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ABSTRACT 

A significant volume of traffic uses a rail-truck intermodal transportation network, 

making it the preferred transportation medium for customers. Thus, the associated 

infrastructure of rail-truck intermodal transportation should be considered critical, i.e., 

systems and assets whose destruction (or disruption) would have a crippling effect on 

security, economy, public health, and safety. Disruptions could be induced by nature such 

as hurricane Katrina in 2005, or man-made disturbances such as the 9/11 terrorist attacks 

in the United States. This thesis proposes an analytical approach to preserve, as much as 

possible, the functionality of a rail-truck intermodal transportation system in the wake of 

worst-case attacks. As such, it will serves as an aid to the top managers to compare the 

cost of implementing protective measures with the benefits that such measures could 

bring. A tri-level Defender-Attacker-Defender (DAD) approach is proposed to model this 

situation, where the outermost problem belongs to the network operator with a limited 

budget to protect some of the terminals, the middle level problem belongs to the attacker 

with enough resources to interdict some of the un-protected terminals, and the innermost 

problem belongs to the intermodal operator who attempts to meet the demand on a 

reduced network with the minimum cost. Since the resulting model is very difficult to 

solve by any optimization package, efficient solution techniques have been developed for 

solving this model. Finally, the proposed framework is applied to the rail-truck 

intermodal transportation network of a Class I railroad operator in North America to 

discover the optimal way to protect the system.  
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Chapter 1: Introduction 

1.1 Background and Motivation 

Critical infrastructure, as defined by the U.S. Government, consists of systems and assets, 

physical or virtual, which have a vital role to the society such that destruction of them 

would have a crippling effect on security, economy, public health, safety or any 

combination of these. 

The infrastructures of supply chains, like other kinds of critical infrastructures, are 

susceptible to risk of failures. Recent high-profile events, like the attacks of 11 September 

2001, hurricane Katrina, and earthquakes in Japan, especially the ones that hit nuclear 

power stations in March 2011, clearly show how disruptions can plague supply chains 

and impose direct and indirect costs to society. In response to these events, the United 

States and other countries have started initiatives to assess threats to critical 

infrastructures and to develop defense plans that help prevent attacks and mitigate their 

effects.  This is especially important during strategic planning because long term 

decisions, like network design and facility location, cannot be easily modified. 

In an effort to increase common understanding about the risks that supply chains are 

facing, Chopra and Sodhi (2012) have categorized a variety of risks, including the risk of 

disruption, for supply chains together with their drivers. They defined disruption as a risk 

that negatively influences the flow of material anywhere in the supply chain which can 

happen due to war or terrorism, natural disasters, and labour strikes.   
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It should be noted that in addition to the surge in the number and magnitude of risks in 

recent decades, tightly optimized and lean supply chain practices are contributing to the 

vulnerability of these systems. Thus, in contradiction to conventional wisdom, it can be 

argued that supply chains should have more redundancy to provide a buffer against 

uncertainties and risks. Nevertheless, companies have historically been reluctant to invest 

in additional supply chain infrastructure or inventories despite large payoffs that such 

investments can have if a disruption happens. Yet, some companies, like WalMart, have 

launched programs like business continuity planning (BCP) to smooth their operations 

during various disruptions (Buffy, 2006). 

In recent years, growing freight volumes, increasingly congested roads, and 

environmental concerns have contributed to the prominence of rail-truck intermodal 

transportation such that the volume of such traffic has increased more than three times in 

the last three decades (AAR, 2015). Despite such importance, the issue of vulnerability 

assessment of rail-truck intermodal transportation to disruptions and taking preventive 

fortification plans has not been investigated so far.  

1.2 Literature Review 

This literature review discusses the planning efforts to address disruptions in supply 

chains in general and rail-truck intermodal transportation in particular. In the first part of 

this literature review, the research efforts regarding the disruption management will be 

categorized and presented. In order to better understand how to manage disruptions, it is 
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necessary to know all the activities around managing disruptions. In the first part of this 

literature review, these key activities will be presented.    

The context of rail-truck intermodal transportation will be elaborated in the second part of 

the literature review.    

1.2.1 The Disaster Operations Life Cycle   

There is a need to organize activities that can be done before and after the occurrence of 

the disaster. The efforts to organize such operations began with Tufekci and Wallace 

(1998) who organized activities into two categories, pre-event and post-event activities. 

Pre-event activities include predicting and analyzing potential threats and preparing plans 

to lessen their effects while the post-event activities contain locating, allocating and 

managing available resources for an effective response. Therefore, a successful disaster 

relief plan should integrate activities of both categories.     

