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Physical manipulatives are commonly used to improve mathematical understanding. However, it 

is unclear when physical manipulatives lead to significant benefits. We investigated whether 

understanding the mechanism of a manipulative would affect mathematical use and 

understanding. Participants were asked to navigate a physical robot through a maze, and to create 

a strategy that could navigate differently sized robots through the same maze. Participants with a 

better understanding of the robot’s mechanism were more likely to utilize complex mathematical 

strategies during the maze task than participants with lower mechanistic understanding. These 

participants with higher mechanistic understanding also showed greater understanding of the 

mathematical relationships within the robot. The study provides evidence for a relationship 

between mechanistic understanding and mathematical understanding, suggesting that 

mechanistic manipulatives, upon which mathematics can be applied, may be especially 

beneficial for fostering mathematical understanding. 
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1.0  INTRODUCTION 

As mathematical skills become increasingly important for success in today’s world, an 

increasing amount of effort has been dedicated to finding effective strategies that promote 

mathematical understanding. One popular strategy is the use of physical manipulatives (e.g., 

Gravemeijer, 2002; Hiebert et al., 1997; NCTM, 2000), which are thought to facilitate 

understanding by grounding abstract mathematical concepts onto concrete experiences (Bruner, 

1966). 

Physical manipulatives provide several unique affordances, including sensorimotor 

interactions and experience with physical artifacts. However, it remains unclear when these 

affordances lead to learning increases, and which types of manipulatives provide the most 

benefit. Many studies have found positive learning effects from using physical manipulatives 

(e.g., Cass, Cates, & Smith, 2003; Martin & Schwartz, 2005), but many have found no benefit, or 

even adverse effects, when using physical manipulatives (e.g., McNeil, Uttal, Jarvin, & 

Sternberg, 2009) In their review of 23 studies, Suydam and Higgins (1977) found 11 studies 

where physical manipulatives had a positive effect, 2 studies where manipulatives had a negative 

effect, and 10 studies that showed no effect. Similarly, Sowell (1989) found a large range of 

results when comparing physical manipulative instruction to other instructional types, ranging 

from negative to positive effect sizes, though she concluded that mathematics achievement could 

be improved through manipulative use. On a more practical level, physical manipulatives come 
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with a number of limitations, including physical space, set-up and clean-up time, and availability 

of manipulatives, which may impede the use of physical manipulatives in classrooms. A 

common workaround for these physical limitations is the introduction of virtual learning 

environments; however, virtual environments may lose unique physical learning benefits and 

decrease the effectiveness of mathematics education. 

One way to alleviate this problem is to determine the cognitive mechanisms that underlie 

physical learning benefits, so that these mechanisms can be integrated into other educational 

media. Furthermore, understanding the cognitive mechanisms may provide insight into the types 

of learning situations for which manipulatives are most beneficial. The current study aimed to 

investigate one cognitive mechanism that may mediate physical manipulative benefits: more 

detailed or flexible mental representations for generating mathematical functions caused by 

higher mechanism understanding. 

1.1 INCREASING MATHEMATICAL UNDERSTANDING VIA MECHANISTIC 

UNDERSTANDING 

Mathematics involves the discovery and understanding of patterns. The ability to recognize and 

understand these mathematical regularities can lead to the discovery of mathematical 

relationships. Mechanisms serve a similar purpose. Defined by Machamer, Darden, and Craver 

(2000) as “entities and activities organized such that they are productive of regular changes from 

start or set-up to finish or termination conditions” (“activities” being producers of change, and 

“entities” being those that carry out activities), mechanisms describe the processes that lead to 

regular phenomena. Mechanisms can also be abstracted into “mechanism schemas” (Machamer 
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et al., 2000), abridged mechanism descriptions that can be filled with specific descriptions of 

entities and activities depending on the situation. These schemas support the discovery of 

strategies and regularities: a person can formulate a schema based on their hypothesis of how 

entities and activities work within a mechanism, and then test whether their proposed mechanism 

leads to the hypothesized outcome. If the schema fails, then the person can revise their schema to 

more accurately predict the observed outcome. If the schema succeeds, then that schema can be 

used to explain regular outcomes across several related situations (e.g., through Peirce’s theory 

of abduction; see Hartshorne & Weiss, 1935, Burks, 1958). In other words, mechanism schemas 

provide an understanding of how a system consistently works over many different 

circumstances. 

Mathematics can then be applied to these mechanisms to describe the regularities that 

occur in a given phenomenon, simultaneously providing a perceptual basis for abstract 

mathematical patterns and emphasizing the consistency of such patterns. Students may be able to 

connect the regularities that are inherent in both mechanism and mathematics: mechanistic 

understanding allows students to recognize the relations that exist among a series of entities; they 

can then map and analogize those relations onto mathematical situations to understand how 

quantities relate to and change each other (see Gentner, 1983). For example, consider a 

phenomenon whose mechanism can be explained as, “Entity 1 is directly connected to Entity 2. 

