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EARLY DISEASE DETECTION THROUGH COMPUTATIONAL PATHOLOGY

Virginia M. Burger, PhD

University of Pittsburgh, 2013

This thesis presents computational pathology algorithms for enabling early cancer detection in

Barretts Esophagus (BE) and early subtype diagnosis in Interstitial Lung Diseases (ILD). BE is

a condition affecting 10% of heartburn sufferers, for which 0.1% of patients develop esophageal

adenocarcinoma each year. For most of the 130-200 diseases included in the class of ILDs, a

full recovery is expected, but for a few of these diseases, the survival rate is less than three years.

For both disease classes, treatment of the malignant forms would be harmful in patients with

other forms, thus diagnosis is necessary prior to beginning treatment, and early treatment is most

effective in eradicating disease. Early diagnosis of both of these disease classes is complicated

by a high degree of sharing of subtle disease phenotypes, leading to high pathologist disagree-

ment rates. Computational pathology methods can aid early diagnosis of these diseases through

unbiased, data-driven algorithms.

To detect precancerous changes in patients with BE, we develop an automated algorithm

which identifies epithelial nuclei in biopsy samples on which nano-scale optical biomarkers,

related to cancer risk, can be quantified. The automated nuclei detector produces a higher quality

selection of epithelial nuclei than manual detection, resulting in enhanced characterization of

precancerous phenotype perturbations. To stratify ILD patients, we develop a novel quantitative

representation of pathohistology samples that models lung architecture based on computed image

features and insights from pathologists, and establish its utility as part of a diagnostic classifier.

Algorithms such as these applied in a clinical setting can save pathologists time by filtering out

obvious cases and providing unbiased reasoning to assist diagnoses.
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1.0 INTRODUCTION

The field of computational pathology began in the mid-1980s with the goal of improving diag-

nosis and prognosis of tissues, [6, 7]. However, computers have only recently become powerful

enough to accurately analyze tissue images at a practical scale [8]. In the past few years, fast

slide scanners and increased computer storage have made systematic scanning of whole slide tis-

sue images in medical laboratories a possibility, permitting large-scale computational analysis of

pathological tissue. These studies have the potential to both assist pathologists in their traditional

analyses through computer-aided diagnosis and prognosis and to discover novel features relevant

for disease detection [9, 10, 11]. Similar to how automated screening of pap smears to filter out

clearly heathy cases allows cytologists time to focus on ambiguous images, pathologists could

gain time for analysis of diagnostically challenging images by prescreening their slides with com-

putational pathology algorithms. As imaging is cheaper than genetic testing and images can be

sent rapidly over the internet, computational algorithms implemented in telepathology platforms

could bring expert medical insight to populations far from major hospitals.

As intra- and inter- pathologist variability is not uncommon [9, 11], computational aided

diagnosis can provide an objective, quantitative assessment of ambiguous slides [10]. Compu-

tational Pathology is expected to be useful in resolving disagreement between pathologists and

providing unbiased, explicitly reasoned, as opposed to intuitive, diagnoses. A recent example

of the power of computational pathology to resolve pathologist disputes is seen in [12], where

a computational measurement of lymphocytic infiltration is developed. While pathologic scores

on the testing cohort lost prognostic strength due to pathologist disagreement, the computational

score was able to differentiate between good and poor disease outcomes.

In addition to resolving discrepancies and saving pathologist time, computational algorithms
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have discovered diagnostic and prognostic features in tissue data that have revealed unknown

aspects of cancer progression. In 2011, Beck et al developed an algorithm termed C-path for

computational prognosis of breast cancer [13]. Using machine learning on a large feature set

including epithelial and stromal nuclei, they built a classifier which was able to predict 5-year

patient survival with 89% accuracy. Interestingly, three of their most important features for

prognosis were based on stromal nuclei, and these three features alone formed a better model

of prognosis than a model built from the most predictive epithelial nuclei. This finding was

striking, as pathologist grading criteria include only epithelial features. In a response to this

study, the medical field has devoted more attention to intra-tumor stroma in the past few years,

and recent findings have shown that stromal features can be used as prognostic parameters in

colorectal cancer, esophageal and breast [14].

Early detection of disease is critical for treatment in many systems [15]. For many cancers,

prompt removal of the tumorous region will reduce chance of metastasis. Recent studies have

shown that removal of the whole cancer field may be necessary to prevent tumor regrowth [16].

Barrett’s esophagus [BE], a common condition in the USA for which patients have an increased,

but small, risk of developing cancer each year, provides an interesting platform for studying the

cancer field, that is, the region around a tumor in which precancerous changes take place [17]

because of the frequency of biopsies taken from BE patients to assess their risk of developing

cancer. Not only is studying cancer development in BE important for developing methods for

earlier diagnosis of cancer in these patients, but it also allows provides insight into the devel-

opment of cancer in general, as patients who go on to develop cancer commonly have a biopsy

record for how their tissue has changed between first being diagnosed with Barrett’s Esophagus

and eventually developing cancer.

Computational biology has focused in the past on segments of whole slide images and on

tissue microarrays. This is partially due to the large size of whole slide images, but also do to he

heterogeneity of the images [13]. Images with a single diagnostic label as cancerous may contain

healthy tissue as well as tissue of many grades of cancer. This noisy ground-truth information

challenges classification algorithms. Additionally, computational analysis of large whole-slide

images requires accurate computer vision algorithms trained to identify objects in tissues images
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Figure 1: Overview of major aims

[18, 19].

Contributions

This thesis provides new methods for analyzing biological data on three scales (Fig. 1). On the

micrometer scale, we present a method for classifying nuclei as epithelial or non-epithelial. This

kind of classification is essential for analysis of cancerous tissue, as different types of features

are indicative of cancer in epithelial, stromal, and lymphatic cells [13]. We demonstrate how

optical phase computed on the epithelial nuclei can be used as an optical biomarker for detecting

cancer in the field around a tumor, using spatial low-coherence quantitative phase microscopy

[20]. On the centimeter scale, we present a method for representing heterogeneous whole slide

images in terms of their spatial architecture with regards to homogeneous tissue components.

We then demonstrate the use of this method for classification of interstitial lung diseases. On the

nanometer scale, we present a method analogous to Aim II for determining the computational

landscape of intrinsically disordered proteins, which are commonly implicated in cancers and

other genetic diseases. This method can be used to elucidate bottleneck conformations in the

protein’s landscape, which could eventually be used as targets for therapeutic drugs.
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2.0 BACKGROUND: NUCLEI SEGMENTATION

Nuclei are the smallest unit on which pathologists traditionally analyze features in histological

images. Nuclei size, shape, and arrangement undergo documented changes as tissue becomes

diseased. For example, in Barrett’s esophagus, cells (and hence more visible nuclei) invade the

lamina propria, a mucosa layer neighboring the epithelium, as cancer develops. In 20× images,

one pixel corresponds to 0.5 microns, so a nucleus with diameter of 10µm has on average 314

pixels. With this magnification, nuclei shape and average intensity can be used as features for

analyzing images computationally. At higher magnifications, (40× indicates 0.25µm per pixel,

100× indicates 0.1µm per pixel), nuclei contain many more pixels, and computational analysis

of inter-nuclei features, such as symmetry and variations in intensity, are possible. However, the

majority of images are scanned to only 10× or 20× magnification, as even 10× scans can yield

huge images. For example, a 1cm × 1cm biopsy would yield a 10000 × 10000 scanned image

at this magnification. Both storage and processing of such large images is challenging. Here,

we discuss methods for processing these images, in terms of identifying nuclei and other cellular

components.

Nuclei patterns differ naturally between cell types, organs, and diseases, and are captured

differently depending on the slide preparation, staining, and imaging device, thus many system-

specifc nuclei segmentation algorithms exist [13, 21, 22]. Several proprietary image segmen-

tation methods have been released with scanners [23], but few open-source programs exist for

segmentation of these large images. Hematoxylin and Eosin [H&E] images are currently more

commonly analyzed computationally than fluorescent images, and several methods have been

published for nuclei segmentation of these images based on active contours [24, 25, 26, 27],

e.g. [28, 29, 30], as they perform well at detecting boundaries in the noisy images. For fluores-
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cent images which are often challenged by low signal to noise rations, the watershed method is

commonly used [31], as well as graph-based methods [32].

Any available methods, commercial included, must be fine-tuned to be as accurate on a dif-

ferent system as it is on the system it was designed for, and the challenge of adapting an old

method to a new project often leads to researchers designing new methods for each system. In

all systems, segmentation is challenged by cell density, nuclei density, overlapping nuclei, image

contrast, background noise, and variations in nuclei morphology [33]. Specifically, [33] indicate

that the main challenge stems from the face that tissue is a 2D section of a 3D sample. This results

in nuclei being partially imaged, sectioned at odd angles, and damaged by sectioning. Addition-

ally, the limited thickness of the section causes overlapping nuclei. In pathological samples,

nuclei can have unnatural shapes and sizes, as well as variable chromatin texture. Importantly,

tightly clustered nuclei and nuclei with unique morphologies are more difficult to segment than

most nuclei, but also more likely to be indicative of disease [34]. The most basic methods are

based on intensity thresholding, as nuclei are usually darker than their immediate surroundings

[34]. However, variations in image intensity and both biological and experimental noise create

many false positive nuclei. Diffusion and contrast normalization are often used to improve over

intensity thresholding, followed by system specific methods to weed out false positive nuclei and

break up clusters of nuclei

2.0.1 Common components of nuclei segmentation algorithms

While ideally one nuclei segmentation algorithm would be able to perfectly segment nuclei from

any tissue image, variations in nuclei patterns in different tissues and using different stains cause

it to be more practical to design specific algorithms for each image set. However, some standard

tools are often applied as intermediate steps in nuclei segmentation algorithms like the ones men-

tioned above. Here, we briefly describe some of the most common image processing methods

for identifying nuclei.

• Thresholding: An image is a matrix or stack of matrices filled with intensity values. Each

matrix entry corresponds to an image pixel. Color images are typically stacks of three ma-

trices, for example, one matrix for the each of the red, blue, and green channels. Gray-scale

5



Figure 2: Intensity thresholding. A: A RGB image of a red car with a green box in the back.

B: Red, green, and blue image channels. Whiter pixels correlate to more intensity in a channel,

darker pixels correlate to less intensity in a channel. Note how the car is bright white in the

red chanel, the green box is white in the green channel, and the street is relatively white in all

channels. C: A binary mask is formed by thresholding for pixels with intensity greater than 100

in the red channel and less than 100 in the green channel. Pixels selected for by the threshold

(“masked”) are shown in black. D: The blue-channel intensity in the masked pixels is increased

to turn the car purple.
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Figure 3: Gaussian Mixture Model: The two gaussian distributions (red and blue), together with

the uniform distribution (green) are fit to explain the purple distribution.

images are simply images with only one matrix describing their pixel intensities. Thresh-

olding in an image channel or combination of channels is a simple way of selecting pixels

that have a specified intensity. For example, in Figure 2.0.1, pixels associated with the car

have red channel intensity greater than 100 and green channel intensity less than 100 (Panel

B). By thresholding for these pixels, a mask of the car can be computed (Panel C). However,

thresholding does not typically produce a perfect segmentation due to color variations in im-

ages and existence of unrelated image objects with the same intensities. For example, here,

the light shining on the car above its front tire changes the intensity in this area, and these

pixels are not included in the mask. Additionally, many pixels belonging to the road mark-

ings do fall in the mask, although undesired. Preprocessing or post processing, for example

with other methods described here, is often necessary to produce an accurate segmentation

using thresholding. In Aims two and three, we use thresholding as part of the algorithms for

nuclei segmentation. In nuclei segmentation, Otsu’s method, which automatically selects an

optimal threshold, is commonly used for creating a nuclei mask [35, 36, 37].

• Gaussian Mixture Models/: Mixture models separate a distribution into a set of sub distri-
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Figure 4: Anisotropic Diffusion of Hoechst image.

butions that together represent the full distribution [38]. For example, if a distribution has

two peaks, it might best be described by two Gausssian distributions 2.0.1. In Aim 2, our

gray-scale stained tissue images consist mainly of three components: nuclei, cytoplasm, and

lumen. As the nuclei pixels mostly have very low intensities, the lumen pixels mostly have

very high intensities, and the cytoplasm pixels fall in the middle, and there are thousands of

pixels from each class in a given image, we assume that the intensities for each of the three

regions are gaussian distributed and fit three gaussian distributions and a uniform background

distribution to the intensities distribution of the entire image. This allows us to avoid choos-

ing a specific threshold for nuclei intensities that must hold for every image, as regardless

of absolute image intensities, the nuclei will always belong to the gaussians with the lowest

intensities. We create a binary mask by thresholding all pixels with a minimal probability of

belonging to the gaussian designated as belonging to nuclei.

• Anisotropic Diffusion: [39] Variations in pixel intensity due to experimental noise or sig-

nal noise are often smoothed using diffusion. Anisotropic diffusion smooths the image at

each pixel according to the local gradient at that pixel, in that way respecting edges in the

image. For example, Figure 2.0.1 shows a fluorescent image of a group of tightly clustered

nuclei with large amounts of pixel intensity variation due to image noise. By smoothing with

anisotropic diffusion, the intensity within each nucleus becomes uniform, while the barriers

between nuclei remain intact. After diffusion, thresholding can be applied to identify the

individual nuclei. The edge-preserving nature of anisotropic diffusion can lead to some ar-
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Figure 5: Contrast Normalization of Hoechst image prior to thresholding

tifacts, such as artificial edges forming from image noise, which can be mistaken for nuclei

[40]. Thus, our nuclei segmentation algorithm in aim two includes a post-processing step

after thresholding anisotropically diffused images to remove putative nuclei that do not fit

the standard size or shape of nuclei.

• Total-variance denoising: An alternative method to anisotropic diffusion for reducing image

noise while respecting edge is total-variance denoising [41, 42]. This method balances the

intensity of each pixel with the intensity of its neighbors through a graph representation of the

image, so that inconsistent pixel intensities due to noise are smoothed out. We apply total-

variance denoising as a pre-processing step prior nuclei segmentation on stained gray-scale

images in aim 2. The regularization parameter λ, which controls the amount of influence a

pixel’s neighbors have on its denoised intensity, can be varied to improve the segmentation in

different ways. If λ is high, the neighboring pixels dominate over a pixel’s own intensity, and

the denoised nuclei are much smoother and less likely to be over-segmented (one nucleus is

mistaken for several nuclei). However, high regularization also causes clustered nuclei to be

merged, resulting in under-segmentation (several nuclei are mistaken for one large nucleus)

of closely neighboring nuclei.

• Contrast Normalization: Contrast normalization adjusts pixel intensity with respect to the

intensity of surrounding pixels [43]. This process highlights pixels that are much lighter or

darker than their surroundings, and is very helpful in images with variations intensities. In

tissue imaging, nuclei often appear brighter or darker due to the amount of stain they have

9



retained or their depth in the tissue. In 2.0.1 (left panel), we see an example of this artifact in

a fluorescent image of a cluster of nuclei, in which a few nuclei are very bright. Thresholding

would not be able to identify the nuclei in the initial image, because in order for the darkest

nuclei to be selected by the threshold, cytoplasm pixels around the lightest nuclei would also

be selected by the threshold. By first contrast normalizing the image (middle panel), all of

the nuclei become are transformed to equally light intensities, as they are all lighter than their

surroundings, and all of the cytoplasms are transformed to equally dark intensities, as they

are all darker than their surroundings. At this point, thresholding is able to detect the nuclei

(right panel).

• Watershed Segmentation: Conceptually, the watershed transformation views the gray-scale

image is viewed as a topology map with low intensities corresponding to basins and high

intensities corresponding to peaks. If one imagines rain pouring down on the map, and

flowing to basin points, for each basin point, all pixels from which water would flow downhill

to that point are assigned to the same cluster [44]. As nuclei typically have lower intensities

than their surroundings, the watershed transform is a natural method for segmenting nuclei

and has been applied to this task for decades [33, 45]. However, the segmentations often

result in over segmentation, as multiple basins are commonly found within the same nuclei.

Thus, this method is usually combined with other methods as part of a multi-step algorithm

[46]. Here, we apply the watershed transformation as a post processing step on the segmented

nuclei to adjust image boundaries.

• Canny edge detector: Edge detectors, which looks for lines or curves along which there is

an intensity change in an image, is a common step in many image segmentation algorithms.

In nuclei segmentation algorithms, edge detection can be used to identify nuclei boundaries

in order to improve segmentation, as well as tissue and cell boundaries to delineate tissue

architecture within images (Figure 2.0.1) [47, 48]. Canny edge detection is a commonly used

multi-step edge detector which tries to reduce false edges created from noise [3]. For our

applications, an important parameter of the canny edge detector is the size of the Gaussian

smoothing filter. For epithelial cell classification in aim two, we use both large filters to find

major edges in the stained H& images corresponding to cell and lumen boundaries and small
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Figure 6: Canny edge detector finds tissue boundaries and nuclei in H$ image of lung tissue

filters to roughly identify the location of neighboring cells.

• Dilation / Erosion: Dilation and erosion can be used to expand (dilation) or shrink (erosion)

binary mask. This is often used to correct binary masks when intensity variations have caused

pixels to be missing from the mask. For example, in Figure 2.0.1, there is a gap between the

two stick figures. By dilating and then eroding, the two figures are combined into one figure.

In Aim two, we use dilation and erosion to fill gaps in the cell boundary mask.

Example of recent nuclei segmentation algorithm

Al-Kofahi, et al, focus on whole side images, for which computationally efficient algorithms are

also necessary [33]. They perform automatic image binarization using a mixture of two Poisson

distributions, which they find to be more appropriate than the traditional mixture of Gaussians.

Furthermore, they minimize an energy function (with terms for labeling and continuity) to find

an optimal labeling of the image as foreground and background. To identify individual nuclei,

Figure 7: Dilation and erosion of a binary image. A: initial image. B: dilation. C: erosion of

dilated image.
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Figure 8: Object cropped from larger image.

they use size-constrained clustering, instead of watershed, which they find to be just as fast as

watershed, while resulting in less over segmentation. They developed a parallel method based

on graph coloring to adjust boundaries of non-neighboring nuclei. Users are able to merge/split

nuclei for final corrections using a GUI. They suggest using a segmentation confidence score

to screen for nuclei that are likely to be poorly segmented, and only presenting these nuclei to

the user for correction, so that the user does not have to screen the entire image. They define

“encroachment errors” as errors involving incorrect boundaries. Due to the pixelization of the

actual image and the possibility of manual error, they only consider encroachment errors that

correspond to at least 25% of the nucleus error. Overall, they have 94% accuracy, if only over-

and under-segmentation errors are considered, and 86% accuracy if encroachment and binariza-

tion errors are also considered. In their images, under segmentation results from highly clustered

with weak borders and over segmentation results from elongated or highly textured chromatin.

Holistic Scene Understanding

When pathologists look at tissue images, or when humans look at any scene, they are guided by

global features. For example, when a person first looks at the scene, they can usually instantly

recognize whether the scene is inside or outside, contains people, is in a city or nature, etc.

After assessing the scene as a whole, they examine individual objects in the scene. Consider

. It would take most people a bit of time to identify the object/s in the scene, unless they are

very familiar with such objects. However, if shown the entire scene (Figure ), it is very easy

to identify the objects shown in the snippet in Figure . Upon looking at the entire scene, it is

instantly recognizable as a picture of boats in a lake on the mountains. Upon a second glance,

a person might observe that they are in Switzerland, because one of the boats has a swiss flag
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and Switzerland is known for having snowy mountains. At that point, it becomes clear that the

objects are tarps covering the boats for the winter.

Holistic scene understanding algorithms use global, local, and scene information together to

guide computational image parsing (assignment of each image pixel to a semantic class). Re-

cently, [49] introduced a method which jointly performs image parsing, object detection, and

scene classification to reduce errors from individual tasks. To reduce computational complexity,

they represent the image as a hierarchy of segments and super segments, instead of pixels, which

are determined using contour detection [50]. Using a type of random field (2.0.1), specifically a

holistic conditional random field, likelihood of specific object pairs occurring in the same scene

is modeled, as well as likelihood of specific objects occuring in specific scene types. As holistic

scene understanding is dependent on results from multiple tasks (object detection, scene classi-

fication, pixel grouping), Parikh, et al examined the amount of improvement possible in holistic

algorithms through ideal results in individual tasks by replacing outputs from each machine task

in [49] with human outputs [51]. One of their findings is that although humans perform slightly

worse at isolated superpixel classification than machines, the overall algorithm performs bet-

ter with human superpixel classification. This indicated that the mis-classifications by humans

were less deleterious than machine mis-classifications. They analyzed the human and machine

classification errors and found superpixel class features were important for subsequent algorithm

steps, which they used to adjust the machine segmentation protocol to produce an overall more

accurate algorithm.

