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ABSTRACT
Including three existing charts, a new approach employing a modi-
fied one-step M-estimator (MOM) with Cumulative Sum (CUSUM)
control structure were evaluated and compared for their Phase II
performances based on the average run length (ARL) under various
skewed distributions. The primary focus was on the robustness of
the CUSUM charts in two separate cases: (i) when the process
parameters are known and (ii) when the process mean is unknown
and estimated from an in-control Phase I sample. The simulation and
real data analysis showed the proposed technique is comparable or
sometimes better than the existing charts.
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1. Introduction

Two common aspects help to drive the application of utilizing a control chart as a stat-
istical tool for monitoring process stability; economic budget and statistical power.
Accordingly, the tool is hugely popular in many areas of quality control such as in the
manufacturing and services industries. Moreover, it is a visual statistical tool typically
structured based on three horizontal lines; the Upper Control Limit (UCL), Center Line
(CL) and the Lower Control Limit (LCL), plotting the quality characteristics of a pro-
cess. While the description of the control chart appears to be reasonably straightfor-
ward, it is difficult to challenge when the presence of special causes need to be
highlighted. By utilizing a control chart, the existence of special causes can be detected
when a point or more is observed to be outside the control limits, which indicates stat-
istically, an out-of-control process. In this state or condition, the process is considered
to be unstable as it may potentially operate with problems. Therefore, a thorough inves-
tigation along with corrective action is required to identify the cause of such problems.
This is merely an indication of what can be accomplished using a control chart. On the
other hand, it can provide an estimation of process capability and be extremely useful
in providing diagnostic information based on the graphic pattern of the plots, if any.
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In an ideal state, a process is operating under statistical control. Graphically, this is
viewed as all points contained within the UCL and LCL, without exhibiting a systematic
or nonrandom pattern. However, an erroneous conclusion could also be presented in
declaring either the statistical state or condition of the process (in-control or out-of-
control). In this case, the likelihood of making an incorrect decision is determined by
Type I and Type errors. Associated with the false alarm rate, the Type I error can be
described as the probability of claiming that the process is out-of-control in the ideal
state. On the contrary, the Type II error occurs if the process is claimed to be in-control
in the presence of special causes. A set up for the UCL and LCL of a control chart fun-
damentally relies on these two likelihoods in order to attain a low probability of occur-
rence. Therefore, this constitutes a good control chart. However, the prospect of
attaining a small value of a Type I error means that the chances of a Type II error
occurring may increase. The statistical design charting procedure usually involves a ser-
ies of steps and setting the false alarm rate with control limits to minimize the risk of a
Type II error under normality. Furthermore, linking with the likelihoods mentioned
above is also an alternative measurement for control chart performance, which is identi-
fied as the average run length (ARL). Notably, it is the expected value of the run length
(RL) of a control chart and is the most frequently used parameter in assessing control
chart performance (Woodall 2000). However, the computation of the ARL relies on
normality and an outlier-free environment in Phase I and Phase II of the process.
When these conditions are violated, the calculated ARL may no longer be approaching
the true value. Also, deterioration in the ARL performance may further result when
employing the standard design charting procedure with the estimated parameter(s) sub-
stituted for the known process parameter(s) (Jensen et al., 2006; Jones 2002; Jones,
Champ, and Rigdon 2001, 2004). However, non-normality is the norm presently used
in the industry as often the values of the process parameters are not readily available.
Therefore, whether the usual variables charting method is appropriate in practice should
be seriously considered.
Many researchers have attempted to propose a more resilient control structure to be

adapted with a slight deviation from normality. With the aim to retain stable in-control
RL distribution, proposals were forthcoming via heuristic approaches to design control
charts (Atta, Shoraim, and Yahaya 2014; Castagliola and Khoo 2009; Khoo, Atta and
Wu 2009; Khoo, Wu, and Atta 2008). Also, to construct the limits with unknown prob-
abilistic distribution, researchers have mainly focused on non-parametric charts
(Oprime et al. 2016; Riaz and Abbasi 2016; Yang and Cheng 2011; Yang, Lin, and
Cheng 2011). However, the search to determine the optimal solution is ongoing to fill
this void left by the existing methods. As a result, numerous recommendations on the
alternative location and/or dispersion estimators with control chart structures have been
proposed. Nazir et al. (2013) suggested CUSUM charts based on the median, Hodges-
Lehmann (HL) and trimean to control the location parameters of a process.
Furthermore, they concluded that the CUSUM control chart issued from trimean would
be the preferred choice to achieve that when the observations are sampled from normal,
non-normal, special cause and outlier environments. However, the estimation effects of
the parameters in Phase I were not considered in the study. The effects, however, were
later examined by Nazir et al. (2016) where they conducted a comparison study on the
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performance of three types of memory control charts. These included the CUSUM,
Exponentially Weighted Moving Average (EWMA) and mixed EWMA-CUSUM control
charts in the Phase II process based on median, mid-range, HL, trimean, and trimmed
mean estimators under normal and mixed-normal distributions. The finding showed
that none of the estimators behaved well in all environments, but the EWMA control
chart offered the best performance from among the proposed methods based on the
median estimator. Furthermore, it was difficult to assess the in-control robustness of
the proposed charts in the study since the Phase I and Phase II distributions were dis-
similar. In this case, their finding was directed towards the sensitivity of a control chart
to detect a change in the Phase II process. Nazir et al. (2016) assumed that estimation
is always conducted in ideal circumstances such as outlier-free, where there is no con-
tamination or for other data anomalies which substantiated the use of the sample mean
and sample standard deviation in the estimation procedure. However, Janacek and
Meikle (1997) argued that ideal Phase I circumstances are rarely encountered in prac-
tical situations. Thus, the continual use of the sample mean and sample standard devi-
ation in the estimation process may reduce the capability of a control chart in
monitoring the Phase II process. Notwithstanding, to mitigate the problem, Zwetsloot,
Schoonhoven, and Does (2016) recommended several robust Phase I location estimators
based on the median function and the trimean, to be paired with a robust standard
deviation estimator, namely a variant of the biweight. The authors also monitored the
performance of the traditional EWMA control chart in the Phase II process.
Nonetheless, all resulting Phase II EWMA control charts were ARL-biased, meaning
that the out-of-control ARL was observed to be larger than the in-control ARL when
Phase I contained contamination. To reduce the bias, especially when the data are ser-
iously contaminated, Zwetsloot, Schoonhoven, and Does (2014) suggested several esti-
mation approaches including the retrospective use of a control chart to obtain
observations which are representative of the process. Accordingly, a two-step procedure
was recommended, namely a robust estimator based on the median of sample averages
MðXÞ to estimate the location in Phase I control charting, and an efficient estimator
based on the grand sample average X for post-screening estimation. The finding showed
an improvement regarding the bias for a large sample size (n¼ 10) via this approach.
Unfortunately, however, for a smaller sample size (n¼ 5), the problem persisted, that is,
all EWMA control charts were still ARL-biased. Similarly, significant work has been car-
ried out in the direction of robust EWMA control charting; for example, see Zwetsloot,
Schoonhoven, and Does (2015) and Khoo and Sim (2005).
Based on the literature mentioned above, the continual use of robust statistics in con-

