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Abstract

Multivariate analysis is a common statistical tool for assessing covariate effects

when only one response or multiple response variables of the same type are collected

in experimental studies. However with mixed continuous and discrete outcomes,

traditional modeling approaches are no longer appropriate. The common approach

used to make inference is to model each outcome separately ignoring the potential

correlation among the responses. However a statistical analysis that incorporates as-

sociation may result in improved precision. Coffey and Gennings (2007a) proposed

an extension of the generalized estimating equations (GEE) methodology to simul-

taneously analyze binary, count and continuous outcomes with nonlinear functions.

Variable selection plays a pivotal role in modeling correlated responses due to large

number of covariate variables involved. Thus a parsimonious model is always de-

sirable to enhance model predictability and interpretation. To perform parameter

estimation and variable selection simultaneously in the presence of mixed discrete



iii

and continuous outcomes, we propose a penalized based approach of the extended

generalized estimating equations. This approach only require to specify the first two

marginal moments and a working correlation structure. An advantageous feature of

the penalized GEE is that the consistency of the model holds even if the working

correlation is misspecified. However it is important to use appropriate working cor-

relation structure in small samples since it improves the statistical efficiency of the

regression parameters. We develop a computational algorithm for estimating the pa-

rameters using local quadratic approximation (LQA) algorithm proposed by Fan and

Li (2001). For tuning parameter selection, we explore the performance of unweighted

Bayesian information criterion(BIC) and generalized cross validation (GCV) for least

absolute shrinkage and selection operator(LASSO) and smoothly clipped absolute

deviation (SCAD). We discuss the asymptotic properties for the penalized GEE esti-

mator when the number of subjects n goes to infinity. Our simulation studies reveal

that when correlated mixed outcomes are available, estimates of regression parame-

ters are unbiased regardless of the choice of correlation structure. However, estimates

obtained from the unstructured working correlation (UWC) have reduced standard

errors. SCAD with BIC tuning criteria works well in selecting important variables.

Our approach is applied to concrete slump test data set.
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Chapter 1

Introduction

In many applied science or public health studies, researchers are interested in modeling

the relationship between response variable(s) and explanatory variables (independent

variables). For example, in the well known Framingham Heart Study (Kannel et al.,

1961), many covariates including age, sex, smoking status, cholesterol level, blood

pressure were recorded on the participants over the years to identify risk factors for

coronary heart disease. Despite the large number of covariates, some of them have

no influence on the response variable. In some studies, the number of explanatory

variables can be considerably large due to addition of interaction effects of covariates.

If there are more than one response of interest, then the number of model parameters

to be estimated will be much higher. Moreover, a model with all covariates may lead
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to an over-fitting problem. Thus, parameter estimation and variable selection are two

important problems in multivariate regression analysis. Selecting a smaller number

of important variables results in a simpler and interpretable model. In this thesis, we

address the variable selection problem in multivariate multiple regression models.

1.1 Modelling Multiple Outcomes

Multivariate multiple regression analysis is a common statistical tool for assessing

covariate effects when only one response or multiple response variables are collected

in observational or experimental studies. Many multivariate regression techniques are

designed for univariate response cases. A common approach to dealing with multiple

response variables is to apply the univariate response regression technique separately

on each response variable ignoring the joint information among the responses. To

solve this multi-response regression problem, several methodologies in generalized

linear model (GLM) framework have been proposed in literature.

1.1.1 Literature Review

Breiman and Friedman (1997) proposed the curd and whey method that uses the cor-

relation among response variables to improve predictive accuracy. They showed that
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their method can outperform separate univariate regression approaches but did not

address variable selection. In general, using multivariate multiple linear regression

is more appropriate in investigating relations between multiple response (Goldwasser

& Fitzmaurice 2006). The analysis of multivariate outcomes is especially challeng-

ing when multiple types of outcomes are observed, the methodology is comparatively

scarce when each response is to be modeled with a nonlinear function. However,

multivariate outcomes of mixed types occur frequently in many research areas includ-

ing dose-response experiment in toxicology (Moser et al 2005; Coffey & Gennings,

2007a, 2007b), birth defects in teratology (Sammel, Ryan & Legler, 1997) and pain

in public health research (Von Korff et al 1992; Sammel & Landis, 1998). In the last

three decades, methodologies for mixed-type outcomes includes using factorization ap-

proaches based on extensions of the general location model proposed by Fitzmaurice

and Laird (1997) and Liu and Rubin (1998). These likelihood based methodologies

factor the joint distribution of the random variables as the product of marginal and

conditional distributions, but can be unattractive because of their dependence on

parametric distributional assumptions. Sammel et al. (1997) proposed a latent vari-

able model for cross-sectional mixed outcomes using generalized linear mixed model

with continuous latent variables, allowing covariate effects on both the outcomes and

the latent variables. Muthen and Shedden (1999) proposed a general latent variable
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modeling framework that incorporates both continuous and categorical outcomes and

associates separate latent variables for outcomes of each type. Miglioretti (2003)

also developed a methodology based on latent transition regression model for mixed

outcomes. Other authors (Prentice and Zhao 1991; Rochon 1996; Bull 1998; Gray

and Brookmeyer 2000; Rochon and Gillespie 2001) handled mixed outcomes through

modification of generalized estimating equation (GEE) of Liang and Zeger (1986).

Although some of these approaches (Lefkopoulou, Moore, and Ryan 1989; Contreras

and Ryan 2000) may incorporate the use of GEEs for nonlinear models, none of the

methodologies have formally extended the modeling of mixed discrete and contin-

uous outcomes to nonlinear functions. Coffey and Gennings (2007a) proposed an

extension of the generalized estimating equation (GEE) methodology to simultane-

ously analyze binary, count, and continuous outcomes with nonlinear models that

incorporates the intra-subject correlation. The methodology uses a quasi-likelihood

framework and a working correlation matrix. The incorporation of the intra-subject

correlation resulted in decreased standard errors for the parameters. In addition, Cof-

fey and Gennings (2007b) developed a new application to the traditional D-optimality

criterion to create an optimal design for experiments measuring mixed discrete and

continuous outcomes that are analyzed with nonlinear models. These designs are to

choose the location of the dose groups and proportion of total sample size that result
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in a minimized generalized variance. The designs were generally robust to different

correlation structures. Coffey and Gennings (2007b) observed a substantial gain in

efficiency compared to optimal designs created for each outcome separately when the

expected correlation was moderate or large. In this thesis, we use the GEE approach

(Coffey and Gennings, 2007a) and also conduct a series of simulations to investigate

the performance of their method. Since we use GEE approach, we briefly review it

in the next section.

1.2 Generalized Estimating Equation (GEE)

1.2.1 Generalized Linear Models (GLM)

Nelder and Wedderburn (1972) introduced the class of generalized linear models

(GLMs) which extends ordinary model to encompass non-normal response distribu-

tions and modeling of the mean. The distribution of y is a member of an exponential

family such as the Gaussian, binomial, Poisson or inverse-Gaussian. For a GLM,

let E(y|X) denote the conditional expectation of the response variable, y given the

covariates, X and g(·) denote a known link function then

µ = E(y|X) = g(Xβ) (1.1)
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where β is the vector of unknown regression coefficients to be estimated. Gener-

alized linear models consists of three components, the random, systematic and link

component.

• A random component specifying the conditional distribution of the response

variable Y given the explanatory variables X. The densities of the random

component can be written in the form,

f(y | θ, ϕ) = exp
(yθ − b(θ)

a(ϕ)
+ c(y, ϕ)

)

where a(·), b(·) and c(·) are arbitrary known functions, ϕ is the dispersion pa-

rameter and θ is the canonical parameter of the distribution.

• A systematic component specifying a linear predictor function. For each subject

i,

ηi(β) = xT
i β.

• A link function, g(·) defines the relationship between the linear predictor ηi and

the mean µi of Yi.

g(µi) = ηi(β) = xT
i β.
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For GLMs, estimation starts by defining a measure of the goodness of fit between the

observed data and the fitted values generated by the model. The parameter estimates

are values that minimize the goodness-of-fit criterion, we obtain the parameter esti-

mates by maximizing the likelihood of the observed data. The log-likelihood based

on a set of independent observations y1, y2, y3, ..., yn with density f(yi; β) is

ℓ(µ; y) =
n∑

i=1

log f(yi; β).

The goodness-of-fit criterion is

D(y;µ) = 2ℓ(y; y)− 2ℓ(µ; y).

This is called the scaled deviance. Deviance is one of the methods used for model

checking and inferential comparisons. The greater the scaled deviance, the poorer the

fit.