Another recent example of holistic scene segmentation is from Lazebnik, et al [52]. They

designed a two part classification algorithm with combines bounding-box detectors scanning

for specific objects with region-based segmentation using a support vector machine [53]. After

obtaining an initial set of labels, they smooth the labels so that neighboring segments agree using

a Markov Random Field. To obtain their initial region labels, they define a probability score

which computes the log-likelihood ratio between the probability that a pixel belongs to a certain

class and the probability that the pixel does not belong to that class. While it takes several days to

initially train the algorithm, the average running time for an individual image is approximately 3

minutes, and the MRF inference takes only 6.8 seconds per image. On average their accuracy in

13



Figure 9: Outdoor scene.
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Figure 10: A simple Markov Random Field with nine nodes and two labels (1 and 2). Green

lines represent edges between superpixel nodes and label nodes, and blue lines represent edges

between superpixel nodes. Thicker lines indicate stronger edge weights.

assigning pixels to the correct class is 83.9%, where some (rarer objects, smaller objects) classes

have lower accuracy, and others classes being easier (buildings, sky).

Markov Random Fields (MRF)

Holistic segmentation algorithms often use a Markov Random Field to connect image super-

pixels with neighboring superpixels and with labels [49] . In this model, each superpixel in a

node in a graph (red circles in Figure 2.0.1) and there is an additional node in the graph for each

label (black and pink circles in Figure 2.0.1). Edges connect neighboring superpixels as well as

superpixels and labels. A cut is sought to find the optimal assignment of labels to superpixels.

This is equivalent to solving the optimization problem

min
x

n∑
i=1

∑
j∼i

ψ(xi, xj) +
n∑
i=1

φ(xi, yi),

which finds the optimal set of labels ~x for nodes with values ~y, such that labels on neighboring

pairs are probable (controlled by binary probabilities, ψ) and labels on nodes agree with the node

value (controlled by unary probabilities, φ) [24, 26, 33, 54]. We describe MRFs in more depth

in 3.5.2.
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3.0 AIM I: EPITHELIAL CELL CLASSIFICATION IN BARRETT’S ESOPHAGUS

FOR ANALYSIS OF PRE-CANCEROUS CHANGES IN NUCLEI

3.1 ABSTRACT

We present a methodology for enabling early cancer detection in Barretts Esophagus (BE). BE is

a condition affecting 10% of heartburn sufferers, for which 0.1% of patients develop esophageal

adenocarcinoma each year. BE patients undergo endoscopic surveillance for low grade dysplasia

(LGD), a pre-malignant lesion. Both diagnosis of LGD and establishment of treatment course

suffer from high pathologist disagreement rates, due to shared disease phenotypes between LGD

and non-malignant conditions, as well as the propensity of LGD to regress without intervention.

As treatment is not completely harmless, extent of dysplasia and degree of cancer risk must

be established before treatment can begin. Computational pathology can aid early detection of

high-risk LGD through unbiased, data-driven algorithms.

We develop an automated algorithm which identifies epithelial nuclei in biopsy samples on

which nano-scale optical biomarkers, related to cancer risk, can be quantified. Specifically, by

modeling each tissue image as a Markov Random Field on putative nuclei within the image,

we incorporate context-based features describing epithelial nuclei to find an optimal labeling

of all image pixels as belonging to epithelial nuclei, other nuclei, or background. Our method

identifies 97% of nuclei within our data set, and correctly labels over 90% of those nuclei as

epithelial or non-epithelial. We show that a nano-scale biomarker measured on epithelial nuclei,

computed through spatial-domain low-coherence quantitative phase microscopy, varies signifi-

cantly between patients with BE and no dysplasia, BE and high grade dysplasia, and BE with

esophageal adenocarcinoma, establishing its utility as a clinical measure for dysplasia. The au-
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Figure 11: Benign BE tissue. Left-most panel shows cartoon image of BE. Black circles indi-

cate nuclei. Following image pair shows labeled biopsy slice, labeled by DH. Color legend for

left- and right-most images: red= epithelial cell, orange= lumen, blue= stromal cells, green=

lymphocytes, pink= goblet cells. [1].

tomated epithelial nuclei detector produces a higher quality selection of epithelial nuclei than

manual detection, resulting in enhanced characterization of pre-cancerous phenotypes. Algo-

rithms such as these applied in a clinical setting provide unbiased reasoning to assist diagnosis

of ambiguous cases, save time by filtering out obvious cases, and can help establish degree of

cancer risk for individual patients.

3.2 INTRODUCTION

Barrett’s esophagus (BE) is a pre-malignant condition occurring in 10% of gastro-esophageal

reflux patients [55, 56, 57], in which esophageal epithelium undergoes benign metaplasia [55].

Specifically, columnar epithelium containing glandular cells replaces the normal squamous ep-

ithelial lining of the lower esophagus. The prevalence of BE is estimated to be around 1− 2% in

Europe and predicted to be up to 6% in the USA, [58], with 23 million cases in 2001 [59]. These
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BE patients are 30− 125 times more likely to develop esophageal adenocarcinoma [EAC], can-

cer of glandular epithelial cells, then the average population [57]. As EAC has one of the fastest

growing incidence rates of all cancers and a five-year survival rate of less than 5%, decreasing

mortality requires early identification of the BE patients who are at risk for developing EAC [59].

Traditionally, BE is diagnosed by both endoscopy and biopsy, where the biopsy must show

intestinal metaplasia, evidenced by glandular goblet cells 11 [55, 56, 60]. After an initial biopsy

confirms BE, patients undergo routine biopsy surveillance, with the frequency of biopsies in-

creasing if the patient develops dysplasia, abnormal changes in cell nuclei [57, 60]. Barrett’s

esophagus is understood to progress along a metaplastic - dysplastic - carcinomic pathway from

non-dysplastic metaplaspia (ND), through low-degree dysplasia (LGD) and high degree dyspla-

sia (HGD), to esophageal adenocarcinoma (EAC) [57, 61], although some patients never progress

past an early stage. Early recognition of epithelial tissue likely to progress to HGD would enable

targeted anti-cancer treatment to begin before onset of dysplasia.

Carcinomas, which include around 80% of human cancers, originate in epithelial nuclei [62],

thus pathologists have traditionally examined epithelial cells when diagnosing cancer (red cells

in fig. 11). Optical technologies, such as spatial-domain low-coherence quantitative phase mi-

croscopy (SL-QPM, 3.3), that seek to identify early characteristics of cancer at the nano-scale,

that is before cancer is evident through tissue architecture, also focus on epithelial cell nuclei, as

these will show precancerous changes earlier than other stromal, and other, cell nuclei (blue and

green cells in Fig. 11).

Pathologists identify epithelial cells in BE tissue using a mix of holistic insight and local

information. Specifically, they look for chains of columnar cells that surround a lumen area,

with apical sides facing the lumen (Fig. 11). While in cartoon examples the epithelial cells are

usually easily identified (Fig. 11,left), in reality discerning epithelial cells from other cells can

be difficult, leading to non-trivial rates of inter- and intra-pathologist disagreement [19]. and

distinguishing goblet cells within chains of epithelial cells can often be challenging. Consider,

for example, the biopsy tissue sample shown in Fig. 11 (middle, right). Here, a pathologist (DH)

has labeled nuclei and regions as either lumen, goblet cells, epithelial nuclei, stromal nuclei, or

lymphocytes. The two goblet cells most likely have nuclei within this image, but the pathologist
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has given no label to the four-five nuclei residing below the goblet cells, as it is not clear which

of these belong to the epithelium and which are goblet cells. The region in the upper-right corner

marked as lymphocytes could easily be mistaken for a chain of epithelial cells. Here, the lack of

neighboring lumen region and shape of nuclei must have lead to the classification of these nuclei

as lymphocytes. It is not possible to classify an individual nucleus as epithelial or non-epithelial

without knowledge of the nucleus’s local and global surroundings. However, only local infor-

mation is needed to classify an object in the image as a nucleus. We present an algorithm that

mimics the strategy used by pathologists to identify epithelial nuclei: we first identify all

regions in the image that could be nuclei, and then use holistic image segmentation, encoded in

a Markov random field, to classify nuclei as epithelial or non-epithelial. Our automated epithe-

lial classification system significantly reduces the manual labor required by researchers to label

epithelial nuclei within cell images, while eliminating bias in their selection.

Contributions

We first present a versatile automatic nuclei segmentation algorithm together with a GUI that can

be used to manually improve nuclei boundaries and select nuclei for further analysis. We then

present an automated epithelial classification algorithm that incorporates contextual clues learned

from pathologists to label nuclei as epithelial or non-epithelial. Finally, we show that an optical

biomarker computed with SL-QPM can be measured on epithelial nuclei to stratify healthy tissue

from Barrett’s esophagus patients according to their likelihood of neighboring cancerous tissue

and that automated segmentation provides a higher quality quantification of this biomarker than

manual segmentation.

3.3 BACKGROUND

Early Detection of Disease/Cancer

Due to the high likelihood of patients with BE developing EAC, BE patients undergo routine

esophagus biopsies. However, there is a high degree of inter- and intra- pathologist disagreement

at the critical LGD/HGH stage, where a small number of patient’s eventually develop cancer,
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but most do not [63]. Additionally, biopsies are limited in size and number, and diagnostically

critical dysplastic or carcinomic regions may be overlooked. The ability to detect early signs

of cancer outside of dysplastic regions, and prior to onset of tissue architectural changes, would

allow better identification of those patients who should begin anti-cancer treatment.

Spatial-domain Low-coherence Quantitative Phase Microscopy (SL-QPM)

“Normal” tissue, predisposed to carcinogenesis, displays molecular changes on the nanoscale

level indicative of carcinogensis [2]. Conventional microscopy visualizes tissues at the mi-

cron scale, at which these chromosomal level changes are not apparent. Spatial-domain low-

coherence quantitative phase microscopy is a novel optical method which detects structural

changes at the sub-nanometer level [20]. The presence of molecular alterations in tissue pre-

disposed for cancer has been evidenced in several cancers, including breast and esophagus[64].

A technical explanation of SL-QPM can be found in [65], and an overview is given here: As

cancer originates in DNA, it is to be expected that pre-carcinomic alterations would be appar-

ent in DNA packing and arrangement, before the alterations cause changes in cell and nucleus

structure. Traditional microscopy methods can not visualize changes within the cell nuclei. How-

ever, DNA packing and organization influences local density within nuclei. Light passes through

media with different densities at different speeds, and thus light will, on average, pass through

pre-cancerous nuclei at different rates than through healthy nuclei. By measuring how light of a

large array of wavelengths passes through each pixel of each the nuclei in an image, the phase of

light passing through each pixel can be computed. The phase is computed at several depths of

interest to identify a measurement that best resolves diagnostic differences between tissue. The

method has been shown to be robust against small variations in experimental factors, such as

staining and tissue thickness (on average 4µm thick).

Image Analysis for Nuclei Detection

Nuclei segmentation is a key step in computational pathology algorithms, as many biomarkers

are measured on cell nuclei [10, 34]. Nuclei patterns differ naturally between cell types, or-

gans, and diseases, and are captured differently depending on the slide preparation, staining, and

imaging device, thus many system-specifc nuclei segmentation algorithms exist [13, 21, 22]. In

all systems, segmentation is challenged by cell density, nuclei density, overlapping nuclei, im-
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Figure 12: Adapted from [2]: Overview of SL-QPM system. Left-top: Tissue is imaged at

1004 wavelengths. Right-top, bottom: For each pixel, the graph of all intensities is Fourier-

transformed. Left-bottom: Optical path length for all epithelial nuclei pixels, derived from

Fourier Transform, is converted to phase, and mapped on to initial tissue image.
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age contrast, background noise, and variations in nuclei morphology [33]. Importantly, tightly

clustered nuclei and nuclei with unique morphologies are more difficult to segment than most

nuclei, but also more likely to be indicative of disease [34]. The most basic methods are based

on intensity thresholding, as nuclei are usually darker than their immediate surroundings [34].

However, variations in image intensity and both biological and experimental noise create many

false positive nuclei. Diffusion and contrast normalization are often used to improve over in-

tensity thresholding, followed by system specific methods to weed out false positive nuclei and

break up clusters of nuclei. The tissue studied here is imaged at a 40× magnification, higher

than the majority of scanned images. As such, more detail within nuclei is likely to lead to

over-segmentation of nuclei using standard algorithms that are used to lower resolution data.

Additionally, the higher resolution allows algorithms for segmenting these nuclei to aim for bet-

ter performance on highly clustered nuclei, as they are better resolved. Thus, designing a nuclei

segmentation algorithm specific to this optical system should provide a more accurate segmen-

tation than a packaged algorithm repurposed for this data would.

Machine Learning for Epithelial Classification

Recent papers have shown the utility of measuring biomarkers individually on epithelial and

stromal nuclei for both cancer detection and uncovering of novel cancer biomarkers. Linder, et

al, trained a support vector machine on texture features describing small blocks of tissue (42µm×

42µm, containing around 5 nuclei per region) in 10× magnification colorectal tissue slides [66],

with 97% agreement between human and classifier. However, the resolution of their classifier is

not at the nucleus level, but at the block level, so individual stromal cells interspersed within a

block containing a chain of epithelial cells would be labeled as epithelium. Beck, 2011, labels

superpixels in 20× magnification images as epithelial or stromal using L1-regularized logistic

regression learned on a training set of images, with 89% accuracy [13]. While the superpixels

provide a more nuclear-specific labeling than the blocks used in [66], the classification can still

mislabel individual nuclei within a superpixel.

Holistic Segmentation by Encoding Context

When analyzing histological images, pathologists rely heavily on contextual information to un-

derstand the cellular environment. For example, the arrangement of nuclei in glands or chains
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helps identify particular nuclei as being epithelial or stromal (See Fig. 11). The utility of includ-

ing context information has been demonstrated in computational image parsing, where overall

segmentation and object classification has been improved by incorporating contextual features

into image understanding [67]. For nuclei classification, we aim to improve our classification

model by both the inclusion of learned contextual clues from ground-truth images (e.g. average

distance between epithelial nuclei), as well as the inclusion of knowledge-based contextual clues

from discussion with expert pathologists (e.g. orientation of epithelial chain to lumen).

3.4 DATA

As part of the SL-QPM protocol, each tissue sample is imaged at 1004 wavelengths, yielding

1004 separate images for a single sample. We use the average of these 1004 images for nuclei

segmentation and classification, and refer to the average image simply as the image.

Our learning data consisted of 414 stained histology images at 40× magnification (0.25µm

per pixel) from healthy (BE-normal) tissue taken from 89 patients, with each patient yielding four

to five images. The average image size in the data base is (531×363) pixels, or 133µm×91µm,

with image size ranging between 32770 and 359840 pixels. From this data set, 47 patients (215

images) were diagnosed with Barrett’s Esophagus, no dysplasia [BE-normal], 28 patients (131

images) were diagnosed with Barrett’s Esophagus and High Grade Dysplasia [BE-HGD], and 14

patients (68 images) were diagnosed with Barrett’s Esophagus and Esophageal Adenocarcinoma

[BE-EAC].

In addition to the 414 images from our learning set used to train and test the nuclei seg-

mentation and epithelial classification algorithms, we obtained a set of 424 stained histology

images of the same magnification and in the same size range, for which phase information was

calculated using SL-QPM to evaluate the usage of SL-QPM for early cancer detection in Bar-

rett’s Esophagus [64]. Images in this “experimental set” came from the same set of patients as

the training set, with diagnoses of BE-normal, BE-HGD, and BE-EAC, and again contain only

healthy (BE-normal) tissue.
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Importantly, while the images come from patients of three diagnostic classes, the tissue se-

lected for imaging is in all cases healthy BE, with no dysplasia. It should not be apparent, even

to an expert, that any of the tissue samples actually come from patients with an increased risk

of cancer over BE-normal patients, as here we are studying cell changes in the field adjacent to

carcinoma.

Ground Truth

Nuclei Segmentation: Ground truth labeling of nuclei boundaries was performed by VB using a

matlab GUI designed for the task to label nuclei boundaries, and verified/edited by pathologist

DH on a random sample of 10 BE-normal images, 10 BE-HGD images, and 10 BE-EAC images.

Epithelial Classification: On a subset of 38 images from the same set of 89 patients, but unique

from the learning and experimental sets, image regions were marked by DH as belonging to

epithelial cells, stromal cells, inflammatory cells, goblet cells, lymphocytes, other non-epithelial

cells, or lumen. The 414 image set was then labeled accordingly by VB and verified/edited by

DH. For the 424 image set, nuclei boundaries were automatically predicted using Phase I of our

algorithm, and then putative nuclei were labeled as epithelial or non-epithelial by KS.

Evaluation

We evaluate our nuclei segmentation and epithelial classification methods according to true pos-

itive rate (TPR), false positive rate (FPR), and accuracy. For epithelial classification, the TPR

is defined as the percent of nuclei with ground-truth label epithelial, that are also predicted to

be epithelial. The FPR is the percent of nuclei with ground-truth label non-epithelial, that are

predicted to be epithelial. The accuracy is defined as the total number of correctly classified

putative nuclei, divided by the total number of putative nuclei. For nuclei segmentation, we de-

fine a true positive as any predicted nucleus that overlaps with a ground-truth nucleus, a false

positive as any predicted nucleus that does not overlap with any ground-truth nuclei, and a false

negative as any ground-truth nucleus that does not overlap with any predicted nuclei. The total

number of true nuclei is the number of ground-truth nuclei, and the total number of false nuclei

is the number of false positives. As our definition of true positive is very weak, in that we only

require one pixel overlap for a putative nucleus to be considered correct, we used two additional

measures to establish the quality of the predictions while tuning our nuclei segmentation algo-
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rithm. The %- covered measures the number of pixels shared by the putative nucleus and its

corresponding ground-truth nucleus, divided by the total number of pixels in the ground-truth

nucleus. The %-wasted measures the number of pixels from the putative nucleus that are not also

in its corresponding ground-truth nucleus, divided by the total number of pixels in the putative

nucleus.

3.5 METHODS

Epithelial segmentation proceeds in two phases. In Phase I, putative nuclei are identified in the

image. We outline the nuclei method used for this data set (3.4) below, which we designed to

obtain accurate nuclei with respect to ground-truth nuclei boundaries. This method does not seek

to minimize the number of false positives (tissue regions mistaken for nuclei), but instead tries

to maximize the number of true positives, as the epithelial classification algorithm in Phase II is

able to identify most false positives, but suffers when epithelial nuclei are missing from epithelial

chains, making global information incorrect. In Phase II, nuclei are labeled as belonging to

epithelial or non-epithelial cells using a conditional Markov random field (MRF).

3.5.1 Phase I: Nuclei segmentation

We have developed a nuclei segmentation method that identifies putative nuclei in stained tissue

images. While different image sets/techniques (staining, magnification, cell-type, etc) will re-

quire different parameters or perhaps additional steps, we have found that this method accurately

identifies nuclei in several tissue image data sets. Consider segmenting the nuclei shown in Fig.

11 (middle). While many nuclei can be easily identified as black circles, the nuclei on the top left

are tightly clustered and hard to resolve, and some nuclei near the bottom right have weaker in-

tensities than the majority of the nuclei. Additionally, there are several dark regions in the image

that could be mistaken for nuclei, while they are actually simply variations in cytoplasm/lumen

intensity. Some nuclei can also have intensity variations, causing over segmentation of the nuclei

into several smaller nuclei. These intensity variations can have biological explanations, such as
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Figure 13: Nuclei segmentation overview. In step 1, a mixture of three Gaussians and a back-

ground distribution are fit to the image. Each of the four boxed images corresponds to one of

the distributions (maroon corresponds to the background distribution), where white pixels in-

dicate pixels that are most accounted for by that distribution. The green-boxed distribution is

automatically identified to correspond to the nuclei, based on the size and shape of its connected

components. A mask of putative nuclei is formed from pixels accounted for by this distribution

in step 3. Here, each color indicates a putative nucleus. Note that some of the putative nuclei

actually correspond to several closely neighboring nuclei, and must be further processed in steps

4-7. After step 7, the initial putative nucleus mask is shown in red, and the processed large nuclei

are replaced by blue nuclei. Steps 8 filters out particles that are lacking typical characteristics of

nuclei, and step 9 smooths nuclei boundaries using watershed.
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chromosome location within nuclei, but can sometimes also be due to equipment/experimental

error.

First, to reduce intensity variations in cytoplasm regions that can be mistaken for nuclei and

variations in nuclei regions leading to oversegmentation, the image I is denoised using total-

variance denoising with a range of smoothing factors (λ) to form the denoised image Iλ (Fig.