trol charting is worth pursuing. However, a delicate balance between stable in-control
performance and the quick detection of out-of-control status is still considered to be
challenging even within the realm of robust estimation. The use of robust statistics to
control the location parameter of control charting was claimed to offer improved if not
better protection against outliers or non-normally distributed process data concerning
false alarm rates. Indeed, one of the acclaimed robust statistics frequently employed
using this approach has been the median estimator. The charting structure of a usual
sample median, however, has drawbacks which is mainly because the median control
charts are more outlier-resistant than the mean charts, as they yield less efficiency than
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the latter (Ahmad et al. 2014; Sheu and Yang 2006; Yang, Pai, and Wang 2010). An
extension of this approach based on memory-type control charts was undertaken by
Nazir et al. (2013, 2016). Although, as mentioned earlier, their approaches require fur-
ther discussion and examination. The current study extends the existing literature in the
form of the following contribution by suggesting a highly robust location estimator
known as a modified one-step M-estimator (MOM) to be applied to the CUSUM chart-
ing structure. The aim in this case is to provide a robust structure of control charting
under slight and severe non-normality with minimal loss in sensitivity to the actual
location shift. Moreover, if this can be achieved, the proposed chart will be a good sub-
stitute for a median chart when small location shifts are of interest under the limitation
to fulfilling the normality assumption.
As a median trimmed based estimator, MOM comprises good qualities that are

usually found in the median and trimmed means. First, the MOM estimator pos-
sesses the best possible breakdown point (the proportion of extreme values that the
estimator can tolerate without completely breaking down), which is 50%. Indeed,
this has been made possible via the outlier detection rule established in MOM. The
rule is constructed based on the usual median and median absolute deviation
(MAD) estimators, thus resulting in the highest possible value of the breakdown
point. Second, MOM employs a trimming approach to handle non-normality. This
approach, as employed in any trimmed mean, allows dealing directly with extreme
values, or more specifically the outliers. The trimming approach in MOM, however,
takes into consideration the distributional shape of the data which resolves a prac-
tical concern that deals with symmetric trimming when using methods based on
trimmed means. Additionally, the flexibility of the amount of trimming to be used
in MOM eliminates the stipulation of a predetermined amount of trimming in the
usual trimmed means.
In this study, the primary goal is to explore the effect of MOM on CUSUM chart

performance under normal and non-normal distributions and also, to reflect on the
improvement that could be offered by this new chart over existing charts. This is nar-
rowed down to three existing CUSUM charts based on the mean, mid-range and
median estimators which identifies a total of four CUSUM control charts, including the
proposed MOM method in the study. Next, the effects of non-normality on the per-
formance of these CUSUM charts is addressed for skewed distributions with a collection
of different skewness coefficients on two different cases. For Case 1, the in-control
mean, and standard deviation of the process are assumed to be known. For Case 2, the
mean is unknown and estimated from an in-control Phase I sample. In the latter case,
the in-control standard deviation is treated and assumed to be known to isolate the
effect of estimating the location parameter.
The article is structured into the following sections. The properties and formulas

for the location estimators employed in this study are given in Sec. 2, following a
brief explanation of the design structure of the CUSUM control chart. Section 3
presents the set-up and simulation outcomes for the two case studies followed by
Sec. 4 describing the results of the simulation. In Sec. 5, an illustrative example
based on a real data set is presented, followed by the conclusion of the study in
Sec. 6.
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2. A two sided-CUSUM control structure

In this section, a basic outline on the CUSUM control structure is reported, along with
the Phase I and Phase II location estimators that have been applied in the present study.
Mathematical notation for the probability density of the chosen distributions (with their
means and variances) are included for clarity.
Page (1954) proposed the idea to measure the accumulative sum of deviation of data

from the in-control process location in two different plotting statistics; the upper (CU;j)
and the lower (CL;j) part. The idea in this case, is to simultaneously monitor the upward
and downward shifts of the process based on the charting statistics as given in Eq. (1).

CU;j ¼ max 0;CU;j�1 þ ZU;j�kU
� �� �

(1)

CL;j ¼ min 0;CL;j�1 þ ZL;j þ kL
� �� �

where j is the sample number, CU;0 and CL;0 are the initial values; typically set at 0.
The standardized statistics (ZU;j; ZL;jÞ and the reference values ðkU ; kLÞ are defined as
Eqs. (2) and (3), respectively.

ZU;j ¼ ZL;j ¼
bhj�h0
r0= ffiffi

n
p (2)

kU ¼ kL ¼
dopt
2

(3)

where bh is the location estimator used to monitor a shift from the assumed in-control
process parameter, h0, r0 is the standard deviation of bh, dopt is the standardized shift in
the location where fast detection is required, and n is the sample size. An out-of-control
signal is detected when CU;j > h or CL;j < �h, where h is the decision limit.
When h0 is unknown and requires to be estimated from the Phase I samples, formu-

las for the charting statistics and the reference values remain the same. But, the standar-
dized statistics are now defined as given in Eq. (4).

