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CORRECTING DENSITY FUNCTIONAL THEORY METHODS FOR DISPERSION

INTERACTIONS USING PSEUDOPOTENTIALS

Ozan Karalti, PhD

University of Pittsburgh, 2014

The development of practical density functional theory (DFT) methods has provided the sci-

ence community with a very important tool for modeling variety of systems such as materials,

molecular and bio–molecular systems. Nonetheless, most practitioners of the method did not give

enough attention to the deficiencies in modeling the dispersion interactions with the commonly

used density functionals until a few years ago. Since then there have been many methods proposed

to solve this problem and it is still a very active research area. I have tested a number of these

dispersion–corrected DFT schemes for various systems that are of interest to our research group

such as a water molecule interacting with a series of acenes and isomers of the water hexamer to

see which of these methods give accurate results. Based on the tests, DFT–D3 of Grimme et al.

and dispersion–corrected atom–centered pseudopotentials (DCACPs) attracted on our attention.

DCACP procedure provided accurate interaction energies for the test cases, but the interaction en-

ergies fall too quickly as the distance between the molecules increases. I further investigated the

effects of DCACPs on the employed density functionals with a detailed study of the interaction

energies of isomers of the water hexamers and determined that with the original implementation

it corrects for limitations of the BLYP functional in describing exchange-repulsion interaction as

well as for dispersion interactions. We propose two different methods, namely DCACP+D and

DCACP2, for improving the problems associated with the DCACP approach. These methods both

provide improvements in the accuracy of the original DCACPs and also correct the quick fall-off

iii



problem of the interaction energies at long–range.
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1.0 INTRODUCTION

The development of density functional theory (DFT) methods provided chemists with a useful tool

for modeling a variety of systems. Although DFT was formally introduced in 1964,1, 2 correcting

the deficiency of the DFT methods in modeling dispersion interactions was not a very active area

of research until a decade ago. Nevertheless, significant progress have been made in including

the dispersion interactions within the DFT framework. I organize my thesis as follows. Chapters

2 and 3 include tests done for the interaction of a water molecule with different types of acenes

using various dispersion–corrected DFT methods. Chapter 4 contains in depth investigation of the

dispersion–corrected atom–centered pseudopotential (DCACP) method using isomers of the water

hexamer. Chapters 5 and 6 provides two different ways of improving the DCACP methodology.

1.1 THEORY OVERVIEW

Non–bonding interactions such as dispersion (van der Waals) and hydrogen-bonding play a

vital role in determining the structure and functionality of many systems including DNA, proteins,

adsorption of molecules on surfaces and the packing of crystals.3–6 However, modeling them with

computational methods is not an easy task. Kohn–Sham density functional theory (DFT)1, 2, 7, 8

emerged as a popular method to investigate the electronic structure of many body systems since

it provides a good balance between the accuracy and computational cost. In principal DFT is ex-

act, however in practice one needs to approximate the unknown form of the exchange–correlation

functional. Until recently, this was done with the local (LDA)2 and semi–local generalized gradient

1



corrected (GGA)9 functionals which fail to correctly describe the long–range dispersion interaction

between molecules.10, 11 Dispersion energy arises from instantaneous charge fluctuations (corre-

lated motion of electrons) such as induced dipoles. The correct asymptotic behavior (−C6R−6)

of these long–range interactions is not described by local and semi-local approximations in DFT

which greatly limits their applicability to systems where dispersion interactions are important. A

vast number of strategies have been introduced to address this problem.12–29 The next sections will

include an overview of these methods used in this thesis.

1.1.1 DFT+D

Atom-atom type Ci j
6 R−6

i j (and possibly also Ci j
8 R−8

i j ) corrections are the most popular method

for incorporating van der Waals (vdW) interactions in to DFT.18, 20–24, 30, 31 A similar approach

was also used for correcting the Hartree–Fock method for dispersion as early as 1975.32 Although

earlier versions for this type of dispersion correction were proposed18 DFT–D method became

more recognized after the initial work of Grimme.20 In this so–called “DFT+D” method, the DFT

total energy obtained by an XC functional is augmented with a simple dispersion correction in the

form of

Edisp =−s6

N−1

∑
i=1

N

∑
j=i+1

(Ci j
6 R−6

i j ) fd(Ri j), (1.1)

where N is the number of atoms, Ri j is the distance between ith and jth atom pairs, Ci j
6 are pairwise

dispersion coefficients, fd is a damping function, and s6 is a global scaling factor which depends

on the density functional being used. Numerous types of damping functions were proposed to

avoid the divergent behavior of the dispersion energy at short distances.18, 20, 23, 30, 33 The effect of

a damping function18 of the type

fd(R) =
1

1+ exp(−d( R
RvdW
−1))

, (1.2)

is shown in Fig. 1.1 (Ci j
6 =1.65 Jnm6mol−1, RvdW =3.22 Å(dashed line), d=23 and s6=1).

2



Figure 1.1: Damped dispersion energy (kcal/mol) between two carbon atoms.
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The dispersion energy correction term is calculated separately from the DFT calculation. Since

it is a long-range effect its influence on the electron densities should be small which allows a

separate calculation for the correction. This method is general and can be combined with any

exchange-correlation functional, with C6 coefficients being determined either empirically18, 20 or

ab-initio methods.22–24 Obtaining an accurate set of coefficients is of vital importance. Next, I will

summarize the methods used in this thesis for dispersion correction namely, DFT–D2, DFT–D3,

vdW–TS, vdW–DF and RPA.

In an earlier version of the DFT–D method Wu et al18 calculated empirical atomic Ci j
6 coef-

ficients for by least squares fitting from experimental molecular Ci j
6 coefficients obtained by using

dipole oscillator strength distributions (DOSD’s). Grimme20 initially used the Ci j
6 coefficients from

Wu et al18 while averaging them over possible hybridization states (for the carbon atom). Later, in

his less empirical DFT–D2 approach21 using DFT/PBE034 calculations of atomic ionization poten-

tials (Ii
p) and static dipole polarizabilities (α i) he computes the dispersion coefficient for an atom

with the equation:

Ci
6 = 0.05NIi

pα
i (1.3)

where N has values of 2,10,18,36 and 54 based on the atom’s position in the periodic table (Ii
p and

α i are in atomic units). Dispersion coefficients for elements up to Xe were made available but in

some cases like the group I and II metals averaged C6 coefficients from the preceding rare gas and

group III element were used. This caused problems such as Na and Mg atoms having the same

dispersion coefficients. A geometric mean combination rule of the form shown in Equation 1.4 is

used to get Ci j
6 coefficients from atomic Ci

6 and C j
6 coefficients.

Ci j
6 =

√
Ci

6C j
6 (1.4)

Other than the above mentioned C6 averaging issue, two major shortcomings of the DFT–D2

approach are that the Ci j
6 coefficients are invariant to chemical environment and the s6 scaling

factor, which is adjusted for each density functional, results in wrong asymptotic energies at long

range even if the C6 coefficients are correct.

4



Grimme and coworkers solved these limitations with the newer DFT–D3 approach.22 DFT-D3

method includes C6 and C8 terms for the 2 body dispersion correction and also an option for the 3

body dispersion correction.

Edisp = ∑
AB

∑
n=6,8

sn
CAB

n
rn

AB
fd,n(rAB) (1.5)

fd,n(rAB) =
1

1+6(rAB(sr,nRAB
0 ))−αn

(1.6)

The global scaling factor (sn), which depends on the density functional used, is only adjusted

for n > 6 (s6=1) to ensure the correct asymptotic behavior. This (s8 to be precise) is the first

parameter in DFT–D3 that is empirically determined for each different density functional. Along

with this change they have adopted the type of damping function (Eq. 1.6) initially used by Chai

and Head–Gordon33 which is more convenient for higher order dispersion correction. However, in

a more recent paper35 they have replaced this with the Becke–Johnson (BJ) type damping which

gives finite dispersion energies at shorter distances rather than ”zero” dispersion energy. They

have noted that although the BJ damping is the primary choice, overall this only provides a slightly

better (although more physically sound) energies for the tests they have performed.35 I have used

the damping function in Eq. 1.6 for the DFT–D3 calculations in this thesis. The sr,6 is the second

parameter (since sr,8 is set to be equal to 1) that is empirically determined by a least squares fit

to a big dataset of noncovalent interaction energies. The steepness parameters α6 and α8 were

manually set to be 14 and 16, respectively.

Dispersion coefficients are calculated via ab–initio time–dependent (TD) DFT, where C6s are

calculated using the Casimir–Polder equation (Eq. 1.7) with averaged dipole polarizabilities at

imaginary frequencies (α(iω)). α(iω) values were computed not for free atoms but using the

stable hydrides of each element (except the rare gas atoms).

CAB
6 =

3
π

∫
∞

0
α

A(iω)αB(iω)dω (1.7)

5



Grimme et al. propose to account for the chemical environment dependence of the dispersion

coefficients by using the number coordination number of the atoms. The idea is that bond for-

mation which induces a quenching in the atomic state that changed the excitation energies (hence

the polarizabilities) is responsible for the change in the dispersion coefficients. As the coordina-

tion number of an atom increases it can be thought of as being squeezed, hence the dispersion

coefficient decreases. The reference CAB
6 coefficient calculated by the Casimir–Polder equation

is adjusted by using the coordination number for the atom pair in the system of interest. Higher

order C8 terms are then obtained using recursion relations using the C6 values. The accuracy of

the molecular C6 coefficients obtained theoretically can be tested using the experimentally known

dipole oscillator strength distributions (DOSDs). The DFT–D3 method gives an 8.4% mean abso-

lute error for the accuracy of the molecular C6 coefficients based on the DOSD data reported by

Meath et al.

Two other dispersion correction schemes (Becke–Jonhson and Tkatchenko–Sheffler)23, 24

that depend on the chemical environment of the atoms were proposed before DFT–D3. Around an

electron there is a depletion of density, which is named a exchange–correlation hole. The electron

and its exchange hole has zero charge overall but a non–zero dipole moment. The Becke–Johnson

model (which I have not used in my calculations for this theses, hence it will be summarized

briefly here) proposes the aspherical shape of this exchange-correlation hole which generates a

dipole moment as the source for the dispersion interaction. System dependent inter–atomic disper-

sion coefficients Ci j
6 are obtained by using atomic polarizabilities and exchange(only)-hole dipole

moment using the equation 1.8. The dispersion coefficients respond to chemical environment in

two ways. One they are scaled using effective atomic volumes and secondly through the changes of

the exchange–hole which affect the dipole moments that appear in equation 1.8. The molecular C6s

obtained using this method give 12.2% mean absolute error (MAE) based on the data of Meath and

coworkers.22 One disadvantage of the BJ methods is that the computational cost is more expensive

(on the order of a hybrid DFT calculation) compared to other DFT–D methods.36

CAB
6 =

αAαB〈d2
x 〉A〈d2

x 〉B
〈d2

x 〉AαB + 〈d2
x 〉BαA

(1.8)
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Another method for computing nonempirical dispersion coefficients, which is sensitive to

chemical environment of the atom, is the vdW–TS scheme of Tkatchenko and Scheffler.24 In

this procedure Ci j
6 terms describing the vdW interaction between two atoms or molecules are com-

puted using equation 1.9 which they obtained thorough a series of approximation starting with the

Casimer–Polder integral (Eq. 1.7).

CAB
6 =

2CAA
6 CBB

6[
α0

B
α0

A
CAA

6 +
α0

A
α0

B
CBB

6

] . (1.9)

The free–atom reference values of α0
A and CAA

6 are taken from a self–interaction corrected

TDDFT calculations of Chu and Delgarno.37 They take the advantage of the relationship between

the effective volume and polarizability to calculate dispersion coefficients that depend on the chem-

ical environment of the atom. Hirshfeld partitioning38 of the electron density of the system is used

to obtain each atoms contribution to the density. This effective density, hence the volume, is com-

pared to the density of the free–reference atom to obtain a scaling factor which is used to define the

response of the dispersion coefficient’s to chemical environment. The accuracy of the molecular

Ci j
6 coefficients obtained using the vdw–TS method with respect to the experimental values is the

most accurate (5.4 % MAE)24 compared to the ones discussed so far. Among the DFT–D methods

discussed so far DFT–D3 of Grimme et al. and BJ method use higher order dispersion coefficients

(at least the Ci j
8 ) when calculating the dispersion energy but vdW–TS includes only the leading

Ci j
6 term. The reason behind this is that they assume shorter–ranged dispersion energy is included

already when GGA functionals are used and some of it is also included artificially by the use of

the damping function.

EABC =CABC
9

3cosαcosβcosγ +1
(rABrBCrAC)3 (1.10)

All of these (DFT–D3, vdW–TS and BJ) methods also have versions those provide descrip-

tion for dispersion energy beyond the pairwise additivity.15, 22, 39–41 However, Johnson et al. do

not recommend to use their version of due to arbitrariness in the choice of damping function for

the three–body interaction terms and the physical meaning if these terms in a molecular dimer,
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and Grimme et al. decided to switch it off due to an overestimation of the three–body effects in

overlapping density regions with current density functionals and this leads to deterioration in the

performance of pairwise–additive only DFT–D3.22 For including the three–body terms Axilrod–

Teller–Muto equation (Eq. 1.10 ) has been used in all of the methods22, 39, 40 but the recent version

that was published by Tkatchenko and DiStasio.15, 41 This latest many–body dispersion method

(MBD) includes the long–range screening effects and many–body vdW energy to the all orders

of dipole interactions. In this method atoms are represented by quantum harmonic oscillators

(QHO) with characteristic frequency-dependent polarizabilities obtained with the aforementioned

vdW–TS method and the dispersion energy is obtained by solving the Schrödinger equation cor-

responding to these interacting QHOs within the dipole approximation. I will not go into more

detailed description of the many–body dispersion methods since they are not used in this thesis but

suffice it to say that these are found to be more important in modeling supramolecular systems42

and crystals.39, 43

1.1.2 Dispersion–Corrected–Atom–Centered–Pseudopotentials (DCACP’s)

Pseudopotentials are very important for efficient electronic structure calculations. The advantages

they offer include reducing the number of electrons used (frozen core approximation), decreas-

ing the basis functions needed (smooth potentials near atomic core) and including relativistic ef-

fects. The details of the pseudopotential approximation will not be covered in this thesis, but the

dispersion–corrected atom–centered potential DCACP approach12, 13 makes use of the separable

form of pseudopotentials into a local and non–local parts (Kleinman-Bylander form).44 The idea

is that non–local part can cast the nonlocal character of the dispersion forces.

The DCACP procedure modifies the electronic density by adding to the Hamiltonian atom–

centered non–local potentials of the form,

Vl(r,r
′
) =

l

∑
m=-l

Ylm(r̂)pl(r;σ2)σ1pl(r
′
;σ2)Ylm(r̂

′
), (1.11)

where Ylm denotes a spherical harmonic, and pl is a normalized projector defined as pl(r;σ2) ∝

8



rlexp[–r2/2σ2
2 ] . The dispersion correction potentials are of the same functional form as the Gaus-

sian based non–local channels of the Goedecker–Teter–Hutter (GTH) pseudopotentials.45 The an-

alytical form of the GTH type pseudopotentials makes it easier to optimize the parameters needed

in DCACPs. The parameter σ1 scales the magnitude of the pseudopotential, and σ2 tunes the

location of the projector’s maximum from the atom center. In their application of this method,

Roethlisberger and coworkers used the l = 3 channel, and determined the σ1 and σ2 parameters

by use of a penalty function that minimized the differences between the DCACP and full CI or

CCSD(T)46 energies and forces evaluated at the equilibrium and midpoint geometries (the point

where the interaction energy equals half that of the equilibrium value – only for the energy term)

for a small set of dimers. This additional angular momentum dependent non–local part of the

pseudopotential does not interfere with the original pseudopotential since it acts further away from

the core region. The σ2 parameter that determines the location of the projector’s maximum for

the regular GTH atomic pseudopotentials is in the range of 0.2–0.3 Å while in DCACP it varies

between 1.8–3.6 Å. Also the σ1 which determines the magnitude is much smaller in the DCACP

potential compared to the regular GTH potential terms. The negligible difference in bond lengths

computed with the uncorrected density functional and its DCACP version gives additional support

that the new dispersion channel does not interfere with the atomic psedopotential.

The DCACP method has been implemented for the PBE,9 BLYP47, 48 and Becke-Perdew47, 49

functionals. It adds negligible computational cost to a DFT calculation. However, unlike DFT-

D methods, they permit a self-consistent treatment of electronic effects in a single DFT run and

no extra effort is needed to compute the forces on the ions. Currently these pseudopotentials are

available for a few elements of the periodic table.

Compared to the uncorrected GGA functionals the DCACP approach gives significantly im-

proved interaction energies for a wide range of systems near their equilibrium structures.12, 13, 50–55

However, the DCACP correction to the interaction energy falls off much more rapidly than R−6

with increasing distance between the monomers in a dimer.54–56 In Chapter 4, a study of isomers

of the water hexamer, we concluded that at least when used with the BLYP functional, DCACPs

are correcting for limitations of the functional in describing exchange-repulsion interaction as well

9



as for dispersion interactions.55

1.1.3 van der Waals density functional (vdW–DF)

The main ingredient for the vdW–DF method is the inclusion of a long range non–local corre-

lation energy functional of the form shown in equation 1.12.

Enon−local
C =

∫ ∫
ρ(r)Φ(r,r′)ρ(r′) dr dr′. (1.12)

The nonlocal correlation functional (Enon−local
C ) involves integration over the electronic densities at

two points (r and r′) with the non–local kernel Φ(r,r′) relating the charge density, ρ , at r to that at

r′. Promising solutions toward this non–local functional for vdW electron-electron correlation was

initially given by the Rutgers-Chalmers collaboration.27, 57 The vdW–DF non–local functionals

represent the exchange–correlation energy (EXC) functional as,

EXC[ρ] = EGGA
X +ELDA

C +Enon−local
C , (1.13)

where the first term on the right hand side of the equation is the exchange energy from a GGA

functional, and the other two terms represent contributions from the short–range correlation energy

from LDA and the long–range non–local correlation energy. The kernel Φ in equation 1.12 is a

functional of the density and its gradient (vdW–DF2) where a local polarizability model is used to

account for the dispersion interactions.27, 28, 58, 59 Since the Enon−local
C is constructed in a way that it

vanishes at the uniform electron gas limit, there is no double counting when it is used with the local

LDA correlation.58 The original vdW–DF1 functional27, 57 uses the revPBE exchange functional.60

However since the revPBE exchange functional can bind spuriously by exchange alone and is too

repulsive near equilibrium separation61 the newer versions of this method (such as vdw–DF2)

use different exchange functionals such as PW86,62 or optimized versions of PBE or B88. The

vdW–DF methods do not use empirical parameters for calculating the C6 coefficients but other

variants such as VV1058 has parameters that affect the C6 coefficients. The computational cost

of these functionals is comparable to that of GGA due to the new algorithm of Soler and Roman-

Perez that uses convolution theory.63 Initially the computational cost scaled higher than that of

10



GGAs and hybrid GGAs. Recent versions of this family of functionals provide very accurate C6

coefficients.25, 58, 64 Self–consistent versions of these methods are implemented in various codes.

1.1.4 Random phase approximation (RPA)

The random phase approximation (RPA) is a many–body method which treats a subset of cor-

relation effects (described by ring diagrams) to all orders. The RPA method has recently gained

an increased popularity,65–73 although the history of RPA goes back to Bohm’s and Pines’s plasma

theory of electron correlation.74 The RPA can be derived within the framework of DFT using

the adiabatic connection fluctuation–dissipation (ACFD) theorem.75, 76 Being self–interaction free

by incorporating the exact exchange using KS orbitals within the Hartree–Fock exchange energy

expression, having the correct long–range behavior for the dispersion interactions, producing the

right decay outside a metal surface and incorporating a renormalized (screened) Coulomb interac-

tion are some of the advantages that RPA theory offers.