When Entity 1 spins, this causes Entity 2 to spin.” After examining this mechanism, the student 

may come to understand that Entity 1 leads to regular changes in Entity 2 (that is, if the number 

of spins of Entity 1 changes, the number of spins of Entity 2 also changes in a constant way).This 

could then be used as a basis for understanding proportional reasoning, which quantitatively 

describes a particular form of regular changes between two numbers. Furthermore, students may 
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come to recognize that proportional reasoning can be applied in situations in which regular 

changes occur between entities, allowing them to recognize the applicability of mathematics 

across representationally similar situations. Thus, we predict that increasing students’ 

understanding of a mechanism will a) lead to increases in mathematical understanding of the 

mechanism, and b) increase their likelihood of applying the appropriate math to situations 

involving that mechanism. 

1.2 PHYSICAL MANIPULATIVES AND THE DISCOVERY OF MECHANISMS 

Physical manipulatives are almost always manipulated with one’s hands. Research has shown 

that people show heightened attention, slower visual search rates, greater visual memory, and 

enhanced cognitive control for objects in hand space than for objects away from this space 

(Abrams, Davoli, Du, Knapp, & Paull, 2008; Reed, Grubb, & Steele, 2006; Schendel & 

Robertson, 2004; Tseng & Bridgeman, 2011 Weidler & Abrams, 2012). In particular, the hands 

focus attention on objects’ details. For example, Davoli, Brockmole, and Goujon (2012) asked 

people to visually search geometrical patterns while holding their hands near or far from the 

stimuli. When visual features and patterns were the same across images, there were no 

processing differences in relation to the hands; however, when images differed in their colors, 

then participants with their hands near the stimuli showed decreased performance. These 

processing differences are thought to be caused by a shift in the use of perception-based 

parvocellular pathways to the use of action-based magnocellular pathways for objects near the 

hands (Abrams & Weidler, 2013; Gozli, West, & Pratt, 2012). 
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 When students use physical manipulatives, their attention may be focused toward the 

manipulatives and their details. Though it seems counterintuitive to focus on details when the 

goal is to learn abstract mathematical concepts, increased attention may make it more likely for 

students to recognize and discover the mechanisms involved in the physical manipulative 

(assuming such a mechanism exists in the manipulative). Students can then learn the 

relationships that exist between the parts of the mechanism and integrate these relationships into 

their mental representation of the system, leading to a more detailed or flexible representation 

(Behr, Lesh, Post, & Silber, 1983; Goldin & Schteingold, 2001) upon which abstract 

mathematical principles can be applied (see Figure 1). 

 

Figure 1. Proposed relationship between physical manipulative use and mathematical 

understanding. 

 In previous work, we found evidence that physical manipulatives lead to greater attention 

to the manipulative’s details. Students who worked with a physical robot during a task were 

more likely to include and accurately draw the robot’s details from memory than students who 

worked with a virtual robot during the task (Liu & Schunn, 2013). In the current study, we are 

investigating the latter half of Figure 1: whether students who understand the manipulative’s 

mechanism will show greater mathematical understanding and be more likely to propose 

accurate mathematical relationships. 
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1.3 EXPERIMENTAL OVERVIEW 

To test our proposed relationship between mechanistic understanding and mathematical 

understanding, we used a robotics task. Robotics has been used to successfully improve 

mathematics performance (e.g., Nagchaudhuri, Singh, Kaur, & George, 2002; Petre & Price, 

2004; Silk, 2011) and is a rich domain to integrate mathematics with other STEM domains. In 

addition, robotics can be especially resource-intensive: physical robots require much set-up time, 

take up much physical space, and can be expensive to buy for classroom use. In response, several 

virtual robotics environments have been created to address these physical concerns; thus, being 

able to integrate physical learning affordances into these virtual environments may be especially 

beneficial for this domain. 

The current study used the widely used LEGO NXT robot as its physical manipulative. 

The robot’s mechanism consists of three entities: the robot’s program, motors, and wheels. The 

program (which used a C-based language called ROBOTC; www.robotc.net) consists of 

commands that tell the robot which direction to move and the number of times to rotate its 

motors (see Figure 2 for an example). When the program is run through the robots interface, the 

robot’s motors rotate the number of times designated in the commands, which causes the robot’s 

wheels to rotate, which causes the robot to move. Importantly, the parts of the robot that are 

involved in its mechanism (i.e., the motor rotations and wheel rotations) are also proportionally 

related (i.e., one motor rotation will equal the same number of wheel rotations, which will equal 

the same distance traveled by the robot). 
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Figure 2. Examples of the available commands in the programming task. 