ZU;j ¼ ZL;j ¼
bhj�bh0
r0= ffiffi

n
p (4)

Previous mathematical notations involve h0 and r0: Consider, Xij; i ¼ 1; 2; :::; n and
j ¼ 1; 2; :::;m denote Phase I data, when the process is in-control and let Yij; i ¼
1; 2; :::; n and, j ¼ 1; 2; :::; denote Phase II data. Both Xij and Yij are assumed to be
independent and identically distributed from the same target distribution F with mean
h0 and variance r02. Here, F may result from one of these four distributions; a standard
normal distribution, a Weibull distribution, a lognormal distribution, and a gamma dis-
tribution. Further, their probability density function (pdf’s) as well as an expression for
their means and variances are given in Table 1. While the formulas can be used to
attain h0 and r0 for the chosen distribution, the application is limited to the mean esti-
mator and indeed, is mathematically incorrect for MOM, median and mid-range.
Because of this, the values (h0 and r02) are simulated for all estimators for further use
in the charting procedure. Meanwhile, if the location parameter h0 is unknown, bh0 from
the mean of the selective location parameter is found and calculated as given in Eq. (5).
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bh0 ¼ Xm
j¼1

bhj=m (5)

While the sample mean Y ¼
Pn

i
Yi

n is used to replace bh in Eqs. (1)–(5) in Phase II, it
has a breakdown point (BP) of 0, which means that Y is highly receptive to the outliers.
Despite the failing, Y possesses the smallest standard error without comparison under
normality, making it the most efficient estimator in this case. To achieve the same posi-

tive impact, other researchers have also considered the sample mid-range MR¼ Yð1ÞþYðnÞ
2 ,

where Yð1Þ and YðnÞ are the minimum and maximum order of statistics, respectively, forbh. While its dominant efficiency is noted in platykurtic distribution, the design structure
of MR, nonetheless, takes on the extreme values. Thus, it suffers from a breakdown
point of 0. In contrast, an outlier-resistant statistic can offer a more substantial value of

BP. In this case, the sample median ~Y has the best possible BP, which is 50%
(Rousseeuw and Croux 1993). Therefore, even in extreme situations when close to half

of the data points are replaced by arbitrary numbers, ~Y remains bounded. Indeed, its
supreme efficiency is also in motion when the distribution moves far from normal. A

study by Figueiredo and Gomes (2004) revealed a good measure of ~Y efficiency when
the tailweight and skewness coefficients of the symmetric and asymmetric distributions,
respectively, increase. More importantly, in this case, the measurement supersedes the

efficiency of Y . The computation of the sample median ~Y involves the separation

between the upper and the lower half of the ordered data. Specifically, ~Y is defined as

the average of the two middle order statistics, 1
2 Y n

2�1ð Þ þ Y n
2þ1ð Þ

h i
for even sample sizes

or simply, the value of the mid order statistic, Y n
2þ1

2ð Þ for the odd sample sizes.

Alternatively, the trimmed based estimator could be considered for bh if one desires to
have better statistical efficiency than that offered by the sample median under normal
or light-tailed distribution. Further, it can be inferred from the O€zdemir (2010) simula-
tion study that estimators based on trimming clearly offer a substantial improvement
over the efficiency of Y , if outliers are present. The list includes the modified one step
M-estimator (MOM). As suggested by Wilcox and Keselman (2003b), the MOM is

Table 1. Distributions used in the study.

Distribution pdf, mean and variance

Standard normal f xð Þ ¼ 1ffiffiffiffi
2p

p e�x2=2x x 2 R; h0 ¼ 0; r02 ¼ 1

Weibull with parameters k; kð Þ¼ (1,0),
(1,0.5), (1,1), (1,1.5), (1,2), (1,3) f xð Þ ¼ k=kð Þ x=kð Þ½ �k�1e�ðx=kÞk x � 0

0x<0

(
;

h0 ¼ k C 1þ 1=kð Þ, r02 ¼ k 2C 1þ 2=kð Þ � C 1þ 1=kð Þð Þ2

Lognormal with parameters (u; rÞ¼ (0,0),
(0,0.5), (0,1), (0,1.5), (0,2), (0,3)

f xð Þ ¼ 1
xr

ffiffiffiffi
2p

p e�
lnx�uð Þ2
2r2 x ; h0 ¼ e lþr2

2

� �
; r02 ¼ e r2�1ð Þe 2lþr2ð Þ

Gamma with parameters k; hð Þ¼ (0,1),
(0.5,1), (1,1), (1.5,1), (2,1), (3,1)

f xð Þ ¼ 1
CðkÞhk x

k�1e�x=h x 2 R; h0 ¼ kh; r02 ¼ kh2
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defined as bY ¼
Pn�i2

i¼i1þ1
Y ið Þ

n�i1�i2
, where Y ið Þ is the ith ordered observation. The calculation ofbY involves the outlier detection rule that is embedded inside i1 and i2. In the trimming

process, the rule is used to flag outliers and is constructed based on two outlier-resistant

statistics; the sample median ~Y and the median absolute deviation about the median

(MADn). Accordingly, both have BP of 0.5, which makes the outlier detection rule in bY
extremely robust, despite the simplicity of the formula. Therefore, employing this rule,

an outlier is detected if (Yi – ~Y )< - K(MADn) or (Yi – ~Y )>K(MADn) and the sum of
all observations in Yi that satisfies the lower constraint is noted as i1. Meanwhile, for
the upper constraint, it is denoted as i2 and constant K is adjusted to 2.24 for a reason-
ably good small standard error under normality (Wilcox and Keselman 2003b).