1.2.2 Quasi-Likelihood (QL) Functions

Wedderburn (1974) proposed to use the quasi-score function, which assumes only a

mean-variance relationship to estimate regression coefficients, β without fully speci-

fying the distribution of the observed data, yi. The score equation is of the form,

S(β) =
n∑

j=1

Si(β) =
n∑

j=1

(
∂µi

∂β

)T

V ar−1(yi; β, ϕ)(yi − µi(β)) = 0. (1.2)
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To obtain the score function, the random component in the generalized estimating

equations was replaced by the following assumptions:

E[Yi] = µi(β),

Var[Yi] = Vi = a(ϕ)V (µi).

Consider independent vector of responses Y1, Y2, ..., Yn with common mean µ and co-

variance matrix a(ϕ)V (µ).

The quasi-likelihood function is

Q(µ; y) =
n∑

j=1

∫ µ

y

y − t

a(ϕ)V (t)
dt. (1.3)

The quasi-score function is

S(β; y) =
∂Q

∂β
=

n∑
j=1

y − µ

a(ϕ)V (µ)
,

where S(β; y) possess the following properties: replaced by the following assumptions:

E[S] = 0

Var[S] = −E

(
∂S

∂µ

)
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These properties form the basis of most asymptotic theory for likelihood-based in-

ference. Thus in general, S behaves like a score function and Q like a log-likelihood

function. The quasi-score function, S(β; y) would be the true score function of β if

Yi’s have a distribution in the exponential family. We find the value βQL that max-

imizes Q by setting S(βQL; y) = 0,this is called QL estimating equations. In matrix

form, we can express the score equation as;

S(β; y) =
DTV −1(y − µ)

ϕ
,

where D is the n × p matrix with (i, j)th entry ∂µi/∂βj,V is the n × n diagonal

matrix with ith diagonal entry V (µi), y = (y1, y2, ..., yn), and µ = (µ1, µ2, ..., µn).

The covariance matrix of S(β) plays the same role as Fisher information matrix in

the asymptotic variance of β;

In = DTV −1D,

V ar(β̂) = I−1
n .

These properties are based only on the correct specification of the mean and variance

of Yi.

Method of moments is used for the estimation of a(ϕ).

a(ϕ̂) =
1

n− p

n∑
i=1

(yi − µ̂i)
2

V (µ̂i)
=

χ2

n− p
,
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where χ2 is the generalized Pearson statistics. As in the case of GLM, the quasi-

deviance function corresponding to a single observation is

D(y;u) = −2σ2Q(µ; y) = 2

∫ y

µ

y − t

V (t)
dt. (1.4)

The deviance function for the complete observation y when the observations are

independent is defined as D(y : µ) =
n∑

i=1

D(yi : µi)

1.2.3 Generalized Estimating Equation (GEE)

The GEE approach was first developed by Liang and Zeger (1986) for longitudinal

data. Suppose we have a random sample of observations from n individuals. For each

individual i we have a vector of responses Yi = (Yi1, Yi2, . . . , Yini
)′ and corresponding

covariates Xi = (X ′
i1, X

′
i2, . . . , X

′
ini
)′, where each Yij is a scalar and X ′

ij a p-vector. In

general, the components of Yi are correlated but Yi and Yk are independent for any i ̸=

k given the covariates. To model the relationship between the response and covariates

one can use a regression model similar to the generalized linear model(GLM): (see

equation (1.1)). The GEE approach suggests estimating β by solving the following

estimating equation.(Liang and Zeger,1986)

S(β) =
n∑

i=1

DT
i V

−1
i (Yi − µi) = 0, (1.5)
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whereDi = ∂µiβ/∂β
′ and Vi is a working covariance matrix of Yi and Vi = A

1/2
i R(α)A

1/2
i

where R(α) is a working correlation matrix and Ai is a diagonal matrix with elements

var(Yij) = ϕV (µij) which is specified as a function of the mean µij. The correlation

parameter α can be estimated through the method of moments or another set of

estimating equations. The GEE can be regarded as a quasi-likelihood (QL) score

equation.

1.3 Variable Selection

The problem of predicting the response using high-dimensional covariates has always

been an important problem in statistical modeling. Researchers are often interested in

selecting a smaller number of important variables to adequately represent the relation-

ship and obtain a more interpretable model. To select the best and simplest model,

several model selection techniques have been developed in recent years especially for

linear models and generalized linear models(GLM). In this section, we discuss existing

variable selection approaches as well as their advantages and disadvantages.
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1.3.1 Sequential Approaches

Sequential model selection methods include forward selection, backward elimination

and stepwise regression. Forward selection starts with intercept alone model and

sequentially adds the most significant variable that improves the model fit. The

problem with forward selection is that, the addition of a new variable may render

one or more of the already included variables redundant. Alternately, the backward

elimination starts with the full model with all the variables in the model, then se-

quentially eliminates the least significant variable. The final model is obtained when

either no variables remain in the model or the criteria for removal is not met. Back-

ward elimination has drawbacks, for example a variable dropped in the process may

be significant when added to the final reduced models. Thus, stepwise regression has

been proposed as a technique that combines advantages of forward selection and back-

ward elimination. In this approach, we consider both forward selection and backward

elimination at each step and uses the thresholds to determine if the variable needs to

be added or dropped or the selection should stop. Stepwise regression evaluates more

subsets than the other two techniques, so in practice it tends to produce better sub-

sets (Miller, 1990). However, there is no strong theoretical results for comparing the

effectiveness of stepwise regression against forward selection or backward elimination.
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1.3.2 Information Criteria

Information criterion selects the best model from all possible subset models. Akaike’s

information criterion (AIC)(Akaike, 1973) and Schwarz’s bayesian information crite-

rion (BIC)(Schwartz, 1978) are the most widely used information criteria. The criteria

consist of a measure of model fit based on the log-likelihood, ℓ(X(s), y, β(s)) of sub-

model s and a penalty term, q(k, n) with k being the number of parameters for model

complexity and n, the number of observations that contributes to the likelihood. The

general form of an information criteria of submodel s is defined to be

−2ℓ(X(s), y, β(s)) + q(k, n).

Typical choices of the penalty term for AIC and BIC include:

• Akaike’s information criterion (AIC)

q(k, n) = 2k.

• Bayesian information criterion (BIC)

q(k, n) = klog(n).

For linear regression with Gaussian assumption, Mallow’s Cp (Mallows, 1973) is equiv-

alent to AIC. Under information criteria, the first step is to calculate the chosen in-

formation criterion for all possible models and the model with the minimum value for
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the information criterion is then declared optimal. Information criteria approaches

are computationally inefficient due to evaluation of all possible models.

1.3.3 Penalized Likelihood Methods

Traditional approaches such as Cp (Mallow’s, 1973), Akaike’s information criterion

(Akaike, 1974) and Bayesian information criterion (Schwarz, 1978) cease to be useful

due to computational infeasibility and model non-identifiability. Recently developed

approaches based on penalized likelihood methods have been proved to be an attrac-

tive approach both theoretically and empirically for dealing with these problems. In

addition, all variables are considered at the same time which may lead to better global

submodel. Penalized regression estimates a sparse vector of regression coefficients by

minimizing an objective function that is composed of a loss function subject to a con-

straint on the coefficients. A general form proposed by Fan and Li (2001) is defined

by

ℓp(β) = ℓ(β | y,X)− n

p∑
j=1

Pλn(|β|), (1.6)

where X is the matrix of covariates, y is the response vector, β is the regression

coefficient vector, Pλn is a penalty function and λn is the tuning parameter which

controls the degree of penalization. Maximizing (1.6) leads to simultaneous estimation

and variable selection of the regression model. The mostly used penalty functions
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includes the least shrinkage and selection operator (LASSO; Tibshirani 1996, 1997),

Bridge (Fu, 1998), the smoothly clipped absolute deviation (SCAD; Fan and Li 2001),

Elastic Net (Zou and Hastie, 2003) and other extended forms.

1.4 Motivation and Proposed Approach

Generalized estimating equation (GEE) is playing an increasingly important role in

the analysis of correlated outcomes. Recently, Coffey and Gennings (2007a) pro-

posed an extension of the GEE methodology to simultaneously analyze binary, count

and continuous outcomes with nonlinear function. However, the joint model for all

responses results in high dimension of covariates therefore selecting significant vari-

ables become necessary in model building. Several model selection methods have

been developed to select the best submodel. Sequential approaches have been found

to be unstable in the selection process: a small change in the data could cause a

very different selection. This is partially because once a covariate has been added to

(dropped from) the model at any step, it is never removed from (added to) the final

model. Information Criteria approaches such as AIC and BIC are computationally

inefficient due to evaluation of all possible models. Penalization based methods such

as LASSO and SCAD have continuous selection procedure and hence it provides more
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robust selection results. Penalized likelihood methods are computationally efficient

and have been proved to be attractive both theoretically and empirically. In order to

deal with high dimensionality in the mixed continuous and discrete outcomes model,

it is preferred to use penalization based variable selection approach of the extended

GEE approach (Coffey & Gennings, 2007a). In our study, we have developed a pe-

nalized GEE approach to multi-response regression problem using LASSO and SCAD

penalty functions. We conduct a series of simulations to investigate the performance

of our proposed approach using both independent working correlation (IWC) and

unstructured working correlation (UWC). Our simulation studies showed that the

proposed methodology work well and helps improve precision.

