(A0)) corresponds naturally to a diagram D[n]op →

C(A0). This in turn, corresponds naturally to a diagram X ′ : Da[n]op → C with X ′∅ = A0.

As above, we may view Da[n] as a full subcategory of D[n+ 1] via the inclusion sending

ϕ : [k]→ [n] ∈ D[n] to ϕ′ : [k + 1]→ [n+ 1] defined by:

ϕ′(i) =

 ϕ(i) if i ≤ k

n+ 1 if i = k + 1

That is,

Da[n] = {[k]
ϕ→ [n+ 1] | ϕ(k) = n+ 1 and ϕ(k − 1) ≤ n} ∪ {∅ → [n+ 1]}.

Thus, viewing X ′ as defined on this subcategory of D[n+ 1]op, we know that X ′n+1 = A0.

We seek an extension:

∂∆[n] X //
� _

��

Nf(C)/A

F
��

∆[n]
X′
//

X̃
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Nf(C(A0))

hence, by Theorem 5.3.18, a diagram X̃ : D[n+ 1]op → C such that:

• X̃|D(Λn+1[n+ 1]) = X ′ and

• X̃ ∼E[1] X relative to the boundary.

By Theorem 5.3.15, it suffices to find an extension X̃ : D(∂∆[n])op ∪ Sd[n+ 1]op → C.

To define X̃, let us first consider the case when ϕ : [k] → [n + 1] ∈ D(∂∆[n]) i.e. ϕ is

not surjective. Then we set

X̃ϕ =

 Xϕ if ϕ(k) = n+ 1

X ′ϕ′ if ϕ(k) < n+ 1

where ϕ′ : [k + 1]→ [n+ 1] is given by:

ϕ′(i) =

 ϕ(i) if i ≤ k

n+ 1 if i = k + 1
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It remains to define X̃1[n+1]
. In order to obtain it, take the factorization of the induced

map:

X ′1[n+1]
→ lim(Pn([n+ 1])op X̃−→ C).

Indeed, by construction of X̃ on the boundary, X ′1[n+1]
admits a map to each component

of the diagram and hence to the limit. This gives an extension of X̃ to Sd[n + 1]op and

consequently to D[n+ 1]op.

It is clear that the upper triangle in the diagram above commutes. The lower triangle

commutes up to E[1]-homotopy relative to the boundary by Proposition 5.4.3.

7.3 PRESERVATION OF ADJOINTS

7.3.1. Let F : C → D be a homotopical functor between fibration categories. We define a

simplicial set CF by:

(CF )m := {(X ∈ (NfC)m, Y ∈ (NfD)m, w : FX
∼→ Y )}

Intuitively, an m-simplex of CF consists of an m-simplex of X ∈ (NfC), together with a

fibrant replacement of FX.

Lemma 7.3.2. For any homotopical functor F : C → D between fibration categories, the

canonical projection CF → Nf(C) is an acyclic fibration.

Proof. We need to find a lift for the following square:

∂∆[m] //
� _

��

CF

��
∆[m] // Nf(C)

Thus by Theorem 5.3.18, we are given:

• homotopical and Reedy fibrant X : D[m]op → C (bottom map)

• homotopical and Reedy fibrant Y : D(∂∆[m])op → D, together with a natural weak

equivalence w : F ·X|D(∂∆[m])op → Y (top map).
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We need to find extensions of Y and w to D[m]op. This follows from Lemma 5.4.4.

Corollary 7.3.3. CF is a quasicategory.

7.3.4. This allows us to define the value of Nf on a homotopical functor F : C→ D between

fibration categories that is not necessarily exact. Indeed, by Lemma 7.3.2, the canonical

projection CF → Nf(C) is an acyclic fibration, and hence admits a section. Postcomposing

this section with the projection CF → Nf(D) yields a map Nf(C)→ Nf(D) that we may take

as Nf(F ).

7.3.5. Of course, since the definition of Nf(F ) involved choosing some sections, it is not

reasonable to expect that this assignment is strictly functorial. However, it is functorial in an

appropriate up-to-homotopy sense. More precisely, for any composable pair of homotopical

functors C
F−→ D

G−→ E, there exists a quasicategory H fitting into the following Reedy

fibrant fraction:

D

C E

CF DG

CGF

H

Indeed, we may define H as the pullback:

H //

��

CF

��
DG

// Nf(D)

so, explicitly, m-simplices of H are quintuples:

(X ∈ NfC, Y ∈ NfD, Z ∈ NfE, w : FX
∼→ Y, u : GY

∼→ Z).

Lemma 7.3.6. Let F : C � D : G be adjoint functors between fibration categories in

which all objects are cofibrant such that F is exact and G is homotopical. Then a pair of

morphism f, g : X → GA is homotopic if and only if their adjoint transposes f, g : FX → A

are homotopic.
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7.3.7. Note that by Theorem 5.1.11, the easiest way to establish that two maps are homo-

topic is to find a right-homotopy between them. If we knew that the right adjoint G : D→ C

is exact, our proof would follow this idea. Unfortunately, we only know that G preserves

weak equivalences, hence a more refined proof is needed.

Proof. First, assume that f, g : FX → A are homotopic and let choose a path object for A

in C:

Ã

��
A

33

∆A

// A× A

Then we have

Ã

��
FX

33

(f,g)

// A× A

Taking the adjoint transpose of this diagram, we get:

GÃ

��
X

33

(f,g)
// GA×GA

since G preserves products. This establishes f and g as homotopic.

Conversely, assume that f, g : X → GA are homotopic. Factor the map G(Ã) → GA ×

GA as a weak equivalence followed by a fibration G(Ã)
∼→ G̃(A)→ GA×GA. By assumption

there is a homotopy H : X → G̃(A) that we can factor into a weak equivalence followed by

a fibration:

X̃ // G̃(A)

��
X

H

77

(f,g)
//

OO

GA×GA
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Taking the pullback we obtain:

X̃ ×
G̃(A)

G(Ã) //

��

G(Ã)

��

X̃ // G̃(A)

��
X

55OO

(f,g)
// GA×GA

Finally, composing the right hand side map gives us a square:

X̃ ×
G̃(A)

G(Ã) //

��

G(Ã)

��

X̃

**��
X

OO

(f,g)
// GA×GA

which we can take the adjoint transpose of:

F (X̃ ×
G̃(A)

G(Ã)) //

��

Ã

��

F (X̃)

))��
FX

OO

(f,g)

// A× A

7.3.8. If in Lemma 7.3.6, we assume that G is exact, we could drop the assumption that all

objects of C and D are cofibrant and instead proceed as follows. We begin by choosing a

path object for A in C:

P (A)

��
A

44

∆A

// A× A
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By assumption and exactness of R, there exists a commutative square of the form:

X̃ //

∼
����

R(P (A))

��
X

(f,g)
// R(A)×R(A) ∼= R(A× A)

By adjointness and exactness of L, we get:

L(X̃) //

∼
����

P (A)

��
LX

(f,g)

// A× A

Theorem 7.3.9. Let F : C � D : G be a pair of adjoint functors between fibration cat-

egories with all object cofibrant. Assume that G is homotopical and F is exact. Then

Nf(G) : Nf(D)→ Nf(C) is a right adjoint in qCat (with left adjoint Nf(F )).

7.3.10. The proof of this theorem will be preceded by a discussion that will explain the

proof strategy and will address a special case. By Proposition 3.3.26, a functor G : D → C

is a right adjoint if for all x ∈ C the slice quasi-category x ↓ G has an initial object (the unit

of the adjunction). Thus a 1-simplex x → G(a) of C is an initial object of x ↓ G if for all

n > 0 and any map ∆[0] ? ∂∆[n]→ x ↓ Nf(G) there exists an extension:

∆[0] ? ∂∆[n] //
� _

��

x ↓ Nf(G)

∆[0] ?∆[n]

77

Let us start by describing the initial object. Since F a G, there is a natural transformation

η : 1C → G · F . We will use it in order to produce the desired 1-simplex.
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7.3.11. Let X ∈ Nf(C) be a 0-simplex (that is, a frame). To construct the lift in the

diagram of Paragraph 7.3.10, by Theorem 5.3.15 it suffices to find a Reedy fibrant fraction

X0 ← X01 → GF (X0) =: X1. Define a factorization of the map X0 → X0 × X1 as a weak

equivalence followed by a fibration:

X0

〈1X0
,ηX0

〉
//

w !!