The expression for the correlation energy in RPA is

ERPA
c =

∫
∞

0

dω

2π
Tr{ln(1−χ0(iω)ν)+χ0(iω)ν}. (1.14)

In equation 1.14 ν is the Coulomb interaction kernel (1/|r− r′|) and χ0 is the Kohn–Sham

(non–interacting) response function evaluated at imaginary frequencies iω by using the formula

χ0(r,r′; iω) = 2
occ

∑
i

unocc

∑
a

φ∗i (r)φa(r)φ∗a (r
′)φi(r′)

iω + εi− εa
. (1.15)

ERPA
tot = EDFT

tot −EDFT
xc +Ex +ERPA

c (1.16)

RPA can be self–consistently calculated but since it is computationally demanding. In gen-

eral it is computed non–self–consistently as a post DFT calculation. The post–DFT RPA energy is

calculated as shown in Equation 1.16 where exchange–correlation energy from the RPA method re-

places the exchange–correlation energy obtained by using the chosen density functional. However

also, due to RPA not performing well for small inter–electronic distances, some groups suggested

using the range–separated versions of the RPA.77, 78 In the range–separated RPA , the short–range

11



interactions are described via an exchange–correlation density functional while long–range ex-

change and correlation are treated by HF and RPA, respectively.
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2.0 BENCHMARK CALCULATIONS OF WATER-ACENE INTERACTION

ENERGIES: EXTRAPOLATION TO THE WATER-GRAPHENE LIMIT AND

ASSESSMENT OF DISPERSION-CORRECTED DFT METHODS

This work was published as∗: Glen R. Jenness, Ozan Karalti, and Kenneth D. Jordan Physical

Chemistry Chemical Physics, 12, (2010), 6375–6381†

2.1 INTRODUCTION

In a previous study (J. Phys. Chem. C, 2009, 113, 10242–10248) we used density functional

theory based symmetry-adapted perturbation theory (DFT–SAPT) calculations of water interacting

with benzene (C6H6), coronene (C24H12), and circumcoronene (C54H18) to estimate the interac-

tion energy between a water molecule and a graphene sheet. The present study extends this earlier

work by use of a more realistic geometry with the water molecule oriented perpendicular to the

acene with both hydrogen atoms pointing down. We also include results for an intermediate C48H18

acene. Extrapolation of the water–acene results gives a value of −3.0± 0.15 kcal mol−1 for the

binding of a water molecule to graphene. Several popular dispersion-corrected DFT methods are

applied to the water–acene systems and the resulting interacting energies are compared to results

of the DFT–SAPT calculations in order to assess their performance.

The physisorption of atoms and molecules on surfaces is of fundamental importance in a

∗Reproduced by permission of the PCCP Owner Societies
†G. R. J. contributed the majority of the numerical data. O. K. contributed the dispersion corrected DFT calcula-

tions.
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wide range of processes. In recent years, there has been considerable interest in the interaction of

water with carbon nanotube and graphitic surfaces, in part motivated by the discovery that water

can fill carbon nanotubes.79 Computer simulations of these systems requires the availability of

accurate force fields and this, in turn, has generated considerable interest in the characterization of

the water–graphene potential using electronic structure methods.80–84

Density functional theory (DFT) has evolved into the method of choice for much theoretical

work on the adsorption of molecules on surfaces. However, due to the failure of the local density

approximation (LDA) and generalized gradient approximations (GGA) to account for long-range

correlation (hereafter referred to as dispersion or van der Waals) interactions, density functional

methods are expected to considerably underestimate the interaction energies for molecules on

graphitic surfaces. In recent years, several strategies have been introduced for “correcting” DFT

for dispersion interactions. These range from adding a pair-wise Cij
6R−6

ij interactions,20, 21, 24, 64

to fitting parameters in functionals so that they better describe long-range dispersion,12, 13, 26, 56

to accounting explicitly for long-range non-locality, e.g., with the vdW–DF functional.27 Al-

though these approaches have been quite successful for describing dispersion interactions between

molecules, it remains to be seen whether they can accurately describe the interactions of water

and other molecules with carbon nanotubes or with graphene, given the tendency of DFT methods

to overestimate charge-transfer interactions85 and to overestimate polarization in extended conju-

gated systems.86 Thus, even if dispersion interactions were properly accounted for, it is not clear

how well DFT methods would perform at describing the interaction of polar molecules with ex-

tended acenes and graphene.

Second-order Möller–Plesset perturbation theory (MP2) does recover long-range two-body

dispersion interactions and has been used in calculating the interaction energies of water with

acenes as large as C96H24.80 However, MP2 calculations can appreciably overestimate two-body

dispersion energies.87, 88 This realization has led to the development of spin-scaled MP2 (SCS–

MP2),89, 90 empirically-corrected MP2,91 and “coupled” MP2 (MP2C)92 methods for better de-

scribing van der Waals interactions. However, it is not clear that even these variants of the MP2

method would give quantitatively accurate interaction energies for water or other molecules ad-
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(a) Coronene (b) Hexabenzocoronene (HBC) (c) Dodecabenzocoronene (DBC)

Figure 2.1: Acenes used in the current study.

sorbed on large acenes since the HOMO–LUMO energy gap decreases with the size of the acene.

In addition to these issues, the MP2 method is inadequate for systems with large three-body dis-

persion contributions to the interaction energies.93

Given the issues and challenges described above, we have employed the DFT-based symmetry-

adapted perturbation theory (DFT–SAPT) method of Heßelmann et al.94 to calculate the inter-

action energies between a water molecule and benzene, coronene, hexabenzo[bc,ef,hi,kl,no,qr]-

coronene (referred to as hexabenzocoronene or HBC), and circumcoronene (also referred to as

dodecabenzocoronene or DBC). As will be discussed below, the DFT–SAPT approach has major

advantages over both traditional DFT and MP2 methods. The DFT–SAPT method also provides a

dissection of the net interaction energies into electrostatic, exchange-repulsion, induction, and dis-

persion contributions, which is valuable for the development of classical force fields and facilitates

the extrapolation of the results for the clusters to the water–graphene limit. In the current paper, we

extend our earlier study84 of water–acene systems to include more realistic geometrical structures.

The DFT–SAPT results are also used to assess various methods for including dispersion effects in

DFT calculations.
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Figure 2.2: Geometry used in the current study, illustrated in the case of water–benzene.

2.2 THEORETICAL METHODS

The coronene, HBC, and DBC acenes used in this study are depicted in Figure 2.1. For each

of the acenes, including benzene, all CC bond lengths and CCC angles (1.420 Å and 120◦, re-

spectively) were taken to match the experimental values for graphite.99 The dangling bonds were

capped with hydrogen atoms with CH bond lengths and CCH angles of 1.09 Å and 120◦, respec-

tively. This facilitates extrapolation of the interaction energies to the limit of a water molecule

interacting with graphene. The geometry of the water monomer was constrained to the experimen-

tal gas phase geometry (OH bond length of 0.9572 Å and HOH angle of 104.52◦).100 The water

molecule was placed above the middle of the central ring, with both hydrogens pointing towards

the acene. Note that this is a different water orientation than used for most of the calculations

reported in Reference 84. The orientation and distance of the water molecule relative to the ring

system were obtained from a series of single-point DFT–SAPT calculations on water–coronene.

These calculations give a minimum energy structure with the water dipole oriented perpendicular

to the acene ring system, and an oxygen-ring distance of 3.36 Å, which is close to that obtained
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Table 2.1: Methods and programs used in the current study.

Method Scheme Program

DFT–SAPT94 Uses linear response functions from TD-DFT to calculate MOLPRO95

dispersion energies via the Casimir–Polder integral

DFT+D20, 21 Adds empirical Cij
6R−6

ij corrections to DFT energies GAMESS96

DCACP12, 13, 56 Uses pseudopotential terms to recover dispersion CPMD97

C6/Hirshfeld24 Adds to DFT energies Cij
6R−6

ij corrections determined using FHI-AIMS98

Hirshfeld partitioning

in prior theoretical studies of water–coronene.83, 101–104 However, the potential energy surface is

quite flat (our calculations give an energy difference of only 0.02 kcal mol−1 between ROX = 3.26

Å and 3.36 Å), and thus small geometry differences are relatively unimportant.

The DFT–SAPT method, and the closely related SAPT(DFT) method of Szalewicz and co-

workers,105 evaluate the electrostatic and exchange-repulsion contributions using integrals involv-

ing the Coulomb operator and the Kohn–Sham orbitals, and are thus free of the problems inherent

in evaluating the exchange-repulsion contributions using common density functionals. The in-

duction and dispersion contributions are calculated using response functions from time-dependent

DFT. In the present study, the calculations made use of the LPBE0AC functional,94 which replaces

the 25% exact Hartree–Fock exchange of the PBE0 functional34 with the localized Hartree–Fock

exchange functional of Sala and Görling106 and includes an asymptotic correction. In general,

DFT–SAPT calculations give interaction energies close to those obtained from CCSD(T) calcula-

tions.107, 108 For more details, we refer the reader to Reference 108.

The DFT–SAPT calculations were carried out with a modified aug-cc-pVTZ basis set in which

17



the exponents of the diffuse functions were scaled by 2.0 to minimize convergence problems due

to near linear dependency in the basis set. In addition, for the carbon atoms the f functions were

removed and the three d functions were replaced with the two d functions from the aug-cc-pVDZ

basis set. Similarly, for the acene hydrogen atoms the d functions were removed and the three

p functions were replaced with the two p functions from the aug-cc-pVDZ basis set. The full

aug-cc-pVTZ basis set with the diffuse functions scaled by the same amount as the acene carbon

and hydrogen atoms was employed for the water molecule. For water–benzene, the DFT–SAPT

calculations with the modified basis set give an interaction energy only 0.05 kcal mol−1 smaller in

magnitude than that obtained with the full, unscaled, aug-cc-pVTZ basis set. Density fitting (DF)

using Weigend’s cc-pVQZ JK-fitting basis set109 was employed for the first order and the induction

and exchange-induction contributions. For the dispersion and exchange-dispersion contributions,

Weigend and co-worker’s aug-cc-pVTZ MP2-fitting basis set110 was used. The DF–DFT–SAPT

calculations were carried out with the MOLPRO ab initio package.95

We also examined several approaches for correcting density functional calculations for dis-

persion, including the dispersion-corrected atom-centered potential (DCACP) method of Roethlis-

berger,12, 13, 56 the DFT+dispersion (DFT+D) method of Grimme,20, 21 and the C6/Hirshfeld parti-

tioning scheme of Tkatchenko and Scheffler.24 The DCACP procedure uses modified Göedecker

pseudopotentials45 to incorporate dispersion effects. These calculations were carried out using the

CPMD program,97 utilizing a planewave basis set and periodic boundary conditions. These calcula-

tions employed a planewave cutoff of 4082 eV and box sizes of 42×42×28 a.u. for water–benzene

and water–coronene, and 46× 46× 28 a.u. for water–HBC and water–DBC to minimize interac-

tions between unit cells.

The DFT+D method adds damped empirical Cij
6R−6

ij atom-atom corrections20, 21 to the “uncor-

rected” DFT energies. The DFT+D calculations were performed with the same Gaussian-type-

orbital basis sets as used in the DFT–SAPT calculations and were carried out using the GAMESS ab

initio package96 (using the implementation of Peverati and Baldridge111). The dispersion correc-

tions were added to the interaction energies calculated using the PBE,9 BLYP,47, 48 and B97–D21

GGA functionals. The B97-D functional is Grimme’s reparameterization of Becke’s B97 func-
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tional112 for use with dispersion corrections.

The calculations involving the C6/Hirshfeld method of Tkatchenko and Scheffler24 were per-

formed with the FHI-AIMS package.98 The C6/Hirshfeld method, like the DFT+D method, in-

corporates dispersion via atom-atom Cij
6R−6

ij terms. However, unlike the DFT+D method, the

C6/Hirshfeld scheme calculates the Cij
6 coefficients using frequency-dependent polarizabilities for

the free atoms, scaling these values by ratios of the effective and free volumes, with the former

being obtained from Hirshfeld partitioning38 of the DFT charge density. This procedure results

in dispersion corrections that are sensitive to the chemical bonding environments. The tier 4 nu-

merical atom-centered basis sets113 native to FHI-AIMS were employed. These basis sets provide

a 6s5p4d3f 2g description of the carbon and oxygen atoms, and a 5s3p2d1f description of the

hydrogen atoms. A summary of the theoretical methods employed is given in Table 2.1.

2.3 RESULTS

2.3.1 DFT–SAPT calculations

The DFT–SAPT results for the water–acene systems are summarized in Table 2.2. The net

interaction energies along the water–benzene, water–coronene, water–HBC, and water–DBC se-

quence obtained using the DFT–SAPT procedure are −3.16, −3.05, −3.01, −2.93 kcal mol−1,

respectively. The interaction energies and ROX values from recent studies of water–coronene sum-

marized in Table 2.3. These earlier studies give interaction energies of water–coronene ranging

from −2.56 to −3.54 kcal mol−1.

From Table 2.2, it is seen that the electrostatic interaction energy decreases in magnitude, the

dispersion energies increase in magnitude, and the induction energies are relatively constant along

the benzene–coronene–HBC–DBC sequence. The exchange-repulsion interaction energy is 3.24

kcal mol−1 for water–benzene but only about 2.8 kcal mol−1 for the interaction of water with the

larger acenes. This reflects the fact that the charge distribution in the vicinity of the carbon atoms

is appreciably different for benzene than for the central carbon atoms in the larger acenes. Perhaps
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Table 2.2: Contributions to the DF–DFT–SAPT water–acene interaction energies (kcal mol−1).

Term Benzene Coronene HBC DBC

Electrostatics −2.85 −1.73 −1.54 −1.39

Exchange-repulsion 3.24 2.79 2.85 2.85

Induction −1.28 −1.29 −1.36 −1.37

Exchange-induction 0.82 0.80 0.83 0.84

δ (HF) −0.26 −0.20 −0.23 −0.23

Net induction −0.71 −0.69 −0.75 −0.75

Dispersion −3.28 −3.83 −4.00 (−4.07)a

Exchange-dispersion 0.44 0.42 0.43 (0.43)

Net dispersion −2.84 −3.42 −3.57 (−3.64)a

Total interaction energy −3.16 −3.05 −3.01 (−2.93)b

a Estimated using Edisp(water−DBC) = Edisp(water−HBC) +∑Cij
6R−6

ij , where the Cij
6R−6

ij terms account for the

dispersion interactions of the water molecule with the twelve additional C atoms of DBC. The C6 coefficients were

determined by fitting the DFT–SAPT water–coronene results.

b Total energy calculated using the estimated dispersion energy, described in footnote a.
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Table 2.3: Interaction energies (kcal mol−1) and ROX values (Å) for water–coronene.

ROX Eint Approach

Rubeš et al.83 3.27 −3.54 DFT/CC//aug-cc-pVQZ

Sudiarta and Geldart101 3.39 −2.81 MP2//6-31G(d=0.25)

Huff and Pulay104 3.40 −2.85 MP2//6-311++G**a

Reyes et al.102 3.33 −2.56 LMP2//aug-cc-pVTZ(-f )

Cabaleiro–Lago et al.103 3.35 −3.15 SCS–MP2//cc-pVTZ

Current study 3.36 −3.05 DFT–SAPT//modified aug-cc-pVTZ(-f )b

a Diffuse functions were used on every other carbon atom.

b Modified as described in the text.

the most surprising result of the SAPT calculations is the near constancy of the induction contri-

butions with increasing size of the acene ring system. This is not the case for models employing

point inducible dipoles on the carbon atoms, and we expect that it is a consequence of charge-flow

polarization,114, 115 which is not recovered in such an approach.

In classical simulations of water interacting with graphitic surfaces the dominant electrostatic

contributions are generally described by interactions of the water dipoles (or atomic point charges)

with atomic quadrupoles on the carbon atoms, as the quadrupole is the leading moment in an atom-

centered distributed multipole representation of graphene. However for finite acenes there are also

atomic charges and dipoles associated with the carbon atoms as well as with the edge H atoms.

In addition, the electrostatic interaction energies obtained from the SAPT calculations include the

effect of charge-penetration, which is a consequence of overlap of the charge densities of the water

and acene molecules. It is useful, therefore, to decompose the net electrostatic interaction energies

into contributions from charge-penetration and from interactions between the atom-centered mul-

tipole moments.
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Table 2.5: Electrostatic energies (kcal mol−1) between atomic charges on water and multipoles.

Term Benzene Coronene HBC DBC Graphenea

Charge-Charge −1.36 −2.18 −1.89 −1.57 0.00

Charge-Dipole 1.86 3.20 2.53 2.01 0.00

Charge-Quadrupole −2.30 −2.13 −1.55 −1.22 −0.65b

Total multipole −1.80 −1.11 −0.91 −0.77 −0.65

Charge-penetration −1.05 −0.62 −0.62 −0.62 −0.62c

DFT–SAPT −2.85 −1.73 −1.54 −1.39 (−1.27)d

a Modeled by C216H36 as described in the text.

b Calculated by using atomic quadrupoles of Q20 =−1.28 a.u. on each carbon atom.

c The charge-penetration in the electrostatic interaction between water–graphene is assumed to be the same as between

water and DBC.

d Taken to be the sum of the charge-penetration (from water–DBC) and charge-quadrupole interactions for the water–

C216H36 model.
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Table 2.6: Net interaction energies (kcal mol−1) for water–acene systems.

Method Benzene Coronene HBC DBC MAEa

DF–DFT–SAPT −3.17 −3.05 −3.00 (−2.94)b

B97-D −3.24 −3.62 −3.70 −3.61 0.50

PBE+D −3.69 −3.61 −3.61 −3.49 0.56

BLYP+D −3.12 −3.37 −3.48 −3.39 0.32

DCACP-BLYP −3.08 −3.24 −3.08 −3.10 0.13

C6/Hirshfeld-BLYP −2.50 −3.04 −3.11 −3.06 0.22

C6/Hirshfeld-PBE −3.77 −4.09 −4.16 −4.07 0.98

a Mean absolute error (MAE) relative to DFT–SAPT results.

b Calculated using the estimated dispersion term from Table 2.2.

For each of the acenes studied we used Stone’s Gaussian distributed multipole analysis

(GDMA) program116 to calculate atomic charges, dipoles and quadrupoles on the acene atoms.

Moments higher than the quadrupole make a negligible contribution to the interaction energies and

thus were neglected from the multipole analysis. Table 2.4 summarizes the GDMA moments for

the acenes obtained from MP2/cc-pVDZ charge densities (the MP2 calculations were carried out

using Gaussian03117). As expected, the values of the charges and dipoles on the inner carbons

decrease in magnitude as the size of the acene increases. For coronene the atomic charges and

dipoles are near zero for the central six C atoms, whereas for DBC the atomic charges and dipoles

are near zero for the inner three rings of carbon atoms. In order to estimate the interaction energies

in the absence of charge-penetration, the three point charges from the Dang–Chang model118 of the

water monomer were allowed to interact with the multipole moments on the atoms of the acenes

(the use of higher multipoles on the hydrogen and oxygen atoms of the water molecule does not

significantly impact the electrostatic interactions between water and the acenes). The results for the
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various water–acene systems for ROX = 3.36 Å are summarized in Table 2.5‡. The charge-charge,

charge-dipole and charge-quadrupole interactions are large in magnitude (≥1.2 kcal mol−1) for all

acenes considered, with the charge-charge and charge-quadrupole contributions being attractive

and the charge-dipole contributions being repulsive. Interestingly, the charge-dipole and charge-

quadrupole contributions roughly cancel for water–HBC and water–DBC. The charge-quadrupole

contribution decreases in magnitude with increasing size of the acene. This is a consequence of the

fact that the short-range electrostatic interactions with the carbon quadrupole moments are attrac-

tive while long-range interactions with the carbon quadrupoles are repulsive. The differences of

the SAPT and GDMA electrostatic energies provide estimates of the charge-penetration contribu-

tions which are found to be −0.62 kcal mol−1 for water–coronene, water–HBC, and water–DBC

for ROX = 3.36 Å.

2.3.2 Dispersion-corrected DFT calculations

The interaction energies of the water–acene complexes (at ROX = 3.36 Å) obtained using the

various dispersion-corrected DFT methods are reported in Table 2.6. Of the dispersion-corrected

DFT methods investigated, the DCACP method is the most successful at reproducing the DFT–

SAPT values of the interaction energies at ROX = 3.36 Å. For water–coronene, water–HBC, and

water–DBC the interaction energies obtained with the C6/Hirshfeld method combined with the

BLYP functional are also in good agreement with the DFT–SAPT values, although this approach

underestimates the magnitude of the interaction energy for water–benzene by about 0.7 kcal mol−1.

Interestingly, with the exception of the PBE+D approach, all the dispersion-corrected DFT meth-

ods predict a larger in magnitude interaction energy for water–coronene than for water–benzene,

opposite from the results of the DFT–SAPT calculations. This could be due to the overestimation

of charge-transfer in the DFT methods, with the overestimation being greater for water–coronene.

Figure 2.3.2 reports the potential energy curves for the water–coronene and water–HBC systems

calculated with the various dispersion-corrected DFT methods. From Figures 3(a) and 3(b) it is

‡Due to a small conversion error, the actual electrostatic interactions for water-DBC in Table 2.5 differ from those
published in Reference 53. These values should be replaced with the following (in kcal mol−1): charge-charge=−1.44;
charge-dipole=1.97; charge-quadrupole=−1.24; Total multipole=−0.71
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(a) (b)

(c) (d)

Figure 2.3: Potential energy curves for approach of water to (a,b) coronene and (c,d) HBC.
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seen that the DFT+D methods and C6/Hirshfeld methods both tend to overbind the complexes.

