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IMPROVING HEALTHCARE DELIVERY: LIVER HEALTH UPDATING

AND SURGICAL PATIENT ROUTING

Sepehr Nemati Proon, PhD

University of Pittsburgh, 2014

Growing healthcare expenditures in the United States require improved healthcare delivery

practices. Organ allocation has been one of the most controversial subjects in healthcare

due to the scarcity of donated human organs and various ethical concerns. The design of

efficient surgical suites management systems and rural healthcare delivery are long-standing

efforts to improve the quality of care. In this dissertation, we consider practical models in

both domains with the goal of improving the quality of their services.

In the United States, the liver allocation system prioritizes among patients on the waiting

list based on the patients’ geographical locations and their medical urgency. The prioriti-

zation policy within a given geographic area is based on the most recently reported health

status of the patients, although blood type compatibility and waiting time on the list are

used to break ties. Accordingly, the system imposes a health-status updating scheme, which

requires patients to update their health status within a timeframe that depends on their last

reported health. However, the patients’ ability to update their health status at any time

point within this timeframe induces information asymmetry in the system. We study the

problem of mitigating this information asymmetry in the liver allocation system. Specifi-

cally, we consider a joint patient and societal perspective to determine a set of Pareto-optimal

updating schemes that minimize information asymmetry and data-processing burden. This

approach combines three methodologies: multi-objective optimization, stochastic program-
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ming and Markov decision processes (MDPs). We exploit the structural properties of our

proposed modeling approach and develop a decomposition algorithm to identify the exact

efficient frontier of the Pareto-optimal solutions within any given degree of accuracy.

Many medical centers offer transportation to eligible patients. However, patients’ trans-

portation considerations are often ignored in the scheduling of medical appointments. In this

dissertation, we propose an integrated approach that simultaneously considers routing and

scheduling decisions of a set of elective outpatient surgery requests in the available operating

rooms (ORs) of a hospital. The objective is to minimize the total service cost that incor-

porates transportation and hospital waiting times for all patients. Focusing on the need of

specialty or low-volume hospitals, we propose a computationally tractable model formulated

as a set-partitioning based problem. We present a branch-and-price algorithm to solve this

problem, and discuss several algorithmic strategies to enhance the efficiency of the solution

method. An extensive computational test using clinical data demonstrates the efficiency of

our proposed solution method. This also shows the value of integrating routing and schedul-

ing decisions, indicating that the healthcare providers can substantially improve the quality

of their services under this unified framework.

Keywords: Organ allocation,operating rooms scheduling problem, Markov decision pro-

cesses, branch- and-price, multi-objective decision making, two-stage stochastic program-

ming.
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1.0 INTRODUCTION

Healthcare is one of the world’s largest and fastest growing industries [112]. Healthcare in

the U.S. accounted for 17.6% of Gross Domestic Product (GDP) in 2010, and is expected to

grow to 19.8% by 2020 [51]. Both on a per-capita basis and as a fraction of the GDP, the U.S.

spends more on healthcare than any other member state of the World Health Organization

[51, 116]. This burden highlights the need for cost-saving measures to be taken by the private

and public sectors.

These aforementioned concerns about the performance of the U.S. healthcare system

have motivated significant interest in medical decision making over the past two decades.

Operations Research (OR) techniques have been utilized to address questions on how to

design, schedule and manage healthcare systems, leading to a variety of healthcare appli-

cations. OR applications in healthcare constitute a vast body of literature ranging from

policy and system design studies, like ambulance location [21, 22], emergency room or op-

erating room scheduling [64, 83, 115], organ allocation policy design [33, 69], immunization

and vaccine selection [88], to the treatment of individual patients, such as cancer treatment

[74, 75, 79, 92, 118], and the optimal timing of organ transplants [4, 5, 6, 59, 104, 105]

In this dissertation, we focus on the design of healthcare systems with the ultimate goal of

improving the quality of their services. More specifically, we focus our attention on the design

of organ allocation systems and surgical suite management policies. First, we study the

problem of allocating organs for liver transplantation, the second most transplanted organ.

Next, we consider patients’ mobility issues to access medical care in the U.S., specifically

when the medical centers provide both surgical and transportation services to patients.
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1.1 LIVER ALLOCATION IN THE UNITED STATES

Organ transplantation dates back to the first kidney transplant in 1954 [52]. Donated human

organs are highly perishable and scarce resources that should be allocated efficiently and

equitably in order to maximize the possible transplant outcomes and minimize waste. As of

October 2013, 118, 754 patients were waiting for organs (primarily kidney, liver, heart, lung,

pancreas and intestine) in the U.S. and on average a new name is added to the national

patient waiting list every 13 minutes [52]. Although the number of donated organs has

steadily increased during the past two decades, as shown in Figure 1, the supply of organs

have not kept pace.

Figure 1: UNOS waiting list and organ donation trends in recent years [52]

End-stage liver disease (ESLD) is any acute or chronic condition that leads to irreversible

liver dysfunction. ESLD, the 12th leading cause of death in the U.S. [50], includes diseases

such as chronic liver diseases, primary biliary cirrhosis and hepatitis among many others

[29]. Unlike other organs such as kidney, for which dialysis is an alternate therapy, trans-

plantation is the only viable therapy for ESLD patients. There are two sources of livers

for transplantation: living donors and deceased donors. Living donor transplantation has

emerged in recent decades and involves removing a segment of a liver from a healthy living
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donor and implanting it into a recipient. Under normal circumstances, the livers of both

donor and recipient grow to normal size in a few weeks [4]. Although living donor transplan-

tation has alleviated the shortage of livers, living donations still represent a small percentage

of donated livers.

Figure 2 shows the gap between the number of liver transplants and the registrations

to the national liver waiting list between the years 2000 and 2012 in the U.S. The scarcity

of donated livers together with the absence of alternate therapies for ESLD patients and

the need for equity in liver allocation suggest a need for an efficient and fair liver allocation

system.

Figure 2: Registration and transplant trends on liver waiting list in recent years [52]

The liver allocation system in the U.S. is administered by the United Network for Organ

Sharing (UNOS). UNOS divides the U.S. into 11 geographic regions, where each region is

further divided into sub-regions called donation service areas (DSAs) of Organ Procurement

Organizations (OPOs). Currently, there are 58 OPOs serving unique areas of varying sizes,

population densities, donation rates and transplantation activities [86]. These OPOs, each

composed of multiple transplant centers, are responsible for the identification of organ donors,

organ retrieval, preservation, transportation, and transplantation [52]. The transplant cen-
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ters within the OPOs maintain a list of eligible candidates for donation and transplantation

operations. As of October 2014, there were 127 liver transplant centers, and the number of

these centers is increasing [86].

Upon the arrival of a donated liver, UNOS ranks the patients on the national waiting list.

This ranking determines the priority among potential recipients for allocating the donated

liver and is primarily based on two main factors; a patient’s location, and patient’s medical

urgency, where compatibility with the donor and waiting time are used to break ties. Next,

UNOS contacts the transplant centers responsible for the patients with the highest priority.

The transplant team responsible for the patient is given one hour to decide whether to accept

the liver offer or not, where there is no penalty if the offer is declined.

At the level of medical urgency, the current liver allocation system considers two main

categories for adult patients, Status 1A and Meld for End-stage Liver Disease (MELD)

patients. Status 1A patients who have fulminant liver failure with a life expectancy without

liver transplant of less than 7 days receive the highest in allocating livers and constitute only

0.1% of the total number of patients on the waiting list [93], hence, we ignore such patients

in our models. The severity of ESLD for patients who are not eligible to be listed as Status

1A patients is assessed using their MELD scores. The MELD is a scoring system to predict a

patient’s probability of pre-transplant death, and incorporates specific clinical lab values of

the patient. These scores assume integer values between 6 (healthiest patient) to 40 (gravely

ill patient), [52, 80, 117].

UNOS requires patients to update their clinical values within a timeframe that depends

on their last reported health. Table 1 shows the current updating scheme for the MELD

patients [52]. Patients can update more frequently than what the updating scheme dictates.

However, if a patient fails to update by the required time, UNOS temporarily downgrades

her MELD score to 6, the healthiest score, until new results are received [52]. Transplant

Table 1: The current MELD score updating scheme of UNOS [52]

Last reported MELD score ≤ 10 11-18 19-24 ≥ 25

Minimum update frequency (days) 365 90 30 7
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centers caring for candidates on the waiting list are responsible for updating patients’ MELD

scores. Roberts et al. [100] estimates the data processing cost at a large transplant center

to be over $175,000 per year that excludes the costs incurred by UNOS. Moreover, reporting

health status requires clinical tests that are not only costly but often result in patients’

inconvenience.

1.2 SURGICAL SUITE SCHEDULING PROBLEM

Surgery generates more than 40% of the total expenses and revenues of a hospital [51], making

it an important opportunity for cost reduction. The surgery delivery process consists of a

variety of activities and is known as peri-operative services. There are two types of surgery

scheduling processes [56]. First, under a so-called advance surgery paradigm, patients are

scheduled on a future date, depending on the availability of surgical resources and surgeon’s

schedule. Second, under a so-called allocation scheduling paradigm, surgeries are scheduled

in available operating rooms (ORs) on the day of surgery, usually on a first-come first-

serve (FCFS) basis. This scheduling process is mainly based on the assumption that all the

patients are in the hospital and ready for surgery [39, 56, 57].

Typically surgeries are divided into those performed on an inpatient and an outpatient

basis. In the inpatient case, patients are admitted to the hospital on or prior to the day of

surgery and stay in the hospital until the completion of their recovery period. Conversely, in

an outpatient setting, patients arrive on the day of surgery and leave after the completion

of the surgical and post-operative procedures.

Hospitals typically choose to schedule surgeries in the ORs under an open-booking, a

block-booking framework, or a combination of these two approaches. Under an open-booking

framework, the surgical resources are shared among specialty teams, individual surgeons or

surgical departments. In a block-booking system a block of OR time is assigned to individual

surgeons or surgical departments where the duration of each block is determined by the

medical staff in the hospital based on the past surgical data. A block-booking framework

have several advantages as well as disadvantages, compared to an open-booking scheme [40].

The main advantage of a block-booking framework is that it usually simplifies the surgery
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scheduling process and is more convenient for both surgeons and the hospital staff, making

it more common in practice relative to open-booking approach. However, it is likely that

the schedules under this framework tend to be unbalanced, potentially leading to inefficient

utilization of ORs [40, 41, 47].

Scheduling surgeries in ORs is a complex process requiring the cooperation of the medical

staff in the hospitals, patients and the surgical teams. There are a variety of cost measures

in surgical suite scheduling literature to evaluate the different surgical suites management

policies. Typically, the key objective in these practices is to balance the cost-effectiveness

and efficiency in OR utilization. However, in health service environments such as government

hospitals, the main goal is to improve patients’ satisfaction [24].

1.3 TRANSPORTATION BARRIERS TO ACCESS HEALTHCARE

Access to healthcare is a major public health policy issue in the U.S., where the Institute of

Medicine defines access as the timely use of the personal health services to achieve the best

possible outcome [81]. Greater access to healthcare leads to better health, higher utilization

of health resources, and improves the quality of care [81, 87]. There are a variety of barriers

that limit a timely and efficient healthcare access such as health insurance coverage, health

provider policies and transportation issues.

Transportation has been identified as a common barrier to healthcare in the U.S., posing

many challenges to health policy makers. This issue has become more crucial in the past

decade due to the rapidly increasing elderly population and those with special medical needs

[7, 87]. In 2002, 9% of the elderly population (those 65 and older) did not obtain needed

medical care due to transportation problems [87], and this number is expected to increase.

Transportation was the third common barrier to a regular access to heathcare [97].

Recognizing the growing need to improve access to medical care, a number of organiza-

tions in the United States offer transportation services for patients. One example of such

efforts is the Beneficiary Travel plans by the Veterans Health Administration (VHA) [34],

which provides medical care to approximately 23 million veterans, 40 percent of whom are

elderly. Another example is the transportation support offered by the Disabled American
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Veterans organization (DAV). The DAV serves veterans using a pool of volunteer drivers,

working with Veterans Administration Medical Centers (VAMCs) and other community or-

ganizations.

Although the volume of these services is increasing, there are numerous issues that re-

main unaddressed. Burkhardt et al. [24] report a variety of strategies to improve the quality

of supporting transportation services for veterans. However, these strategies are not limited

to veterans, and they can also help patients in general. Coordinating transportation with

medical schedulers and hospital services is among the most major concerns in current prac-

tices. The reason is due to the fact that medical appointment schedulers do not necessarily

perceive patients’ transportation problems when they set up the appointments. This issue

is even more crucial when: (i) the transportation resources are limited, or (ii) patients are

in a need of special medical care; or (iii) the requested medical services require high-cost

resources at the hospital such as surgical suites. Consequently, most medical centers schedule

patients’ medical appointments and their transportation plans separately and sequentially

[23, 24].

1.4 PROBLEM STATEMENTS AND DISSERTATION OUTLINE

The contributions of this dissertation are two-fold. First, we propose an approach to mitigate

the information asymmetry in the current liver allocation system due to patients’ possible

gaming ability in the sense that patients may exploit flexibility in the health status re-

porting requirements. Second, we study an operational problem to improve the efficiency

of surgical suites management policies in hospitals by simultaneously considering patients’

transportation considerations and surgical scheduling decisions.

As noted in Section 1.1, UNOS imposes a health status updating scheme that requires

patients to report their health status within a given timeframe that depends on their last

reported health. However, patients’ ability to update their health status at any time within

this timeframe may allow them to game the system by concealing changes in their health

status. This gaming ability may induce information asymmetry between the UNOS and the

patients in the liver allocation mechanism, leading to misallocation of livers. This information
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asymmetry can be alleviated through more frequent updating requirements, but with a price

of an increase in the already existing significant data processing burden. Consequently, an

ideal updating requirement balances the two possibly conflicting objectives of: (i) minimizing

the information asymmetry, and (ii) minimizing the data-processing burden associated with

the significant data collection costs and patient inconvenience due to frequent clinical tests.

We propose a method to determine a set of Pareto-optimal updating requirements that

minimize the information asymmetry with respect to the tolerance levels of data-processing

burden. As shown in Figure 3, our modeling approach is consists of three related models:

(i) a multi-objective model that simultaneously minimizes the system inequity due to the

resulting information asymmetry, and maximizes the system efficiency, i.e., reducing the data

processing burden, (ii) an updating scheme design problem that minimizes the information

asymmetry while preserving a given desired tolerance level for the data-processing burden;

and (iii) a patient decision model that captures the adversarial effect of a set of autonomous

self-interested patients’ decisions.

Figure 3: Updating scheme design problem

We measure the system inequity as the expected increase in the total discounted lifetime

of the patients due to gaming. We define the system efficiency as the expected decrease in

the data processing burden as a result of the given flexibility in reporting health. We model

the problem of determining an updating scheme with minimum system inequity for a given
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desired level of reduction in data processing burden using two-stage stochastic programming

problem with adversarial recourse (SPAR) [8]. The first-stage decisions in this model involve

selecting an updating scheme. The second-stage recourse problem refers to the decision-

making process of a set of autonomous and self-interested patient, modeled as discrete-time,

infinite horizon Markov Decision Processes (MDPs). Each MDP model involves determining

the optimal patient’s decisions regarding updating his/her health status, do nothing without

transplantation, or accept a liver offer (if any) at each decision point in order to maximize

his/her expected life time. We exploit several structural properties of the optimal patients’

decisions within a decomposition algorithm to efficiently solve the stochastic programming

problem. We further extend our proposed algorithm to determine the exact frontier of the

Pareto-optimal updating schemes. Our extensive numerical results show that the current

updating requirements of UNOS can be revised to mitigate the resulting system inequity

without additional increase in the data processing burden.

As discussed in Section 1.3, many patients face difficulties when accessing medical facili-

ties in the U.S., particularly in rural areas. To alleviate these difficulties, medical centers offer

transportation to patients, including shuttle services, that provide shared rides for patients.

Unfortunately, the patient transportation plan of the patients is not usually coordinated with

the scheduling of medical appointments. In Chapter 4, we focus on a problem to improve the

quality of such services with an emphasis on the patients’ perspective. To do so, we propose

an integrated approach that simultaneously considers routing and scheduling decisions of a

set of patients with outpatient surgery requests where the medical centers provide transporta-

tion. This transportation is typically shared-type round trip shuttle services. The overall

objective of the model is to minimize the total service cost that incorporates transportation

and hospital waiting times for all the patients. We formulate this as a mixed-integer program

that is impossible to solve using commercial solvers. We use the structural properties of the

proposed model and develop a branch-and-price algorithm. We further investigate several

algorithmic strategies to improve solution efficiency of the proposed model. The performance

of the proposed approach is evaluated through extensive computational study using clini-

cal data. Our results demonstrate that healthcare providers can substantially improve the

quality of their services by integrating scheduling and routing decisions.
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The remainder of this dissertation is organized as follows. In Chapter 2, we present a

review of the modeling and solution methodologies utilized in this dissertation. In Chapter

3, we describe the patient decision model, structural properties of patients optimal decisions,

and a model to determine an updating scheme with minimum system inequity for a given

desired data processing burden. We then propose our solution method to solve this problem

and describe a general algorithm to approximate the exact efficient frontier of the updating

schemes. In Chapter 4, we present our proposed model to integrated surgery and transporta-

tion decisions and the branch-and-price algorithm to solve it. We discuss conclusions and

highlight future research directions in Chapter 5.
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2.0 LITERATURE REVIEW

In this chapter, we briefly discuss the methodologies used in this dissertation. In Section 2.1,

we review multi-objective programming techniques. Section 2.2 provides an introduction to

the stochastic programming with an emphasis on two-stage stochastic programming problems

and their solution techniques. In Section 2.3, we discuss Markov decision processes and briefly

review a modeling framework that combines stochastic programming and Markov decision

processes in Section 2.4. We conclude this chapter with a review of branch and price and

column generation in Section 2.5.

2.1 MULTI-OBJECTIVE PROGRAMMING (MOP)

Multi-objective programming (MOP) is the process of systematically and simultaneously

optimizing a collection of possibly conflicting objective functions over a set of decisions [44].

In this section, we first introduce the general multi-optimization programming framework.

We also briefly discuss the most common solution methods for this problem. We follow the

notation in [44] and [45] throughout the rest of this section. The general MOP can be written

as follows:

min f(y)

s.t. y ∈ Y, (2.1)

where f(f1, ..., fk)
T : Y → Rk is a vector of possibly conflicting objective functions, and

Y ⊆ Rn is a nonempty set referred to as the feasible region. The feasible region Y can be

represented by a number of inequality constraints. Because the objective functions in MOP
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can be conflicting, solving the problem and comparing these objective functions require an

ordering of these functions. This measure of efficiency is referred to as the Pareto optimality

[89] in the MOP literature and is defined as follows:

Definition (Pareto Optimality) A solution ye ∈ Y with the objective function f(ye) is called

(globally) Pareto optimal or efficient, if and only if there exists no other solution y ∈ Y such

that fi(y) ≤ fi(ye) for all i = 1, ..., k and fj(y) < fj(ye) for at least j ∈ {1, ..., k}.

Hence, the objective of MOP is to find the set of all efficient solutions ye, denoted by

Ye ⊆ Y . Next, we briefly review the most common solution approaches for the MOPs.

2.1.1 Solution Approaches for MOPs

Solution methods for MOPs often embed scalarization, which involves combining the multiple

objective functions of an MOP into a single-objective scalar function [45]. This approach

in general is known as the scalarization or weighted-sum method. More specifically, the

weighted-sum method minimizes a positively weighted sum of the objectives in MOP, as:

min
k∑

i=1

λifi(y) (2.2)

s.t. y ∈ Y, (2.3)

with λi ≥ 0 as the positive weight of the ith objective function, for i = 1, ..., k.