 We expected that participants who were taught the robot’s mechanism (i.e., the causal 

connection between the robot’s motors and wheels) would be more likely to include the 

mechanism in their mental representation of the robot than participants who were not taught the 

mechanism. Because the robot’s mechanism is also involved in its proportional relationships, 

participants who understood this mechanism would be more likely to discover and understand 

the robot’s quantitative relationships as well, and would be more likely to utilize math based on 

these quantitative relationships in tasks involving the robot. To test these hypotheses, we used a 

maze navigation task: participants were asked to navigate a robot through a maze, and to create a 

generalizable strategy that could navigate differently sized robots through the same maze. 

Although non-mathematical strategies (e.g., guessing and checking) could be used to navigate 

the maze, strategies needed to utilize proportional reasoning to fulfill the strategy portion of the 

task. Thus, we hypothesized that: 

1) Participants with high mechanistic understanding would show greater understanding 

of the quantitative relationships that exist within the robot than participants with low 

mechanistic understanding. 
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2) Participants with high mechanistic understanding would use more frequent and more

complex mathematics in their maze navigation strategies than participants with low

mechanistic understanding.

3) The participants with greater understanding of the robot’s quantitative relationships

would be the same participants who use more frequent and more complex

mathematizations during the maze navigation task.

Based on our model in Figure 1, all participants should show heightened attention toward 

the robot, because all participants used a physical robot. However, it is possible that participants 

with higher mechanistic understanding will attend more to the proportionally relevant parts of 

the robot than those with lower mechanistic understanding. It is also possible that participants 

need to visualize the robot and its mechanisms before they can mathematically utilize their 

mechanistic understanding. Thus, we explored participants’ attention toward the robot and their 

spatial visualization ability as potential factors in the relationship between mechanistic 

understanding and mathematical use and understanding. 
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2.0  METHODS 

2.1 PARTICIPANTS 

Participants consisted of fifty undergraduate students recruited through the University of 

Pittsburgh Psychology department’s subject pool and compensated with course credits. Twenty-

four students were randomly assigned to the High Mechanistic condition, and 26 students were 

assigned to the Low Mechanistic condition. Students majoring in robotics-related or math-heavy 

majors (i.e., robotics, technology, engineering, mathematics, statistics, physics, chemistry) were 

not eligible to participate in the study. 

2.2 MATERIALS 

Mechanism manipulation. Participants were shown two defective, physical robots and asked to 

predict whether the robot would be able to move forward in a straight line. On the first robot 

(Figure 3, left), the cord attaching the robot’s brick (where the robot’s programs and commands 

are stored) to the robot’s motors was disconnected to emphasize the relationship between the 

robot’s commands and wheel movements via motor rotations. The second robot (Figure 3, right) 

had two mismatched wheels (one large wheel and one small wheel) to emphasize the relationship 

between the robot’s wheel size and movement distance. An experimenter ran each robot to test 
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participants’ predictions and show that the robots would not run properly. The experimenter also 

explained the cause of the robots’ errors. After seeing both robots, participants were asked to 

describe the process through which a robot goes to move forward, starting from the moment a 

program is downloaded into the robot; if participants’ explanations contained errors, the 

experimenter corrected them before moving on to the next task. 

Mechanism Understanding questionnaire. As a manipulation check, the Mechanism 

Understanding questionnaire consisted of two open-ended questions about how the robot 

functioned: “Please explain the process that the robot goes through to move, starting from its 

motor rotating” and “Please draw a diagram of the process”. The mechanism manipulation was 

considered successful if the participant articulated, in at least one of the two questions, that the 

robot’s motor rotations caused the robot’s wheels to rotate (i.e., they recognized the fundamental 

mechanism that powers the robot). 

Figure 3. The two robots used in the Mechanism manipulation. Left, the USB cord connecting 

the robot’s right motor to the robot’s brick was disconnected. Right, the robot’s two wheels were 

mismatched in size. 
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Maze task. Participants learned to program a robot in the programming language 

ROBOTC, using commands that told the robot which direction to move and the number of times 

to rotate its motor during each movement (e.g., forward(150), backward(200), turnLeft(20), 

turnRight(80)). Participants were given two objectives during this task: to navigate their robot 

through a maze (shown in Figure 4) and to create a strategy that could navigate another robot 

with different sized wheels through the same maze, without relying on guess-and-check methods. 

They were also provided with a tape measure to measure the maze or robot, though there was no 

requirement to use the tool. Participants were given an initial 30 minutes to complete the task. 

After creating their initial strategy (on average, after 26 minutes), participants were asked to 

explain whether they thought their strategy would generalize to other robots. Participants were 

then given 30 minutes to revise their initial strategy, with a recommendation to use a 

mathematical formula in their new strategy. They were also given access to a set of smaller robot 

wheels and were allowed to switch the smaller and larger wheels at will. 

Two raters coded participants’ initial and final strategies based on the type of 

mathematization used, with Kappa = 1.0 (p < .001). A more detailed description and an example 

of each strategy code are given in Table 1. The first two strategy types do not explicitly use 

mathematics, though prior research suggests that the Plausible Guesstimation strategy is a 

foundation upon which more sophisticated mathematical strategies can be built (Nouyvanisvong, 

1999). The two latter mathematical strategies are both relevant to the task, but only the last one 

can fully solve the task. 
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Figure 4. The maze through which participants navigated their robots. 