3. Performance evaluation and simulation procedure

Some studies have shown that robust statistics usually possess a smaller standard error
than the sample mean in non-normal distributions (see, e.g. Wilcox (1998) and Wilcox and
Keselman (2003a). However, it remains to be revealed that this will translate into improved
CUSUM control chart performance, specifically under the selective distributions from
Table 1. To demonstrate this, the run length (RL) behavior of CUSUM control charting is
compared. The four control charts examined include; CUSUM-MOM, CUSUM-mean,
CUSUM-MR, and CUSUM-median. The remainder of this paper will refer to each of these
charts by their respective location estimator; MOM, mean, MR, and median.
Two frameworks were used in performing the simulation studies: i) when the mean

and variance of the underlying distribution are known and ii) when the mean is
unknown and therefore, requires to be estimated from the in-control Phase I samples.
The performance of MOM, mean, MR, and median in both studies were evaluated and
compared using the expected value of the RL distribution. It is also important to recall
that a signal is triggered when a charting statistic plots outside the decision limit. Thus,
RL is a random variable that represents the number of plotted CUSUM statistics before
a signal is observed. The average run length (ARL) gives the expected value of this ran-
dom variable. The rule of thumb in this instance is to have a large ARL when the pro-
cess is in-control and a small ARL when the process is out-of-control. The in-control
ARL will be referred to as ARL0 and the out-of-control ARL by ARL1 henceforth.
The design of the Phase II CUSUM control charts require the values of kU , kL, and

h. Since kU ¼ kL (refer to Eq. 3) these will be simply denoted as, k. The nominal ARL0
is set to 500, which is a choice widely adopted. Different estimators are employed for
Phase II plotting statistics for k¼ 0.5 as an optimal constant in order to detect a shift of
magnitude 1.0, that is a shift of 1r0. Next, the factors h, are simulated for MOM, mean,
MR, and median by considering two sample sizes, n¼ 5 and n¼ 10 from a standard
normal distribution with the desired value of ARL0. This gives the factors h in Case 1
as illustrated in Table 2.
In Case 2, the Phase I process location parameter h0 needs to be estimated. To obtain

the factors h, m¼ 50 subgroups of a sample size n¼ 10 from a standard normal distri-
bution are considered. The values of these factors are provided in Table 3.
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The simulation procedure regarding the robustness and sensitivity of the CUSUM
chart in Case 1 and Case 2 are discussed separately in the following subsections. Both
outcomes were attained using SAS software.

3.1. Case 1: h0 and r0 are known

The RL distribution of the CUSUM control chart was obtained via two series of Monte
Carlo simulations. The first series was used to determine the mean value and the stand-
ard error for all estimators. Using 1,000,000 samples of size n¼ 5 and 10 from the
chosen distribution (Table 1), the mean and standard deviation (i.e., standard error) of
the sampling distribution of MOM, mean, mid-range and median estimators were
obtained. In the second series, 15,000 of Phase II samples of size n were used. The
observations were generated from the chosen distribution and the charting statistics,
and CU;i and CL;i were calculated according to Eq. (1), with CU;0 ¼ CL;0 ¼ 0. If CU;j < h
or CL;j > �h, the run length counter was incremented. The steps were repeated until
the record showed that either CU;j > h or CL;j < �h. When this occurred, a signal was
given, and the corresponding run length equals j. The calculations were attained for dif-
ferent shifts of size dr0 in the mean, considering d ¼ 0, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1,
1.5, 2, 2.5, 3. The process was repeated for 10,000 simulation runs which provided a
total of 10,000 RLs. The ARL was computed by averaging over the total 10,000 RLs.
The results are presented in Tables 4 and 5.

3.2. Case 2: h0 are unknown

Because the estimate is substituted for the unknown process parameter h0, it is useful to
examine the impact of estimation on the Phase II RL distribution and hence, the
robustness of the proposed chart. To achieve the target outcome, Phase I and Phase II
distributions are assumed to be the same. Later, a shift in the process of the same distri-
bution was introduced to model the out-of-control situation, wherein the outcome is
then used to evaluate the sensitivity of the CUSUM control charts.
Notably as a reminder, bh0 was computed using in-control Phase I samples based on

four location estimators; MOM, mean, mid-range and median. For a fair comparison of
the effect imparted by these location estimators, the in-control standard deviation r0
was treated as known. Thus, the observed performance of the charts is purely based on
the effect of the location parameter. Also, it is crucial to note the distinction between
the conditional and unconditional RL distribution for control chart performance when
the process parameter(s) is estimated. Jones, Champ and Rigdon (2004) provided some
interesting thoughts regarding this particular issue. The conditional RL distribution is
attained based on a specific value of process parameters. In the case, it would be bh0, in
which the estimate depends on the set-up of the in-control Phase I data. Thus, this con-
ditional distribution of RL only gives the conditional performance of the CUSUM

Table 2. Factors of the CUSUM charts for Case 1 under standard normal distribution at ARL0.

n MOM Mean MR Median

5 5.0949 5.0717 5.086 5.0625
10 5.1075 5.0733 5.118 5.0569
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control chart. In order to obtain the overall performance, the unconditional RL distribu-
tion can be used, also considering this unconditional distribution as the average of the
RL distribution over all possible values of bh0, which gives the estimate of the uncondi-
tional ARL.
To attain the ARL, the following simulation procedure was applied. By first generat-

ing m¼ 50 samples of size n¼ 10, this gives a total of 500 observations. These were the
in-control Phase I dataset, drawn from one of the distributions in Table 1, used to com-
pute bh0. In Phase II, a total of 15,000 samples of size n were generated from the same
distribution as in Phase I. From each sample, bhj was computed thereby applying the
value on the CUSUM charting statistics; CU;j and CL;j with CU;0 ¼ CL;0 ¼ 0. The run
length counter was then recorded. If CU;j < h or CL;j > �h, the counter was increased.
The steps were repeated until the record showed that either CU;j > h or CL;j < �h,
which triggers the signal. The corresponding run length equals j. As in Case 1, the cal-
culations were also made for d ¼ 0, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3; giving
the in-control and the out-of-control RLs. Next, to obtain the ARL, the entire proce-
dures were repeated 10,000 times. The value of ARL was computed by averaging the
RLs over all 10,000 repetitions. The outcomes are presented in Tables 5 and 6.

4. Simulation results

The outcomes of the simulation studies in Case I and Case 2 are discussed separately.
Firstly, taking a closer look at the in-control and out-of-control RL distributions of the
CUSUM charts in Case I is undertaken, followed by discussing the result in detail for
Case 2.