X0 ×X1

X01

〈p0,p1〉

99

Notice that since G was not required to be exact, we may need to fibrantly replace the frame,

however without changing the value GFX0. Thus, thanks to Theorem 5.3.15, we will be able

to use the universal property of η in the proof.

7.3.12. We shall verify the universal property of the unit constructed in Paragraph 7.3.11.

Before giving the proof in full generality, we consider the case n = 1 separately as our

working example. This proof will span Paragraphs 7.3.12–7.3.16. Unwinding the definition,

we see that, by Theorem 5.3.15, given:

X1

X0 X2

X01

X02

where we have X1 = G(B1) (and, in turn, B1 = F (X0)) and X2 = G(B2), we have to find

a Reedy fibrant fraction F (X0) = B1 ← B12 → B2 and X012 with the appropriate maps,

completing the above diagram to a homotopical Reedy fibrant diagram on Sd[2]op:

X1

X0 X2

X01 X12

X02

X012
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where X12 = G(B12).

7.3.13. First, we define X̃012 as the pullback:

X̃012
//

��

X01

��
X02

// X0

Note that all maps in the above diagram are acyclic fibrations.

7.3.14. Next, by the universal property of η, there exists a unique map B̃12 := F (X̃012) →

B1 ×B2 making the following square commute:

X̃012

η
X̃012 //

��

GF (X̃012)

��
X01 ×X02

// G(B1)×G(B2)

We claim that up to Reedy fibrancy of the resulting diagrams, the objects X̃012 and B̃12 with

the maps defined above give the extension required in the universal property. To see this, it

remains to verify that the map B̃01 → B1 is a weak equivalence. Notice that then we could

simply fibrantly replace the diagrams, obtaining the desired ones.

Thus, let α be the map B̃01 → B1.

7.3.15. Note that the map β : X̃012 → X0 in the diagram of Paragraph 7.3.13 is a weak

equivalence and hence so is Fβ : F (X̃012) → F (X0). By Lemma 7.3.6, since a map homo-

topic to a weak equivalence is itself a weak equivalence, it suffices to show that the adjoint

transposes of α and Fβ are homotopic.
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We will construct these transposes explicitly. By the universal property of η, there exists

a unique morphism F (X̃012)→ F (X0) making the diagram

X̃012

η
X̃012 //

��

GF (X̃012)

��

X01 ×X02

��
X01

∼

%%
X0

ηX0

%%
GF (X0)

commute.

But by naturality of η, the following diagram commutes:

X̃012

η
X̃012 //

β

��

GF (X̃012)

GFβ

��
X0

ηX0 // GF (X0)

and hence Fβ is the adjoint transpose of the composite:

X̃012 −→ X01 ×X02 −→ X01 −→ X0 −→ GF (X0)

On the other hand, by the definition of B̃12 and commutativity of the following diagram:

X̃012

ηX012 //

��

GF (X̃012)

��
X01 ×X02

//

��

G(B1)×G(B2)

��
X01

// GF (X0)

we get that the adjoint transpose of α : B̃12 → B1 is given by the composite:

X̃012 −→ X01 ×X02 −→ X01 −→ GF (X0)

in the above diagram.
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7.3.16. Thus, in order to verify that α and Fβ are homotopic, and hence complete the proof

in case n = 1, it remains to verify that the following triangle commutes up to homotopy:

X01
p2 //

p1 !!

GF (X0)

X0

ηX0 $$
GF (X0)

For this, it is enough to show that these two maps become equal after precomposition

with some weak equivalence. Let w : X0 → X01 be the weak equivalence obtained in the

factorization defining X01. Then we have:

ηX0 · p1 · w = ηX0

= p2 · w

that yields the desired conclusion.

Proof of Theorem 7.3.9. Suppose given X : ∆[0] ? ∂∆[n] → Nf(C) ↓ G. We wish to extend

it to X̃ : ∆[0] ? ∆[n] → Nf(C) ↓ G. By Theorem 5.3.15, it suffices to show that given any

diagram

X : Pn([n])op → C

with the property that for any A ⊆ (n], we have XA = G(BA), where BA ∈ D and the

maps connecting such G(BA)’s are also of the form G(−), we need to find X[1+n] ∈ C and

B(1+n] ∈ D together with maps extending X to X̃ : Sd[1 + n]op → C.

To simplify the notation, we will write G(BA) as XA throughout. We start by defining

X̃[1+n]:

X̃[1+n] = lim
0∈A

XA.

By construction, the canonical map X̃[1+n] → XA is a fibration for any A such that

0 ∈ A. By Lemma 5.4.5, it is moreover an acyclic fibration.

Given A ⊆ [n] such that 0 6∈ A, there is a map XA∪{0} → XA = G(BA). Thus we obtain

an induced map:

lim
06∈A

XA∪{0} −→ lim
06∈A

G(BA) ∼= G(lim
06∈A

BA)
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since G is a right adjoint.

By the universal property of η, there is a unique morphism

B̃(1+n] := F (X̃) −→ lim
06∈A

BA

making the following square commute:

X̃[1+n]

η
X̃[1+n] //

��

GF (X̃[1+n])

��
lim
06∈A

XA∪{0} // G(lim
06∈A

BA)

We claim that X̃[1+n] and B̃(1+n] as constructed above, together with the above maps, give

the desired extension. It remains to verify that the canonical map B̃(1+n] → B1 is a weak

equivalence.

The proof follows verbatim the proof given in the case n = 1 in the Paragraphs 7.3.15–

7.3.16.
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8.0 SIMPLICES OF THE QUASICATEGORY OF FRAMES

This chapter is devoted to the proof of the following result: given any fibration category C

and a natural number m, there is a categorical equivalence:

Nf(C
D[m]op

hR ) ' Nf(C)∆[m].

To this end, we first prove (Section 8.1) a lemma that resembles the familiar Dold’s Lemma

from algebraic topology, and then using it, we show the desired result (Section 8.2). The

arguments used in Section 8.2 are very combinatorial in nature and nicely demonstrate the

main advantages of working with Szumi lo’s construction.

8.1 DOLD’S LEMMA FOR FIBRATION CATEGORIES

8.1.1 (Dold’s Lemma for topological spaces). Let B be a topological space consider the

following commutative triangle:

X //

  

Y

~~
B

where both X → B and Y → B are Hurewicz fibrations and the map X → Y is a homotopy

equivalence. Then X → Y is a fiberwise homotopy equivalence; that is, its quasi-inverse

Y → X as well as the homotopies can be chosen to be fiberwise.

8.1.2. Notice that in the special case Y = B, Dold’s Lemma asserts that an acyclic Hurewicz

fibration admits a deformation section (both the section and the homotopies can be chosen

fiberwise).
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8.1.3. Dold’s Lemma is just a special case of Whitehead’s Theorem for model categories

that says that weak equivalences between objects that are both fibrant and cofibrant are ho-

motopy equivalences. Indeed, Dold’s Lemma is exactly an instance of Whitehead’s Theorem

for Hurewicz model structure on the slice category Top/B.

8.1.4. Since one can talk about fibrant and cofibrant in a fibration category, there is an

analogous statement of Whitehead’s Theorem for an arbitrary fibration category.

We wish to apply it however to the fibration category Fib of fibration category. In

this case the statement is very interesting, because there are not enough cofibrant fibration

categories. The word “enough” in the previous sentence does not have a precise mathematical

meaning; it simply refers to the fact that we cannot use this statement.

Proposition 8.1.5. Consider the following commutative triangle of fibration categories and

exact functors:

C
F //

P ��

D

Q��
B

in which P and Q are fibrations and F is an equivalence. Suppose we have a frame Y : D[0]op →

D. Then there exists an object X ∈ C such that P (X) = Q(Y0) and there is a fraction

F (X) ← Z → Y0, in which both maps are acyclic fibrations and that under Q becomes the

initial part of the frame Q · Y : D[0]op → B (i.e. Q(Z) = Q(Y00) and the two maps from the

fraction become Q(Y00) ⇒ Q(Y0)).

8.1.6. Notice that it is indeed a generalization of Dold’s Lemma to the case when the

fibration categories C and D are not cofibrant in Fib/B. If they were, we could simply

choose a fiberwise quasi-inverse and take X := G(Y0).