The main advantage of this method is that for each λ, the computational effort needed to

solve the weighted sum problem is the same as the single objective counterpart of an MOP

[45]. Another advantage of this approach is that if all of the weights are positive, the optimal

solution of 2.3 is Pareto optimal for convex and continuous efficient frontier [44]. The main

disadvantage of the weighted sum approach is that it fails to obtain efficient solutions on the

non-convex portions of the Pareto optimal set. Hence, this method is not appropriate for

problems with discrete or non-convex Pareto optimal frontier [44]. Several other variants of

this approach have been proposed to alleviate the deficiencies of the weighted sum method,

including the weighted tth power approach, and the weighted quadratic method [45].
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Another popular scalarization approach that overcomes some of the convexity problems of

the weighted sum technique is the ε-constraint method. This involves minimizing a primary

objective, fp(y) for some p ∈ {1, ..., k}, and introducing all the other objectives in the form

of new constraints as:

min fp(y) (2.4)

s.t. fi(y) ≤ εi, ∀i ∈ {1, ..., k} \ {p}, (2.5)

y ∈ Y. (2.6)

This approach identifies a number of Pareto optimal solutions on a non-convex domain

when the weighted sum technique fails to identify them. However, the problem with this

method is the suitable selection εi to ensure a feasible solution. We refer the reader to [26]

for more details of this method.

Among all the other methods to solve MOPs, goal programming (GP) is perhaps the best

known method. GP was introduced by Charnes et al. [34] and involves expressing a set of de-

sirable levels {f ∗
1 (y), ..., f

∗
k (y)} associated with the set of objective functions {f1(y), ..., fk(y)}.

This problem formulation allows the objectives to be under- or overachieved. The relative

degree of under- or overachievement of the desired levels is controlled by a vector of weighting

coefficients, and the problem is expressed as a standard optimization problem [27].

Finally, the solution methods to approximate the exact efficient frontier of the Pareto

optimal solution, often involve iterative methods. These iterative methods embed a scalar-

ization technique of choice to generate Pareto optimal points during the solution procedure.

For a recent survey of these techniques, the reader is referred to [44, 45].

2.2 TWO-STAGE STOCHASTIC PROGRAMS

Stochastic programming as a branch of mathematical programming deals with the optimiza-

tion problems where the model parameter are subject to uncertainty. In this section, we
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focus our attention on the two-stage stochastic programming model, the most widely stud-

ied stochastic programming models. We refer the reader to Birge and Louveaux [18] and

Kall and Wallace [63] for fundamentals of stochastic programming.

A two-stage stochastic program is a mathematical program involving uncertain model

parameters and is composed of first and second decision stages. Under this framework, the

first-stage problem is solved in the face of uncertainty in the model parameters. Once the

first-stage problem is solved, the uncertainty in model parameters is realized and the decision

maker solves a set of second-stage problems, known as recourse problems. In this context,

the recourse model depends on the first-stage solution and the outcome of a random event.

The objective of the two-stage stochastic programming model is to minimize the first-stage

cost plus the expected recourse cost.

Let A be a real-valued matrix of size m1 × n1, with ni and mi as the number of decision

variables and constraints in stage i for i = 1, 2, respectively. Let b be a vector in Rm1

and ξ be a discrete random variable describing the uncertain model parameter with a finite

support denoted by Ξ. Each ξk ∈ Ξ for k = 1, ..., K = |Ξ| denotes the kth element in Ξ,

and is referred to as a scenario. Additionally, let pk be the probability that ξk is realized.

Using this notation, Beale [12] and Dantzig [31] formulated the two-stage stochastic linear

programming as:

min cTx+ Eξ[d(ξ)
Ty(ξ)] (2.7)

s.t. Ax ≥ b, (2.8)

T (ξk)x+W (ξk)y(ξk) ≥ h(ξk), k = 1, ..., K, (2.9)

x ≥ 0, (2.10)

y(ξk) ≥ 0, k = 1, ..., K. (2.11)

In the above formulation, c is a known vector in Rn1 and denotes first-stage decisions

cost, and for each scenario d(ξk) ∈ Rn2 , h(ξk) ∈ Rn2 . For each scenario, T (ξk) and W (ξk)

referred to as the technology matrix and the recourse matrix, are of size m2 × n1 and

m2 × n2, respectively. These matrices define the set of feasible second-stage solutions in

(2.9) and (2.11) for each scenario. Alternatively, a scenario vector can be represented as
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ξk = (d(ξk)T , h(ξk)T , T (ξk),W (ξk)) for k = 1, ..., K. Thus, for a first-stage decision vector x,

the recourse problem decomposes intoK independent subproblems, defined for each scenario.

The above-mentioned model can be formulated as the so-called deterministic equivalent pro-

gram as follows:

min cTx+Q(x) (2.12)

s.t. Ax ≥ b,

x ≥ 0,

with Q(x) = Eξ[Q(x, ξk)] known as the expected recourse function, where for scenario ξk,

Q(x, ξk) = min d(ξk)Ty (2.13)

s.t. W (ξk) ≥ h(ξk)− T (ξk)x,

y ≥ 0.

The most common approach to solve two-stage stochastic programming problems is to

use a decomposition algorithm. A decomposition algorithm involves approximating the

second-stage objective function through a series of supporting hyperplanes that guarantee

convergence to an optimal first-stage solution. For example, the L-shaped algorithm [114]

decomposes the problem into first-stage (or master) problem and second-stage problem, also

known as the subproblem. This algorithm is an iterative method that approximates the

second-stage value function with a convex combination of Benders algorithm cuts [14] for

each subproblem scenario and a given first-stage solution.

Two-stage stochastic mixed-integer programs are a class of problems when a subset of

the decision variables are discrete. The problem with solving the two-stage stochastic mixed-

integer programs is that they lack many of the necessary properties that enable designing

efficient algorithms apposed to other branches of optimization. We refer the reader to [1, 18,

66, 67, 76] for a surveys of algorithms for two-stage stochastic programming problems.
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2.3 MARKOV DECISION PROCESSES (MDPS)

In this section, we briefly review the basic concepts and definitions of Markov decision pro-

cesses (MDPs). More details are provided elsewhere [15, 94]. MDPs provide a mathematical

framework to model sequential decision making problems, where outcomes are partly random

and partly under the control of the decision maker. More specifically, we focus our atten-

tion on those sequential decision making problems under uncertainty where the decisions are

made at discrete points of time, referred to as the decision epochs. Let T = {1, ..., N} be

the set of decision epochs, where N need not be finite. At each decision epoch t, the system

occupies a state s in the state space, S of the process, which is assumed to be known to

the decision maker. This modeling framework provides the decision maker a control over

the system by choosing an action a from the action space As at each decision epoch t. We

content ourself with so-called stationary MDPs where the model parameters do not vary

over time. Furthermore, we assume that both S and As are discrete and finite. The evolu-

tion of the process is governed probabilistically, as the decision maker chooses action a in

state s at decision epoch t, where the state of the system at the next decision epoch t+ 1 is

determined by the transition probability distribution P{·|s, a}. As a result of choosing action

a in state s at each decision epoch, the decision maker receives an immediate reward r(s, a).

More general treatment of this subject allows the dependency of the rewards to not only the

current state s and chosen action a, but also to the next visited state s′ at the next decision

epoch denoted by r(s, a, s′). However, this dependency does not incur further complexity to

the model as we can consider the its expected value by computing

r(s, a) =
∑

s′∈S
r(s, a, s′)P{s′|s, a}.

We refer to the collection of objects {T, S,As, Pt{.|s, a}, r(s, a)} as aMarkov decision process.

The decision maker’s strategy for choosing actions throughout the lifetime of the system

is known as a decision rule, denoted by dt. In this dissertation, we restrict our attention to

the Markovian decision rules under which the action choice under dt only depends on the

current state of the proces and is independent of the entire history of the system.
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Decision rules can be either randomized or deterministic. Given a randomized decision

rule, at each state an action is chosen based on a non-degenerate probability distribution,

whereas a deterministic decision rule prescribes to choose an action with certainty (i.e., with

probability 1). Deterministic decision rules are often preferred to the randomized ones due

to their simplicity to implement. However, in an MDP with finite state and action sets,

there exists a deterministic decision rule that is always optimal provided that the states of

the process are completely observable [94]. A policy δ specifies which decision rule to use at

each decision epoch t, denoted as δ = (d1, d2, ..., dN−1). A stationary policy prescribes the

same decision rule at all decision epochs, i.e., dt = d for all t ∈ T and are easy to implement.

An infinite-horizon MDP (N = ∞) with finite state space and action set always has an

optimal stationary policy given that the states are completely observable [94].

We restrict our attention to the expected total discounted reward criterion:

E

[
N−1∑
t=0

λtrr(s, a)

]
, (2.14)

where 0 ≤ λ < 1 is the discount rate. For an infinite-horizon problem, an optimal stationary

Markovian policy that maximizes the expected total discounted reward can be found by

solving the following recursive equations also known as the Bellman’s optimality equations:

v∗(s) = max
a∈As

{
r(s, a) + λ

∑

s′∈S
P{s′|s, a}v∗(s′)

}
, (2.15)

where v∗(s) is the optimal value function in state s. Thus, the optimal action a∗ is one that

maximizes the right-hand side of equation (2.15).

The optimality equations (2.15) can be solved using a variety of methods, including value

iteration [15, 19, 94], policy iteration [13, 61] and linear programming [35]. One deficiency

of these methods is that they often fail to work as the MDP problem becomes large, referred

to as the “curse of dimensionality” [13, 28]. To overcome these this issue, a broad range

of efficient solution techniques have been proposed, including variants of the basic methods

such as modified policy iteration[84], relative value iteration [94] among many others.
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Discounted MDPs can also be formulated as linear programs. The linear programming

formulation of a discounted Markov decision process problem with α(j), for j ∈ S as any

positive scalar is as follows:

min
∑
j∈S

α(j)v(j) (2.16)

s.t. v(s)−
∑
j∈S

λp(j|s, a)v(j) ≥ r(s, a), ∀a ∈ As,∀s ∈ S, (2.17)

When the positive scalars α(j) for all j ∈ S are chosen such that
∑

j∈S α(j) = 1, they

can be interpreted as a probability distribution over the state space of the process S. The

dual of LP formulation of a discounted MDP problem is usually more informative. The dual

decision variables for each state s ∈ S and action choice a ∈ As are denoted by x(s, a) and

represent the total discounted joint probability under initial state distribution α(j) for all

j ∈ S that the system occupies state s and chooses action a. The dual formulation is as

follows:

min
∑
s∈S

∑
a∈As

r(s, a)x(s, a) (2.18)

s.t.
∑
a∈Aj

x(j, a)−
∑
s∈S

∑
a∈As

λp(j|s, a)x(s, a) = α(j), ∀a ∈ Aj,∀j ∈ S, (2.19)

x(s, a) ≥ 0, ∀a ∈ As,∀s ∈ S. (2.20)

Note that the dual LP formulation has fewer constraints compared to the primal formulation,

hence, solving the dual formulation may be preferable to solving the primal.

2.4 SPAR: STOCHASTIC PROGRAMMING WITH ADVERSARIAL

RECOURSE

As noted earlier, stochastic programs and Markov decision processes are powerful mathemat-

ical programming tools to model a variety of problems. In this section, we briefly discuss a

general modeling technique referred to as stochastic programming with adversarial recourse

(SPAR). This method combines the best aspects of stochastic programming and MDPs in a
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unified framework. We refer the reader to [8, 11] for details of SPAR. SPAR involves opti-

mally designing a system of interest with the knowledge that an adversary may subsequently

attempts to degrade the system. This problem can be formulated as a two-stage stochastic

programming model. The first-stage decisions correspond to selecting a system design in the

face of uncertainty in the adversarial effect. Once a design decision is made, an adversary

exercises his choice of best possible decisions that can incur the most disruption to the sys-

tem, i.e., negatively impact the system performance, and represent the second-stage recourse

problem. This second-stage recourse problem is modeled as an MDP whose parameters are

defined by the design uncertainty.

The objective of system designer (first-stage decision maker) is to select design that

minimizes the design selection cost and the expected discounted cost of adversary’s optimal

decisions. The general mathematical programming formulation of SPAR is as follows.

min cTx+ Eξ[Q(x, ξ)] (2.21)

s.t. x ∈ X.

In this model, X denoted the set of all feasible system designs and ξ is a discretely dis-

tributed random variable with finite support Ξ that represents the design uncertainty. Given

a design x, Q(x, ξ) represents the expected reward of the optimal policy of the associated

adversarial MDP under scenario ξ. As noted earlier, the parameters of the adversarial MDP

are defined based on the possible scenarios. In SPAR, the design decisions x are linked to the

subsequent MDP using a bounded adversary impediment values. These values denoted by

ti(s, a, ξ) ≥ 0 for i = 1, ..., n with x = {x1, ..., xn} are considered as the benefits to the system

designer and link the elements of design decision vector x to the reward of an action choice

a from the states a in the realized MDP under scenario ξ. Hence, the modified rewards of

subsequent MDP under scenario ξ are defined as:

r(s, a, ξ)−
n∑

i=1

ti(s, a, ξ)xi. (2.22)

The special structure of SPAR can be exploited to solve efficient methods, see [8] for a

modified L-shaped method using the recourse function properties of SPAR. However, the

efficiency of any specific method to solve SPAR is highly problem dependent.
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2.5 BRANCH AND PRICE

Column generation is a method for solving mathematical programming problems that have

too many variables to consider explicitly. Because most of the variables in such large-scale

linear programming problems will be non-basic in the optimal solution, only a small subset of

variables need to be considered explicitly for solving the problem. Hence, column generation

is based on the idea to generate only those variables that may potentially improve the

objective function, i.e, generate the columns as needed. To do so, column generation splits

the problem to be solved into a master problem and a set of pricing problems. The master

problem is the original problem restricted to a subset of variables. The objective function of

the pricing problem is to find a column with the most favorable reduced cost with respect

to the current dual variables obtained by solving the master problem. At each iteration of

the column generation, the pricing problem is solved and if favorable columns exist, some

subset of them are inserted into the master problem; if not, the algorithm stops. Column

generation was first introduced by Ford and Fulkerson [53] to enable the implicit handling

of variables in a multi-commodity flow problem. Dantzig and Wolfe [32] established column

generation as a powerful technique for large-scale mathematical programming by utilizing

this method in the algorithm known as Dantzig-Wolfe decomposition. The idea of combining

the technique of column generation with an LP-based branch-and-bound algorithm was first

suggested by [12].

Column generation and branch-and-price have been successfully applied to an enormous

number of deterministic applications, including cutting stock problems [55], airline crew

scheduling [9], multi-commodity flow [2], vehicle routing [37, 38], and organ allocation prob-

lems [33, 68]. We refer the reader to [10] and [77] for a complete description of the branch-

and-price framework.
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3.0 BALANCING EQUITY AND EFFICIENCY IN LIVER ALLOCATION

VIA REVISED HEALTH REPORTING FREQUENCIES

3.1 INTRODUCTION

In Chapter 1, we described how UNOS prioritizes End-Stage Liver Disease (ESLD) patients

who are on the liver waiting list by considering: (i) their geographical location and (ii)

patients’ medical urgency. The prioritization policy within a given geographic area is based

on the patients’ most recently reported health status, although blood type compatibility and

waiting time on the list are used to break ties. Thus, UNOS obligates patients to update

their health status within a timeframe that depends on their last reported health. We refer

to these health updating (reporting) requirements as an “updating scheme.”

Currently, the priority of over 99% of adult ESLD patients is assessed by the model for

end-stage liver disease (MELD) [52]. Hence, we restrict our attention to the MELD patients.

Patients can update more frequently than what the updating scheme dictates. However, if

a patient fails to update by the required time, UNOS downgrades her MELD score to 6, the

healthiest score, until new results are received. Because the chance of receiving an organ

offer increases with a rise in patient’s last reported MELD score, UNOS requires patients to

update more frequently as they get sicker.

The ability of patients to update anytime within the required timeframe allows them

to “game” the liver allocation system. Because reporting a healthier health status may

decrease a patient’s chance of receiving an organ offer, she may decide to delay reporting

improved health status. On the other hand, reporting a sicker health status may leave the

patient with a shorter amount of time until the next required update. Hence, a patient

whose health deteriorates may conceal her health status change by not reporting it. Both
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these situations illustrate information asymmetry between UNOS and patients that may

lead to a misallocation of livers. This information asymmetry can be alleviated through

more frequent updating requirements, but at a price of an increased data-processing burden.

This data-processing burden is associated with the existing significant data collection costs

incurred at both transplantation centers and UNOS [100], as well as patients’ inconvenience

due to more frequent clinical tests.

In this chapter, we study the problem of mitigating information asymmetry in the liver

allocation system by revising updating requirements. Specifically, we propose an approach

to determine a set of Pareto-optimal updating schemes that simultaneously minimize the

information asymmetry and the data-processing burden. This approach focuses on a joint

patient and societal perspective and involves solving a set of parametric stochastic optimiza-

tion problems. The model parameters at different iterations denote various desired tolerance

levels for the data-processing burden defined by policymakers. Hence, at each iteration

we seek to identify an updating scheme that minimizes the information asymmetry while

preserving a given desired tolerance level for the data-processing burden.

Our modeling approach captures the characteristics of patients on the liver waiting-list

by using a set of scenarios, each of which represents a class of autonomous self-interested

patients. This set of patient classes can be defined based on the clinical and demographical

characteristics of patients. We also incorporate the adversarial effect of patients’ decisions,

referred to as the “patient decision process”, who may game the system into the updating

scheme selection problem. We exploit the structural properties of the proposed modeling

approach and present a decomposition algorithm to solve instances of parametric model.

Finally, we extend our solution method to determine the exact efficient frontier of the Pareto

optimal updating schemes.

The rest of this chapter is organized as follows. In Section 3.2, we review the prior related

literature and discuss our contributions. The outline of our modeling framework is discussed

in Section 3.3. In Section 3.4, we present a Markov Decision Process (MDP) formulation

of patients’ decision-making problem, and discuss the equity and efficiency measures to

quantify the information asymmetry and data processing burden for any updating scheme,

respectively. We then investigate several structural properties of patients’ optimal policy.
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In Section 3.5, we first present a mathematical formulation of the model to determine an

updating scheme with minimum system inequity for a desired level of data processing burden.

We then discuss the structural properties of this model and propose a decomposition-based

algorithm to solve it. Our approach to approximate the actual efficient frontier of the Pareto-

optimal solutions is presented in Section 3.6, and Section 3.7 includes the details of our

parameter estimation and numerical results. Concluding remarks and the future research

directions are provided in Section 3.8.

3.2 LITERATURE REVIEW AND OUR CONTRIBUTIONS

As noted in Chapter 1, donated organs are scarce and vital resources. Hence, improving the

organ allocation and transplantation procedures is crucial. Recognizing this need, operations

research applications in this area have grown significantly over the past two decades. Among

these studies, a number of researchers focus on a patient’s perspective and investigate the

problem of accepting/rejecting an organ to maximize a special welfare measure of the patient

[4, 5, 6, 60, 105]. Another group focuses on designing optimal organ allocation policies with

respect to a curtain measure of societal welfare [16, 69, 110]. Finally, a third group of

researchers considers a joint patient and the societal perspective [109, 111]. We refer the

reader to [33, 70, 103] for surveys of the literature.

To the best of our knowledge, Içten [62] is the only study that addresses information

asymmetry in the liver allocation mechanism. Focusing on a patient’s perspective, she first

addresses the degree to which a patient can benefit from the flexibility in an updating

scheme. To do so, she investigates a decision process in which a patient exercises her choice

of action between updating her health status, doing nothing without transplantation, or

accepting an organ offer (if any) to maximize her life expectancy. She formulates this problem

as an infinite horizon discrete-time MDP problem that maximizes patient’s total expected

discounted life-time. The decisions are made daily and the state of the process constitutes of:

(1) patient’s true health status, (2) her last reported health status, (3) remaining time until

the next updating requirement; and (4) the quality of offered liver (if any). She calibrates the
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model parameters using clinical data and explores several structural properties of a patient’s

optimal decisions under mild conditions. She uses an MDP to evaluate the inequity and

efficiency measures of an updating scheme, as defined in Section 3.3. Finally, for a cohort of

patients and a heuristically chosen of alternative updating schemes, several MDP problems

are solved to heuristically approximate the efficient frontier of Pareto-optimal solutions. The

patient decision model in [62] provides deeper insights to investigate a single patient’s gaming

ability who may exploit the health reporting system. However, the problem of mitigating

information asymmetry remains unaddressed since the modeling approach in [62] can only be

employed to evaluate the performance of a given updating scheme. Our specific contributions

in this chapter are as follows:

• We propose an exact approach to identify a set of Pareto-optimal updating schemes to

balance the trade-off between information asymmetry and data processing burdens.