The DFT+D methods with all three functionals considered and the C6/Hirshfeld calculations using

the BLYP functional locate the potential energy minimum at much smaller ROX values than found

in the DFT–SAPT calculations. It is also seen that the potential energy curves calculated using

the DCACP procedure differ significantly from the DFT–SAPT potential for ROX ≥ 4.2 Å. This is

on account of the fact that the dispersion corrections in the DCACP method fall off much more

abruptly than R−6 at large R. It appears that part of the success of the DCACP method is actually

due to the pseudopotential terms improving the description of the exchange-repulsion contribution

to the interaction energies.

2.3.3 Extrapolation to the DFT–SAPT results to water–graphene

The exchange-repulsion, induction, exchange-dispersion, and charge-penetration contributions

between water and an acene are already well converged, with respect to the size of the acene,

by water–DBC. The contributions that have not converged by water–DBC are the non-charge-

penetration portion of the electrostatics and the dispersion (although the latter is nearly converged).

The non-charge-penetration contribution to the electrostatic energy for water–graphene was esti-

mated by calculating the electrostatic energy of water–C216H36 using only atomic quadrupoles on

the carbon atoms of the acene. The carbon quadrupole moments were taken to be Q20 =−1.28

a.u., the value calculated for the innermost six carbon atoms of DBC. We note that this value is

about twice as large in magnitude as that generally assumed for graphene.119 This gives an esti-

mate of −0.65 kcal mol−1 for the non-charge-penetration contribution to the electrostatic energy

between a water monomer and graphene.

Finally we estimate, using atomistic Cij
6R−6

ij correction terms, that the dispersion energy is

about 0.05 kcal mol−1 larger in magnitude in water–graphene then for water–DBC. Adding the

various contributions we obtain a net interaction energy of −2.85 kcal mol−1 for water–graphene

assuming our standard geometry with ROX = 3.36 Å. Rubeš et al., extrapolating results obtained

using their DFT/CC method, predicted an interaction energy of −3.17 kcal mol−1 for water–

graphene. Interestingly, while Rubeš et al. conclude the ROX is essentially the same for water–
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coronene, water–DBC, and water–graphene, our DFT–SAPT calculations indicate that ROX in-

creases by about 0.15 Å in going from water–coronene to water–HBC, with an energy lowering of

about 0.05 kcal mol−1 accompanying this increase of ROX for water–HBC. We further estimate,

based on calculations on water–benzene, that due to the basis set truncation errors, the DFT–SAPT

energies could be underestimated by as much as 0.1 kcal mol−1. Thus, we estimate that the “true”

interaction energy for water–graphene at the optimal geometry is −3.0±0.15 kcal mol−1, consis-

tent with the result of Rubeš et al.83

2.4 CONCLUSIONS

In this study, we have used the DFT–SAPT procedure to provide benchmark results for the

interaction of a water molecule with a sequence of acenes up to C54H18 in size. All results

are for structures with the water molecule positioned above the central ring, with both hydro-

gen atoms down, and with the water–acene separation obtained from geometry optimization of

water–coronene. The magnitude of the interaction energy is found to fall off gradually along the

benzene–coronene–HBC–DBC sequence. This is on account of the fact that the electrostatic con-

tribution falls off more slowly with increasing ring size than the dispersion energy grows. We

combine the DFT–SAPT results with long-range electrostatic contributions calculated using dis-

tributed multipoles and long-range dispersion interactions calculated using Cij
6R−6

ij terms to obtain

an estimate of the water–graphene interaction energy. This gives a net interaction energy of −2.85

kcal mol−1 for water–graphene assuming our standard geometry. We estimate that in the limit of

an infinite basis set and with geometry reoptimization, a value of −3.0± 0.15 kcal mol−1 would

result for the binding of a water molecule to a graphene sheet.

We also examined several procedures for correcting DFT calculations for dispersion. Of the

methods examined, the BLYP/DCACP approach gives interaction energies that are in the best

agreement with the results from the DFT–SAPT calculations. In an earlier work, it was shown that

the BLYP functional overestimates exchange-repulsion contributions,85 leading us to conclude that
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the pseudopotential terms added in the DCACP procedure must also be correcting the exchange-

repulsion contributions.

Although the focus of this work has been on the interaction of a water molecule with a series

of acenes, the strategy employed is applicable for characterizing the interaction potentials of other

species with acenes and for extrapolating to the graphene limit. Although there is a large number

of theoretical papers addressing the interactions of various molecules with benzene, relatively lit-

tle work using accurate electronic structure methods has been carried out on molecules other than

water interacting with larger acenes.
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3.0 EVALUATION OF THEORETICAL APPROACHES FOR DESCRIBING THE

INTERACTION OF WATER WITH LINEAR ACENES

This work was published as∗: Glen R. Jenness, Ozan Karalti, and Kenneth D. Jordan The

Journal of Physical Chemistry A, 115, (2011), 5955–5964†

3.1 INTRODUCTION

The interaction of a water monomer with a series of linear acenes (benzene, anthracene, pentacene,

heptacene, and nonacene) is investigated using a wide range of electronic structure methods, in-

cluding several “dispersion”-corrected density functional theory (DFT) methods, several variants

of the random phase approximation (RPA), DFT-based symmetry-adapted perturbation theory with

density fitting (DF–DFT–SAPT), MP2, and coupled-cluster methods. The DF–DFT–SAPT calcu-

lations are used to monitor the evolution of the electrostatics, exchange-repulsion, induction, and

dispersion contributions to the interaction energies with increasing acene size, and also provide the

benchmark data against which the other methods are assessed.

Graphene and graphite are prototypical hydrophobic systems.120 Interest in water inter-

acting with graphitic systems has also been motivated by the discovery that water can fill carbon

nanotubes.79 One of the challenges in modeling such systems is that experimental data for char-

acterizing classical force fields are lacking. Even the most basic quantity for testing force fields,

∗Reproduced by permission of the PCCP Owner Societies
†O. K. contributed the dispersion corrected DFT and RPA calculations. G. R. J. contributed the calculations with

DFT–SAPT and wave–function methods.
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the binding energy of a single water molecule to a graphene or graphite surface, is not known

experimentally. Several studies have appeared using electronic structure calculations to help fill

this void.53, 80–84, 101, 103, 104, 121–123 However, this is a very challenging problem since most DFT

methods rely on either local or semi–local density functionals that fail to appropriately describe

long-range dispersion interactions, which are the dominant attractive term in the interaction ener-

gies between a water molecule and graphene (or the acenes often used to model graphene).

In a recent study we applied the DF–DFT–SAPT procedure94 to a water molecule interact-

ing with a series of “circular” acenes (benzene, coronene, hexabenzo[bc,ef,hi,kl,no,qr]coronene,

and circumcoronene).53 These results were used to extrapolate to the binding energy of a water

molecule interacting with the graphene surface and also proved valuable as benchmarks for testing

other more approximate methods. Water–circumcoronene is essentially the limit of the size sys-

tem that can be currently be studied using the DF–DFT–SAPT method together with sufficiently

flexible basis sets to give nearly converged interaction energies. In the present study we consider a

water molecule interacting with a series of “linear” acenes, specifically, benzene, anthracene, pen-

tacene, heptacene, and nonacene, which allows us to explore longer-range interactions than in the

water–circumcoronene case and also explore in more detail the applicability of various theoretical

methods with decreasing HOMO/LUMO gap of the acenes. The theoretical methods considered

include DF–DFT–SAPT, several methods for correcting density functional theory for dispersion,

including the DFT–D2 and DFT–D3 schemes of Grimme and co-workers,21, 22 vdW–TS scheme

of Tkatchenko and Scheffler,24 the van der Waals density functional (vdW–DF) functionals of

Lundqvist, Langreth and co-workers,28, 124 and the dispersion-corrected atom-centered pseudopo-

tential (DCACP) method of Rothlisberger and co-workers.12, 56 Due to computational costs, only

a subset of these methods were applied to water–nonacene.

The results of these methods are compared to those from several wavefunction based methods,

including second-order Möller–Plesset perturbation theory (MP2),125 coupled-cluster with singles,

doubles and perturbative triples [CCSD(T)],46, 126, 127 spin-component-scaled MP2 (SCS–MP2),89

“coupled” MP2 (MP2C),92 and several variants of the random phase approximation (RPA).128–130

For comparative purposes, we also report interaction energies calculated using the recently intro-
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duced DFT/CC method,83, 131 which combines DFT interaction energies with atom-atom correc-

tions based on coupled-cluster calculations on water–benzene.

3.2 THEORETICAL METHODS

The base DFT calculations for the DFT–D2 and DFT–D3 procedures and the CCSD(T), various

MP2, and DFT–SAPT calculations were performed with the MOLPRO95 ab initio package (version

2009.1). The DFT/CC corrections were calculated using a locally modified version of MOLPRO.

The dispersion corrections for the DFT–D2 and DFT–D3 procedures21, 22 were calculated using

the DFT-D3 program22 of Grimme and co-workers. The DCACP calculations were performed with

the CPMD97 code (version 3.11.1). The vdW–DF energies were computed non-self-consistently

using an in-house implementation of the Román–Pérez and Soler63 methodology and employing

densities from plane-wave DFT calculations carried out using the VASP code.132–135 The RPA and

vdW–TS calculations, including the base DFT (or Hartree–Fock) calculations required for both

methods, were carried out with the FHI-AIMS98 program (version 010110). The calculations with

MOLPRO used Gaussian-type orbital basis sets, those with FHI-AIMS employed numerical atom-

centered basis sets,113 and those with CPMD and VASP used plane-wave basis sets. Details about the

basis sets used are provided below.

3.2.1 Geometries

For the acenes, the same geometrical parameters were employed as in our earlier study of a

water molecule interacting with circular acenes,53 i.e., the CC and CH bond lengths were fixed at

1.42 Å and 1.09 Å, respectively, and the CCC and CCH bond angles were fixed at 120◦. Obviously,

the linear acenes in their equilibrium geometries have a range of CC bond lengths and CCC bond

angles; the fixed values given above were used as it facilitates comparison with our results for the

circular acenes. The experimental gas-phase geometry was used for the water monomer (OH bond

length of 0.9572 Å and HOH angle of 104.52◦).100 The water monomer was positioned above the

32



(a) Anthracene (C14H10) (b) Pentacene (C22H14)

(c) Heptacene (C30H18)

(d) Nonacene (C38H22)

Figure 3.1: Acenes studied.

Figure 3.2: Placement of the water molecule relative to the acene (water–anthracene).
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Figure 3.3: Labeling scheme of the carbon and hydrogen atoms.

central ring so that the water C2 rotation axis is perpendicular to the plane of the acene and the

oxygen atom is directly above the acene center-of-mass at a distance of 3.36 Å (obtained from our

earlier optimization of water–coronene). 3.2 depicts the orientation of the water monomer relative

to the acene, illustrated for the water–anthracene case. For water–anthracene, we also carried out

a full geometry optimization at the MP2/aug-cc-pVDZ level to determine the sensitivity of the

interaction energy to geometry relaxation. These calculations reveal that the net interaction energy

is altered by less than 5% in going from our standard geometry to the fully relaxed geometry.

3.2.2 Wavefunction-based methods

The majority of the calculations using Gaussian-type orbitals were carried out using the aug-

cc-pVTZ (AVTZ) basis set,136, 137 although for a subset of systems and methods, the aug-cc-pVQZ

(AVQZ) basis set136, 137 and the explicitly correlated F12 methods138–140 were used to investigate

the convergence of the interaction energies with respect to the size of the basis set.

The various MP2 calculations were carried out with density fitting (DF) for both the Hartree–

Fock and MP2 contributions (referred to as DF–HF and DF–MP2, respectively). The calculations

involving the aug-cc-pVxZ (AVxZ, where x=T or Q) basis sets utilized the corresponding AVxZ JK-

and MP2-fitting sets of Weigend and co-workers109, 110 for the DF–HF and DF–MP2 calculations,

respectively.

As has been noted numerous times in the literature, the MP2 method frequently overesti-
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Table 3.1: Summary of methods and programs used in the current study.

Method Scheme Program

DFT–SAPT94
Dispersion energies calculated via the Casimir–Polder integral

MOLPRO95

using TDDFT response functions

MP2C92
Replaces uncoupled Hartree–Fock dispersion terms in MP2

MOLPRO
with coupled Kohn–Sham dispersion terms

DFT–D221 Adds damped atom-atom Cij
6R−6

ij corrections to DFT energies DFT-D322

DFT–D322
Adds damped atom-atom Cij

6R−6
ij +Cij

8R−8
ij corrections to

DFT-D3
the DFT energies

vdW–TS24

Adds damped atom-atom Cij
6R−6

ij corrections, with Cij
6

FHI-AIMS98coefficients determined from Hirshfeld partitioning of the DFT

charge densities

DFT/CC83, 131

Applies distance-dependent atom-atom corrections from

MOLPROaCCSD(T) calculations on model systems to standard

DFT energies

DCACP12, 13, 56
Adds atom-centered pseudopotential terms to correct

CPMD97

DFT energies

vdW–DF1,124 Incorporates dispersion interactions via an integral over a In-house code

vdW–DF228
product of a non-local kernel Φ(r,r′) and the densities n(r) densities from

and n(r′) at two points VASP132–135

RPA
Calculates interaction energies using the random phase

FHI--AIMS
approximation

a Denotes a locally modified version.
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mates dispersion interactions.141 Cybulski and Lytle,87 and Pitoňák and Heßelmann92, 142 have

suggested simple (and closely related) solutions to this problem. Here we explore the MP2C

method of the latter authors where the uncoupled Hartree–Fock (UCHF) dispersion contribution

(calculated via a sum-over-states expression) is replaced with the coupled Kohn–Sham (CKS) dis-

persion contribution from a time-dependent DFT (TDDFT) calculation (we include this method

under wavefunction-based methods even though it uses the TDDFT procedure in evaluating the

dispersion contribution). The 1s orbitals on the carbon and oxygen atoms were frozen in the

evaluation of the response functions required for the dispersion calculations. The MP2C method

generally gives interaction energies of near CCSD(T) quality, but with the computational cost scal-

ing as O(N 4) (where N is the number of basis functions) rather than as O(N 7) as required

for CCSD(T).92 For water–benzene, water–anthracene, and water–pentacene, DF–MP2 and DF–

MP2C calculations were also carried out with the explicitly-correlated F12 method,138, 143 for the

first two cases in conjunction with the AVTZ and AVQZ basis sets, and for water–pentacene, with

the AVTZ basis set only.

CCSD calculations were carried out for water–benzene, water–anthracene and water–

pentacene. CCSD(T) calculations, which include triple excitations in a non–iterative manner, were

carried out for water–benzene and water–anthracene. To reduce the computational cost, the water–

pentacene CCSD calculations were performed with the truncated AVTZ basis set described in Ref.

53 (and hereafter referred to as Tr-AVTZ). We then estimated the full CCSD/AVTZ interaction

energy for water–pentacene via

ECCSD/AVTZ
int = ECCSD/Tr−AVTZ

int +
(

EMP2/AVTZ
int −EMP2/Tr−AVTZ

int

)
. (3.1)

In addition for water–benzene and water–anthracene, CCSD and CCSD(T) calculations were car-

ried using the F12 method139, 140 and the cc-pVTZ-F12 (VTZ-F12) basis set.144

Interaction energies were also calculated using the spin-component scaled MP2 (SCS–MP2) of

Grimme,89 in which the antiparallel and parallel spin correlation terms are scaled by a numerical

factors of 6
5 and 1

3 , respectively. The choice of the antiparallel scaling parameter was motivated

by the fact that the MP2 methods typically underestimates correlation in two-electron systems
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by about 20%; the parallel scaling parameter was obtained empirically by fitting to high-level

QCISD(T)145 values of the reaction energies for a set of 51 reactions.89

All reported wavefunction-based interaction energies include the Boys–Bernardi counterpoise

correction,146 with the monomer energies being calculated in the full dimer-centered basis set.

3.2.3 DF–DFT–SAPT

The DF–DFT–SAPT method makes use of DFT orbitals in evaluating the electrostatics and

first-order exchange-repulsion corrections to the interaction energy,147 with the induction and dis-

persion contributions (along with their exchange counterparts) calculated from response func-

tions.148, 149 In the absence of CCSD(T) results for the larger acenes, the DF–DFT–SAPT94

results are used as benchmarks for evaluating the performance of other methods. Tekin and

Jansen108 have shown that for systems dominated by CH-π and π-π interactions, the DF–DFT–

SAPT/AVTZ method generally reproduces complete basis set limit CCSD(T) interaction energies

to within 0.05 kcal mol−1. Similar accuracy is expected in applying this approach to the water–

acene systems. Indeed, for water–benzene the interaction energy calculated using the DF–DFT–

SAPT/AVTZ method agrees to within 0.03 kcal mol−1 of the CCSD(T)-F12/VTZ-F12 result (al-

though, as discussed below, this excellent agreement is due to a partial cancelation of errors in

the DF–DFT–SAPT calculations). The DF–DFT–SAPT, like the DF–MP2C procedure described

above, scales as O(N 4).94

The LPBE0AC functional94 was used for the DF–DFT–SAPT calculations. For the asymp-

totic correction inherent in LPBE0AC, the experimental vertical ionization potentials (IP) from

the NIST Chemistry Webbook150 were used when available. As the experimental IPs for hep-

tacene and nonacene were not available, these quantities were estimated using the Hartree–Fock

Koopmans’ Theorem (KT)151 modified via

IPX = IPKT
X +

(
IPExperimental

Pentacene − IPKT
Pentacene

)
, (3.2)

where X is either heptacene or nonacene. This results in 0.92 eV correction to the KT ionization

energies. Although this approach of estimating the IP could lead to errors of a few tenths of an
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eV, these errors do not significantly impact the resulting water–acene interaction energies. For

example, a change of 0.1 eV in the IP of benzene results in a 0.01 kcal mol−1 change in the

interaction energy of water–benzene. For the density fitting, the cc-pV(x+1)Z JK-fitting set of

Weigend109 was employed for all non-dispersion terms, and the AVxZ MP2-fitting set of Weigend

and co-workers110 was used for the dispersion contributions.

We were unable to successfully complete the calculation of the dispersion energy of water–

nonacene using the DF–DFT–SAPT procedure. However the DF–MP2C procedure uses a closely

related scheme for evaluating the dispersion energy and gives the same dispersion contributions

for water–heptacene and water–nonacene, and moreover gives a dispersion contribution for water–

heptacene within 0.1 kcal mol−1 of the DF–DFT–SAPT result when used with the LPBE0AC

functional.

3.2.4 DFT-based methods

Among the dispersion-corrected DFT methods, the DFT–D2 scheme,21 which involves the

addition of damped atom-atom Cij
6R−6

ij correction terms to the DFT intermolecular energies, is

the simplest scheme. A drawback to the DFT–D2 scheme is the lack of sensitivity of the Cij
6

coefficients to the chemical environment. This is partially addressed in the DFT–D322 method

which introduces dispersion coefficients that depend on the coordination number of the atoms

involved and also includes damped Cij
8R−8

ij contributions.22 In the present study, the DFT–D2 and

DFT–D3 schemes are used with the PBE,9 revPBE,60 and BLYP47, 48 density functionals together

with the AVTZ basis set. The resulting interaction energies are corrected for BSSE using the

counterpoise procedure.

The vdW–TS method24 also applies damped atom-atom Cij
6R−6

ij corrections to DFT energies,

but it differs from DFT–D2 in that the Cij
6 coefficients are adjusted using effective atomic vol-

umes obtained from Hirshfeld partitioning38 of the charge densities. The vdW–TS calculations

were performed with tier 3 and tier 4 numerical atom-centered basis sets113 for hydrogen and car-

bon/oxygen, respectively. These basis sets have been designed for use in FHI-AIMS. The tier 3

basis set provides a 5s3p2d1f description of the hydrogen atoms, and the tier 4 basis set provides
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a 6s5p4d3f 2g description of the carbon/oxygen atoms. The largest vdW–TS calculation, that on

water–nonacene, employed 3864 basis functions.

The DFT/CC method of Rubeš and co-workers83, 131 adds to the DFT energy atom-atom cor-

rection terms parameterized to differences between CCSD(T)/CBS and PBE interaction energies

for water–benzene. The DFT/CC method has been successfully used to categorize both solid152

and molecule–surface interactions.83, 121, 131 The reference energies used for the DFT/CC calcula-

tions were taken from Refs. 4 and 69. The base PBE energies for DFT/CC method were calculated

with the AVTZ basis set and were corrected for BSSE using the counterpoise procedure.