Proof. Factor the map (1C, F ) : C→ C×B D as an equivalence followed by a fibration:

C̃
(S,T )

##
C

J

AA

(1C,F ) // C×B D
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Functors S and T are easily seen to be fibrations (as composites of fibrations). They are

moreover acyclic fibrations. Indeed, we a commutative triangle:

C̃

T
��

C
F //

J

>>

D

in which both J and F are equivalences, hence by 2-out-of-3 so is T . One proves similarly

that S is an equivalence.

Since T : C̃→ D is an acyclic fibration and Y → 1 is a fibration in D, by Theorem 5.3.7,

there exists X̃ ∈ C̃ such that T (X̃) = Y0. Define X := S(X̃). By commutativity of the

square:

C̃
S //

T
��

C

P
��

D
Q // B

we obtain P (X) = Q(Y0).

Since P : C → B is a fibration and we have P (X) = Y0, we can find a Reedy fibrant

diagram X00 ⇒ X (in which both maps are weak equivalences) such that

P (X00 ⇒ X) = Q(Y00) ⇒ Q(Y0).

Since S : C̃→ C is an acyclic fibration and we have S(X̃ × J(X)) = X ×X, by Theorem

5.3.7, we can lift the fibration X00 → X × X ∈ C to a fibration X̂00 → X̃ × J(X) ∈ C̃,

hence a fraction X̃ ← X̂00 → J(X). Applying T to it we obtain the desired fraction since

T (X̃) = Y and TJ(X) = F (X).
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8.2 SIMPLICES OF THE QUASICATEGORY OF FRAMES

8.2.1. Our main goal in this section is to establish an equivalence of quasicategories:

Nf(C
D[m]op

hR ) ' Nf(C)∆[n].

Before constructing an explicit map and proving it is an equivalence, we need a few

lemmas.

8.2.2. Let P be a homotopical poset. In Paragraph 5.3.13, we defined the barycentric

subdivision of P as the the homotopical poset SdP of non-empty subsets of P , whose weak

equivalences are created by the functor max: SdP → P . In the special case P = [m], this

functor admits a left adjoint:

[m] ↪→ Sd[m]

taking i ∈ [m] to the canonical inclusion [i] ↪→ [m]. Indeed, for a subset S ⊆ P and any

i ∈ [m], we have:

maxS ≤ i iff S ⊆ [i].

8.2.3. There is also a pair of adjoint functors between SdP and DP , for any homotopical

poset P . The obvious inclusion SdP ↪→ DP taking a subset S ⊆ P to the inclusion [|S|]→

P picking out S, admits a left adjoint im: DP → SdP that takes a monotone function

ϕ : [k]→ P to its image im(ϕ) ⊆ P .

8.2.4. In order to show the main theorem of this section (Theorem 8.2.25), we shall show

that the following functors:

• CD[m]op → C[m]op

• C(SdP )op
↪→ CDP

op

• C(SdP )op → CP
op

are equivalences of fibration categories.

Lemma 8.2.5. Let C be a fibration category and m ∈ N. Then the canonical inclusion

[m] ↪→ D[m] given by i 7→ ([i] ↪→ [m]) induces an equivalence of fibration categories:

CD[m]op −→ C[m]op

.

103



8.2.6. Before giving the proof for an arbitrary m ∈ N, we will treat the case m = 0 separately

to explain the intuition behind the general case. (An alternative proof for the case m = 0

can also be found in [Sch13, Thm. 3.10].) By Lemma 5.2.25, it suffices to show that the

inclusion [0] ↪→ D[0] is a homotopy equivalence. Since [0] is the terminal category, there

is only one choice of the quasi-inverse, that is, the canonical map D[0] → [0]. Clearly, the

composite [0] ↪→ D[0]→ [0] is equal to 1[0]. We have to construct a zigzag between 1D[0] and

the other composite (by construction, it is const[0] : D[0]→ D[0]).

To do that, define S : D[0]→ D[0] by:

S[k] := [k + 1]

(here we are using the fact that D[0] ∼= ∆inj) and S(ϕ : [k + 1]→ [l + 1]) is given by:

Sϕ(i) =

 ϕ(i) if i ≤ k

l + 1 for i = k + 1.

Since [0] is the value of the composite D[0] → [0] ↪→ D[0] on an arbitrary [k] and for any

[k], there are obvious inclusions:

[k] �
� ∼ // S[k] [0]? _∼oo

Thus we obtain natural weak equivalences:

1D[0]
� � ∼ // S const[0]

? _∼oo

yielding the desired zigzag.
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Proof of Lemma 8.2.5. Let ι : [m]→ D[m] be the inclusion under consideration. By Lemma

5.2.25, it suffices to show that it is a homotopy equivalence. Let p : D[m]→ [m] be the map

evaluating ϕ : [k]→ [m] at k i.e.

p([k]
ϕ−→ [m]) = ϕ(k).

The composite p · ι : [m] → D[m] → [m] is equal to the identity. Thus to fulfill the as-

sumptions of Lemma 5.2.25, it suffices to construct a zigzag of natural weak equivalences

ι · p ∼ 1D[m].

As in the case m = 0, we will construct an intermediate endofunctor S on D[m] along

with natural weak equivalences 1D[m] → S ← ι · p. We can view ϕ : [k] → [m] ∈ D[m] as a

non-decreasing sequence of length k + 1 of elements of [m]. Define the sequence S(ϕ) : [k +

ϕ(k)+1]→ [m] as follows. In the sequence that represents ϕ, insert an additional occurrence

of each of the numbers: 0, 1, . . . , ϕ(k). Thus the resulting sequence S(ϕ) will be of length

k+ 1 +ϕ(k) + 1, hence a function [k+ϕ(k) + 1]→ [m]. It is easy to see that S is functorial;

indeed, given a commutative triangle:

[k]

ϕ
  

� � θ // [l]

ψ~~
[m]

we may define S(θ) : [k + ϕ(k) + 1]→ [l + ψ(l) + 1] by saying that S(θ) does on what θ did

on the existing occurrences and naturally extends to the additional occurrences.

Finally, notice that by definition of p and ι, the value of the composite ι · p is given by

the canonical inclusion:

ι · p([k]
ϕ−→ [m]) = ([ϕ(k)] ↪→ [m]).

Thus we have a commutative diagram:

[k] �
� //

ϕ
&&

[k + ϕ(k) + 1]

S(ϕ)
��

[ϕ(k)]? _oo
J j

ι·p(ϕ)
ww

[m]
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in which the horizontal arrows are weak equivalences. Hence, we obtain natural weak equiv-

alences:

1D[m]
� � ∼ // S ι · p? _∼oo

what completes the proof.

8.2.7. It is easy to check that the map [m] ↪→ D[m] satisfies the assumptions of the Exactness

Criterion 5.2.22 and hence the induced map:

C
D[m]op

hR → C
[m]op

hR

is also an equivalence of fibration categories of Reedy fibrant diagrams. We mention this

result only as a side remark; it will not be used further in the proof.

Moreover, one quickly deduces the following from Lemma 8.2.5.

Corollary 8.2.8. The inclusion [m]× [n] ↪→ D[m]×D[n] induces an equivalence of fibration

categories

C(D[m]×D[n])op −→ C([m]×[n])op

.

8.2.9. Combining the above Corollary with Proposition 5.2.15 and the Exactness Criterion

5.2.22, one obtains that the induced map:

C
(D[m]×D[n])op

hR → C
([m]×[n])op

hR

is an equivalence of fibration categories (hence, in particular, exact).

8.2.10. We will now turn to the second of the outstanding equivalences.

Lemma 8.2.11. Let P be a homotopical poset and C a fibration category. The canonical

inclusion map Sd(P ) ↪→ DP induces an equivalence of fibration categories:

CDP
op −→ CSd(P )op

.
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Proof. As discussed in Paragraph 8.2.3, there is a pair of adjoint functors:

Sd(P )
' � ))

⊥ DP

im

jj

We claim that they are quasi-inverses as required in Lemma 5.2.25. For future reference, we

will call the inclusion map Sd(P ) ↪→ DP , ι. It is immediate to see that im · ι1Sd(P ). Thus it

suffices to construct a zigzag of natural weak equivalences ι · im ∼ 1DP .

We will mimic the proof of Lemma 8.2.5. Thus, we begin by defining a functor S : DP →

DP as follows. Given ϕ : [m] → P , regarded is an ordered and non-decreasing sequence of

elements of p and let S(ϕ) be a map

[m+ |im(ϕ)|] −→ P

that inserts a new occurrence of each p ∈ P already appearing in the image of ϕ. The

functoriality of S is verified as follows. Given a map θ between two such sequences, S(θ)

acts like θ on the old occurrences and does the only possible thing it could do on the old

ones.