3.5.1) [42, 68]. Total variation denoising minimizes the total variation with respect to the true

signal xi and the observed signal yi at pixel i, |xi − yi|, such that the true values of neighboring

pixels are close, where the distance between true values of neighboring pixels i and j is given by

(xi−xj)2. The smoothing factor λ controls how much weight is given to the total variation term,

that is how much more or less important is the variation of the true signal from the observed

signal than the closeness of the true values of neighboring pixels. The denoised solution is found

by optimizing minx
∑

ij̃(xi − xj)2 + λ
∑

i |xi − yi| [42]. Using Chin’s implementation, built on

the fast Laplacian solver [69], this step is completed in nearly linear time [68].

Nuclei segmentation

Nuclei segmentations are performed on a set of denoised image transformations Iλ of the initial

image I and then merged (Fig. 3.5.1). Here, we show that merging multiple segmentations on

multiple denoised images provides better nuclei coverage than simply segmenting any one image.

While using a low smoothing threshold can produce putative nuclei that are over-segmented and

miss nuclei that have strong variations in pixel intensities, low thresholds have the advantage of

being able to distinguish closely packed nuclei. In contrast, using a high smoothing threshold

can cause incorrectly grouping of tightly packed nuclei into a single putative nucleus, but high

thresholds are less likely to over-segment nuclei and are able to sidentify nuclei with significant

pixel intensity variation. By segmenting at multiple thresholds and then merging the results, more

nuclei are identified and the nuclei boundaries agree better with the ground truth. A disadvantage

of this method is that more false positive putative nuclei are found, that is, more regions that are

not part of nuclei are falsely labeled as nuclei, but these false positives should be largely removed

by the epithelial classification schema. Additionally, running multiple rounds of TV-denoising is

time-consuming, thus employing a local scaling factor would improve efficiency in future efforts.

In Table 3.5.1, we show the average false positive and true positive rate for nuclei segmenta-
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Figure 14: Image denoising and nuclei segmentation. A: Top row, left: raw image (I0), mid-

dle,right: image denoised with λ = 300 (I300), λ = 100 (I100). Bottom row: Nuclei segmen-

tations (yellow) according to Phase I on I0, I100, and I300 to form masks M0, M100, and M300.

Cyan: ground-truth segmentation. Red boxes indicate nuclei that were incorrectly segmented

with each λ. B: White: Merged nuclei segmentation M . Cyan: ground-truth segmentation.
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tion across the 30 hand-segmented ground-truth images. For FPR and TPR, we consider putative

nucleus a true positive if any pixel in the putative nucleus belongs to a ground-truth nucleus.

Similarly, we consider a putative nucleus a false positive if no pixel in the putative nucleus be-

longs to a ground-truth nucleus. Additionally, we show the precision/sensitivity of these regions

in terms of the percent of pixels in a ground-truth nucleus that are covered by its corresponding

putative nucleus % covered), and the percent of pixels in a putative nucleus that are also covered

by its corresponding ground-truth nucleus (% not wasted).

λ 0 5 25 50 100 150 200 300 merged

FPR 34 32 37 36 35 33 32 27 43

TPR 93 92 90 92 90 91 89 74 98

% covered 66 65 63 65 65 65 64 51 80

% not wasted 70 68 65 65 64 63 61 48 64
%not wasted+%covered

2
68 67 64 65 64 64 63 50 72

Merging the nuclei segmentations provides identification of 98% of nuclei, 5% better than the

identification achieved by any single segmentation. Additionally, 80% of nuclei pixels are cov-

ered using the merged segmentation, 14% better than the coverage achieved by any single seg-

mentation. The merged segmentation ‘wastes” approximately the same number of pixels as any

of the single image segmentations. While the false positive nuclei identification rate is signif-

icantly higher using the merged method, most of the false positives do not strongly resemble

epithelial nuclei and will be removed by the epithelial classification algorithm. Thus, the ad-

vantages of identifying more nuclei with closer agreement to ground-truth than any of the single

segmentation methods makes the merged segmentation the best nuclei mask to feed into the

epithelial classification schema.

Second, an intensity range corresponding to nuclei is identified for the image. As intensi-

ties can vary between tissue images due to staining methods and biological factors, we do not

specify a specific intensity range for nuclei for a given system. Instead, for each image, we fit

three Gaussian components to the distribution of intensities within the image. These correspond

to nuclei, cytoplasm, and stroma/lumen. This removes the need for normalizing all images in the

data set to the same background intensity, thus avoiding normalization artifacts. Additionally,
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this allows this algorithm to be ported between many systems and tissue types without having

to reparametrize intensity thresholds. On each smoothed image Iλ, the following steps are per-

formed:

1. Fit a gaussian mixture model to the image’s intensity distribution with three gaussians (typi-

cally corresponding to nuclei, cytoplasm, lumen/stroma) and a background distribution.

2. Using intensities and region sizes of the pixels described by each Gaussian component, iden-

tify the gaussian Gg component that most likely corresponds to nuclei.

3. Define the nuclei mask Mλ as a (nx× ny) binary matrix, where Mλ(x, y) = 1 if pixel (x, y)

is accounted for by at least r% by Gg, and 0 otherwise. The cutoff r is empirically set to be

0.45·maximal percent that a pixel is accounted for by Gg.

Third, at this point, Mλ is equal one for any pixel that may be part of a nucleus. Each

connected component in Mλ is considered a putative nucleus. However, Mλ may contain many

large connected regions that are actually made up of several closely neighboring nuclei, and it

may be missing pixels belong to nuclei that were not captured by Gg, e.g. lighter intensity pixels

inside nuclei due to intensity variations. The next few steps work to break up large regions into

individual nuclei and smooth out nuclei boundaries.

1. Clean up mask Mλ by removing holes and isolated/bridge pixels.

2. Contrast normalize mask. This is helpful in finding individual nuclei in large regions.

3. Remove thin lines of pixels included in nuclei mask, which are often caused by “wrinkles”

in cytoplasm.

4. Further process large regions to break into individual nuclei:

a. First find average size of putative nuclei at this point by determining the median nu-

cleus radius rmed and setting Amed = πr2med. Set an upper bound for large regions as any

putative nucleus with area greater than 1.75Amed. The factor 1.75 was determined empir-

ically. This bound will cause many nuclei of reasonable size to be included in the group

of large regions, but if they are sufficiently uniform in intensity, they will be returned

unchanged to the set of putative nuclei after the following steps. Additionally, compute

some statistics on shape (such as eccentricity and convexity) to determine reasonable

bounds on nucleus shape.
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b. Remove any large region with very high intensity (light in color), by requiring that the

darkest pixel in large regions must be at least as dark as the median intensity pixel in

small regions.

c. On each large region, iteratively perform anisotropic diffusion followed by contrast nor-

malization and thresholding, until the region has been broken into multiple regions. The

new regions will be added to the set of large regions, if they are also larger than 1.75Amed,

or added to the set of putative nuclei. If a large region does not break into multiple re-

gions, but is of reasonable shape and size, it is also added to the set of putative nuclei,

and otherwise discarded.

Finally, at this point, the large regions will all have been broken into smaller regions or

deemed to be of reasonable shape and size. We update the parameters for size (Amed) and shape

using the revised set of putative nuclei.

5 Remove very small regions, defined by any putative nucleus with size less than Amed
3
.

6 Expand each putative nucleus using watershed to smooth out nuclei boundaries.

This method yields a putative nucleus mask, Mλ for each smoothed image Iλ (Fig. 3.5.1A,

bottom row). We combine these masks so that each pixel is assigned to the largest putative

nucleus across all λ at that pixel, to yield a final putative nucleus mask M (Fig. 3.5.1, panel B).

The putative nuclei at this point may contain regions that are not actually nuclei, but the second

phase of the algorithm should be able to identify these regions as non-epithelial components.

Thus, we strive here to have a high True Positive rate, with less concern about achieving a low

False Positive Rate.

Results: Nuclei Segmentation

Nuclei segmentation methodology and parameters were optimized on an independent data set

of 38 images, taken from a subset of the same 89 patients, but not included in the 414 image set.

To establish the accuracy of the method, nuclei were hand-segmented on a validation set of 30

images from the 414 image data set, ten from each of the three diagnostic classes. The hand-

segmentation was performed initially by Virginia Burger, and corrected/verified by pathologist

Dr. Doug Hartman.
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Figure 15: Manual and automated segmentation are shown for a sample image. This example

has a 94% TPR and 33% FPR.

number images TPR (% FPR (%)

overall 30 94 33

BE-normal 10 96 34

BE-HGD 10 94 29

BE-EAC 10 94 36

We show the overall segmentation accuracy on the 30 images in Table 3.5.1, as well as the

performance on each diagnostic class. There is little variation in segmentation accuracy be-

tween classes, which is to be expected since the images all show healthy tissue. A representative

ground-truth hand-segmentation and computational nucleus segmentation is shown in Figure 15.

Nuclei Segmentation GUI for manual epithelial classification

To compare automated epithelial classification with manual epithelial selection, we built a Mat-

Lab GUI which allows a user to hand-pick putative nuclei as epithelial nuclei for phase analysis.

As visualization of the putative nuclei boundaries are distracting and can bias the user, the GUI

displays only the raw tissue image. The user clicks on a point in the image within a nucleus

to select that nucleus. If the nucleus is part of the putative nucleus set, the GUI displays the

boundaries of the putative nucleus at that point. If the nucleus is not part of the set, the GUI uses
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Figure 16: Screenshot of epithelial classification app.
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watershed to compute a nucleus at that point and displays its boundaries to the user. The GUI

then allows the user to grow or shrink the nucleus, merge two nuclei, or split a predicted nucleus

into two nuclei. These actions are all performed using steps from the nuclei segmentation algo-

rithm described above. Additionally, the user can hand-trace a nucleus boundary if unsatisfied

with the predicted nucleus at that point.

3.5.2 Phase II: Epithelial Classification

Pathologists use context information, in addition to nuclei descriptors, to identify epithelial nu-

clei in images. For example, while epithelial nuclei in a particular type of tissue are known to

have a certain radius, e.g. ≈ 10µm in esophagus epithelium, many other nuclei can have this

same size. The location of a nucleus with respect to other nuclei and tissue structures comple-

ments this information, allowing pathologists to determine specifically which nuclei make up the

epithelium. To analogously combine intrinsic and context information while identifying nuclei,

we employ a Markov Random Field (MRF) [citation] encoding unary and binary classifiers.

Unary Classifier

Unary classifiers give the probability that a nucleus is epithelial, independent of the labels of its

neighboring nuclei. We measured a total of 94 features 2 on each putative nucleus, and built

a classifier using AdaBoost to label each putative nucleus with a probability of being epithelial

[70]. The feature sets includes descriptors measured on isolated nuclei, such as size, intensity,

and convexity, as well as features dependent on the environment, such as distance to cell bound-

ary or next closest nucleus. Used independently, each classifier was only weakly predictive 2. We

used AdaBoost with MatLab’s default parameters (binary classifier, learning rate of 1, 100 learn-

ers) to combine the set of 94 weak classifiers into a stronger classifier, ψ : ~x ∈ R94 → [0, 1] ⊂ R,

where ~x is the feature vector for nucleus x.

Pairwise Classifier

Pairwise classifiers give the probability that a nucleus is epithelial, conditioned on the label

(epithelial or non-epithelial) of each of its neighbors. Pathologists use many contextual clues

to classify nuclei, e.g. epithelial nuclei tend to form a chain along a lumen region, neighboring

epithelial nuclei have similar orientations to the lumen, and size/shape of neighboring epithelial
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nuclei are similar.

Epithelial Classification

Initially, a set of np features encoding such contextual clues were measured on all pairs of nearby

nuclei, where the threshold for “nearby” was set to be a function of the median distance between

nuclei within an image.However, due to the randomness of individual nuclei, these pair-wise

features alone could not distinguish pairs of same-class nuclei from pairs of mixed-class nuclei

(epithelial & epithelial, non-epithelial & non-epithelial, or epithelial & non-epithelial). Thus, to

encode more global image information, the tissue architecture within the image was captured in

terms of a) location of epithelial cell boundaries and b) arrangement of nuclei in a “tree”, with

the longest chain of nuclei making up the trunk (Fig. 3.5.2). These tissue architecture features

encode the contextual clues used by pathologists: chains of nuclei (described by the “tree trunk”)

along the lumen border (described by the epithelial cell boundaries).

The nuclei pairs were then divided into eight architecture-categories according to their lo-

cation with respect to the epithelial cell boundaries and their position on the nucleus tree. To

find the tree, we use a greedy algorithm with initiates a trunk at the nucleus with highest unary

probability of being epithelial, and adds nuclei to the trunk in either direction, ensuring that

added nuclei are close together, form a relatively straight line, and have similar unary proba-

bilities, orientation, and size, where parameters for close, straight, and similar were determined

empirically. Once no more nuclei can be added while remaining within the restraints specified

by the parameters, all remaining nuclei are added iteratively onto branches, where each nucleus

is simply attached with a branch to its closest neighbor already on the tree. This trunk/branch

model tends to place epithelial cells on the initial trunk, and any other chains of epithelial form

branches of the tree. Thus, most nuclei pairs within the same architectural-category are of the

same type: nuclei pairs on trunks tend to be epithelial, nuclei pairs at junctures between branches

or the trunk and a branch tend to contain mixed nuclei, and nuclei pairs on branches are often

either both non-epithelial or both epithelial. This architectural layout largely removes the ran-

domness of individual nuclei pairs that handicapped the classification of pairwise features, when

applied to arbitrary nuclei pairs. To determine cell boundaries, we used a Canny Edge Detector

[3], with a Gaussian smoothing filter selected to have width 20µm, representing twice the length
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Figure 17: Encoding Context: In Phase I, putative nuclei are predicted. The second row shows

a trunk (green) with branches (cyan) built to model the nucleus architecture. The bottom row

shows results from a Canny Edge detector meant to epithelial capture cell boundaries [3]. Note

that neither result is a perfect model, use an approximation.
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of a nucleus. Long, smooth edges representing cell boundaries were formed by first connecting

nearby edges with similar slopes at their termini, and then removing short edges. Parameters for

short edges, nearby edges, and similar slopes were determined empirically on the training set.

Both of these algorithms are described in more detail below 3.5.3.

For each of these eight classes, a classifier function was trained using AdaBoost on the initial

set of np pairwise features. Specifically, for each architecture-category c ∈ C , the conditional

probabilities were learned that a nucleus is epithelial, given that its neighbor is epithelial (Ψc
e :

(~x, ~y) ∈ Rnp × Rnp → [0, 1] ⊂ R) and the probability that a nucleus is epithelial, given that its

neighbor is non-epithelial (Ψc
n : (~x, ~y) ∈ Rnp ×Rnp → [0, 1] ⊂ R). Here, e denotes epithelial, n

denotes non-epithelial, and the probabilities are symmetric (Ψc
e(~x, ~y) = Ψc

e(y, x) for the pair of

nuclei (x, y) with feature vectors ~x, ~y ∈ Rnp , analogous for Ψc
n).

Conditional Markov Random Field [22, 71]

Maximization on a conditional random field yields an optimal class labeling (as epithelial or

non-epithelial) for the putative nuclei in an image according to that field. Note that we still carry

the term “putative nuclei” because some regions assigned to the non-epithelial class may not be

nuclei at all; we only seek to classify these regions as not being epithelial, regardless of whether

or not they are nuclei. We build an undirected graph in which each putative nucleus is a node,

and place edges between nearby nuclei, as defined in the previous section. Let N denote the

number of nodes (nuclei) in the graph, E denote the set of epithelial nuclei, and Ē denote the set

of non-epithelial nuclei. The edge between nodes x and y, belonging to architectural category c,

with feature vectors ~x and ~y, is weighted with the pairwise conditional probability matrix P (x ∈ E | y ∈ E ) P (x ∈ E | y ∈ Ē )

P (x ∈ Ē | y ∈ E ) P (x ∈ Ē | y ∈ Ē )

 =

 Ψc
e(~x, ~y) Ψc

n(~x, ~y)

1−Ψc
e(~x, ~y) 1−Ψc

n(~x, ~y)

 ,

for architectural class c = c(x, y) ∈ C . Each node x is also attached a pair of unary probabilities(
P (x ∈ E ), P (x ∈ Ē )

)T
=
(
ψ(~xi), 1− ψ(~xi)

)T
. The pairwise probability matrices are assem-

bled for all nuclei pairs into the (2N ×2N) binary probability matrix B, and the (2N ×1) unary
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probability vector ~u. Let ω be a scalar factor determining the weight of the pairwise term in the

optimization problem. Then, we solve:

max
v
~uTv + ω~vTB~v,

where ~v is a vector of N concatenated (2× 1) vectors ~vi, such that ||vi||1 = 1, ∀i. We adapt the

two-phase algorithm from [71], which finds the optimal solution to this problem by first finding

a global solution to a related problem in which the constraint ||~vi||1 = 1, ∀i is relaxed, then

projecting the solution into the space of binary, unit-norm vi’s, and finally finding a local solution

in the space of binary, unit-norm vi’s. As the labeling that maximizes the unary probabilities, vU ,

already tends to be close to the ground-truth solution (see Table 3.5.4), we condense this process

by performing local optimization directly, using vU as a starting point. The algorithm is:

0. Initialize t = 0, ~vt = ~vU , scoret = ~uTvt + ωvTt Bvt, scoret+1 = scoret + 2ε.

1. While |scoret − scoret+1| > ε

i. t = t+ 1

ii. ~vt = ωB~vt−1 + ~u

iii. Normalize ~v on each node i such that ||~vi||1 = 1.

iv. scoret = ~uT~vt + ω~vTt B~vt.

This method is a variant of the power iteration for finding the first eigenpair of a matrix and

will converge [71, 72]. As our starting point is usually very close to the optimal solution, the

convergence is usually rapid.

Example

Consider an image with only three nearby nuclei (Fig. 18). According to the ground-truth, nuclei

1 and 2 are epithelial and nucleus 3 is non-epithelial. Here, we demonstrate how the cMRF

described above can predict these labels. We begin by assigning unary probabilities to each

nucleus using the unary classifier ψ(~xi), where ~xi is a set of 94 features computed on nucleus i,

i = {1, 2, 3}, and N = 3. Let

ψ( ~x1) = 0.9, ψ( ~x2) = 0.9, and ψ( ~x3) = 0.52.

38



In this case, the unary probabilities are strong indicators that nodes 1 and 2 are epithelial, but the

unary probability of node 3 only slightly favors the epithelial label, which is actually false. By

adding contextual information through pairwise probabilities, the labeling should be corrected.

Assume nodes 1 and 2 are related with architectural class 1, and node 3 is related to each of these

nodes with architectural class 3. Then we define:

(
P (x1 ∈ E |x2 ∈ E ), P (x1 ∈ E |x2 ∈ Ē )

)
=
(
Ψ1
e( ~x1, ~x2),Ψ

1
n( ~x1, ~x2)

)
= (.95, .25),

(
P (x1 ∈ E |x3 ∈ E ), P (x1 ∈ E |x3 ∈ Ē )

)
=
(
Ψ3
e( ~x1, ~x3),Ψ3

n( ~x1, ~x3)
)

= (.3, .8), and(
P (x3 ∈ E |x2 ∈ E ), P (x3 ∈ E |x2 ∈ Ē )

)
=
(
Ψ3
e( ~x3, ~x2),Ψ

3
n( ~x3, ~x2)

)
= (.3, .8).

The probability that nodes 1 and 2 are the same class is high, because they have similar sizes,

shapes, orientations, and other pairwise features, and are included in architectural category 1.

The probability that node 3 is in a different class than nodes 1 and 2 is high because nodes 3

has a very different size, shape, orientation than both nodes 1 and 2, and the pairs (x1, x3) and

(x2, x3) are in category 3, which encourages nodes to have different labels.

Figure 18: Example: Three

nearby nuclei in image repre-

sented as three interconnected

nodes in graph.

Using the unary probabilities, we define the unary probabil-

ity vector U as: U = (0.9.0.1, 0.9.0.1, 0.52, 0.48)T . The binary

probability matrices define the matrix

B =



0 0 0.95 0.25 0.3 0.8

0 0 0.05 0.75 0.7 0.2

0.95 0.75 0 0 0.3 0.8

0.05 0.25 0 0 0.7 0.2

0.3 0.8 0.3 0.8 0 0

0.7 0.2 0.7 0.2 0 0


We initialize the solution vector ~v according to the maximal unary

probability, therefore ~v0 = (1, 0, 1, 0, 1, 0)T . To find the optimal

value of ~v, we iteratively compute:

~vt = λB ~vt−1 + U
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and normalize on each node until convergence. We set λ = 0.1, as determined on the training

set. One iteration gives us:

~v1 = B~v0 + U = (1.03, 0.18, 1.03, 0.18, .58, 0.62)T .