Start 

Finish 
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Table 1. 

Coding used for initial and final solution strategies in the maze task. 
Code Description Example 

Guessing Participant created 
a guess-and-check 
strategy with no 
clear basis for 
guessed numbers, 
or gave exact 
commands they 
used as a strategy 

1) forward(130), then turn left
2) turnLeft(160), then turn left
3) Go straight direction, forward(100)
4) turnLeft(28), 28 is still too large to turn, 100 is too long
5) Go straight like the first step, but the length is a little shorter,
forward(100) 
6) turnRight(24)
7) forward(100), go straight

Plausible 
guesstimation 

Participant created 
a guess-and-check 
strategy, but 
guessed numbers 
were estimated 
using some 
situational basis 

“Guess + test was my main strategy. After I learned that it took 
the robot 150 (approx.) motor rotations to go one straight stretch 
of the maze + 30 (approx.) motor rotations to make a turn in the 
maze, I just entered in the numbers in the computer until finally 
the robot got through the maze.” 

Specific 
proportional 

Participant created 
a strategy utilizing 
proportional 
reasoning, but 
values were 
specific to their 
robot 

“1. It is 0.1 inch per motor-rotation. 2. It needs 35 motor 
rotations for a left or right turn. 3. Measure the distance for each 
straight trait which is divided by 0.1 to get the number of motor-
rotations for each straight trait.” 

General 
proportional 

Participant created 
a strategy utilizing 
proportional 
reasoning that 
could be 
generalized to 
other robots 

“First, start off with a given value for motor rotations (call this 
R1) and measure the distance the robot travelled for that number 
of rotations (D1). Second, measure the distance you would like 
the robot to travel to reach its intended destination (D2). 
Calculate the number of rotations it will take the robot to travel 
this distance (D2) using the formula R1/R2 = D1/D2 and solve 
for D2.” 

Mathematical Relationship Understanding questionnaire. The Mathematical Relationship 

Understanding questionnaire consisted of eight open-ended questions about how the robot’s 

motor rotations, wheel rotations, and distances are quantitatively related. Questions asked 

directly about the mathematical relationships between components (e.g., “Are the number of 

wheel rotations related to the distance that the robot moves forward?”). Responses to each 

question were scored on the number of accurate mathematical relationships included in the 
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answer, such that a higher score signified greater quantitative understanding (with a maximum 

score of 16 points). The Cronbach’s alpha (α, a commonly used metric of instrument reliability; 

Cronbach, 1951) for this questionnaire was 0.64, suggesting potentially low internal consistency. 

 Robot drawing task. To determine the features of the robot to which participants attended 

during the task, participants were asked to draw the robot they had programmed from memory, 

and to include the important parts of the robot in their drawing. To assess and control for 

drawing ability differences across participants, a control drawing task was also given with the 

same instructions, except that participants could look at the robot they worked with as a 

reference while they drew. Both memory and control drawings were coded for the number of 

accurately drawn wheels and the number of motors included in the drawings (proportionally-

relevant features), and whether or not the drawing included a detailed depiction of the robot’s 

screen (a proportionally-irrelevant feature). 

 Paper Folding test. The Paper Folding test (Ekstrom et al., 1976) measures spatial 

visualization ability. A series of pictures depicts one to three folds made in a piece of paper, and 

the final picture shows where a hole is punched in the paper. Participants selected which of five 

options illustrated the reopened piece of paper. The test consisted of two parts with 10 questions 

each (α = 0.84), with three minutes allotted for each part. 

 Santa Barbara Sense of Direction scale. The Santa Barbara Sense of Direction (SBSOD) 

scale is a standardized self-report scale of environmental spatial ability that has been shown to 

highly correlate with spatial knowledge tests that involve environment orientation and updating 

of location in space after self-locomotion (Hegarty et al., 2002). The scale consists of 15 

statements (α = 0.84) about one’s spatial and navigational abilities, preferences, and abilities. 
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Participants rated their agreement with each statement on a scale of 1 (Strongly agree) to 7 

(Strongly disagree). 

Motivation questionnaire. As a control variable, the motivation questionnaire included 

nine questions about the participant’s level of motivation during the maze task, building upon 

theories and measures of engagement (the Intrinsic Motivation Inventory; e.g., Ryan, 1982) and 

achievement goals (Elliot & Church, 1997). Three questions involved the participants’ level of 

engagement (e.g., “I enjoyed the robotics tasks very much”; α = 0.91), three questions involved 

the participants’ level of performance-approach goals (e.g., “It is important to me to do well 

compared to others who do this experiment”; α = 0.86), and three questions involved 

participants’ level of mastery-approach goals (e.g., “I desire to completely master the tasks 

presented in this study”; α = 0.80). Participants were asked to rate their level of agreement with 

each statement on a scale of 1 (Strongly disagree) to 7 (Strongly agree).  