The remaining part of the thesis is organized as follows. In Chapter 2, we briefly re-

view properties of the LASSO and SCAD penalty functions and discuss local quadratic

approximation (LQA) algorithm and estimation of standard error of parameters pro-

posed by Fan and Li (2001). We introduce generalized estimating equations (GEE)

for mixed outcomes and then discuss our proposed penalization based approach, the

computational algorithm, the tuning parameter selection problem and asymptotic

properties. In Chapter 3, we investigate the performance of our approach with LASSO

and SCAD penalty functions through simulation, in the context of continuous, binary
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and count outcomes with both unstructured working correlation (UWC) and inde-

pendent working correlation (IWC). In Chapter 4, we apply our method to concrete

slump test data set. Our concluding remarks are provided in Chapter 5.



Chapter 2

Penalized Generalized Estimating

Equations(GEE)

In this chapter, we review properties of the LASSO and SCAD penalty functions

as members of the penalized likelihood family and introduce the local quadratic ap-

proximation (LQA) algorithm proposed by Fan and Li (2001). We briefly introduce

generalized estimating equations (GEE) for mixed outcomes. We then discuss our

proposed penalized based approach.

Suppose ℓ(yi;Xiβ) denote the loss function (log-likelihood or log-quasi-likelihood)
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of β then a general form of the penalized likelihood is defined by

n∑
i=1

ℓ(yi;Xiβ)− n

p∑
i=1

pλ(|βj|), (2.1)

where pλ(|βj|) is a penalty function, and λ is the tuning parameter.

2.1 Penalty Functions and Optimization

2.1.1 LASSO

The least absolute shrinkage and selection operator (LASSO) was proposed by Tib-

shirani (1996) which performs parameter estimation and shrinkage there by variable

selection automatically. The LASSO penalty function is the L1 penalty, pλn(|β|) =

λn|β|. We obtain the penalized estimates of the LASSO regression by maximizing

the function:

ℓp(β) =
n∑

i=1

ℓ(yi;Xiβ)− nλn

p∑
j=1

|βj|, (2.2)

where λn controls the variable selection as λn increases model parsimony increases

as more variables are selected out of the model. This is known as soft thresholding.

LASSO is closely related with ridge regression. Ridge regression is a popular regular-

ization technique proposed by Hoerl and Kennard (1970). Equation (2.1) results in
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a ridge penalized regression model when pλn(|β|) = λn|β|2, called L2 penalty. Equiv-

alently the solution β̂ridge can be written as follows

β̂ridge(λ) = argmin
β

[
n∑

i=1

ℓ(yi;Xiβ)− nλn

p∑
j=1

β2
j

]
. (2.3)

Efficient ways to compute the analytic solution for β̂ridge along with its properties are

presented in Hastie et al. (2001). Ridge (L2) and the LASSO (L1) are special cases of

Lλ(λ > 0) penalties. Zou and Hastie (2005) proposed Elastic Net which combines the

Ridge and LASSO constraints to allow both stability with highly correlated variables

and variable selection.

Figure 2.1: Geometry of LASSO vs Ridge
Estimation picture for (a) the LASSO and (b) ridge regression
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Figure 2.1 (a) results in sparsity, the LASSO solution is the first place that the

contours touch the square and this sometimes occur at a corner corresponding to a

zero coefficient. On the contrary, Figure 2.1 (b) depicting ridge regression solution

has no corners for the contours to hit hence zero solutions will rarely result.

2.1.2 SCAD

Fan and Li (2001) argued that an ideal penalty function should yield an estimator

with the following three properties;

1. Unbiasedness: The estimator is nearly unbiased when the true unknown param-

eter is large to reduce model bias.

2. Sparsity: The estimator is a thresholding rule which automatically sets small

estimated coefficients to zero to reduce model complexity.

3. Continuity: The estimator is continuous in the data to reduce instability in

model prediction.

In contrast, the convex LASSO penalty (L1 penalty) does not satisfy the unbiasedness

condition, the convex Lq penalty with q > 1 does not satisfy the sparsity condition

and the concave Lq penalty with 0 ≤ q < 1 does not satisfy the continuity condition.

Thus, Fan and Li (2001) proposed a non-concave penalty function referred to as the
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Smoothly Clipped Absolute Deviation (SCAD) which simultaneously achieves the

three desirable properties: unbiasedness, sparsity and continuity. The SCAD penalty

function is continuous and the first derivative for some a > 2 and β > 0 is

p′λ(β) = λ

{
I(β > λ) +

(aλ− β)+
(a− 1)λ

I(β > λ)

}
. (2.4)

The SCAD function is given by

pλ(βj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ|βj| if |βj| ≤ λ

−

(
|βj|2 − 2aλ|βj|+ λ2

2(a− 1)

)
if λ < |βj| ≤ aλ

(a− 1)λ2

2
if |βj| > aλ.

(2.5)

The SCAD penalty is continuously differentiable on (−∞, 0)∪ (0,∞), but not differ-

entiable at zero. Its derivative vanishes outside [−aλ, aλ]. As a consequence, SCAD

penalized regression can produce sparse set of solution and approximately unbiased

coefficients for large coefficients.

In Figure 2.2, we sketch the LASSO penalty along with the SCAD. Both penalty

functions are equal to zero when the regression coefficient is equal to zero. It is seen

that for small values SCAD is similar to the LASSO penalty whereas for larger val-

ues SCAD levels off. The SCAD improves the LASSO by reducing the estimation

bias. Following Fan and Li (2001), let the parameter vector β be partitioned into

βT = (βT
1 ,β

T
2 ) and assume β2 = 0, with J1(β1) denoting Fisher information matrix
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Figure 2.2: LASSO (top) and SCAD (down) penalty functions
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given β = 0 . Under some regularity conditions, it may be shown that β̂
T
= (β̂

T

1 , β̂
T

2 )

satisfies the oracle properties, since β̂2
P−→ 0 and β̂1 is asymptotic normal with covari-

ance matrix J1(β1)
−1 if n−1/2λn → ∞. To obtain a penalized maximum likelihood

estimator of β, we maximize (2.1) with respect to β for some thresholding parameter

λ. For computational purposes, Fan and Li (2001) used quadratic functions to locally

approximate the penalty function.

2.1.3 Local Quadratic Approximation (LQA)

Algorithm

Suppose we choose an initial value β0 near the maximizer of (2.1). If the jth compo-

nent of β0, βj0 is very close to zero, then set β̂j0 = 0, otherwise, the penalty Pλ(|βj|)

can be approximated as

Pλ(|βj|) ≈ Pλ(|βj0|) +
1

2

{
P ′
λ(|βj0|)/|βj0|

}
(β2

j − β2
j0),

for βj ≈ βj0. In other words,

[Pλ(|βj|)]′ = P ′
λ(|βj|)sgn(βj) ≈ {P ′

λ(|βj0|)/|βj0|}βj, when βj ̸= 0.

This method significantly reduces the computational burden. However, a drawback

of this approximation is that once a coefficient is shrunken to zero, it will be excluded

from the final selected model. The maximization problem (2.1) can be reduced to a
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quadratic maximization problem assuming that the log-likelihood function is smooth

with respect to β so that its first two partial derivatives are continuous. Thus using

Taylor expansion, the first term in (2.1) can be locally approximated by

ℓ(β0) +∇ℓ(β0)
T (β − β0) +

1

2
(β − β0)

T∇2ℓ(β0)
T (β − β0) +

1

2
nβTΣλ(β0)β (2.6)

with ∇ℓ(β0) =
∂ℓ(β0)

∂β
, ∇2ℓ(β0) =

∂2ℓ(β0)

∂β∂βT
and

Σλ(β0) = diag(P ′
λ(|β10|)/|β10|, . . . , P ′

λ(|βp0|)/|βp0|)

With the aid of this local quadratic approximation, Newton-Raphson (N-R) algorithm

can be used to maximize (2.1) iteratively. The estimate of β̂ at the (r+1)th iterative

step is

β̂r+1 = β̂r −
{
∇2ℓ(βr)− nΣλ(β̂r)

}−1{
∇ℓ(βr)− nUλ(β̂r)

}
, (2.7)

with Uλ(β̂r) = Σλ(βr)βr. We iterate this algorithm until convergence.