For each ϕ : [k]→ [m], there is a commutative diagram:

[k] �
� //

ϕ
%%

[k + im(ϕ)]

S(ϕ)
��

[|im(ϕ)|]? _oo
J j

ι·im(ϕ)
ww

P

in which the horizontal arrows are weak equivalences. Hence, we obtain natural weak equiv-

alences:

1D[m]
� � ∼ // S ι · im? _∼oo

what completes the proof.

Proposition 8.2.12. Let P be a poset and C a fibration category. The functor max: Sd(P )→

P induces an equivalence of fibration categories:

max ∗ : CP
op → CSd(P )op

.

8.2.13. The proof of this proposition will be split over several lemmas.
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Lemma 8.2.14. Let P and C be as in Proposition 8.2.12 and let X : Sd(P )op → C be a

homotopical Reedy fibrant diagram. Then the restriction X|max−1{p}op is again a Reedy

fibrant diagram.

Proof. Let ↓ p := {q ∈ P |q ≤ p} denote the downward set of p ∈ P . We have a pair of

inclusions max−1{p} ↪→ Sd(↓ p) ↪→ Sd(P ). The latter is a sieve, hence it suffices to show

that the inclusion max−1{p} ↪→ Sd(↓ p) satisfies the assumption of the Exactness Criterion

5.2.22.

For let A ∈ max−1{p} i.e. A ⊆ P satisfies maxA = p. We have:

∂(max −1{p}/A) = {B  A | B 6= ∅, A and maxB = p}

and

∂(Sd(↓ p)/A) = {B  A | B 6= ∅}

The map ∂(max −1{p}/A) ↪→ ∂(Sd(↓ p)/A) factors through:

L := {B ⊆ A | B 6= ∅ and there exists C ⊇ B such that C 6= ∅ and maxC = p}.

The inclusion L ↪→ ∂(Sd(↓ p)/A) is clearly a sieve. Thus it remains to show that ∂(max −1{p}/A) ↪→

L is cofinal.

We will use the Cofinality Criterion 5.2.24. For let us choose B ∈ L; we need to show

that the slice category B/∂(max −1{p}/A) is connected. (Notice that we slightly abused the

notation here by identifying the inclusion with its image.) Explicitly, we have:

B/∂(max −1{p}/A) = {C ⊇ B | maxC = p}.

This category has the least element, namely B ∪ {p}, and hence is connected.

Lemma 8.2.15. Let X : Sd(P )op → C be a homotopical, Reedy fibrant diagram. Then the

right Kan extension Ranmax(X) : P op → C exists:

Sd(P )op X //

max

��

C

P op Ranmax(X)

AA

and is given by Ranmax(X)p = lim(X|max −1{p}op).
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Proof. For p ∈ P , the obvious inclusions:

max −1{p} ↪→ Sd(↓ p) ↪→ (max ↓ p)op

are both cofinal (and the latter is, in fact, an ismorphism). By Lemma 8.2.14, X|max−1{p}op

is Reedy and hence the limit:

lim(X|max −1{p}op)

exists. Thus, both lim(X|Sd(↓ p)op) and lim(X|(max ↓ p)) must exist as well and, by

cofinality be equal.

Hence by the pointwise formula for Kan extensions [ML98a, Thm. X.5.1], we have:

Ranmax(X)p = lim(X|(max ↓ p))

= lim(X|Sd(↓ p)op)

= lim(X|max −1{p}op).

8.2.16. By Lemma 8.2.15, we have the following diagram:

CP
op

max∗

��
C

Sd(P )op

hR
� � ∼ //

Ranmax(−)

55

⇓

CSd(P )op

Lemma 8.2.17. For any p ∈ P , the canonical projection:

lim(X|max −1{p}op) −→ X{p}

is a weak equivalence.

Proof. Poset max−1{p} is a direct category with an initial object, namely {p}. Since weak

equivalences in Sd(P ) are created by max: Sd(P )→ P and X is homotopical, Lemma 5.4.5

applies yielding the desired conclusion.

Lemma 8.2.18. Let A : P op → C and X : Sd(P )op → C be Reedy fibrant. Then a map

A→ Ranmax(X) is an equivalence if and only if its transpose max∗A→ X is an equivalence.
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Proof. We need to show that the following conditions are equivalent:

1. Ap → Ranmax(X)p is a weak equivalence for all p ∈ P .

2. max∗AS → XS is a weak equivalence for all S ∈ Sd(P ).

By Lemma 8.2.17 and 2-out-of-3, 1. is equivalent to:

1’. the composite Ap → Ranmax(X)p → X{p} is a weak equivalence for all p ∈ P .

We will then show that 1′.⇔ 2..

For 2. ⇒ 1′., simply take S = {p}. For 1′. ⇒ 2., consider the following commutative

square:

(max ∗A)S // XS

��
A{maxS} // X{maxS}

SinceX is homotopical and weak equivalences in Sd(P ) are created by max, the vertical right-

hand arrow is a weak equivalence. By assumption the bottom arrow is a weak equivalence,

hence by 2-out-of-3 so is the top one.

Proof of Prop. 8.2.12. Putting A := Ranmax(X) in Lemma 8.2.18, we get that the counit

in the diagram of Paragraph 8.2.16 is a natural weak equivalence and hence the composite

max∗ ·Ranmax is homotopic to a weak equivalence, thus is itself a weak equivalence.

So by 2-out-of-3, it suffices to show that Ranmax is a weak equivalence. For that we verify

the approximation criteria of Theorem 5.1.17.

(App1). Let X → Y be a map in C
Sd(P )op

hR whose image Ranmax(X) → Ranmax(Y ) in

CP
op

is a weak equivalence. We need to show that X → Y is a weak equivalence, that is, for

all S ∈ Sd(P ), XS → YS is a weak equivalence. Since both X and Y are homotopical and

weak equivalences in Sd(P ) are created by max, we have a commutative diagram:

XS
//

��

YS

��
XmaxS

// YmaxS

in which both vertical arrows are weak equivalences. Combining Lemmas 8.2.17, 8.2.15, and

the assumption that for all p ∈ P , Ranmax(X)p → Ranmax(Y )p is an equivalence, we see that

the bottom map is a weak equivalence as well. Hence, by 2-out-of-3 so is the top map.
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(App2). Let f : A → Ranmax(X). Factor the transpose f : max∗A → X as weak

equivalence followed by a fibration:

Ã
p

��
max∗A

w

;;

f // X

Then we have a commutative square:

A w //

1A

��

Ranmax(Ã)

Ranmax(p)

��
A

f // Ranmax(X)

where w is the transpose of w and hence, by Lemma 8.2.18, a weak equivalence. Thus (App2)

is satisfied.

8.2.19. Let m,n ∈ N. By postcomposition with the projections, a monotone function

[k]→ [m]× [n] (i.e. an object in D([m]× [n])) gives a pair of functions ([k]→ [m], [k]→ [n])

(i.e. an object in D[m]×D[n]). This defines a functor:

D([m]× [n]) −→ D[m]×D[n].

Proposition 8.2.20. The canonical map D([m]× [n])→ D[m]×D[n] of Paragraph 8.2.19

induces an equivalence of fibration categories:

C(D[m]×D[n])op −→ CD([m]×[n])op

.

Proof. Consider the following commutative diagram:

Sd([m]× [n])
1
//

2 ((

D([m]× [n])
5
//

3
��

D[m]×D[n]

4vv
[m]× [n]

By Lemma 8.2.11, 1 induces an equivalence; by Proposition 8.2.12 so does 2 . Hence,

by 2-out-of-3, so does 3 . By Corollary 8.2.8, 4 induces an equivalence, and hence, by

2-out-of-3, so does 5 .
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Corollary 8.2.21. The canonical map D([m] × [n]) → D[m] × D[n] of Paragraph 8.2.19,

induces an equivalence

C
(D[m]×D[n])op

hR −→ C
D([m]×[n])op

hR .

Proof. By Propositions 8.2.20 and 5.2.26, it suffices to show that the map D([m] × [n]) →

D[m] × D[n] induces an exact functor on fibration categories of homotopical and Reedy

fibrant diagrams. By the Exactness Criterion 5.2.22, it suffices to show that for any (ϕ, ψ) ∈

D([m]× [n]), the induced map on latching categories factors as: (sieve) ◦ (cofinal).