• Our modeling framework enables us to incorporate the gaming effect of a set of au-

tonomous self-interested patients’ decisions into the updating scheme selection problem.

• Unlike a single-patient-focused model of [62], our proposed model can incorporate various

restrictions in selecting a particular form of an updating scheme. For example, we can

identify the exact efficient frontier of those updating schemes that are compliant with

the current MELD aggregation scheme of UNOS, i.e. specific MELD scores require the

same updating timeframe.

• Our solution method is based on the structural properties of the USDP problem that

avoids enumerating all potential updating schemes to obtain an optimal solution.

3.3 DESIGNING UPDATING SCHEMES

As noted in Section 3.1, the information asymmetry in allocating livers can be alleviated by

more frequent updating requirements at the price of an increase in data processing burden.

Thus, we propose a multi-objective optimization problem that simultaneously considers the

two possibly conflicting objectives of: (i) minimizing the system inequity as measured by the

increase in patients’ expected lifetime due to their gaming ability, and (ii) maximizing the
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system efficiency as measured by the reduction in the data possessing burden. To do so, we

adopt an ε-constraint approach to multi-objective optimization problems [26, 42, 44], where

we iteratively solve a sequence of parametric two-stage stochastic programming problems,

referred to as “updating scheme design problem” (USDP). The objective of this iterative

method is to identify the exact efficient frontier of Pareto-optimal updating schemes that

minimize the system inequity with respect to the tolerance levels of system efficiency. Figure

4 illustrates a hypothetical efficient frontier of the Pareto optimal updating schemes, denoted

by black points.

Figure 4: Hypothetical Pareto-optimal updating schemes

The objective of USDP is to identify an updating scheme that minimizes the expected

system inequity for a given minimum required reduction in the data processing burden,

denoted by µ. Figure 5 illustrates the decision flow in USDP for a given µ, denoted by

USDP[µ], that consists of two phases, referred to as the design phase (first-stage decision

process) and the patients’ decision-making model also known as the second-stage recourse

problems. The design phase decisions in this model are made in the face of uncertainty

in the cohort of patients on the liver waiting list in the long run, referred to as design

uncertainty. This design uncertainty is not revealed until and updating scheme is chosen,

and is represented through a set of autonomous self-interested patient types. Each patient

type is defined based on patient demographic and clinical characteristics. After an updating
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scheme is chosen, a set of patient decision-making problems are defined for each patient

type. Each patient decision-making problem is modeled as an infinite horizon discounted

MDP problem with the objective of determining patient’s optimal sequence of decisions in:

(1) updating her health status, (2) doing nothing without transplantation; or (3) accepting

a liver offer (if any) and transplant so as to maximize her expected lifetime. These optimal

policies are then used to approximate the anticipated system inequity and efficiency under

for the chosen updating scheme.

Figure 5: USDP[µ] model representation

We use the following notation and assumptions throughout the rest of this chapter.

The scenario space of USDP[µ] is represented by a finite set Ξ of discrete patient classes,

denoted by ξ1, ..., ξK , with qk as the probability of realizing patient class ξk. We denote each

patient class ξk as k for notational continence. Let SM = {M1, ...,Mmax} be an ordered

set that represents all possible heath statuses of a patient. For the case of liver allocation

in the U.S., M1 = 6 and Mmax = 40. However, we represent M1 = 1 and Mmax = |SM|
for the ease of notation. Furthermore, the minimum and the maximum allowable updating

frequencies at any MELD score i ∈ SM is denoted by Fmin and Fmax, respectively, and

F = {f ∈ Z+|Fmin ≤ f ≤ Fmax} denotes the set of all possible integer valued updating

frequencies. The set of binary decision variables xij = 1 if patients who currently report a

MELD score of i ∈ SM, should next update their health status not later than j periods of

time, and xij = 0 otherwise. Hence, x denotes an updating scheme in our notation. Finally,
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we restrict our attention to monotonic updating schemes that requires patients to update

no less frequently as they get sicker. Monotonic updating schemes are consistent with the

prioritization rules of UNOS.

3.4 PATIENT DECISION-MAKING PROBLEM

In this section, we extend the model introduced by Içten [62] to formulate patients’ decisions

regarding updating/doing nothing/accepting an organ offer (if any) for each patient type and

for a given updating scheme x. To do so, we formulate a patient’s decision-making process

as a discrete-time, infinite horizon MDP model that maximizes the total expected lifetime

of a patient of type k for a given updating scheme x. This model involves a sequence of

patient’s decisions that determines if the patient should: (i) update her health status, (ii) do

nothing without transplantation, or (iii) accept a liver offer (if any) at each decision point,

so as to maximize her expected lifetime. We formulate this problem as a discrete-time,

infinite horizon MDP model defined for each patient type and a given updating scheme.

Next in Section 3.4.2, we introduce the details of the inequity and efficiency measures to

evaluate the information asymmetry and data processing burdens under a given updating

scheme. To quantify these measures, we use the patients’ optimal policies obtained by solving

the proposed MDP model. In Section 3.4.3, we investigate several structural properties of

patients’ optimal updating policies that are subsequently used to devise an efficient solution

method to solve instances of USDP.

3.4.1 Mathematical Formulation

For each patient type k, 1 ≤ k ≤ K and a given updating scheme x, we model the patient’s

decision-making problem as a discrete-time, infinite horizon MDP problem. The decision

epochs in the MDP model are discrete points of time, and decisions are made periodically at

the beginning of each epoch. The state space of the process, denoted by (h,m, τ, `) consists

of: h ∈ SH = SM∪{∆}, the patient’s current health status defined by MELD scores SM with
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∆ denoting death; m ∈ SM, the patient’s last reported MELD score; τ ∈ {0, 1, ..., Fmax},
remaining time until the next required update; and ` ∈ SL = {1, 2, ..., L+ 1}, the quality of

a deceased-donor liver offer, where lower numbers represent better quality livers, and L+ 1

denotes no liver offer. Unlike the definition of τ in the state space description of the MDP

model in [62], the state of our proposed model is independent of the choice of any updating

scheme. Hence, the state space of the model in [62] is a special case of our proposed MDP.

The action set of the extended model is scenario independent and is given by [62]:

A(h,m, τ, `) =




T = Transplant, DN = Do nothing, U = Update ` < L+ 1,

DN = Do nothing, U = Update ` = L+ 1.

The transition probability matrix Hk models the health state changes of the patient type

k, for 1 ≤ k ≤ K, where Hk(h′|h) denotes the probability that a patient with current MELD

score of h transitions to MELD score h′ in the next decision point given that he/she does not

transplant, for all h and h′ and Hk(∆|∆) = 1. Additionally, for each scenario k, Lk models

the probability of receiving a liver offer of quality ` given that patient’s last reported MELD

score is m, represented by Lk(`|m).

For each patient type k, we define rk(h,m, τ, `, a) as the reward of taking action a ∈
A(h,m, τ, `) in state (h,m, τ, `) regardless of the chosen updating scheme. We consider

rkDN(h) ∈ [0,∞) and rkU(h) ∈ [0,∞) for h ∈ SM , and rkDN(h) = rkU(h) = 0 for h = ∆ as the

rewards of doing nothing and updating actions for patient type k, respectively. Furthermore,

let Rk(h, `) ∈ [0,∞) for h ∈ SM, with Rk(∆, `) = 0 for ` < L + 1 and Rk(h, L + 1) = 0

be the post-transplant lump sum reward when a liver offer of quality ` in health state h by

patient type k is accepted. Hence, the updating scheme independent rewards of the process,

rk(h,m, τ, `, a), are defined as:

rk(h,m, τ, `, a) =





rkDN(h) for a = DN,

rkU(h) for a = U,

Rk(h, `) for a = T .
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Our model incorporates patients’ decision-making model into the updating scheme se-

lection process. To do so, we link the scheme selection decisions x to the rewards of the

MDPs for each scenario k through specific penalty values. Hence, the updating scheme de-

pendent rewards of the model for a patient type k under an updating scheme x, denoted by

rkx(h,m, τ, `, a), are defined as:

rkx(h,m, τ, `, a) = rk(h,m, τ, `, a)−
∑

i∈SM

∑
j∈F

tkij(h,m, τ, `, a) · xij, (3.1)

with tkij(h,m, τ, `, a) as the impediment values [8]. These impediment values can assume any

arbitrary large value, e.g., any upper bound on the total expected discounted lifetime of a

patient type k at any state of the process, denoted by Y k. The following lemma provides

an lower bound for the maximum possible life expectancy of a patient which is subsequently

used to define the impediment values.

Lemma 3.4.1. An upper bound on the total expected discounted lifetime of patient type

k ∈ {1, ..., K}, is given by:

maxh∈SM rk(h)

1−maxh∈SM

∑
h′∈SM Hk(h′|h) + max

h∈SM ,`∈SL
Rk(h, `), (3.2)

where rk(h) = max{rkDN , r
k
U}.

Hence, we define the each impediment value tξ
k

ij (h,m, τ, `, a) for each state (h,m, τ, `)

when action a ∈ A(h,m, τ, `) is chosen as:

tkij(h,m, τ, `, a) =





rk(h) + Y k if (τ ≥ j) or (j = 1, h 6= m) for a = DN or U,

Rk(m, `) if (τ ≥ j) or (j = 1, h 6= m) for a = T ,

rk(h) + Y k if j = 1 and h = m for a = DN,

0 otherwise,

(3.3)

where Y k is set to their upper bound as defined in (3.2). Our proposed patient decision

model further extends [62] in the following two ways: (i) the rewards of the process are

both scenario and first-stage decision dependent; (ii) we differentiate between the immediate

rewards associated with doing nothing and updating actions.
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For a given discount factor λ ∈ [0, 1] and an updating scheme x, we define vkx(h,m, τ, `)

as the maximum expected total discounted life days of a patient type k who starts from state

(h,m, τ, `):

vkx(h,m, τ, `) =




max{vk,Tx (h, `), vk,DN

x (h,m, τ), vk,Ux (h)} ∀h,m, τ, ` < L+ 1,

max{vk,DN
x (h,m, τ), vk,Ux (h)} ∀h,m, τ, ` = L+ 1,

(3.4)

where

vk,Tx (h, `) = rkx(h,m, τ, `, T ), (3.5)

vk,DN
x (h,m, τ) = rkx(h,m, τ, `,DN) + λ

∑

h′∈SH

Hk(h′|h)




∑

`′∈SL
Lk(`

′ |m)vkx(h
′,m, τ − 1, `′)



 , (3.6)

vk,DN
x (h,m, 0) = rkx(h,m, τ, `,DN) + λ

∑

h′∈SH

Hk(h′|h)




∑

`′∈SL
Lk(`

′ |m)vkx(h
′,M1, τx(M1)− 1, `′)



 ,

(3.7)

vk,Ux (h) = rkx(h,m, τ, `, U) + λ
∑

h′∈SH

Hk(h′|h)




∑

`′∈SL
Lk(`

′ |h)vkx(h′, h, τx(h)− 1, `′)



 . (3.8)

In the definition of the optimality equations, τx : SM → R+ denotes a mapping that

determines updating frequencies assigned to the MELD scores under updating scheme x.

Proposition 3.4.2. Given an updating scheme x and patient type k, transplantation is

optimal if τ ≥ τx in all state (h,m, τ, `) for all h,m, `.

Proof. For a given patient type k and updating scheme x, in any state (h,m, τ, `) where

τ ≥ τx,

vk,DN
x (h,m, τ) < −Y k + λ

∑

h′∈SH

Hk(h′|h)
{∑

`′∈SL
Lk(`

′ |m)vkx(h
′,m, τ − 1, `′)

}
(3.9)

≤ Y k(λ
∑

h′∈SM
Hk(h′|h)− 1) ≤ 0. (3.10)

where inequalities (3.9) and (3.10) follow by (3.3) and (3.2), respectively. Similarly,

vk,Ux (h,m, τ) < −Y k + λ
∑

h′∈SH

Hk(h′|h)
{∑

`′∈SL
Lk(`

′|h)vkx(h′, h, τx(h)− 1, `′)

}
(3.11)

≤ Y k(λ
∑

h′∈SM
Hk(h′|h)− 1) ≤ 0. (3.12)
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Proposition 3.4.3. Given an updating scheme x, such that τx(m) = 1 for all m ∈ SM:

(a). It is always optimal to transplant in state (h,m, τ, `) if h 6= m,

(b). The optimal action is either to transplant or update in state (h,m, τ, `) if h = m.

Proof.

vk,DN
x (h,m, 0) < −Y k + λ

∑

h′∈SH

Hk(h′|h)
{∑

`′∈SL
Lk(`

′|m)vkx(h
′,M1, τx(M1)− 1, `′)

}
(3.13)

≤ Y k(λ
∑

h′∈SM
Hk(h′|h)− 1) (3.14)

≤ 0. (3.15)

where inequalities (3.13) and (3.14) by (3.3) and (3.2), respectively. With a similar argument,

vk,Ux (h,m, 0) < 0 which completes the proof of part (a). The proof of part (b) is similar and

is omitted.

Our proposed patient’s decision model provides a more realistic decision model compared

to [6, 62] by: (i) considering a more general state space description that is independent of

the choice of any particular updating scheme, and (ii) relaxing the restricted assumption of

identical immediate rewards for doing nothing and updating actions. Moreover, the definition

of process rewards that links the updating scheme decisions to the patients’ decition model

enables us embed patients’ MDPs into a general modeling framework to design updating

schemes.

3.4.2 Modeling the Inequity and Efficiency of Updating Schemes

We let Q(x, ξk) denote the maximum benefit of patient type k as a measure of an increase in

patient’s life expectancy due to her the gaming ability under updating scheme x. Similarly,

G(x, ξk) denotes the benefit of patient type k through reduction in the data-processing

burden. These values are patient-specific measures of inequity and efficiency, respectively.

Before formally defining these performance measures, we introduce some additional notation.

We consider xw as the updating scheme that obligates patients to update their MELD scores

to the most frequent extreme. Hence, xw in our model is analogous to the continuous
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updating scheme in [5, 6, 104, 105] that results in no information asymmetry between UNOS

and patients. As discussed in Section 3.1, updating scheme xw leaves patients with no

gaming ability by not reporting their MELD score changes. However, it will increase the

data processing burden to its maximum possible value.

For a given updating scheme x, we define a set of all possible policies of a patient type

k associated with patient’s decision process by Πk(x). Hence, for each patient type k, each

policy πk ∈ Πk(x) defines patient’s individual state-specific actions when updating scheme x

dictates the updating requirements. Furthermore, let π̂k patient k’s optimal policy associated

with the Bellman’s optimality equations (3.4)-(3.8).

Içten [62] characterizes the inequity and efficiency induced by selecting a particular up-

dating scheme for a single patient. She quantifies the source of induced inequity as the

weighted average percentage increase in the expected lifetime and the efficiency as weighted

average percentage decrease in the number of expected updates compared to the same mea-

sures under the daily updating scheme. In this dissertation, we use her approach to quantify

the expected system inequity and efficiency with a slight change in the notation.

For a given updating scheme x and a patient type k with MELD score h and no liver

offer at the time of listing, the percentage increase in expected lifetime compared to the

continuous updating scheme, xw, is:

ωk
x(h) =

vkx(h, h, τx(h)− 1, L+ 1)− vkxw
(h, h, τxw(h)− 1, L+ 1)

vkxw
(h, h, τxw(h)− 1, L+ 1)

× 100. (3.16)

Similarly, the percentage decrease in the expected number of updates is calculated using

φk
x(h) =

U π̂k

xw
(h, h, τxw(h)− 1, L+ 1)− U π̂k

x (h, h, τx(h)− 1, L+ 1)

U π̂k

xw
(h, h, τxw(h)− 1, L+ 1)

× 100, (3.17)

where U π̂k

x (h, h, τx(h)− 1, L+ 1) is the expected number of times that a patient denoted by

scenario k who starts with no liver offer and MELD score h at the time of listing updates,

following the optimal policy πk. To determine the expected number of times that a patient

updates, we propose a reward process where transplant and do nothing actions induce an

immediate reward of zero and updating incurs a reward of one.
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Following the patient’s optimal updating policy, we can subsequently calculate the ex-

pected number of health updates. Using the aforementioned notation, we define the expected

inequity under updating scheme x for patient type ξk, Q(x, ξk) as:

Q(x, ξk) =
∑

h∈SM
pk(h)× ωk

x(h), (3.18)

where pk(h) is the scenario-dependent probability that a patient of type k registers to the

waiting list with MELD score h. Furthermore, the expected efficiency value of system under

updating scheme x for patient type k is defined as:

G(x, ξk) =
∑

h∈SM
pk(h)× φk

x. (3.19)

Finally, we express the total system inequity, Eξ[Q(x, ξk)], and total system efficiency,

Eξ[G(x, ξk)], under updating scheme x are defined as the expected values of patient-specific

inequity and efficiency measures on the support space of scenarios, as:

Eξ[Q(x, ξk)] =
K∑

k=1

∑

h∈SM
qkQ(x, ξk), (3.20)

and

Eξ[G(x, ξk)] =
K∑

k=1

∑

h∈SM
qkG(x, ξk). (3.21)

3.4.3 Structural Properties of the Optimal Patient Policy

We use the two following clinically realistic assumptions to investigate the structural prop-

erties the patients’ optimal updating policy.

Assumption 3.4.4. The post-transplant rewards, Rk(h, `), are decreasing in h and `, for

1 ≤ k ≤ K.

Assumption 3.4.5. The rows of the liver transition probability matrix Lk are in decreasing

stochastic order, i.e.,
∑L+1

`=i Lk(`|m) ≥ ∑L+1
`=i Lk(`|m+1), ∀m, 1 ≥ i ≥ L+1 and 1 ≤ k ≤ K.
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For all patient types, Assumption 3.4.4 implies that the post-transplant rewards are

nonincreasing as a patient get sicker, or the quality of the offered liver is degraded for all

patient types. Furthermore, Assumption 3.4.5 indicates that the chance of receiving a higher

quality liver offer is nondecreasing as a patient gets sicker for all patient types. Note that

these assumptions are clinically reasonable and are supported by clinical data, as shown in

Section 3.7. In Proposition 3.4.6 we show the intuitive facts that for a given updating scheme

x and a patient type k, (a) if the patient is in the healthiest status, then the remaining time

until the next required update is irrelevant, (b) it is better to have a liver offer with a higher

quality, (c) it is better to have a sicker health status recorded by UNOS, and (d) it is better

to have more time left until the next required updating time.

Proposition 3.4.6. Given an updating scheme x and a patient type k, for τ < τx(m):

(a). vkx(h,M1, τ, `) is constant in τ for all h and `.

(b). Under Assumption 3.4.4, vkx(h,m, τ, `) is decreasing in ` for each h, m, τ .

(c). Under Assumptions 3.4.4 and 3.4.5, vkx(h,m, τ, `) is increasing in m for each h, τ , `.

(d). Under Assumptions 3.4.4 and 3.4.5, vkx(h,m, τ, `) is increasing in τ for each h, m, `.

Proof. We proceed with the steps of the value iteration algorithm, with vn,kx (h,m, τ, `) as

the value function at the nth step of the algorithm, for patient type k and a given updating

scheme x. Additionally, let vn,kx,a be the value function in step n of the algorithm when action

a ∈ {DN,U, T} is chosen.

(a). Without loss of generality, let v0,kx (h,M1, τ, `) = 0 for h ∈ SH , τ ∈ F and ` ∈ SL.

Additionally, assume that vn,kx (h,M1, τ, `) is constant in τ < τx(M1) for h ∈ SM , ` ∈ SL,

and n = 1, ..., u. Thus, when the patient chooses to do nothing for τ < τx(m):

vu+1,k
x,DN (h,M1, 0, `) = rkDN (h) + λ

∑

h′∈SH

Hk(h′|h)




∑

`′∈SL
Lk(`

′ |M1)v
u,k
x (h′,M1, τx(M1)− 1, `′)





= rkDN (h) + λ
∑

h′∈SH

Hk(h′|h)




∑

`′∈SL
Lk(`

′ |M1)v
u,k
x (h′,M1, τ − 1, `′)





(3.22)

= vu,kx,DN (h,M1, τ, `),
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where (3.22) follows from the induction hypothesis. Note that vu+1,k
x,U (h,m, τ, `) and

vu+1,k
x,T (h,m, τ, `) are constant in τ < τx(M1) by definition, hence, the result directly

follows.