The dispersion-corrected atom-centered potential (DCACP) method of Roethlisberger and co-

workers12, 56 modifies Goedecker–Teter–Hutter (GTH) pseudopotentials45 by adding an f channel

to correct for deficiencies in the density functional employed. The calculations with the DCACPs

were carried out with a plane-wave basis set and using periodic boundary conditions. This ap-

proach was applied to acenes through heptacene and all calculations employed a planewave cutoff

of 3401 eV and a box size of 30×16×16 Å. The high cut-off energy was necessitated by use of

the GTH pseudopotentials.

The vdW–DF1124 and vdW–DF228 GGA functionals of Langreth and coworkers represent the

exchange-correlation energy functional as

EXC[ρ] = EX +ELDA
C +Enon−local

C , (3.3)

where the nonlocal correlation functional
(
Enonlocal

C
)

involves integration over the electronic den-

sities (ρ) at two points (r and r′) with a non-local kernel (Φ(r,r′)),

Enon−local
C =

1
2

∫ ∫
ρ(r)Φ(r,r′)ρ(r′) dr dr′. (3.4)

As recommended by the developers, for vdW–DF1 and vdW–DF2, the revPBE and modified

PW8649 (called PW86R153) exchange density functionals were used, respectively. The vdW–DF

calculations were performed with charge densities from VASP132–135 calculations obtained using

VASP-native pseudopotentials together with a planewave cutoff of 800 eV and a supercell with

∼ 10 Å of vacuum in all directions.
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3.2.5 RPA-based methods

The random phase approximation (RPA) method is a many-body method which treats a subset

of correlation effects (described by ring diagrams) to all orders.154 There are multiple variants of

the RPA method, and in this work three different RPA schemes, denoted RPA, RPA+2OX, and

RPA/(HF+PBE), are considered. In each case the energy includes exact exchange contributions

computed using the Hartree–Fock expression using either the Hartree–Fock or Kohn–Sham or-

bitals. The RPA plus second-order exchange (RPA+2OX) approach128, 129 adds a second-order

exchange energy correction to the total RPA energy. In the RPA/(HF+PBE) scheme, suggested to

us by Ren and Blum,130 the RPA/PBE correlation correction is added to the Hartree–Fock energy.

For the RPA and RPA+2OX schemes the interaction energies obtained using orbitals from HF,

PBE, revPBE and BLYP calculations are reported. The RPA calculations were performed with a

modified tier 3 numerical atom-centered basis set with the highest angular momentum basis func-

tions from the full tier 3 basis set (i.e. the f functions from hydrogen, the g functions from oxygen,

and the f and g functions from carbon) being deleted. In addition, the core 1s orbitals were frozen.

3.3 RESULTS AND DISCUSSION

Before turning to the discussion on the interaction energies obtained using the various theo-

retical methods, it is instructional to examine the trends in the energy gaps between the highest

occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) as a func-

tion of the length of the acene. The orbital energies have been calculated at the Hartree–Fock

level using the 6-31G* basis set.155, 156 This basis was chosen to avoid the low-lying unfilled or-

bitals corresponding to approximate continuum functions157 that would be present with a basis set

including diffuse functions. The resulting HOMO–LUMO gaps are 12.7, 7.9, 5.8, 4.7, and 4.1

eV along the sequence benzene, anthracene, pentacene, heptacene, and nonacene. This leads one

to anticipate growing multiconfigurational character in the wavefunctions with increasing length

of the acene. It has even been suggested that the linear acenes larger than pentacene have triplet
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ground states,158 although more recent theoretical work indicates that they have singlet ground

states159 as assumed in our study. Ref. 159 also demonstrates the expected increase in the mul-

ticonfigurational character with increasing length of the acene, raising the possibility that some

theoretical methods may not properly describe the water–acene interaction energies for the larger

acenes.

3.3.1 DF–DFT–SAPT Results

From 3.2, which summarizes the results of the DF–DFT–SAPT calculations, it is seen that

the net interaction energy between the water molecule and the acene is nearly independent of the

size of the acene. The electrostatic and exchange-repulsion contributions both experience a sizable

reduction in magnitude in going from benzene to anthracene, with these changes being of oppo-

site sign and approximately compensating for one another. The exchange-repulsion contribution

is essentially constant from anthracene to nonacene, whereas the electrostatic interaction energy

continues to decrease in magnitude along the sequence of acenes, with the change in the electro-

static energy in going from water–heptacene to water–nonacene being only 0.03 kcal mol−1. The

induction energy, discussed in more detail below, is nearly constant across the series of acenes

while the dispersion energy grows in magnitude from water–benzene to water–heptacene, and be-

ing essentially the same for water–heptacene and water–nonacene. The fall off in the electrostatic

contribution is approximately compensated by the growing dispersion contribution with increasing

length of the acene.

For benzene, anthracene, pentacene, and heptacene, the atomic multipoles through hexade-

capoles were calculated using a distributed multipole analysis (DMA),116, 160–162 performed with

the GDMA116 program and using MP2/cc-pVDZ charge densities from Gaussian03117 calculations.

The resulting atomic multipoles (through the quadrupoles) are reported in the supporting infor-

mation (SI). The analysis was not done for nonacene as the atomic multipole moments for the

carbon atoms of the central ring are well converged by heptacene. The charges, dipole moments,

and quadrupole moments associated with the carbon atoms of the central ring undergo appre-

ciable changes in going from benzene to anthracene, but they are essentially unchanged along
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Table 3.2: Contributions to the DF–DFT–SAPT interaction energies (kcal/mol).

Term Benzene Anthracene Pentacene Heptacene Nonacene

E(1)
Elst −2.82 −2.29 −2.07 −2.01 −1.98

E(1)
Exch 3.25 2.85 2.84 2.85 2.85

E(2)
Ind −1.28 −1.22 −1.24 −1.26 −1.28

E(2)
ExInd 0.83 0.76 0.76 0.77 0.77

δHF −0.26 −0.21 −0.21 −0.20 −0.21

Net Induction −0.71 −0.67 −0.69 −0.69 −0.72

E(2)
Disp −3.38 −3.66 −3.72 −3.79 (−3.78) a

E(2)
ExDisp 0.46 0.43 0.43 0.43 (0.43)b

Net Dispersion −2.92 −3.23 −3.29 −3.36 (−3.36)

DF–DFT–SAPT −3.20 −3.34 −3.21 −3.21 −3.21

a As discussed in 3.2.3, the DF–DFT–SAPT calculation of the dispersion energy of water–nonacene was
unsuccessful. The dispersion energy for water–nonacene was taken to be the same as that for water–heptacene as
DF–MP2C calculations give the same dispersion energy for these two systems.
b The exchange-dispersion energy of water–nonacene has been assumed to be the same as that for water–heptacene.

42



Table 3.3: Electrostatic interaction energies of water–linear acenes

Term Benzene Anthracene Pentacene Heptacene

Charge-Charge −1.31 −2.36 −2.34 −2.26

Charge-Dipole 1.79 3.33 3.27 3.15

Charge-Quadrupole −2.27 −2.72 −2.55 −2.44

Charge-Octopole −0.03 0.17 0.26 0.28

Charge-Hexadecapole −0.05 −0.09 −0.11 −0.11

Total multipole −1.87 −1.67 −1.47 −1.39

Charge-penetration −0.95 −0.62 −0.60 −0.62

DF–DFT–SAPT −2.82 −2.29 −2.07 −2.01

the anthracene–pentacene–heptacene sequence. The electrostatic interaction between water and

the acene can be divided into contributions from the permanent atomic moments and charge-

penetration which is the result of the charge density of one monomer “penetrating” the charge

density of the other monomer.3 The charge-penetration contributions were estimated by subtract-

ing from the SAPT electrostatic interaction energies the electrostatic interaction energies calculated

using the distributed moments through the hexadecapoles of the acenes and the point charges of

the DPP2 model163 for the water monomer. As seen from 3.3, this procedure gives a charge-

penetration energy of−0.95 kcal mol−1 for water–benzene and about−0.6 kcal mol−1 for a water

monomer interacting with the larger acenes. These results are essentially unchanged upon use of

moments for the acenes obtained using the larger cc-pVTZ basis set136 or when employing higher

atomic multipoles on the water monomer.

The net induction energy is defined as E(2)
ind +E(2)

ex−ind +δ (HF), where the δ (HF) accounts in an

approximate manner for the higher-order induction and exchange–induction contributions. The net
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(c)

Figure 3.4: Differences between Mulliken charges (me) in the presence and absence of the water.
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induction energies are about −0.7 kcal mol−1 for each of the water–acene systems. At first sight

the near constancy of the induction energy is somewhat surprising. The net induction energies

can be decomposed into a sum of three contributions, atomic polarization, charge-flow polariza-

tion, and intermonomer charge-transfer.3 The nature of the charge-flow polarization is illustrated

in 3.4 where we report the change in the atomic charges of anthracene, pentacene, and heptacene

caused by the presence of the water molecule. These results were obtained from Mulliken popu-

lation analysis164 of the Hartree–Fock/cc-pVDZ wavefunctions of the water–acene complexes. As

expected, the electric field from the water molecule causes flow of electron density from remote

carbon atoms to the central ring. Using the atomic charges from the Mulliken analysis, we estimate

that charge-flow polarization and intermonomer charge-transfer combined contribute roughly half

of the induction energy for the water–acene systems, and that these contributions are relatively

independent of the size of the acene. Thus, the insensitivity of the induction energy with the size

of the acene can be understood in terms of the relatively small contributions of atomic polarization

in these complexes.

The dispersion contribution grows by 0.31 kcal mol−1 in magnitude in going from water–

benzene to water–anthracene, by 0.06 kcal mol−1 in going from water–anthracene to water–

pentacene, and by another 0.07 kcal mol−1 in going to water–heptacene. For water–anthracene

the dispersion contribution to the interaction energy is nearly identical to that for water–heptacene.

These changes are small compared to the net dispersion contributions (defined as E(2)
disp +E(2)

ex−disp).

3.3.2 Basis set sensitivity of the interaction energies

Before considering in detail the interaction energies obtained with the other methods, it is

useful to first consider the sensitivity of the results to the basis sets employed. In 3.4, we report

for water–benzene and water–anthracene interaction energies obtained using the DF–MP2, DF–

MP2C and DF–DFT–SAPT methods, in each case with both the AVTZ and AVQZ basis sets. In

addition, for the DF–MP2 and DF–MP2C methods, F12 results are included. The DF–DFT–SAPT

interaction energies increase by 0.06–0.10 kcal mol−1 in magnitude in going from the AVTZ to the

AVQZ basis set, whereas the corresponding increase in the DF–MP2 and DF–MP2C interaction
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Table 3.4: Influence of the basis set on the water–acene interaction energies (kcal/mol).

Theoretical Method AVTZ AVQZ

Water–benzene

DF–MP2 −3.28 −3.39

DF–MP2–F12 −3.47 −3.47

DF–MP2C −3.06 −3.20

DF–MP2C–F12 −3.25 −3.27

DF–DFT–SAPT −3.20 −3.30

Water–anthracene

DF–MP2 −3.66 −3.77

DF–MP2–F12 −3.85 −3.84

DF–MP2C −3.17 −3.29

DF–MP2C–F12 −3.35 −3.37

DF–DFT–SAPT −3.34 −3.40
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energies is 0.09–0.15 kcal mol−1. Moreover, with the latter two methods, the interaction energy

increases by another 0.05–0.08 kcal mol−1 in magnitude in going from the AVQZ basis set to the

F12/AVTZ procedure. The changes in the DF–MP2 and DF–MP2C interaction energies in going

from the F12/AVTZ to the F12/AVQZ approaches are 0.02 kcal mol−1 or less. These results justify

the use of the DF–DFT–SAPT/AVTZ approach to provide the benchmark results for assessing other

theoretical methods.

Thus for the MP2 and MP2C methods, the CBS-limit interaction energies are about 0.2

kcal mol−1 larger in magnitude than the results obtained using the AVTZ basis set. A similar

sensitivity to the basis set is found for the CCSD(T) interaction energy of water–benzene as seen

from 3.5. Moreover, the DF–MP2C and CCSD(T) procedures give nearly identical interaction

energies (we revisit the DF–MP2C interaction energies in the next section). It is also found that

the DF–DFT–SAPT calculations with the AVTZ basis set give interaction energies within a few

hundredths of a kcal mol−1 of the MP2C and CCSD(T) results obtained using the AVQZ/F12

method.

Although the interaction energies calculated with the DF–DFT–SAPT method are less sensitive

to the basis set than those calculated with the DF–MP2C or CCSD(T) methods, it is clear that in

the CBS-limit the DF–DFT–SAPT interaction energies would be about 0.1 kcal mol−1 larger in

magnitude than those obtained using the AVTZ basis set, resulting in slight overbinding of the

water–acene complexes.

3.3.3 Wavefunction-based results

Although the Hartree–Fock approximation predicts a monotonic fall off in the magnitude of the

interaction energy with increasing size of the acene, this is not the case for the DF–DFT–SAPT

method, the various DF–MP2 methods, or for the CCSD method. In each of these methods, the

interaction energy increases in magnitude in going from water–benzene to water–anthracene and

then drops off for the larger acenes. The origin of this behavior is clear from analysis of the results

in 3.2 and Table S1. Namely, the carbon atoms of benzene carry a greater negative charge than do

the carbon atoms of the central ring of the large acenes, causing the exchange-repulsion energy to
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Table 3.5: Net interaction energies (kcal/mol) for the water–acene systems.

Method Benzene Anthracene Pentacene Heptacene Nonacene

DF–DFT–SAPT −3.20 −3.34 −3.21 −3.21 −3.21

DF–HF −0.74 −0.48 −0.29 −0.23 −0.21

DF–MP2 −3.28 −3.66 −3.63 −3.62 −3.61

DF–MP2–F12 −3.47 −3.85 −3.80

DF–SCS–MP2 −2.61 −2.87 −2.82 −2.80 −2.79

DF–MP2C −3.06 −3.17 −3.06 −3.02 −3.01

DF–MP2C–F12 −3.25 −3.35 −3.23

CCSD −2.63 −2.77 −2.69

CCSD–F12a −2.80 −2.89

CCSD–F12b −2.76 −2.85

CCSD(T) −3.05 −3.26

CCSD(T)–F12a −3.21 −3.37

CCSD(T)–F12b −3.17 −3.33
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be greater in the case of water–benzene. This is the factor primarily responsible for the smaller in

magnitude interaction energy in water–benzene than in water–anthracene.

The interaction energies for the wavefunction based methods are presented in 3.5. For water–

benzene, water–anthracene, and water–pentacene the DF–MP2–F12 calculations overestimate the

binding energies by 0.27–0.59 kcal mol−1 in magnitude, with the discrepancy growing with in-

creasing size of the acene. On the other hand, the DF–SCS–MP2 method underestimates the mag-

nitude of the total interaction energies by 0.39 to 0.61 kcal mol−1. Comparison of the CCSD and

CCSD(T) results for water–benzene and water–anthracene shows that the inclusion of triple exci-

tations increases the interaction energies in magnitude by 0.4–0.5 kcal mol−1. Thus it appears that

the underestimation of the magnitude of the interaction energies with the DF–SCS–MP2 method

is due to the neglect of triple excitations.

The close agreement of the DF–MP2C, DF–DFT–SAPT and CCSD(T) interaction energies for

the water–acene systems warrants further discussion. A detailed analysis of wavefunction–based

SAPT [SAPT(HF)]165, 166 calculations on water–benzene reveals that intramonomer correlation a

−0.1 kcal mol−1 contribution to the dispersion portion of the interaction energy and a positive

contribution to both the exchange and electrostatic contributions to the interaction energy, with

the net change in the exchange plus electrostatics interaction being 0.65 kcal mol−1. On the other

hand, in the DF–MP2C approach there is a change of +0.2 kcal mol−1 in the dispersion energy

upon replacing the uncoupled Hartree–Fock dispersion contribution with the coupled Kohn–Sham

value.

Thus the good agreement between interaction energies obtained with the DF–MP2C method

and DF–DFT–SAPT approaches appears to be is due in part to a cancelation of errors in the former.

A closer examination of the SAPT(HF) results for intramonomer correlation on the dispersion

energy reveals that there are both large positive and negative corrections. It appears that although

the DF–MP2C method does not recover the 0.65 kcal mol−1 contribution of correlation effects to

the exchange and electrostatic energies, this is compensated by the failure to recover the −0.68

kcal mol−1 change in the dispersion energy due to intramonomer triple excitations.
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3.3.4 DFT-based results

3.6 reports interaction energies obtained using the PBE, revPBE, and BLYP density functionals

with and without correcting for long-range dispersion. In considering these results, it should be

kept in mind that while GGA functionals do not capture long-range dispersion interactions, they

can describe short-range dispersion, and also that some dispersion-corrected DFT methods, such as

DCACP and DFT–D actually correct for deficiencies in DFT other than the absence of long-range

dispersion interactions.55

From 3.6 it can be seen that while the PBE functional recovers about half of the total interaction

energies for the water–acene systems, the revPBE and BLYP functionals predict binding only in the

water–benzene case. The failure to obtain bound complexes with the BLYP and revPBE functionals

is due to their larger (compared to PBE) exchange-repulsion contributions.85 Indeed this behavior

of the revPBE functional was the motivation for the switch from revPBE in vdW–DF1 to PW86 in

vdW–DF2.28

The DFT–D2 method does well at reproducing the DF–DFT–SAPT interaction energies with

mean absolute errors (MAEs) of 0.39, 0.15 and 0.02 kcal mol−1 for PBE, revPBE, and BLYP,

respectively. For all of the density functionals considered, the DFT–D3 approach overestimates

the magnitude of the interaction energies by about 0.5 kcal mol−1. This overestimation is partially

reduced if one uses the DFT–D3 parametrization based on the TZVPP167 basis set22 (denoted as

DFT–D3/TZ in 3.6).

The vdW–TS procedure based on the PBE functional overestimates the magnitude of the total

interaction energies, with a MAE of 0.67 kcal mol−1, while the vdW–TS procedure based on the

BLYP functional considerably underestimates the magnitude of the interaction energies. Given

the fact that the vdW–TS method employs dispersion corrections that depend on the chemical

environments, it is surprising that it performs poorer than DFT–D2 for the water–acene systems.

The DFT/CC method gives interaction energies very close to the DF–DFT–SAPT results (MAE

of 0.05 kcal mol−1). The DCACP/BLYP approach also gives interaction energies in excellent

agreement with the DF–DFT–SAPT results (MAE of 0.06 kcal mol−1) while the DCACP/PBE

approach, on the other hand, does not fair as well (MAE of 0.68 kcal mol−1). Both the vdW–DF1
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Table 3.6: Net DFT interaction energies (kcal/mol) for the water–acene systems.

Method Benzene Anthracene Pentacene Heptacene Nonacenea MAEb

DF–DFT–SAPT −3.20 −3.34 −3.21 −3.21 −3.21

PBE −1.87 −1.50 −1.36 −1.32 −1.31 1.76

PBE+D2 −3.66 −3.69 −3.60 −3.57 −3.56 0.38

PBE+D3 −3.60 −3.75 −3.67 −3.65 −3.64 0.43

PBE+D3/TZc −3.41 −3.54 −3.45 −3.43 −3.42 0.21

revPBE −0.23 0.14 0.29 0.32 0.33 3.41

revPBE+D2 −3.21 −3.50 −3.44 −3.42 −3.42 0.16

revPBE+D3 −3.50 −3.75 −3.68 −3.66 −3.65 0.41

revPBE+D3/TZc −3.41 −3.66 −3.58 −3.56 −3.55 0.31

BLYP −0.27 0.21 0.35 0.37 0.38 3.44

BLYP+D2 −3.13 −3.29 −3.23 −3.22 −3.22 0.03

BLYP+D3 −3.59 −3.83 −3.77 −3.75 −3.75 0.50

BLYP+D3/TZc −3.23 −3.47 −3.41 −3.39 −3.39 0.14

vdW–TS/PBE −3.77 −4.01 −3.94 −3.92 −3.89 0.67

vdW–TS/BLYP −2.50 −2.77 −2.68 −2.65 −2.64 0.59

DFT/CC −3.23 −3.38 −3.31 −3.29 −3.29 0.06

DCACP/PBE −2.70 −2.62 −2.48 −2.45 0.68

DCACP/BLYP −3.08 −3.30 −3.25 −3.23 0.05

vdW–DF1 −2.89 −3.30 −3.38 −3.27 0.14

vdW–DF2 −3.21 −3.38 −3.29 −3.27 0.05

a Only a subset of methods were applied to nonacene to check for convergence with respect to system size in the
interaction energies.
b Mean absolute error (MAE) relative to DF–DFT–SAPT. MAEs were calculated only for benzene through nonacene
when water–nonacene interaction energies are available, else they were calculated for benzene through heptacene.
c D3/TZ denotes DFT–D3 parameters optimized with Ahlrichs’ TZVPP basis set.
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and vdW–DF2 functionals give interaction energies close to the DF–DFT–SAPT values, with the

vdW–DF2 proving more successful at reproducing the trend in the interaction energies along the

sequence of acenes obtained from the DF–DFT–SAPT calculations.