2.3 PROCEDURE 

Participants first completed the Paper Folding test and the Santa Barbara Sense of Direction 

(SBSOD) scale. Next, an experimenter gave a brief, verbal introduction to the LEGO NXT robot 

that did not explain the mechanism of the robot. Participants in the High Mechanistic condition 

received the mechanism manipulation. 

All participants then began the maze task, which was introduced as a programming task 

and included basic programming instructions. Participants were asked to navigate their LEGO 

NXT robot through a maze and to create a strategy that other students could use to navigate their 

own robots through the same maze; importantly, it was emphasized that other students’ robots 
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may have different sized wheels than the robot the current participant was using, so the strategy 

needed to work for robots with any sized wheels. Participants were given 30 minutes to work 

through the task. Afterwards, participants were asked whether they thought their strategy would 

generalize to other robots. After writing their answer, they were given an additional 30 minutes 

to revise their initial strategy while working with a robot with smaller-sized wheels. 

After the maze task, participants were given the Robot Drawing and Control Drawing 

tasks. They then filled out the Motivation, Mechanism Understanding, and Mathematical 

Relationship Understanding questionnaires. 

16 



3.0  RESULTS 

3.1 MANIPULATION CHECK 

Because the purpose of the study was to investigate the effects of mechanistic understanding, we 

needed to ensure that our manipulation caused the High Mechanistic condition to have higher 

mechanistic understanding than the Low Mechanistic condition. If the mechanism manipulation 

was successful, then more individuals in the High Mechanistic condition would articulate the 

motor-wheel relationship (in their responses to the Mechanistic Understanding Questionnaire) 

than the Low Mechanistic condition. However, a Chi-square test of independence testing the 

relationship between condition and participant’s score on the Mechanistic Understanding 

Questionnaire was not significant [X2 (1, N = 50) = 1.53, p = .22]: 70.8% of individuals in the 

High Mechanistic condition recognized the motor-wheel relationship, compared to 53.8% of 

individuals in the Low Mechanistic condition. 

We chose to redefine High vs. Low Mechanism in terms of whether participants correctly 

identified the robot’s motor-wheel relationship, so that the two groups would differ in their level 

of mechanistic understanding as originally intended. Using this new definition, 31 participants 

were categorized as being in the High Mechanistic group, and 19 participants were categorized 

as being in the Low Mechanistic group. These group definitions were used for the remainder of 

the analyses. 
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3.2 MAZE TASK 

We hypothesized that the High Mechanistic group would utilize mathematics during the maze 

task more frequently and with more complexity than the Low Mechanistic group. Analyses were 

computed separately on participants’ initial strategies (completed before an experimenter 

recommended the use of a math formula in their strategy), and on participants’ final strategy 

(completed after the participant was given the chance to revise their initial strategy). Tables 2 

and 3 show the percentage of participants who created each type of initial and final strategy (i.e., 

Guessing, Plausible Guesstimation, Specific Proportional, and General Proportional), 

respectively, at each level of mechanistic understanding. 

Table 2 

Percentage of Participants Using Each Type of Initial Strategy by Level of Mechanistic 
Understanding 

Guessing 
Plausible 

Guesstimation 
Specific 

Proportional 
General 

Proportional 
High Mechanistic 16% 35% 26% 23% 
Low Mechanistic 42% 37% 21% 0% 

Table 3 

Percentage of Participants Using Each Type of Final Strategy by Level of Mechanistic Understanding 

Guessing 
Plausible 

Guesstimation 
Specific 

Proportional 
General 

Proportional 
High Mechanistic 0% 23% 29% 48% 
Low Mechanistic 26% 26% 42% 6% 

We examined the frequency of mathematical strategies by comparing the level of 

mechanistic understanding with the use of mathematical strategies (i.e., strategies coded as either 

Specific Proportional or General Proportional). For initial strategies, a Chi-square test of 

independence was marginally significant [X2 (1, N = 50) = 3.74, p = .053]: 49% of participants in 

the High Mechanistic group used a mathematical strategy, while only 21% of participants in the 
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Low Mechanistic group used a mathematical strategy. Meanwhile, for final strategies, 77% of 

High Mechanistic participants used a mathematical strategy, as compared to 48% of participants, 

and the Chi-square was significant [X2 (1, N = 50) = 4.74, p = .029]. Thus, it appears that 

individuals who had a higher mechanistic understanding were somewhat more likely to use 

mathematical strategies, prior to any prompting to use mathematics. After an experimenter 

recommended the use of a mathematical strategy to all participants, individuals with higher 

mechanistic understanding were more able to generate mathematical strategies than individuals 

with lower mechanistic understanding. 