The maximum argument of ~v1(1 : 2) gives us the label assignment of node 1 at iteration 1, the

maximum argument of ~v1(3 : 4) gives us the label assignment of node 2 at iteration 1, and the

maximum argument of ~v1(5 : 6) gives us the label assignment of node 3 at iteration 1. Thus, the

solution vectors are v1 = [1, 0], v2 = [1, 0], and v3 = [0, 1]. Therefore, nodes 1 and 2 are labeled

as epithelial, while node 3 is labeled as non-epithelial. The iteration continues until the sum

UTv+λvTBv converges, at which point the final solution vectors vi are computed and the labels

are assigned. Here, the solution vector converges to ~v5 = [0.870.130.870.130.490.51], therefore

nodes 1 and 2 are epithelial, and node 3 is non-epithelial. Thus, the context information encoded

in the pairwise term are able to correct the initial unary probabilities to find the most logical class

labeling of the entire image.

Correcting for isolated epithelial nuclei with a local smoothing factor

If one nuclei in a pair of non-epithelial nuclei has very different features than its neighbor, then

the probability that this nuclei is epithelial, conditioned on its neighbor being non-epithelial,

can be higher than the probability that both nuclei are non-epithelial, since the probabilities

are trained to assign very different neighboring nuclei to different classes. In most cases, the

unary probability that this nucleus is non-epithelial is strong enough to overpower the pairwise

probability that it is epithelial, and the nucleus is correctly labeled as non-epithelial. However,

if the nucleus is in a group of non-epithelial nuclei, and is very different than its neighbors, then

the combined pairwise probabilities from all the neighbors that the nucleus is epithelial may

outweigh the unary probability that that nucleus is non-epithelial, and the nucleus will be labeled

as epithelial.To adjust for this, instead of a single smoothing factor λ, we scale λ for each node

according its the number of neighbors, specifically: λj := d(j), where d(j) is the degree of node

j. We show in Table 3.5.2 how using a local smoothing factor improves the MRF. Additionally,

we have further improved the classification accuracy by following the MRF with a correction
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Training Testing
FPR TPR accuracy FPR TPR accuracy

MRF, sc.λ 6.7 89.2 91.6 10.4 82.5 86.7
MRF, loc. λ 8.3 88.6 90.4 11.6 84.0 86.6

MRF, sc. λ + corr. 6.6 89.2 91.7 10.2 82.5 86.8
MRF, loc. λ + corr. 5.4 88.2 92.0 8.9 80.9 87.0

step, in which isolated nuclei labeled as epithelial nuclei are re-assigned a label according to

their maximal unary probability (See Table 3.5.2).

Choice of pairwise classifiers and parameters

To determine the most appropriate method for epithelial nuclei detection, we sampled a range of

pairwise classifiers with a range of smoothing parameters. That is, for the problem max~v ~u
T~v +

ω~vTB~v, we varied B and ω, as well as the degree of connectivity. We sampled all combinations

of the following cases:

• As an alternative to pairwise classification functions Ψc(~x, ~y) dependent on both feature vec-

tors and the archictecture-category c of each nuclei-pair, we employed fixed pairwise classi-

fication probabilities dependent on solely the architecture-category of the pair.

• We employed both local and scalar smoothing factors ω.

• We computed results with and without the correction step for isolated epithelial nuclei.

• We considered edges between only nuclei connected along the computed nuclei tree, versus

edges between all spatially nearby nuclei.

• We considered two methods for predicting the nucleus tree.

Additionally, as the architecture-category of each nucleus pair is predicted using a greedy algo-

rithm designed to model nuclei as a trunk with branches and a Canny edge detector to estimate

cell boundaries, and may be imperfect, we computed the ground-truth architecture-category of

each nucleus pair in terms of the nucleus trunk, the cell boundaries, or both. For these “ideal”

cases, we also sampled each of the above classification functions over a range of smoothing pa-

rameters, to determine how well the algorithm would perform if these intermediate values were

perfect.

The accuracy of each method was computed on the testing data set for a large range of
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smoothing parameters ω. For each method that improved the accuracy by at least 1% over the

accuracy with only the unary probabilities for some ω, we selected a subset of ω’s close to that

method’s optimal ω, and evaluated the performance of the method on a random validation set (83

images randomly selected from the combined training/testing sets) 3.5.2. We chose the method

with highest accuracy on the validation set as our classifier, together with the optimal ω for that

method on the validation set. (Note that the results shown on testing set need not be greater than

1% over the unary classifier, as ω is first optimized on the validation set, and so a different ω may

be used for the overall results than was initially used to select methods to test on the validation

set.) This classification method was then used to predict epithelial nuclei on the experimental set

(See Results).

3.5.3 Tissue architecture features

We initially defined a set of pairwise features between nuclei with the goal of discriminating

pairs of epithelial nuclei from pairs of non-epithelial nuclei or mixed pairs of epithelial and non-

epithelial nuclei. However, due to the large degree of randomness in the nuclei, these features

did not sufficiently discriminate the nuclei. Pathologists use large-scale architectural features to

identify regions containing epithelial nuclei and discriminate epithelial from non-epithelial nu-

clei within those regions. For example, pathologists identify chains of nuclei perpendicular to

a lumen region which largely consist of epithelial nuclei, and identify goblet cell nuclei within

these chains due to their different shape and orientation to the lumen compared to those of ep-

ithelial nuclei. By identifying chains of nuclei and cellular boundaries, we mimic pathologists’

methods for using overall tissue architecture to identify epithelial nuclei 3.5.2. Once nuclei pairs

have been assigned architectural classes, we use the initial set of pairwise features to discriminate

between epithelial nuclei pairs and nuclei pairs containing non-epithelial nuclei.

Nucleus “tree”

To identify chains of epithelial nuclei, we build a spanning tree on the subset of nuclei that has a

high unary probability of being epithelial, where the parameter ν is used as a threshold for high

unary probability and is determined empirically on the training set, to optimize the number of

epithelial nuclei found on a trunk. The greedy algorithm presented below seeks a spanning tree
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method Validation set results Overall Results

tree correction? Ψc λ edges FPR TPR acc. Training acc. Testing acc.

greedy y f ~λ spatial 5.2 87.6 91.9 92.0 87.0

greedy y f λ spatial 6.5 88.0 91.3 91.7 86.8

greedy f λ spatial 6.6 88.1 91.2 91.6 86.7

MST y f ~λ spatial 8.1 88.8 90.7 90.8 87.7

MST f ~λ spatial 8.4 89.2 90.6 90.6 87.4

MST f λ spatial 8.2 88.7 90.5 90.6 86.9

MST y f λ spatial 8.1 88.4 88.2 86.6

MST y f ~λ tree 8.8 89.5 88.4 87.1

MST y f λ tree 9.0 89.6 88.4 87.1

MST f λ tree 9.2 89.7 88.3 86.8

MST f ~λ tree 10.6 89.3 89.4 86.8

MST y l λ tree 9.3 87.3 86.9 86.8

MST l λ tree 9.4 87.3 86.8 86.8

unary classifier, greedy 10.9 88.4 88.8 88.3 85.7

unary classifier, MST 11.2 88.6 88.7 88.3 85.8

Table 1: Results on validation, training, and testing set for best performing classifiers (any binary

classifier that improved accuracy on testing set by more than 1% over unary classifier. Columns

1-5 describes the parameters used for each binary classifier.) The final two rows show results

with only the unary classifier. The first column (tree) indicates whether the greedy tree algorithm

described here was used to find the tree, targeting a straight trunk, or if a standard Minimum

Spanning Tree (MST) algorithm was used to find the tree. The next column (correction?) indi-

cates whether nuclei labeled as epithelial, but not neighboring any other epithelial nuclei, were

assigned a corrected label according to their unary probability (y) or maintained their original la-

bel ( ). The third column indicates whether the pairwise terms were functions (f) or fixed values

(l). The forth column, λ, indicates whether a local smoothing factor was used (~λ), or not (λ). The

fifth column indicates whether edges in the MRF were placed only between nuclei with edges on

the tree (tree), or between all nearby nuclei (spatial).
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with a straight trunk and branches extending to nuclei that do not fit in a straight line along the

trunk.

Setup: We define a graph H in which every nucleus with unary probability of being epithelial

is larger than ν is a vertex. Edges connect nuclei pairs whose minimal distance is smaller than

θ. Edge weights between nuclei pairs are given by dtree, a function of the distance between the

nuclei, the ratio of nuclei sizes and orientations, and the largest angle formed by placing one of

the nuclei on the vertex, one of the nuclei on a leg, and each possible neighboring vertex on the

other edge.

Algorithm: Greedy Trunk

Initiate: We begin the greedy search by identifying the vertex v ∈ G with highest probability of

being epithelial for which there is a neighboring nucleus with edge weight smaller than δ. This

vertex forms the initial trunk node.

Iterate: Identify the vertex with minimal distance to one of the two (or one in first iteration)

trunk termini. If this distance is smaller than δ, add vertex to trunk.

Terminate: If minimal distance to trunk termini is larger than δ, terminate.

Algorithm: Add branches

Initiate: Let T = trunk. Add all putative nuclei from image to H, including nuclei with unary

probability < ν. Let S = {vertices in H which are not in T.}

Iterate: Find vertex pair (v ∈ S, u ∈ T ) such that v = mins∈S,t∈T dtree(s, t). If dtree(v, u) <

δb, add branch edge between vertices v and u, and move v from S to T.

Terminate If dtree(v, u) > δb, terminate and leave remaining nuclei off tree.

After running Greedy Trunk and Add branches once, check if any branches are overall

straighter or longer than the tree extended from the branch terminus. If so, replace the tree

region with the branch.

Nuclei pairs are then labeled as being neighbors on the trunk, on a branch, at trunk-branch or

branch-branch juncture, or in space. These tree labels, together with orientation of nuclei pairs

with respect to cell boundaries, as defined below, determine the architectural class of each nuclei

pair.

Cell boundaries
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As epithelial cell cytoplasms tend to have a slightly different intensity than their surroundings,

we use a Canny Edge detector to identify the boundary between epithelial cells and neighboring

regions [3]. The width of the Gaussian smoothing factor selected for the Canny Edge detector

is chosen to be approximately twice the diameter of the average cell nucleus. The initial edges

predicted tend to have gaps, where intensity differences between epithelial cells and surroundings

were not significant. Additionally, many false edges are detected due to color variation in the

tissue, nuclei boundaries, and experimental artifacts such as wrinkles in the tissue. We first scan

the image for neighing putative edge pairs with similar slopes (both near their termini and end-

to-end slope) , and connect these edges to remove gaps in cell boundaries. Next, we remove all

edges that are not at least as long as 1
3

of the longest edge found in the image. Parameters for

the canny edge detector and the edge threshold were determined empirically on the training set,

in order to optimize the number of epithelial nuclei that fell on the same side of an edge. Nuclei

pairs are labeled as crossing an edge or being on the same side of an edge. These cell-boundary

classes, combined with the four classes predicted by the nuclei tree, form the eight architectural

classes used in the Markov Random Field.

Ideal tissue architecture features

While learning parameters for the pairwise features, it was observed that some of the interme-

diate steps did not yield perfect results. Specifically, the nucleus chain, which ideally would

place all epithelial nuclei along the main chain and non-epithelial nuclei on branches, does not

always capture the longest chain of epithelial nuclei, and the epithelial boundaries detector some-

times incorrectly labels boundaries. In order to determine how much better the algorithm would

perform if either of these methods were perfect, we created ideal versions of these features for

each images, and ran the MRF using the ideal versions. We found that if both the nuclei chain

and epithelial edge labelings were ideal, and a look-up table of probabilities learned from the

datareplaced the continuous pairwise classification functions, we could achieve a true positive

rate of 94% and a false positive rate of 4% on the testing data.The incorrect labelings in this

case were largely due to ambiguous nuclei.The look-up table is expected to give better results

than continuous functions in the case that the tree and cell boundaries are ideal, as in an ideal

tree all trunk nuclei are epithelial and all branch nuclei are non-epithelial, and nuclei on oppo-
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site sides of epithelial region boundaries will always have opposite labels, and thus a continuous

function would permit unnatural options that are prevented by the look-up table. Using func-

tion classifiers, the true positive rate decreased to 91% and the false positive rate increased to

9% We analyzed classification results on the training and testing set using pairwise probabilities

computed from varied combinations of ideal features, computed features, look-up tables, and

functions. Overall, look-up tables are not significantly better classifiers than continuous func-

tions, unless the underlying data is ideal. We found that using both putative cell boundaries and

the predicted nuclei tree provided the most accurate predictions of predicted epithelial nuclei,

compared to using only one of the two architectural descriptors or only unary probabilities (data

not shown).

3.5.4 Results: Epithelial Classification

The images were randomly split into a training set of 331 images (80%) and a testing set of 83 im-

ages (20%). To validate the epithelial classification, all putative nuclei were labeled as epithelial

or non-epithelial on all 414 images by Virginia Burger, and corrected/verified by pathologist Dr.

Doug Hartman. Parameters for both unary and pairwise classifiers were learned on the training

set. In Table 3.5.4, we show the epithelial classification results using (a) only the unary classifier,

and (b) both unary and pairwise classifiers, on both the training and testing sets. Improvement

in both increased true positive rate (TPR) and decreased false positive rate (FPR) are observed

with the addition of the pairwise classifier. Figure 3.5.4 shows an example of improvement in

accuracy through addition of context information encoded in the MRF.

Training Testing
FPR (%) TPR (%) acc. FPR (%) TPR (%) acc.

unary 10.9 87.3 88.3 13.3 84.0 85.7
cMRF 8.4 89.5 92.0 10.9 85.6 87.0

On a 2012 MacBook Pro (2.9GHz Intel Core i7, 8GB memory), initial nuclei segmentation

takes approximately 120 seconds for an average sized pixel image. The epithelial classification

takes around 60 seconds, thus the algorithm spends on average of 180 seconds per image. By

running the algorithm overnight, significant time is saved over the several minutes required for a

researcher to manually outline each epithelial nucleus in an image.
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Figure 19: Epithelial classification: For the initial image (top-left) with ground-truth nuclei la-

beling as in bottom-right (red = epithelial cell nuclei, white = other nuclei), putative nuclei are

predicted in Phase I (top-left). The unary probability of these nuclei being epithelial is shown in

the middle-left, and all nuclei with unary probability greater than 0.5 could be classified as ep-

ithelial, as in middle-right. By using contextual information encoded in a MRF, the classification

improves (bottom-left).
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Automated versus manual selection

On the experimental data set of 424 images, an independent researcher, KS, generated putative

nuclei using the above nuclei segmentation algorithm and manually selected around 10 epithelial

nuclei from the set of putative nuclei from each image for phase analysis. Overall, 4095 nuclei

were manually selected, while 7045 nuclei were automatically selected. For 3224 of the manually

selected nuclei (78.7%), an automatically selected nucleus shared at least half of its pixels. For

80.1% of the manually selected nuclei, an automatically selected nucleus overlapped by at least

one pixel. Note that we expect many more nuclei to be selected automatically than manually, as

the algorithm seeks every epithelial nuclei, while KS only sought around 10 representative nuclei

per image. The automated algorithm tended to miss epithelial nuclei that were isolated, as the

pairwise nature of the algorithm encourages epithelial nuclei to appear in chains.

Feature FPR TPR FPR TPR

median pixel intensity 28.4 90.1 32.1 88.7

Area 26.8 77.1 26.9 75.3

mean-nuc-back 31.9 76.3 34.3 76.7

med-nuc-back 40.3 91 43.5 91

χ2-distance between nucleus and surrounding intensities 36.3 71.1 34.5 69.1

average length of closest canny edge, σ = 20 33.6 59.9 36.8 67.8

distance to closest cell boundary 36.9 66.1 37.8 65.1

shared-edges-double-20 34.3 60.5 39.3 66.8

average length of closest canny edge, σ = 25 42.8 69.4 44.7 73.5

shared-edges-single-20 36.8 60.9 38.3 64.6

length of second closest canny edge, σ = 20 33.2 54.2 34.7 60.7

distance to second closest canny edge, σ = 30 38 61.3 38.7 64.4

length of first closest canny edge, σ = 25 38.5 58.9 38.7 63.2

shared-edges-single-25 47.1 70.8 46.1 72.8

average length of closest canny edge, σ = 15 36.4 59.9 38.4 62.5

-avg-dist-to-two-edges-sig-30 43.4 67.7 44.6 69.8
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average distance to closest two cell boundaries 27.8 51.7 30.9 55.8

mean-neigh-orien-diff 42.9 65.1 39.6 63.3

average distance to two closest canny edges, σ = 25 36.8 59.3 38.1 61.2

distance to second closest canny edge, σ = 45 38.6 59.7 38.8 61.5

length of second closest canny edge, σ = 15 38.4 58.2 39.3 61.8

avg-length-edge-sig-30 33.5 57.8 35 57.8

average distance to two closest canny edges, σ = 45 41.8 62.5 40.4 62.7

angle to closest cell boundary 39.3 58.7 40.8 63.1

distance to second closest canny edge, σ = 25 34.7 57 36.5 58.6

shared-edges-double-10 30.7 54.6 33.3 55.9

shared-edges-double-15 37.7 62.9 43.3 65.4

dist-to-second-edge-sig-40 37.6 60.7 39.7 61.2

dist-to-second-edge-sig-35 46.4 71.1 48.1 71.1

length-first-edge-sig-30 48.3 67.5 48.5 71.4

length-first-edge-sig-20 43.2 64.6 45.9 67.2

perc-nuc-overlap-with-edge-sig-15 34.6 53.1 34.1 55.1

-avg-dist-to-two-edges-sig-35 47.8 72 48.6 71.3

-avg-dist-to-two-edges-sig-10 44.3 71.6 47.3 69

shared-edges-double-30 36.7 58.9 39.7 59.6

shared-edges-single-30 41 65.2 39.6 59.4

-avg-dist-to-two-edges-sig-40 44.3 66.9 43.3 63.2

dist-to-first-edge-sig-45 38.8 59.6 33.6 54.1

shared-edges-single-15 35.8 54.6 37.2 56.9

dist-to-second-edge-sig-10 45.3 72.4 48.4 69.9

shared-edges-single-35 43.7 64.1 41.5 60.8

dist-to-first-edge-sig-35 47.3 69.1 45.3 65.2

dist-to-first-edge-sig-25 42.2 60.4 41.4 60.6

length-first-edge-sig-35 41.3 59.2 44.3 63.9

-avg-dist-to-two-edges-sig-20 38.8 56.9 38.5 57.7
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dist-to-first-edge-sig-40 42.1 62.9 39 58.1

length-second-edge-sig-25 29 49.5 32 52.3

shared-edges-double-25 47 70.6 50.5 72.6

dist-to-first-edge-sig-30 49.9 71.2 49.7 70.9

shared-edges-single-45 49.1 65.8 45.3 63.6

dist-to-second-edge-sig-20 45.6 64 44.8 62.9

length-second-edge-sig-30 45.9 68.6 47.9 67

length-first-edge-sig-15 45.4 65.4 48.3 67

shared-edges-single-40 45.6 63.2 40.1 57.4

perc-nuc-overlap-with-edge-sig-10 45.8 69.4 49.2 67.3

avg-length-edge-sig-40 45.5 66 51 70.1

shared-edges-double-35 42.4 60.3 42.5 58.9

length-first-edge-sig-40 44.2 61.1 48 64.2

area-convexarea 47.4 66.7 48 64

length-second-edge-sig-10 36 51.5 36 51.8

avg-length-edge-sig-35 27.4 46.2 31.7 48.5

median-int-back 30.7 56.3 37.6 52.6

only-one-close-edge-25 59.5 79.1 57.9 82.7

length-first-edge-sig-10 54.4 72.7 53.6 71.8

shared-edges-double-40 42.5 58.7 39 53.5

only-one-close-edge-30 60.2 80 58.3 82.5

length-second-edge-sig-40 41.2 59 45.5 58.4

avg-length-edge-sig-45 35.5 52.8 33 47.9

length-second-edge-sig-35 39 58.4 44.9 57.5

only-one-close-edge-20 58.9 76.3 58.7 79.2

only-one-close-edge-45 61.5 77.6 57.3 75.7

dist-to-first-edge-sig-20 41.2 51.2 40.5 52

avg-length-edge-sig-10 28.3 43.9 28.7 44.1

length-second-edge-sig-45 46 61.2 51.3 61.3
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length-first-edge-sig-45 49.4 65.7 54.1 65.3

only-one-close-edge-15 56.5 67.5 56.3 68.6

only-one-close-edge-40 62.3 79.6 60.4 77

-avg-dist-to-two-edges-sig-15 53.1 67.8 54.6 65.4

only-one-close-edge-35 62.5 82 62.8 84.2

third-neigh-dist 24.6 43.5 31 43.1

perc-nuc-overlap-with-edge-sig-30 64 82.4 62.4 81.4

std-nuc+neigh 59.4 74.1 59 69.5

perc-nuc-overlap-with-edge-sig-25 68.2 85.4 65.1 84.6

avg-distance-to-closest-3-edges 19.1 32.4 24 37.5

shared-edges-double-45 59.9 70 56.5 62.1

only-one-close-edge-10 54.2 60.3 53.5 57.1

dist-to-second-edge-sig-15 62.7 77.9 64.8 74.8

perc-nuc-overlap-with-edge-sig-35 69.8 87.2 69.5 86.6

dist-to-first-edge-sig-15 68 80.5 68.2 80.2

dist-to-first-edge-sig-10 67.1 88.3 70 88

perc-nuc-overlap-with-edge-sig-20 72.6 86.3 70.7 88.5

shared-edges-single-10 69.8 77 70.6 75.8

perc-nuc-overlap-with-edge-sig-40 73.1 89.2 73.9 87.3

perc-nuc-overlap-with-edge-sig-45 75.5 89.6 76 89.2

combined features (AdaBoost) 12.9 88.6 13.8 88.2
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Table 2: True and False positive rates shown on training

(columns 2-3) and testing (columns 4-5) sets for the unary

features. The bottom row shows the FPR and TPR for the

combined classifier generated with AdaBoost. Each training

set consisted of around 15387 nuclei from 332 images, and

each testing set consisted of around 3935 nuclei from 882 im-

ages. In total, there were 11459 ground-truth non-epithelial

putative nuclei and 7863 ground-truth epithelial nuclei. For

canny edge features, σ indicates the size of the Gaussian fil-

ter used for smoothing. Note that these results are for the

combined nuclei set taken from all images - a single image

can yield both training and testing nuclei. As epithelial clas-

sification depends on neighboring nuclei, entire images are

labeled as either testing or training for validating epithelial

segmentation. Thus, the overall training and testing accu-

racy here will be slightly different than the accuracy shown

for the unary classifier in Table 3.5.4.

