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Abstract: In applying control chart with estimated
parameters for monitoring changes in a process, Phase I
samples are typically assumed to be free of outliers or any
other data anomaly. Naturally, the sample mean and the
sample standard deviations are used as estimators,
yielding efficient estimates for the chart. Nonetheless,
when Phase I may be contaminated, this regular practice
is no longer suitable as classical estimators are susceptible
to the effect of outliers which in turn may affect control
chart performance. This study shows that the effect is not
trivial via. the application of EWMA control chart.
Moreover, this study focuses on the effect using
alternative and robust Phase I estimators on the EWMA
when the chart is used to monitor changes in the process
mean. In this study, an automatic trimmed mean estimator
is used to provide estimate for the process mean.
Meanwhile, for the standard deviation of the process, this
study employs three different estimators including the
corresponding robust scale estimator used in the trimming
process of the location measure. Simulated data were used
to test the performance of the EWMA control charts. The
finding based on mean and percentiles of the run-length
distribution shows quicker detection of out-of-control
status when robust statistics were used to compute
parameter estimates in Phase I of the EWMA chart upon
contamination in the data set.

INTRODUCTION

In  practice,  control  charts are widely used to
monitor changes  in  a  process  from an in-control state to
an out-of-control state. Generally, implemented in two
phases, the monitoring of prospectively collected
observations from the process occurs in the second phase,

Phase II which requires that information of the process
parameters readily available. Or if not, the process
parameters shall be estimated in the first phase, Phase I.
Common approach is to compute them via the usual
sample mean and sample standard deviation. Nonetheless,
these classical estimators are easily perturbed by outliers
or any other data anomalies. Unfortunately, it has long
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been recognized that in practical situations, Phase I data
often contain these undesirable traits[1]. As such those
estimates could be misleading and no longer a true
representative of the in-control model. The downfall may
be reflected in the inability of the chart to produce the
desired in-control run length properties[2]. Jensen et al.[3]

managed an extensive literature survey germane to the
present discussion and enumerated some ideas for future
research. Among their recommendations were to study
robust or alternative Phase I estimators and their impact
on Phase II chart performance. 

To date, numerous robust works appear in SPC
literature. On Shewhart-type charts, robust point
estimators were considered by Langenberg and
Iglewicz[4], Rocke[5, 6], Abu-Shawiesh and Abdullah[7] and
Schoonhoven et al.[8], among many others researchers.
Indeed as shown in the works of the aforementioned
researchers, the effect of outliers can be attenuated via
applications of robust statistics in establishing efficient
control limits for the Shewhart chart. However, it is well
noted that the Shewhart chart is it is not competitive for
identifying small and moderate shifts in the process[9, 10].
Due to this limitation, community in SPC has started to
focus on robustifying memory-type control charting
structures namely Cumulative Sum (CUSUM) and
Exponentially Weighted Moving Average (EWMA)
charts. Both CUSUM and EWMA charts perform
comparably as shown in the work by Hawkins and Wu[11] 
and considered to be very effective particularly in Phase
II[12]. As memory-type charts, both CUSUM and EWMA
use information from sequences of sample data and
therefore,  more  sensitive  to  small  shifts  in  the
process[13].

Some notable robust work on CUSUM chart can be
referred by Hawkins[14] who considered obtaining robust
Phase I estimates via. wins orization a procedure in which
an outlier in the data is replaced by some choice of
threshold value. The researcher established the
effectiveness of the proposed robust approach in keeping
the false alarm rates acceptably close to the pre-specified
value without much loss in the chart’s sensitivity to detect
mean shifts. Similarly, Rahman et al.[15] who were
working on robustifying CUSUM chart via. highest
breakdown point scale estimator namely median absolute
deviation about the median (MADn) claimed similar good
performances under contaminated data scenario.
Meanwhile, through the application of EWMA control
chart, Zwetsloot et al.[16] verified the advantageous of
using trimmed mean and median, two robust statistics that
are easily computed but very effective in mitigating the
effect of outliers which in turn improve control chart
performance considerably. Their research, however, left
some room for improvement as we observe biased

EWMA chart in terms of Average Run Length (ARL); a
metric commonly used to measure control chart
performance[17, 18]. Further explanation on the ARL will be
given in Section  2.  For  now,  it  is  worth to mention
that the ARL-biased chart is undesirable in SPC, since, it
implies that the chart signals frequently when the process
is actually in-control and yet, fails to do so, under small
changes in the process data. This study is intended to fill
the gap and contribute to the existing literature by
studying alternative Phase I estimators for mean (μ) and
standard deviation (σ) of the process when EWMA
control chart is used to monitor mean shifts.