To examine the two groups’ strategy complexity, we computed two Mann-Whitney U 

tests to more finely compare the mathematizations used in participants’ initial and final strategies 

(with Guessing being the least complex strategy possible = 0, and General Proportional being the 

most complex strategy possible = 3). The tests showed that complexity in initial strategies were 

slightly higher for the High Mechanistic group (mean rank = 29.4) than the Low Mechanistic 

group (mean rank = 19.1) [U = 173.5, p = .012, r = .36]. For final strategies, the High 

Mechanistic group (mean rank = 30.7) were much more likely to create complex strategies than 

the Low Mechanistic group (mean rank = 17.0) [U = 133.0, p = .001, r = .48]. Overall, 

participants with higher mechanistic understanding were more likely to create strategies that 

were more mathematically complex (and consequently more accurate), while participants with 

lower mechanistic understanding were more likely to rely on simple guessing or estimation 

strategies. 
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3.3 MATHEMATICAL RELATIONSHIP UNDERSTANDING 

In addition to participants’ strategies, we looked at whether the High Mechanistic group had 

higher scores on the Mathematical Relationship Understanding Questionnaire compared to the 

Low Mechanistic group. An independent-samples t-test confirmed that the High Mechanistic 

group (M = 5.52, SD = 2.42) had significantly higher scores on the questionnaire than the Low 

Mechanistic group (M = 3.32, SD = 2.36) [t(48) = -3.15, p = .003, d = .92], showing greater 

understanding of the quantitative relationships that exist within the robot (see Figure 5). 

Figure 5. Average score on the Mathematical Relationship Understanding Questionnaire was 

significantly higher in the High Mechanistic group than the Low Mechanistic group. 

Participants’ scores on the questionnaire also positively correlated with the complexity of 

their final maze strategy [r(50) = .375, p = .007], indicating that participants who created more 

mathematically complex strategies in the maze task were those who possessed greater 

understanding of the quantitative relationships within the robot. 
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3.4 ROBOT DRAWING TASKS 

The robot’s mechanism consists of three primary parts: the robot’s screen, motors, and wheels. 

However, only the motors and wheels are also involved in the robot’s mathematical 

relationships; it is possible that attention and understanding of these particular parts of the robot 

contribute to mathematical understanding, rather than general mechanistic understanding. We 

explored whether the High Mechanistic group were more likely to include proportionally-

relevant features of the robot in their drawings (i.e., the motors and wheels) than the Low 

Mechanistic group, and conversely, whether the Low Mechanistic group were more likely to 

include proportionally-irrelevant features of the robot (e.g., the robot’s screen) in their drawings. 

Separate ANCOVAs were conducted on the number of accurately-drawn wheels and the number 

of motors included in the drawings, controlling for the number of wheels and number of motors 

in participants’ control drawings, respectively. A Chi-square test of independence was also run to 

test the relationship between group and the likelihood of detailing the robot’s screen in the 

drawing. Contrary to our hypotheses, there were no differences among group for the number of 

wheels included [F(1, 47) = .055, p = .82, ηp
2 = .001], the number of motors included [F(1, 47) = 

.30, p = .59, ηp
2 = .006] (Figure 6), or the likelihood of including screen details in the 

drawing[X2(1, N=50) = .42, p = .52]. In addition, no correlations existed between Mathematical 

Relationship Understanding Questionnaire score and the number of wheels [r(50) = .075, p = 

.61], the number of motors [r(50) = .15, p = .29], or whether the screen was included [r(50) = 

.17, p = .24] in the drawing. Thus, both level of mechanistic understanding and level of 

mathematical understanding appeared to be unrelated to level of attention to basic features of the 

robot. 
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Figure 6. High Mechanistic group and Low Mechanistic group did not differ in the average 

number of wheels or motors included in their robot drawings. 

3.5 INDIVIDUAL DIFFERENCES 

To explore whether higher mechanism understanding was confounded with students’ ability to 

visualize and simulate the robot’s movements, we examined correlations of spatial visualization 

ability with maze strategy complexity and understanding of the mathematical relationships 

within the robot. However, there were no significant correlations between participants’ scores on 

the Paper Folding Test and their initial strategy complexity [r(50) = .23, p = .10] or their final 

strategy complexity [r(50) = .23, p = .11]. Similarly, there was no correlation between Paper 

Folding Test score and Mathematical Relationship Understanding Questionnaire score [r(50) = 

.21, p = .14]. The control spatial measure, the SBSOD, was also uncorrelated with initial maze 

strategy complexity [r(50) = .16, p = .26], final maze strategy complexity [r(50) = .11, p = .45], 

and Mathematical Relationship Understanding Questionnaire scores [r(50) = .21, p = .14]. Thus, 

spatial visualization ability was not a confound in the performance differences between group 
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and does not appear to play a role in participants’ ability to effectively mathematize their 

understanding of the robot’s mechanism. 

Figure 7. Neither the High Mechanistic group (dark gray diamonds) nor the Low Mechanistic 

group (light gray squares) showed correlations between math understanding score and spatial 

measure scores. 