3.3.5 RPA-based results

As seen from 3.7, the RPA calculations using HF orbitals give interaction energies about 0.9

kcal mol−1 smaller than the DF–DFT–SAPT results. The errors are reduced to about 0.6

kcal mol−1 when using RPA based on DFT orbitals for each of the three functionals considered.

The underestimation of the interaction energies is apparently a consequence of the limitations in the

RPA method at describing short-range correlation effects (which are not recovered by a sum over

ring diagrams only). Interestingly, Scuseria and co-workers have shown that the RPA method based

on Hartree–Fock orbitals corresponds to an approximate coupled-cluster doubles approximation.68

The present PBA/HF calculations on water-benzene, water-anthracene, and water-pentacene gives

binding energies 0.25–0.38 kcal mol−1 smaller in magnitude than the corresponding CCD results

(which, in turn, are nearly identical to the CCSD results in 3.5.

The RPA+2OX method does not correctly reproduce the trend in the interaction energies along

the sequence of acenes. It appears that the small HOMO/LUMO gaps in the DFT calculations on

the larger acenes result in nonphysical second-order exchange corrections. There is a significant

improvement in the interaction energies as calculated with the RPA/(HF+PBE) method, which

gives interaction energies 0.2–0.3 kcal mol−1 smaller in magnitude than the DF–DFT–SAPT re-

sults, which in turn are expected to be about 0.1 kcal mol−1 smaller in magnitude than the exact

interaction energies for the geometries employed. However, it is possible that the improved results

obtained with this approach are fortuitous as it obviously does not address the problem of RPA not

properly describing short-range correlation effects.
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Table 3.7: Net RPA interaction energies (kcal/mol) for the water–acene systems.

Method Benzene Anthracene Pentacene Heptacene Nonacenea MAEb

DF–DFT–SAPT −3.20 −3.34 −3.21 −3.21 −3.21

RPA/HF −2.38 −2.42 −2.31 −2.27 −2.25 0.91

RPA/PBE −2.60 −2.70 −2.62 −2.59 0.61

RPA/revPBE −2.52 −2.69 −2.61 −2.59 0.64

RPA/BLYP −2.54 −2.73 −2.66 −2.63 0.60

RPA+2OX/HF −2.56 −2.53 −2.38 −2.37 0.78

RPA+2OX/PBE −3.18 −2.91 −2.66 −2.25 0.49

RPA+2OX/revPBE −3.15 −3.01 −2.76 0.28

RPA+2OX/BLYP −3.19 −3.03 −2.78 0.25

RPA/HF+PBE −2.90 −3.11 −3.05 −3.02 0.22

a Only a subset of methods were applied to nonacene to check for convergence with respect to system size in the
interaction energies.
b Mean absolute error (MAE) relative to DF–DFT–SAPT. MAEs were calculated using results for benzene through
nonacene when water–nonacene interaction energies are available, else they were calculated for benzene through
heptacene.

53



Figure 3.5: Long-range interactions of water–benzene calculated with various methods.

3.3.6 Long-range interactions

All of the results discussed above have been for a water–acene complex with the water–acene

separation close to the potential energy minima (for the assumed orientation). 3.5 plots the long-

range interaction energies of various theoretical methods. For the DF–DFT–SAPT method the sum

of the dispersion and exchange-dispersion contributions is plotted, and for the DCACP/BLYP the

difference between the interaction energies with and without the DCACP correction is plotted. For

the DFT–D3/PBE method the dispersion contribution is plotted. For the vdW–DF1, vdW–DF2,

and RPA approaches, the differences of the correlation energies of the dimers and the correlation

energies of the monomers are plotted (using only the non-local correlation terms in the case of the

vdW–DF methods).

From 3.5, it is seen that the DFT–D3/PBE curve closely reproduces the DF–DFT–SAPT disper-

sion curve, indicating that this method is properly describing the dispersion energy in the asymp-

totic region. Both the vdW–DF2 and DCACP/BLYP methods give dispersion contributions that
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fall off too rapidly for ROX ≥ 5.5 Å (as noted in Ref. 58, the vdW–DF2 tends to underestimate

the C6 coefficients58). The vdW–DF1 curve, while being close to the SAPT curve for R & 8 Å, is

much more attractive than the DF–DFT–SAPT curve for ROX ≤ 7.5 Å.

The long-range interaction energy from the RPA/PBE calculations is repulsive from ROX = 5.5

to 10 Å (the longest distance considered). This is due to the fact that the correlation correction in the

RPA method also describes the intramonomer correlation, which alters the electrostatic interaction

between the water monomer and the benzene molecule.

3.4 CONCLUSIONS

In the current study we examined the applicability of a large number of theoretical methods for

describing a water molecule interacting with a series of linear acenes. The DF–DFT–SAPT calcu-

lations, which provide the benchmark results against which the other methods are compared, give

interaction energies of water–benzene, water–anthracene, water–pentacene, and water–heptacene,

ranging from −3.20 to −3.24 kcal mol−1. This small spread in interaction energies is largely due

to the fact that the decreasing magnitude of the electrostatic interaction energy with increasing

size of the acene is partially compensated by the growing (in magnitude) dispersion contribution.

The DF–MP2C–F12/AVTZ approach, gives interaction energies in excellent agreement with the

DF–DFT–SAPT results, although this good agreement appears to be due, in part, to a cancelation

of errors in the DF–MP2C method.

Four of the DFT–corrected methods considered — BLYP–D2, DCACP/BLYP, DFT/CC and

vdW–DF2 — are found to give interaction energies for the water–acene systems very close to the

DF–DFT–SAPT results. The revPBE–D2, BLYP–D3/TZ, vdW–DF1, and PBE–D3/TZ approaches

also are reasonably successful at predicting the interaction energies at our standard geometries.

However these successes do not necessarily carry over to other geometries. In particular, as seen

in 3.5, both the DCACP and vdW–DF2 methods underestimate long-range dispersion interactions

in magnitude.
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Even though the HOMO/LUMO gap decreases with increasing size of the acene, there is no

indication that any of the methods considered are encountering problems in the calculation of the

water–acene interaction energy even for acenes as large as nonacene.
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4.0 IS THE DCACP METHOD PRIMARILY CORRECTING FOR DISPERSION?

4.1 INTRODUCTION

In the present study the performance of the dispersion–corrected atom–centered potential

(DCACP)12, 13 approach designed to add dispersion interaction missing in standard density func-

tional methods is analyzed for the low–energy ring, cage, prism, and book isomers of H2O)6. It

is concluded that for these clusters, the success of the DCACP method, particularly when used in

conjunction with BLYP functional, not only corrects for dispersion but also corrects for errors in

the non–dispersion contributions such as exchange to the interaction energies.

A major drawback of common GGA and hybrid density functional methods is the fail-

ure to describe long-range dispersion interactions which greatly limits their applicability to sys-

tems where such interactions are important. Not surprisingly, a large number of strategies have

been introduced to address this problem.12, 13, 18, 20–24, 26–29 These include adding Cij
6R−6

ij (and

possibly also Cij
8R−8

ij ) atom-atom type corrections,18, 20–24 fitting parameters in functionals26 or

additional pseudopotential terms,12, 13 to reproduce energies from accurate wavefunction calcula-

tions, and incorporating a non–local energy correction.27–29 In our work on water clusters85 and

on water interacting with acenes,53, 54 we have found that near the potential energy minima the

dispersion–corrected atom–centered potential (DCACP) procedure of Roethlisberger and cowork-

ers12, 13 gives interaction energies close to those obtained with symmetry-adapted perturbation

theory (SAPT).94, 105, 166 In the DCACP approach, standard pseudopotentials are augmented with

terms that are presumed to account for dispersion interactions missing in calculations using the

uncorrected functionals. In this note, we provide evidence that, when applied to water clusters and

57



used in conjunction with the BLYP functional,47, 48 the major effect of additional pseudopotential

terms is to correct for deficiencies in the exchange–repulsion interactions rather than to correct for

dispersion.

The DCACP procedure attempts to model long–range dispersion by adding terms to the

Hamiltonian of the form,

VDCACP(r,r’) = ∑
m

Yl,mpl(r)σ1pl(r’)Y∗l,m, (4.1)

where Yl,m denotes a spherical harmonic, and projectors (pl) have the form

pl ∝ rl pl exp(−r2/2σ
2
2 ), (4.2)

In their application of this method Roethlisberger and coworkers have taken l = 3, and have de-

termined the σ1 and σ2 parameters by use of a penalty functional that minimizes the differences

between the DCACP and full CI or CCSD(T) energies and forces at the equilibrium and midpoint

geometry (the point where the interaction energy equals half that of the equilibrium value). The

correction terms have the same analytical form as that used in the Goedecker–Teter–Hutter pseu-

dopotentials.45 The DCACP method has been implemented with PBE,9 BLYP47, 48 and Becke-

Perdew47, 49 functionals but most applications of the approach have been with the BLYP functional

,and we focus on this implementation in this article. We choose as our test systems, the ring, book,

cage and prism isomers of (H2O)6 (shown in Fig. 4.1) which have been the subject of numerous

studies.64, 85, 168–173

In a recent study,85 using both DFT and wavefunction-based methods, we decomposed the

net interaction energies of these isomers into their two-, three-, and four + five + six-body compo-

nents. We further separated the two- and three-body contributions from the DFT calculations into

electrostatics, exchange-repulsion, induction and intermonomer correlation contributions using the

LMO-EDA procedure,174 and compared these with analogous results from symmetry-adapted per-

turbation theory (SAPT).166 The inter-monomer correlation contributions from the DFT calcula-

tions were taken as approximately corresponding to the short-range part of the dispersion inter-
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(a) Prism (b) Cage (c) Book (d) Ring

Figure 4.1: Water hexamers used in the current study.

actions. In this earlier work, it was found that the BLYP functional greatly overestimates the

exchange-repulsion energies, and that at the minimum energy structures it gives dispersion contri-

butions slightly greater in magnitude than those obtained from SAPT calculations. Obviously, the

BLYP functional does not recover long-range dispersion interactions, and these results imply that it

overestimates short-range dispersion interactions. Since the LMO-EDA analysis indicates that the

greatest source of error in interaction energies of the (H2O)6 clusters as calculated with the BLYP

functional are associated with exchange-repulsion rather than with dispersion energies, we hy-

pothesized that the DCACP procedure mainly addresses the deficiency in the exchange–repulsion

energies.

4.2 DISCUSSION

To test the hypothesis presented above, DCACP calculations were carried out on the ring, book,

cage, and prism isomers of (H2O)6. Total interaction energies and their two- and three-body com-

ponents were evaluated using the BLYP functional with and without the DCACP correction terms.

The calculations were carried out using the BigDFT code175 in which we have implemented the

DCACP corrections in the form of Goedecker-Teter-Hutter pseudopotentials.45 BigDFT makes

use of systematic Daubechies wavelet basis sets176 which are orthogonal in both real and Fourier
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space. The BigDFT calculations were carried out using isolated boundary conditions177 and fine

grids (hgrid=0.15 and crmult=8) to ensure convergence in the energies to about 0.1 kcal/mol.

Figure 4.2 reports the net binding energies of the four (H2O)6 isomers obtained using the BLYP,

BLYP/DCACP and CCSD(T) methods. As noted previously, it is seen that the BLYP functional

greatly underbinds the clusters and incorrectly orders the isomers as compared to CCSD(T) calcu-

lations. The CCSD(T) results are from Ref. 13 and were obtained by combining CCSD(T)/aug-

cc-pVDZ energies with the difference of the MP2/aug-cc-pV5Z and MP2/aug-cc-pVDZ energies.

This approach results in small (≤ 0.3 kcal/mol) BSSE errors. In contrast to the BLYP method, the

BLYP-DCACP calculations give total and relative energies in good agreement with the CCSD(T)

values. Clearly, the DCACP procedure is remedying a major deficiency in the BLYP functional.

Fig. 4.3 compares the 2-body interaction energies obtained using the BLYP, BLYP/DCACP,

and the CCSD(T) methods. As expected the BLYP functional considerably underestimates the

magnitude of the 2-body interaction energies, while the BLYP/DCACP procedure gives 2-body

interaction energies close to the CCSD(T) results. 4.4 reports the individual contributions to the

net two-body energies obtained from the LMO-EDA analysis of the BLYP energies and from the

SAPT calculations. As discussed above the largest errors in the BLYP energies are associated

with the exchange-repulsion contributions. These range from 21 kcal/mol for the ring isomer to

26 kcal/mol for the prism isomer. The overestimation of the 2-body exchange repulsion contri-

butions is partially offset by about 10 kcal/mol error in the opposite direction in the induction

energies. Perhaps the most compelling results are those shown in Fig. 4.5 , which compares the

sum of BLYP exchange-repulsion, induction energies and the DCACP correction (taken as the dif-

ference of the BLYP and BLYP/DCACP 2-body energies) with the SAPT exchange-repulsion plus

induction energies. For each isomer, the two sets of results are in close agreement with the SAPT

exchange-repulsion + induction energies lying about 3 kcal/mol lower in energy. This provides

strong support to our conjecture that the DCACP procedure is mainly correcting for errors in non-

dispersion contributions to the energy.

Fig. 4.6 reports the three–body energies obtained from the BLYP, BLYP/DCACP, and

CCSD(T) methods. As seen from this figure and noted previously in Ref. 13, the BLYP functional
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Figure 4.2: Net interaction energies of isomers of (H2O)6 (kcal/mol)
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Figure 4.3: 2–Body interaction energies (kcal/mol)

62



Figure 4.4: Comparison of the individual contributions to the 2–body energy (kcal/mol)
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Figure 4.5: 2–body BLYP exch-rep + induction + DCACP corr. vs SAPT exch-rep + induction

overestimates the magnitude of the 3-body energies by 1− 2 kcal/mol. With the exception of the

prism isomer, the DCACP correction has little impact on the 3–body energies. (The origin of the

0.9 kcal/mol decrease in the 3–body energy of the prism isomer upon inclusion of the DCACP

correction is not clear.)
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Figure 4.6: 3–body energies (kcal/mol) from the BLYP, BLYP/DCACP, and CCSD(T) methods.

4.3 CONCLUSIONS

In summary, we present results that show, when applied to water clusters and when used with

the BLYP functional, the DCACP procedure is mainly correcting the limitations of the BLYP

functional in describing exchange-repulsion interactions rather than for dispersion interactions as

generally assumed. We expect that this conclusion holds for bulk water and for other H-bonded

systems.
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5.0 DCACP+D

5.1 INTRODUCTION

The dispersion–corrected atom–centered potential (DCACP)12, 13 approach, as discussed in the

previous three chapters, is a simple way of correcting density functional methods for dispersion

interactions. Although it provides very good accuracy for the interaction energies near equilibrium

distances, the energies fall off too quickly with the distance between the two moieties increases.

Also, as we have pointed in Chapter 4, at least, when used with the BLYP functional,47, 48 the

DCACP method is correcting for limitations of the functional in describing exchange-repulsion in-

teraction as well as for dispersion interactions. Actually, a similar effect is also noted for DFT+D

type dispersion corrections where the short–range damping function changes (corrects) the other

properties of the employed density functional.24 Here, we propose the ”DCACP+D” method

(which will be referred as DCACP/PBE-D3 or DCACP/BLYP-D3 throughout the text) for im-

proving the behavior of the long–range dispersion correction of the DCACPs. The main idea is to

use pseudopotentials to correct for the corresponding density functional’s deficiencies in describing

the interaction other than the dispersion and then for the dispersion energy to add on pairwise cor-

rections based on the Grimme (DFT–D3)22 and Tkatchenko-Sheffler (DFT+vdW–TS)24 schemes.
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5.2 METHOD

The penalty functional used in this study differs from the Roethlisberger group’s version. In the cal-

ibration process of the pseudopotentials we try to reproduce the reference potential energy curves

by only using the energy terms (no force term is involved). As in the case of the original DCACP’s,

we use the l = 3 channel of the non–local part of the GTH pseudopotenial for the optimization.

We utilize the evolutionary algorithm coded in Dakota program for the minimization process.178

All DFT calculations were done with the CPMD program.97 Since the reference systems used

in the original DCACP show good transferability we decided to use the same set of dimers in

our fitting procedure. Parallel placed (H2)2, (N2)2, cross–shaped (CO2)2 and sandwich type ben-

zene dimer reference systems were used for the calibration of H, N, O and C pseudopotentials

respectively. The dispersionless potential energy curves of the reference dimers were calculated

by subtracting the DFT–SAPT94 dispersion energies from the CCSD(T) energies. DFT–SAPT

dispersion energies were calculated by adding the second–order dispersion energy and second–

order exhange–dispersion energy. In the case of (H2)2 aug-cc-pV5Z basis set136 was used for

the DFT–SAPT and CCSD(T) calculations. For the (N2)2 aug–cc–pVQZ basis set137 was used in

both type of calculations. In the (CO2)2 CCSD(T)–F12a method139 was used in conjunction with

the VTZ–F12144 basis set and DFT–SAPT calculations were done with aug-cc-pVQZ basis set.

For benzene dimer CCSD(T)/aug-cc-pVQZ quality binding energies were taken from a paper of

Sinnokrot et al.179 and DFT–SAPT calculations were done with aug-cc-pVQZ basis set. DFT–

D3//aug-cc-pVQZ calculations for the S22 set were obtained with Molpro, employing the initial

version damping function of the DFT–D3 method.22

In our first method proposal for improving the DCACPs, the dispersion correction part was

added on using the DFT–D3 method of Grimme.22 and the vdW–TS method of Tkatchenko et

al.24 In the version used in this work, vdW–TS method only adds damped C6/R6 terms onto the

DFT energy obtained using the fitted pseudopotentials while the Grimme version, in addition to the

damped C6/R6 term, also includes C8/R8 terms. We have used the BLYP47, 48 and PBE9 functionals

in our calculations. Since the energies obtained by the original density functionals were modified
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Table 5.1: Fitted values for the damping function

This work Grimme et al.

PBE BLYP PBE BLYP

sr6 1.00 1.00 1.22 1.09

s8 1.30 1.15 0.72 1.68

by the DCACP fitting, we had to refit the sr6 and s8 values in the Grimme damping function (Eq.

5.1) and only the sr6 parameter in the vdW–TS scheme. The sr6 and s8 values were fitted using

the binding energies from the S22X5 set (non–equilibrium geometries) of Hobza et al.180 We have

used both the equilibrium geometry (Req) binding energies and twice of the Req distance binding

energies to obtain the new values of sr6 and s8. These values and the original sr6 and s8 values for

the PBE and BLYP functionals for the Grimme–type correction are given as an example in Table

5.1.

Edisp =−(
C6

r6
1

1+6( r
sr6R0

)−14 + s8
C8

r8
1

1+6( r
)R0)−16 (5.1)

5.3 TESTS

We have compiled the mean absolute relative errors (MARE) in the binding energies obtained by

different methods for the S22X5 set of Hobza using two different separation, one at the equilibrium

separation of the monomers and the other twice of that distance. These values are reported in Table

5.2. To our knowledge this is the first time mean absolute relative errors in binding energies of the

S22 set for the DCACPs are reported. These calculations are done with the CPMD program with

same box sizes and energy cut-off values used for our method and original DCACP calculations.
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Energies are well converged with respect to the cell dimensions and energy cut–off values.

The DCACP+D method based on the Grimme–type dispersion corrections for both of the den-

sity functionals (BLYP and PBE) shows improvement on the equilibrium binding energies of the

test set compared to the original DCACPs. Also in all cases a dramatic improvement is seen for

binding energies at 2Req. Although, the DCACP+D scheme augmented with the vdW–TS dis-

persion energies performs worse than the original DCACPs at Req, it reduces the error by half at

longer distance. The poor performance of the Tkatchenko–Sheffler method compared to Grimme’s

can be attributed to the neglect of the C8/R8 terms. In the vdW–TS scheme short–range correla-

tion (C8/R8 terms) is believed to be captured by the semi–local DFT functionals. However, due to

the dispersionless fitting procedure we use, the functionals when used with the pseudopotentials

are not describing the short–range dispersion energy as compared to the original BLYP and PBE

methods. Due to this poor performance vdW–TS procedure is not included in the further tests.

When compared with the original Grimme D3 method our DCACP+D scheme improves the bind-

ing energies for the PBE functional but shows a poor performance when combined with the BLYP

functional. Both methods give similar accuracy at longer–range ( 2Req) for the S22 set.