(b). Note that vkx,U(h,m, τ, `) and vkx,DN(h,m, τ, `) do not depend on `, and vkx,T (h,m, τ, `) is

decreasing in ` due to Assumption 3.4.4.

(c). By induction on the steps of value iteration algorithm, assume that vn,kx (h,m, τ, `) is in-

creasing in m for h ∈ SH , τ < τx(m), ` ∈ SL and n = 1, ..., u. Consider vu+1,T
x,DN (h,m, τ, `)

for 1 ≤ τ < τx(m):

vu+1,k
x,DN (h,m, τ, `) = rkDN(h) + λ

∑

h′∈SH

Hk(h′|h)
{∑

`′∈SL
Lk(`

′|m)vu,kx (h′,m, τ − 1, `′)

}

≤ rkDN(h) + λ
∑

h′∈SH

Hk(h′|h)
{∑

`′∈SL
Lk(`

′|m+ 1)vu,kx (h′,m, τ − 1, `′)

}

(3.23)

≤ rkDN(h) + λ
∑

h′∈SH

Hk(h′|h)
{∑

`′∈SL
Lk(`

′|m+ 1)vu,kx (h′,m+ 1, τ − 1, `′)

}

(3.24)

= vu+1,k
x,DN (h,m+ 1, τ, `).

Inequality (3.23) follows by Assumption 3.4.5, Proposition 3.4.6 part (b) and Lemma

4.7.2 in [94]. Finally, inequality (3.24) follows by the induction. Note that by definition,

vu+1,k
x,U (h,m, τ, `), vu+1,k

x,U (h,m, τ, `) and vu+1,k
x,DN (h,m, 0, `) do not depend on m, hence, the

result follows.
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(d). By induction on the steps of value iteration algorithm, assume that vn,kx (h,m, τ, `) is

increasing in τ < τx(m) for h ∈ SH , m ∈ SM , ` ∈ SL and n = 1, ..., u.

vu+1,k
x,DN (h,m, 0, `) = rkDN(h) + λ

∑

h′∈SH

Hk(h′|h)
{∑

`′∈SL
Lk(`

′ |M1)v
u,k
x (h′,M1, τx(M1)− 1, `′)

}

≤ rkDN(h) + λ
∑

h′∈SH

Hk(h′|h)
{∑

`′∈SL
Lk(`

′|m)vu,kx (h′,M1, τx(M1)− 1, `′)

}

(3.25)

= rkDN(h) + λ
∑

h′∈SH

Hk(h′|h)
{∑

`′∈SL
Lk(`

′ |m)vu,kx (h′,M1, 0, `
′)

}
(3.26)

≤ rkDN(h) + λ
∑

h′∈SH

Hk(h′|h)
{∑

`′∈SL
Lk(`

′|m)vu,kx (h′,m, 0, `′)

}
(3.27)

= vu+1,k
x,DN (h,m, 1, `),

where the inequality (3.25) follows by Assumption 3.4.5, Proposition 3.4.6 part (b) and

Lemma 4.7.2 in [94]. Inequality (3.26) follows by Proposition 3.4.6 part (a) and inequality

(3.27) follows by Proposition 3.4.6 part(b). Now, when 0 < τ < τx(m):

vu+1,k
x,DN (h,m, τ, `) = rkDN(h) + λ

∑

h′∈SH

Hk(h′|h)
{∑

`′∈SL
Lk(`

′|m)vu,kx (h′,m, τ − 1, `′)

}

≤ rkDN(h) + λ
∑

h′∈SH

Hk(h′|h)
{∑

`′∈SL
Lk(`

′|m)vu,kx (h′,m, τ, `′)

}
(3.28)

= vu+1,k
x,DN (h,m, τ + 1, `),

where inequality (3.28) follows by induction. Note that when τ ≥ τx(m) the result

directly follows by the definition of impediment values in model formulation. Finally,

vu+1
x,a (h,m, τ, `) is independent of τ for a ∈ {U, T} which concludes the proof.
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In Proposition 3.4.7, we show the existence of a liver-based control limit optimal policy

[6], based on the liver quality, the time remaining until the next updating requirement, and

patient’s last reported health status for all patient types. Control-limit policies are easier

to implement and provide insights to devise computationally enhanced solution methods

to USDP[µ]. In Proposition 3.4.7, we establish the existence of a critical liver quality `∗

where it is optimal to accept the liver offer of quality ` for all ` ≤ `∗, and do nothing or

transplant otherwise. In (b) and (c), we show the existence of such optimal policies based on

the remaining time until the next required update and patient’s last reported health status,

respectively.

Proposition 3.4.7. Given an updating scheme x, for all patient types 1 ≤ k ≤ K and

τ < τx(m) where m ∈ SM :

(a). Under Assumption 3.4.4, for a given h,m, τ , there exists a liver quality `∗ such that

transplanting is optimal for ` ≤ `∗ and doing nothing or updating is optimal otherwise.

(b). Under Assumptions 3.4.4 to 3.4.5, for a given h,m, ` there exists a time remaining until

next required update τ ∗ such that doing nothing is optimal for τ ≥ τ ∗ and transplanting

or updating is optimal otherwise.

(c). Under Assumptions 3.4.4 to 3.4.5, for a given h, τ, ` there exists a MELD score m∗

such that doing nothing is optimal for m ≤ m∗ and transplanting or updating is optimal

otherwise.

Proof. Given an updating scheme x, for all patient types 1 ≤ k ≤ K and τ < τx(m) where

m ∈ SM :

(a). The result follows by Proposition (3.4.6) part (b), since vk,DN
x (h, `) and vk,Ux (h) are

constant in ` and vk,Tx (h, `) is decreasing in `.

(b). The result follows by Proposition (3.4.6) part (c), since vk,Tx (h, `) and vk,Ux (h) are constant

in ` and vk,DN
x (h, `) is increasing in τ .

(c). The result follows by Proposition (3.4.6) part (d), since vk,Tx (h, `) and vk,Ux (h) are con-

stant in ` and vk,DN
x (h, `) is increasing in m.
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3.5 MATHEMATICAL FORMULATION OF USDP[µ]

In Section 3.3, we defined µ as the minimum desired level of reduction in the data processing

burden, i.e., the minimum desired increase in system efficiency. We further noted that the

objective of USDP[µ] is to determine an updating scheme that minimizes the expected system

inequity while preserving a minimum desired level of reduction in the data processing burden

µ. Considering the design decision variables x as defined in Section 3.3, the mathematical

formulation of USDP[µ] is as follows.

USDP[µ] η(µ) = min Eξ[Q(x, ξk)] (3.29)

s.t. xij +
∑

j′∈F ,j′>j

x(i+1)j′ ≤ 1, i ∈ SM \ {Mmax}, j ∈ F \ {Fmax}, (3.30)

∑
j∈F

xij = 1, i ∈ SM , (3.31)

Eξ[G(x, ξk)] ≥ µ, (3.32)

xij ∈ {0, 1}. (3.33)

The objective of the model (3.29) is to minimize the expected system inequity. Con-

straints (3.30) define monotone updating schemes that require patients to update no less

frequently as they get sicker. Constraints (3.31) assign an updating frequency for each

MELD score i, and constraint (3.32) ensures a reduction in the data processing burden no

less than µ.

3.5.1 A Decomposition-based Algorithm for USDP[µ]

In Section 3.4.3, we explored the properties of patients’ optimal policies and value functions

under different updating schemes. These properties provide deeper insights into the expected

recourse function value of USDP[µ] that enable devise of a computationally decomposition-

based solution method.

38



Definition Amonotonic updating scheme x is frequency-wise dominated by updating scheme

x̂ if

∑

i∈SM


 ∑

j≥τ x̂(i)

xij −
∑

j<τ x̂(i)

xij


 = |SM |,

and is denoted by x̂ 4 x.

Intuitively, for any two monotonic updating schemes x and x̂ where x 4 x̂, the frequency-

wise dominated updating scheme x̂ increases patients’ gaming ability, but reduces the data

processing cost. Proposition 3.5.1 provides insights on these intuitive facts where we com-

pare two monotonic updating schemes x and x̂ when x 4 x̂. This proposition indicates that

(i) a frequency-wise dominated updating scheme is preferable from a patient perspective by

increasing patients’ expected life, and (ii) focusing on societal perspective, the dominant up-

dating scheme yields a higher reduction in data processing burden, compared to a dominated

updating scheme.

Proposition 3.5.1. Under Assumptions 3.4.4 and 3.4.5, for any monotonic updating scheme

x̂ that is frequency-wise dominated by x,

(1). vkx(h,m, τ, `) ≤ vkx̂(h,m, τ, `) for all h,m, τ, ` and 1 ≤ k ≤ K,

(2). U π̂k
x(h, h, τx(h)− 1, L+ 1) ≥ U π̂k

x̂(h, h, τ x̂(h)− 1, L+ 1) for all h and 1 ≤ k ≤ K.

Proof. (1). The proof for the case when τ ≥ τ x̂(m) for m ∈ SM , h ∈ SH and ` ∈ SL is

trivial by definition. Thus, we proceed by induction on the steps of the value iteration

algorithm for the case when τ < τ x̂(m). Let vn,kx (h,m, τ, `) and vn,kx̂ (h,m, τ, `) be the

value functions under updating schemes x and x̂ in the nth step of the value iteration

algorithm. Without loss of generality, let v0,kx (h,m, τ, `) = v0,kx̂ (h,m, τ, `) = 0 for all

h,m, τ and ` and assume that vn,kx (h,m, τ, `) ≤ vn,kx̂ (h,m, τ, `) for n = 1, ..., u. Note

that vu+1,k
x,T (h, `) ≤ vu+1,k

x̂,T (h, `) since they are independent of τ . Now, for any h ∈ SH ,

m ∈ SM , τ < τ x̂(m) and ` ∈ SL, we have:
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vu+1,k
x̂,U (h,m, τ, `) = rkU (h) + λ

∑

h′∈SH

Hk(h′|h)




∑

`′∈SL
Lk(`

′ |m)vu,kx̂ (h′, h, τ x̂(h)− 1, `′)





≥ rkU (h) + λ
∑

h′∈SH

Hk(h′|h)




∑

`′∈SL
Lk(`

′ |m)vu,kx̂ (h′, h, τx(h)− 1, `′)



 (3.34)

≥ rkx,U (h,m, τ, `) + λ
∑

h′∈SH

Hk(h′|h)




∑

`′∈SL
Lk(`

′ |m)vu,kx (h′, h, τx(h)− 1, `′)





(3.35)

= vu+1,k
x,U (h,m, τ, `), (3.36)

where inequality (3.34) follows from by Proposition 3.4.6 part (d) since vkx̂(h,m, τ, `)

is increasing in τ < τ x̂(m), and inequality (3.35) follows by the induction assumption.

Next, for any h ∈ SH , m ∈ SM , τ < τ x̂(m) and ` ∈ SL, we have:

vu+1,k
x̂,DN (h,m, τ, `) = rkDN(h) + λ

∑

h′∈SH

Hk(h′|h)
{∑

`′∈SL
Lk(`

′|m)vu,kx̂ (h′,m, τ − 1, `′)

}

≥ rkx,DN(h,m, τ, `) + λ
∑

h′∈SH

Hk(h′|h)
{∑

`′∈SL
Lk(`

′ |m)vu,kx (h′,m, τ − 1, `′)

}

(3.37)

= vu+1,k
x,DN (h,m, τ, `), (3.38)

where inequality (3.37) follows by the induction assumption. Finally, for any h ∈ SH ,

m ∈ SM , τ = 0 and ` ∈ SL, we have:

vu+1,k
x̂,DN (h,m, 0, `) = rkDN(h) + λ

∑

h′∈SH

Hk(h′|h)
{∑

`′∈SL
Lk(`

′|M1)v
u,k
x̂ (h′,M1, τ x̂(M1)− 1, `′)

}

≥ rkDN(h) + λ
∑

h′∈SH

Hk(h′|h)
{∑

`′∈SL
Lk(`

′ |M1)v
u,k
x̂ (h′,M1, τx(M1)− 1, `′)

}

(3.39)

≥ rkx,DN(h,m, 0, `) + λ
∑

h′∈SH

Hk(h′|h)
{∑

`′∈SL
Lk(`

′ |M1)v
u,k
x (h′,M1, τx(M1)− 1, `′)

}

(3.40)

= vu+1,k
x,DN (h,m, 0, `), (3.41)
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where inequality Proposition 3.4.6 part (d) since vkx̂(h,m, τ, `) is increasing in τ < τ x̂(m),

and inequality (3.40) follows by the induction assumption. Considering,

vu+1,k
x̂ (h,m, τ, `) =




max{vu+1,k

x̂,T (h, `), vu+1,k
x̂,DN (h,m, τ), vu+1,k

x̂,U (h)} ∀h,m, τ, ` < L+ 1,

max{vu+1,k
x̂,DN (h,m, τ), vu+1,k

x̂,U (h)} ∀h,m, τ, ` = L+ 1,

and

vu+1,k
x (h,m, τ, `) =




max{vu+1,k

x,T (h, `), vu+1,k
x,DN (h,m, τ), vu+1,k

x,U (h)} ∀h,m, τ, ` < L+ 1,

max{vu+1,k
x,DN (h,m, τ), vu+1,k

x,U (h)} ∀h,m, τ, ` = L+ 1,

and inequalities (3.36), (3.38) and (3.41), we conclude that vu+1
x̂ (h,m, τ, `) ≥ vu+1

x (h,m, τ, `)

for all h,m, τ, `.

(2). Let π̂k
x and π̂k

x̂ be the optimal policies of patient type k for given updating schemes x

and x̂, respectively. Consider a Markov reward process induced by these optimal policies

for each updating scheme. In this reward process, we consider a unit cost when the

patient updates and no cost for doing nothing or transplant decisions. Hence, for a

given discount factor λ ∈ [0, 1), U π̂k
x(h, h, τx, `) and U π̂k

x̂(h, h, τx̂, `) are the total expected

discounted cost of the associated reward process for a patient with health state h and no

liver offer at the time of listing under updating schemes x and x̂, respectively. The state of

the process under each updating scheme is denoted by (h,m, τx, `) and (h,m, τx̂, `), where

τx ≤ τx̂ for all h,m and ` by definition. Note that: (i) vkx̂,U(h,m, τ, `) and vkx̂,T (h,m, τ, `)

are independent of τ for τ < τ x̂, and (ii) vkx̂,T (h,m, τ, `) is increasing in τ for τ < τ x̂

by Proposition 3.4.7 part (d). This implies that if updating is an optimal decision in

(h,m, τ, `) for τ < τ x̂, then it is also optimal for all (h,m, τ ′, `) where τ ′ ≤ τ .

This USDP[µ] model is a variant of SPAR [8, 30]. Motivated by this general modeling

framework, our proposed model is also a two-stage stochastic programming model where:

(i) design decisions are made in the face of uncertainty in the patient population, and (ii)

patients’ long-run decisions are modeled as MDPs. Moreover, our proposed model can

also be formulated as a special case of a discounted zero-sum stochastic game [48, 61].
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However, a stochastic game model of this problem requires a state-space description for

every feasible updating scheme which makes the problem computationally intractable due to

the exponential number of such designs. We refer the reader to [8] for a more comprehensive

discussion of the modeling frameworks in similar design problems.

The computational efficiency of traditional L-shaped method [114] can be improved,

depending on the special structure of some two-stage stochastic programs. Solving USDP[µ]

involves determining the second-stage recourse function value as a solution to a number

of patients’ MDPs. However, solving an extended linear programming formulation of the

recourse model is not usually computationally appealing since the MDPs can be efficiently

solved using other more enhanced techniques. Hence, we resort an alterative decomposition

algorithm that lend itself to the underling special structure of USDP[µ].

Our decomposition algorithm to solve USDP[µ], is motivated by [72] and [73] on two-stage

stochastic programming problems with pure first-stage binary decision variables. Laporte

and Louveaux [72] present an algorithm to solve this class of problems by deriving a set of

supporting hyperplanes, each associated with a feasible first-stage binary solution. The set

of supporting hyperplanes, as a set of optimality cuts, are used to approximate the second-

stage value function. Their assumptions in deriving these hyperplanes are that there exists a

valid lower bound for the second-stage objective function, and that the second-stage problem

is well-defined for each feasible first-stage solution. The latter assumption is referred as the

relatively complete recourse assumption in the stochastic programming literature [18].

We refer to the algorithm in [72] as the L2 algorithm. However, before we present the

details of our proposed algorithm, we need to mention an important issue with the original

optimality cuts used in the L2 algorithm. The issue is associated with the weakness property

of these cuts in the sense that there is little chance that they will result in a non-trivial lower

bound to any feasible first-stage solution other than the one for which the cut was made.

Consequently, the algorithm often involves a total enumeration of the first-stage solution

space in most computational experiments. However, for some special problem instances, it

is possible to improve these cuts using the extra information gleaned from the structural

properties of the second-stage objective function. Let Q(x) be the expected second-stage

objective function of USDP at a feasible first-stage solution, denoted by Q(x) = Eξ̃[Q(x, ξ̃)].
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Proposition 3.5.2. For any feasible first-stage solution x̂ to USDP[µ],

Q(x̂)


 ∑

i∈SM





∑

j≥τ x̂(i)

xij −
∑

j<τ x̂(i)

xij



− (|SM | − 1)


 (3.42)

is a supporting hyperplane of Q(x) at x̂.

Proof. For a given updating scheme x̂, any binary decision vector x satisfying (3.30), (3.31),

and

∑

i∈SM


 ∑

j≥τ x̂(i)

xij −
∑

j<τ x̂(i)

xij


 = |SM | (3.43)

denotes an updating scheme x̂ 4 x with x = x̂ if and only if xij = x̂ij for all i ∈ SM , j ∈ F .

Thus, Proposition 3.5.1 part (a) indicates that:

ωk
x̂(h) =

vkx̂(h, h, τ x̂(h)− 1, L+ 1)− vkxw
(h, h, τxw(h)− 1, L+ 1)

vkxw
(h, h, τxw(h)− 1, L+ 1)

× 100

≤ vkx(h, h, τx(h)− 1, L+ 1)− vkxw
(h, h, τxw(h)− 1, L+ 1)

vkxw
(h, h, τxw(h)− 1, L+ 1)

× 100

= ωk
x(h).

Hence, Q(x̂) ≤ Q(x) by (3.20). Finally, a similar argument shows that Q(x) ≥ 0 for any

updating scheme x such that xw 4 x which completes the proof.

By Proposition 3.5.2, we derive a supporting hyperplane for Q(x) at each feasible first-

stage solution vector x. These supporting hyperplanes are induced by patients’ optimal

policies through the MDP problems under scenarios k = 1, ..., K. In addition, there are

finitely many first-stage solutions that each determines an updating scheme. Hence, approx-

imating the second-stage objective function using these hyperplanes guarantees convergence

to an optimal first-stage solution for USDP.

We refer to a binary first-stage decision vector x as a “relaxed monotonic solution”

(RMS), if it satisfies constraints (3.30) and (3.31). Additionally, an RMS solution is called

“feasible monotonic solution” (FMS) at a desired level of efficiency µ, if it also satisfies

(3.32). Hence, the set of all feasible first-stage solutions of USDP consists of all possible

FMS solutions, denoted by X(µ). Next, we using the structural properties of the second-

stage MDPs, we introduce a set of valid inequalities for X(µ).
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Proposition 3.5.3. For a given RMS, x̂ 6∈ X(µ), the constraint

∑

i∈SM

∑

j≤τ x̂(i)

xij ≤ |SM | − 1 (3.44)

is a valid inequality for X(µ).

Proof. Given an RMS denoted by x that violates (3.44), Proposition 3.5.1 part (b), and

equations (3.17), (3.21) indicate that Eξ[G(x, ξ)] ≤ Eξ[G(x̂, ξ)], that shows x 6∈ X(µ).