Let (ϕ, ψ) : [k]→ [m]× [n]. We may the latching categories as follows:

∂
(
D([m]× [n])/(ϕ, ψ)

)
= {A  [k] | A 6= ∅}

and

∂
(
D[m]×D[n]/(ϕ× ψ)

)
= {A×B  [k]× [k] | A,B 6= ∅}

and the map is given by A 7→ A× A. It factors through:

L := {A×B ⊆ [k]× [k] | A,B 6= ∅ and A ∪B 6= [k]}.

The inclusion L ↪→ ∂
(
D[m]×D[n]/(ϕ× ψ)

)
is easily seen to be a sieve; thus, it remains to

show that ∂
(
D([m]× [n])/(ϕ, ψ)

)
↪→ L is cofinal.

We will use the Cofinality Criterion 5.2.24. Given A×B ∈ L, we need to show that the

slice category

A×B/∂
(
D([m]× [n])/(ϕ, ψ)

)
is connected. But this is clear since it has the initial object given by A × B ↪→ (A ∪ B) ×

(A ∪B).

8.2.22. In fact, given K,L ∈ sSet, the canonical map D(K × L) → DK ×DL induces an

exact functor:

CDK
op×DLop

hR −→ C
D(K×L)op

hR .

This is the case because the argument for exactness in the proof of Corollary 8.2.21 depends

only on latching categories and these are the same for D[n] and DK.
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8.2.23. Our next goal is to prove the equivalence Nf(C
D[m]op

hR ) ' Nf(C)∆[n]. We start by

constructing a map Nf(C
D[m]op

hR )→ Nf(C)∆[n].

8.2.24. A k-simplex ∆[k] → Nf(C
D[m]op

hR ) is, by definition, a homotopical Reedy fibrant

diagram D[k]op → C
D[m]op

hR . By Proposition 5.2.15, this corresponds to a homotopical Reedy

fibrant functor D[k]op × D[m]op → C. Precomposing with the canonical inclusion D([k] ×

[m]) ↪→ D[k] × D[m], we obtain a homotopical Reedy fibrant functor D([k] × [m])op → C.

By Theorem 5.3.18, this corresponds naturally to a simplicial map ∆[k]×∆[m]→ NfC and

hence a k-simplex ∆[k]→ Nf(C)∆[m].

Since every step of the above construction was natural, we obtain a well-defined map

Nf(C
D[m]op

hR )→ Nf(C)∆[n].

Theorem 8.2.25. Let C be a fibration category and m ∈ N. Then the map

F : Nf(C
D[m]op

hR )→ Nf(C)∆[m]

constructed in Paragraph 8.2.24 is a categorical equivalence of quasicategories.

Proof. In order to show that F is an equivalence, we may use Lemma 3.3.32. Consider a

commuting square:

∂∆[n] U //
� _

��

Nf(C
D[m]op

hR )

F
��

∆[n] V // Nf(C)∆[m]

for we need to find a diagonal filler, making the upper triangle commute strictly and the

lower triangle commute up to E[1]-homotopy relative to the boundary.

By Theorem 5.3.18, we may rephrase the problem as follows. Given:

• homotopical Reedy fibrant diagram U : D[m]op ×D(∂∆[n])op → C and

• homotopical Reedy fibrant diagram V : D([m]× [n])op → C

that agree on D(∆[m]×∂∆[n])op, we need an extension X : D[m]op×D[n]op → C such that:

• X|(D[m]op ×D(∂∆[n])op) = U ;

• FX ∼E[1] V rel ∂∆[n].
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Consider now the following pushout diagram of homotopical direct categories and homo-

topical functors:

D(∆[m]× ∂∆[n]) �
� 1

//

2
��

D([m]× [n])

4
��

5

��

D[m]×D(∂∆[n])
3

//

6 00

•
7

((
D[m]×D[n]

Notice that F is the map induced by 7 . We claim that all maps in the above diagram induce

exact functors of fibration categories under C(−)op
. 1 is a sieve; as explained in Paragraph

8.2.22, 2 satisfies the assumptions of the Exactness Criterion 5.2.22; the map 3 is easily

seen to be a sieve and 4 satisfies the assumptions of the Exactness Criterion 5.2.22; 5

induces an exact functor by Corollary 8.2.21; 6 and 7 are sieves.

For any fibration category C, the map D(∆[m]× ∂∆[n])→ D[m]×D(∂∆[n]) induces an

equivalence on diagram categories:

C
D[m]op×D(∂∆[n])op

hR → C
D(∆[m]×∂∆[n])op

hR .

To see it, we first ∂∆[n] = colim∫
∂∆[n]

∆[i] and use the fact that both D and cartesian product

commute with colimits (the latter by the fact that in the category of simplicial sets, it is a

left adjoint to exponential).

Thus 2 induces an equivalence. So, by Corollary 6.2.11, so does 4 . Moreover, 5

induces an equivalence by Corollary 8.2.21. By 2-out-of-3, so does 7 . Finally, both 3 and

5 induce fibrations of fibration categories.

Let J be the pushout i.e. J = D[m]×D(∂∆[n]) ∪D([m]× [n]). The diagram:

C
D[m]op×D[n]op

hR
F //

((

CJop

hR

xx

C
D[m]op×D(∂∆[n])op

hR

and [U, V ] ∈ CJop

hR with its natural frame.
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By Dold’s Lemma, we obtain X ∈ C
D[m]op×D[n]op

hR such that X|(D[m]×D(∂∆[n]))op = U

together with a fraction:

FX
∼← X̃

∼→ [U, V ].

We claim that this is the right X. It remains to produce the required E[1]-homotopy out of

the fraction X̃. Restricting this fraction to D([m]× [n])op we get:

X|D([m]× [n])op ∼← X̃|D([m]× [n])op ∼→ V.

But X|D([m]× [n])op = FX, by definition of F .

Thus we found a diagram:

D([m]× [n])op × Sd[̂1]
X̃−→ C

The composite:

D([m]× [n]× [̂1])op −→ D([m]× [n])op × Sd[̂1]
X̃−→ C

is a homotopical diagram, whose restrictions to D([m]× [n]×{0})op and D([m]× [n]×{1})op

(equal to FX and V , respectively) are Reedy fibrant and jointly sieve. By Lemma 5.4.2,

we may replace it with a homotopical Reedy fibrant diagram without changing it on the

boundary.

By Theorem 5.3.18 and Lemma 7.1.2, this corresponds to a diagram ∆[m]×∆[n]×∆[1]→

Nf(C) giving the desired homotopy.
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9.0 PROOF OF JOYAL’S CONJECTURE

We finally return to Joyal’s conjecture. Having established several results, we now put them

to good use. In Section 9.1 we show that the quasicategory of frames in a fibration category

is equivalent to the standard localization of this fibration category, regarded as a homotopical

category. In Section 9.2, we will introduce the notion of a locally cartesian closed fibration

category, and show that if C is a locally cartesian closed fibration category, then NfC is a

locally cartesian closed quasicategory. Finally, in Section 9.3, we verify that for any type

theory T admitting the rules of Appendix A, C`(T) is a locally cartesian closed fibration

category, which allows us to deduce Joyal’s conjecture.

9.1 QUASICATEGORY OF FRAMES AS SIMPLICIAL LOCALIZATION

9.1.1. This section is devoted to the proof of the following theorem.

Theorem 9.1.2. For any fibration category C, the quasicategories L(C) and Nf(C) are weakly

equivalent.

9.1.3. In particular, it then follows that L(C) is locally cartesian closed if and only if Nf(C)

is. The proof of Theorem will be given at the very end of the section as we need to establish

several intermediate results. Let (C,F ,W) be a fibration category. For each [m] ∈ ∆, the

simplicial set Nf(C)∆[m] is a quasicategory, and hence by Proposition 3.1.58, the bisimplicial

set J(Nf(C)∆[−]) is a complete Segal space. Explicitly, it can be described via:

J(Nf(C)∆[−])m,n = J(Nf(C)∆[m])n

∼= FunhR(D([̂n]× [m])op,C).
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9.1.4. Let us now explain our proof strategy. We will show that the bisimplicial setsN (C,W)

and J(Nf(C)∆[−]) are levelwise weakly equivalent and thus the latter is a model for the fibrant

replacementN (C,W)′ of the former. Thus by Theorem 3.2.5, J(Nf(C)∆[−])0 is equivalent with

L(C). But calculating J(Nf(C)∆[−])0 explicitly by instantiating the calculation of Paragraph

9.1.3 with m = 0 we get J(Nf(C)∆[−])0 ' Nf(C).