Figures 5.1 and 5.2 compare the binding energies of four isomers of water hexamer (prism,

cage, book, ring) obtained by CCSD(T), original DCACP and DCACP+D approaches. As a side

note both the orginal BLYP and PBE functional without the dispersion corrections are not able to

give the correct energy ordering in these four water hexamer isomers.85 Firstly, all dispersion cor-

rected methods other than the DCACP/PBE predict correct ordering of the stability of the isomers.

For the BLYP functional our DCACP+D method shows overbinding for the binding energies of

the isomers of water hexamers and does a poor job compared to BLYP–D3 and DCACP/BLYP

methods. However, in the case of the PBE functional, our method shows a better performance than

the other two schemes, in accordance with the MARE of the S22 set.

To understand the trends in the binding energies of the isomers of water hexamer we plotted the

percentage errors (relative to the CCSD(T)–F12//AVQZ) these methods give for in the interaction

energy curve of two rigid water molecules along a path in figures 5.3 and 5.4. A negative % error

mean the method underbinds, such as in the case of BLYP functional which gives negative % errors
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Table 5.2: Mean absolute relative errors (MARE) of binding energies for the S22X5 set.

Dimer Separation

Method Req 2Req

DCACP–PBE 15 46

DCACP–PBE–D3 10 8

DCACP–PBE+vdW–TS 20 12

PBE–D3 13 8

PBE+vdW–TS 9 -

DCACP–BLYP 14 46

DCACP–BLYP–D3 12 11

DCACP–BLYP+vdW–TS 16 -

BLYP–D3 4 12
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at all distances considered. Although it not easy to make general comments for the hexamer system

based on the dimer interaction energies, some clear trends are seen. The neighboring distances in

the isomers of water hexamers range from 2.75 to 2.95 Angstroms. For the BLYP functional

around this range both BLYP–D3 and DCACP/BLYP shows less percentage errors compared to

our method. The effect on this strong interaction is mostly carried over the total binding energies.

The difference between the CCSD(T) curve and the DCACP/BLYP–D3 curve increases as one

moves from ring to prism isomer.In the Prism isomer one water is in close proximity (2.8 Å) to 3

other water molecules. The performance of our method around that range of bond lengths shows

itself as an increased error in the binding energy for the prism isomer. The ring isomer structure

contains distances between the water dimers that are overall longer than the other isomers, so that

the error in the binding energy that the DCACP/BLYP–D3 method gives is almost a half of that of

the prism. Also for the difference in the BLYP–D3 and CCSD(T) energies increases for the prism

structure because at longer–range the errors in BLYP–D3 method increase as seen from figure

5.3. Figure 5.4 reports a clear improvement of DCACP–PBE–D3 over PBE–D3 for water dimer

binding energies which is carried over as better binding energies of the hexamers are predicted by

this method.
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5.4 CONCLUSIONS

We proposed the DCACP+D method to correct the deficiencies in the original DCACP approach

to correct density functional for the missing dispersion interactions. DCACP+D method uses the

psedopotentials to correct for deficiencies in the employed functional and adds the dispersion en-

ergy using atom–atom type corrections. Grimme type (D3) dispersion correction methods works

better than the Tkatchenko–Scheffler method due to inclusion of C8/R8 terms. As seen from the

results for the S22 test set, the new method (DCACP+D) performs better for compared to the

original DCACPs for longer ranged distances where the DCACP interaction energies fall off too

quickly. The test cases show that when used with PBE functional the DCACP+D gives slightly

better interaction energies compared to the PBE–D3 method.
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6.0 CORRECTING DENSITY FUNCTIONALS FOR DISPERSION INTERACTIONS

USING PSEUDOPOTENTIALS

This work was published as∗: Ozan Karalti, Xiaoge Su, Wissam A. Al–Saidi and Kenneth D.

Jordan Chemical Physics Letters, 591, (2014), 133†

6.1 INTRODUCTION

We present a two–channel dispersion–corrected atom–centered potential (DCACP) method for cor-

recting BLYP and PBE density functionals for long–range dispersion. The approach, designated

DCACP2, is tested on the S22X5 test set and on isomers of the water hexamer. The DCACP2

method provides a significantly improved description of the interaction energies at distances be-

yond Req than does the single–channel DCACP procedure.

The dispersion–corrected atom–centered potential (DCACP)12, 13 approach is one of sev-

eral methods12–29 designed to overcome the failure of commonly used density functional meth-

ods to describe dispersion interactions at distances beyond which there is appreciable overlap of

charge of the atoms or molecules of interest. The DCACP approach gives significantly improved

(compared to the uncorrected GGA functionals) interaction energies for a wide range of systems

near their equilibrium structures.12, 13, 50–55 However, the DCACP correction to the interaction en-

ergy falls off much more rapidly than R−6 with increasing distance between the monomers in a

∗Reproduced by permission of the Elsevier Science
†O. K. prepared the publication and contributed all of the numerical data. X. S. contributed to the coding part.
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dimer.54–56 In a study of isomers of the water hexamer we concluded that, at least when used

with the BLYP functional,47, 48 the DCACP method is correcting for limitations of the functional

in describing exchange-repulsion interaction as well as for dispersion interactions.55

The DCACP procedure modifies the electronic density by adding to the Hamiltonian atom–

centered non–local potentials of the form,

Vl(r,r
′
) =

l

∑
m=-l

Ylm(r̂)pl(r;σ2)σ1pl(r
′
;σ2)Ylm(r̂

′
), (6.1)

where Ylm denotes a spherical harmonic, and pl is a normalized projector defined as pl(r;σ2) ∝

rlexp[–r2/2σ2
2 ] . The correction potentials are of the same functional form as the non–local chan-

nels of the Goedecker–Teter–Hutter pseudopotentials.45 The parameter σ1 scales the magnitude

of the pseudopotential, and σ2 tunes the location of the projector’s maximum from the atom cen-

ter. In their application of this method, Roethlisberger and coworkers used the l = 3 channel, and

determined the σ1 and σ2 parameters by use of a penalty function that minimized the differences

between the DCACP and full CI or CCSD(T)46 energies and forces evaluated at the equilibrium

and midpoint geometries (the point where the interaction energy equals half that of the equilib-

rium value) for a small set of dimers. The DCACP method has been implemented for the PBE,9

BLYP47, 48 and Becke-Perdew47, 49 functionals.

In the present study we investigate an extension of the DCACP method that employs more than

one angular momentum channel in the correction potential. The motivation is that this increased

flexibility should better enable the procedure to correct for both exchange–repulsion errors as well

as for long–range dispersion, extending the range of geometries for which the method is useful.

The multiple channel DCACP method was originally introduced in Ref.56 where in an application

to (H2)2 three angular momentum channels (p, d and f ) were used to fit the H pseudopotential

to the full configuration–interaction energy curve. However, this three-channel H pseudopotential

was not published. In this study we extend the approach to C, N, and O employing the d and

f channels in the pseudopotential. The procedure is referred to as DCACP2 to indicate the use

of two channels to correct the interaction energies. As in Ref. 25, we use three channels for H,

although similar results would have been obtained had we used only two channels. We parametrize
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the DCACP2 method to work with the BLYP and PBE functionals, and we test it on the S22x5 test

set of Hobza and co–workers180 as well as on selected isomers of the water hexamer. Neither the

DCACP nor the DCACP2 procedure significantly effects the covalent bond lengths. In this context

we note that von Lilienfeld recently reported a force–correcting atom–centered potential (FCACP)

procedure that does improve covalent bond lengths and vibrational frequencies compared to the

values obtained using uncorrected GGA functionals.181

6.2 METHOD

In determining the DCACP corrections we fit the potential energy curves of a set of reference

dimers at several intermolecular separations. The evolutionary algorithm coded in the Dakota

program was used for the optimizations.178 We used the same dimers in our fitting procedure as

employed in the design of the original DCACP procedure. Namely, parallel aligned (H2)2 and

(N2)2 dimers, cross–shaped (CO2)2, and the sandwich–type benzene dimer (see Fig. 1 in the

supporting information) reference systems were used for determining the parameters in the H, C,

N and O DCACP2 correction potentials, respectively. CCSD(T) calculations were used to provide

the reference energies. In the case of the (H2)2 and (N2)2 dimers, the CCSD(T) calculations were

carried out with the aug-cc-pV5Z and aug–cc–pVQZ basis sets,136, 137 respectively. For the (CO2)2

dimer the CCSD(T)–F12a method139 was used in conjunction with the VTZ–F12144 basis set. In

the case of benzene dimer, the fitting was to CCSD(T)/aug–cc–pVQZ binding energies taken from

a paper by Sinnokrot et al.179 Corrections for basis set superposition error (BSSE) were applied

using the Boys and Bernardi counterpoise procedure146 to the CCSD(T) interaction energies. The

DFT calculations used in the fitting process and the tests of the DCACP2 method were carried out

using the CPMD code,97 taking care that the energies were well converged with respect to box size

and plane–wave energy cut off. Surprisingly, the performance of the original DCACP procedure

appears not to have been tested on the S22X5 test set, and we undertook such calculations as part

of this study. In addition, we carried out DFT–D322 calculations for the S22X5 test set. The latter
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calculations were performed using the Molpro program,95 and were carried out using the aug–

cc–pVQZ basis set and included counterpoise corrections for BSSE. We used a tighter grid target

accuracy per atom of 10−8 than the default 10−6 for the DFT–D3 calculations. In order to test

the performance of the DCACP2 method for describing long–range dispersion interactions DFT–

based symmetry–adapted perturbation theory94, 105 calculations were performed for the sandwich

form of the benzene dimer using the aug–cc–pVQZ basis set. These calculations employed the

DFT–SAPT implementation of Hesselmann and coworkers in the Molpro code.94

6.3 RESULTS

In the fitting procedure, six or seven distances, one at the equilibrium geometry Req, one at a sepa-

ration shorter (0.1-0.2 Å) than Req and four or five at separations greater than Req, were employed.

The last point was taken as the separation (around 6–7 Å) where the interaction energy is about

one tenth (or less) that at the equilibrium separation. The improvement afforded by the DCACP2–

BLYP method for the sandwich form of the benzene dimer used in the fitting of pseudopotential

terms for the C atom is illustrated in Fig. 6.1. The potential energy curve calculated using the

DCACP2 method much more closely reproduces that calculated with the CCSD(T) method179 than

does the potential energy curve obtained using original DCACP procedure. Particularly noticeable

is the improvement at short and large distances.

Of particular interest to whether the DCACP2 method accurately reproduces the correct C6R−6

behavior at large distances. This is examined in Fig. 6.2, which plots for the sandwich form of the

benzene dimer the differences of the DCACP and DCACP2 energies from the BLYP energy as a

function of the separation between the molecules as well as −C6R−6 using the experimentally de-

termined C6 coefficient182 and the dispersion energies obtained from the DFT–SAPT calculations.

The DCACP2 correction, unlike the DCACP correction, essentially reproduces the experimental

C6R−6 curve from 5 to 8 Å, the longest distance considered. At shorter distances the DCACP,

DCACP2 and DFT–SAPT corrections are all less attractive than C6R−6, but this is largely a con-
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Figure 6.1: Interaction energy of the sandwich form of the benzene dimer.
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Table 6.1: Percentage MARE of binding energies for the S22X5 set. (MAEs in kcal/mol)

Dimer Separation

Method Req 1.5Req 2Req

DCACP–PBE 15.5(0.86) 16.0(0.26) 45.7(0.16)

DCACP2–PBE 11.7(0.61) 7.9(0.18) 15.1(0.08)

PBE–D3 13.1(0.72) 15.1(0.24) 8.0(0.05)

DCACP–BLYP 13.9(0.65) 10.2(0.13) 46.1(0.13)

DCACP2–BLYP 6.7(0.33) 5.7(0.09) 10.8(0.07)

BLYP–D3 4.4(0.21) 12.5(0.18) 11.6(0.07)

sequence of exchange–dispersion interactions that are neglected in the C6R−6 contribution. Most

impressively the DCACP2 correction closely reproduces the dispersion energy contribution from

the DFT–SAPT energies distances over the range of 3.4 to 8.0 Å. At short distances (R ≤ 3.4 Å

) the DCACP2 correction is somewhat more attractive than the DFT–SAPT dispersion correction.

This is likely due to the DCACP2 method correcting for limitations of the BLYP functional in de-

scribing exchange interactions as well as in describing dispersion interactions. The small deviation

of the DCACP2 correction from the SAPT dispersion energies for 4.5 ≤ R ≤ 6.0 Å, may actually

reflect a small error in the SAPT results as the DCACP2 potential closely reproduces the CCSD(T)

potential over this range of distances.

Table 6.1 reports the mean absolute relative errors (MARE) and in parenthesis the mean ab-

solute errors (MAE) in the interaction energies for the dimers in the S22X5 set.180 Results are

reported for separations of Req, 1.5Req and 2Req. For the uncorrected BLYP and PBE functionals

the MAE’s for the S22 test set at Req are 4.81 and 2.61 kcal/mol, respectively.22 These errors are

considerably reduced in all three dispersion correction schemes considered. For both functionals

there is a decrease in mean absolute errors for the DCACP2 procedure compared to the original
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DCACP approach, especially at longer separations (1.5Req and 2Req). In the case of the PBE func-

tional, the DCACP2 method slightly outperforms PBE–D3 at Req, has a MARE about half that of

PBE–D3 at 1.5Req and about twice that of PBE–D3 at 2.0Req, where the net interaction energies

are quite small. For the BLYP functional the DCACP2 and BLYP–D3 methods are comparable

in performance at Req and 2Req, while the DCACP2 method has a MARE about the same as that

of BLYP–D3 at 1.5Req. Most significantly, in contrast to the D3 correction, the S22 set was not

used in the fitting of the parameters of the DCACP and DCACP2 methods. At Req and 1.5Req

all three correction schemes — D3, DCACP, and DCACP2 — perform better when used in con-

junction with the BLYP functional than with the PBE functional. However, we note that several

studies have recommended the use of modified PBE functionals (generally with adjustment of the

exchange component) when used with dispersion corrections.17, 183, 184 Hence, we anticipate that

the DCACP2 method would perform better with an appropriately modified PBE functional rather

than with the original PBE functional.

Figure 6.3 compares the calculated binding energies of four water hexamer isomers (prism,

cage, book, ring). Rigid water monomers were used in these calculations, with the geometries be-

ing taken from Ref. 48. Results are reported for the CCSD(T)(aug-cc-pV5Z basis set), BLYP–D3,

DCACP–BLYP, and DCACP2–BLYP methods. The BLYP and PBE functionals without dispersion

corrections do not give the correct energy ordering of these isomers.85, 168, 169 All three correction

schemes when used with the BLYP functional give relative stabilities in good agreement with the

CCSD(T) results,85 with the DCACP2 method performing the best. However, significantly poorer

results are obtained for the water hexamer system when using the DCACP–PBE and DCACP2–

PBE functionals (Fig. 6.4). The PBE–D3 procedure does correctly predict the relative energies,

but it significantly overbinds the hexamer.

To gain additional insight into the trends noted above for the (H2O)6 isomers, we also calcu-

lated the potential energy curve of the water dimer using rigid monomers, as a function the O–O

separation, keeping the ”flap” angles fixed. The results are reported in Figures 6.5 and 6.6. The

nearest neighbor O–O distances in the isomers of the water hexamer range from 2.70 to 2.95 Å. The

DCACP2–BLYP approach more accurately describes the interaction energy than does DCACP–
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BLYP for O–O distances ranging from 2.2 to about 5.2 Å. However, with the PBE functional, the

DCACP2 and DCACP methods give nearly identical potential energy curves for the water dimer.

6.4 CONCLUSIONS

A two–channel DCACP method, designated DCACP2, has been developed for H, C, N, and O. The

implementation has been made for both the BLYP and PBE density functionals through the addi-

tion of terms to the Goedecker–Teter–Hutter type pseudopotentials. The DCACP2 method, per-

forms significantly better than the one–channel DCACP approach on the S22X5 test set, with the

improvement being particularly notable with the BLYP functional. Most importantly, the DCACP2

method provides a much better description of the interaction energies at distances beyond Req than

does the original DCACP procedure. The DCACP2–BLYP procedure gives absolute and relative

binding energies of the ring, cage, prism and book isomers of the (H2O)6 in excellent agreement

with the results of CCSD(T) calculations. Work is underway in our group to provide parameters

for the DCACP2 procedure for a wider range of elements.
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7.0 CONCLUSIONS

The first part of thesis provides an overview of most of the methods used for correcting density

functional theory methods for long–range dispersion interactions. Tests with various systems in

Chapters 2 and 3 shows that all of these methods clearly provides better interaction energies com-

pared to what their uncorrected density functional gives. Among those dispersion corrected meth-

ods DFT-D3’s good accuracy in predicting the longer–ranged interactions and simplicity and ac-

curacy of interaction energies at the equilibrium lengths provided by the DCACP methods catches

attention. The detailed test with the isomers of the water hexamer suggests that when used with

the BLYP functional the original implementation of the DCACPs not only corrects for limitations

of the functional in describing dispersion interactions but also corrects for exchange-repulsion in-

teractions. In chapters 5 and 6 we provided two methods for improving the DCACP methodology.

First proposal is to fit the DCACPs to non–dispersion terms in the interaction energy and then aug-

ment it with DFT–D3 type dispersion energies. The DCACP+D method combined with the PBE

functional improves the accuracy in the interaction energies near equilibrium points and also solves

the wrong asypmtotic decay behavior of the original DCACPs. The DCACP2 scheme proposed in

chapter 6 uses two channels in the pseudopotential rather than a single f channel for modeling the

dispersion interactions. The DCACP2 method, performs significantly better than the one–channel

DCACP approach on the S22X5 test set, with the improvement being particularly notable with the

BLYP functional. Most importantly, the DCACP2 method provides a much better description of

the interaction energies at distances beyond Req than does the original DCACP procedure. The

DCACP2–BLYP procedure gives absolute and relative binding energies of the ring, cage, prism

and book isomers of the (H2O)6 in excellent agreement with the results of CCSD(T) calculations.
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Work is underway in our group to provide parameters for the DCACP2 procedure for a wider range

of elements.
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APPENDIX A

COMMONLY USED ABBREVIATIONS

Table A1: List of commonly used abbreviations

Abbreviation Meaning
AVDZ Dunning’s aug-cc-pVDZ basis set
AVTZ Dunning’s aug-cc-pVTZ basis set
AVTZ(-f) AVTZ basis set with f functions removed from heavy atoms and d functions from light atoms
AVQZ Dunning’s aug-cc-pVQZ basis set
AV5Z Dunning’s aug-cc-pV5Z basis set
CCSD Coupled cluster using iterative singles and doubles
CCSD(T) Coupled cluster using iterative singles and doubles with perturbative triples
δ (HF) Hartree–Fock correction term for SAPT
DCACP Dispersion Corrected Atom Centered Pseudopotentials
DF Density fitting. Identical to resolution of the identity (RI)
DF–DFT–SAPT DFT based SAPT of Heßelmann et al.147–149 with density fitting94

DFT Density functional theory
DFT+D2 Grimme’s second-generation dispersion correction for DFT21

DFT+D3 Grimme and co-worker’s third-generation dispersion correction for DFT22

DFT/CC Rubeš et al.83, 131 coupled cluster correction method for DFT
DFT–SAPT DFT based SAPT of Heßelmann et al.147–149

Disp 2nd–order dispersion interaction
DMA Distributed multipole analysis
EDA Energy decomposition analysis
Elst 1st-order electrostatics interaction
Exch 1st-order exchange interaction
Exch-Disp 2nd-order exchange–dispersion interaction
Exch-Ind 2nd-order exchange–induction interaction
GDMA Gaussian distributed multipole analysis
HF Hartree–Fock
Ind 2nd-order induction interactions
LMO–EDA Localized molecular orbital energy decomposition analysis
MP2 Möller–Plesset 2nd–order perturbation theory
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MBPTn Many-body perturbation theory through order n
RI Resolution of the identity. Identical to density fitting (DF).
SAPT Symmetry-adapted perturbation theory
SAPT(DFT) DFT based SAPT of Misquitta et al.105, 185, 186

Tr-AVTZ Truncated AVTZ basis set as described in Section 2.2
vdW-TS Tkatchenko and Sheffler type dispersion correction
XC Exchange–Correlation

93



APPENDIX B

SUPPORTING INFORMATION FOR CHAPTER 6
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Figure B1: Geometries of dimers used for the parametrization

Table B1: DCACP2 parameters.