Therefore, if (x∗, θ∗) is an optimal solution to the following MIP, referred as the “revised

formulation” (RF):

[RF ] η(µ) = min θ (3.45)

s.t. θ ≥ Q(x̂)


 ∑

i∈SM





∑

j≥τ x̂(i)

xij −
∑

j<τ x̂(i)

xij



− (|SM | − 1)


 , ∀x̂ ∈ X(µ), (3.46)

x ∈ X(µ), θ ∈ R, (3.47)

then x∗ is an optimal first-stage solution of USDP. The objective function in RF involves θ,

that approximates the second-stage objective function value.

Based on Proposition 3.5.2, each constraint (3.46) is a supporting hyperplane for the

second-stage objective function at x̂ ∈ X(µ), providing a lower bound for θ. These con-

straints are regarded as strengthened optimality cuts in our application. The set of all FMS

solutions X(µ), is exponential in size and impractical to enumerate explicitly. Additionally,

constraints (3.32) can further complicate identifying those solutions in X(µ). In order to

overcome the computational difficulty of determining X(µ), we propose a decomposition

method that works on a so called, “master problem” (MP). The MP initially relaxes RF

in two ways by: (i) relaxing the efficiency constraints (3.32) to identify X(µ); and (ii) the
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optimality constraints (3.46). We modify MP by dynamically introducing a set of feasibility

and optimality cuts at each RMS solution. Our proposed initial master problem is as follows:

[MP ] η(µ) = min θ

s.t. (3.30)− (3.31),

xij ∈ {0, 1}, i ∈ SM , j ∈ F ,

θ ∈ R.

Next, we present an algorithm to gradually modify the MP. At each iteration of the

algorithm, a master module solves the MP and attains an optimal RMS, xν , as well as an

approximate value of the second-stage objective function θν , with ν as the iteration number.

Next, these optimal solutions are passed to a worker module. The worker is comprised of

three submodules: (1) a submodule to solve the proposed patient’ MDPs problems under

each scenario for the given RMS solution; (2) a submodule to derive a feasibility cut in case

the efficiency requirement is violated; (3) a submodule to determine an improved optimality

cut if it is violated. The algorithm proceeds by iteratively introducing the violated feasibility

and optimality cuts into the MP until no feasibility and optimality requirements are violated,

terminating with an optimal solution for USDP. The general formulation of the MP problem

at iteration ν to determine η(µ) with D and Y(µ) as the sets of optimality and feasibility

cuts is:

[MP ν ] min θ

s.t. (3.30), (3.31)

θ ≥ Q(xd)


 ∑

i∈SM





∑

j≥τ
xd

(i)

xij −
∑

j<τ
xd

(i)

xij



− (|SM | − 1)


 , d ∈ D,

∑

i∈SM

∑

j≤τxy (i)

xij ≤ |SM | − 1, y ∈ Y(ν),

xij ∈ {0, 1}, i ∈ SM , j ∈ F ,

θ ∈ R,
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Algorithm 1. A Decomposition Algorithm to Solve USDP[µ]

Step 0. (Initialization) Set the iteration count ν := 0.

Step 1. Set ν := ν + 1 and solve MP. Let (xν , θν) be an optimal solution.

Step 2. Solve the induced MDP model (3.4) for each scenario k = 1, ..., K for xν , and

determine patient’s optimal policy πk
xν and life expectancy vkxν .

Step 3. (Feasibility Check) Calculate Eξ̃[G(xν , ξ̃)] using πk
xν , k = 1, ..., K by (3.21). If

Eξ̃[(x
ν , ξ̃)] ≤ µ− ε for some ε > 0, add the constraint

∑

i∈SM

∑

j≤τxν (i)

xij ≤ |SM | − 1

to Y(µ) and return to Step 1.

Step 4. (Optimality Check) Calculate Q(xν) = Eξ̃[Q(xν , ξ̃)] using vkxν , for k = 1, ..., K by

(3.20). If θν ≥ Q(xν), then (xν , θν) is the optimal solution for USDP and terminate,

otherwise, add constraint

θ ≥ Q(xν)


 ∑

i∈SM





∑

j≥τxν (i)

xij −
∑

j<τxν (i)

xij



− (|SM | − 1)




to D and return to Step 1.

3.6 APPROXIMATING THE EFFICIENT FRONTIER OF UPDATING

SCHEMES

As noted in Section 3.5, the USDP[µ] model is to determine an updating scheme that min-

imizes the expected system inequity subject to a given desired level of system efficiency µ.

We proposed a decomposition-based algorithm that utilizes the structural properties of this

parametric model in order to determine the optimal updating scheme.
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In this section, we seek to approximate the efficient frontier of Pareto optimal solutions.

To do so, we extend the previously discussed algorithm in Section 3.5.1, where several in-

stances of the parametric model, each associated with a specific desired level of improvement

in system efficiency, are solved repeatedly in an iterative process.

Let µmin and µmax denote the minimum and maximum attainable reduction in data

processing burden, i.e., improvement in system efficiency, through revising the updating

requirements, respectively. Recall that µmin is associated with an updating scheme that

requires patients to report their health status to the most frequent extreme, i.e, at each

decision epoch in patient’s decision process. Conversely, an updating scheme that allows

patients to update their health status with the least frequency Fmax, improves the system

efficiency to its maximum possible value µmax. Recall that we represented the minimum

attainable inequity value for a given efficiency measure µ with η(µ). We approximate the

actual efficient frontier by finding η(µ), where µmin ≤ µ ≤ µmax and µ are gradually increased

starting at µ = µmin, and enumerating the nondominated solutions on our path. Hence, we

employ the ε-constraint method [26, 42, 44] within an iterative procedure to find the Pareto-

optimal set of the system. The following lemma indicates that the minimum attainable

system inequity is not decreased as the efficiency measure µ increases.

Lemma 3.6.1. η(µ) ≤ η(µ̂) for µ ≤ µ̂.

Proof. For µ ≤ µ̂, constraint (3.32) implies X(µ̂) ⊆ X(µ).

As a result of Lemma 3.6.1, our proposed algorithm can be employed to approximate the

actual efficient frontier of Pareto-optimal solutions to any level of accuracy, depending on the

level of increase in the value of µ at each iteration. We consider a stationary level of increase

in the value of µ in the iterative method, denote it by δ. As supported by our computational

results in Section 3.7, the optimality and feasibility cuts obtained while finding each η(µ)

provide additional information to ease the computational effort in the subsequent iterations,

and substantially decreases the overall solution time. Hence, we extend Algorithm 1 to

exploit the information obtained from optimality and feasibility cuts in earlier iterations in

order to enhance the overall performance of the algorithm to determine the efficient frontier.
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We denote the set of all updating schemes forming the efficient frontier of the Pareto-

optimal solutions by Bδ. Similar to the notation in Section 3.5.1, D and Y are the sets of

optimality and feasibility cuts at each iteration, respectively. The schematic representation

of the iterative algorithm to determine the efficient frontier of the Pareto-optimal solution

is as follows:

Algorithm 2. Algorithm to Approximate the Efficient Frontier of Pareto

Optimal Solutions

Step 0: Set n, u = 0, t = 1, D = Y = Ø and µt−1 = µmin.

Step 1: Solve MP with (xu, θu) be the optimal solution at iteration u.

Step 2: Solve the induced patient decision-making model (3.4) for each patient type

k = 1, ..., K given xu. Determine patient’s optimal policy πk
xu and life expectancy vkxu .

Step 3: Calculate Eξ̃[G(xu, ξ̃)] using πk
xu , k = 1, ..., K by (3.21). If Eξ̃[(x

u, ξ̃)] ≤ µt − ε for

some ε > 0, then add constraint

∑

i∈SM

∑

j≤τxu (i)

xij ≤ |SM | − 1

to Y , return to Step 1.

Step 4. Calculate Q(xu) = Eξ̃[Q(xu, ξ̃)] using vkxu , for k = 1, ..., K by (3.20). If θu ≥ Q(xu),

set f t
1 = Q(xu) and f t

2 = Eξ̃[G(xu, ξ̃)] , go to Step 5. Otherwise, add constraint

θ ≥ Q(xu)


 ∑

i∈SM





∑

j≥τxu (i)

xij −
∑

j<τxu (i)

xij



− (|SM | − 1)




to D and return to Step 1.

Step 5. If f t
1 − ε ≥ f t−1

1 for t ≥ 1 and some ε > 0 where f 0
1 = 0, then set n ← n+ 1,

(fn
1 , f

n
2 ) ← (f t−1

1 , f t−1
2 ), and xu to Bδ.

Step 6. If fn
2 + δ ≥ µmax, then terminate, otherwise, let t ← t+ 1, u ← u+ 1, and

µt = fn
2 + δ. Go to step 1.
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3.7 NUMERICAL STUDY

In this section, we first describe parameter estimation and the design of our numerical

experiments. We then focus on a patient’s perspective and illustrate how a patient can

benefit through information asymmetry in the current updating scheme of UNOS. Finally,

we provide a detailed discussion on how to alleviate these concerns and present alternative

updating schemes by changing the health reporting requirements. These results consist of

the efficient frontier of Pareto-optimal updating schemes and those that improve upon the

solutions proposed in [62].

3.7.1 Parameter Estimation and Implementation Details

As noted in Section 3.3, we capture the uncertainty in the cohort of patients on the liver

waiting list by considering a finite set of patient types. We consider a patient’s age, liver

disease type, and gender as the main clinical and demographical factors to identify different

patient types. Specifically, we focus on three age categories: 22 or younger, 23 to 59, and 60

or older, and five classes of ESLD [5, 6]. We use publicly available liver data provided by

UNOS to calibrate the patient MDPs. Similar to [62], we fixed other patient characteristics

to the most commonly occurring ones in the population. We define each period to be one

week where the objective is to maximize the patient’s total expected remaining lifetime. To

differentiate between the times that a patient is not updating and when patient is going to

a physician to perform clinical tests for updating, we set the rewards of doing nothing to

1.00 and updating to 0.95, respectively. For each patient type k, the patient-specific post-

transplant rewards Rk(h, `), ∀h, ` < L + 1 are estimated using the post-transplant survival

model of [101]. The data satisfy Assumption 3.4.4 and are described in Alagoz et al. [6].

The health transition probability matrices for each patient type Hk , k = 1, ..., K, are

estimated as in [6] and [62]. Due to the limitation in existing comprehensive data on the

natural history of liver disease, Alagoz et al. [6] estimate health transition probability

matrices for different disease groups using the natural history model (NHM) [3]. The NHM

as an empirical stochastic model uses cubic spline function to estimate incomplete lab values
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to calculate MELD scores. In this model patients are classified based on their disease group

and location, where for each disease group, cubic splines are sampled at daily intervals

for those at the hospital and in the intensive care unit (ICU), and at monthly intervals for

patients at home to determine the complete history. These simulated lab values are employed

to obtain MELD scores.

As noted earlier, we exclude Status 1A patients in our calculations and focus on MELD

adult ESLD patients. Due to the sparsity of available data, Alagoz et al. [6] represent patient

health by MELD scores aggregated in groups of two. However, we use a different aggregation

scheme, similar to [62] to facilitate computational tractability. Içten [62] considers a MELD

score aggregation scheme where the MELD scores (6-10) are aggregated into one group and

the next eight MELD scores are aggregated into two groups of four (11-14 and 15-18). She

further aggregates the remaining MELD scores as in [6] into groups of two.

We estimate Lk for k = 1, ..., K similar to the liver classification in [6]. Alagoz et al.

[6] consider 14 liver qualities as determined by the age, race, and gender of the donor [101].

We refer the reader to [6] for details of the liver quality assignment scheme. We consider a

national liver waiting list in our experiments, hence, the liver arrival probability matrices in

our model are not patient type dependent. Içten [62] used the following metric:

ε = max
n,m

{
max{0,

L+1∑

`=n

L(`|m+ 1)− L(`|m)}
}
, (3.48)

for n = 1, ..., L+ 1 and m = 1, ..., H − 1 to quantify the violation of Assumption 3.4.5. She

reported a maximum violation of 0.0128 in only two rows of L.
We consider an annual discount rate of 0.97 in the MDPs for all patient types. Fur-

thermore, for each patient type, we solve the MDP model presented in Section 3.4 using

Gauss-Seidel modified policy iteration [94]. As a common assumption in previous studies

[4, 5, 6, 104], we assume that all other patients behave as they do now when determining an

optimal accept/reject/update policy for each patient type. We used an Intel Xeon machine

with 3.20 GHz CPU and 12 GB of RAM for our computational tests, and implemented the

optimization algorithms using C and Cplex 12.4 Callable Library.
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3.7.2 Evaluating Patients’ Behavior

Our objective in this section is to evaluate the effect of information asymmetry due to

patients’ gaming ability in the liver allocation system from a patient perspective.

Figure 6: Optimal transplant behavior of patient under UNOS updating for τ = 0 compared

to a weekly updating scheme

Similar to [62], we first compare the optimal policy for a 40-year-old male patient from

disease group 1 under the current updating scheme of UNOS to his optimal updating policy

under the updating scheme with no information symmetry [6]. This disease group includes

primary biliary cirrhosis, primary sclerosing cholangitis, alcoholic liver disease, and autoim-

mune disorders. Furthermore, consistent with [62] we focus on those states in which there is

no remaining time for the patient until the next required update, i.e., τ = 0. Figure 6 shows

our benchmark results indicating that the patient’s optimal liver threshold does not increase

under the current UNOS updating requirements. We observe that the current updating re-
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quirements result in more cautious patients with respect to organ quality, i.e., the patient is

more likely to accept an organ offer of higher quality compared to the case where he has no

gaming opportunity due to the flexibility in reporting his health. Our results show a similar

behavior for all other patient types.

Next, we examine the degree to which a patient can benefit under the current UNOS

updating scheme. To do so, for all male patients of ages 22, 40 and 60 in each disease

group, we calculate: (i) the average percentage increase in their lifetime, and (ii) the average

percentage decrease in expected number of updates, compared to the updating scheme with

no information asymmetry, as described in Section 3.4. Because our numerical experiments

show similar trends for female patients, we only report the results for male patients. More

specifically, we consider the two following cases. First, we focus on a case where updating

incurs no inconvenience to the patients, i.e., equal immediate updating and doing reward in

patients’ MDPs as it appears in [62]. Second, we evaluate the effect of updating dissatisfac-

tion on patients’ benefits.

Figure 7 illustrates our results for the former case with rkDN(h) = rkU(h) = 1.00 for all

patient types, k ∈ Ξ, and health statuses h ∈ SM . These results are consistent with those

reported in [62] showing that: (i) patients with relatively healthy and sick initial MELD

scores benefit less than those with mid-range initial MELD scores in both disease groups,

and (ii) patients in disease group 2 benefit more than those in disease group 1. The intuition

behind observation (i) is that the MELD scores changes are typically slow over time in

ESLD patients. Hence, those patients with initially healthy MELD scores often spend a fair

amount of time having a MELD score in which they are unlikely to receive offers, regardless

of whether or not they report minor improvements in their MELD score. Also, initially very

ill patients are very close to death and receive frequent organ offers, leaving them little room

to benefit. Furthermore, the intuition behind observation (ii) is that the diseases in group 1

are more aggressive than those in group 2. Hence, the MELD score changes in disease group

2 patients are slower than those in disease group 1, leading to observation (ii) based on the

argument in (i).

However, when we penalize updating rewards so that rkU(h) = 0.95 and rkDN(h) = 1.00

for all patient types k ∈ Ξ, and h ∈ SM , we obtain a new set of intuitive insights on patients’
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Figure 7: Patient benefits under UNOS updating with same updating and do nothing rewards
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benefit, shown in Figure 8. These results show that the increase in the expected lifetime of

the patients with relatively healthy or relatively sick initial MELD scores is less than those

with mid-range MELD scores for both disease groups, similar to those observed for case

one when rkU(h) = rkDN(h). However, we observe a new trend in patients’ benefit through

the reduction in percentage expected number of updates. These results show that patients’

benefit is decreasing as they get sicker as apposed to our findings for the former case. The

intuition behind this observation is that the health status change is slow over time for the

ESLD patients and the healthier patients spend longer time in those states that require less

frequent updates due to the monotonicity of the updating schemes. Hence, healthier patients

are less likely willing to update unless there is a significant change in their health status.

This observation highlights the importance of patient dissatisfaction as when the objective

is to assess the effect of changes in updating reporting requirements.

3.7.3 Mitigating Information Asymmetry in Liver Allocation

In this section, we present sets of alternative updating schemes that: (i) dominate the current

updating scheme of UNOS with respect to both inequity and efficiency burdens, and (ii)

dominate the heuristically constructed updating schemes by Içten [62]. Finally, we present

the exact efficient frontier of all Pareto-optimal updating schemes. The system inequity and

efficiency metrics in this section are defined as descried in Section 3.4.

Içten [62] provides an approximate efficient frontier of Pareto-optimal updating schemes.

A noted earlier, these updating schemes are heuristically constructed. Hence, we first show

that USDP model can be employed to identify any solution that dominates her proposed

solutions. As shown in Table 2, she focuses on those monotonic updating schemes that are

compatible with the current MELD score aggregation approach in UNOS health reporting

requirements, i.e., curtain groups of MELD scores are required to assume the same updating

timeframe.

Our approach to determine the set of dominant solutions with respect to the ones in

Table 2 is as follows. We employ the USDP model for a given tolerance level µ on the

system efficiency as it appears in each row of Table 2, and determine a monotonic updating

54



Figure 8: Patient benefits under UNOS updating when updating is penalized

Table 2: List of updating schemes on the approximated efficient frontier proposed in [62]

MELD Score

6-10 11-18 19-24 25-40 System Inequity (%) System Efficiency (%)

12 12 1 1 0.48 37.52

53 24 2 1 0.67 43.62

53 24 4 1 0.83 46.93

53 53 4 4 2.81 66.67

12 12 12 8 3.70 76.22
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Table 3: Dominant updating schemes compared to [62]

MELD Score

6-10 11-18 19-24 25-40 System Inequity (%) System Efficiency (%)

18 18 2 1 0.43 38.10

10 10 7 1 0.57 45.01

46 46 7 1 0.79 48.39

53 37 6 5 2.70 67.00

39 39 9 9 3.53 77.66

scheme that minimizes the system inequity. These updating schemes are shown in Table 3

and Figure 9 illustrates their efficient frontier as apposed to the ones reported in Table 2.

Figure 9: Efficient frontier of updating schemes compared to [62]

Next, we focus on our main goal in this study that is to balance information asymmetry

and the data-processing burdens liver allocation system. To do so, we first restrict our

attention to monotonic updating schemes compatible with the MELD score aggregation

scheme of UNOS. Our results show that the UNOS updating scheme results in a 1.00%
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increase in the average life expectancy of the patients compared to the continuous updating

scheme which has no information asymmetry. On the other hand, it leads to a 46.06%

decrease in the average expected number of updates, i.e., reduction in the data-processing

burden. Figure 10 illustrates the set of all Pareto-optimal updating schemes denoted by

squares and the current updating scheme of UNOS as a triangle.

Figure 10: Efficient frontier of updating schemes compliant with the UNOS requirements

Figure 11: Efficient frontier of monotonic updating schemes
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Finally, in Figure 11 we present the exact efficient frontier of all monotonic updating

schemes regardless of the MELD aggregation approach in the current health reporting re-

quirements of UNOS. Our results show that the current updating requirements can be im-

proved with respect to both measures by requiring more frequent updates. Moreover, the

current classification of MELD scores into 4 groups in the UNOS’ updating requirements is

not efficient and disregards a set of other efficient updating schemes.

As summary, the results presented in this section show that the current UNOS’ updating

scheme results in a system inequity due the patients’ gaming ability. We showed that a

typical patient can benefit from the current updating requirements and increase his life

expectancy up to 1.00% and reduce the required data processing burden to 46.06% compared

to an updating scheme with no information asymmetry between the UNOS and patients.

Furthermore, our results indicate that the patients’ dissatisfaction factor due to updating

health status is crucial in determining the data processing burden of a typical updating

scheme.

3.8 CONCLUSION

In this chapter, we propose a multi-objective model to revise the current health reporting

requirements for the ESLD patients that: (i) minimizes the information asymmetry between

the UNOS and patients, and (ii) minimizes the current significant data processing burden.