4.1. Results of case I: h0 and r0 are known

The simulation procedure described in Sec. 3.1 give the findings as summarized in
Tables 4 and 5. All three skewed distributions in Table 1 are considered when the pro-
cess is in-control, i.e. d ¼ 0. Ultimately, there are four CUSUM control charts for three
skewed distributions that are compared based on the skewness coefficient of a3 ¼
f0; 0:5; 1:0; 1:5; 2; 3g and sample size n ¼ f5; 10g. In an attempt to assess robustness,
these CUSUM charts were designed using the indicated values shown for factor h in
Table 2, which technically are only appropriate for normally distributed process data.
Notably, for sample size 10, and the ARL0 values of MOM are much larger than the
mean, MR, and median, especially when a3 ¼ 1:5. In this particular case, the in-control
average run lengths of MOM are approximately 95% of the nominal ARL value but
then declined by 14% when n¼ 5. For n¼ 5 or a3 greater than 2, the ARL0 values of
MOM, mean, MR, and median are much shorter than 500, thus the number of false
alarm rates in these cases will far exceed the number initially anticipated. However,
examining the ARL0 values under the lognormal distribution, the in-control average run

Table 3. Factors of the CUSUM charts for Case 2 under standard normal distribution at ARL0¼ 500.

n MOM Mean MR Median

10 5.4853 5.4484 5.4934 5.444
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lengths of MOM for the said case are significantly larger than its counterparts.
Moreover, for the very skewed distributions (a3 ¼ 2 and a3 ¼ 3), the ARL0 values of
MR are much smaller than the rest of the charts. This is particularly noted when the
underlying process data actually follow the lognormal distribution. Furthermore, it is
also interesting to note at this point, that several ARL0 values are slightly above 500,
mostly attributed by MOM. For n¼ 5 and for a3 1.5 or less, the in-control average run
lengths of the MOM are comparable to the mean. In general, it can be seen that ARL0
of MOM is significantly better than the median.
Table 5 presents the ARL1 for MOM, mean, MR, and median when the underlying

process data follow various Weibull distributions. The table was designed using
ARL0¼ 370, n¼ 10 and dopt ¼ 1.0 for a shift in the process mean ranging from the
smallest magnitude (0.1r0) to the largest magnitude (3r0). Also, it was found that the
average run lengths for all charts using process data from the Weibull distribution with
zero degree of skewness (a3 ¼ 0) and the normal distribution are similar. Further, due
to the space limitation, results from the Weibull were only provided, and later used the
average run lengths values when a3¼ 0 as the basis for comparison under the normal
theory value. For n¼ 10, the average run lengths of MOM using skewed process data
(0 < a3 < 2) and the non-skewed process data (a3 ¼ 0) were also found to be compar-
able. Thus, violating the normality assumption does not dampen the ability of the
MOM to detect location shifts for this range of a3. Also, the average run lengths of vari-
ous CUSUM charts are comparable when the underlying process data actually follow a
normal distribution (or a Weibull with a3 ¼ 0) and for the very skewed Weibull distri-
butions (a3 ¼ 2 and a3 ¼ 3). For a shift in the mean of 0.1r0 and for a3 ¼ 0.5, 1 1:5,
the average run lengths of MR and median are significantly smaller than the MOM and
the mean. Hence, the former two charts are more efficient.

Table 4. In-control ARLs for known parameters (Case 1). In the table, b, x and a are the shape parameters that char-
acterize the degree of asymmetric (a3) of a Weibull, lognormal, and gamma distributions.

n¼ 5 n¼ 10

Distribution a3 MOM Mean MR Median MOM Mean MR Median

Normal 0.0 500.02 500.05 500.02 500.03 500.09 500.09 500.11 500.14
Weibull
3.6286 0.0 482.49 513.61 549.79 502.10 498.96 508.41 534.39 494.19
2.2266 0.5 495.42 497.69 489.87 498.77 513.98 499.08 488.81 492.72

b 1.5688 1.0 448.16 457.51 417.40 416.01 514.25 479.29 422.61 455.53
1.2123 1.5 390.71 406.63 340.64 345.64 475.89 448.85 343.60 402.23
0.9987 2 320.84 349.40 282.21 282.36 405.26 409.49 288.97 344.58
0.7637 3 226.56 262.92 206.97 208.91 299.51 340.07 222.31 273.50
Lognormal
0.0010 0.0 534.76 530.83 491.87 536.40 497.79 563.21 492.93 474.01
0.1656 0.5 480.16 513.26 482.08 467.53 472.74 463.86 459.23 498.67

x 0.3170 1.0 445.04 449.63 372.62 438.06 494.31 470.51 353.98 449.08
0.4484 1.5 403.81 385.66 286.65 371.16 468.31 443.69 281.49 432.93
0.5593 2 359.11 334.37 241.23 331.91 431.33 399.67 238.04 396.18
0.7315 3 292.71 259.64 194.64 269.42 376.25 328.96 199.60 342.58
Gamma
38000 0.0 481.981 503.754 502.165 492.014 499.971 503.523 501.900 498.161
15.4 0.5 468.545 483.240 462.160 470.160 503.553 493.920 446.754 486.662

a 3.913 1.0 443.104 450.724 393.832 415.054 498.352 484.285 380.292 455.851
1.788 1.5 399.440 406.809 332.593 351.262 471.593 447.736 324.226 403.221
0.983 2 315.455 347.443 281.490 280.109 399.558 410.945 290.442 345.624
0.442 3 196.903 268.735 227.826 189.147 248.781 336.180 247.261 239.261
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Table 5. Out-of-control ARLs for known parameters (Case 1). In the table, b is the shape parameter that characterizes
the degree of asymmetric (a3) of a Weibull.

n¼ 5 n¼ 10

b a3 d MOM Mean MR Median MOM Mean MR Median

3.6286 0.0 0.1 178.17 171.75 180.09 176.52 99.93 98.18 98.24 97.79
0.15 86.68 86.41 88.93 86.33 43.49 43.46 43.83 42.73
0.2 49.69 49.56 50.33 49.03 24.20 23.93 24.23 23.79
0.25 31.61 31.26 31.44 31.46 15.87 15.70 15.86 15.66
0.5 8.87 8.82 8.83 8.80 5.45 5.45 5.48 5.42
0.75 5.04 5.03 5.05 5.03 3.35 3.34 3.36 3.33
1 3.57 3.56 3.57 3.56 2.49 2.46 2.50 2.46
1.5 2.34 2.34 2.34 2.33 1.82 1.80 1.82 1.80
2 1.89 1.88 1.89 1.88 1.23 1.22 1.25 1.23
2.5 1.50 1.49 1.50 1.48 1.01 1.01 1.01 1.01
3 1.13 1.14 1.13 1.12 1.00 1.00 1.00 1.00