Proposition 9.1.5. For each [m] ∈ ∆, the simplicial sets N(WC[m]) and J(Nf(C)∆[m]) are

weakly equivalent in sSetQ.

9.1.6. Notice that since Quillen’s model structure is a localization of Joyal’s, it is easier to

be an equivalence in Quillen’s model structure. This is the key idea standing behind our

proof.

Furthermore, Rezk model structure is a localization of the Reedy model structure on

ssSet. It thus follow from Proposition 9.1.5 that N(C,W) and J(Nf(C)∆[−]) are weakly

equivalent in Rezk model structure.

9.1.7. To prove Proposition 9.1.5, we need a few intermediate notions and lemmas. The first

of these notions is a variation on Kan’s functor Ex (see [Kan57]). Recall that Ex: sSet→ sSet

was defined as

Ex(X)m = Hom(NSd[m], X)

For our purposes certain modifications are required. First, we work with fat subdivisions

D, rather than with the ordinary subdivision functor Sd. The second modification requires

taking D[m]op, rather simply D[m] since we are working in the framework of fibration cate-

gories.

Definition 9.1.8. Given X ∈ sSet, define the simplicial set Ex(X) by

Ex(X)m := Hom(ND[m]op, X).

9.1.9. Given [m] ∈ ∆, there is a map ev0 : D[m]op → [m] taking a monotone function

ϕ : [k] → [m] ∈ D[m] to ϕ(0) ∈ [m]. Moreover, the family {ev0 : D[m]op → [m]}[m]∈∆ is

easily seen to be natural and hence, by Yoneda, there is an induced map:

ev∗0 : X → Ex(X).
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9.1.10. Each of the maps ev0 : D[m]op → [m] admits a section ι : [m] → D[m]op taking

k ∈ [m] to the inclusion ϕ : [m − k] ↪→ [m], given by ϕ(i) = i + k. Indeed, one easily sees

that ev0 · ι = 1[m]. Moreover, there is a natural transformation ι · ev0 → 1D[n]op coming from

commutativity of the following triangle:

[k]

ϕ
��

j 7→ϕ(j)−ϕ(0)// [n− ϕ(0)]
L l

zz
[n]

Thus, since the nerve functor N takes natural transformations to homotopies, the maps

N(ev0) and N(ι) form a homotopy equivalence N(D[m]op) ' ∆[m].

Lemma 9.1.11. Let f, g : K → L be homotopic maps in sSetQ. Then Ex(f) and Ex(g) are

also homotopic.

Proof. Choose a homotopy H : K × ∆[1] → L between f and g. The following composite

gives a homotopy between Ex(f) and Ex(g):

Ex(K)×∆[1]
1×ev∗0−→ Ex(K)× Ex(∆[1])

∼=−→ Ex(K ×∆[1])

Ex(H)−→ Ex(L)

9.1.12. The unique map ! : [n]→ [0] admits a section that includes const0 : [0]→ [n] and we

have a natural transformation 1[n] → const0·!. Thus N(!) and N(const0) form a homotopy

equivalence ∆[n] ' ∆[0].

Lemma 9.1.13. The map ev∗0 : X → Ex(X) is a weak equivalence of simplicial sets.

9.1.14. The main idea of the proof lies in a clever application of the Diagonal Lemma

(adapted from [BK12b]). Before giving it, let us recall the following lemma:

Lemma 9.1.15 (Diagonal Lemma, [GJ09, Thm. 4.1.9]). Let X → Y be a map of bisimplicial

sets such that for any n, the induced map Xn → Yn is a weak equivalence. Then the induced

map diagX → diagY is also a weak equivalence of simplicial sets, where diag : ssSet→ sSet

is the functor taking a simplicial set X to diag(X)n := Xn,n.
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Proof of Lemma 9.1.13. The proof will span Paragraphs 9.1.16–9.1.19.

9.1.16. Consider the following commutative square:

Hom(∆[m]×∆[0], X)

(Nev0×1)∗

��

(1×!)∗ // Hom(∆[m]×∆[n], X)

(Nev0×1)∗

��
Hom(ND[m]op ×∆[0], X)

(1×!)∗ // Hom(ND[m]op ×∆[n], X)

As m and n vary each of the objects becomes a (possibly constant) bisimplicial set.

9.1.17. First, fix n ∈ N. Then the diagram of Paragraph 9.1.16 becomes:

X∆[0] //

��

X∆[n]

��
Ex(X∆[0]) // Ex(X∆[n])

in which:

• the top map X∆[0] → X∆[n] is a homotopy equivalence as the image of homotopy equiv-

alence of Paragraph 9.1.12 under X(−);

• the bottom map Ex(X∆[0]) → Ex(X∆[n]) is homotopy equivalence since X∆[0] → X∆[n]

is a homotopy equivalence and, by Lemma 9.1.11 Ex preserves homotopy equivalences.

9.1.18. Second, fix m ∈ N. Then the diagram of Paragraph 9.1.16 becomes:

? //

��

X∆[m]

��
? // XN(D[m]op)

and the right hand side vertical map X∆[m] → XN(D[m]op) is a homotopy equivalence as the

image of homotopy equivalence of Paragraph 9.1.10 under X(−).
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9.1.19. Finally, applying the diagonal functor diag : ssSet→ sSet to diagram of Paragraph

9.1.16, we obtain:

X
1

//

ev∗0
��

?

3
��

Ex(X)
2
// ?

in which maps 1 and 2 are weak equivalences by the Diagonal Lemma 9.1.15 and Paragraph

9.1.17 and 3 is a weak equivalence by the Diagonal Lemma 9.1.15 and Paragraph 9.1.18.

Thus, by 2-out-of-3, ev∗0 is also a weak equivalence.

9.1.20. Let (C,F ,W) be a fibration category. The set of n-simplices of the Kan complex

J · Nf(C) can be described explicitly:

J · Nf(C)n = FunhR(D[̂n]
op
,C).

The n-simplices of the simplicial set Ex(NW) are on the other hand given by:

Ex(NW)n = Funh(D[̂n]
op
,C).

Thus, there is an evident inclusion

J · Nf(C) ↪→ Ex(NW).

Lemma 9.1.21. The inclusion J ·Nf(C) ↪→ Ex ·N(WC) of Paragraph 9.1.20 is a categorical

equivalence.

Proof. By Lemma 3.3.32, it suffices to find a solution to the following lifting problem:

∂∆[n] //
� _

��

J · Nf(C)� _

��
∆[n] X //

X̃

55

Ex · N(WC)

making the upper triangle commute and lower commute up to E[1]-homotopy relative to

∂∆[n].
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By Theorem 5.3.18, the diagram X : ∆[n] → Ex · N(WC) corresponds to a homotopical

functor D[̂n]
op
→ C. Moreover, by commutativity of the square above, the restriction of X

to the boundary ∂∆[n] is a Reedy fibrant and homotopical functor:

D(∂̂∆[n])op X−→ J · Nf(C) ⊆ Ex · N(WC).

(Here, D(∂̂∆[n]) indicates that all maps ofD(∂∆[n]) are weak equivalences.) SinceD(∂̂∆[n]) ↪→

D[n] is a sieve, by Lemma 5.4.2, we may find an extension X̃ and natural weak equivalence

X → X̃ that by Lemma 7.1.2 gives the required homotopy.

Proof of Proposition 9.1.5. Consider the following diagram:

N(WC) // Ex · N(WC) J · Nf(C)oo

C
[m]
h

��

N(W
(C

[m]
h )

) //

��

Ex · N(W
(C

[m]
h )

)

��

J · Nf(C
[m]
h )oo

��

C
D[m]op

h N(W
(C

D[m]op

h )
) // Ex · N(W

(C
D[m]op

h )
) J · Nf(C

D[m]op

h )oo

C
D[m]op

hR

OO

N(W
(C

D[m]op

hR )
) //

OO

Ex · N(W
(C

D[m]op

hR )
)

OO

J · Nf(C
D[m]op

hR )oo

OO

By Lemma 9.1.13 the left arrow in the top row is a weak equivalence; and by Lemma 9.1.21

the right arrow in the top row is a weak equivalence. Hence all horizontal arrows in the

diagram above are weak equivalences (as instances of the top row).