This model focuses on both patients’ and the societal perspective. First, we extend the

prior patient decision-making problem to determine the optimal updating strategy and ex-

ploit the patients’ optimal policies to quantify the degree to which patients can benefit from

the flexibility in typical updating scheme. Second, combining stochastic programming and

multi-objective optimization models, we propose a model to determine an updating scheme

with minimum expected system inequity while ensuring a minimum desired level of reduc-

tion in the data processing burden. We further propose an iterative procedure using the

latter model to approximate the exact efficient frontier of Pareto optimal updating schemes

that improve the current reporting requirements with respect to one or both measures. We
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calibrate the model parameters using clinical data and our computational results using the

clinical data suggest that: (i) patients can benefit from the current UNOS’ updating require-

ments by increasing their expected lifetime compared to an updating scheme with perfect

information, (ii) healthier patients benefit more than the sicker patients under the current

UNOS’ updating scheme when reporting health status incurs dissatisfaction to the patients,

and (iii) requiring the sicker (healthier) patients to update more (less) frequently than they

must under the current policy can improve both metrics. We discuss the related future

research directions in Chapter 5.
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4.0 THE SURGICAL PATIENT ROUTING PROBLEM

4.1 INTRODUCTION

As we explained in Chapter 1, access to healthcare is a major problem faced by many pa-

tients. This issue is particularly important for rural patients or those who require special

medical care. Furthermore, we discussed that to alleviate patients transportation issues,

several organizations in the U.S. offer various transportation supports for patients, e.g., the

Beneficiary Travel plans by the Veterans Health Administration (VHA) [34]. Although the

volume of these services is increasing, the optimal design of such practices has attracted little

attention in the literature [24]. In Chapter 1 we discussed the complexity of surgery schedul-

ing process due to its dependency to many factors including resource availability [46]. When

a medical center provides transportation services, the problem becomes even more complex.

Unfortunately, planners typically ignore transportation considerations when scheduling med-

ical appointments [23, 24].

Motivated by our collaborations with Pittsburgh Veterans Health Administration (VHA)

hospital, in this chapter we propose an integrated approach that simultaneously considers

patient scheduling and vehicle routing decisions. We refer to this problem as the Surgi-

cal Patient Routing Problem (SPRP). Specifically, we focus on scheduling and routing of

the outpatient surgery requests, the requests that do not imply an overnight stay at the

hospital: patients arrive on a day of surgery and leave after the completion of the surgical

and post-operative procedures. The proposed approach assumes an open-booking scheduling

framework, where surgical resources are shared among specialty teams, individual surgeons

or surgical departments [56]. The planning horizon in SPRP is comprised of a finite number

of time stages, which might span multiple days. The decisions in the model can be described
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as a three-step process: assign surgeries to available time stages, schedule surgeries between

operating rooms (ORs) at each time stage, and, finally, determine the transportation plan

using a fleet of available vehicles.

The optimal decisions should minimize the total service cost of all patients, a cost that

is defined as a weighted sum of patient’s total travel time and the time spent at the hospital.

Since long travel and waiting times cause dissatisfaction among patients [57], the total service

cost adequately addresses the effectiveness of the appointment decisions. Maximizing on

patient satisfaction is in line with VA goals [24], however our model can be extended to

consider other objectives as well.

The remainder of this chapter is organized as follows. In Section 4.2, we briefly discuss

the literature on medical appointment scheduling problem and transportation models. We

conclude this section by identifying our contributions. In Section 4.3, we present a mixed

integer programming (MIP) formulation for the SPRP and discuss its computational com-

plexity. Next, we focus on a computationally tractable model, referred to as single-vehicle

surgical patient routing problem SSPRP, that captures the needs of low-volume rural hospi-

tals, where a relatively small number of surgeries are scheduled at each time stage. We show

that solving the extended MIP formulation of both models is computationally prohibitive.

To overcome this issues, we present an efficient set-partitioning formulation for the SSPRP

and describe a branch-and-price algorithm for this problem in Section 4.4. Furthermore, we

discuss several algorithmic strategies that enhance the performance of the proposed algo-

rithm. Extensive computational experiments using medical data are presented in Section

4.5 to evaluate the effectiveness of our approach and to estimate the value of integrating

surgery scheduling with routing decisions. We summarize general insights of our analysis

and conclude in Section 4.6.

4.2 PRIOR WORK AND OUR CONTRIBUTIONS

The medical appointment scheduling problem is an active research area [57]. More specifi-

cally, managing and planning of operating rooms has been extensively studied [20, 25, 56, 57].
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An extensive list of publications on operating room scheduling is maintained by [39]. The

problem introduced in this dissertation differs from the existing routing and transportation

models. In typical routing problems, such as the Vehicle Routing Problems, the objective

is to minimize the travel distance subject to vehicle capacity or time window constraints.

However, we consider a cost function that is defined as a sum of the total time that patients

spend at the hospital and their total travel time, allowing us to establish a balance between

the transportation and service costs. See [43, 71, 90, 98, 108, 113], for comprehensive reviews

of the models and solution approaches for similar problems.

Our routing model has many similarities to the Delivery-Man Problem or Traveling

Repairman Problem (TRP) and the K-Traveling Repairman Problem (KTRP) [49, 58, 78,

85, 99]. In the TRP the objective is to minimize the total arrival times to customers’

locations by a single vehicle, rather than minimizing the length of the tours. The KTRP is

a generalization of the TRP for multiple vehicles, where routing decisions are not limited to

a single vehicle, but involve a homogenous fleet of vehicles. If we assume identical surgery

durations, our model can be reduced to the KTRP. To the best of our knowledge, there is

no exact algorithm for the KTRP and our solution method is the first exact approach for

this type of problems.

Although scheduling medical appointments and vehicle routing problems have been ex-

tensively studied in the literature, to the best of our knowledge no previous work integrates

these two classes of problems into a single framework. Additionally, our notion of the total

service time cost is new in the medical appointment scheduling literature, as it is primarily

focusing at improving the quality of medical services from the patients’ perspective.

4.3 MATHEMATICAL FORMULATION

In this section, we introduce the SPRP model, a mathematical model that combines trans-

portation and surgery scheduling of elective outpatient surgery requests, using a set of avail-

able ORs, a given planning horizon, and a fleet of homogeneous vehicles. We briefly discuss

its complexity and focus on a computationally tractable case, exploit its structural proper-

ties, and reformulate it as a set-partitioning problem.
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4.3.1 General Surgical Patient Routing Problem

The planning horizon in the SPRP model consists of a number of time stages, which may

differ in duration. Figure 4.3.1 illustrates a planning horizon consisting of two days and

4 stages. At each stage, round-trip shared-type rides using a fleet of identical vehicles are

provided for the patients.

Figure 12: Planning horizon consisting of 2 days and 4 stages

The objective function is to minimize the total service time cost of the patients. As

mentioned earlier, each patient’s service cost is defined as the weighted sum of his/her total

travel cost (home-to-hospital and hospital-to-home) and the cost associated with his/her

time spent at the hospital. The home-to-hospital and hospital-to-home routes are referred

to as the pick-up and the drop-off routes, respectively. Specifically, each instance of the

SPRP is associated with the following set of parameters:

• N : a set of geographically dispersed patients, where |N | = n,

• K: a set of time stages, where |K| = K,

• B: a set of available ORs, throughout the planning horizon consisting of K stages,

• Bk: a set of available ORs at stage k ∈ K, Bk ∈ B,
• Qk: a set of available vehicles at stage k ∈ K,

• Lk
b : the session length of OR b ∈ Bk at stage k ∈ K,

• `ij: the travel time between patients i, j ∈ N ,

• di: the surgery duration of patient i ∈ N (including pre- and post-incision periods),

• κ: the capacity of each vehicle,
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• τ kb : the opening time of OR b ∈ Bk at stage k ∈ K (we assume that min
b,k

{τ kb } = 0),

• cr: the travel time cost, per patient per unit of travel time,

• ch: the hospital time cost, per patient per unit of time spent at the hospital.

We define the following set of decision variables:

• xqk
ijb ∈ {0, 1}: 1 if vehicle q at stage k picks up patient i immediately before patient j,

and patient i will be operated in OR b, and 0 otherwise,

• xqk
ijb ∈ {0, 1}: 1 if vehicle q at stage k drops off patient i immediately before patient j,

and patient i will be operated in OR b, and 0 otherwise,

• zib ∈ {0, 1}: 1 if patient i’s surgery is scheduled in OR b, and 0 otherwise,

• uiqk ∈ {0, 1}: 1 if vehicle q picks up patient i assigned to stage k, and 0 otherwise,

• uiqk ∈ {0, 1}: 1 if vehicle q drops off patient i assigned to stage k, and 0 otherwise,

• ηijb ∈ {0, 1}: 1 if patients i and j are both assigned to OR b, and the surgery for patient

i precedes the surgery of patient j, and 0 otherwise,

• tkiq: pick-up time of patient i by vehicle q assigned to stage k,

• t
k
iq: drop-off time of patient i by vehicle q assigned to stage k,

• skib: start time of patient i’s surgery in OR b at stage k.

Note that tkiq is defined with respect to the earliest OR’s opening time (which is assumed

to be time 0); thus, it can possibly take negative values if patients arrive before the earliest

OR’s opening time.

Let G = (Ñ ,A) be a directed graph, where Ñ and A are its node and arc sets, respec-

tively. Each node in Ñ = N ⋃{0, n+1} either corresponds to the location of patient i ∈ N ,

or denotes the hospital, i.e., {0, n+1}. Let b0 be a dummy OR assigned to node 0. The arc

set A defines possible routes between patients’ locations. For simplicity of exposition, we

assume that `ij = `ji for all i, j ∈ N , i 6= j and `0i = `i(n+1) for all i ∈ N . Note that for each

stage k ∈ K, variables tk(n+1)q and t̄k0q define the arrival and departure times of vehicle q ∈ Qk

to and from the hospital, respectively. Without loss of generality, we do not consider multiple

patient pick-ups or drop-offs, i.e., there is exactly one patient for each node in N . Further-

more, A does not contain arcs of the type (n+1, i) and (i, 0) for all i ∈ Ñ as well as (0, n+1).
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The following set of constraints determines the pick-up schedule of the patients at each

time stage, while simultaneously considering vehicle capacity restrictions and forbidding

overtime in ORs:

∑

b∈B
zib = 1, i ∈ N , (4.1)

∑

q∈Qk

uiqk =
∑

b∈Bk

zib, i ∈ N , k ∈ K, (4.2)

∑

i∈N
uiqk ≤ κ, q ∈ Qk, k ∈ K, (4.3)

∑

j∈N
xqk0jb0 ≤ 1, q ∈ Qk, k ∈ K, (4.4)

∑

j∈N

∑

b∈Bk

xqkj(n+1)b ≤ 1, q ∈ Qk, k ∈ K, (4.5)

∑

b∈Bk

∑

j∈Ñ\{0}
xqkijb =

∑

b∈Bk

∑

j∈Ñ\{n+1}
xqkjib, i ∈ N , q ∈ Qk, k ∈ K, (4.6)

∑

b∈Bk

∑

j∈Ñ\{0}
xqkijb = uiqk, i ∈ N , q ∈ Qk, k ∈ K, (4.7)

tkiq + `ij −M(1−
∑

b∈Bk

xqkijb) ≤ tkjq, i, j ∈ Ñ , q ∈ Qk, k ∈ K, (4.8)

−Muiqk ≤ tkiq ≤ Muiqk, i ∈ Ñ , q ∈ Qk, k ∈ K, (4.9)
∑

i∈N
dizib ≤ Lk

b , b ∈ Bk, k ∈ K. (4.10)

Constraints (4.1) ensure that each patient is assigned to exactly one OR. Constraints (4.2)

guarantee that each patient is picked up by a single vehicle, and only the vehicles available at

the corresponding time stage are used for transportation. Furthermore, the vehicle capacity

restriction is enforced by constraints (4.3). The pick-up routes should satisfy certain prop-

erties: constraints (4.4) and (4.5) assure that each vehicle leaves and arrives to the hospital

at most once, constraints (4.6) model the flow conservation for the pick-up routes, while

constraints (4.7) guarantee that vehicles visit each patient’s location in the pick-up routes at

most once. The specific pick-up times are defined in constraints (4.8) and (4.9), where the

positive constant M is large enough (e.g., M ≥ n(max
i,j∈N

`ij +max
i∈N

di)). Note that the former

also acts as a sub-tour elimination constraint. Finally, overtimes in ORs are forbidden by

(4.10). The following constraints determine the sequence of surgeries in the ORs:
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τkb −M(1− zib) ≤ skib, i ∈ N , k ∈ K, b ∈ Bk, (4.11)

tk(n+1)q −M(1−
∑

j∈Ñ\{0}
xqkijb) ≤ skib, i ∈ N , q ∈ Qk, k ∈ K, b ∈ Bk, (4.12)

skib + di −M(1− ηijb) ≤ skjb, i, j ∈ N , k ∈ K, b ∈ Bk, (4.13)

ηijb + ηjib ≤ zib, i, j ∈ N , b ∈ B, (4.14)

ηijb + ηjib ≤ zjb, i, j ∈ N , b ∈ B, (4.15)

ηijb + ηjib ≥ zib + zjb − 1, i, j ∈ N , b ∈ B. (4.16)

Constraints (4.11) and (4.12) specify that the surgeries start after the OR start times

and the arrival of vehicles to the hospital. Constraints (4.13)-(4.16) sequence the surgeries

in the ORs and determine their start times.

Finally, the following set of constraints determines the drop-off schedule of the patients

after the completion of their surgeries at each time stage:
∑

q∈Qk

uiqk =
∑

b∈Bk

zib, i ∈ N , k ∈ K, (4.17)

∑

i∈N
uiqk ≤ κ, q ∈ Qk, k ∈ K, (4.18)

∑

j∈N
xqk0jb0 ≤ 1, q ∈ Qk, k ∈ K, (4.19)

∑

j∈N

∑

b∈Bk

xqkj(n+1)b ≤ 1, q ∈ Qk, k ∈ K, (4.20)

∑

b∈Bk

∑

j∈Ñ\{0}
xqkijb =

∑

b∈Bk

∑

j∈Ñ\{n+1}
xqkjib, i ∈ N , q ∈ Qk, k ∈ K, (4.21)

∑

b∈Bk

∑

j∈Ñ\{0}
xqkijb = uiqk, i ∈ N , q ∈ Qk, k ∈ K, (4.22)

t
k
iq + `ij −M(1−

∑

b∈Bk

xqkijb) ≤ t
k
jq, i, j ∈ Ñ , q ∈ Qk, k ∈ K, (4.23)

−Muiqk ≤ t
k
iq ≤ Muiqk, i ∈ Ñ , q ∈ Qk, k ∈ K, (4.24)

t
k
0q ≥ skib + di −M(1−

∑

j∈Ñ\{0}
xqkijb), i ∈ N , q ∈ Qk, k ∈ K, b ∈ Bk. (4.25)

Constraints (4.17)-(4.24) are similar to those defining the pick-up routes given above.

Observe that in (4.17) we assume that the vehicles used to drop off the patients at each

stage are the same as those used to determine patients’ pick-up schedule. Constraints (4.25)

ensure that each vehicle leaves the hospital once the surgeries of all patients assigned to the

vehicle are completed.
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The objective function is the weighted sum of the patients’ total travel time and the time

spent at the hospital (or, simply, hospital time) denoted by Φr and Φh, respectively:

Φr =
∑

i∈N

∑

k∈K

∑

q∈Qk

{
uiqk(t

k
(n+1)q − tkiq) + uiqk(t

k
iq − t

k
0q)

}
, (4.26)

Φh =
∑

i∈N

∑

k∈K

∑

q∈Qk

{
uiqkt

k
0q − uiqkt

k
(n+1)q

}
, (4.27)

which results in the following MIP formulation:

[SPRP] min
X

crΦr + chΦh

subject to (4.1)− (4.25),

xqkijb, x
qk
ijb ∈ {0, 1}, ∀i, j ∈ Ñ , ∀q ∈ Qk, k ∈ K, b ∈ Bk, (4.28)

zib, uiqk, uiqk, ηijb ∈ {0, 1}, i, j ∈ N , q ∈ Qk, k ∈ K, b ∈ Bk, (4.29)

skib ≥ 0, i ∈ Ñ , q ∈ Qk, k ∈ K, b ∈ Bk, (4.30)

where X defines a joint vector of decision variables, i.e., X = (x, x̄, z, u, ū, η, s, t, t̄). Note that

the nonlinear terms in the objective of SPRP can be easily linearized. However, we observe

that a large number of decision variables and constraints in the obtained MIP formulation

makes its solution rather challenging. For example, even a special case of SPRP described

in the next section and referred to as BSPRP, is not solvable for reasonably sized instances

by off-the-shelf MIP solvers (see Table 5 and the respective discussion in Section 4.5).

4.3.2 Batch Surgical Patient Routing Problem (BSPRP)

In the considered special case of SPRP referred to as the Batch Surgical Patient Routing

Problem (BSPRP), we make the following two assumptions:

A1. There is exactly one vehicle available at each stage, i.e., |Qk| = 1 for all k ∈ K. Thus,

each patient arrives at and leaves from the hospital using the same vehicle.

A2. Instead of considering a separate time limit constraint for each OR as in (4.10), we only

require that the total length of surgeries scheduled for each time stage k ∈ K should not

exceed Lk =
∑

b∈Bk
Lk
b .
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Assumption A1 captures the needs of low-volume hospitals, where a rather small number

of surgeries is usually scheduled at each time stage. Thus, having a single vehicle for each

time stage is typically sufficient to satisfy all transportation requirements with respect to

the total available OR time in the hospital.

Assumption A2 implies that BSPRP does not require the assignment (and sequencing)

of each patient’s surgery to a specific OR, see constraints (4.11)-(4.16), which could be per-

formed by a separate (optimization) procedure. Admittedly, the optimal solution of BSPRP

may violate constraints (4.10). However, we assume that this either does not occur (which

should be the case in most scenarios as long as the OR utilization is not too high), or the issue

can be handled by the hospital management separately on a case-by-case basis introducing

overtime in particular ORs.

While assumptions A1 and A2 substantially simplify the original model, BSPRP is still

intractable using state-of-the-art commercial MIP solvers (see Section 4.5). However, under

A1 and A2 we establish some structural properties that we subsequently exploit to develop

an efficient branch-and-price solution approach (see Sections 4.4 and 4.5).