A perturbed version of the LQA, the Minorization-Maximization (MM) (Hunter and

Li (2005)) algorithms have been introduced which alleviates a drawback of backward

stepwise variable selection in LQA, but it is difficult to choose the size of perturbation.

LQA and MM share the convergence properties of the modified N-R algorithm, using a

robust local quadratic approximation. In both cases, the Hessian matrix is guaranteed

to be positive definite, driving convergence at least to a local maximum.
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2.1.4 Standard Error

Fan and Li (2001) recommend estimating the covariance matrix of the non-vanishing

(non-zero) component of β̂ via sandwich formula:

ĉov(β̂) =
[
∇2ℓ(β̂)− nΣλ(β̂)

]−1

ĉov
{
∇ℓ(β̂)

}[
∇2ℓ(β̂)− nΣλ(β̂)

]−1

. (2.8)

Fan and Li (2001) showed that the LASSO penalty proposed by Tibshirani (1996)

has good performance when the signal to noise ratio is large, but creates excessive

biases compared to using the SCAD penalty.

2.2 GEE for Mixed Outcomes

In a longitudinal study of n subjects, if the investigators are mainly interested in the

covariate effect on the response variable, Liang and Zeger (1986) proposed the GEE

model based on the marginal distributions of the response. In a cross-sectional study

with multiple responses, Coffey and Gennings (2007a) used GEE approach to estimate

the parameters. Let the observations (ymi , x
m
i ) denote the response and covariate re-

spectively for the mth response (m = 1, 2, . . . ,Mi ) measured on subject i = 1, . . . , n.

The Mi × 1 vector of responses for the ith subject is y = (y
(1)
i , y

(2)
i , ..., y

(Mi)
i ).

To apply quasi-likelihood method to the analysis, we define the first two moments

of y
(m)
i ;
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E(y
(m)
i ) = µ

(m)
i = f(xm

i ,β
(m)),

var(y
(m)
i ) = s(m)h(m)(µ

(m)
i ) = σ

2(m)
i ,

where h(m)(·) is a known function, s(m) is a scaling parameter, f (m)(·) is the nonlinear

function of the coefficients and β(m) is a p(m) × 1 vector of model coefficients for

the mth response variable. Let β = (β(1)T ,β(2)T , . . . ,β(M)T )T be the p× 1 vector of

model parameters for all M outcomes, where p = (p(1)+p(2)+ · · ·+p(M)). In the quasi

- likelihood framework with multiple outcomes, the regression coefficients β can be

estimated by solving the Generalized Estimating Equations (GEEs)

S(β) =
n∑

i=1

DT
i V

−1
i ri = 0. (2.9)

For each subject i, let

Di =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂µ
(m)
i

∂β(1)T
0T · · · 0T

0T ∂µ
(m)
i

∂β(2)T
· · · 0T

...
...

. . .
...

0T 0T · · · ∂µ
(m)
i

∂β(Mi)T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

be a Mi×p full-rank derivative matrix, ri = (yi − µi) be a Mi×1 vector of residuals



2.3 Variable Selection via Penalized GEE 28

and Vi = A
1/2
i Ri(α)A

1/2
i , the Mi ×Mi working covariance matrix of yi. Here, Ai

= diag(σ
2(1)
i , σ

2(2)
i , . . . , σ

2(Mi)
i ) is a Mi×Mi diagonal matrix of var(y

(m)
i ) and Ri(α) is

a Mi ×Mi working correlation matrix parameterized with parameter vector α. The

GEE estimator β̂ is asymptotically consistent as n goes to infinity. In the presence of

high dimensional covariates we extend (2.9) to penalized estimating equations. Thus

a penalty term can be incorporated with the aim of adjusting the model to facilitate

the estimation of unbiased parameter estimates.

2.3 Variable Selection via Penalized GEE

Fu (2003) proposed a generalization of the bridge and LASSO penalties to GEE

models, which minimizes the penalized deviance criterion

D(β;X, y) + P (β), (2.10)

where D(β;X, y) = 2ℓ(y;y) − 2ℓ(µ;y) (McCullagh and Nelder, 1989) with log-

likelihood ℓ(µ;y) and P (β) = λ
∑
j

|βj|q, given q > 0. The LASSO estimator is

defined to be a special case with q = 1 (Tibshirani, 1996). This leads to solving

penalized equations;



2.3 Variable Selection via Penalized GEE 29

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(β,X, y) + Ṗ1 = 0

. . .

Fp(β,X, y) + Ṗp = 0

, (2.11)

where Fj(β,X, y) is the jth score of the likelihood and Ṗj = λ
∑
j

q|βj|q−1sgn(|βj|).

This could be generalized to GEE quasi-score function equations.

n∑
i=1

DT
i V

−1
i ri − nṖλ(β) = 0, (2.12)

where Ṗλ(β) = ∂Pλ(β)/∂β is the vector derivative of the penalty function. Fu (2003)

proposed a method by adjusting the iteratively reweighted least squares method for

the penalty function which is equivalent to LQA algorithm. Dziak and Li (2006)

proposed using SCAD for GEE models and showed that SCAD may provide bet-

ter estimation and selection performance than LASSO. Although different penalty

functions can be adopted, in this research we consider only two important penalty

functions: LASSO and SCAD. The first possesses the sparsity function and the second

simultaneously achieves the three desirable properties of variable selection: sparsity,

unbiasedness and continuity, Fan and Li (2001).
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2.3.1 Correlation Structure

An attractive feature of the penalized GEE is that the consistency of the estimated

parameters hold even if the working correlation, R(α) is misspecified. There are sev-

eral choices for the working correlation structure - independent, exchangeable, and

first-order autoregressive (AR(1)) must be specified. However, Sutradhar and Das

(1999), Wang and Carey (2003), and Shults et al (2006) showed that an incorrectly

specified correlation structure leads to substantial loss in estimation efficiency. The

correlation pattern in analyses of different types of responses is rarely known and dif-

ficult to specify. Thus, we suggest using unstructured correlation structure, Ru(α)

to prevent misspecification and loss of efficiency. Liang and Zeger (1986) suggested

simply using the moment estimators based on Pearson residuals to estimate the corre-

lation. Let V̂ (α) = Â1/2diag(R̂u, . . . , R̂u)Â
1/2 be the unstructured covariance matrix

estimate. Specifically,

R̂u =
1

n

n∑
i=1

Â
−1/2
i rir

T
i Â

−1/2
i , (2.13)

where R̂u is obtained without any assumption on the specific structure on the true

correlation matrix.
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2.3.2 Computational Algorithm

To compute β̂, we use the local quadratic approximation (LQA) algorithm suggested

by Fan and Li (2001). With the aid of the LQA, the optimization of (2.12) can be car-

ried out using a modified Newton-Raphson (MNR) algorithm. Let βr = (β1r, . . . , βpr)

be the parameter estimate at the rth iteration.

• We start with an initial β0 ordinary least squares estimate.

• For each iteration r, if βjr is very close to 0 then set β̂jr = 0.

• Otherwise the penalty can be locally approximated by the quadratic function.

The derivative of the penalty can be approximated as

[Pλ(|βj|)]′ = P ′
λ(|βj|)sgn(βj) ≈ {P ′

λ(|βj|)/|βj|}βj.

Thus using Taylor expansions, we can locally approximate equation (2.12) by

S(βr) +
∂S(βr)

∂β
(β − βr)− nUλ(βr)− nΣλ(βr)(β − βr) + · · · = 0 (2.14)

where

Σλ(βr) = diag(P ′
λ(|β1r|)/|β1r|, . . . , P ′

λ(|βpr|)/|βpr|),

Uλ(βr) = Σλ(βr)βr.
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• Applying Newton-Raphson method to equation (2.14), we obtain the follow-

ing iteration for solving the penalized generalized estimating equation. The

estimate of β̂ in the (r + 1)th iteration is,

β̂r+1 = β̂r −
{∂S(β̂r)

∂β
− nΣλ(β̂r)

}−1{
S(β̂r)− nUλ(β̂r)

}
. (2.15)

• Given a selected tuning parameter λ, we repeat the above algorithm to update

β̂r until convergence. The convergence criterion is

∥β̂r − β̂r−1∥2 < ϵ.

for a pre-specified small constant, ϵ.