In this study, a robust location estimator based on a
trimming procedure is considered for estimating μ. It is an
automatic trimmed mean estimator which has been used
frequently in hypothesis testing, resulting in good results
over type I error (i.e., false alarm rate) and power[19-21]. It
is not to be confused with the usual trimmed mean
estimator which assumes symmetric trimming and a fixed
selection of trimming proportion before outliers can be
discarded from the data. Conversely, in using a robust
automatic trimmed mean estimator, no trimming
proportion has to be specified prior to the application.
This is because the estimator takes into consideration on
the distributional shape of the data and as such the
trimming can be asymmetric too if needed. 

Under relaxation of the known process parameters
assumption, standard deviation of the process is also
estimated in this study using three different scale
estimators. The performance of the EWMA control chart
based on these three different scale estimators, paired with
the aforementioned automatic trimmed mean estimator is
the focus of this study.

DESCRIPTION OF EWMA CONTROL CHART

This study involves the EWMA control chart for
location where data are prospectively collected in a
rational subgroup concept defined by their sample of size
n. The observations are assumed to be independent and
normally distributed (iid) with parameters μ and σ,
denoted as Yij-iid N(μ, σ) where i = 1, 2, ..., n, j = 1, 2, ...
when the process is in-control, let μ = μ0 and σ = σ0.

Introduced by Roberts[22], the EWMA chart involves
plotting the statistic based on weighted average of all
sample means defined as Ej = (1-λ) Ej-1+λ where,  isjY jY
the mean of sample j and λ 0(0, 1] which is the weighting
factor. The starting value E0 is set to μ in this study. The
chart signals a change in the process whenever Ej falls
outside the control limits defined as:
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where, LCLE and UCLE denote the lower and upper limits
for the EWMA, respectively. The width of these so-called
asymptotic control limits is set by a positive constant, L.
The distinction in EWMA performance based on a
symptotic limits and time-varying limits can be referred
by Steiner[23].

The parameters μ and σ in Eq. 1 usually need to be
estimated in Phase I. For such purpose, choices for the
estimators are discussed in Subsection 2.1. In regard to
the construction and evaluation of the Phase II EWMA
chart, this study considers the Average Run Length (ARL)
defined as the expected number of plotted chart statistics
before a signal occurs. Applicable in both states of the
process, i.e., in-control and out-control, the ARL sends
false  alarms  when  there  is  no  change  in  the  process
mean but as soon the mean shifted, the ARL signifies the
shift  detection  capability.  Known  as  in-control  and 
out-of-control ARL, hence, forth denoted by ARL0 and
ARL1, respectively, a good chart is viewed with a
significantly large ARL0 while its ARL1 is as small as
possible.

Using the ARL, the following setting for the EWMA
design charting structure is adhered: ARL0 . 370 (which
is an in-control performance of the Shewhart chart with
generic 3-sigma limits) when the process is in-control and
normally distributed. For λ = 0.13, L is set at 2.92 for n =
10 as advised by Jones[24]. 

PHASE I ESTIMATORS

Consider Xij, i = 1, 2, ..., n and j = 1, 2, ..., m denote
the Phase  I  observations  in  which  the  data  are  used 
to obtain  and  estimates μ of and σ, respectively.̂ ̂
Define X(i)j as the ith-order statistic within sample j, Mj as
the median of sample  j,  Sj  as  the  standard  deviation  of 
the  sample j, Rj as the range of sample j and MAD as the
median of the values |X1-M|, ..., |Xn-M|. For estimating μ,
we  consider  average  automatic  trimmed  mean atX

defined as:

(2)
j

m

atj 1

1
ˆ X

m 
  

Introduced by Wilcox and Keselman[21], the atX
averages  the  values  remaining  in  sample  j after
outliers are discarded:
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Where:
i1 = The number of observations Xi such that (Xi-M)<-

2.24 (MADn)
i2 = The number of observations Xi such that (Xi-M)-

>2.24 (MADn) and MADn = MAD/0.6745

Table 1: Phase I estimators and the investigated EWMA charts
Estimators
------------------------------------------------------------
Location Scale Charts

EatMatX nMAD
Eats4S/c
EatR2R/d

The use of M and MADn in detecting outliers results
in the highest possible breakdown point (50%) for the
automatic trimmed mean estimator[21]. It means that the
estimate remains bounded when less than half of the data
are contaminated. Moreover, the trimming procedure
provided by this estimator takes into consideration the
distributional shape of data which excludes any
unnecessary loss information. In practice, σ can estimated
by one of the following estimators: 