We also tested whether the two groups differed in their levels of motivation, and whether 

differing motivation could explain the differences seen in maze strategy complexity or 

Mathematical Relationship Understanding Questionnaire scores. An independent samples t-test 

revealed that the High Mechanistic group reported significantly higher engagement during the 
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robotics task (M = 5.69, SD = 1.04) than the Low Mechanistic group (M = 4.58, SD = 1.70) 

[t(26) = -2.56, p = .016, d = .79]. There were no differences in reported levels of mastery goals 

[t(48) = -.97, p = .34, d = .28] or performance goals [t(47) = -.30, p = .76, d = .08] (Figure 7). 

However, the level of engagement did not explain the relationship found between mechanistic 

understanding and strategy complexity or mathematical understanding: after controlling for 

engagement, the main effect of mechanistic understanding level was still significant for initial 

maze strategy [F(1, 47) = 5.41, p = .024, ηp
2 = .10], final maze strategy [F(1, 47) = 11.58, p = 

.001, ηp
2 = .20], and Mathematical Relationship Understanding Questionnaire score [F(1, 47) = 

6.41, p = .015, ηp
2 = .12]. To determine whether the creation of more successful maze strategies 

or better understanding of the robot’s mathematical relationships may be driving increased 

engagement in the robotics tasks, we also conducted three ANCOVAs on engagement, using 

initial maze strategy complexity, final maze strategy complexity, and Mathematical Relationship 

Understanding Questionnaire scores as covariates, respectively. In all three tests, the main effect 

of level of mechanistic understanding remained significant [initial: F(1, 47) = 6.0, p = .018, ηp
2 = 

.11; final: F(1, 47) = 4.70, p = .035, ηp
2 = .09; math understanding: F(1, 47) = 4.84, p = .033, ηp

2 

= .09], while main effects of initial strategy, final strategy, and math understanding was not. 

Therefore, level of mechanistic understanding appears to lead to differences in engagement, but 

engagement itself is not directly related to task performance or greater mathematical 

understanding of the robot. 
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Figure 8. High Mechanistic group reported greater levels of engagement than the Low 

Mechanistic group, but equal levels of mastery and performance goals. 
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4.0  GENERAL DISCUSSION 

The current study investigated the relationship between mechanistic understanding and 

mathematical understanding. Specifically, we examined whether understanding the mechanism 

of a physical robot would be associated with increased understanding of the mathematical 

relationships within the robot, and with higher frequency and complexity of mathematics used in 

a robotics task. The results showed that participants who understood the robot’s mechanism also 

showed greater understanding of the robot’s quantitative relationships. Furthermore, these 

participants were more likely to use math when navigating the robot through a maze, and were 

able to use more complex mathematizations for the task. We also found that higher mechanistic 

understanding was associated with greater engagement in the robotics task, which was not 

explained by higher mathematical understanding or better performance on the task, suggesting 

that mechanistic understanding per se may play a motivational role as well. 

In regard to attention to details, we found no differences between participants with high 

mechanistic understanding and those with low mechanistic understanding: all participants were 

equally likely to attend to the proportionally relevant and irrelevant parts of the robot. Given that 

all participants used physical robots during the robotics task, all participants should also have the 

same heightened attention and processing for the robot’s details, due to having the object in hand 

space; indeed, both high and low mechanistic participants generally drew the robot accurately 

(with high mean scores), suggesting that all participants highly attended to and remembered the 
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features of the robot. Thus, attention to detail alone is not enough to discover mechanisms and 

mathematical relationships. 

We also found that spatial visualization ability did not correlate with mechanistic 

understanding, mathematical use, or mathematical understanding. This finding appears to 

contradict previous findings that spatial ability correlates with accuracy on mechanistic 

reasoning problems (Hegarty & Sims, 1994; Hegarty & Steinhoff, 1997). However, research by 

Schwartz and Black (1996) suggests that people initially use mental simulations and mechanistic 

reasoning until a suitable rule is discovered, at which point people shift toward rule-based 

reasoning instead. Hegarty (1992) also found that people use other strategies concurrently with 

mental simulation. In the current study’s robotics task, it is possible that participants’ 

mechanistic understanding initially helped them to discover the constant relationship between the 

robot’s motor rotations and distance movements. Once that relationship was found, participants 

may have stopped relying on mechanistic reasoning and shifted to other non-mechanistic 

strategies, such as rule-based reasoning, allowing them to avoid simulations of the motor-wheel 

relationship. Also, because participants would not have to rely as heavily on visualization of the 

mechanism, spatial ability may have played less of a role in the current study, explaining the lack 

of correlation between spatial ability and our mechanism and mathematical understanding 

measures. 
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4.1 INTERACTIONS BETWEEN MECHANISTIC AND MATHEMATICAL 