The BSPRP formulation uses the following notation:

• xk
ij ∈ {0, 1}: 1 if at stage k patient i is picked up immediately before patient j, and 0

otherwise,

• xk
ij ∈ {0, 1}: 1 if at stage k patient i is dropped off immediately before patient j, and 0

otherwise,

• zki ∈ {0, 1}: 1 if patient i is assigned to stage k, and 0 otherwise,

• tik: pick-up time of patient i if assigned to time stage k,

• tik: drop-off time of patient i if assigned to time stage k,

• ti: pick-up time of patient i,

• ti: drop-off time of patient i,

where time variables are defined with respect to 0 (the earliest possible departure time of

a vehicle for the patients’ pick-up). A feasible pick-up/drop-off route of the vehicle at each

time stage should only visit each patient at most once, and the sum of surgery durations of

all visited patients should not exceed the session length of the stage.
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∑

j∈N
xk0j = 1, ∀k ∈ K, (4.31)

∑

j∈N
xkj(n+1) = 1, ∀k ∈ K, (4.32)

∑

j∈Ñ\{0}
xkij =

∑

j∈Ñ\{n+1}
xkji, ∀i ∈ N , ∀k ∈ K, (4.33)

tik + `ij −M(1− xkij) ≤ tjk, ∀i, j ∈ Ñ , ∀k ∈ K, (4.34)
∑

i∈Ñ\{n+1}
xkij = zkj , ∀j ∈ N , ∀k ∈ K, (4.35)

∑

k∈K
zkj = 1, ∀j ∈ N , (4.36)

∑

i∈N
diz

k
i ≤ Lk, ∀k ∈ K, (4.37)

In these constraints we use our previous definition as Lk =
∑

b∈Bk
Lk
b . Similarly, using

assumptions A1 and A2 and simplifying the corresponding constraints from Section 4.3, we

specify the drop-off routes:
∑

j∈N
xk0j = 1, ∀k ∈ K, (4.38)

∑

j∈N
xkj(n+1) = 1, ∀k ∈ K, (4.39)

∑

j∈Ñ\{0}
xkij =

∑

j∈Ñ\{n+1}
xkji, ∀i ∈ N , ∀k ∈ K, (4.40)

tik + `ij −M(1− xkij) ≤ tjk, ∀i, j ∈ Ñ , ∀k ∈ K, (4.41)

t(n+1)k +
∑

i∈N
diz

k
i ≤ t0k, ∀i ∈ N , ∀k ∈ K, (4.42)

and the patients’ pick-up and drop-off times:

ti −M(1− zki ) ≤ tik, ∀i ∈ N ,∀k ∈ K, (4.43)

ti +M(1− zki ) ≥ tik, ∀i ∈ N ,∀k ∈ K. (4.44)
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The objective function is determined using the patients’ travel and hospital times given

by Φr and Φh, respectively:

Φr =
∑

i∈N

{
t̄i − ti −

∑

k∈K
(t̄0k − t(n+1)k)z

k
i

}
, (4.45)

Φh =
∑

i∈N

∑

k∈K

{
(t̄0k − t(n+1)k)z

k
i

}
, (4.46)

which are simplified version of (4.26)-(4.27). Using the above constraints, model BSPRP is

given by:

[BSPRP] min
x,x̄,z,t,t̄

crΦr + chΦh

subject to (4.31)− (4.44),

xkij , x
k
ij , z

k
i ∈ {0, 1}, ∀i, j ∈ Ñ , ∀k ∈ K. (4.47)

tik, t̄ik, ti, t̄i ≥ 0, ∀i ∈ Ñ , ∀k ∈ K. (4.48)

Next, Proposition 4.3.1 demonstrates that there always exists an optimal solution to

BSPRP such that the pick-up and the drop-off routes are in the reverse order of each other.

Proposition 4.3.1. There exists an optimal solution X ∗ = (x, x̄, z, t, t̄) for BSPRP such

that if x∗k
ij = 1, then x∗k

ji = 1 for all i, j ∈ Ñ and k ∈ K.

Proof. For k ∈ K, let Nk = {u ∈ N | zku = 1}. Let INk
=< 0, i1, i2, ..., i|Nk|, n + 1 > and

JNk
=< 0, j1, j2, ..., j|Nk|, n+1 > be any arbitrary pick-up and drop-off orderings of patients,

respectively, where 0 and n+1 denote the hospital. Next, let Q =< 0, q1, q2, ..., q|Nk|, n+1 >

be a pick-up ordering of patients such that

`q1q2 + 2`q2q3 + ...+ |Nk| · `q|Nk|(n+1) = min
I

{
`i1i2 + 2`i2i3 + ...+ |Nk| · `i|Nk|(n+1)

}
, (4.49)

i.e., Q corresponds a pick-up ordering of patients that results in the smallest value of the

total travel time.

Let patient p ∈ Nk be the vth patient that is dropped off (in drop-off ordering J) and the

uth patient who is picked up (in pick-up ordering I). Then the service time cost of patient

p, denoted by C
(u,v)
p , is

C(u,v)
p =cr

(
`0j1 + `j1j2 + ...+ `jv−1jv + `iuiu+1 + `iu+1iu+2 + ...+ `i(u+1)i|Nk|

)
+ ch ·

∑

u∈Nk

du,
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and the total service time cost of the patients in Nk is

crΦr + chΦh = cr
(
|Nk| · `0j1 + (|Nk| − 1) · `j1j2 + ...+ `j|Nk|−1j|Nk| + |Nk| · `0i|Nk|

+(|Nk| − 1) · `i|Nk|−1i|Nk| + ...+ `i1i2

)
+ ch · |Nk| ·

∑

u∈Nk

du

= cr
(
|Nk| · (`0j1 + `0i|Nk|) + (|Nk| − 1) · (`j1j2 + `i|Nk|−1i|Nk|) + ...+ (`j|Nk|−1j|Nk| + `i1i2)

)

+ ch · |Nk| ·
∑

u∈Nk

du

≥ cr
(
|Nk| · (`0j1 + `0q|Nk|) + (|Nk| − 1) · (`j1j2 + `q|Nk|−1q|Nk|) + ...+ (`j|Nk|−1j|Nk| + `q1q2)

)

+ ch · |Nk| ·
∑

u∈Nk

du

≥ 2cr
(
`q1q2 + ...+ (|Nk| − 1) · `q|Nk|−1q|Nk| + |Nk| · `0q|Nk|

)
+ ch · |Nk| ·

∑

u∈|Nk|
du,

where the last two inequalities follow by definition of Q in (4.49). Thus,
∑

p∈Nk

(
crΦr + chΦh

)
= 2cr

(
`q1q2 + ...+ (|Nk| − 1) · `q|Nk|−1q|Nk| + |Nk| · `0q|Nk|

)
+ ch · |Nk| ·

∑

u∈Nk

du.

(4.50)

Due to the presence of the big-M constraints in BSPRP, its linear programming (LP)

relaxation is usually weak. However, using Proposition 4.3.1 we reformulate BSPRP to ob-

tain an equivalent MIP model that provides better LP relaxation bounds. Special cases of

this formulation with ch = 0, or, equivalently, di = dj for all i, j ∈ N , are considered by [58]

and [85] for the K-Traveling Repairman Problem.

Let binary variable γk
ij = 1 if both patients i and j are assigned to the same time stage

k. Then using (4.50) we obtain the following equivalent MIP model:

[BSPRP] min
x,z,γ,t

∑

k∈K

∑
i∈N



2crtik + ch


diz

k
i +

∑

j∈N\{i}
djγ

k
ij





 (4.51)

subject to

(4.31)− (4.37),

γk
ij = zki z

k
j , ∀i, j ∈ N ,∀k ∈ K, (4.52)

tki ≥ 0, ∀i ∈ Ñ , ∀k ∈ K, (4.53)

xk
ij, z

k
i , γ

k
ij ∈ {0, 1}, ∀i, j ∈ Ñ , ∀k ∈ K. (4.54)
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Note that nonlinear constraints (4.52) link the patient assignment decisions to the time

stages. They can be easily linearized using a standard approach with an additional set of

linear constraints. While MIP model (4.51)-(4.54) provides tighter LP relaxation bounds

compared to the previous formulation, its solution using commercial MIP solvers is still

computationally expensive, e.g., CPLEX 12.4 yields an optimality gap of at least 29% in

solving instances of BSPRP with 20 patients and 4 stages after 3 hours. In order to over-

come this concern, in the next section we present a set-partitioning reformulation of BSPRP,

which we consequently exploit to develop a branch-and-price algorithm.

4.4 A BRANCH-AND-PRICE APPROACH

For ease of exposition, in this section we assume that the time available in ORs is the same

for all stages, i.e., Lk1 = Lk2 = L for all k1, k2 ∈ K. This restriction requires only a slight

modifications of the proposed approach when adjusting for more general problem instances.

Due to the special structure of the objective function in BSPRP, Proposition 4.3.1 indicates

that it is always optimal to pick up the patients in the reverse order of their drop-off sequence

and vice versa. We refer to an assignment of patients to a time stage, their drop-off and

pick-up sequences as a transportation route throughout the rest of this section.

Let R be the set of all potential feasible transportation routes. Let binary decision vari-

able θr, r ∈ R, equals 1 if route r is chosen in the corresponding solution. Additionally,

let parameter air ∈ {0, 1} indicate whether route r includes patient i. Let φr be the total

cost of travel and hospital times for all patients visited in route r, which is computed using

(4.45)-(4.46). Then BSPRP can be reformulated as a set-partitioning problem (SP):

[SP] min
∑
r∈R

φrθr (4.55)

subject to
∑
r∈R

airθr = 1, i ∈ N , (4.56)

∑
r∈R

θr ≤ K, (4.57)

θr ∈ {0, 1}, r ∈ R, (4.58)
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where constraints (4.56) ensure that each patient is assigned to exactly one route and con-

straint (4.57) provides the upper bound on the total number of chosen routes. In general,

the LP relaxation of formulation (4.55)-(4.58) provides tight bounds. However, the size of R

is exponentially large, which results in an excessive number of decision variables and model

parameters in (4.55)-(4.58). Therefore, we propose to employ a branch-and-price framework

to generate promising routes on “as needed” basis. In the remainder of the chapter, we refer

to the LP relaxation of model (4.55)-(4.58) as the master problem (MP).

4.4.1 Route Generation

Branch and price is a technique that incorporates column generation within a branch-and-

bound procedure [10]. Define the restricted master problem, denoted by RMP(R′), as the

LP relaxation of SP that consists of a restricted set of columns generated so far, denoted

by R′ ⊆ R. At each node of the search tree, the column generation method iteratively

solves the RMP(R′) and a pricing problem. The purpose of the pricing problem is either to

produce columns with the most negative reduced costs based on the dual solution of current

RMP(R′), or to prove that none exists. At each iteration, newly generated columns are in-

troduced to RMP(R′), and the process terminates and a lower bound for the corresponding

node is obtained whenever no additional column price out favorably. We refer the reader to

[10] and [77] for a more detailed description of the branch-and-price framework.

Consider the following dual variables of RMP(R′):

• πi: dual variable corresponding to constraint (4.56) for patient i;

• µ: dual variable corresponding to constraint (4.57).

The reduced cost φ̄r of a potential route, r ∈ R, is given by

φr = φr −
∑
i∈N

airπi − µ. (4.59)

Note that any optimal solution of RMP(R′) is a feasible solution to MP. However, it is

not (necessarily) an optimal solution, unless there is no column left in R \R′ that prices out

favorably. This dynamic process of generating columns is called pricing, and the problem

itself is referred to as the pricing problem. Given a dual solution π to RMP(R′) and an
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integer λ, we propose an integer-programming formulation for the pricing problem, referred

to as RPPλ(π). Similar formulations are considered in [17, 54, 65, 91, 95], and [58] when

di = 0 for all i ∈ N or ch = 0.

Let R(λ) be the set of all potential transportation routes that consist of exactly λ pa-

tients, where
∑

i∈R(λ) di ≤ L and λ ≤ κ, so R =
⋃κ

λ=1R(λ). Our pricing problem determines

a column (i.e., drop-off route) with the smallest reduced cost among those in R(λ) for each

λ ≤ κ. We assume that there always exists λ such that the overtime restriction is retained.

Specifically, we model this problem as a problem of finding a path with the smallest cost

on a multi-layer network, denoted by Fλ. Each network Fλ consists of λ layers, where each

layer encompasses n nodes associated with the patients. Moreover, Fλ includes nodes 0 and

n+ 1 that represent the start and the end location of the each route. Starting from node 0

and ending at n+1, each feasible path on Fλ is composed of distinct nodes selected at each

layer, defining the drop-off sequence of the selected patients, which also provides us with the

pick-up sequence according to Proposition 4.3.1.

The integer programming formulation of RPPλ(π) uses the following decision variables:

• ζti ∈ {0, 1} if node i is selected in layer t, for i ∈ N and t = 1, ..., λ;

• wt
ij ∈ {0, 1} if nodes i and j are selected in layers t and t + 1, for i, j ∈ N (i 6= j) and

t = 1, ..., λ− 1.

Following [58], we refer to these variables as the position and the transition variables,

respectively. Given λ as the possible number of patients in a route, the objective function

for RPPλ(π) can be modeled as:

Zλ(ζ
t
i , w

t
ij) =2cr


λ

∑

j∈N
`0jζ

1
j +

λ−1∑

t=1

∑

i,j∈N ,i 6=j

(λ− t)`ijw
t
ij


+

λ∑

t=1

∑

i∈N
(chλdi − πi)ζ

t
i .

As a result, for a given λ ≤ κ those columns in R \R′ for which Zλ(ζ
t
i , w

t
ij)− µ ≤ 0, are

priced out and introduced to RMP(R′). Therefore, using the dual variable π, the pricing

problem can be described as:
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[RPPλ(π)] minimize Zλ(ζ
t
i , w

t
ij) (4.60)

subject to
λ∑

t=1

ζti ≤ 1, i ∈ N , (4.61)

∑

i∈N
ζti = 1, t = 1, ..., λ, (4.62)

∑

j∈N\{i}
wt
ij = ζti , t = 1, ..., λ− 1, i ∈ N , (4.63)

∑

j∈N\{i}
wt
ji = ζ

(t+1)
i , t = 1, ..., λ− 1, i ∈ N , (4.64)

∑

j∈N

λ∑

t=1

djζ
t
j ≤ L, (4.65)

ζti ∈ {0, 1}, t = 1, ..., λ, i ∈ N , (4.66)

wt
ij ∈ {0, 1}, t = 1, ..., λ− 1, i, j ∈ N . (4.67)

The formulation ensures that each node is visited at most once (4.61), exactly one node

is selected in each layer (4.62), while constraints (4.63) and (4.64) link the position and

transition variables. Lastly, constraint (4.65) prevents overtime at time stage. It can be

easily shown that wt
ij = ζti ·ζt+1

j for all i, j ∈ N in the an optimal solution. Hence, the binary

restrictions for variables wt
ij can be relaxed and replaced by nonnegativity requirements.

Our computational tests in Section 4.5 show that the proposed pricing problem is solvable

using commercial solvers. However, in the next section we introduce a heuristic approach to

generate multiple potential columns to enhance the performance of the method at the first

iterations of the column generation method.

4.4.2 Algorithmic Enhancements

Next, we discuss several computational considerations that are important in implementing

our branch-and-price algorithm. In particular, we describe our branching strategy in Section

4.4.2.1 and introduce a greedy column generation heuristic in Section 4.4.2.2.
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4.4.2.1 Patient-Pair Branching Using the traditional branching on variables for solv-

ing large-scale set-partitioning problems often results in an unbalanced search tree and may

destroy the structure of the pricing problem [82]. To overcome this difficulty, we adapt an

alternative branching from [102], which is known to be a very effective strategy for set-

partitioning applications including vehicle routing and crew scheduling problems [77].

The branching scheme used in [102] is based on the following proposition. Although

the authors do not consider column generation, their branching scheme is effective in this

context as well [10].

Proposition 4.4.1. [10] If A is a 0–1 matrix, and a basic solution to Ax=1 is fractional,

i.e., at least one of the components of x is fractional, then there exist two rows s and t of

the master problem such that

0 <
∑

k: ask=1, atk=1

xk < 1.

Note that the matrix associated with the set-partitioning constraints (4.56) in any re-

stricted master problem is a 0–1 matrix. Hence, using the result of Proposition 4.4.1 the

pair of branching constraints are:

∑

k: ask=1, atk=1

θk = 0 and
∑

k: ask=1, atk=1

θk = 1,

i.e., rows s and t are covered by different columns in the first (left) case and by the same

column in the second (right) case. In our application each row corresponds to a patient, so

in the first branch we force patients s and t to be assigned to different stages, by introducing

the following constraint into the pricing problem:

λ∑

k=1

ζks +
λ∑

k=1

ζkt ≤ 1. (4.68)

We refer to constraint (4.68) as the decoupling branching constraint. Similarly, we intro-

duce a coupling branching constraint as:

λ∑

k=1

ζks =
λ∑

k=1

ζkt , (4.69)
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into the pricing problem on the other branch, where (4.69) indicates that patients t and s

should be assigned to the same stage. We refer to this specialized branching rule as Branch-

ing on Patient-Pairs. Since the number of patients is finite, branch and price using this

branching scheme terminates finitely.

4.4.2.2 Improving Column Generation. Often, during initial column generation iter-

ations, large values of dual variables can negatively impact solution times of the subproblems.

To avoid this, we initialize the restricted master problem with a set of columns that is suffi-

cient to obtain a feasible solution. The convergence rate of the branch-and-price algorithm

can be further improved, if the set of the initial columns is comprised of those that are likely

to be in the final optimal set. Therefore, we propose to generate this set heuristically using

a greedy approach.

Input: κ
Output: R
set R = ∅1

foreach λ = κ, ..., 2 do2

foreach i ∈ N do3

set S ← N and Ri,λ = ∅, let j = 14

Lj = λ(2cr`0i + chdi)5

Dj = di6

set S ← S \ {kj}, Ri ← Rj,λ
⋃{kj}, kj ← i7

while j ≤ λ and S 6= ∅ do8

for k ∈ S do9

if Dj + dk > L then10

S ← S \ {k}11

end12

if S 6= ∅ then13

kj+1 ∈ argmink∈S{2(λ− j)cr`kkj + λchdk}14

Lj+1 = Lj + 2(λ− j)cr`kj+1kj + λchdkj+115

Dj+1 = Dj + dkj+116

S ← S \ {kj+1}, Ri,λ ← Ri,λ
⋃{kj+1}17

kj ← kj+1, j ← j + 118

end19

if |Ri,λ| = λ then20

R ← R⋃{Ri,λ,Lλ}21

end22

end23

Algorithm 1: Greedy Heuristic Algorithm for Initial Transportation Route Generation
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The proposed heuristic identifies a set of stage assignments consisting of at most κ

patients and their transportation routes (the drop-off sequence), denoted by R ⊆ R. Specif-

ically, the algorithm iteratively constructs a sequence of λ ≤ κ patients, Ri,λ, starting by

first dropping off patient i. When constructing each Ri,λ, the set of patients who have not

been included in Ri,λ so far, are denoted by S.

Input: κ, π, µ,N c
p = {(u1, v1), ..., (unc

p
, vnc

p
)},N d

p = {(ū1, v̄1), ..., (ūnd
p
, v̄nd

p
)}

Output: R
set R = ∅1

foreach λ = κ, ..., 2 do2

foreach i ∈ N , S ← N , j = 1 and Ri,λ = ∅ do3

Lj = λ(2cr`0i + chdi)− πi, D
j = di4

kj ← i, S ← S \ {kj}, Ri ← Rj,λ
⋃{kj}5

while j ≤ λ and S 6= ∅ do6

for m = 1, ..., nd
p do7

if kj = ūm then8

S ← S \ {v̄m}9

if kj = v̄m then10

S ← S \ {ūm}11

end12

for k ∈ S do13

if Dj + dk > L then14

S ← S \ {k}15

end16

if S 6= ∅ then17

determine kj+1 ∈ argmink∈S{2(λ− j)cr`kkj + λchdk − πk}18

Lj+1 = Lj + 2(λ− j)cr`kj+1kj + λchdkj+1 − πkj+119

Dj+1 = Dj + dkj+120

set S ← S \ {kj+1}, Ri ← Ri,λ
⋃{kj+1}21

kj ← kj+1, j ← j + 122

end23

if |Ri,λ| = λ then24

set feasible = True25

for m = 1, ..., nc
p do26

if um ∈ Ri,λ and vm /∈ Ri,λ then27

feasible ← False28

if vm ∈ Ri,λ and um /∈ Ri,λ then29

feasible ← False30

end31

if Lλ − µ < 0 and feasible = True then32

set R ← R⋃Ri,λ33

end34

end35

Algorithm 2: Greedy Heuristic Algorithm for the Pricing Problem
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Let kj be the jth patient in Ri,λ. The algorithm selects a patient kj+1 to be visited next

from the set of unvisited patients S, in order to minimize the term 2(λ−j)cr`kj+1kj+λchdkj+1 ,

which is consistent with the objective function Zλ(·) in the pricing problem. Furthermore,

condition Dj + dkj+1 ≤ L imposes the overtime restriction on the sum of surgery durations

assigned to the stage when selecting the next patient to visit at iteration j. This process

continues until the number of visited patients equals a desired length of the route λ, provid-

ing the estimated cost of the route, Lλ. These routes are used to populate the initial master

problem at the root node.

When generating a feasible column at the column generation stage, one might consider

generating multiple columns at once [10]. Sol [107] shows that multiple column generation

can be efficient for the set-partitioning problems. Moreover, usually there are more than

one column with negative reduced cost at the column generation stage (especially in ini-

tial stages), so it may be advantageous to generated some subset of columns heuristically

without solving the exact pricing problem, see [36]. To do so, we modify Algorithm 1 to

accommodate the dual variables and the branching information available at each node of

the branch-and-price tree. However, if the heuristic approach (Algorithm 2) fails to identify

appropriate columns with negative reduced cost (i.e., R = ∅), we resort to solving the exact

pricing problem to ensure the correctness of the overall solution method.