(4)4; 2 nˆ ˆ ˆSc R/d ; MAD     

where:

 
m m
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Mahmoud et al.[25] and It
J

m

n nj=1
MAD MAD /m.

should be noted that the constants c4 and d2 depend only
on the sample size n and are tabulated for normal
distribution in various statistical textbooks, for example,
Montgomery[10]. Both sample standard deviation and
sample range have breakdown point of 0 which means
that the estimates based on this statistic are unreliable in
the presence of outliers. The MADn on the other hand has
the highest possible breakdown point, i.e., 50%. This high
breakdown property is particularly useful when degree of
contamination in Phase I is quite serious as demonstrated
later in this study.  The estimators considered are listed in
Table 1.

DATA SCENARIOS AND SIMULATION
PROCEDURES

Table 1 is the pairing of the chosen robust location
estimator, with three different scale estimators foratX

obtaining Phase I estimates. In total, three EWMA control
charts with various robust limits were constructed in this
study. Their performances were investigated when Phase
I data may or may not be contaminated. For such purpose,
several data scenarios were considered in this study. First
is the in-control environment in which Phase I data are
study. Their performances were investigated when Phase
I data may or may not be contaminated. For such purpose,
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Table 2: ARL of the EWMA control chart with estimated parameters for m = 50 and n = 10 
ARL and percentiles
---------------------------------------------------------------------------------------------------------------------------------------------------

Phase I δ = 0 δ = 0.1 δ = 0.3 δ = 0.5
--------------------------- ------------------------------- --------------------------------- ---------------------------- -----------------------------------
Contaminations Charts ARL 25th 50th 90th ARL 25th 50th 90th ARL 25th 50th 90th ARL 25th 50th 90th
In-control EatM 198 20 50 355 86 14 45 430 10 13 53 7 5 2 6 12

Eats 367 28 106 936 145 20 84 445 12 15 55 7 6 2 6 12
EatR 362 28 106 940 145 22 90 448 12 15 55 7 6 2 6 11

CN1 EatM 181 12 50 276 80 16 143 682 10 8 45 345 5 4 8 20
Eats 324 30 121 354 127 48 170 767 12 4 23 115 5 4 8 34
EatR 324 32 121 349 127 54 187 698 12 4 21 118 5 4 8 37

CN2 EatM 239 26 75 486 107 52 101 542 11 3 45 345 5 5 11 65
Eats 450 60 78 652 176 65 189 980 13 2 23 115 6 6 11 78
EatR 446 62 100 582 175 69 187 1000 13 1 21 118 6 9 11 76

CN3 EatM 1872 34 109 620 882 60 289 1027 24 20  60 321 8 5 10 100
Eats 3133 77 342 980 1538 98 543 998 36 25 56 198 9 5 7 128
EatR 3183 76 456 1027 1521 87 525 879 37 21 76 187 9 7 7 101

several data scenarios were considered in this study. First
is the in-control environment in which Phase I data are
described by N(μ0, σ0). Without loss of generality, μ0 is
set at 0 and  σ0 takes value of 1. Meanwhile, indication of
data anomaly in Phase I is captured using Contaminated
Normal (CN) distribution: a mixture distribution
frequently used in SPC literature when issues of
robustness and/or outliers need to be addressed, for
examples, Nazir et al.[26] and Human et al.[27].

In CN distribution, (100-p)%  of the observations
come from N(0, 1) and the rest of the observations, i.e.,
p% come from N(0, w) where p denotes the proportion of
contamination and w is the standard deviation of an
outlier. It is assumed that these outliers appear
occasionally in a subgroup. Thus, rather than affecting the
subgroup as a whole, their appearance may be indicated
by a single unusual value in the samples. To examine how
sensitive the proposed EWMA control charts to these
occasional outliers, these setting for CN distributions are
adopted: (p, w) = (0.05, 5), (0.10, 5) and (0.10, 10).
Accordingly, they are named as CN1, CN2 and CN3. 