3.6 OPTICAL BIOMARKER FOR CANCER RISK IN BE

In this section, we show that (a) automatically selecting nuclei produces an equivalent or larger

set of epithelial nuclei as manually selecting nuclei, and (b) distributions of features computed

on the phase of epithelial cells can be used as an optical biomarker for cancer risk in BE. When

computing phase on the predicted epithelial nuclei, we ignore nuclei on image boundaries, as the

pixel intensities near the boundaries are generally much darker than in the image interiors do to
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intensity fall-off.

An average nucleus has approximately 800 pixels, and phase is computed on every pixel

in every epithelial nucleus. To summarize the distribution of phases on a nucleus, we compute

the entropy as Hb = −
∑

b pb log(pb), where b indicates a binning index. We use 51 bins of

length π
25

to discretize the phase at each pixel. Additionally, we analyzed the distributions of (1)

mean phase on each nucleus, (2), mean standard deviation on each nucleus, (3) mean nucleus

phase on each image, (4) mean amplitude on each nucleus, and (4) nuclei pixel phases, across

each diagnostic set, and found each measure to have statistical significance for differentiating

the diagnostic classes.In Figure 3.6, we see that the phase entropy within nuclei increases as the

diagnostic class worsens from BE-normal to BE-HGD to BE-EAC, for depths 1-2. For depths

3-4, the entropy decreases along this same pathway (not shown).

We show the p-values describing the probability that the entropy distributions from any pair

of diagnostic classes were generated from the same distribution in Table 3.6 for both automati-

cally and manually selected nuclei. Given a cutoff for significance of p-value < 0.05, both the

manual and automatic nuclei have significantly different distributions for each diagnostic class

in at least one, and almost all, phase depths. The HGD and EAC classes are hardest to separate,

while the BE-EAC classes are easiest to separate.

depth BE-HGD HGD-EAC BE-HGD

Manual

1 0.0000 0.4719 0.0000

2 0.0000 0.8206 0.0000

3 0.0006 0.0009 0.0000

4 0.0219 0.0001 0.0000

Automatic

1 0.0017 0.0009 0.0000

2 0.0000 0.0954 0.0000

3 0.0000 0.0003 0.0000

4 0.0001 0.0005 0.0000
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Figure 20: Entropy distribution on nuclei at depths 1 (top row) and 2 (bottom row), using manual

or automatic selection. The right panel shows the mean, where error bars indicate standard error,

for each diagnostic class, using manual or automatic selection. Blue indicates healthy tissue,

green indicates HGD-adjacent tissue, and red indicates EAC-adjacent tissue.
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3.7 DISCUSSION

Epithelial Classification The overlap between automatically selected nuclei and manually se-

lected nuclei from the experimental set is around 80%. The epithelial nuclei detector specifically

looks for chains of epithelial nuclei learned from pathologist annotations, and achieves an ac-

curacy of around 90%. The independent researcher selected around 10 nuclei from each image

from“columnar-shaped epithelial cells having similar morphological features such as intact nu-

clear boundary and no overlap of nucleus [2]”, and his selections have not been validated by a

pathologist. Thus, while the overlap between manual and automated selection is not perfect, there

is no guarantee that the manual selection is perfect, and thus we have focused our analysis on

agreement between automated and pathologist labelings. Moreover, an advantage of automated

selection is the absence of user bias. Another significant benefit of automated nuclei selection

is the time saved in nuclei selection; the automatic detector was able to identify almost twice as

many epithelial nuclei as the manual detector with almost no time effort by the researcher.

As the automatic nuclei detector finds almost twice as many nuclei as manual nuclei selec-

tion, it would not be more surprising that the distributions between diagnostic classes are more

often significantly distinguishable. However, if we remove a random set of the automatically

selected nuclei, so that the distributions are of identical size, the automatic nuclei still yield sig-

nificantly different distributions for each class (data not shown). Thus, the false positives in the

automatic nuclei selection do not decrease the statistical significance of the results. The automat-

ically selected nuclei may more often yield significantly differentiable diagnostic classes than the

manually selected nuclei due to lack of bias in nuclei selection.

In Figure 3.6A (row 2), for depth 2, we see a second peak around phase = 3 in the entropy

distributions for BE-EAC nuclei from the automatic nuclei, but not the manually selected nuclei.

In both sets, there is a dip in the entropy distribution of BE-normal nuclei at the same entropy.

Existence of nuclei with entropy within the range of this peak could be pursued as a possible

discriminative feature for detection of early signs of cancer. Notably, the BE-HGD distribution

falls between the BE-normal and BE-EAC distributions at this entropy. Figure 3.7 shows the

phase distribution for each class at depth 1. In the zoomed figure, especially for the automatically
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Figure 21: Average phase distributions on nuclei, averaged across each diagnostic class, at depth

1 are shown. Nuclei in the left panel were manually selected and nuclei in the right panel were

automatically selected. Blue indicates BE-normal tissue, green indicates BE-HGD-adjacent tis-

sue, and red indicates BE-EAC-adjacent tissue. The top row shows the full histograms, and the

bottom row zooms in for visualization of low probability phases.
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selected nuclei, we see that BE-EAC nuclei have phases in the range of π to 3π
2

, where almost

no BE-EAC or BE-normal nuclei have phase density. This region could potentially be used as a

classifier for detection of pre-cancerous changes in healthy tissue.

Recent discoveries have shown that micro-scale stromal nuclei patterns can also be indicative

of cancer. As the features of stromal nuclei used to predict cancer are different than the features of

epithelial nuclei, these two classes of nuclei must be examined independently. Thus, automized

methods for epithelial classification are useful beyond the field of early cancer detection on the

nano-scale.
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4.0 BACKGROUND: HIERARCHICAL SPECTRAL CLUSTERING

4.1 BACKGROUND

Clustering is a natural approach to simplifying large sets of data by grouping similar data points

into clusters. Consider the group of apples shown in 4.1. Each apple is a data point in this

model data set. There are many ways of grouping these apples. For example, apples could be

grouped according to their color: one cluster would contain only green apples, and a second

cluster would contain only red apples. Additionally, apples could be clustered according to size,

direction of step, or location in group. Furthermore, the apples could be grouped hierarchically,

e.g. the apples could be first grouped according to color, and then each of these clustered could

be further grouped according to size, and even further sub-grouped according to stem direction.

Multiple potential clusterings exist for most data sets, and the objective of clustering must be

considered when defining similarity between data points and specifying the number of desired

clusters or the desired cluster size.

While the basic idea of finding similar data points and assigning them to a cluster is common

throughout all algorithms, many different algorithms for clustering data exist. These algorithms

vary slightly in their input, e.g. does the number or size of clusters need to be specified, and

significantly in their methodologies. Linkage clustering is a set of local clustering methods that

utilize similarity between neighboring data points, and group neighboring points that are similar

(bottom-up) or split neighboring points that are dissimilar (top-down). K-means is commonly

used local clustering method which iteratively adjusts cluster centers until all clusters contain

points which are more similar to their cluster center than to any other cluster center. For k-

means, the number of clusters, k, must be pre-determined.
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Figure 22: Group of apples.

Sometimes the number of clusters is not known. For example, in the group of apples, depend-

ing on how similarity is defined (color, color and size, stem-direction, etc.), different numbers of

clusters would be desirable. For color or step-direction, there are clearly two clusters, while for

size, there are three clusters. However, if we imagine that the data set is much larger than the

group shown here (that is, that this is group is only a sub-sample of the entire group), and we

consider that size and color are actually continuous variables, then there may be colors and sizes

that are not included in this set. In this way, there may be more clusters than we see here. For

example, there may be a small population of blue apples that were not included in the sample. If

we cluster solely by color into two groups, then these blue apples would be included in the green

cluster. However, if we let the number of clusters be unspecified, and cluster according to simi-

larity in color, then we would obtain three clusters. For large data sets, we often can only preview

a sub-sample of the data, and thus the number of clusters can be hard to accurately predict.

In Aims two and three, we seek to cluster large data sets into systems of states. In Aim 2,

we look for similar image patches across a large set of whole slide lung tissue images on the

size order of 20000 × 20000 × 3 pixels per image. In Aim 3, we process long time-scale (on

the order of 100000 frames) molecular dynamics simulation trajectories of a protein to find a

set of conformational states visited by the protein. For both of these problems, we do not know

how many states we expect to find, and the number of states would be expected to vary if we
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Figure 23: Random walk on a graph: A graph is shown in the left panel. This graph can be

represented a connectivity matrix, shown above the arrow. By performing a random walk on the

graph, clusters appear naturally between sets of highly connected nodes (right panel).

looked at images from a different organ or simulations from a different protein. For example,

lung tissue and skin tissue can have different numbers of healthy and pathologic cell structure

patterns. Similarly, different proteins have different numbers of states, depending on their degree

of flexibility, their number of binding partners, and other factors. Additionally, for both problems

we wish to produce a multi-scale representation of the data; we want to obtain sets of very ho-

mogeneous clusters with nearly identical data points, and also coarse clusters that group objects

that have some shared features. In the case of tissue images, clusterings at different coarseness

levels allow allow us to capture lung patterns of varied levels of homogeneity, corresponding to

pathologic features at different size-scales. For protein simulations, clusterings of varied levels

of coarseness allow us to describe protein transitions at varied time-scales. We thus choose to

cluster both data sets using a hierarchical approach [73, 74, 75, 76, 77, 78, 79]. Specifically, we

model the data as a graph, and perform a random walk on the graph to identify clusters. Each

data point is a node in the graph and edges connect nearby nodes in the space. By performing

a random walk on the graph, that is, starting at a node and moving successively from one node

to another according to the strength of the edge weights, clusters in the graph occur naturally

4.1. The definition of “nearby nodes” is a crucial parameter for this (or any) clustering method.

For example, in the group of apples shown in 4.1, apple color would probably be a more useful
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feature for clustering the group of apples than the location of each apple’s centroid. However, if

the user desires apples grouped by size, not color, than size would be a more appropriate feature

and color need not be included in the feature set. Similarity between a pair of apples would be

defined as a function of the distances between each feature value for each apple. In chapters 5

and 6, we discuss how nearby nodes are identifies for Aims 2 and 3. In both cases, biological

features drive the definitions of nearby, so that connected (neighboring) nodes according to our

definition would also be deemed similar by experts.

4.2 ALGORITHM

Initiation: Let n0 be the number of nodes (data-points) in the data set. Build an (n0×n0) affinity

matrix A describing the similarity between each pair of nodes. That is, A(i, j) = 0 if nodes i and

j are not connected, and A(i, j) = similarity between nodes i and j if the nodes are connected.

Here, similarity is defined as a function of the distances between each feature for each node.In

Chapters 5 and 6, similarity functions are defined for the set of lung images (Aim 2) and the set

of protein conformations (Aim 3).

Ensure that the affinity matrix is connected and symmetric.If not connected (the matrix can

be reduced into blocks), then perform the clustering on each component separately.

Set A0 := A.

Iteration: For t = 1 until done:

1. Find Markov Transition matrix and stationary distribution of current graph: Compute the

diagonal degree matrix Dt−1, with entries

Dt−1(i, i) =
nt∑
j=1

At−1(j, i),

and

Dt−1(i, j) = 0 ∀ i 6= j.
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The degree matrix reflects the connectivity of the graph in that it contains the total number

of connections to that node. Nodes with higher degrees can be seen as hubs, and nodes with

very low degrees can be seen as isolates.

Then compute the Markov transition matrix

Mt−1 = At−1D
−1
t−1.

The Markov transition matrix gives the probability of the random walker transitioning from

one node to any of its neighboring nodes. The probability is 0 if the nodes are not neighbors.

Each column sums to 1. Note that the Markov transition matrix is not usually symmetric.

Next compute the normalized degree matrix

πt−1(i) =
Dt−1(i, i)∑
j Dt−1(j, j)

.

The probability of a Markov Chain residing in a particular node after infinite iterations is

given by its stationary distribution. For connected Markov transition matrices, the stationary

distribution is trivially equal to the normalized degree vector, since Mtπt = ~1πt.

2. Random Walk: Diffuse the Markov transition matrix by a multiplication

M̂t−1 = Mt−1 ×Mt−1.

This diffusion reveals distant connectivity and promotes cluster behavior by making proba-

bilities within clusters more uniform.

3. Identify clusters: Prepare a kernel matrix Kt to carry network information from level (t −

1) of the hierarchy to level (t): First, find the nodes corresponding to local peaks of the

stationary distribution (~πt−1). Then, use the corresponding columns (kernels) of the diffused

Markov transition matrix (M̂t−1) to form the (nt−1 × nt) kernel matrix Kt, where nt is the

number of kernels found with nt � nt−1.

4. Build reduced graph: Solve

~πt−1 = Kt~πt

for ~πt with an expectation-maximization algorithm to find a low-dimensional representation

~πt of the stationary distribution ~πt−1 [3].
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5. Compute At and Mt, each of size (nt × nt), using ~πt [3]:

Mt = diag(~πt)K
T
t diag(Kt~πt)

−1Kt

and

At = diag(~πt)K
T
t diag(Kt~πt)

−1Kt diag(~πt),

where KT
t is the transpose of Kt and diag(~πt) indicates a diagonal matrix formed from the

vector ~πt.

6. t→ t+ 1

Termination: End if nt ≤ 2. Let T = t . At this point, the component has been divided into one

or two segments.

4.2.1 “Goodness” of Clusterings

In Aims 2 and 3, we show goodness of clustering by comparing the overall similarity between

nodes assigned to the same cluster to the overall similarity of nodes assigned to different clus-

ters. In both aims, we have data points from multiple experiments (different images in Aim I,

different trajectories in Aim II). We expect to see that some clusters contain data from multiple

experiments, whereas other clusters may contain only data from one experiment. For example,

most images are expected to contain some healthy tissue, so a cluster containing healthy tissue

should contain tissue from multiple images. If this is not the case, there could be imaging arti-

facts (staining, shadows), that cause healthy tissue to be assigned to vary between images and

thus be assigned to different clusters. In contrast, carcinomic tissue is expected to occur only in

those patients with cancer. Thus, a cluster containing carcinomic tissue would be expected to

only contain tissue from those patients. Similarly with protein simulations, highly stable protein

conformations should be sampled by most trajectories and thus clusters containing these confor-

mations should contain data from many trajectories. In contrast, rare states may only be accessed

by a few trajectories, and thus clusters corresponding to these rare states would only contain data

from the corresponding trajectories. Therefore, we examine the degree of mixing of trajectories
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within clusters as a means of assessing the quality of the clustering approach and the definition

of similarity for a particular data set.

In both aims, detailed ground-truth is lacking. For tissue images, we have diagnostic infor-

mation at the image (patient) level, but not at the pixel level. Thus, to establish the goodness of

the clustering, we show that the clustering agrees with the diagnostic labels (e.g. clusters exist

which are specific to patients with carcinoma), and we obtain expert validation that each cluster

contains diagnostically similar tissue. For protein simulations, we show that conformations as-

signed to the same cluster share biophysically relevant features, such as radius of gyration and

internal energy.

4.2.2 Hierarchy Level

Similar to the apples 4.1, the image data in Aim 2 and protein simulations in Aim 3 can be

clustered to varied degrees of homogeneity, each with its own use. In the following chapters,

we discuss the information derivable from the clusterings at each hierarchy level and how a final

hierarchy level could be chosen to best represent the data with respect to a particular question.
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5.0 AIM II: COMPUTATIONAL STRATIFICATION OF DISEASE PROGRESS

We present a computational pathology schema for enabling early subtype diagnosis in Intersti-

tial Lung Diseases (ILD). For most of the 130-200 diseases included in the class of ILDs, a full

recovery is expected, but for a few of these diseases, the survival rate is less than three years.

Treatment of the malignant forms of ILD would be harmful in patients with other forms, thus

diagnosis is necessary prior to beginning treatment, and early treatment is most effective in erad-

icating disease. Early diagnosis is complicated by a high degree of sharing of subtle disease

phenotypes, leading to high pathologist disagreement rates. To stratify ILD patients, we develop

a novel quantitative representation of pathohistology samples that models lung architecture based

on computed image features and insights from pathologists, and establish its utility as part of a

diagnostic classifier. Unbiased, data-driven algorithms such as these applied in a clinical setting

can save pathologists time by filtering out obvious cases and providing unbiased reasoning to

assist diagnoses.

5.1 INTRODUCTION

Idiopathic interstitial pneumonias (IIPs) are a set of around 130 − 200 chronic lung disorders,

usually involving fibrosis of the lungs [80]. The diagnosis of these diseases has long been dif-

ficult because the diseases share many overlapping clinical, histologic, and radiologic features.

Additionally, many IIPs are very rare, so many clinicians have limited experience with each sub-

type to rely on when making a diagnosis [81]. Since 2001, the new ATS-ERS classification,

established by the American Thoratic Society and the European Respiratory Society, has been
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followed for classification of these diseases. Interstitial pulmonary fibrosis [IPF] is the most

common IIP and has the worst prognosis; patients with IPF have a median life expectancy of

around three years, while most patients with the other IIPs have a high likelihood of recovery,

especially if any environmental factors causing the disorder are removed. As different treatments

are applied for each condition, early diagnosis is essential to begin appropriate treatment.

There is significant overlap in the diagnostic features for each IIP subtype and related disease.

Interstitial pulmonary fibrosis is often referred to as usual interstitial pneumonia (UIP), which is

the term for the morphologic pattern present in IPF. Non-specific insterstial pneumonia (NSIP)

is the second most common IID, and its fibrotic subtype is commonly confused with UIP. Homo-

geneity of the lung tissue is a cardinal sign of NSIP, whereas IPF is hallmarked by heterogeneous

tissue. The morphologic pattern of NSIP is also seen in hypersensitivity pneumonitis (HP), con-

nective tissue diseases, and drug disorders, but NSIP itself is idiopathic. The smoking related

IIDs, respiratory bronchiolitis-insterstitial lung disease (RB-ILD) and desquamative interstitial

pneumonia (DIP) are believed to fall along a pathomorphologic continuum, in which DIP is the

extreme form of RB-ILD. However, while a diagnostic criterium for RB-ILD is smoking, DIP

may also occur in non-smokers and can be insidious. RB-ILD and DIP are not differentiable by

standard histopathology methods.