2.2266 0.5 0.1 169.09 161.08 155.44 159.59 98.83 95.87 93.71 93.70
0.15 85.81 83.07 82.73 82.35 44.48 43.04 44.36 42.57
0.2 49.50 48.88 48.18 48.81 24.62 24.23 25.05 24.00
0.25 31.76 31.17 31.34 30.96 15.98 15.86 16.18 15.79
0.5 8.97 8.99 8.94 8.98 5.44 5.44 5.51 5.44
0.75 5.06 5.05 5.10 5.09 3.35 3.33 3.37 3.34
1 3.59 3.57 3.60 3.57 2.49 2.48 2.49 2.46
1.5 2.34 2.34 2.34 2.34 1.82 1.80 1.81 1.80
2 1.89 1.88 1.89 1.87 1.24 1.23 1.25 1.22
2.5 1.51 1.50 1.52 1.50 1.01 1.01 1.00 1.00
3 1.13 1.12 1.13 1.13 1.00 1.00 1.00 1.00

1.5688 1.0 0.1 151.86 150.17 141.13 142.28 94.90 92.70 89.26 90.29
0.15 82.04 81.23 80.42 79.83 43.76 43.15 44.49 43.53
0.2 48.37 48.53 48.41 47.53 24.58 24.49 25.05 24.37
0.25 31.73 31.25 32.17 31.12 16.01 15.86 16.36 16.02
0.5 9.01 8.99 9.03 8.98 5.47 5.49 5.54 5.48
0.75 5.12 5.07 5.12 5.08 3.35 3.34 3.37 3.34
1 3.60 3.57 3.57 3.58 2.47 2.48 2.50 2.46
1.5 2.35 2.35 2.33 2.33 1.82 1.81 1.82 1.80
2 1.88 1.88 1.88 1.86 1.24 1.23 1.25 1.24
2.5 1.54 1.52 1.54 1.52 1.01 1.00 1.00 1.00
3 1.13 1.12 1.12 1.12 1.00 1.00 1.00 1.00

1.2123 1.5 0.1 140.23 140.12 127.89 129.50 92.37 90.62 86.80 86.74
0.15 81.14 79.99 77.69 79.08 43.85 43.70 44.87 43.06
0.2 49.32 48.35 48.87 49.16 24.85 24.67 25.72 24.79
0.25 31.89 31.96 32.21 32.72 16.24 16.00 16.85 16.32
0.5 9.13 9.11 9.11 9.19 5.55 5.47 5.60 5.52
0.75 5.16 5.11 5.14 5.08 3.37 3.36 3.38 3.35
1 3.61 3.58 3.59 3.58 2.47 2.48 2.50 2.47
1.5 2.34 2.33 2.35 2.33 1.81 1.81 1.83 1.80
2 1.87 1.87 1.87 1.86 1.26 1.24 1.25 1.24
2.5 1.55 1.54 1.55 1.55 1.00 1.00 1.00 1.00
3 1.12 1.12 1.10 1.10 1.00 1.00 1.00 1.00

0.9987 2 0.1 125.63 130.01 119.16 119.35 86.88 87.23 84.99 84.97
0.15 78.99 78.55 76.16 76.10 44.19 44.08 44.73 42.82
0.2 49.10 48.73 48.97 49.38 25.36 24.88 26.12 24.96
0.25 32.56 32.48 33.10 33.26 16.69 16.39 16.98 16.38
0.5 9.38 9.17 9.34 9.26 5.56 5.49 5.60 5.52
0.75 5.17 5.08 5.16 5.15 3.38 3.36 3.38 3.36
1 3.61 3.59 3.59 3.59 2.49 2.47 2.50 2.47
1.5 2.34 2.34 2.34 2.33 1.81 1.81 1.83 1.81
2 1.87 1.87 1.87 1.86 1.26 1.24 1.25 1.23
2.5 1.57 1.55 1.57 1.57 1.00 1.00 1.00 1.00
3 1.11 1.11 1.09 1.08 1.00 1.00 1.00 1.00

0. 7637 3 0.1 109.83 116.91 106.88 107.62 82.18 83.44 82.36 79.64
0.15 74.56 75.26 74.46 73.66 45.18 43.68 46.23 43.81
0.2 50.60 49.14 50.52 50.15 25.82 25.37 27.93 26.08
0.25 34.78 33.05 34.52 34.57 17.01 16.63 17.57 16.87

(continued)
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For the very skewed Weibull distributions (a3 ¼ 2 and a3 ¼ 3) with n¼ 5 and a shift
in the mean of 0.1r0, the average run lengths of the mean are slightly larger than its
counterpart. Meanwhile. the ARL1 values of MOM, MR, and median are comparable in
this case. For a minimal location shift (0.1r0) and n¼ 5, the ARL1 of all the charts are
significantly shorter than their corresponding normal theory values for all Weibull dis-
tributions considered. Indeed, it is interesting to note that the impact is less severe on
MOM, when compared to the existing charts.