Monte Carlo simulation study was performed to
obtain the ARL of the investigated EWMA charts. Several
percentile points of the run length distribution, i.e., 25th,
50th and 90th are also reported to support the ARL
finding. To obtain those numerical values reported in
Table 2, the following simulation study was conducted.
First, m = 50 and n = 10 were drawn from the in-control
N(0, 1) and three contaminated normal distributions:
CN1, CN2 and CN3. Next, the mean was computed with
the automatic trimmed mean estimator, , for andatX û
three scale estimators (Table 1) for  Based on theseˆ .
estimates, the EWMA charts were constructed according
to  Equation  1.  Next,  15,000  new  samples  of  size  10
were drawn from N(δ, 1) until the associated Ej falls
outside  the  control  limits.  This  gives  the
corresponding run length of j-1. The calculations were
made for  δ = {0, 01, 0.3, 0.5} where,  δ is the shift size in
standard deviation units. Iterations were completed for

10,000 runs. By averaging the sum of the run lengths over
10,000 runs,  we  have  the  ARL.  The  results  are 
presented  in Table 2.

SIMULATION OUTCOMES

Table 2 presents the ARL and percentiles of the
length distribution of the investigated EWMA control
chartwhen Phase I data follow, CN1, CN2 and  CN3. It
should be noted that all three charts share the same
estimate for μ. Therefore, the difference in the
performance of the EWMA control chart in Phase II is
discussed with respect to the choice for σ.

First, consider the situation where Phase I data is
uncontaminated, N(0, 1). This is illustrated by the upper
part of the table under in-control scenario. The EWMA
control charts based on  have ARL0 of4 2S/c and R/d

approximately 370. On the other hand, the EWMA
control  chart  based  on  the  robust  estimator  nMAD

falls short as it yields an extremely low ARL0 and low
50th percentile of the in-control ARL. Thus, the chart is
expected to give more false alarms than expected if the
process is actually in-control. In this situation, it is
undesirable to use extremely robust estimators based on
median,  i.e.,    and  the  to  construct  the atX nMAD

control limits for the EWMA chart. Despite the drawback,
the EWMA chart based on   and the  has theatX nMAD

quickest declining of ARL1 values among all. This is
evident as soon as δ shifts from 0 to some value.

Next, consider situation where Phase I data may be
contaminated. Finding based on CN1, CN2 and CN3 for
the three charts indicate that the ARL0 levels can be much
lower than the nominal ARL or sometimes much higher
than the expected 370. On CNN which is the worst-case
contamination scenario prescribed in this study, the ARL0

can be as high as 8.6 times than 370. It happens when the
EWMA control chart is designed with . A high value4S/c

of ARL0 is desirable. However, an ARL0 value as large as
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3183 (from ) or 3133 (from ) is definitely not4S/c 2R/d
useful in practice since it alludes to detection delay of a
process change. Indeed, the corresponding ARL1 for these
two EWMA charts, i.e.,  and  are extremely high

SatE
RatE

when the process mean starts to shift to some out-of-
control mean value.

General observation shows that is getting harder to
rein the ARL0 as level of contamination increases in
Phase  I  data.  The  situation  worsened  with  inflation 
in the variance of the outliers. This is particularly true
when is estimated via. non-robust estimators. The
variation in ARL0 is slightly less severe under this
circumstance if   was employed in designing thenMAD

chart. More importantly using  in Phase I yields thenMAD

smallest ARL1 for the EWMA chart in all scenarios for all
magnitude  of  shifts,  δ.  It  is  also  equally  important  to
note that all charts are ARL-unbiased, i.e., ARL0>ARL1

for all  δ. Clearly, the use of robust automatic trimmed
mean estimator,  for estimating the location parameteratX

is  advantageous.  With  the  highest  possible  breakdown
point,  the    certainly  deserve  serious  consideration atX

in the  implementation  of  any  control  charting 
structure.

CONCLUSION

This study has studied the effect of parameter
estimation on the Phase II performance of the EWMA
chart when Phase I may or may not contain contaminated
observations. The finding shows that practical use of
control chart could be undermined when Phase I consist
of some data anomalies. Comparison between the EWMA
control chart has been instigated when two non-robust
dispersion estimators, i.e., sample standard deviation and
sample range are paired with a robust point location
estimator, namely the automatic trimmed mean. Apart
from that, the analysis has been extended to cover the
performance of the EWMA control chart when MADn
which is a highly robust measure of scale estimate is
paired with the previously employed robust  point location
estimator. Under Phase I normal and contaminated normal
distributions, the resulting Phase II EWMA charts based
on the non-robust scale estimates are almost identical.
Best performance in the out-of-control situation, however,
is offered by the MADn. Note that even though this
estimator is preferred among the discussed alternative
measure  of  process  standard  deviation,  the  resulting
in-control ARL of the chart under normality is extremely
low. Thus,  prudent care ought to be exercised if one wish
to employ both robust point location and dispersion
measures in Phase I as they may yield a very narrow
Phase II limits.
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