While the histopathologic entitities (fibroblastic foci, lymphoid aggregates,) are common be-

tween the diseases, their locations with respect to each other and architectural components of

lungs, such as the pleura or the interstitium (See Figure 5.1), are distinguishing factors between

the diseases. Thus, pathologists must make use of context information while analyzing the

image. For example, the spatial and temporal homogeneity in NSIP is a key feature in differ-

entiating it from UIP, which has patchy lung involvement. The difficult in assessing the degree

of homogeneity in histopathology slides has led to a high degree of inter-observer variation in

distinguishing NSIP from UIP [82]. Here, we present a simplified representation of lung histol-

ogy samples through their “architectural signature” (Figure 33). The architectural signature of

a tissue is a 2D matrix describing the pairwise spatial arrangements of a set of histopathologic

entities. We hypothesize that these matrices can be used to describe the architectural layout

of a tissue in terms of its pathohistology, and that architectural signatures can be used as
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Figure 24: Secondary Pulmonary Lobule. Taken from Devakonda, 2010 [4].

part of a computational diagnosis strategy.

5.2 BACKGROUND

Histologic criteria is the basis for IIP classification. However, to capture histopathologic infor-

mation, biopsies must be performed. Thus, non-invasive computed tomography (CT) is used in

advance of biopsy to determine necessity of biopsy based on diagnostic information from the

CT scan and to select a location for eventual biopsy. Overall, patterns detected in CT scans cor-

relate well with histologic patterns and most computational image analysis for lung disease has

focused on radiology images from CT. However, in ambiguous difficult cases, pathologic images

must be used. Due to the high degree of inter-observer variability in diagnoses, a computational

classification schema would be useful to provide a fast, unbiased diagnosis. Unlike pathologists,

computers do not use intuition or risk intra-observer variation, and thus the computer can also

provide specific reasons for its choice of diagnosis, as well as a confidence interval. While most

67



Figure 25: Quantifying context: While a pathologist observes higher-order architectural struc-

tures in lung tissue along with low-level diagnotic features, a computer sees only pixels. We

train an algorithm which identifies homogeneous tissue regions, groups these regions to form

diagnostically relevant tissue components, and build a spatial architectural matrix encoding con-

text, which can be used as input to a diagnostic classifier.
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computational work on lung disease has been focused on CT scans, computational algorithms

have been developed for diagnosis and prognosis using whole slide histopathology images in

many systems [83], such as neuroblastomas [84], prostate [85], and breast [86]. Most algo-

rithms perform hierarchical analysis of the tissue in order to reduce computational complexity

and incorporate global image aspects into local analyses [10]. [87]

Computational algorithms for histopathology commonly define a set of tissue classes and

describe images as a weighted sum of these classes [85]. For lung tissue, for which diagnosis

is very dependent on spatial locations of pathologic tissue, we take this representation a step

forward by creating a simplified spatial model of the lung which describes the location of its

tissue classes with respect to each other. We then demonstrate the potential of this model in a

diagnostic classifier. The majority of computational models for lung disease focus on automated

analysis of CT scans. However, in difficult cases, pathologists must look at lung biopsies to

determine a diagnosis, and we present here one of the first computational analyses of whole-

slide lung tissue images.

5.3 DATA

Our data, provided by the Lung Tissue Research Consortium (LTRC: http://www.ltrcpublic.com),

consists of 63 whole slide H&E-stained images from 63 patients. The images ranged in size from

124 × 106 to 788 × 106 pixels, with average image size 21000 × 21000 pixels. For each image,

clinical information was provided from throughout the patient’s history. However, as the tissues

provided were not necessarily diagnostic themselves, pathologist Frank Schneider (FS) labeled

each image as diagnostic of one of seven categories: UIP, NSIP, fibrotic, other, control, emphy-

sema, honeycomb, or non-diagnostic. Additionally, he selected a subset of 14 images which were

clearly diagnostic of either UIP or NSIP to establish the potential of our method for differentiat-

ing diseased tissue 4. The majority of images that are control for IID in this data set originated

in patients with a diagnosis of carcinoma.

The mean background image intensity was adjusted in each image so that all images have a
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diagnosis UIP NSIP fibrotic control other honeycomb emphysema non-diagnostic

count 13(8) 6(6) 7 14 8 1 6 8

Table 4: Number of images that are diagnostic of each disorder / pattern. For UIP and NSIP, the

number of clearly diagnostic images is provided in parenthesis.

mean background intensity in each channel of around 255 (white). To accomplish this, we define

background as the set of tissue-free pixels within 1000 pixels of the image boundaries. The

mean intensity was computed in the red, green, and blue channels on this set and the difference

between 255 and this mean in each channel was added to all image pixels (capping at 255). As

the initial difference in mean background intensities was less than 8 gray-levels (on a scale of 0 -

255), and all image features are computed over binned intensities, further normalization did not

seem necessary and would have moved the analysis further from the raw data.

5.4 METHODS

As pathologists use both local and global information while determining a diagnosis, we seek

to build an analogous multi-scale representation of the tissue image. In order to capture image

information at multiple scales, we determine a hierarchy of increasingly coarse tissue histology

[TH] states, and assign each image a state composition vector at each coarseness level. At any

given coarseness level, we capture the spatial layout of the tissue through an architectural ma-

trix, which describes the location of each TH-state with respect to every other state in a given

image. Below, we first describe our approach to finding homogeneous tissue components. Next,

we describe our hierarchical clustering method for grouping these homogeneous regions into in-

creasingly coarse tissue component states. At this point, we introduce state composition vectors,

which represent the percentage of each tissue made up of each TH. Then, we explain how we

build spatial architecture matrices using the spatial arrangements of the TH-states in an image,
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and, finally, we discuss how these matrices may be used to classify lung tissue data according to

diagnosis.

5.4.1 Clustering

We represent each whole slide image as a vector of TH-state memberships at a set of coarseness

levels. To determine the set of TH-states, we cluster across the entire image set to find unique

tissue histologies, described through nuclei architecture and degrees of H&E staining. While

image patches need not be neighboring to be assigned to the same TH-state, they must have

similar tissue histologies. At coarseness level h, we define a set of Nh
s states, and describe the

jth image Ij as a vector ~ch ∈ RNh
S , where chi = the percent of image j found in state i, for i =

{1, . . . , Nh
s }. At the finest hierarchy level, Nh

s is very large and the states are very homogeneous.

At the coarsest hierarchy level, Nh
s is very small, and the states contain heterogeneous data.

Our hierarchical clustering algorithm proceeds as follows: (1) Partition each image individually

into a set of many homogeneous “microstates”. These microstates are defined independently

of other images. (2) Combine representative image patches from each microstate across all

images into a large set C. Cluster C iteratively into a hierarchy of TH-state sets with increasingly

coarser clusters. (3) At each coarseness level, assign each microstate to a TH-state, and define

the composition vectors ~c for each image. We describe each step in detail below.

Preproccesing on individual images: finding homogeneous microstates

Each image Ij is partitioned uniformly into a set of Nb square “blocks”, which are large enough

to capture local nuclei arrangements. Similar blocks are recursively grouped through spectral

clustering to find a sets of microstates describing common histological patterns found in the im-

age. A block size of 200 pixels, containing around 50 nuclei per block, is used. This block

size was chosen empirically to consistently capture sufficient nuclei for distinguishing local ar-

chitecture, while not being so large that blocks would commonly contain heterogeneous nuclei

patterns.

Encoding pathologist knowledge into image features

Block similarity is defined through both stain similarity, defined by image intensities in the red,

green, and blue [RGB] channels and through a set of features chosen to capture diagnostically
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relevant patterns in the images [5.4.1]. Such features include size, shape, and arrangement of

nuclei, guided by discourse with pathologists. We do not consider nucleus intensity, as variations

in intensity due to staining across and between images would bias the small amount of expected

intensity variation within nuclei. However, we do consider the intensity of the pixels immediately

neighboring the nuclei, as these intensities can vary widely depending on the type of cell (white

around lymphocytes, pink around epithelium) and pathologists consider cell types while inferring

diagnoses, e.g. more lymphocytes could be indicative of inflammation. Additionally, we include

Haralick features [88], which have been used to capture texture features for ILD classification in

high-resolution computed topography images [89]. All features are normalized to have 0 mean

and unit standard deviation.

In Figure 5.4.1, we show how the nuclei features are able to differentiate between blocks

with nearly identical RGB distributions, but different tissue architectures. As the features do not

necessarily follow any specific distribution, for each block, we compute the distribution of each

feature on that block, as opposed to the mean, median, etc. Similar blocks are then found by

computing the chi-sqared [χ2] distance between the distributions.

feature class feature description

Morphometry (3) axes ratio distribution of ratios of minor to major

axis length

size distribution of nucleus sizes

small nuclei size distribution of nucleus sizes for small nu-

clei

Appearance (3) exterior R, G, B distribution of intensities in R, G, and B

channels in 2-pixel wide ring around nu-

clei

Architecture (6) distance distributions of all distances between ev-

ery nucleus pair

minimum dis-

tance

distributions of distances between nuclei

and their closest neighbor
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median distance distributions of median distances between

each nucleus and all other nuclei in block

mean distance distributions of mean distances between

each nucleus and all other nuclei in block

maximal distance distributions of distances between nuclei

and their furthest neighbor

standard devia-

tion of distances

distribution of standard deviation of dis-

tances between each nucleus and all other

nuclei in block

Spread (4) Location Distri-

butions

distribution of nucleus centroid locations

across block. Block is divided into 4,9,

15, and 25 spatial bins on which distribu-

tion is approximated.

Block Texture Histogram of

Oriented Gra-

dients (HoG)

[90]

texture features, describe edges within

block

Haralick features

[88]

texture features, describe gray-level pat-

terns within block

Total = 18 features

Table 5: Features selected to identify histologically similar

tissue components.

We perform a simple rough nuclei segmentation by thresholding each block for pixels with

intensity below an empirical threshold. While this method is not capable of separating tightly

packed nuclei, as we are seeking to group blocks with similar nuclei architectures, the errors in

nuclei segmentation are somewhat irrelevant, as long as the same errors are made consistently.
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For example, if the nuclei segmentation always identifies a chain of epithelial nuclei as a sin-

gle extremely elongated nucleus, then blocks containing this shape will be grouped, resulting in

blocks containing epithelial chains being grouped. The features used are designed to accommo-

date the approximate nuclei segmentation; we do not look at high-resolution nucleus descriptors,

but focus on rough morphometric descriptors and relationships between nuclei. This rough nu-

clei segmentation has the benefit of being extremely fast in comparison to segmentation methods

that employ successive steps to break up large nuclei.

Microstates containing homogeneous blocks are identified by building a network in which

each block is a node, and finding clusters on the network through a random walk. Edges are

placed between nodes with similar R,G, B intensities, and edge weights are determined based

on similarity between feature distributions. Specifically, for each node bi, histograms of R,G,

and B intensities on pixels containing tissue in the corresponding block are computed. Using

χ2 distances between these histograms, similar nodes are identified. Edge weights between the

neighboring nodes are defined as a combination of the χ2-distance between the features on the

corresponding blocks. By performing a random walk on this network 4, clusters intrinsic to the

network appear. To obtain highly homogeneous blocks within each microstate, we perform only

one round of random walk, which produces around Nb
4

microstates for each image.

Specifically, we define the RGB distance between each node pair as a function of the χ2

distances between the distributions of intensities in the red, green, and blue channels for each

node. To obtain sparsity in the network, a threshold r on the χ2 distances is determined such

that each node has at least one neighbor, and neighboring nodes are defined as any pair of nodes

whose χ2 distance is below that threshold. Edges are placed between neighboring nodes. For the

pair of neighboring nodes ni and nj, let Hi, Hj ∈ Rs be the RGB distributions on each node,

where s is the number of histogram bins used to compute the distributions. The texture feature

distributions for each node are contained in the matrices Ti, Tj ∈ RNf×s,whereNf is the number

of features. For each feature f ∈ {1, . . . , Nf},we define a similarity measure for a χ2 distributed

variable as: wf (i, j) = 1

2σfij
e
−
χ2( ~Ti(f),

~Tj(f))

σ
f
ij , where σfij =

√
median({ ~Tx(f) ~Ty(f) |x ∼ y}) and

x ∼ y indicates that nodes x and y are connected by an edge. We take the arithmetic mean across

all wf as w(i, j) = 1
Nf

∑Nf
f=1wf (i, j) as the weight of the edge between nodes i and j. The
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matrix A = {wij} describes the network and is used for clustering as in 4.

Combining microstates into TH-states

For each image Ij , every image block is assigned to a microstate from the set of N j microstates

Mj. As each image has its own set of microstates, at this point TH-state composition can not

be compared across images. Thus, the microstates must be grouped across the images into one

universal set of TH-states. To obtain these TH-states, we compute representative RGB distribu-

tions and feature distributions for each microstate by taking the mean of each intensity/feature

distributions over all blocks within that microstate. As the blocks within each microstate are very

homogeneous, the mean distribution is an accurate representation of each microstate. For visual-

ization, for each microstate, we assign the block whose distribution is closest to that microstate’s

mean distribution as the representative block for that microstate. By considering each microstate

as a node in the network and defining edges between nodes analogously to above, a network is

built between the individual images. We perform hierarchical clustering on this network to find

sets of TH-states of increasing coarseness 4.

5.4.2 Architectural Signature

Each image can be represented as a 2D matrix of block TH-state labels at each coarseness level

(see Figure 5.4.2D). For an image of size nx × ny pixels, this TH-state label representation has

size nx
tx
× ny

ty
, and therefore is a significantly coarsened view of the image. As each TH-state

captures a histologic pattern (see Results), this TH-state label representation provides a simpli-

fied view of the spatial arrangement of histologic patterns in the tissue image. To quantify the

spatial arrangement of tissue components at a given coarseness level, we define an architectural

signature matrix for each image at that coarseness level. Specifically, for coarseness level h

with Nh TH-states, we define a Nh × Nh architectural signature matrix Shj for each image Ij .

Matrix entry Shj (s1, s2) gives the probability that a block assigned to TH-state s1 is adjacent to

a block assigned to TH-state s2 in that image. We add two additional columns to this matrix to

account for the likelihood that a TH-state neighbors empty space in the interior of the tissue (air

sacs, arteries,..) or empty space exterior to the tissue. These tissue-free spaces are diagnostically

significant, as different disorders have different amounts of fibrosis near pleura, interstitium, and
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Figure 26: Nuclei features capture distinct patterns in regions with similar RGB distributions. A:

Four image blocks each are shown from two microstates.In B and C, distributions computed on

the left image are shown in black, and the right image are shown in pink. B: Histograms of mean

(across all blocks in that TH-state) R, G, and B distributions on non-white pixels in each block

are shown. C: Histograms of mean (across all blocks in that TH-state) feature distributions on

nuclei from each block are shown for four features.
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Figure 27: Representation of image through TH-state composition and architectural network

at a single coarseness level. A: raw image. B: clustered image, where blocks assigned to the

same TH-state are contained within the same color border. C: clustered image equivalent to B,

where blocks are painted according to the mean image intensities within their TH-state. This

yields a small-scale representation of the spatial layout of tissue components. D: Architectural

network computed from C describing the likelihood that a given TH-state is spatially adjacent

to every other TH-state. Red color indicates many neighboring blocks, blue color indicates few

neighboring blocks, and white indicates no neighboring blocks.
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other structural components of lungs. To compute these probabilities, we simply count the num-

ber of blocks of label s2 adjacent to blocks of label s1 and divide by the total number of blocks

neighboring blocks of label s1. In addition to architectural signature matrices for specific images,

we compute analogous matrices for each disease termed Sj by counting the total number of oc-

currences of each possible pair of neighboring TH-states across all images of that disease and

normalizing by the total number of neighbors of each TH-state.

5.5 RESULTS

Microstates capture histologic patterns

FS reviewed a subset of the largest microstates found from several images to validate the homo-

geneity of the clusters and ensure grouping of diagnostic features into clusters. To further ensure

homogeneity, a second and third round of random walk was performed, and the microstates were

again verified by FS 5.5). All microstates were considered homogeneous from the first and sec-

ond rounds of random walk, while microstates in the third round were determined to be more

heterogenous with respect to nuclei architecture. Microstates from the first round of clustering

are used to form TH-states.

States are associated with disorders

States at each coarseness level describe increasingly coarse histologic patterns associated with

ILD. In Figures 5.5 and 5.5, we show representative blocks from each TH-state along with the

TH-state compositions for each disorder. For visibility, we show only show examples from the

coarser hierarchy levels. At coarseness level 7 (5.5), images with UIP, NSIP, and fibrosis are

dominated by clusters 1-3 and 5, which contain patterns seen in fibrotic tissue. These disorders

contain very little tissue of TH-state 4, 6 or 7, which are healthier, and TH-state 12, which is

common is environmentally-related diseases. In contrast, the control images have very little tis-

sue from clusters 1-3 and 5, but are dominated by clusters 4,6, and 7, which contain healthy

tissue. Both the control and emphysema tissues have high amounts of cluster 12, which is ex-

pected as many of the control patients have a diagnosis of carcinoma, and both lung carcinoma
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Figure 28: Microstates from a fibrotic lung tissue after one (column one), two (column two), or

three (column three) rounds of clustering. The top row shows the full whole slide tissue image,

where colored boxes indicate blocks assigned to the same microstate. Microstates from the first

and second rounds of clustering were deemed homogeneous by a pathologist. Rows 2-4 show all

blocks assigned to the three largest microstates in each round of clustering. Rows 5 and 6 show

two other microstates from each clustering round. Note that the clusters become larger and more

heterogenous with each round of clustering.
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Figure 29: State compositions for images from each disorder. The heat map shows the log-

percentage of blocks from images with each disorder (rows) that are assigned to each of the 14

TH-states (columns) at coarseness level 7. For each TH-state, three representative blocks from

that TH-state are shown above the corresponding column. Red indicates higher percentages, blue

indicates lower percentages.
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and emphysema are often related to environmental factors. In coarseness level 6 (5.5), clusters

5, 7, 13, 15, and 17 contain healthy lung tissue are compose a large amount of the control class’s

tissue. Cluster 20 contains fibrotic tissue and is most common in UIP.

Architectural signatures can better differentiate disorder types than TH-state compo-

sition

By taking the χ2-distance between the TH-state composition vectors for each pair of disorders

at any given coarseness level, we find pairs of disorders that are most similar with respect to

their TH-state composition. In Figure 5.5 (left column), we show the distances between each

image pair, averaged according to image disorders for coarseness level 9, which provides the

coarsest representation of the images with only 3 clusters. We see that UIP and fibrosis have the

most similar TH-state compositions, while the honeycomb and non-diagnostic images are the

most different. NSIP’s TH-state composition is more similar to several other disorders than it

is to itself, indicating that the TH-state composition among images diagnostic of NSIP can vary

greatly. A diagnostic characteristic of NSIP is the presence of large homogeneous regions of

fibrosis interspersed with homogeneous healthy regions, thus explaining similarities with both

fibrotic disorders and healthy disorders. Control and emphysema also have similar distributions

to fibrotic disorders using this metric and this coarseness level. If we look at the Frobenius norm

between spatial architecture matrices for each image pair, averaged over disorders, the same

associations between diseases can be extracted from the distance matrix (Figure 5.5, middle).

Additionally, by comparing spatial architecture matrices, we see that control and emphysema

have are not as similar to the fibrotic diseases as those diseases are to each other. However,

the spatial architecture matrices alone do not distinguish between NSIP and UIP with simply

the frobenius norm. In Figure 5.5 (right panel), we compare a vectorized form of the spatial

architecture matrices, weighted by the state composition vectors, using the χ2 distribution. This

hybrid metric establishes the differences between control and emphysema tissue from fibrotic

tissue, and also distinguishes NSIP tissue from fibrotic tissue.

Architectural signature matrices capture diagnostic features of lung disease

In Figure 5.6, we show the TH-state labels and architectural signature matrices for images that

are clearly diagnostic of UIP (A,C) and images that are clearly diagnostic of NSIP (B,D) at

81



Figure 30: Distances between image pairs, averaged according to diagnosis, at the coarsest

coarseness level (9 rounds of clustering). The left panel shows the mean χ2 distance between

TH-state composition vectors for each disorder pair. The middle panel shows the mean Frobenius

norm between architectural signature matrices for each pair of disorders. The final column shows

the mean χ2 distance between the architectural signature matrices, weighted and vectorized using

the TH-state composition vectors, for each disorder pair. Blue indicates lower distances (more

similar) while red indicated higher distances (less similar). Color bars are shown for each heat

map, but as each heat map uses a different distance member, only relative comparisons between

matrices are intended.
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coarseness level 6. In general, the architecture signature matrices of UIP images are densely

connected, agreeing with the heterogeneous nature of that disorder. In contrast, the NSIP images

mostly have fewer connections, which agrees with the diagnostic description of NSIP as being

“homogeneous compared to UIP”. This heterogeneity/homogeneity is somewhat apparent in the

TH-state images (A,B), however the matrix form quantifies and simplifies this feature.

5.6 DISCUSSION

Potential for Classifier

While the data set is not large enough to develop a classifier, we demonstrate the potential of

spatial architecture signatures for classification of ILD. For this task, we use a set of 14 images

selected by the pathologist as being clearly diagnostic of UIP (8 images) or NSIP (6 images).