4.2. Results for case II: h0 is unknown

In this section, the focus is on the unconditional Phase II RL distribution based on the
ARL as given in Tables 6 and 7. Based on the nominal in-control ARL of 500, the
simultaneous effect of parameter estimation and non-normality on the four CUSUM
control charts are examined. The ARL was obtained when both parameter estimation
and the charting statistics were subjected to Weibull distribution for a3 ¼
f0; 0:5; 1:0; 1:5; 2; 3g and sample size n¼ 10. First, the robustness of the CUSUM
charts to a violation of the normality assumption is considered (Table 6). Thus, the
MOM, mean, MR, and median were designed using the indicated values shown for fac-
tor h in Table 3. For a3 ¼ 0:5; a3 ¼ 1 and a3 ¼ 1:5, the in-control average run lengths
of MOM are significantly better than the mean, MR, and median. For this case, the in-
control average run lengths of MOM are approximately 98% of the nominal ARL value.
Indeed, it is interesting to note that the ARL0 values of MOM are marginally above the
nominal theory values for light non-normality. In general, ARL0 is seen to be signifi-
cantly smaller than 500 for the very skewed Weibull distributions (a3 ¼ 2 and a3 ¼ 3).
Also, in the most extreme case (a3 ¼ 3), it may result in false alarm rates that could be

Table 5. Continued.

n¼ 5 n¼ 10

b a3 d MOM Mean MR Median MOM Mean MR Median

0.5 9.60 9.41 9.49 9.48 5.61 5.57 5.63 5.53
0.75 5.22 5.14 5.18 5.16 3.37 3.34 3.35 3.36
1 3.61 3.57 3.59 3.59 2.49 2.48 2.50 2.46
1.5 2.36 2.35 2.34 2.33 1.82 1.82 1.84 1.82
2 1.88 1.87 1.88 1.88 1.25 1.24 1.24 1.22
2.5 1.61 1.58 1.61 1.61 1.00 1.00 1.00 1.00
3 1.02 1.07 1.04 1.02 1.00 1.00 1.00 1.00

Table 6. In-control ARLs for unknown parameters (Case 2) with n¼ 10. In the table, b is the shape parameter that
characterizes the degree of asymmetric (a3) of a Weibull.

Distribution a3 MOM Mean MR Median

Normal 0.0 500.20 500.27 499.98 500.19
Weibull
3.6286 0.0 501.05 495.00 524.30 492.80
2.2266 0.5 510.85 494.01 487.29 499.19

b 1.5688 1.0 515.67 488.27 449.14 471.07
1.2123 1.5 492.25 469.49 376.29 435.75
0.9987 2 437.79 438.66 333.27 387.85
0.7637 3 344.78 374.80 264.36 315.07
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unacceptably high for many practical applications, especially when a CUSUM chart is
constructed using the mid-range estimator.
Meanwhile, Table 7 provides the ARL1 for MOM, mean, MR, and median when the

underlying process data follow various Weibull distributions. As previous, the table was
designed using ARL0¼ 370, n¼ 10 and dopt ¼ 1.0 for a shift in the process mean ranging
from 0.1r0 (the smallest magnitude) to 3r0 (the largest magnitude). In this case, ARL1
is excluded when observations are sampled from a normal distribution and subsequently
set forth the ARL1 using process data from the Weibull distribution with zero degree of
skewness (a3 ¼ 0) as a basis for corresponding normal theory values, since the two
ARLs are very similar. In the cases where the Weibull distributions are very similar to
the normal distribution, that is when a3 ¼ 0:5 and a3 ¼ 1:0, the average run lengths of
MOM are comparable to the corresponding normal theory values. Thus, violating the
normality assumption does not dampen the ability of the MOM to detect location shifts
under slight non-normality. Also, the average run lengths of various CUSUM charts are
comparable when the underlying process data actually follow a normal distribution (or
a Weibull with a3 ¼ 0). For a shift in the location of 0.1r0 with a3 > 0, it is noted how-
ever, that the average run lengths of MOM are slightly larger than the mean, MR, and
median. However, it is interesting to note that those three charts provide shorter ARL1
than their corresponding normal theory values under the same set of conditions.

5. An example application

In this section, the practical application of the proposed method is demonstrated using
a real data set on patient waiting time (in minutes) to undergo a colonoscopy procedure
in a regional medical center and is based on the data from Jones-Farmer, Jordan, and
Champ (2009). The waiting times for the procedure were measured for 30 subgroups of
patients in a group of five (i.e. n¼ 5). The measure of ARL in the previous two sections
recorded a comparable performance between the MOM and the mean regarding the
false alarm, which was found to outweigh the performance of the median and MR fur-
ther. Regarding the detection of the out-control status, both the MOM and the mean
compete well with the MR and median at the shift for which each was designed, that is
d ¼ 0:1: Thus, only the MOM and mean are applied on the real data for fur-
ther analysis.
The MOM and mean charts were designed using the indicated values shown for h in

Table 3 for k¼ 0.5. Figure 1a displays patient waiting time for the respective subgroups.
The presence of large values in subgroups 6, 15, 16, and 30 (as captured in the figure)
should not be a seen as a direct cause for the CUSUM chart to signal since they do not
directly represent a shift in the mean. From this perspective, the application of the
mean chart will be exercised cautiously. The computation of the usual sample mean is
easily perturbed by the outlying values and may indirectly influence the performance of
the chart when used to detect a difference in the location shift.
Figure 1b–c display the output of the two charts, along with their upper decision

limit (h) and lower decision limit (�h). General observations based on the two figures
show an almost similar behavior between the performance of the two charts. Upon
closer inspection, however, the mean detects the out-of-control points at subgroups 8,
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15, and 16 while the MOM detects two additional out-of-control points (i.e. at sub-
groups 9 and 17) in addition to the three points (at subgroups 8, 15, 16) signaled by
the mean. From Figure 1b–c, a shift can be observed that is gradually decreasing from
subgroup 1 until subgroup 8, followed by a subsequent increasing shift until subgroup
10. Here, both charts successfully detect the downward shifts, but only MOM can detect
the upward shifts. Both charts successfully capture the following downward shift (from
subgroups 15 to 19).
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Figure 1. Real Data from Jones-Farmer, Jordan and Champ (2009) on the Colonoscopy Procedure
from a Regional Medical Centre: (a) Patient Waiting Time (in minutes); (b) output of the MOM CUSUM
chart; and (c) output of the mean CUSUM chart.
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Table 7. Out-of-control ARLs for unknown parameters (Case 2), with n¼ 10. In the table, b is the shape parameter
that characterizes the degree of asymmetric (a3) of a Weibull.