2.3.3 Tuning Parameter Selection

The numerical performance and the asymptotic behaviour of the penalized regression

models rely on the appropriate choice of the tuning parameter. The tuning parameters

are often employed to balance model sparsity and goodness-of-fit. To optimize the

thresholding parameters θ = (λ, a) for SCAD, we fix a = 3.7 as suggested by Fan

and Li (2001) in practice and only tune λ for SCAD and θ = λ for other penalty

functions (LASSO). Here we discuss two methods of estimating λ: Generalized Cross-

Validation (GCV) (Craven and Wahba, 1979) and Bayesian Information Criterion

(BIC) (Schwarz, 1978).
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Generalized Cross-Validation (GCV)

Generalized Cross-Validation (GCV) proposed by Craven and Wahba (1979) aims to

approximate the leave- one-out cross validation criterion. In the GCV approach, the

value of λ that achieves the minimum of the GCV is the optimal tuning parameter.

The minimization can be carried out by searching over a predetermined grid of points

for λ. For linear smoothers (ŷ = Ly), the GCV is defined by

GCV (λ) =
1

n

RSS(β(λ))

(1− n−1df(λ))2
, (2.16)

where RSS(β(λ)) = (y−Xβ)T (y−Xβ) and df(λ) = tr(X(XTX+nΣλ)
−1XT ) is the

trace of the smoothing matrix L, often called effective number of parameters; Hastie

& Tibshirani (1990), Tibshirani (1996) and Fan & Li (2001). The GCV is com-

putationally convenient and remains as one popular criterion is selecting smoothing

parameter. The nonlinear GCV for the generalized linear model is defined as

GCV (λ) =
Dev

n(1− n−1df(λ))2
, (2.17)

where Dev = 2ℓ(y, y)−2ℓ(µ, y) is the model deviance (McCullagh and Nelder, 1989).

The model deviance replaces the RSS in the GCV for non-Gaussian distributions in

the exponential family. Fu (2003) also recommended an adaptation of GCV where
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RSS is generalized to the weighted deviance,

WDev =
n∑

i=1

rTi R
−1
i ri, (2.18)

where ri = (yi − µi) are the deviance residuals and Ri is the working correlation

matrix.

Bayesian Information Criterion(BIC)

In model selection, Wang et al.(2007) showed that the tuning parameter that is se-

lected by the BIC can identify the true model consistently. Several researchers use

BIC for selecting the optimal λ by minimizing

BIC(λ) = log
(RSS(λ)

N

)
+
( log(N)

N

)
df(λ) (2.19)

where df(λ) is estimated as the number of nonzero variables in β̂(λ) (Zou et al., 2007).

The resulting optimal regularization parameter λ̂BIC is then selected as the one that

minimizes the BIC(λ). The BIC criteria can also be extended beyond linear models

by replacing RSS(λ) with a weighted sum of squares or model deviance (Poisson,

binomial, etc).
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2.3.4 Asymptotic Properties

In this section, we discuss the asymptotic properties for penalized GEE estimator as

the number of subjects goes to infinity. Let

S(β) =
n∑

i=1

DT
i V

−1
i ri, (2.20)

K(β) =
1

n

n∑
i=1

DT
i V

−1
i Di, (2.21)

where Vi is the working covariance and is not assumed to be the same as the true

covariance. For analysis of longitudinal data using penalized estimating equations,

Dziak (2006) showed that the asymptotic consistency and normality of β̂ depends on

the following regularity conditions:

(1) S(β) and K(β) have continuous third derivative in β.

(2) K(β) is positive definite with probability approaching one andthere exist a non-

random function K0(β) such that ∥K(β)−K0(β)∥
p−→ 0 uniformly, K0(β) > 0

for all β.

(3) Si =
∑
i=1

DT
i V

−1
i ri have finite covariance for all β.

(4) The derivative of K0(β) in β are Op(n
−1/2) for all β.

Liang and Zeger (1986) proposed GEEs for the analysis of longitudinal data with a

generalized linear model. The GEEs are multivariate extensions of quasi-likelihood.
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Modeling the same way as longitudinal data, the following theorems from Dziak (2006)

can be easily extended to apply to GEE for the multivariate multiple regression case.

Assuming µ
(m)
i is correctly specified by f (m)(x

(m)
i ,β(m)), α̂ and scaling parameters are

appropriately chosen, then smooth nonlinear models with continuous derivatives have

been shown to satisfy these regularity conditions for penalized estimating equation

with multiple outcomes. Dziak (2006) states the following theorems;

Theorem 2.1. Under regularity conditions (1)− (4), for LASSO with λ = Op(n
−1/2)

or for SCAD penalty with λ = op(1) there exists a sequence β̂n of solutions such that

∥β̂n − β∥ = Op(n
−1/2).

Following Dziak (2006), Theorem 2.1 shows model consistency of the penalized

estimating equation 2.12 with LASSO (λ = Op(n
−1/2)) and SCAD penalty ( λ =

op(1)) when the number of subjects n goes to infinity. If β = (βA,βN ) is the true

vector of regression coefficients with two subsets: A = {j : βj ̸= 0} as the active

(non-zero) coefficients and N = {j : βj = 0} as the inactive (zero) coefficients then

for selection consistency, we require both sparsity (deleting zero coefficients) and

sensitivity (retaining non-zero coefficients) properties (Fan and Li, 2001).

Theorem 2.2. (Asymptotic Normality) Under the conditions of Theorem 2.1,
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there exist a sequence β̂ of solutions to equation 2.12 such that

√
n(β̂A − βA)

L−→ N(0,Φ) (2.22)

Again, following Dziak (2006) Theorem 2.2 indicates that the parameter estimates

for 2.12 are asymptotically normal, i.e,

√
n(β̂ − β)

L−→ N(0,Φ) (2.23)

where Φ is the limit in probability of

Φn =[ n∑
i=1

DT
i V

−1
i Di−nΣλ(β̂)

]−1{ n∑
i=1

DT
i V

−1
i cov(yi)V

−1
i Di

}[ n∑
i=1

DT
i V

−1
i Di−nΣλ(β̂)

]−1

Since the proofs of Theorem 2.1 and 2.2 are similar to that of Dziak (2006) by

replacing quasi-likelihood based on multiple responses (Coffey and Gennings, 2007a,

2007b), we ignore the proofs here.

It should be noted that the variable selection methods in general does not guaran-

tee the consistency property there by does not guarantee classical inference theory in

some situations. Post-selection inference procedure is one of the option to overcome

the problem by utilizing the cross-validation approach to part of the data.



Chapter 3

Simulation Studies

We conducted a series of simulation studies to investigate the performance of our

proposed variable selection approach on continuous, binary and count response out-

comes using the LASSO and SCAD penalty functions. Simulations were conducted

using the R software. For faster computations in optimization of tuning parameter

λ, we used the “warm-starting” principle, where the initial value of β is replaced

by β̂(λ+δλ) for the modified N-R algorithm in each simulation. The model that has

minimum BIC(λ) or GCV(λ) is identified as the best model. The model performance

is assessed using model error (ME, Fan and Li 2001) and their standard error, correct

deletions and incorrect deletions. Model error is due to lack of fit of an underlying

model and is denoted by ME(β̂). The size of the model error reflects how well the
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model fits the data.

ME(β̂) = Ex{µ(Xβ)− µ(Xβ̂)}2

where µ(Xβ) = E(y|X). Model error has been expressed as median of the relative

model error (MRME). The relative model error is defined as

RME =
ME

MEfull

,

where MEfull is the model error calculated by fitting the data with the full model.

Correct deletions are the average number of true zero coefficients correctly estimated

as zero and incorrect deletions are the average number of true nonzero coefficients

erroneously set to zero. Estimated values for correct and incorrect deletions are

reported in the columns “Correct” and “Incorrect”, respectively. For comparison

purposes, we estimated the covariance matrix of the response variables based on both

unstructured working correlation (UWC) and independent working correlation (IWC)

to investigate the performance of the GEE methodology (Coffey & Gennings, 2007a).

We simulated 1000 data sets consisting of n = 50 and n = 100 observations from the

response model

g(E(Y )) = XT
ijβ

where i = 1, 2, . . . n subjects and j = 1, 2, . . . ,m responses. For binary outcomes we

use a logit link, log link for count and for a continuous (normal) outcome we use
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the identity link function. The covariates Xij were generated from the multivariate

normal distribution with marginal mean 0, marginal variance 1 and AR(1) correla-

tion with ρx = 0.5. For simulations, we considered the following cases of continuous,

binary and count response outcomes with different true β values and correlation pa-

rameter, ρy between the responses and σ2
y = 1.