In Figure 5.6, we show the spatial architecture matrices at coarseness level six for these images.

Let µlU be the mean UIP spatial architecture matrix at coarseness level l and µlN be the mean

NSIP spatial architecture matrix at coarseness level l. For any image Ij with spatial architecture

matrix Sj , we form a simple classifier by computing the distance between Sj and both µlU and

µlN, and assigning the image to whichever disorder’s mean is closer. In Table 6, we show the true

positive rate of classifying each of the 14 images as either UIP or NSIP using this basic method.

Additionally, we demonstrate the classification ability on the remaining UIP images, which were

labeled as somewhat diagnostic of UIP, in the fourth column (TPR somewhat UIP). 4. The overall

percentage of data assigned to UIP at each coarseness level is shown in column 4, instead of a

false positive rate. Importantly, in levels 1-7, although the majority of images were assigned to

UIP, most of the NSIP images were correctly labeled as NSIP. This may indicate that the NSIP

architecture signature is distinguishable from the UIP architecture signature using these matrices.

Moreover, at each coarseness level, a greater percentage of clearly UIP images were labeled as

UIP than the overall percentage of images labeled as UIP, indicating that the UIP pattern is also

recognized. We also removed the fifth NSIP image from the set of clearly diagnostic images,

as it appears to be an outlier in this set (5.6, before computing the mean NSIP architecture
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Figure 31: TH-state memberships for images from each disorder at coarseness level 6. For each

of the 24 largest TH-states, nine representative blocks from that TH-state are shown in panel A.

The heat map (B) shows the log-percentage of blocks from images with each disorder (rows) that

are assigned to each of the 25 largest TH-states (columns) at this coarseness level. Red indicates

higher percentages, blue indicates lower percentages.
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Figure 32: State assignments and spatial architecture matrices for the set of clearly diagnostic

UIP and NSIP images at coarseness level 6. Panels A, B: State assignments painted on the whole

slide images for UIP (A) and NSIP (B). Color indicates TH-state index. Background is colored

maroon, as the empty space is considered a TH-state in the spatial architecture matrices. Panels

C,D: Spatial architecture matrices for the corresponding images in A,B. Red indicates greatest

number of neighboring blocks, blue indicates least. Each matrix has one row and column for

each TH-state, plus additional columns for airways and background.
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level TPR clearly UIP TPR clearly NSIP TPR somewhat UIP % data assigned to UIP

3 100 100 100 90

4 100 100 100 90

5 100 83 83 89

6 100 83 67 83

7 88 83 50 68

8 63 50 67 52

9 75 17 50 41

Table 6: Potential as classifier: True positive rate for assigment of clearly UIP images to UIP

(col. 2), clearly NSIP images to NSIP (col. 3), and somewhat UIP images to UIP (col. 4)

compared to the overall percent of data assigned to UIP. Rows indicate coarseness level of the

spatial architecture matrix.

matrix at each level. After removing this image, NSIP was even more distinguishable from UIP

using this metric. However, more data is necessary to determine whether the fifth image truly

is an outlier, and to develop a rigorous classifier for labeling images as NSIP or UIP. Such a

classifier would be beneficial in the clinical setting to provide unbiased analysis of images that

would assist pathologists in distinguishing these two classes, which have a high inter-pathologist

disagreement rate. Additionally, the classifier could be used as a prescreening method to filter out

images that are clearly diagnostic of a given disorder, so that pathologist time could be devoted

to less obvious cases.

Future Work

In addition to interior and exterior air space, more context information could be added to the

architectural signature matrix, e.g. interstititium, bronchioles, pleura, etc. Adding more archi-

tectural components of lungs would closer replicate tissue analysis by pathologists. These struc-

tures may be implicitly described by the clusters, but the possibility that classification would be

improved through explicit labeling of these structure should be explored.
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Explore use of architectural signatures as classifier. This would require a larger and more

balanced data set, but methods for classification of networks could be explored on the current

set. Additionally, other metrics for defining neighboring networks should be explored, as well as

higher degree neighbor relationships.

For the initial formation of homogeneous microstates, the block size could be further ex-

plored, and block boundaries could be adjusted so that microstates were entirely homogeneous

and not limited to a square shape. Pathologists use the presence of specific cells in tissue, such

as lymphocytes and endothelial cells, as well as their abundance and arrangement while making

diagnoses. This information could be incorporated in the feature set through cell-type specific

nuclei detection.
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6.0 ANALOGOUS METHODS APPLIED TO MOLECULAR DYNAMICS

SIMULATIONS

This Chapter was published as

Quasi-Anharmonic Analysis Reveals Intermediate States in the Nuclear Co-Activator Receptor

Binding Domain Ensemble Virginia M. Burger, Arvind Ramanathan, Andrej J. Savol, Christo-

pher B. Stanley, Pratul K. Agarwal, and Chakra S. Chennubhotla; Pacific Symposium on Bio-

computing 17:70-81(2012)

6.1 INTRODUCTION

Intrinsically disordered proteins (IDPs) play a vital role in regulating cellular processes in eu-

karyotic cells[91, 92]. Structural studies have revealed that unlike well-folded globular proteins,

IDPs exist as highly dynamic ensembles even under equilibrium conditions, with diverse and

constantly fluctuating secondary/tertiary structure[93]. The ability of IDPs to adapt their bind-

ing surface to recognize various binding partners provides a novel means of regulating various

cellular activities[94]. Given the abundance of IDPs in the human genome and their involvement

in neurodegenerative, cardiovascular, and amyloid-related diseases[95, 96], there is tremendous

interest in understanding the basic molecular mechanisms by which IDPs recognize their binding

partners and facilitate their specific functions. For example, some IDPs possess the remarkable

ability to undergo synergistic folding upon recognizing their binding partners[97]. The con-

trasting ability of IDPs to achieve a high degree of structural plasticity while retaining binding

specificity presents a serious challenge in characterizing their sequence-structure-function rela-
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tionships.

The intrinsically disordered nuclear co-activator binding domain (NCBD) of the CREB bind-

ing protein (CBP) interacts with numerous transcription co-activator proteins (TCA), including

the steroid receptor co-activators (SRC)[98], p53[99], p73[100], interferon regulatory factors

(IRF)[101] and the viral protein Tax[102]. As NCBD aids recruitment of the transcriptional

machinery, its dysfunction (and that of its binding partners) is implicated in several forms of

leukemia[103] and lung cancer[104]. Circular dichroism (CD) and ultra-violet (UV) spectro-

scopic studies reveal that native NCBD adopts a compact structure with a high degree of helicity

but lacks the sigmoid unfolding curve characteristic of folded proteins[105]. Structural stud-

ies using nuclear magnetic resonance (NMR) and X-ray crystallography indicate that NCBD

adopts unique conformations when complexed with specific partners[105, 106] and that syner-

gistic folding facilitates the interdigitation of three helices, a feature common in NCBD’s bound

topology (identified by α1−α3; see Fig. 33)[107, 108]. Increasingly, the specific orientations of

these three α-helices are thought to confer the specificity inherent to NCBD:TCA intermolecular

recognition.[105, 106, 107, 108]

While a number of studies point to the behavior and structure of NCBD in its bound state[105,

106, 107, 108], the conformational heterogeneity of apo-form NCBD has been challenging to

characterize. Emerging evidence from NMR experiments[106] suggest that native NCBD can

adopt conformations that largely resemble the SRC/ACTR-bound conformation. However, that

study also revealed that ligand-free NCBD does not sample states that resemble the IRF-bound

conformations. Moreover, Fraenkel et al.[109] have determined the apo-form of NCBD to be

quite different from Poulsen et al[106]. Based on the current insights gained from experimental

studies, the biophysical mechanisms underlying NCBD:TCA recognition process remain unclear.

Likewise, a quantitative description of disorder-to-order transitions between the ligand-free or

ligand-bound NCBD ensembles is lacking.

In this paper, we address the aforementioned issues and outline an integrated experimental

and computational strategy to analyze disorder-to-order transitions in NCBD’s conformational

landscape. Our aims are to: (a) obtain insights into the nature of intrinsic fluctuations accessible

to ligand-free NCBD, (b) identify regions within NCBD that are implicated in its disorder-to-
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Figure 33: Bound and unbound forms of NCBD. NMR ensembles of the ligand-free structures:

2KKJ (A) and 1JJS (B); NCBD in complex with (C) p53 trans-activation domain (TAD) (2L14:

TAD in pink); (D) interferon regulatory factor 3 (IRF3) (1ZOQ: IRF3 in pale blue); (E) steroid

receptor coactivator 1 (SRC1) (2C52: SRC1 in magenta); (F) interaction domain of activator

for thyroid hormone and retinoid receptors (ACTR) (1KBH: ACTR in cyan). In all panels, the

three helix bundle of NCBD is highlighted in orange (α1), yellow (α2) and gray (α3), while the

specificity loop (PSSP) is in green.
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order transitions and (c) elucidate whether ligand-free NCBD can access conformations that

resemble the ligand-bound conformations. To this end, we exploit recent advances in molecu-

lar simulation technologies to extensively sample ligand-free NCBD. Using graphics processing

units (GPUs), we accelerate conventional all-atom explicit solvent molecular dynamics simula-

tions to microsecond time-scales. The aggregate dataset constitutes 40µs of MD simulation and

required approximately two months of total clock-time.

Long time-scale simulations challenge conventional trajectory analysis methods. In particu-

lar, biophysically relevant events within such trajectories are often difficult to detect[110, 111].

Likewise, experimental techniques also present modeling challenges; results from small-angle

neutron scattering (SANS) experiments on NCBD suggest a distinctly long-tail (or anharmonic)

behavior in the distributions of radius of gyration and end-to-end distance values[112]. This long-

tailed behavior implies that atomic fluctuations in NCBD involve significant higher-order corre-

lations, which are commonly overlooked with typical trajectory analysis tools[113]. Recently,

we introduced quasi-anharmonic analysis (QAA) as an effective computational model to quantify

these higher-order correlations which emerge prominently within long simulations[114]. QAA

provides insights into the inherent anharmonicity in atomic fluctuations and is thus ideal for

quantifying the disorder-to-order transitions in NCBD observed from both experiments and sim-

ulations. Furthermore, QAA organizes the conformational heterogeneity in NCBD fluctuations

into a small set of conformational sub-states that share structural and energetic homogeneity.

Markov state models (MSMs) and their variants also provide organizational principles for

molecular simulations. These methods exploit the kinetic connectivities[115] or structural

similarities[116] between conformational sub-states and have been useful for determining tran-

sition pathways between conformational sub-states[110, 117]. As a comparison to QAA, MSMs

discretize conformation space into a network or graph of sub-states rather than projecting it into

a low-dimensional, continuous representation. A central contribution of the work here is an ap-

proach which exploits both the dimensionality reduction (and visual interpretability) of QAA

and rigorous graph theoretic methods to determine a hierarchy of transitions between sub-states.

With this integrated approach, we determined that ligand-free NCBD can indeed access confor-

mations representative of the ligand-bound form. Within our simulations, NCBD’s α1 and α2
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helices in the ligand-free and ligand-bound conformations are largely similar; α3 however, can

exhibit a wide degree of flexibility and does not generally sample conformations that are similar

to the ligand-bound state.

6.2 APPROACH

We performed ten 4µs all-atom explicit solvent MD simulations of apo-NCBD (Section 6.3). To

identify biophysically relevant motions within these simulations, we developed a novel, broadly

extensible, dimensionality reduction framework based on quasi-anharmonic analysis in the di-

hedral angle space, called dihedral QAA or dQAA (Section 6.4). To validate our simulations

we used two order parameters: radius of gyration (Rg) and helicity (H; defined here as the per-

centage of NCBD that adopts α-helical structure as assigned by STRIDE[118]), which can be

measured experimentally via SANS[112] and circular dichroism[106] experiments respectively.

To determine meta-stable conformational states, we invoke a multi-scale Markov diffusion

approach (Section 6.5) to group similar conformations in the dQAA space. Iterative diffusion-

based clustering in the dQAA space results in a hierarchical description of the NCBD conforma-

tional landscape. Each level of the hierarchy provides a set of increasingly broad (or inclusive)

meta-stable states, allowing the conformational landscape of NCBD to be viewed as a collec-

tion of nested sub-states. As we demonstrate, dQAA coordinates provide a natural framework

for organizing the conformational heterogeniety of the apo-NCBD ensemble and help identify

disordered or compact conformational states. In addition, the Markov diffusion approach cap-

tures meta-stable states that provide insight into the nature of structural changes that NCBD must

undergo in order to sample conformations close to the ligand-bound state (Section 6.6).
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6.3 MOLECULAR SIMULATIONS FOR NCBD

A total of six NMR and X-ray NCBD structures are available in ligand-free and ligand-bound

form. Fig. 33 shows the variation in the orientation of the three α-helices between these struc-

tures. While NCBD adopts very similar helical orientations when binding ACTR, SRC1 and

p53, the interfaces and helical turns of NCBD when complexed to each ligand are quite different.

Furthermore, NCBD adopts a radically different orientation for interacting with IRF3; α3 twists

and rests on a very different axis from that in the ACTR interaction.

In the interest of sampling the large conformational space of ligand-free NCBD, we initiated

a 4µs long simulation for each of the 10 conformations in the NMR ensemble (2KKJ) that is rep-

resentative of the ligand-free state. We used the AMBER suite of tools[119] and the ff99SB[120]

force-field to model the proteins. Each of the ten conformations was immersed in a cubic box of

SPC water molecules such that the solvent box boundary was never less than 10Å from the pro-

tein. Counter-ions consisting of 10 Cl− were added to ensure system neutrality. The box sizes

were approximately 90 × 90 × 90 Å3 (with slight variations for each of the ten simulations).

Using the protocol highlighted in our previous work [121], each of the simulation systems was

subjected to energy minimization and equilibration. A final MD equilibration of 1.0ns duration

was run to ensure the systems reached a stable conformation. All the simulations were carried

out at 300K using the NVE ensemble. Each of the ten systems had between 9,000 and 12,000

water molecules, resulting in system sizes varying between 18,000 and 22,000 atoms.

Production runs were carried out using the recently developed ACEMD (accelerated MD)

code specifically for graphics processing unit (GPU) systems[122]. In order to accelerate the

MD simulations to reach microsecond time-scales, the systems were simulated using a time-step

of 4fs using a hydrogen mass-partitioning scheme[123]. The alteration to the dynamics due to the

mass-partitioning scheme is minimal since individual atom masses do not appear explicitly in the

equilibrium distribution[122]. Ten production runs sampling 4µs per simulation were performed.

Coordinates were saved every 200 ps, resulting in about 20,000 conformations per simulation or

an aggregate total of 200,000 conformations for all simulations (40µs total).

Comparison with NMR: To compare our production runs with NMR data, we used
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SPARTA[124] to predict the 1H, 13C, and 15N chemical shifts for the ensembles generated from

MD simulations. SPARTA uses backbone φ and ψ torsion angles, side-chain χ1 angles, and

sequence information to predict backbone chemical shifts of protein structures [124]. We found

that the simulations show reasonable agreement with the chemical shifts from the experimental

ensembles (2L14, 1KBH and 2KKJ). In particular, the correlation coefficients between the mean

MD and the experimental 15N shifts are 0.74, 0.78, and 0.88, respectively, for the 2L14, 1KBH

and 2KKJ data. We note that computed 1H and 13C chemical shifts are less consistent with

respective experiments presumably due to force-field inaccuracies and the 4 fs MD integration

time-step[125]. While the agreement between experiments and computations is a cursory check

on the quality of data obtained, we must also note that the chemical shifts from the experimental

ensembles may not be fully representative of the conformational heterogeneity of apo-NCBD.

Comparison with SANS: We next compare simulation results with experimentally derived

Rg values from small-angle neutron scattering (SAS) experiments. The distribution of Rg values

from MD simulations is observed to be more constrained than that obtained from SANS, possibly

due to MD sampling deficits(Fig. ?? panel B, blue: aggregate simulations; red dash: single

simulation; red: SANS data). This is in part because MD trajectories are strongly biased by

the chosen starting pose, which is commonly an energy-minimized X-ray or NMR ensemble

structure [126, 127]. We note that the range of SANS-derived Rg values suggests that NCBD

may undergo disorder-to-order motions on a larger scale than observed in the present simulations.

From a molten globule state to a near ACTR-bound form: To quickly overview signifi-

cant conformational events in the MD trajectory, we track Rg on-line along a subset of one of the

simulation trajectories using two different exponential window smoothing timescales (Fig. 6.3).

We observe that NCBD changes from a molten-globule form (high Rg) to a near ACTR-bound

form (gray cartoon for comparison, shown along with RMSDs). The pathway chosen by this tra-

jectory is highly dynamic, involving several significant rearrangements of the α1-α2 (PSSP) loop

and α3. Interestingly, the conformational changes persist across the timescales of the exponential

window, confirming the evolution of NCBD from a molten globule state to a near ACTR-bound

form. In this particular trajectory, generated from model 2 of the NMR ensemble (2KKJ), NCBD

adopts a form that is about 4.27 Å (Cα-RMSD) from the bound form; however, other trajectories
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adopt conformations that are much closer to the ACTR-bound form (see Section 6.5).

6.4 DQAA: QUASI-ANHARMONIC ANALYSIS IN THE DIHEDRAL ANGLE SPACE

The conformational heterogeneity we observed in long timescale simulations of NCBD moti-

vated us to eliminate the sensitivity to Cartesian alignment by analyzing the NCBD ensemble in

the dihedral angle space. For aN residue protein there are a total of 2N backbone φ and ψ angles,

φ = {φi}1,...,N , ψ = {ψi}1,...,N . Each backbone dihedral angle pair (φi,ψi) can be converted into

a Euclidean representation by xi−3 = cos(φi); xi−2 = sin(φi); xi−1 = cos(ψi); xi = sin(ψi),

yielding a 4N vector x. We first considered dihedral PCA (dPCA), where a covariance matrix

is generated from this data and is diagonalized to obtain a low-dimensional representation of the

conformational ensemble[128, 129, 130]. We observed that NCBD conformers projected into

low-dimensional dPCA space lacked coherency (or homogeneity) with respect to the Rg values,

indicating that dPCA is unable to fully describe the disorder-to-order motions of NCBD (data

not shown).

Protein motions are anharmonic; therefore, capturing the conformational diversity of protein

fluctuations requires effective models that quantify anharmonic motional signatures[113, 131,

132, 133, 134, 135]. Anharmonicity is best summarized by higher-order statistics[131, 132].

Our previously developed framework, quasi-anharmonic analysis (QAA), exploits these higher-

order statistical signatures of protein motions [114]. When applied to µs time-scale simulation

data of proteins involved in molecular recognition and enzyme catalysis, QAA revealed (i) func-

tionally relevant, hierarchically-organized conformational sub-states and (ii) a set of on-pathway

intermediates between these sub-states. This result is consistent with the understanding that

proteins sample from a hierarchical, multilevel energy landscape with minima and maxima sepa-

rated by energy barriers [136, 137]. We observed that the sub-states determined with QAA were

energetically coherent, indicating that our low-dimensional representation appropriately depicts

energetically-related conformers as neighbors. We emphasize, however, that the resultant en-

ergy coherence within observed sub-states is an emergent property of QAA, indicating that our
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Figure 34: Disorder-to-order transitions in NCBD ligand-free ensemble (a) A comparison of

simulated NCBD ensembles with NMR (A) and SAS (B) experimental data, illustrating qualita-

tive agreement. Chemical shift data is taken from three ensembles, 2KKJ (16363cat.bmrb, red),

2L14 (17071cat.bmrb, brown), 1KBH (5228cat.bmrb, cyan), and compared to computed mean

chemical shifts from the simulations. (B) Rg is shown for SANS data (tan, solid), aggregated

MD data (blue, normalized), and a single MD trajectory (2KKJ, model 3)(dashed red, normal-

ized). Not all of the conformational landscape is sampled by MD, as is evident from the second

SANS peak. (b)Rg during first 400ns of a single MD trajectory (2KKJ, model 2), with 1ns (blue)

and 5ns (red) exponential smoothing showing disorder-to-order transitions. Conformations at six

timepoints are aligned to crystal structure 1KBH.