BLYP PBE

σ1 [10−4] σ2 σ1 [10−4] σ2

Hl=1 -1.08 4.62 -0.099 9.34

Hl=2 -3.17 2.78 -18.00 0.27

Hl=3 -0.84 1.92 0.82 2.49

Cl=2 -2.66 4.80 -1.83 4.79

Cl=3 -8.34 2.47 -8.85 2.33

Nl=2 -2.33 4.21 -0.68 5.32

Nl=3 -9.06 2.32 -3.12 2.35

Ol=2 -1.76 4.49 -1.88 9.13

Ol=3 -8.87 2.13 -12.5 1.54
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Table B2: S22X5 set interaction energies at Req for the corrected PBE functional in kcal/mol.

Dimer CCSD(T) DCACP2 DCACP

adenine–thymine (S) -12.22 -9.21 -7.85

adenine–thymine (WC) -16.37 -16.08 -15.72

ammonia dimer -3.14 -2.92 -2.89

benzene–ammonia -2.35 -1.88 -1.83

benzene–HCN -4.52 -4.59 -4.31

benzene–methane -1.50 -1.29 -1.24

benzene–water -3.27 -2.82 -2.77

benzene dimer (S) -2.81 -2.70 -2.13

benzene dimer (T) -2.80 -2.38 -2.36

ethene–ethyne -1.49 -1.67 -1.65

ethene dimer -1.48 -1.30 -1.24

formamide dimer -15.95 -15.82 -15.59

formic acid dimer -18.59 -19.56 -19.32

indole–benzene (S) -5.18 -4.40 -3.69

indole–benzene (T) -5.74 -4.75 -4.37

methane dimer -0.53 -0.36 -0.42

phenol dimer -7.05 -6.01 -5.74

pyrazine dimer -4.51 -3.60 -3.02

uracil dimer (HB) -20.46 -20.06 -19.71

uracil dimer (S) -9.87 -7.76 -7.09

water dimer -4.97 -5.11 -5.13

2-pyridoxine–2-aminopyridine -16.70 -16.96 -16.64
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Table B3: S22X5 set interaction energies at 1.5Req for the PBE functional (kcal/mol).

Dimer DFT–D3 DCACP2 DCACP

adenine–thymine (S) -3.49 -2.73 -2.47

adenine–thymine (WC) -7.92 -7.03 -6.92

ammonia dimer -1.26 -1.07 -1.07

benzene–ammonia -0.99 -0.74 -0.73

benzene–HCN -2.29 -2.04 -2.04

benzene–methane -0.62 -0.46 -0.43

benzene–water -1.46 -1.15 -1.16

benzene dimer (S) -0.67 -0.51 -0.28

benzene dimer (T) -1.30 -1.00 -0.88

ethene–ethyne -0.58 -0.50 -0.48

ethene dimer -0.28 -0.18 -0.14

formamide dimer -8.57 -7.86 -7.89

formic acid dimer -9.93 -9.14 -9.18

indole–benzene (S) -1.23 -0.94 -0.66

indole–benzene (T) -2.99 -2.42 -2.27

methane dimer -0.09 -0.05 -0.03

phenol dimer -3.61 -2.87 -2.79

pyrazine dimer -1.12 -0.72 -0.88

uracil dimer (HB) -10.73 -9.91 -9.84

uracil dimer (S) -2.71 -2.22 -2.00

water dimer -2.49 -2.28 -2.30

2-pyridoxine–2-aminopyridine -8.80 -7.97 -7.88
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Table B4: S22X5 set interaction energies at 2Req for the PBE functional (kcal/mol).

Dimer DFT–D3 DCACP2 DCACP

adenine–thymine (S) -0.95 -0.76 -0.58

adenine–thymine (WC) -2.73 -2.40 -2.28

ammonia dimer -0.36 -0.33 -0.33

benzene–ammonia -0.29 -0.24 -0.19

benzene–HCN -0.86 -0.81 -0.73

benzene–methane -0.14 -0.11 -0.05

benzene–water -0.49 -0.44 -0.40

benzene dimer (S) -0.09 -0.04 0.03

benzene dimer (T) -0.38 -0.30 -0.18

ethene–ethyne -0.15 -0.14 -0.16

ethene dimer -0.03 -0.02 0.00

formamide dimer -3.66 -3.41 -3.37

formic acid dimer -3.92 -3.55 -3.54

indole–benzene (S) -0.14 -0.06 0.14

indole–benzene (T) -1.11 -0.94 -0.78

methane dimer -0.01 -0.01 0.00

phenol dimer -1.40 -1.16 -1.03

pyrazine dimer -0.21 -0.14 -0.05

uracil dimer (HB) -4.59 -4.27 -4.19

uracil dimer (S) -0.76 -0.68 -0.52

water dimer -0.95 -0.93 -0.93

2-pyridoxine–2-aminopyridine -3.47 -3.16 -3.05

98



Table B5: S22X5 set interaction energies at Req for the BLYP functional(kcal/mol).

Dimer CCSD(T) DCACP2 DCACP

adenine–thymine (S) -12.22 -11.07 -9.26

adenine–thymine (WC) -16.37 -16.44 -15.88

ammonia dimer -3.14 -3.06 -3.08

benzene–ammonia -2.35 -2.15 -2.16

benzene–HCN -4.52 -4.21 -3.88

benzene–methane -1.50 -1.43 -1.41

benzene–water -3.27 -2.92 -3.11

benzene dimer (S) -2.81 -2.59 -1.96

benzene dimer (T) -2.80 -2.43 -2.22

ethene–ethyne -1.49 -1.59 -1.61

ethene dimer -1.48 -1.49 -1.37

formamide dimer -15.95 -15.64 -15.50

formic acid dimer -18.59 -18.94 -18.50

indole–benzene (S) -5.18 -4.35 -3.25

indole–benzene (T) -5.74 -5.07 -4.65

methane dimer -0.53 -0.63 -0.79

phenol dimer -7.05 -6.65 -6.39

pyrazine dimer -4.51 -4.08 -3.13

uracil dimer (HB) -20.46 -20.18 -19.77

uracil dimer (S) -9.87 -9.35 -8.50

water dimer -4.97 -4.99 -5.04

2-pyridoxine–2-aminopyridine -16.70 -17.04 -16.75
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Table B6: S22X5 set interaction energies at 1.5Req for the BLYP functional (kcal/mol).

Dimer DFT–D3 DCACP2 DCACP

adenine–thymine (S) -3.49 -3.34 -2.90

adenine–thymine (WC) -7.92 -7.24 -7.29

ammonia dimer -1.26 -1.03 -1.11

benzene–ammonia -0.99 -0.75 -0.79

benzene–HCN -2.29 -2.01 -2.05

benzene–methane -0.62 -0.47 -0.46

benzene–water -1.46 -1.12 -1.20

benzene dimer (S) -0.67 -0.56 -0.31

benzene dimer (T) -1.30 -1.12 -1.02

ethene–ethyne -0.58 -0.48 -0.47

ethene dimer -0.28 -0.21 -0.20

formamide dimer -8.57 -7.97 -8.14

formic acid dimer -9.93 -9.51 -9.69

indole–benzene (S) -1.23 -1.04 -0.75

indole–benzene (T) -2.99 -2.60 -2.51

methane dimer -0.09 -0.04 -0.02

phenol dimer -3.61 -3.21 -3.30

pyrazine dimer -1.12 -1.04 -0.88

uracil dimer (HB) -10.73 -10.34 -10.43

uracil dimer (S) -2.71 -2.47 -2.29

water dimer -2.49 -2.30 -2.43

2-pyridoxine–2-aminopyridine -8.80 -8.31 -8.36
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Table B7: S22X5 set interaction energies at 2Req for the BLYP functional (kcal/mol).

Dimer DFT–D3 DCACP2 DCACP

adenine–thymine (S) -0.93 -0.91 -0.62

adenine–thymine (WC) -2.40 -2.49 -2.43

ammonia dimer -0.31 -0.33 -0.33

benzene–ammonia -0.23 -0.26 -0.16

benzene–HCN -0.75 -0.77 -0.72

benzene–methane -0.09 -0.12 -0.03

benzene–water -0.41 -0.45 -0.35

benzene dimer (S) -0.08 -0.09 0.06

benzene dimer (T) -0.29 -0.35 -0.20

ethene–ethyne -0.13 -0.13 -0.12

ethene dimer -0.03 -0.03 0.00

formamide dimer -3.38 -3.33 -3.51

formic acid dimer -3.59 -3.62 -3.67

indole–benzene (S) -0.13 -0.12 0.13

indole–benzene (T) -0.93 -0.97 -0.77

methane dimer -0.01 -0.01 0.00

phenol dimer -1.24 -1.22 -1.13

pyrazine dimer -0.20 -0.24 -0.14

uracil dimer (HB) -4.39 -4.16 -4.17

uracil dimer (S) -0.76 -0.70 -0.64

water dimer -0.85 -0.86 -0.88

2-pyridoxine–2-aminopyridine -3.15 -3.13 -3.22
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APPENDIX C

ADSORPTION OF A WATER MOLECULE ON THE MGO(100) SURFACE AS DESCRIBED BY
CLUSTER AND SLAB MODELS

This work was published as∗: Ozan Karalti, Dario Alfè, Michael J. Gillan and Kenneth D. Jordan Physical
Chemistry Chemical Physics, 14, (2012), 7846–7853†

C.1 INTRODUCTION

The interaction of a water molecule with the (100) surface of MgO as described by cluster models is studied using
MP2, coupled MP2 (MP2C) and symmetry–adapted perturbation theory (SAPT) methods. In addition diffusion Monte
Carlo (DMC) results are presented for several slab models as well as for the smallest, 2X2 cluster model. For the 2X2
model it is found that the MP2C, DMC, and CCSD(T) methods all give nearly the same potential energy curve for the
water–cluster interaction, whereas the potential from the SAPT calculations differs slightly from the potentials of the
other methods. The interaction of the water molecule with the cluster models of the MgO(100) surface is weakened
upon expanding the number of layers from one to two and also upon expanding the description of the layers from
2X2 to 4X4 to 6X6. The SAPT calculations reveal that both these expansions of the cluster model are accompanied
by reductions in the magnitudes of the induction and dispersion constributions. The best estimate of the energy for
binding an isolated water model to the surface obtained from the cluster model calculations is in good agreement with
that obtained from the DMC calculations using a 2–layer slab model with periodic boundary conditions.

The adsorption of atoms and molecules on surfaces is of fundamental importance in a wide range of pro-
cesses. MgO is an important component of the Earth’s subsurface and is used as a constituent in some superconducters
and glasses as well as a catalyst. The nature of water adsorption on the MgO(100) surface has attracted considerable
attention, being the subject of several experimental and theoretical studies.187–195 It appears that even at low cover-
ages, molecularly adsorbed water is H–bonded to surface OH groups resulting from water dissociation and, as a result,
an experimental value for the interaction energy of an isolated water molecule with the surface is not available. On the
computational side, the water/MgO system has been investigated using semi–empirical methods,194 density functional
theory (DFT),187 a mixed Hatree-Fock/coupled–cluster procedure combined with an embedded cluster model,190 and
a study of the quantum nuclear effects on the adsorption energy.188

In the present work, we calculate the interaction energy between a water monomer and various cluster models of
the MgO(100) surface. The methods used include density–fitted Möller–Plesset second–order perturbation theory (DF-

∗Reproduced by permission of the PCCP Owner Societies
†D. A. contributed the QMC calculations and O. K. contributed the rest of the publication.
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MP2),196, 197 density–fitted coupled MP2 (DF-MP2C),92, 142 and explicitly correlated DF–MP2 (DF–MP2–F12),138

DF–MP2C (DF-MP2C–F12), and CCSD(T) (CCSD(T)-F12).138, 140 In addition, calculations using the wavefunction–
based166, 198 and density–fitted density–functional theory–based94 symmetry–adapted perturbation theory (SAPT) are
carried out. These are referred to as WF-SAPT and DFT-SAPT, respectively. The SAPT calculations are particularly
useful for elucidating the factors at play in the adsorption of the water monomer as they provide physical dissections
of the net interaction into electrostatics, exchange-repulsion, induction, and dispersion contributions. This information
should prove especially valuable in designing force fields for simulating water on the MgO(100) surface. Due to the
computational cost, the coupled cluster and WF–SAPT methods were applied only to the smallest cluster model.

In addition to the methods discussed above, the interaction energy between water and the MgO(100) surface
was calculated using the diffusion Monte Carlo (DMC) method together with slab models and periodic boundary
conditions. For comparative purposes the DMC model was also applied to a water monomer interacting with the
smallest cluster model of the surface.

C.2 COMPUTATIONAL DETAILS

The MgO cluster models considered are single–layer 2X2, 4X4, and 6X6, and double–layer 4X4 (the nXn nomen-
clature indicates that the cluster contains n rows of n atoms in the layer). The lattice constant used in the geometries
of the (MgO)n clusters were taken from a slab–model optimized with DFT-PBE using the VASP code.134 The single–
layer cluster models of the bare surface have D2h symmetry and the double-layer cluster model have D2d symmetry.
All nearest neighbor MgO bond lengths are 2.115 Å. With one exception , described below, the geometry of the water
monomer (OH bond lengths of 0.989 Å and HOH bond angle of 103.2 ◦ ) was also taken from a DFT-PBE optimized
geometry, without allowing the Mg and O atoms of slabs to move, as was the orientation of the monomer relative to
the surface (see Fig. C1).

Due to the computational cost, WF–SAPT calculations were carried out only for the 2X2 cluster model, and the
main approach for analyzing the interaction energies for the sequence of cluster models is the DFT–SAPT method.
This method and the closely related SAPT(DFT) method of Szalewicz and co–workers105 determine the electrostatic
and exchange–repulsion contributions to the interaction energy from integrals over the Coulomb operator evaluated
using Kohn–Sham orbitals. Thus these approaches are free of the problems inherent in evaluating exchange–repulsion
using common density functional methods. The induction and dispersion contributions were calculated using response
functions from time–dependent DFT. The DFT–SAPT calculations made use of the LPBE0AC functional,94 which
replaces the 25% Hartree–Fock exchange of the PBE0 functional34 with the 25% localized Hartree–Fock exchange of
Sala and Görling106 and includes an asymptotic correction.199 The correction scheme requires ionization potentials
of the fragments. For water the experimental IP reported in the NIST Chemistry Web Book,150 was used, and for the
(MgO)n clusters, Koopmans’ theorem IP’s from Hartree–Fock calculations with the same basis set as employed in the
DFT–SAPT calculations were used.

For the single–layer 2X2 and 4X4 cluster models, the DFT–SAPT calculations were performed using the aug–
cc–pVQZ basis set137 on all atoms. For the double–layer 4X4 model, a mixed aug–cc–pVQZ/aug–cc–pVDZ136 basis
set was used. This was generated by employing the aug–cc–pVQZ basis set for the water molecule and the two
closest magnesium and two closest oxygen atoms in the top layer (the atoms marked by Xs in Fig. C1), with the
aug–cc–pVDZ basis set being used for the remaining atoms. For the monomer SCF calculations and for the evaluation
of the first–order electrostatics (E(1)

Elst ) and exhange (E(1)
Exch) interactions, and the second–order induction (E(2)

Ind) and

exchange-induction (E(2)
Ex−Ind) terms the cc–pVQZ JK–fitting set of Weigend109 was used for the oxygen and hydrogen

atoms, and the MP2-fitting set of Weigend and co–workers110 was used for the magnesium atoms. For the second-
order dispersion and exchange-dispersion terms, the aug–cc–pVQZ MP2–fitting set of Weigend and co–workers110

was used for all atoms. In the case of the mixed basis set calculations double–zeta versions of the fitting sets were
used on the atoms employing the aug–cc–pVDZ basis sets.

The DF–MP2 and DF–MP2C calculations were carried out using the same basis sets and auxiliary fitting sets as
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Figure C1: Geometry representing a water molecule on a 6X6 (MgO)18.

used in the DFT–SAPT calculations (the mixed basis set described above was used for the single–layer 6X6 cluster
model). These two approaches and the CCSD(T) method were also used in combination with F12a corrections.139

The F12a calculations used the cc–pVQZ–F12 (VQZ–F12) basis sets of Peterson and co-workers144 for the single–
layer 2X2 and 4X4 cluster models and a combination of the cc–pVDZ–F12 (VDZ–F12) and VQZ–F12 basis sets for
the larger clusters following the same strategy described above for the DFT–SAPT calculations. For the oxygen and
hydrogen atoms, the auxiliary basis sets implemented in MOLPRO2010.1 were used.109 For the magnesium atoms,
the cc–pVDZ and cc–pVQZ MP2–fitting sets of Weigend and co-workers were used as the auxiliary basis sets for the
calculations using the VDZ-F12 and VQZ-F12 basis sets, respectively. The various MP2 and CCSD(T) calculations
were carried out with the non–valence core orbitals frozen. All calculations other than the quantum Monte Carlo
calculations were performed with the MOLPRO2010.1 package.95

In reporting the results of the SAPT calculations the dispersion and exchange–dispersion contributions were
combined as were the induction, exchange–induction and δ (HF) contributions.94 In the SAPT procedure the induction
and exchange–induction contributions are calculated to second–order in the intermolecular interaction. The higher
order induction and exchange–induction interactions are accounted for by the so–called δ (HF) term.94

The quantum Monte Carlo calculations were performed with the CASINO code,200 using the diffusion Monte
Carlo (DMC) method, together with trial wavefunctions that enforce fixed nodal surfaces.201 The trial wavefunctions
employed were of the Slater–Jastrow type:

ΨT (R) = D↑D↓eJ , ( C.1)

where D↑ and D↓ are Slater determinants of up- and down–spin single–electron orbitals, and eJ is a Jastrow fac-
tor, which is the exponential of a sum of one-body (electron–nucleus), two-body (electron–electron), and three body
(electron–electron-nucleus) terms, that are parametrized functions of electron–nucleus, electron-electron and electron–
electron–nucleus separations, and are designed to satisfy the cusp conditions. The parameters in the Jastrow factor
are varied to minimize the variance of the local energy.202, 203 Imaginary time evolution of the Schrödinger equation
has been performed with the usual short time approximation with a time step of 0.005 a.u. and the locality approxi-
mation.204 Dirac–Fock pseudo-potentials (PP) of Trail and Needs were used for O and H,205 and a density functional
theory (DFT) PP generated with the local density approximation (LDA) was employed for Mg.206 The O and Mg PPs
replace the 1s2 cores. The single particle orbitals were obtained from DFT plane–wave (PW) calculations using the
LDA and a PW cutoff of 300 Ry (4082 eV), and re–expanded in terms of B–splines,207 using the natural B–spline grid
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spacing given by a = π/Gmax, where Gmax is the length of the largest vector employed in the PW calculations. The
plane–wave calculations were performed using the PWSCF package.208

For the slab model LDA and DMC calculations, periodicity was used only in the two directions parallel to the
MgO surface. For these calculations long–range electrostatics were treated using the Ewald method.209 The MgO
distances in the slab models were taken from an optimization of bulk MgO carried out using DFT calculations with
the PBE functional.9 The geometry of the water on the MgO slab also obtained from a PBE–DFT optimization in
which only the water degrees of freedom are allowed to relax. The other geometries on the binding energy curve were
obtained by rigidly displacing the water molecule. Computed in this way, the binding energy curve does not account
for contributions due to relaxation of the slab which are expected to be quite small.

The slab model calculations employed a supercell with two 4X4 MgO layers. Exploratory calculations with
larger slab models showed that the 2–layer 4X4 model was adequate for achieving nearly converged results of the
water–surface interaction energies.

C.3 RESULTS

2X2 cluster model calculations were carried out for all theoretical methods described above, while for the larger
clusters, calculations were performed only for the DFT–SAPT, MP2–F12, and MP2C–F12 methods. Potential energy
curves for approach of a water molecule to the (100) MgO surface were calculated for each of the cluster models of
the surface.

C.3.1 2X2 Cluster model

The calculated potential energy curves for water adsorption on the 2X2 cluster model are shown in Fig. 2(a). The
DMC results are not included in this figure, but will be considered below. Of the methods reported, the CCSD(T)–F12
method is expected to most accurately describe the interaction potential and will be used as the reference for assessing
the performance of the other theoretical methods. At this level of theory, the potential energy minimum has the water
O atom located 2.15 Å from the closest Mg atom of the surface, with the binding energy being −25.0 kcal/mol. For
the MP2 and MP2C methods, the potential energy curves calculated using the aug-cc-pVQZ basis set are as much
as 1 kcal/mol above the corresponding curves obtained with the VQZ–F12 method, and, for this reason, we focus
on the VQZ–F12 results in the following discussion. The potential energy curve from the MP2C–F12 calculations is
very close to that obtained from the CCSD(T)–F12 calculations over the range of distances considered (1.98–6.50 Å).
Here and elsewhere in this study distances are measured between the O atom of water and the closest Mg atom of
the surface. However, at short distances the MP2–F12 potential lies as much as 2 kcal/mol above the CCSD(T)–F12
potential. Thus the MP2C–F12 procedure is more reliable than the MP2–F12 procedure for describing the interaction
of the water molecule with the surface. For R ≥ 2.3 Å the DFT–SAPT potential energy curve is very close to the
MP2/aug–cc–pVQZ potential, but at shorter distances the DFT–SAPT potential energy curve is more attractive and
has a different shape from the MP2C-F12 and CCSD(T)-F12 potentials. This problem is exacerbated in the WF–
SAPT approach for which the potential is about 5 kcal/mol too attractive at R = 2 Å. This is a consequence of the
strong overlap of the electron distributions of H2O and (MgO)2 near the potential energy minimum which leads to
a breakdown in the perturbative expansion in the WF–SAPT procedure. In the case of the DFT–SAPT method, it
is not clear whether the error in the interaction energy at short distance reflects a problem with the procedure used
to calculate the induction and dispersion contributions or whether it reflects an inadequacy of using DFT orbitals to
calculate the electrostatic and exchange interactions.