Since Nf is exact (Theorem 5.3.12)and J takes categorical equivalences to weak equiva-

lences (Proposition 3.1.38) the arrows in the right most column are weak equivalences. Hence

by 2-out-of-3 all maps in this diagram are weak equivalences.

This gives a categorical equivalence N(W
(C

[m]
h )

) ' J · Nf(C
D[m]op

hR ), which combined with

8.2.25 gives

N(W
(C

[m]
h )

) ' J(Nf(C)∆[n])

completing the proof.
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Proof of Theorem 9.1.3. By Proposition 9.1.5, J(Nf(C)∆[−]) is a levelwise fibrant replacement

of the classification diagram N(C,W). Hence it is also its fibrant replacement in the Rezk

model structure. The discussion of Paragraph 9.1.4 yields the desired conclusion.

9.2 LOCALLY CARTESIAN CLOSED FIBRATION CATEGORIES

Definition 9.2.1. A fibration category C is a locally cartesian closed fibration category

if all objects of C are cofibrant and, for any fibration p : B → A in C, the pullback functor

p∗ : C(A)→ C(B)

is exact and has a right adjoint, which in turn is a homotopical functor.

9.2.2. Notice that a locally cartesian closed fibration category is not simply a fibration

category that is locally cartesian closed. We only request the right adjoint to the pullback

functor p∗ to exist when p is a fibration. Moreover, this adjoint is not to be defined on slices

of C, but rather on their subcategories consisting only of fibrations as objects.

Proposition 9.2.3. If C is a locally cartesian closed fibration category, then for each A ∈ C,

the category C(A) is cartesian closed. Moreover, for any fibration p : B → A, the product

functor p×− : C(A)→ C(A) is exact and its right adjoint is homotopical.

Proof. This immediate by the construction of the exponentials in the slices from the right

adjoint to the pullback functor.

9.2.4. Let C be a fibration category and let X : Λ0[2] → Nf(C) be a simplicial map. Recall

that Λ0[2] ∼= ∆[0] ? ∂∆[1], i.e. X is a cone over a diagram ∂∆[1] → Nf(C). We wish to give

a criterion that assures that X is a universal cone i.e. a product diagram.
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By Theorem 5.3.18, this simplicial map corresponds to a diagram X : D(Λ0[2])op → C.

Let

X1

X0 X2

X01

X02

be its restriction to Sd(Λ0[2])op. It is easy to see that X is a product diagram if and only if

the induced map:

X01 ×X0 X02 → X1 ×X2

is a weak equivalence.

9.2.5. Let C be a fibration category and let B : D[0]op → C be a frame in C. Taking the

product with B is a simplicial map (see Paragraph 3.3.29):

B ×− : NfC −→ NfC.

On the other hand, taking the product with B0 gives an exact functor:

B0 ×− : C −→ C.

Proposition 9.2.6. The simplicial maps B ×− and Nf(B0 ×−) are homotopic.

Proof. We need to show that given any 0-simplex A ∈ NfC, B0×A has the universal property

of B × A. Thus we begin by first equipping it with cone structure; that is, we need two

projections whose restriction to Sd(Λ0[2])op looks like:

B0

B0 × A0 A0

X01

X02
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As ever, by Theorem 5.3.15, it suffices to find the extension to Sd(Λ0[2])op. In order to define

X01 take a factorization of (1B0×A0 , π1) : B0 ×A0 → (B0 ×A0)×B0 into a weak equivalence

followed by a fibration:

X01

��
B0 × A0

(1,π2)
//

//

(B0 × A0)×B0

and similarly, for the definition of X02 take such a factorization of (1B0×A0 , π2) : B0 × A0 →

(B0 × A0) × A0. This gives a homotopical Reedy fibrant diagram on Sd(Λ0[2])op. By con-

struction, the map

X01 ×B0×A0 X02 −→ B0 × A0

is a weak equivalence and hence the two functors must be homotopic.

9.2.7. A small comment about the above proof is due. Typically, when constructing a

homotopy between two simplicial maps, we need to establish a map commuting with all the

face and degeneracy operators. The reason that in this case we could only compare these

two functors “locally” lies in the fact that they are given by certain universal properties.

Theorem 9.2.8. Let C be a locally cartesian closed fibration category. Then Nf(C) is a

locally cartesian closed quasicategory.

Proof. By Theorem 5.3.12, Nf(C) has a terminal object, so it remains to show that each

slice Nf(C)/A is a cartesian closed category. By Theorem 7.2.2, it suffices to check that

Nf(C(A0)) is cartesian closed. By Proposition 9.2.3, the (product a exponential) adjunction

in each C(A0) satisfies the assumptions of Theorem 7.3.9. The result then follows by the

characterization of products 9.2.4.
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9.3 LOCALLY CARTESIAN CLOSED FIBRATION CATEGORIES AND

JOYAL’S CONJECTURE

9.3.1. We begin by proving that C`(T) is a fibration category for T admitting the rules of

Appendix A. The weak equivalences in C`(T) are those defined in Paragraph 2.3.19 (and

used in the formulation of Joyal’s conjecture).

9.3.2. Following the ideas of [GG08, Thm. 10], we define fibrations in C`(T) as maps

isomorphic to (in C`(T)→) composites of the canonical projections pΓ. We stress, however,

that our definition deviates from theirs in that we do not require the class of fibrations to

be closed under arbitrary retracts.

Theorem 9.3.3 (Avigad, Kapulkin, Lumsdaine, [AKL13, Thm. 2.2.5]). Let T be a type

theory admitting rules for the Π, Σ, and Id-types. Then C`(T) with the classes of fibrations

and weak equivalences described above is a fibration category.

9.3.4. For convenience of exposition, we will work with types, rather than context, as dis-

cussed in Paragraph 2.3.17. The proof of Theorem 9.3.3 will be preceded by two lemmas.

Lemma 9.3.5. Let π1 :
∑

x:AB(x) → A be a fibration. Then for any a : A, we have

B(a) ' hfib(π1, a).

Proof. Take any a : A. For the map B(a) → hfib(π1, a), send b : B(a) to ((a, b), refl(a)).

Conversely, send ((a′, b), p) : hfib(π1, a) (where b : B(a′) and p : Ida′a) to the transported

element p!(b) : B(a). The verification that these are mutually inverse is straightforward.

Lemma 9.3.6. Pullbacks of fibrations exist.

Proof. The pullback of a dependent projection is given by substituting into the corresponding

dependent type; that is, the following square is a pullback:

∑
x:A′

B(fx) //

��

∑
x:A

B(x)

��
A′

f // A.

(See also [Pit00, Lem. 6.3.2].)
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Proof of Thm. 9.3.3. The proof will span Paragraphs 9.3.7–9.3.11. Each paragraph will con-

tain the verification of a separate axiom of Definition 5.1.1.

9.3.7 (Axiom F1.). If f , g, h form a composable triple of maps such that g · f and h · g are

weak equivalences, then we have their quasi-inverses: g · f and h · g, respectively. We form

the quasi-inverses of h · g · f , f , g, and h as follows:

• (g · f) · g · (h · g) is the quasi-inverse of h · g · f ;

• (h · g) · h and f · (g · f) give left and right quasi-inverses for g, respectively;

• (g · f) · g gives a quasi-inverse for f ;

• g · (h · g) gives a quasi-inverse for h.

9.3.8 (Axiom F2.). Clear.

9.3.9 (Axiom F3.). The pullback of a dependent projection is given by substituting into the

corresponding dependent type; that is, the following square is a pullback:

∑
x:A′

B(fx) //

��

∑
x:A

B(x)

��
A′

f // A.

The two pullbacks lemma implies that pullbacks of their composites then also exist.

Preservation of fibrations is clear by construction from the proof of Lemma 9.3.6. For

acyclicity, suppose π = π1 :
∑

x:AB(x)→ A is an acyclic fibration, and f : A′ → A is a map.

Write f ∗π for the pullback fibration π1 :
∑

x:A′ B(f(x))→ A′. Then for any x : A′,

hfib(f ∗π, x) ' B(f(x)) ' hfib(π, f(x))

by Lemma 9.3.5; and hfib(π, f(x)) is contractible by hypothesis, so since equivalence preserves

contractibility, hfib(f ∗π, x) is again contractible. So f ∗π is again acyclic, as required.