3.1 Simulation for Normal and Binary responses

3.1.1 Case 1: Correlated Three Normal Responses

We consider correlated normal responses (m = 3) with AR(1) true correlation with pa-

rameter ρy = 0.7 and two covariates (k = 2) with β = (β(1),β(2),β(3)) = ((3, 1.5), (0, 0),

(2, 0)). Simulation results are summarized in Tables 3.1 and 3.2 for IWC and UWC

respectively. From Table 3.1 & 3.2, we see that the nonzero estimates of both SCAD

and LASSO are close to the true values, i.e: β
(1)
1 = 3, β

(1)
2 = 1.5 and β

(3)
1 = 2 but

the standard errors of the estimates in Table 3.2 decreases which can be attributed

to the correlation between the responses. For both n = 50 and n = 100, the mean

model error and its standard error for SCAD are smaller than LASSO. The average

number of zero coefficients increases as n increases in Table 3.2 especially for SCAD.
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Selection Penalty MRME Correct Incorrect
n = 50

λ̂GCV SCAD 0.064 1.297 0.000
LASSO 0.092 0.982 0.001

λ̂BIC SCAD 0.053 1.532 0.000
LASSO 0.113 1.180 0.002

n = 100

λ̂GCV SCAD 0.030 1.298 0.000
LASSO 0.038 0.871 0.001

λ̂BIC SCAD 0.025 1.538 0.000
LASSO 0.043 1.066 0.000

Selection Penalty β̂
(1)
1 β̂

(1)
2 β̂

(3)
1

n = 50

λ̂GCV SCAD 2.998(0.171) 1.496(0.168) 1.993(0.154)
LASSO 2.898(0.203) 1.388(0.219) 1.831(0.229)

λ̂BIC SCAD 2.998(0.171) 1.496(0.168) 1.992(0.147)
LASSO 2.866(0.236) 1.356(0.244) 1.789(0.266)

n = 100

λ̂GCV SCAD 2.998(0.115) 1.506(0.116) 1.996(0.105)
LASSO 2.931(0.170) 1.438(0.154) 1.891(0.152)

λ̂BIC SCAD 2.998(0.115) 1.506(0.115) 1.998(0.100)
LASSO 2.898(0.216) 1.403(0.192) 1.857(0.190)

Table 3.1: Simulations results for correlated normal responses (Case 1) with IWC.

This indicates that SCAD performs well compared to LASSO.

3.1.2 Case 2: Correlated Two Normal and One Independent

Binary Responses

We simulated three outcomes (m = 3) - two continuous and one binary. The contin-

uous outcomes were generated from a normal distribution and were correlated

with AR(1) true correlation with parameter ρy = 0.7 and the binary outcome from an

independent binary observation and two covariates (k = 2) with β = (β(1),β(2),β(3)) =
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Selection Penalty MRME Correct Incorrect
n = 50

λ̂GCV SCAD 0.045 1.457 0.000
LASSO 0.079 1.214 0.001

λ̂BIC SCAD 0.035 1.661 0.000
LASSO 0.079 1.261 0.011

n = 100

λ̂GCV SCAD 0.022 1.513 0.000
LASSO 0.040 1.265 0.000

λ̂BIC SCAD 0.017 1.696 0.000
LASSO 0.040 1.318 0.000

Selection Penalty β̂
(1)
1 β̂

(1)
2 β̂

(3)
1

n = 50

λ̂GCV SCAD 2.999(0.155) 1.496(0.145) 1.992(0.137)
LASSO 2.884(0.200) 1.427(0.156) 1.842(0.185)

λ̂BIC SCAD 3.000(0.145) 1.496(0.131) 1.993(0.122)
LASSO 2.861(0.212) 1.421(0.164) 1.823(0.236)

n = 100

λ̂GCV SCAD 2.998(0.102) 1.505(0.098) 1.996(0.091)
LASSO 2.921(0.122) 1.457(0.100) 1.892(0.125)

λ̂BIC SCAD 2.999(0.092) 1.504(0.090) 1.996(0.083)
LASSO 2.917(0.122) 1.454(0.100) 1.887(0.124)

Table 3.2: Simulations results for correlated normal responses (Case 1) with UWC.

((3, 1.5), (0, 0), (2, 0)). Simulation results are summarized in Tables 3.3 and 3.4 for

IWC and UWC respectively. We see from Tables 3.3 & 3.4 that, the nonzero

estimates for IWC remained similar to those in UWC. However because of the large

correlation (0.7) between the continuous responses, the standard errors of β
(1)
1 = 3,

β
(1)
2 = 1.5 decreases for UWC. Again, the average number of zero coefficients increases

for UWC compared to IWC. As the sample size of SCAD is increased, the mean model

error and its standard error decreases for both GCV and BIC. LASSO estimates for

β
(1)
3 are not close to the true value but the estimates of the nonzero coefficients are all
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Selection Penalty MRME Correct Incorrect
n = 50

λ̂GCV SCAD 0.059 1.755 0.007
LASSO 0.129 1.663 0.024

λ̂BIC SCAD 0.054 2.143 0.030
LASSO 0.154 1.787 0.051

n = 100

λ̂GCV SCAD 0.027 1.816 0.001
LASSO 0.072 1.799 0.023

λ̂BIC SCAD 0.023 2.122 0.003
LASSO 0.095 2.002 0.043

Selection Penalty β̂
(1)
1 β̂

(1)
2 β̂

(3)
1

n = 50

λ̂GCV SCAD 2.995(0.171) 1.494(0.165) 2.192(0.799)
LASSO 2.888(0.188) 1.381(0.201) 0.772(0.423)

λ̂BIC SCAD 2.996(0.171) 1.494(0.165) 2.069(0.919)
LASSO 2.864(0.204) 1.355(0.218) 0.687(0.419)

n = 100

λ̂GCV SCAD 2.997(0.115) 1.506(1.113) 2.078(0.487)
LASSO 2.906(0.145) 1.413(0.144) 0.903(0.435)

λ̂BIC SCAD 2.997(0.115) 1.506(0.113) 2.060(0.470)
LASSO 2.876(0.159) 1.381(0.167) 0.731(0.383)

Table 3.3: Simulations results for correlated normal and independent binary responses
(Case 2) with IWC.

close to the true values for SCAD. Thus, SCAD performs well compared to LASSO.

3.1.3 Case 3 : Correlated Two Normal and One Binary Re-

sponses

We simulated three outcomes (m = 3) - two continuous and one binary generated us-

ing unstructured correlation structure with parameters ρ12 = 0.3, ρ13 = 0.4 and ρ23 =

0.6 and two covariates (k = 2) with β = (β(1),β(2),β(3)) = ((3, 1.5), (0, 0), (2/3, 0)).The

β values for the binary outcome had to be smaller than before to avoid numerical
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Selection Penalty MRME Correct Incorrect
n = 50

λ̂GCV SCAD 0.056 1.829 0.005
LASSO 0.094 1.762 0.006

λ̂BIC SCAD 0.037 2.209 0.037
LASSO 0.097 1.824 0.008

n = 100

λ̂GCV SCAD 0.025 1.825 0.001
LASSO 0.057 1.880 0.002

λ̂BIC SCAD 0.015 2.336 0.001
LASSO 0.063 2.091 0.002

Selection Penalty β̂
(1)
1 β̂

(1)
2 β̂

(3)
1

n = 50

λ̂GCV SCAD 2.995(0.156) 1.492(0.148) 2.192(0.815)
LASSO 2.918(0.148) 1.429(0.141) 0.782(0.391)

λ̂BIC SCAD 2.998(0.142) 1.488(0.133) 2.076(0.936)
LASSO 2.912(0.150) 1.424(0.140) 0.739(0.364)

n = 100

λ̂GCV SCAD 2.999(0.108) 1.501(1.002) 2.079(0.480)
LASSO 2.938(0.102) 1.453(0.094) 0.882(0.388)

λ̂BIC SCAD 3.002(0.096) 1.498(0.102) 2.066(0.469)
LASSO 2.927(0.097) 1.445(0.091) 0.767(0.299)

Table 3.4: Simulations results for correlated normal and independent binary responses
(Case 2) with UWC.

instability. Correlated normal and binary outcomes were generated in R using the

BinNor package of Anup Amatya and Hakan Demirtas for generating multiple binary

and normal variables simultaneously given marginal characteristics and association

structure based on the methodology proposed by Demirtas and Doganay (2012). Sim-

ulation results are summarized in Tables 3.5 and 3.6 for IWC and UWC respectively.