The individual components of the DFT-SAPT interaction energies for the single–layer 2X2 model are reported in
Figure C3. Near the minimum energy structure the exchange–repulsion and the electrostatic interaction contributions
are about 85 and −73 kcal/mol, respectively. As a result, the electrostatics plus exchange–repulsion contribution is
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Figure C2: Potential energy curves for a water molecule approaching to the 2X2 MgO cluster.
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Figure C3: Water– 2X2 MgO cluster interaction energy components.
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Figure C4: Potential energy curves of a water molecule to the 2X2 cluster.

repulsive and the induction (−22 kcal/mol) and dispersion (−14 kcal/mol) contributions are crucial for the binding of
the water molecule to the cluster.

In Fig. C4 we compare the near–complete basis set limit CCSD(T)–F12, MP2C–F12, DFT–SAPT, and DMC
potential energy curves of a water monomer interacting with the single–layer 2X2 model of the MgO surface. (These
calculations were carried out with a slightly different geometry of the water monomer than used in the rest of this
study.) Interestingly the MP2C–F12, CCSD(T)–F12, and DMC potentials are nearly identical whereas the DFT–SAPT
potential differs noticeably from the others even when calculated using the aug–cc–pV5Z basis set.137 Specifically,
the DFT–SAPT potential lies appreciably above other potentials for distances about 2–2.5 Å, but drops below the other
potentials for R ≤ 1.8 Å. CCSD(T)–F12 calculations were also carried out accounting for correlation of the 2s and
2p orbitals of the Mg atoms (not shown in the figure). Near the minimum of the potential energy curve inclusion
of correlation effects involving the Mg 2s and 2p orbitals results in a 0.7 kcal/mol increase in the magnitude of the
interaction energy.

C.3.2 4X4 Cluster models

The MP2–F12, MP2C–F12, and DFT–SAPT potential energy curves for a water molecule interacting with the
4X4 cluster model of the surface are shown in Figure C5. For each method the binding energy at the potential energy
minimum is about half that obtained for the 2X2 model. At the potential energy minimum the binding energy obtained
with the DFT–SAPT and MP2–F12 methods are about 1.5 and 0.5 kcal/mol smaller in magnitude than obtained in
the MP2C–F12 calculations. The weaker binding with the DFT–SAPT than with the MP2–F12 method is primarily
a reflection of the limitation of the aug-cc-pVQZ basis set used for the DFT–SAPT calculations. The individual
contributions to the interaction energy determined from the DFT-SAPT calculations are tabulated in Table C1. At
R = 2.14 Å, which corresponds to the equilibrium separation of the H2O–(MgO)2 system, both the electrostatics and
exchange–repulsion of H2O–(MgO)8 are reduced in magnitude compared to the H2O–(MgO)2 system, with the net
electrostatics plus exchange–repulsion contributions being 6 kcal/mol more positive for the 4X4 case. As a result, at
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Figure C5: Potential energy curves for approach of a water molecule to the MgO 4X4 cluster.
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Figure C6: Potential energy curves of a water molecule to the 4X4 MgO double layer.

the equilibrium structure the water molecule is displaced further from the ’surface’ in the 4X4 than 2X2 cluster model
(2.31 vs. 2.14 Å) which further weakens the interaction, primarily due to a reduction in the magnitude of the induction
and dispersion interactions, with the change in the induction energy being more important. It should be noted that the
breakdown in the DFT–SAPT procedure found for the 2X2 model is not seen for the 4X4 model, presumably due to
the reduction of the magnitude of the electrostatics and exchange interactions in the larger cluster model.

Figure C6 and Table C2 report the interaction energies of a water monomer with the double–layer 4X4 cluster
model. Compared to the single–layer 4X4 model, the net interaction energy at the potential minimum is about 1
kcal/mol smaller in magnitude in the two–layer model, but the equilibrium distance remains nearly the same as for
the single–layer 4X4 model. In going from the single–layer to the double–layer 4X4 model, the electrostatic and
exchange–repulsion interactions of the water molecule with the surface change by 1.7 and −1.7 kcal/mol respectively
at the equilibrium distance of 2.31 Å. Hence there is no net change in the electrostatics plus exchange–repulsion. On
the other hand, the induction and dispersion contributions change by 0.8 and 0.2 kcal/mol, leading to about a 10%
weaker interaction in the double–layer model.

C.3.3 6X6 Cluster model

The DFT–SAPT, MP2-F12 and MP2C–F12 interaction potentials for a water molecule interacting with the 6X6
cluster model of the surface are reported in Fig. C7, and the decomposition of the DFT–SAPT interaction energies is
reported in Table C3. The distance of the minimum of the resulting potential energy curves is close to those obtained
with the one– and two–layer 4X4 cluster models. The MP2C-F12 binding energies of a water molecule interacting
with the MgO(100) surface as described by the various cluster models are reported in Table C4. Examination of the
DFT–SAPT results reveals that in going from the single–layer 4X4 to single–layer 6X6 model the electrostatic plus
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Table C1: DFT–SAPT interaction energies (kcal/mol) for water–MgO (single–layer 4X4).

R (Angs) Elst Exch-Rep Disp Ind Total

1.98 −75.6 108.1 −17.8 −20.4 −5.7

2.14 −52.7 70.6 −14.2 −13.5 −9.8

2.31 −36.7 46.1 −11.3 −8.9 −10.9

2.47 −25.5 30.0 −9.0 −5.8 −10.4

2.63 −17.8 19.4 −7.2 −3.8 −9.4

2.97 −8.9 8.1 −4.6 −1.7 −7.0

3.49 −3.2 1.9 −2.2 −0.5 −4.0

3.97 −1.7 0.5 −1.2 −0.2 −2.6

4.49 −1.0 0.1 −0.6 −0.1 −1.6

5.49 −0.6 0.0 −0.2 0.0 −0.8

6.49 −0.4 0.0 −0.1 0.0 −0.5
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Table C2: DFT–SAPT interaction energies (kcal/mol) for water–MgO (double–layer 4X4).

R (Angs) Elst Exch-Rep Disp Ind Total

1.98 −73.3 105.6 −17.0 −19.0 −3.7

2.14 −50.8 68.6 −13.6 −12.5 −8.3

2.31 −35.0 44.4 −10.9 −8.1 −9.6

2.47 −24.0 28.7 −8.7 −5.3 −9.3

2.63 −16.5 18.5 −6.9 −3.4 −8.4

2.97 −7.9 7.6 −4.4 −1.5 −6.3

3.49 −2.5 1.7 −2.1 −0.4 −3.4

3.97 −1.2 0.5 −1.2 −0.2 −2.1

4.49 −0.6 0.1 −0.6 −0.1 −1.2

5.49 −0.3 0.0 −0.2 0.0 −0.5

6.49 −0.2 0.0 −0.1 0.0 −0.3

112



exchange contribution to the interaction energy changes by only -0.3 kcal/mol, whereas the induction plus dispersion
contribution decreases by 1.0 kcal/mol in magnitude. Table C4 also includes MP2C–F12 results for the double–layer
and triple–layer 2X2 models of the surface. From these results it is seen that adsorption energies essentially converged
at the two layers. The convergence of the adsorption energy along the 2X2, 4X4, and 6X6 sequence of single–layer
cluster models is shown in Fig. C8. Combining the results (at the minima of the potential energy scans) of the single–
layer, and double–layer 4X4 models and the single–layer 6X6 model, we estimate the binding energy of a water
molecule for a double–layer 6X6 cluster model to be about −10.6 kcal/mol, which is in reasonable agreement with
the −11.1 kcal/mol DMC result for a water molecule interacting with a 2–layer model of the MgO(100) surface. A
comparison of the potential energy curve estimated for the double–layer 6X6 model using MP2C–F12 energies and
from the DMC calculations for the 2–layer slab with periodic boundary conditions is presented in Fig. C9. Overall
the agreement between the two potential energy curves is good, with the small discrepency near the potential energy
minimum probably reflecting a limitation of the strategy used to estimate the 2–layer 6X6 cluster model results and
also not including the core correlation effects for the Mg atoms.

We note that the temperature programmed desorption measurements of Ref. 5, which gave a value of 15 kcal/mol
energy for desorbing from the Mg (100) surface at low coverages, probably detected water molecules that were H–
bonded to OH groups on the surface, thereby, enhancing their binding energies.195

C.3.4 GDMA calculations

The electrostatic interaction energy from the DFT–SAPT calculations includes the effects of charge–penetration.
In order to estimate the charge–penetration contribution to the electrostatic energy, we calculated atomic charges,
dipoles, and quadrupoles using Stone’s generalized distributed moment analysis (GDMA)116 of the MP2/cc-pVDZ136

densities for the (MgO)n cluster models.(The MP2 calculations were performed using Gaussian 03.117) The resulting
moments are summarized in Table C5. This analysis shows that the charge on the interior Mg and O atoms has no
simple trend in the different cluster models. The magnitude of the dipole moment on the central atoms decreases
along the sequence of models and it becomes zero for the single–layer 6X6 cluster model. The corresponding dipoles
on the O atoms are 0.05, 0.03, and 0.26 au. (The absolute values of the dipoles are reported.) The changes in the
quadrupole moments with cluster model are more striking. For example, for the central Mg atoms, the value of the
Q20 component of the quadrupole is −0.39, −0.07, −0.02, and −0.05 au for the single–layer 2X2, single–layer 4X4,
double–layer 4X4, and single–layer 6X6 cluster models, respectively. The corresponding results for the central O
atoms are −0.89, −1.48, −0.74, and −1.40 au. The same trend for the quadrupole moments is also observed in
going from the central atoms of the 6X6 to the edge atoms. Using the moments from the GDMA analyses of H2O
and the (MgO)n cluster models we calculated the electrostatic interaction energies, with the results being tabulated
in Table C6. The resulting interaction energies are 32.3, 22.1, 22.3 and 22.5 kcal/mol smaller in magnitude than
the DFT–SAPT electrostatic interaction energies for the single–layer 2X2, single–layer 4X4, double–layer 4X4, and
single–layer 6X6 cluster models, respectively. These differences can be taken as estimates of the charge–penetration
contributions to the electrostatic interaction energies. The greater charge–penetration contribution in the 2X2 model
arises in part from the shorter separation of the water molecule from the surface in this case. Calculations using a 2X2
cluster model with GDMA moments from the interior 2X2 sub–cluster in the 4X4 cluster model actually gives even
stronger binding of the water molecule to the cluster than obtained with the original 2X2 model. Thus the main factor
causing the weakening of the electrostatic interaction between the water molecule and the surface as one goes from the
2X2 to the 4X4 cluster model is the unfavorable electrostatic interaction with the non–central Mg and O atoms rather
than changes of the charge distribution of the atoms in the central 2X2 region caused by the presence of surrounding
ions.
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Figure C7: Potential energy curves for approach of a water molecule to the MgO 6X6 cluster.
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Table C3: DFT–SAPT interaction energies (kcal/mol) for water–MgO (single–layer 6X6).

R (Angs) Elst Exch-Rep Disp Ind Total

1.98 −75.3 107.0 −16.3 −19.9 −4.43

2.14 −52.3 69.8 −13.1 −13.2 −8.86

2.25 −40.4 51.6 −11.2 −9.9 −9.88

2.28 −38.6 49.0 −10.9 −9.4 −9.96

2.31 −36.2 45.3 −10.5 −8.7 −10.01

2.47 −25.0 29.4 −8.4 −5.7 −9.66

2.63 −17.3 19.0 −6.7 −3.7 −8.68

2.97 −8.4 7.9 −4.3 −1.6 −6.35

3.49 −2.8 1.8 −2.1 −0.4 −3.48

3.97 −1.3 0.5 −1.2 −0.2 −2.15

4.49 −0.7 0.1 −0.6 −0.1 −1.29

5.49 −0.4 0.0 −0.2 0.0 −0.66

6.49 −0.3 0.0 −0.1 0.0 −0.43
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Table C4: MP2C–F12 binding energies (kcal/mol) for water interacting with MgO(100) clusters.a

Geometry EMP2C−F12

2X2 1–Layer (VQZ-F12) −25.1

2X2 2–Layer (VQZ-F12) −24.7

2X2 3–Layer (VQZ-F12) −24.5

4X4 1–Layer (VQZ-F12) −12.5

4X4 2–Layer (VQZ-F12/VDZ-F12) −11.1

6X6 1–Layer (VQZ-F12/VDZ-F12) −11.8

6X6 2–Layer (VQZ-F12) (−10.6)b

DMC 2–Layer slab model −11.1

a For a water O–Mg separation of 2.31 Å, which is close to the minima of the scanned potentials for the one–layer
and two–layer 4X4 models. O–Mg separation of 2.14 Å is used for 2X2 cluster models.
b Estimated as described in the text.
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Table C5: Multipole moments (in au) for the Mg and O atoms in the cluster models.a

Atom q |µ| |Q2|

Type 2X2 1L 4X4 1L 4X4 2L 6X6 1L 2X2 1L 4X4 1L 4X4 2L 6X6 1L 2X2 1L 4X4 1L 4X4 2L 6X6 1L

Mg1 0.99 0.98 0.97 1.03 0.32 0.05 0.06 0.00 0.59 0.09 0.04 0.05

O1 -0.99 -1.07 -1.03 -1.04 0.05 0.03 0.26 0.00 0.95 1.48 0.75 1.40

Mg2 1.02 1.03 1.00 0.17 0.11 0.07 0.32 0.20 0.10

O2 -1.04 -1.04 -1.04 0.29 0.39 0.04 1.19 0.74 1.38

Mg3 1.13 1.11 0.98 0.31 0.27 0.05 0.68 0.62 0.05

O3 -1.01 -1.03 -1.07 0.14 0.38 0.02 0.93 0.01 1.50

Mg4 1.09 0.09 0.19

O4 -1.05 0.26 1.26

Mg5 1.15 0.33 0.68

O5 -1.02 0.16 0.91

a The atom numbering scheme is defined in Fig. 1.

Table C6: Electrostatic interaction energies (kcal/mol) for water/MgO(100) clusters

Cluster size SAPT–Elst GDMA–Elst Charge–penetration

2X2 1 Layer −52.6 −20.4 −32.3

4X4 1 Layer −36.7 −14.6 −22.1

4X4 2 Layers −35.0 −12.7 −22.3

6X6 1 Layer −36.2 −13.7 −22.5
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C.4 CONCLUSIONS

In this study, we have used the MP2, MP2C, and DFT–SAPT methods to calculate the interaction energy of a
water molecule with a sequence of cluster models of the MgO(100) surface as well as DMC calculations of a water
monomer interacting with a 2–layer model of the surface. Our calculations show that even a basis set as large as aug-
cc-pVQZ does not give well converged interaction energies of a water molecule with cluster models of the surface, and
the F12 approach was adopted to circumvent this problem. Based on the comparison with the results of CCSD(T)–
F12 and DMC calculations using the small 2X2 cluster model, it is concluded that the MP2C–F12 approach accurately
describes the interaction of a water molecule with the cluster models of the surface. Compared to MP2C–F12, the
MP2–F12 method underbinds by about 1 kcal/mol and the DFT–SAPT method underbinds by about 2.5 kcal/mol with
about half the error in this latter case being to limitations in the basis set employed. Going from a single–layer 4X4
model to a double–layer 4X4 model, leads to about a 10% reduction of the magnitude of the binding energy. This can
be understood in terms of the unfavorable electrostatic interaction of the water molecule with the second layer Mg and
O atoms. Our best estimate of binding energy of a water molecule to the MgO(100) surface obtained from the cluster
model calculations is−10.6 kcal/mol which is in good agreement with the DMC slab model result of−11.1 kcal/mol.
At the equilibrium structure of a water molecule on the (100) MgO surface charge–penetration contributes about −22
kcal/mol to the interaction energy. As a result, the development of an accurate force field for describing the adsorption
of a water on metal oxide surfaces will require inclusion of explicit charge–penetration terms.
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[10] José M. Pérez-Jordá and A. D. Becke. A density-functional study of van der Waals forces:
rare gas diatomics. Chem. Phys. Lett., 233(1-2):134 – 137, 1995.

[11] Sándor Kristyán and Peter Pulay. Can (semi)local density functional theory account for the
London dispersion forces? Chem. Phys. Lett., 229(3):175 – 180, 1994.

120



[12] O. Anatole von Lilienfeld, Ivano Tavernelli, Ursula Rothlisberger, and Daniel Sebastiani.
Optimization of Effective Atom Centered Potentials for London Dispersion Forces in Den-
sity Functional Theory. Phys. Rev. Lett., 93(15):153004, Oct 2004.

[13] I-Chun Lin, Maurı́cio D. Coutinho-Neto, Camille Felsenheimer, O. Anatole von Lilienfeld,
Ivano Tavernelli, and Ursula Rothlisberger. Library of dispersion-corrected atom-centered
potentials for generalized gradient approximation functionals: Elements H, C, N, O, He, Ne,
Ar, and Kr. Phys. Rev. B, 75(20):205131, May 2007.

[14] Pier Luigi Silvestrelli. Van der Waals interactions in density functional theory by combining
the quantum harmonic oscillator-model with localized Wannier functions. J. Chem. Phys.,
139(5):054106, 2013.

[15] Robert A. DiStasio, O. Anatole von Lilienfeld, and Alexandre Tkatchenko. Collective
many-body van der Waals interactions in molecular systems. Proc. Natl. Acad. Sci.,
109(37):14791–14795, 2012.

[16] Andreas Heßelmann. Long-range correlation energies from frequency-dependent weighted
exchange-hole dipole polarisabilities. The Journal of Chemical Physics, 136(1):014104,
2012.

[17] Andreas Heßelmann. Assessment of a Nonlocal Correction Scheme to Semilocal Density
Functional Theory Methods. J. Chem. Theory Comput., 9(1):273–283, 2013.

[18] Qin Wu and Weitao Yang. Empirical correction to density functional theory for van der
Waals interactions. J. Chem. Phys., 116(2):515–524, 2002.

[19] Lampros Andrinopoulos, Nicholas D. M. Hine, and Arash A. Mostofi. Calculating
dispersion interactions using maximally localized Wannier functions. J. Chem. Phys.,
135(15):154105, 2011.

[20] Stefan Grimme. Accurate description of van der waals complexes by density functional
theory including empirical corrections. J. Comp. Chem., 25(12):1463–1473, 2004.

[21] Stefan Grimme. Semiempirical GGA-type density functional constructed with a long-range
dispersion correction. J. Comp. Chem., 27(15):1787–1799, 2006.

[22] Stefan Grimme, Jens Antony, Stephan Ehrlich, and Helge Krieg. A consistent and accurate
ab initio parametrization of density functional dispersion correction (DFT-D) for the 94
elements H-Pu. J. Chem. Phys., 132(15):154104, 2010.

[23] Erin R. Johnson and Axel D. Becke. A post-Hartree-Fock model of intermolecular interac-
tions: Inclusion of higher-order corrections. J. Chem. Phys., 124(17):174104, 2006.

121



[24] Alexandre Tkatchenko and Matthias Scheffler. Accurate Molecular Van Der Waals Interac-
tions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett.,
102(7):073005, 2009.

[25] Takeshi Sato and Hiromi Nakai. Density functional method including weak interactions:
Dispersion coefficients based on the local response approximation. The Journal of Chemical
Physics, 131(22):224104, 2009.

[26] Yan Zhao and Donald G. Truhlar. The M06 suite of density functionals for main group ther-
mochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transi-
tion elements: two new functionals and systematic testing of four M06-class functionals and
12 other functionals. Theo. Chim. Acta, 120:215–241, 2008.
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[187] D. Alfè and M. J. Gillan. Ab initio statistical mechanics of surface adsorption and desorp-
tion. I. H2O on MgO (001) at low coverage. J. Chem. Phys., 127(11):114709, 2007.

135
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