UNDERSTANDING 

How does mechanism understanding benefit mathematical understanding? Mechanisms provide 

a perceptual ground for abstract mathematical concepts, a common affordance cited by physical 

manipulatives. In addition, the patterns and regularities that underlie many mathematical 

principles are also emphasized. By pointing out the regularities in mathematical principles, it 

may be easier for students to understand when mathematical principles can be generalized across 

settings. Furthermore, mechanisms may increase the likelihood that students use math in a 

learning situation: mechanism regularities may help students to see that mathematical principles, 

which are also regular, can be applied to the situation, while mechanism schemas, which include 

a hypothesized process and outcome, may encourage students to use math to test the proposed 

result of their mechanism (Machamer, Darden, & Craver, 2000). The current study provided 

evidence that mechanism influenced students’ ability to see the applicability of math in the 

robotics situation, as high mechanistic participants were more likely to use math in their initial 

maze strategies, before an experimenter recommended for them to do so. 

Mathematical studies often focus on the direction of physical experiences to math (e.g., 

Ahl, Moore, & Dixon, 1992; Bassock & Olseth, 1995), using what Schwartz and Moore (1998) 

call the “EQM” frame; that is, given an empirical situation, people determine which qualitative 

schema fits that situation best, and then determine which mathematical procedure to use based on 

the schema. Alternatively, the relationship between physical experiences and math may proceed 

in the opposite direction: mathematical understanding may lead to increased mechanism 

understanding. Indeed, previous research has suggested that mathematics can be used to make 
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sense of physical experiences (e.g., Martin & Schwartz, 2005; Schwartz, Martin, & Pfaffman, 

2005; Sherin, 1996). 

Although the current study posited that increased mechanistic understanding would lead 

to greater mathematical understanding, it was not possible to conclusively test the direction of 

this relationship due to our unsuccessful mechanism manipulation. Several plausible third 

variable confounds were ruled out. However, participants may have used their mechanistic 

understanding to generate mathematical strategies and inform their mathematical understanding 

of the robot (i.e., mechanism to math direction); or, they may have first discovered the 

mathematical patterns between their inputted motor rotations and the robot’s traveled distance 

and used that to conceptualize the robot’s mechanism (i.e., math to mechanism direction); or, 

there may have been a constant conversation between mechanism understanding and 

mathematical understanding, where discoveries about mechanism and/or mathematical patterns 

were used to inform and revise their understanding of the other (i.e., a reciprocal mechanism and 

math relationship). This directionality question could be answered with future studies 

investigating the steps through which students proceed as they generate their mathematical 

strategies. Such data would also provide additional information about whether there are any 

differences between students who begin with mechanism or mathematical understanding in 

creating their strategies. 

4.2 EDUCATIONAL IMPLICATIONS 

Educationally, there has been a push toward virtual environments; not only does it avoid physical 

limitations associated with physical manipulatives, but it also engages students in technology, 
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which is increasingly necessary as technology advances. Research focusing on virtual 

manipulatives have found that they also have unique affordances that physical manipulatives do 

not have, including reduced set-up and clean-up time, quicker feedback to students, increased 

student motivation, and increased exploration of strategies (e.g., Reimer & Moyer, 2005; Steen, 

Brooks, & Lyon, 2006; Suh, Moyer, & Heo, 2005; Yuan, Lee, & Wang, 2010). However, virtual 

environments may also lose benefits that physical environments provide. The current study 

suggests that mechanism understanding, which may be indirectly caused by physicality and more 

readily discovered in physical contexts, should also be emphasized in virtual contexts (for 

example, by showing a virtual simulation of the mechanism involved in the task at hand). Future 

studies examining whether presentation of virtual mechanisms lead to the same benefits as 

physical mechanisms would help to dissociate benefits caused by physical interactions from 

benefits caused by mechanistic understanding. 

It is important to note that the current study does not discount the existence of physically 

unique benefits, such as those posited by embodied cognition. The current study investigated one 

physical affordance that was not tied directly to physicality; rather, we proposed that physically 

interacting with an object leads to increased attention toward the object, which leads to a higher 

likelihood of discovering the object’s underlying mechanism. In cases in which the physical 

benefit is not directly caused by the physicality of the situation, investigating the direct cause of 

the benefit is beneficial, as they can then be integrated into other mediums to avoid physical 

limitations. In cases where physicality is the direct cause of learning benefits, then a combination 

of physical and virtual manipulatives may be ideal (e.g., Olympiou & Zacharia, 2011). 

In sum, the current study shows that mechanistic understanding is associated with greater 

mathematical understanding. Teaching mathematics in the context of mechanisms, using 
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mechanistic manipulatives that can be connected with mathematical principles, may provide 

several mathematical benefits, including increased use and complexity of mathematical 

strategies. Grounding mathematical concepts in concrete mechanisms and taking advantage of 

the regularities in both mathematical and mechanical systems allows students to see the 

applicability of mathematics to concrete situations, ultimately leading to a better understanding 

of both mechanism and mathematics, and the connections between the two. 
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