96



Figure 35: dQAA identifies a hierarchy of disorder-order promoting motions and homoge-

neous clusters in 2KKJ µs timescale ensemble. MD trajectory frames are projected along the

top three dQAA modes and colored by (a)Rg and (b) Helicity. (a) Level 1 of the dQAA hierarchy

reveals two compact, low Rg clusters (II and III). Cluster IV has high Rg values (red) indicating

a more open conformation. Mean conformers in each cluster (I: yellow, II: green, III: maroon,

IV: blue) are superimposed on the bound conformer of NCBD-ACTR (orange) and the respective

RMSDs are given. Successive application of the dQAA analysis to heterogenous clusters (Level

2 and 3) highlight a rich conformational diversity when painted with Rg values values. (b) In

level 1, dQAA clusters I and III are predominantly low in helicity (blue) and dQAA clusters II

and IV are predominantly high in helicity (pink). The ability to separate ordered (high helicity)

from disordered (low helicity) conformers improves as dQAA is applied recursively to subsets

of conformers.
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higher-order statistical approach selects meaningful reaction coordinates.

With the intention of capturing anharmonic disorder-to-order motions, we pursued anhar-

monicity as an informative statistic in the form of dihedral QAA (dQAA), basing our technique

on the diagonalization of a tensor of fourth-order statistics in the dihedral angle space. This

tensor describes dihedral angle fluctuations and their couplings and can be efficiently diagonal-

ized with a technique called joint-diagonalization of cumulant matrices (JADE), a well known

machine learning algorithm for analyzing multi-variate data [138]. To begin with, second-order

correlations are removed from the dihedral angle fluctuation data. Next, a fourth order cumulant

tensor K is computed consisting of both auto- and cross-cumulants. The cumulant tensor will

have a total 4N × (4N + 1)/2 matrices each of size 4N × 4N accounting for auto- and cross-

cumulant terms. Finally, the fourth order dependencies denoted by the sum of the cross-cumulant

terms are minimized, a procedure equivalent to diagonalizing K. No closed form solution exists

for diagonalizing a tensor, however an approximate solution can be found using efficient alge-

braic techniques such as Jacobi rotations [139]. Just as an eigenbasis diagonalizes a covariance

matrix, a matrix U is found to approximately diagonalize the cumulant tensor. The basis matrix

U represents anharmonic modes of motion derived by minimizing the fourth-order dependencies

in dihedral angle fluctuations, in addition to eliminating the second-order correlations as is the

case with dPCA. Unlike in dPCA, the column vectors of U (sorted decreasingly by amplitude

(‖Ui‖)) can be non-orthogonal and hence intrinsically coupled.

Results: Using 40 µs simulations of NCBD, we performed dQAA to reduce 232-dimensional

input data (from 58 dihedral angles in each conformer) to a 50-dimensional subspace. For vi-

sualization, we projected the conformers along the top three QAA modes as shown in Fig. 35.

To assess if the projected conformers share any structural similarities, we colored the conforma-

tions using two biophysically relevant order parameters: (a) Rg and (b) H (helicity). The dQAA

space colored with Rg revealed two compact (homogeneous) clusters with low Rg values, one

open conformation cluster with high Rg and one heterogeneous cluster. Thus, dQAA modes

can reveal disorder-to-order motions, an ability that can be further tested by recursively applying

dQAA on the heterogeneous cluster. The results from a recursive decomposition highlight the

rich conformational diversity present in the simulated NCBD ensemble and illustrate the ability
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Figure 36: A hierarchy of conformational sub-states in the disorder-to-order transitions of

NCBD conformational landscape. A total of 6 levels are found by the hierarchical clustering.

For hierarchy levels 3-6, the log of the affinity between each sub-state pair is shown.

of dQAA to capture meaningful conformational transitions. Although dQAA cannot directly

compensate for the deficiencies of MD sampling, the determined anharmonic modes suggest

functionally relevant disorder-to-order transitions. Similar results can be seen by coloring the

dQAA space with helicity values, showing that the sub-states involve transitions in NCBD from

a more extended form to a more helically compact form. This emergent homogeneity in dQAA

space suggests a new strategy to identify metastable states in the MD trajectory, which we discuss

next.

6.5 HIERARCHICAL CLUSTERING IN THE DQAA-SPACE TO IDENTIFY

META-STABLE STATES

Observing that neighboring conformers in dQAA-space have similar Rg and H values, and not-

ing that this coherence is an emergent property of dQAA representation, we hypothesize that
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nearest neighbors in dQAA-space are dynamically and kinetically related. We use the conforma-

tional coordinates returned by dQAA to build long-lived metastable states using graph-theoretic

spectral clustering approaches. To this end, we consider each frame in the trajectory as a node

in an undirected graph and connect each node to 10 of its nearest Euclidean neighbors in the

three-dimensional dQAA space. The edges are assigned weights inversely proportional to the

difference in their radius of gyration values, thus merging both the dynamic and emergent prop-

erties of the dQAA space into the edge weights. We then cluster this network using a hierarchical

Markov diffusion framework[74]. This approach is an adaptation of our earlier work developing

spectral graph partitioning algorithms for segmenting natural images[74], understanding protein

dynamics and allosteric propagation[76], relating signal propagation on a protein structure to its

equilibrium dynamics [140], and finally discovering metastable states in MD trajectories[78].

We begin hierarchical clustering by constructing a Markov transition matrix using an affinity

matrix of edge weights between conformer pairs in the dQAA space. We then initiate a Markov

chain (or random walk) on the weighted undirected network. As Markov transition probabil-

ities homogenize through diffusion, an implicit clustering emerges from the network. First, a

set of nodes representing the putative clusters are identified. The number of clusters chosen is

determined by the algorithm so that every node in the network has some Markov probability of

transitioning into at least one of the clusters. Then, a Markov transition matrix is newly con-

structed using this reduced representation. The important principle behind this construction is

that upon reaching a stationary distribution at the coarsest hierarchy level, the Markov chain

has also converged at finer (more local) network levels. This consistency regulates the overall

topology of the network and helps build a multi-resolution representation of metastable states.

We expect that fine-grained hierarchy levels will produce many small clusters containing

close neighbors in the QAA space; that is, within each such cluster most members will be drawn

from the same, narrow time-window. As Markov diffusion progresses (fine-grained to coarse-

grained), conformers that are more distant neighbors will be connected by edges in the diffused

network and will therefore be assigned to the same cluster. Thus, the hierarchical clustering can

highlight dynamical connections between conformers at different timescales.

Results: The affinity matrix hierarchy derived by the clustering algorithm is shown in
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Fig. 36. The affinity matrices show several regions of high cross-talk at lower levels of the hier-

archy. Iterative diffusion of the Markov chain derived from the initial affinity matrix (200000 ×

200000), results in six hierarchy levels (Table 1). The mean Cα-RMSD to cluster center at the

bottom hierarchy level is 3.2Å, indicating that clustering in dQAA-space also captures structural

similarity between trajectory frames in Cartesian-space. Clusters with low mean RMSDs to the

four experimental bound conformations and the two experimental unbound conformations occur

at each hierarchy level. At the finest level of the hierarchy, the clusters representing the bound

conformations are very small, but as the hierarchy progresses, they are found in more dominant

sub-states, indicating that the bound conformations are energetically accessible. As seen in Table

1, the alignment to 1ZOQ is poor. However, if only helices α2 and α3 are considered, the RMSD

is very low (data not shown). In contrast, for the three other ligand bound states, α1 and α2 align

well to the simulations. Thus, a barrier involving the repositioning of this helix may need to be

crossed in order to access the IRF-3 bound state.

PDB
ligand-free ACTR IRF3 SRC1 ligand-free p53

1JJS 1KBH 1ZOQ 2C52 2KKJ 2L14

rank/ rank/ rank/ rank/ rank/ rank/ Total number
Level RMSD(Å) RMSD(Å) RMSD(Å) RMSD(Å) RMSD(Å) RMSD(Å) of clusters

3 895/5.3 928/1.8 313/7.3 928/1.9 928/1.4 910/5.2 928
4 49/6 110/1.9 122/7.3 168/2.0 81/1.5 132/5.2 172
5 10/6.3 30/1.9 25/7.4 30/2.1 30/1.5 30/5.3 30
6 1/6.4 3/2.0 5/7.4 3/2.2 3/1.6 3/5.3 6

Table 7: Conformational similarity between determined sub-states and extant structural models.

Sub-states are ranked according to membership, 1 being the largest. For the coarsest hierarchy

levels, sub-state rank and RMSD from sub-state center to experimental conformation is given for

the sub-state with lowest RMSD to the experimental conformation.
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6.6 INTERMEDIATE STATES OF LIGAND-FREE NCBD ACCESS LIGAND-BOUND

CONFORMATIONS

The organization of the ligand-free NCBD ensemble indicates the presence of six large confor-

mational sub-states that interconvert between each other. One can visualize the six sub-states

from the coarsest hierarchy level as illustrated in Fig. 37(a). Of the six sub-states, sub-states 4

and 5 constitute over 88% of the entire ligand-free ensemble, consisting of 98,143 and 79,672

conformers respectively. The remaining sub-states (1, 2, 3 and 6) represent rare transitions in

the landscape. It is interesting to observe that sub-states 1 and 6 are somewhat isolated from

the conformational states, however a sizable population of conformations exist in each state (see

affinity map in 37(a)). Although one may attribute the isolation to the MD sampling protocol, it

is important to note that descending through the various levels of the hierarchy (Level 5 through

Level 2) indicates that both sub-states 1 and 6 are connected via extremely lowly populated states

(see Fig. 36), indicating that multiple paths exist through which states 1 and 6 can be reached.

We also note that while certain pairs of sub-states (such as [2,3] and [4,5]) freely interconvert be-

tween each other, sub-state 3 alone can access conformations that are similar to that of sub-state

5. Therefore, sub-state 3 acts as an intermediate state from which conformations in sub-states 2,

4 and 5 interconvert.

Sub-state 1 (rank 3) represents the state closest to the bound conformations observed exper-

imentally (Table 1). As illustrated in Fig. 37(b), a representative structure from sub-state 1 is

compared with two ligand-bound structures, namely 1KBH (panel A) and 2C52 (panel B). Sub-

state 1 represents the third least populated state of all sub-states (9,488 or 4.7% of conformers).

However, when compared with the bound structures, on an average, it exhibits smaller RMSD

values to the bound 1KBH (RMSD: 2.0 Å) and 2C52 (RMSD: 2.2 Å) conformers. This obser-

vation indicates that the ligand-free state of NCBD can access sub-states resembling the bound

state.

It may be tempting to conclude that sub-state 1 is isolated from other conformational sub-

states. However, as noted above, closer examination of the cluster hierarchy (Fig. 36, Level 4)

reveals that concerted structural changes along a complex pathway are required for NCBD to
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adopt a binding competent conformation. By descending through the hierarchy, one can observe

from Level 4 that a small subset of states (indicated by arrows on Fig. 36) closely resemble

conformations in sub-state 1. This conformational state arises out of a rare state mostly consisting

of conformers similar to sub-states 2 and 3 in level 6 of the hierarchy. Note that sub-state 2 in

level 6 of the hierarchy consists of just 938 (or less than 0.05%) of the overall conformers,

representing a rare transition. In this sub-state, the α3 helix adopts a conformation that is more

extended and hence represents an intermediate state that mediates a transition from sub-states 4

and 5 to the bound sub-state 1.

The observed clusters and conformational changes also provide a hypothesis for inter-conversions

necessary for facilitating NCBD-ligand binding. For one, if NCBD is relatively compact, as in

sub-states 4 and 5, then α3 must initially undergo partial unfolding, seen in sub-states 2 and 3,

to allow for the ligand to bind. Only then can α3 adapt itself to form a full α-helix, as seen from

experimental ensembles. Since we have not performed a comparison of our simulations with the

ligand-bound state of either 1KBH or 2C52, we cannot provide a quantitative picture about the

nature of changes that are required. However, based on the structural information available from

experiments, such a partial unfolding-refolding pathway may indeed be responsible for facilitat-

ing NCBD’s recognition of its binding partners. A similar scenario can also be proposed for α1,

which twists when binding with IRF3 (seen in Fig. 33D), although these experiments will be

pursued in the future.

6.7 CONCLUSIONS AND FUTURE WORK

As part of pursuing further work in the area, we propose to incorporate simulations from a second

NMR ensemble (1JJS) as well as several ligand-bound conformations to map out the conforma-

tional landscape of NCBD. Furthermore, by extending the Markov diffusion framework, we will

elucidate the kinetic rates of significant conformational transitions.

The methodologies we have put forward yield the following insights: (a) ligand-free NCBD

can indeed access conformations representative of the ligand-bound form and (b) structural
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Figure 37: Intermediate states of ligand-free NCBD enable access to ligand-bound confor-

mations Intermediate states of ligand-free NCBD enable access to ligand-bound conformations

(a) Log affinities between sub-states at hierarchy level 6 are shown. For each of the 6 clusters,

an ensemble of random conformers within that cluster are shown, and the percent of total frames

within the cluster is given. High affinity (red) between two clusters indicate that those clusters

are similar in dQAA space. Low affinity (blue - white) indicates that clusters have low similarity

in dQAA space. (b) Comparing NCBD ensembles with the bound ligands (A) ACTR (1KBH;

cyan) and (B) SRC1 (2C52; cyan) showing the orientations of α3 indicated by red arrows.
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changes required for ligand-free NCBD to access states that resemble ligand-bound conforma-

tions require concerted changes throughout the protein. We show that within our simulations,

ligand-free α1 and α2 orientations largely resemble those of ligand-bound conformations; α3

however, can exhibit a wide degree of flexibility and does not generally sample conformations

that are similar to ligand-bound states.

105



7.0 CONCLUSION

Since cytologists began employing computers for automated screening in the 1950s [141], com-

puters have been assisting disease diagnosis and prognosis. In addition to performing simple

tasks in place of cytologists and pathologists, algorithms can identify novel disease features, ex-

tending current knowledge of disease [13]. Consider the CT-scan in Figure 7 that was used in

an attention study by Drew, et al [5]. When 24 radiologists examined the image for lung nod-

ules, 83% of them did not notice the gorilla in the slide. A non-specialist observer, who is not

trained to search for nodules, might notice the gorilla right away. However, the presence of the

gorilla was not an important factor for the radiologists’ test. A computer algorithm specifically

designed to look for lung nodules would function more like the radiologists, and quickly scan

each image region for nodules, without taking in the image as a whole. However, mimicking the

search method used by experts exactly may not make use of the strengths of a computer. That

is, computers can analyze more information from the image simultaneously than a human, and

they are capable of picking up patterns not apparent to humans [7]. A recent study showed how

machine learning could uncover novel diagnostic/prognostic features in stained images that had

been analyzed in the same way for the past century [13].

In addition to uncovering new features, computers can simply assist experts in their tasks. For

example, while a pathologist (user) observed an image, the computer could also detect salient

features in the image, and learn each user’s strengths and weaknesses. If a certain user were

known for missing nodes that were smaller than average, the computer could remind the user of

those nodes before the user assigned a diagnosis. If the user neglected an unfamiliar shape in the

image, such as the gorilla in Figure 7, and the computer identified it as diagnostically significant,

the computer could highlight it for the user. Additionally, in ambiguous cases, the computer
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Figure 38: CT scan [5]

could rapidly pull up examples of previous similar cases, which the pathologist could use to

help make a diagnosis, or even identity names of other pathologists who are more confident with

similar cases, to provide additional expertise. There is also much potential for computational

pathology to be used in teaching. While medical students and residents analyze test slides, the

computer would be able to point out features that they missed or overemphasized in their analysis,

as well as provide the student with additional cases in their trouble areas.

Unlike humans, computers do not get tired or lose focus, thus their test results are consistently

equally reliable, whereas an expert may have varied results, depending on times of day and other

factors. While computational models may not be as accurate as expert analyses, a reasonably

accurate algorithm should be able to screen through images and assign less challenging cases

reliable, unbiased diagnostic labels, while marking more ambiguous images for expert analyses,

as is the case with pap smears [141]. Such a system would allow experts to focus their analysis

on difficult cases at times when they are most alert.
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Disagreements between pathologists are especially common in critical cases where a patient

is between two grades of cancer requiring different treatment plans [63]. In such cases, a com-

puter algorithm could analyze an image and display an unbiased list of factors in favor of each

diagnosis as a means of moderating the disagreement. A recent breast cancer study among eight

experienced laboratories showed an inter-lab intraclass correlation coefficient of 0.71 in scoring

of a common biomarker used to assess cancer proliferation, compared to an intra-lab correlation

coefficient of 0.94 [142]. They found that the inter-lab discrepancy was contributed to by factors

such as selection of tumor region for analysis, methods for quantifying the biomarker, and sub-

jective assessment of biomarker values. Employing a standard algorithm for any one, if not all

three, of these tasks would remove the inter-lab variability in that task, allowing for a standard-

ized, unbiased methodology for scoring of this biomarker. Such unbiased analyses in all fields of

pathology are necessary for laboratories to be able to communicate effectively with each other,

and thus unencumber technological advancement.

Review of contributions

Our epithelial classification method for Barrett’s Esophagus images enables rapid identification

of epithelial nuclei in tissue images, on which phase can be computed to detect pre-cancerous

changes in cell nuclei. If these optical biomarkers are shown to be effect on a larger scale, SL-

QPM imaging could be implemented on endoscopes for live scanning of tissue for pre-cancerous

lesions without necessity of biopsy. Moreover, as recent work has shown the benefit of analyzing

diverse cell types individually, epithelial nuclei segmentation has widespread use among com-

putational biology efforts [13, 66, 143]. Similarly, online epithelial nuclei segmentation may

benefit new imaging technologies for assessing the effectiveness of cancer therapies [144].

We have presented a novel quantitative model of whole slide lung tissue images through the

spatial arrangement of diagnostically significant tissue histologies, and have shown that these

models relate to disease and have potential to be used for computational diagnosis. This model

need not be limited to interstitial lung disease, but could also be applied to any process which

affects tissue architecture, such as development, cancer, and aging, as well as other diseases

[145].

On the molecular level, we have explored the conformational landscape of an intrinsically
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disordered protein implicated in leukemia. The described method is able to identify bottleneck

states in the protein’s landscape that could be targeted by medical therapies in order to lock the

protein into a certain state. As intrinsically disordered proteins are involved in around 50% of

cancers, methods such as these are needed for computational drug design, so that early disease

detection can be complemented by optimal drug therapy.

Future Work

The projects described here could be expanded further. Pathologists pay heed to specific nuclei

types when diagnosing disease - for example, location and density of lymphocytes is used for di-

agnosing ILD and some cancers. The feature set used in Aim II could be improved by cell-type

specific features, which would require cell classification methods such as the epithelial nuclei

classification algorithm presented in Aim I. In turn, Aim I could be expanded to assign multi-

class labels to all tissue components, instead of only nuclei classification. A markov random

field designed to label stroma and lumen as well as nuclei has potential to classify nuclei with

even higher accuracy, as location and orientation of nuclei with respect to lumen is an important

characteristic for identifying epithelial nuclei, and in the current implementation this character-

istic is only incorporated implicitly in the feature set. In Figure 7, an example of a hybrid form

of Aims I and II designed to form tissue histology states not simply using features averaged over

tissue blocks, but over superpixels containing single cells, is presented.

Additionally, location of architectural structures such as interstitial septum and lung pleura

would further improve the spatial architecture matrices presented in Aim II, as location of in-

flammation with respect to these structures is an important diagnostic factor. Furthermore, the

classifier would benefit from clinical information not included in the current implementation,

such as smoking status, age, gender, and breathing ability.

The current GUI presented in Aim I for correcting nuclei labels automatically predicts puta-

tive nuclei and classifies a subset of these nuclei as epithelia, which are optionally presented to

the user for verification. This system could be improved by incorporating a learning aspect to the

GUI, so that the epithelial selection is adjusted to the user’s preference after each examined im-

age. If features were added to capture other common nuclei architectures from various diseases,

such as rings and clusters, this method could be used to learn to predict a selection of nuclei
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Figure 39: Hybrid version of Aims I & II: Labeling cells within blocks according to cell-type

using an MRF, as in Aim I, would allow improved characterization of blocks according to tissue

type, and a more accurate representation of the tissue as a whole. Computational efficiency could

be maintained by performing this analysis hierarchically initializing with the coarsest level and

biasing cell-level labels according to block-level labels. Additionally, an MRF would be used on

the blocks to smooth tissue labels across neighboring block labels
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in any disease type, based on a user’s preference on an initial image set. Preliminary work has

shown that the putative nuclei segmentation is reasonable for breast and lung tissue (not shown),

so the future work could focus on gathering architectural features from a wide range of diseases

and developing a GUI that can learn on the fly.

On the level of proteins, the algorithm for determining a set of conformational states for

intrinsically disordered proteins could be demonstrated on a larger set of proteins and compared

to more experimental data to establish its ability to model the landscape of these flexible proteins.

Furthermore, the algorithm could be expanded to determine time-scales of transitioning between

states.
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Roberto López-Rendón, John Zintsmaster, Maria Ercsey-Ravasz, Christopher R. Sweet,
Matthew P. Jacobson, Jeffrey W. Peng, and Jesús A. Izaguirre. Modeling conformational
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