From Tables 3.5 & 3.6., we see that if the sample size is increased, the mean model

error and its standard error are reduced. Again, the standard error of the nonzero

parameter estimates for UWC are reduced compared to IWC. The average number of
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Selection Penalty MRME Correct Incorrect
n = 50

λ̂GCV SCAD 0.071 1.916 0.209
LASSO 0.092 1.343 0.173

λ̂BIC SCAD 0.070 2.446 0.301
LASSO 0.119 1.509 0.258

n = 100

λ̂GCV SCAD 0.034 1.775 0.066
LASSO 0.050 1.449 0.084

λ̂BIC SCAD 0.047 2.430 0.151
LASSO 0.056 1.622 0.152

Selection Penalty β̂
(1)
1 β̂

(1)
2 β̂

(3)
1

n = 50

λ̂GCV SCAD 2.997(0.167) 1.499(0.171) 0.543(0.520)
LASSO 2.899(0.202) 1.395(0.214) 0.241(0.224)

λ̂BIC SCAD 2.997(0.167) 1.499(0.170) 0.246(0.461)
LASSO 2.886(0.219) 1.361(0.238) 0.212(0.222)

n = 100

λ̂GCV SCAD 2.998(0.114) 1.503(0.116) 0.633(0.201)
LASSO 2.918(0.149) 1.421(0.157) 0.287(0.194)

λ̂BIC SCAD 2.998(0.113) 1.503(0.115) 0.309(0.432)
LASSO 2.892(0.166) 1.393(0.188) 0.253(0.185)

Table 3.5: Simulations results for correlated normal and binary responses (Case 3)
with IWC.

zero coefficients using SCAD with BIC for all sample size are close the target value

of three and the nonzero estimated coefficients are close to the true values for n = 50

and n = 100 for SCAD with GCV.

3.1.4 Case 4 : Correlated Two Normal and One Independent

Count Responses

We simulated three outcomes (m = 3) - two continuous and one count. The contin-

uous outcomes were generated from a normal distribution and were correlated with
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Selection Penalty MRME Correct Incorrect
n = 50

λ̂GCV SCAD 0.065 1.975 0.167
LASSO 0.098 1.538 0.117

λ̂BIC SCAD 0.059 2.493 0.242
LASSO 0.106 1.601 0.241

n = 100

λ̂GCV SCAD 0.031 1.980 0.041
LASSO 0.059 1.578 0.057

λ̂BIC SCAD 0.037 2.537 0.094
LASSO 0.063 1.700 0.079

Selection Penalty β̂
(1)
1 β̂

(1)
2 β̂

(3)
1

n = 50

λ̂GCV SCAD 2.998(0.153) 1.496(0.153) 0.574(0.498)
LASSO 2.883(0.178) 1.417(0.173) 0.209(0.237)

λ̂BIC SCAD 2.993(0.147) 1.495(0.145) 0.287(0.464)
LASSO 2.872(0.180) 1.407(0.181) 0.190(0.219)

n = 100

λ̂GCV SCAD 2.998(0.105) 1.500(0.106) 0.643(0.337)
LASSO 2.907(0.121) 1.442(0.113) 0.256(0.211)

λ̂BIC SCAD 2.990(0.100) 1.499(0.097) 0.357(0.433)
LASSO 2.894(0.126) 1.421(0.122) 0.216(0.184)

Table 3.6: Simulations results for correlated normal and binary responses (Case 3)
with UWC.

AR(1) true correlation with parameter ρy = 0.7 and the count outcome from an inde-

pendent Poisson observations and two covariates (k = 2) with β = (β(1),β(2),β(3)) =

((3, 1.5), (0, 0), (2, 0)). Simulation results are summarized in Table 3.7 and 3.8 for

IWC and UWC respectively. From Tables 3.7 & 3.8., we see that the nonzero

parameter estimates are close to the true values. The incorporation of the correlation

resulted in decreased standard errors of nonzero parameters.

Overall, from Tables 3.1-3.8, we see that the nonzero estimates are unbiased re-

gardless of the correlation structure. However the unstructured correlation resulted in
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Selection Penalty MRME Correct Incorrect
n = 50

λ̂GCV SCAD 0.214 0.932 0.000
LASSO 0.254 0.957 0.010

λ̂BIC SCAD 0.188 1.110 0.000
LASSO 0.911 1.178 0.014

n = 100

λ̂GCV SCAD 0.906 0.988 0.000
LASSO 0.871 1.013 0.002

λ̂BIC SCAD 0.834 1.096 0.000
LASSO 0.864 1.225 0.000

Selection Penalty β̂
(1)
1 β̂

(1)
2 β̂

(3)
1

n = 50

λ̂GCV SCAD 3.000(0.172) 1.502(0.174) 1.999(0.057)
LASSO 2.873(0.291) 1.379(0.243) 1.978(0.073)

λ̂BIC SCAD 3.000(0.172) 1.502(0.174) 1.990(0.052)
LASSO 2.831(0.340) 1.338(0.268) 1.972(0.085)

n = 100

λ̂GCV SCAD 3.004(0.117) 1.497(0.119) 1.999(0.032)
LASSO 2.910(0.185) 1.405(0.173) 1.989(0.042)

λ̂BIC SCAD 3.003(0.118) 1.497(0.119) 1.999(0.030)
LASSO 2.876(0.181) 1.366(0.198) 1.987(0.033)

Table 3.7: Simulations results for correlated normal and independent count responses
(Case 4) with IWC.

decreased standard errors of estimates compared to independent working correlation

based estimates. The average number of zero coefficients increases in unstructured

correlation tables compared to independent. We notice a decrease in mean model

error when the sample size increases from 50 to 100 for both LASSO and SCAD.

SCAD has smaller mean model error than LASSO in all cases. Specifically, SCAD

with BIC perform well.
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Selection Penalty MRME Correct Incorrect
n = 50

λ̂GCV SCAD 0.209 1.183 0.000
LASSO 0.244 1.076 0.001

λ̂BIC SCAD 0.185 1.303 0.000
LASSO 0.851 1.173 0.012

n = 100

λ̂GCV SCAD 0.894 1.260 0.000
LASSO 0.866 1.205 0.001

λ̂BIC SCAD 0.818 1.372 0.000
LASSO 0.832 1.264 0.000

Selection Penalty β̂
(1)
1 β̂

(1)
2 β̂

(3)
1

n = 50

λ̂GCV SCAD 3.003(0.162) 1.496(0.169) 2.000(0.055)
LASSO 2.934(0.178) 1.426(0.171) 1.981(0.060)

λ̂BIC SCAD 3.000(0.157) 1.498(0.164) 2.000(0.051)
LASSO 2.909(0.271) 1.408(0.203) 1.976(0.101)

n = 100

λ̂GCV SCAD 3.005(0.109) 1.495(0.110) 2.998(0.032)
LASSO 2.951(0.140) 1.443(0.117) 1.991(0.034)

λ̂BIC SCAD 3.003(0.104) 1.495(0.103) 2.000(0.030)
LASSO 2.948(0.105) 1.439(0.114) 1.990(0.033)

Table 3.8: Simulations results for correlated normal and independent count responses
(Case 4) with UWC.



Chapter 4

Case Studies

4.1 Concrete Slump Test Data

In this section, we apply variable selection to concrete slump test data set. The data

comes from a study by Yeh, I-Cheng (2006, 2007, 2008, 2009) to model the slump-

flow of fly ash and slag concrete as a function of seven concrete ingredients measured

in kg/m3, including cement (X1), fly ash (X2), blast furnace slag (X3), water (X4),

superplasticizer (X5), and coarse aggregate (X6) and fine aggregate (X7). The data

set report some results about two kinds of tests executed on concrete. Concrete is a

highly complex material, which makes modeling its behavior a very difficult task. The

workability of concrete can be measured by the “concrete slump test”, a simplistic
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measure of the plasticity of a fresh batch of concrete. The concrete slump test is in

essence, a method of quality control. For a particular mix, the slump should be consis-

tent. A change in slump height would demonstrate an undesired change in the ratio of

the concrete ingredients; the proportions of the ingredients are then adjusted to keep

a concrete batch consistent. This homogeneity improves the quality and structural

integrity of the concrete. The second test considered is “compressive strength test”

where this test measure the capacity of a material to withstand axially directed push-

ing forces. The variance of slump and flow was observed. The slump is the difference of

height of the concrete mix after being placed in the slump cone and the cone. It differs

from one sample to another. Samples with lower heights are predominantly used in

construction, with samples having high slumps commonly used to construct roadway

pavements. The flowability is measured in terms of spread, hence the flow correspond

to the width of the patty. The three output variables include slump (cm), flow (cm)

and 28-day compressive strength (CS) (Mpa). The data comprises 103 samples and it

is available at http://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test. A more

detailed description of the data set can be found in Yeh, I-Cheng (2006, 2007, 2008,

2009). Figure 4.1 and Table 4.1 show the association strength among the three

responses. It is shown that slump (Y1) and flow (Y2) are highly correlated, with a

positive correlation of 0.9061. We can use penalized GEE to utilize that additional
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Figure 4.1: Scatter plot demonstrating visually the relationship between slump (Y1),
flow (Y2) and compressive strength (CS) (Y3)

SLUMP FLOW CS
SLUMP 1 0.9061 -0.2233
FLOW 0.9061 1 -0.1240
CS -0.2233 -0.1240 1

Table 4.1: Correlation matrix for the responses

information in the selection of significant variables for this data set. The estimates

are given in Table 4.2-4.4.