b a3 d MOM Mean MR Median

3.6286 0.0 0.1 180.99 178.25 180.31 180.10
0.15 70.67 69.45 70.68 68.17
0.2 33.11 32.88 33.85 32.80
0.25 19.12 19.21 19.67 18.96
0.5 5.87 5.86 5.87 5.84
0.75 3.57 3.57 3.58 3.54
1 2.62 2.61 2.64 2.61
1.5 1.91 1.91 1.91 1.90
2 1.37 1.36 1.38 1.35
2.5 1.03 1.03 1.02 1.03
3 1.00 1.00 1.00 1.00

2.2266 0.5 0.1 180.12 166.24 160.36 168.24
0.15 72.08 68.31 66.41 68.19
0.2 33.57 32.72 33.01 32.79
0.25 19.46 19.48 19.85 19.10
0.5 5.86 5.84 5.97 5.86
0.75 3.56 3.57 3.59 3.55
1 2.62 2.62 2.64 2.62
1.5 1.91 1.90 1.90 1.89
2 1.38 1.36 1.40 1.36
2.5 1.03 1.02 1.02 1.02
3 1.00 1.00 1.00 1.00

1.5688 1.0 0.1 168.80 158.80 146.49 153.18
0.15 69.69 68.88 65.97 65.40
0.2 34.09 32.63 33.16 32.27
0.25 19.43 19.75 19.83 19.69
0.5 5.93 5.89 6.01 5.87
0.75 3.59 3.55 3.59 3.57
1 2.64 2.61 2.63 2.62
1.5 1.90 1.89 1.90 1.89
2 1.38 1.37 1.41 1.38
2.5 1.02 1.02 1.01 1.01
3 1.00 1.00 1.00 1.00

1.2123 1.5 0.1 154.82 151.33 127.88 136.59
0.15 65.64 67.27 63.54 65.26
0.2 32.95 31.79 33.56 33.04
0.25 20.02 19.94 20.76 19.76
0.5 5.94 5.95 5.99 5.97
0.75 3.60 3.56 3.60 3.56
1 2.63 2.61 2.65 2.62
1.5 1.89 1.89 1.89 1.88
2 1.40 1.39 1.41 1.39
2.5 1.01 1.01 1.00 1.01
3 1.00 1.00 1.00 1.00

0.9987 2 0.1 136.51 143.16 120.73 126.71
0.15 63.34 65.38 62.14 64.72
0.2 33.64 32.54 33.56 32.87
0.25 20.00 19.61 21.12 20.10
0.5 6.00 5.94 6.02 5.97
0.75 3.58 3.58 3.59 3.58
1 2.63 2.63 2.64 2.61
1.5 1.89 1.89 1.89 1.89
2 1.41 1.39 1.43 1.40
2.5 1.00 1.01 1.00 1.00
3 1.00 1.00 1.00 1.00

(continued)
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6. Conclusion and recommendation

The routine use of control charting techniques requires practitioners to adhere to nor-
mality assumption. However, in many practical instances, the underlying distribution of
the output measurements may not always be confined to symmetric and bell-shaped
distributions only. For example, one tail of the distribution could be considerably longer
than the other, therefore giving what can best be described as a skewed distribution.
Indeed, this circumstance is frequently encountered when measurements are taken from
semiconductor and chemical processes, which may lead to some erroneous conclusions
when the outputs are applied on the usual control charting techniques for some desired
outcomes. For that very reason, ubiquitous studies on the means to fortify the control
structures are seen in the quality control literature.
The need for a robust technique has become increasingly important when informa-

tion for the in-control process parameter(s) is not readily available, which thereby force
reliance on the estimates in the place of the known parameter(s). The variability intro-
duced by the estimates may also have a consequence on the charts performance that
indeed differs from the charts designed with known parameter(s). Intuitively, this would
drive the search for a reasonable estimate without incurring unnecessary costs in com-
putation time. Therefore, this study presented an alternative robust design structure for
a CUSUM control chart and subsequently, compared its performance with three existing
CUSUM charts; the mean, mid-range and median charts under various skewed
distributions.
The robustness of the CUSUM charts towards a violation in the normality assumption

was also considered in this paper. Two situations were discussed, one situation in which
the process parameters are known and the other situation when the mean of the process is
unknown and estimated from the in-control Phase I samples. It was shown that in both
cases, controlling the location parameter based on MOM will help to maintain a stable in-
control performance of the CUSUM control chart when the underlying process data are
from skewed distributions. Generally, for sample size n¼ 10, the chart is quite robust to
violation of the normality assumption and provides higher in-control average run lengths
than the existing charts. The minute variabilities between the out-of-control average run
lengths from the normal and the moderately skewed distributions indicate that the ability
of the CUSUM chart based on MOM to detect shifts in the location continues to endure
when the underlying distributional assumption is violated. This makes the proposed

Table 7. Continued.

b a3 d MOM Mean MR Median

0. 315.07 3 0.1 118.18 127.46 110.36 116.09
0.15 61.12 62.71 62.29 58.97
0.2 34.26 33.69 35.26 34.67
0.25 20.75 20.31 21.12 20.51
0.5 6.03 5.99 6.09 6.00
0.75 3.60 3.56 3.60 3.58
1 2.64 2.63 2.63 2.62
1.5 1.89 1.88 1.90 1.88
2 1.43 1.41 1.44 1.41
2.5 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00

16 A. ABDUL RAHMAN ET AL.



method quite appealing even though the implementation of this chart is slightly more
complicated than the existing charts. The estimated effect of the parameter (i.e. mean of
the process) is substantial upon examining the efficiency of all charts to detect small shifts
in the location (1r0 < d < 0:5r0). That is, the performance of the CUSUM charts in Case
2 are significantly slower, when compared to that in Case 1. Furthermore, the focus was
primarily on Weibull distributions but there is no reason to doubt or distrust this substan-
tive conclusion would carry over to other skewed distributions (lognormal and gamma)
applied in this study.
Although, for a minimal location shift, that is 0:1r0, the out-of-control average run

lengths of MOM from the moderately skewed distributions is to some extent larger
than the existing charts. Thus, if a given application demands monitoring a particularly
small magnitude of the shift, it is recommended to obtain the standard error of the
MOM estimate by means of the bootstrap method. This will provide a sound estimate
with a possibly lower value than the usual formula for the standard error. For future
research, this will be the primary focus.
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