In Algorithm 2, define N c
p = {(u1, v1), ..., (unc

p
, vnc

p
)} and N d

p = {(ū1, v̄1), ..., (ūnd
p
, v̄nd

p
)} to

be the coupling and decoupling constraints at node p of the branch-and-bound tree, respec-

tively. In these sets each coupling pair (ui, vi), i = 1, ..., nc
p corresponds to patients ui and vi

that are enforced to be at the same stage, while each decoupling pair (ūj, v̄j), j = 1, ..., nd
p

indicates that patients ūj and v̄j should be scheduled at different stages. Algorithm 2 is a

greedy algorithm that iteratively constructs a feasible transportation route, consisting of a

desired number of patients λ that: (i) retains the branching rule restrictions, (ii) satisfies

the no-overtime constraint (4.37) for the given stage, and (iii) calculates the proper modified

cost using the dual information. To achieve (i), we dynamically modify the set of feasible

unvisited patients S with respect to decoupling branches whenever a patient is selected.

The information about the active coupling branches is exploited when a complete route is

constructed at the last step of the inner loop in the algorithm. Similar to our strategy in
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Algorithm 1, (ii) is verified by checking the corresponding constraint whenever a new patient

is considered. Lastly, (iii) is achieved by considering the dual prices as penalty costs when

selecting any particular patient.

4.5 COMPUTATIONAL STUDY

In this section, we first describe test instances considered in our study, followed by the re-

sults of our computational experiments. The focus is on evaluating the performance of the

developed solution techniques and highlighting the value of integrated surgery scheduling

and vehicle routing decisions. We implement our branch-and-price algorithm using BCP,

a framework for branch, cut, and price algorithm [96]. All computational experiments are

conducted on an Intel Xeon PC with 3 GHz CPU and 3 GB of RAM.

4.5.1 Test Instances

We use the data provided by a VHA hospital in Pittsburgh which includes durations and

turnover times for all surgery cases performed between 2006 to 2009. However, this data set

does not include patients’ location information for privacy reasons. To alleviate this issue,

we generate synthetic patients by sampling a residence in Western Pennsylvania from the

publicly available data on the veteran population provided by the VHA ([34]), and the oper-

ational data of surgery durations. The surgery durations are point estimates of each surgery

requests that include the pre- and post-incision times (see [106] for data description). We

chose ophthalmology procedures, as these are typically outpatient procedures.

Table 4 provides the characteristics of these problem instances. To be consistent with the

historical records on the average number of surgeries in the surgery data set, we restrict our

problem instances to those comprised of 4 to 6 possible surgeries to be scheduled at each stage.

Throughout our experiments, we consider equal routing and hospital time costs, i.e., cr = ch.
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Table 4: Test instances for computational study

Instance Class |N | |K| κ

P1 16 4 4

P2 20 4 5

P3 24 4 6

P4 20 5 4

P5 25 5 5

P6 30 5 6

P7 24 6 4

P8 30 6 5

P9 36 6 6

4.5.2 Solution Method Performance

In Table 5, we report the performance of our branch-and-price algorithm against CPLEX

12.4 for 18 problem instances. Our computational results demonstrate that CPLEX 12.4

can not solve all selected instances within a 3-hour time limit except for those problems

comprised of at most 16 patients, 4 time stages and κ = 4. However, the branch-and-price

algorithm solves all instances within 4 minutes.

Next, we evaluate the effect of different computational strategies (discussed in Section

4.4.2.2) on the performance of our branch-and-price algorithm. We consider four algorith-

mic strategies summarized in Table 6. Each strategy is characterized by the number of

columns introduced into the restricted master problem at each column generation iteration

(# Columns), and the solution technique used for solving the pricing problem. Under the

“Direct” strategy, the pricing problem is solved exactly using CPLEX. Under the “Heuristic”

strategy, we first employ a heuristic approach (Algorithm 2); however, we resort to using

CPLEX whenever the heuristic method fails. We further consider either single or multiple

column generation combined with “Direct” and “Heuristic” approaches. Under the “Single”
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Table 5: Performance of the developed branch-and-price approach compared to CPLEX.

Stages Capacity Patients Instance Branch-and-Price (sec.) CPLEX (sec.) CPLEX Optimality Gap (%)

1 1.14 13.37 0.00
3 4 12 2 1.60 12.37 0.00

3 0.37 14.31 0.00
1 11.43 151.96 0.00

3 5 15 2 37.65 143.36 0.00
3 9.30 144.1 0.00
1 13.09 3038.93 0.00

3 6 18 2 11.32 1682.19 0.00
3 245.25 5593.52 0.00
1 1.94 2410.89 0.00

4 4 16 2 25.72 10645.76 0.00
3 5.65 6677.41 0.00
1 7.59 8391.75 0.00

4 5 20 2 7.82 > 10800 29.27
3 58.98 > 10800 16.87
1 132.76 > 10800 37.99

4 6 24 2 51.59 > 10800 38.60
3 64.97 > 10800 29.35

method, a single column with the most negative reduced cost is introduced to the restricted

master problem at each iteration, while for the “Multiple” approach, we add a set of columns

with negative reduced costs.

In Table 7 we report results for five randomly generated instances of each problem

class (Table 4) under each possible strategy. These algorithmic methods are compared

based on the solution time (in seconds), the number of explored nodes and the depth of the

resulting search trees as shown in Table 7.

Table 6: Description of column generation strategy.

Strategy # of Columns Pricing Strategy

SCD Single Direct

MCD Multiple Direct

SCH Single Heuristic

MCH Multiple Heuristic

Our computational results show that the solution time is rather sensitive to the algorith-

mic strategies. As expected, the numerical results also indicate that embedding a heuristic

approach for the column generation significantly reduces the overall solution time (SCH and
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Table 7: Performance of the branch-and-price method under different algorithmic strategies.

The reported solution times are in seconds.

Class Instance
SCD MCD SCH MCH

Nodes Depth Time Nodes Depth Time Nodes Depth Time Nodes Depth Time
1 1 1 1.95 1 1 3.47 1 1 3.99 1 1 0.85
2 32 7 25.57 10 4 12.63 17 5 9.61 21 8 9.87

P1 3 5 3 5.70 13 7 20.65 7 4 5.54 5 3 4.06
4 3 2 1.43 3 2 2.08 5 3 3.46 3 2 0.70
5 1 1 2.11 1 1 5.99 1 1 5.23 1 1 1.70
1 1 1 15.791 1 1 10.35 1 1 6.63 1 1 4.38
2 27 7 121.93 23 7 58.89 27 7 44.42 65 9 184.37

P2 3 35 11 153.227 33 7 100.98 25 6 41.56 29 7 84.92
4 1 1 21.14 1 1 13.15 1 1 9.39 1 1 7.94
5 1 1 18.04 1 1 9.24 1 1 7.38 1 1 8.15
1 23 7 273.26 15 5 151.63 35 9 200.50 19 7 180.34
2 16 5 247.18 21 6 231.58 27 7 187.64 13 5 138.38

P3 3 1 1 34.29 1 1 32.14 1 1 12.52 1 1 10.21
4 9 4 164.24 13 5 139.10 9 4 44.84 13 5 133.17
5 61 11 555.59 37 8 275.01 53 9 183.46 49 11 341.22
1 1 1 2.61 1 1 4.42 1 1 3.97 1 1 2.06
2 75 9 50.84 131 12 129.39 95 10 59.38 91 8 50.61

P4 3 49 7 35.83 79 14 82.79 47 14 21.58 42 11 26.80
4 9 5 8.71 43 9 53.29 15 7 13.77 73 10 46.86
5 55 11 44.72 39 11 64.57 47 10 45.04 49 13 21.78
1 1 1 20.78 1 1 15.92 1 1 7.29 1 1 6.26
2 1 1 31.19 1 1 24.22 1 1 12.28 1 1 12.10

P5 3 1 1 18.62 1 1 15.16 1 1 8.19 1 1 7.34
4 83 12 269.55 215 13 675.60 33 7 51.68 57 7 142.77
5 267 16 985.47 233 17 816.57 253 17 474.07 91 11 271.28
1 41 7 438.07 55 9 815.41 73 10 522.48 47 8 447.29
2 93 13 732.345 29 8 334.04 61 9 331.95 93 13 589.90

P6 3 27 9 242.91 47 8 415.68 28 9 202.65 21 6 189.98
4 93 10 951.64 75 9 1028.71 87 9 588.34 73 10 621.13
5 43 8 313.62 179 17 2047.19 49 10 274.96 27 7 135.10
1 45 7 31.37 54 8 75.20 57 8 36.35 43 7 26.41
2 1 1 3.64 1 1 8.07 1 1 5.27 1 1 1.36

P7 3 5 3 6.37 5 3 13.16 5 3 7.29 5 3 3.32
4 5 3 4.30 7 4 12.27 7 4 7.99 5 3 2.78
5 231 11 177.82 253 11 328.88 145 10 96.20 177 11 117.95
1 443 15 1857.66 453 19 2393.41 350 21 1087.66 391 14 1492.91
2 3 2 26.49 11 4 70.34 11 6 32.39 5 3 24.48

P8 3 133 14 570.90 67 11 310.63 61 8 160.67 231 17 952.05
4 109 12 489.55 55 8 327.99 49 9 153.84 84 10 397.89
5 1 1 25.16 1 1 39.04 1 1 22.43 1 1 14.11
1 1 1 51.16 1 1 94.92 1 1 29.51 1 1 17.93
2 5 3 73.06 5 3 164.48 5 3 50.239 5 3 44.25

P9 3 19 6 133.932 13 4 178.53 17 5 103.98 7 4 44.93
4 52 11 449.28 69 8 1007.76 129 10 1095.67 43 8 376.70
5 240 17 1661.62 312 30 1780.65 350 22 1855.94 230 21 1459.78

83



Table 8: Comparing objective function values of BSPRP when using exact, TSP- and TRP-

based methods.

Problem Instance Optimal
TSP-based TRP-based

Min Max Avg Gap (%) Min Max Avg. Gap (%)
1 4414 5050 5614 21 4976 5570 19
2 4924 5286 5728 11 5268 5640 9

P1 3 4776 5092 5784 13 5090 5610 10
4 5116 5780 6280 17 5604 5912 14
5 4442 4866 5294 15 4862 5218 13
1 7083 7961 8557 18 7631 8391 14
2 7662 8612 9596 18 8352 9046 14

P2 3 8704 9930 10554 19 9428 10338 15
4 7242 7706 8650 15 7692 8360 11
5 8147 9229 9875 17 9045 9577 13
1 10726 12036 12888 16 11966 12260 13
2 11590 12884 13572 14 12840 13262 12

P3 3 11368 12674 13404 16 12440 13070 13
4 9688 10746 11540 15 10620 11114 12
5 11388 12888 14400 18 12796 13230 14
1 5378 6202 6824 21 6116 6492 17
2 6718 7222 7828 11 7194 7672 10

P4 3 6066 6956 7564 19 6802 7336 16
4 6418 7324 8242 21 7290 7918 17
5 6320 7166 7912 19 7102 7740 17
1 10017 11185 12119 16 11005 11585 13
2 9793 10937 12105 19 10887 11703 15

P5 3 9326 10774 12018 23 10476 11296 17
4 10404 11642 12770 18 11474 12316 15
5 9945 11771 12185 21 11505 12049 17
1 12846 14706 15600 17 14328 14862 13
2 12392 13930 14768 15 13470 14116 12

P6 3 13368 14902 16700 19 14780 15746 14
4 13520 14778 16568 18 14632 15712 13
5 14432 17270 18694 25 16650 17692 19
1 7196 8568 9052 22 8360 8712 19
2 7514 8584 9194 19 8416 8872 15

P7 3 7228 8528 9390 23 8206 9078 20
4 7022 7790 8350 15 7736 8158 13
5 7352 8452 9548 19 8338 8926 17
1 11290 13158 14304 23 13038 13962 19
2 10529 11921 12855 18 11797 12401 15

P8 3 11860 13756 15756 25 13602 14710 20
4 12805 14919 15859 20 14503 15253 16
5 11150 13440 14106 23 12778 13500 18
1 15816 18430 19762 21 18126 19012 18
2 15504 17326 18760 16 17102 17954 13

P9 3 16036 18610 20482 22 18274 19378 17
4 16064 18324 19410 17 17742 18514 14
5 14726 16734 18214 20 16490 17198 15
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MCH columns), compared to solving the pricing problem exactly. Moreover, we observe that

adding multiple columns at each column generation iteration does not necessarily reduce the

solution time when compared to a single column approach. However, for the majority of test

instances the multiple column generation scheme outperforms the single column generation

approach.

4.5.3 Value of Integrating Surgery Scheduling and Vehicle Routing Decisions

In this study we model the integration of surgery scheduling and transportation in order to

minimize the total service time cost of the patients. As emphasized earlier, such decisions

are typically made independently. For example, in practice surgeries are often assigned to

ORs based on some scheduling rule (e.g., first-fit) depending on the OR availability upon the

arrival time of the surgery requests and disregarding patient transportation considerations.

Subsequently, given the obtained surgery schedule the vehicle routing decisions are made

separately, possibly using another optimization approach.

To evaluate the value of integrated decision-making framework, we compare our frame-

work to two heuristic methods, where scheduling and routing decisions are performed sequen-

tially. Under both heuristic methods, given a batch of surgery requests we randomly assign

them to the time stages satisfying stage and vehicle capacity constraints. Having assigned

all the surgeries to the stages, we exploit the following two routing methods to determine

the pick-up and drop-off schedule for the patients at each stage. First, we consider a trav-

eling salesman problem based (TSP-based) approach, where the objective is to determine a

set of minimum length tours with respect to the residential locations of the patients at each

stage. Second, we consider a traveling repairman problem based (TRP-based) approach that

minimizes the sum of the times needed to visit patients locations. The pick-up routes in the

TRP-based method are considered to be in the reverse order of the drop-off routes.

In Table 8, we compare the objective function values in BSPRP obtained using solu-

tions of these two heuristics to those obtained by the branch-and-price method. For each

problem instance (five in each problem class) the results are reported for 10 randomly gener-

ated surgery-to-time stage assignments. When compared to the both heuristic approaches,
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the integrated scheduling framework provides a considerable improvement in service costs,

ranging between 9% to 25%. These observations show the value of integrating the routing

and scheduling decisions and highlight the fact that healthcare providers can substantially

improve the quality of their services by considering scheduling and transportation decisions

simultaneously. Note also that the TRP-based method performs better than the TSP-based

one, which is not surprising as the TSP-based method considers the vehicle travel time

instead of the total patients travel time.

4.6 CONCLUSION

We propose an integrated approach that simultaneously considers surgery scheduling and ve-

hicle routing decisions for a given set of elective outpatient surgery requests using available

ORs in a hospital. The overall objective is to minimize the total service cost that incorpo-

rates transportation and hospital times for all patients. Our main focus is on the special

case of the problem. By exploiting the structure of the problem, we develop a branch-and-

price algorithm, which is further enhanced with several algorithmic strategies to improve the

overall solution efficiency. We test our approach using the historical data from the Veterans

Affairs Pittsburgh Healthcare System. The results demonstrate that healthcare providers

can substantially improve the quality of care by integrating scheduling and transportation

decisions. We view this chapter as the first step in this direction. Future research should

relax some of our assumptions, in particular, more general settings with uncertain surgery

durations and availability of multiple vehicles.
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5.0 CONCLUSIONS AND FUTURE RESEARCH

Rising healthcare expenditures necessitate efficient and equatable health delivery practices.

In this dissertation, we aim to improve two healthcare delivery systems: health report-

ing requirements in liver allocation mechanism and integrating patient transportation and

surgery scheduling decisions. First, we resolve to mitigate the inequity in liver allocation

due to the information asymmetry between the UNOS and the patients in health reporting

requirements. Second, we consider an operational problem faced by healthcare providers

when patients transportation decisions are made in coordination with medical appointment

scheduling decisions, more specifically surgery requests. Our proposed decision models are

practical and quantify the value of integrating decisions in managing complex systems.

5.1 BALANCING EQUITY AND EFFICIENCY IN LIVER

ALLOCATION VIA REVISED HEALTH REPORTING FREQUENCIES

The existing literature on organ allocation, more specifically those addressing liver alloca-

tion mechanism are mostly based on either a patient’s or the societal perspective. However,

designing an efficient and equatable organ allocation system needs a joint patient and soci-

etal perspective to achieve desired levels. Moreover, these design decision are often made in

the face of uncertainty in patient population, donated organs, and usually consider multiple

conflicting objectives. In Chapter 3, we propose a multi-objective optimization model to mit-

igate the existing information asymmetry in liver allocation system due to patients ability to

game the system by exploiting the flexibility in health reporting requirements. To do so, we

first extend the prior work on patient decision process to accept an organ offer/update health
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status or do nothing and formulate this problem as an MDP model. Focusing on a patient’s

perspective, this model provides optimal accept/update/ do nothing policies to maximize

the patient’s life expectancy under any updating scheme. Second, under a multi-objective

optimization framework and using stochastic programming techniques, we propose a model

to determine an updating scheme with minimum expected system inequity as determined by

optimal patients’ policies while ensuring a minimum desired level of reduction in the data

processing burden. Several structural properties of this stochastic programming model and

the patients’ optimal policies which enable design of efficient solution method are investi-

gated. The proposed stochastic programming model is embedded in an iterative procedure

to approximate the efficient frontier of the updating schemes to any given degree of accuracy.

Our extensive numerical study using the clinical data shows that a typical patient can exploit

the flexibility in the current updating requirements and increase his/her life expectancy up

to 1% while the data processing burden can be decreased by up to 46.06%, compared to

an updating scheme with perfect information on patient’s true health status. We provide a

menu of updating schemes that dominate the current updating scheme with respect to an

increase in system inequity, a decrease in the data processing burden or both metrics. Our

proposed menu captures the uncertainty in the cohort of patients on the liver waiting list

in the long run. In future work, our proposed model can be extended in a number of ways.

First, a more realistic patient decision-making problem can be achieved by relaxing the as-

sumption that patients are aware of their true health status. This model can be formulated

as a partially observable Markov Decision Process (POMDP) [94]. Second, the patient’s rank

information on the waiting list can also be incorporated into the state space description of

the MDP model. Also, the proposed modeling framework can be used to design other organ

allocation systems where patients can potentially game the system due to the information

asymmetry between the UNOS and the patients. As an example lung transplantation is a

potential area of similar research where the candidates on the waiting list are required to

update their lung allocation scores at least once every six months [52].
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5.2 THE SURGICAL PATIENT ROUTING PROBLEM

Transportation is commonly known as a major barrier to access timely and effective health-

care, especially in rural areas or for those with special needs. Hence, several organizations

and medical centers provide transportation services to eligible patients. In Chapter 4, we

introduce an integrated model that simultaneously consider the transportation decisions of a

set of elective outpatient surgery requests and the surgery scheduling decisions in a hospital.

We first propose a general model to determine the sequence of the surgeries in the available

ORs as well as patients’ transportation plan using a fleet of vehicles in the hospital. The

planning horizon of the model consists of a number of stages and the model objective is

to minimize the total travel time cost and the waiting time cost at the hospital for all the

patients. This model is formulated as a mixed-integer programming problem. Second, we

focus our attention on a computationally tractable problem where there is a single vehicle

transports the patients at each stage. This model best serves the need of speciality or low-

volume hospitals where the number of surgeries performed at each day is not high. Due to

the complexity of solving the proposed model using the commercial solvers, we propose a

set-partitioning based formulation of the special case model using its structural properties. A

branch-and-price algorithm is proposed to solve the set-partitioning model and several algo-

rithmic strategies to enhance the performance of the proposed solution method are discussed.

The performance of the proposed branch-and-price method is evaluated through extensive

numerical study using clinical data. We show that the healthcare providers can substantially

improve the quality of their service by integrating the patient transportation and surgery

appointment scheduling decisions. For future work, one can consider the uncertainty in the

surgery durations that will both effect the surgery scheduling and the transportation deci-

sions. Another direction of future work is to consider other performance measures such as

the OR utilization, OR opening cost or surgery cancelation cost.
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