9.3.10 (Axiom F4.). The empty context (or unit type) is the terminal object.
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9.3.11 (Axiom F5.). The factorization of f : A→ B is given by the mapping path-space

P(f) :=
∑
y:B

∑
x:A

IdB(fx, y).

The fibration P(f)→ B is given by the obvious projection. The weak equivalence w : A→

P(f) is given by

λx : A.(fx, x, reflB(fx)).

It is clearly a weak equivalence with quasi-inverse given by the second projection.

9.3.12. It makes sense to ask if the fibration category structure on C`(T) is a part of the full

model structure on C`(T). Lumsdaine [Lum11] showed that, if T admits also certain higher

inductive types (specifically, mapping cylinders), then C`(T) carries a pre-model structure;

that is, a model structure, but without limits and colimits. However, one may hope that

there are enough colimits for C`(T) to be a cofibration category. This is, unfortunately,

not the case. One can show that for a constructor of (possibly higher) inductive type to

admit pushouts (that Lumsdaine identified as generating cofibrations), it has to satisfy an

appropriate η-rule. Requesting the constructor refl : A → IdA to satisfy it is stronger than

enforcing the reflection rule. Hence C`(T) is not a cofibration category.

9.3.13. Nevertheless, we have the following lemma:

Lemma 9.3.14 ([AKL13, Lem. 2.2.14]). All objects of C`(T) are cofibrant.

Proof. Lemma 9.3.5 implies that every acyclic fibration π1 :
∑

x:AB(x) → A admits some

section: take some family of contractions of the fibers hfib(π1, x), and send x : A to the

image of the center of contraction ∗x : hfib(π1, x) under the equivalence hfib(π1, x) ' B(x).

Now, given f as above, take f̄ to be the composite of f with this section.

Theorem 9.3.15. Let T be any type theory admitting the rules of Appendix A. Then C`(T)

is a locally cartesian closed fibration category.

Proof. By Theorem 9.3.3, C`(T) is a fibration category. By Paragraph 9.3.9 and the two-

pullback lemma, the pullback functor preserves fibrations and acyclic fibrations. As a right

adjoint, it also preserves pullbacks and the terminal object, hence it is exact.
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Its right adjoint is given by Π. That is, consider:∑
x:A

∑
y:B(x)

C(x, y)
pC−→
∑
x:A

B(x)
pB−→ A.

Then the right adjoint pB is given by

(pB)∗(pC) = pΠBC :
∑
x:A

 ∏
y:B(x)

C(x, y)

→ A,

and it is homotopical by function extensionality (Appendix A.3).

9.3.16. Finally, putting it all together, we obtain:

Theorem 9.3.17 (Joyal’s Conjecture 4.3.2, restated). For any dependent type theory T that

admits the rules described in Appendix A, the standard localization L(C`(T)) of its classifying

category is a locally cartesian closed quasicategory.

Proof. By Theorem 9.3.15, C`(T) is a locally cartesian closed fibration category, and hence

by Theorem 9.2.8, Nf(C`(T)) is a locally cartesian closed quasicategory. But by Theorem

9.1.3, L(C`(T)) ' Nf(C`(T)), so it is also locally cartesian closed.
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APPENDIX A

RULES OF TYPE THEORY

A.1 STRUCTURAL RULES

The structural rules of the type theory are (where J may be the conclusion of any of the

judgement forms):

` Γ, x:A, ∆ cxt

Γ, x:A, ∆ ` x : A
Vble

Γ ` a : A Γ, x:A, ∆ ` J

Γ, ∆[a/x] ` J [a/x]
Subst

Γ ` A type Γ, ∆ ` J

Γ, x:A, ∆ ` J
Wkg

Definitional equality (also known as syntactic or judgemental equality):

Γ ` A type

Γ ` A = A type

Γ ` A = B type

Γ ` B = A type

Γ ` A = B type Γ ` B = C type

Γ ` A = C type

Γ ` a : A

Γ ` a = a : A

Γ ` a = b : A

Γ ` b = a : A

Γ ` a = b : A Γ ` b = c : A

Γ ` a = c : A

Γ ` a : A Γ ` A = B type

Γ ` a : B

Γ ` a = b : A Γ ` A = B type

Γ ` a = b : B
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A.2 LOGICAL CONSTRUCTORS

In this section, we present rules introducing various type- and term-constructors. For each

such constructor, we assume (besides the explicit rules introducing and governing it) a rule

stating that it preserves definitional equality in each of its arguments; for instance, along

with the Π-intro rule introducing the constructor λ, we assume the rule

Γ ` A = A′ type Γ, x:A ` B(x) = B′(x) type Γ, x:A ` b(x) = b′(x) : B(x)

Γ ` λx:A.b(x) = λx:A′.b′(x) : Πx:AB(x)
λ-eq

Π-types (Dependent products; dependent function types).

Γ, x:A ` B(x) type

Γ ` Πx:AB(x) type
Π-form

Γ, x:A ` B(x) type Γ, x:A ` b(x) : B(x)

Γ ` λx:A.b(x) : Πx:AB(x)
Π-intro

Γ ` f :Πx:AB(x) Γ ` a : A

Γ ` app(f, a) : B(a)
Π-app

Γ, x:A ` B(x) type Γ, x:A ` b(x) : B(x) Γ ` a : A

Γ ` app(λx:A.b(x), a) = b(a) : B(a)
Π-comp

As a special case of this, when B does not depend on x, we obtain the ordinary function

type [A,B] := Πx:AB.

Σ-types (Dependent sums; disjoint sums.)

Γ ` A type Γ, x:A ` B(x) type

Γ ` Σx:AB(x) type
Σ-form

Γ ` A type Γ, x:A ` B(x) type

Γ, x:A, y:B(x) ` pair(x, y) : Σx:AB(x)
Σ-intro

130



Γ, z:Σx:AB(x) ` C(z) type Γ, x:A, y:B(x) ` d(x, y) : C(pair(x, y))

Γ, z:Σx:AB(x) ` splitd(z) : C(z)
Σ-elim

Γ, z:Σx:AB(x) ` C(z) type Γ, x:A, y:B(x) ` d(x, y) : C(pair(x, y))

Γ, x:A, y:B(x) ` splitd(pair(x, y)) = d(x, y) : C(pair(x, y))
Σ-comp

Again, the special case where B does not depend on x is of particular interest: this gives

the cartesian product A×B := Σx:AB.

Id-types. (Identity types, equality types.)

Γ ` A type

Γ, x, y:A ` IdA(x, y) type
Id-form

Γ ` A type

Γ, x:A ` reflA(x) : IdA(x, x)
Id-intro

Γ, x, y:A, u:IdA(x, y) ` C(x, y, u) type Γ, z:A ` d(z) : C(z, z, reflA(z))

Γ, x, y:A, u:IdA(x, y) ` Jz.d(x, y, u) : C(x, y, u)
Id-elim

Γ, x, y:A, u:IdA(x, y) ` C(x, y, u) type Γ, z:A ` d(z) : C(z, z, r(z))

Γ, x:A ` Jz.d(x, x, reflA(x)) = d(x) : C(x, x, reflA(x))
Id-comp

A.3 FURTHER RULES

The rules above are somewhat weak in their implications for equality of functions. To

this end, some further rules are often adopted: the η-rule for Π-types, and the functional

extensionality rule(s). Our formulation of the latter is taken from [Gar09a]; see also [Hof95a].
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Γ ` f : Πx:AB(x)

Γ ` η(f) : f = λx:A.app(f, x) : Πx:AB(x)
Π-η

Γ ` f, g : Πx:AB(x) Γ ` h : Πx:AIdB(x)(app(f, x), app(g, x))

Γ ` ext(f, g, h) : IdΠx:AB(x)(f, g)
Π-ext

Γ, x:A ` b : B(x)

Γ ` ext-comp(x.b) : IdΠx:AB(x)

(ext(λx:A.b, λx:A.b, λx:A.reflb), refl(λx:A.b))

Π-ext-comp-prop
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Matemàtica, Barcelona, 2008, 2009, http://www.crm.es/HigherCategories/
notes.html.

[Joy11] , Remarks on homotopical logic, Mini-Workshop: The Homotopy Inter-
pretation of Constructive Type Theory (Steve Awodey, Richard Garner, Per
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