The second and third columns of Tables 4.2-4.4 represent performance using pe-

nalized GEE with IWC for SCAD and LASSO. The fourth and fifth columns of the
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IWC UWC

Variable SCAD LASSO SCAD LASSO
X1 – – – –

– – – –
X2 -0.0297 -0.0375 – –

(0.0021) (0.0013) – –
X3 -0.0061 -0.0098 -0.0023 -0.0023

(0.0001) (0.0010) (0.0003) (0.0003)
X4 0.0866 0.1222 0.0278 0.0278

(0.0003) (0.0025) (0.0015) (0.0015)
X5 – – – –

– – – –
X6 -0.0011 -0.0017 – –

(0.0000) (0.000) – –
X7 0.0070 – 0.0163 0.0163

(0.0000) – (0.0000) (0.0000)

Table 4.2: Estimates of regression coefficients for slump (Y1), with standard error in
parentheses

tables represent performance using penalized GEE with UWC. For the model selec-

tion procedures, both unweighted BIC and GCV were used to estimate regression

coefficients. However, their performance was similar. Therefore, we present only the

results based on the unweighted BIC for both SCAD and LASSO. We see from Ta-

ble 4.2 that, SCAD with IWC identified 5 out of the 7 covariates as important for

slump(Y1) whereas LASSO with IWC identified 4 covariates. The difference between

them is that SCAD kept fine aggregate (X7). SCAD and LASSO with UWC obtained

the same estimates for all variables, they retained fine aggregate (X7) but forced fly
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IWC UWC

Variable SCAD LASSO SCAD LASSO
X1 – – – –

– – – –
X2 -0.0529 -0.0715 -0.0169 -0.0169

(0.0024) (0.2544) (0.0022) (0.0022)
X3 – – – –

– – – –
X4 0.2868 0.3341 0.2507 0.2507

(0.0004) (0.0077) (0.0000) (0.0000)
X5 – – – –

– – – –
X6 -0.0033 -0.0121 – –

(0.0000) (0.0031) – –
X7 – – – –

– – – –

Table 4.3: Estimates of regression coefficients for flow (Y2), with standard error in
parentheses

ash (X2) and coarse aggregate (X6) to zero. From Table 4.3 we see that, both SCAD

and LASSO with IWC chose fly ash (X2), water (X4) and coarse aggregate (X6) as

significant ingredients for flow (Y2) but SCAD and LASSO with UWC identified only

fly ash (X2) and water (X4) as significant variables. The standard errors of estimates

with UWC decreases. From Table 4.4 we see that, LASSO with IWC chose all co-

variates as important ingredients for CS (Y3) except coarse aggregate (X6) whereas

the others dropped coarse aggregate (X6) as well as superplasticizer (X5).
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IWC UWC

Variable SCAD LASSO SCAD LASSO
X1 0.1017 0.1032 0.0972 0.0972

(0.0000) (0.0000) (0.0000) (0.0000)
X2 0.0322 0.0337 0.0229 0.0299

(0.0000) (0.0000) (0.0000) (0.0000)
X3 0.0920 0.0931 0.0871 0.0871

(0.0004) (0.0003) (0.0007) (0.0007)
X4 -0.0866 -0.0802 -0.0494 -0.0494

(0.0000) (0.0000) (0.0000) (0.0000)
X5 – 0.0173 – –

– (0.0000) – –
X6 – – – –

– – – –
X7 0.0165 0.0174 0.0119 0.0119

(0.0000) (0.0000) (0.0000) (0.0000)

Table 4.4: Estimates of regression coefficients for compressive strength (Y3), with
standard error in parentheses

4.1.1 Concrete Slump Test Data With Artificial Binary Re-

sponse

For illustration purposes, we create an artificial binary response variable to indicate

whether a specimen can sustain a heavy load before distortion. For this analysis,

we consider that concrete with compressive strength less than 35 is of poor quality.

So for illustration purpose, we convert this continuous variable response to binary

based on the quality. Let Y3 = 1 if the compressive strength is more than 35, and
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Y3 = 0 otherwise. The goal is to apply variable selection method to model correlated

continuous and binary outcomes. The estimates are given in Tables 4.5-4.7. The

description of Tables 4.5-4.7 is the same as Tables 4.2-4.4.

IWC UWC

Variable SCAD LASSO SCAD LASSO
X1 – – – –

– – – –
X2 -0.0298 -0.0375 – -0.0173

(0.0017) (0.0017) – (0.0000)
X3 -0.0061 -0.0098 -0.0042 -0.0071

(0.0001) (0.0016) (0.0002) (0.0002)
X4 0.0869 0.1222 0.0494 0.0753

(0.0003) (0.0041) (0.0014) (0.0097)
X5 – – – –

– – – –
X6 -0.0011 -0.0017 – –

(0.0000) (0.000) – –
X7 0.0070 – 0.0113 0.0073

(0.0000) – (0.0001) (0.0006)

Table 4.5: Estimates of regression coefficients for slump (Y1), with standard error in
parentheses

From Table 4.5 we see that, SCAD with IWC identified 5 out of the 7 covariates

as important for slump (Y1) whereas LASSO with IWC identified 4 covariates. The

difference between them is that SCAD kept fine aggregate (X7). These results are

similar to independent results in Table 4.2, which confirms the use of IWC. SCAD

with UWC forced fly ash (X2) to zero compared to SCAD with IWC. LASSO with
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IWC UWC

Variable SCAD LASSO SCAD LASSO
X1 – – – –

– – – –
X2 -0.0529 -0.0715 -0.0192 -0.0514

(0.0032) (0.0672) (0.0030) (0.0013)
X3 – – – –

– – – –
X4 0.2868 0.3341 0.2725 0.3171

(0.0005) (0.0086) (0.0005) (0.0088)
X5 – – – –

– – – –
X6 -0.0034 -0.0121 -0.0041 -0.0104

(0.0000) (0.0011) (0.0000) (0.0005)
X7 – – – –

– – – –

Table 4.6: Estimates of regression coefficients for flow (Y2), with standard error in
parentheses

UWC maintained the same important variables as LASSO with IWC. From Table

4.6, we see that all methods identified fly ash (X2), water (X4) and aggregate (X6)

as significant variables for flow (Y2). From Table 4.7, we see that all methods chose

5 covariates as important ingredients for binary CS (Y3) except LASSO with IWC.

Estimates obtained with UWC have reduced standard errors.
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IWC UWC

Variable SCAD LASSO SCAD LASSO
X1 0.0378 0.0448 0.0336 0.0431

(0.0108) (0.0463) (0.0004) (0.0039)
X2 0.0055 0.0077 0.0018 0.0057

(0.0045) (0.0108) (0.0000) (0.0016)
X3 0.0403 0.0471 0.0356 0.0451

(0.0097) (0.0430) (0.0003) (0.0037)
X4 -0.0361 -0.0483 -0.0292 -0.0416

(0.0277) (0.0410) (0.0007) (0.0091)
X5 – – – –

– – – –
X6 -0.0089 -0.0104 -0.0082 -0.0098

(0.0002) (0.0008) (0.0000) (0.0001)
X7 – 0.0012 – –

– (0.0009) – –

Table 4.7: Estimates of regression coefficients for binary compressive strength (Y3),
with standard error in parentheses
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Conclusion

Variable selection plays a pivotal role in modeling correlated responses due to large

number of covariate variables involved. Thus a parsimonious model is always desir-

able to enhance model predictability and interpretation especially in multi-response

regression models. To automatically and simultaneously select significant variables,

we proposed penalized GEE approach to multi-response regression problem using

LASSO and SCAD penalty functions. To implement the proposed approach, one need

to estimate the covariance matrix of the response variables and we recommend covari-

ance matrix based on the estimate of the unstructured correlation matrix. For model

selection, the performance of unweighted BIC and GCV were explored for LASSO
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and SCAD through series of simulation studies. In each case, we performed the en-

tire analysis with both unstructured working correlation (UWC) and independent

working correlation (IWC) for comparison purpose. We discussed the computational

algorithm and asymptotic properties of our approach. Simulation studies showed that

SCAD with BIC tuning criteria works well compared to the other pairs. The estimates

of β are unbiased (Liang and Zeger, 1986) regardless of the choice of correlation struc-

ture. However, estimates obtained from the UWC have reduced standard errors. We

also applied our method to concrete slump test data to investigate variable selection

in continuous and binary multi-response framework. Future research are warranted

to gain more insights on their properties including their strengths and weakness. In

conclusion, we hope our methodology may prove useful and support variable selection

and estimation of coefficients in multivariate multi-response regression problem.
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