In an extensive review, Altay and Green (2006), in line with United States emergency 

management practice (NEHRP, 2009) further categorized a disaster operations life cycle 

as having four phases: mitigation, preparedness, response, and recovery. Mitigation is the 

combination of measures to either prevent the disaster or to reduce its effects. 

Preparedness includes activities to prepare the community to respond when the disaster 

hits. Response is the actual employment of resources and emergency procedures to 

preserve lives and properties. Finally, recovery involves the actions taken after the 

occurrence of a disaster to stabilize the situation and to restore it to normalcy. In a similar 
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way, Wright, Liberatore, and Nydick (2006) identified four phases for a disaster relief life 

cycle as: planning, prevention, response, and recovery. While the response and recovery 

are exactly the same as defined by Atlay and Green (2006), they have defined the 

planning as the set of long term and strategic activities including policy and risk analysis, 

system design, and resource allocation. Prevention, on the other hand, embraces short-

term activities, like patrolling borders and screening airline passengers, to identify and 

eliminate threats.  

Among pre-disruption activities, the planning is deemed to play the major role because it 

has a significant impact on post-disruption activities like response and recovery. In order 

to better understand this important phase of disruption management, in the remainder of 

this review, the major planning efforts regarding disruptions in supply chains will be 

categorized in three major classes as shown in Figure 1-1: 

 Network design and facility location models: in these models the question is how 

to design networks or to locate facilities at the beginning to satisfy all the demands 

and to hedge against future interruptions in the best way; 

 Vulnerability assessment: in these models, the emphasis is on preparing for the 

worst-case by finding the set of system components that, if lost, would 

dramatically deteriorate the system performance;     

 Fortification planning: these models extend the interdiction and design models. 

For networks that have been formed and their complete redesign would be too 
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costly, fortification models show how to allocate limited resources to improve 

their performance against possible disruptions; 

 

 

 

 

 

 

 

1.2.2 Network Design and Facility Location Models   

In network design models the assumption is that no network currently exists and therefore 

these models start from scratch to form a network that can satisfy the demands as well as 

withstand against disruptions. More specifically, the main premise of these models is that 

the impact of disruptions can be mitigated by the initial design of a system.  

Thus, in the network design models, a network of arcs and nodes needs to be created 

where each node serves as either a source, a sink or a transshipment node and the whole 

network is responsible for delivering the commodities from the source node to the sink 

node using arcs and transshipment nodes. 

A rather similar design problem against disruption, with important practical applications 

in the design of telecommunication networks, is the survivable network design (SND) 

Figure 1-1. The proposed taxonomy of planning 

efforts in disruption management studies 

Planning in Disruption Management Studies 

Network Design and 

Facility Location 

Vulnerability 

Assessment 

Fortification Planning  
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problem which seeks a minimum cost robust network configuration that provides a 

number of alternative paths between nodes of the network (Grotschel, Monma & Stoer, 

1995). SND problems consist of selecting links so that the sum of their costs is minimized 

while some given requirements (like minimum number of paths between every pair of 

nodes that have to exist in any situation) are satisfied. Implementing the SND principle 

ensures that, after the occurrence of the disruption, the service could be restored around 

the damaged components. This is because alternative paths will be used in this situation 

to reroute traffic and bypass the damaged components. In most SND studies the random 

failure of a single network component has been considered which may not guarantee 

network robustness against intentional disruptions (Kerivin & Mahjoub, 2005).  

In facility location models, each facility provides services to its neighboring customers 

and the problem is where to locate these facilities to minimize the total cost of accessing 

them from customers’ locations.  

Snyder and Daskin (2005) extended the classical p-median and uncapacitated fixed 

charge location problems to account for failures of facilities. Also, Peng, Snyder, Lim, 

and Liu (2011) proposed a mathematical model for designing a logistics network that can 

perform well in pre- and post-disruption conditions.   

Resilient design of coverage-based service systems has been accomplished by O’Hanley 

and Church (2011). The authors proposed a model that aims to locate a set of facilities 
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such that the combination of initial demand coverage and the minimum coverage 

following a loss is maximized. 

However, for the networks or facilities that have been formed, redesigning the entire 

system is not always a reasonable solution given the high costs involved with relocating 

facilities and building new networks, and so this is why other strategies should be 

pursued. 

First, in order to assess the significance of disruptions on a given system, the worst-case 

vulnerability analysis needs to be done with the aid of interdiction models. Then, after 

getting a sense of the magnitude of disruptions, in order to optimize the fortification of 

the system, fortification models can be used to decide which parts of the existing network 

should be fortified. In other words, as a less costly alternative, the resistance of existing 

infrastructures can be enhanced through efficient investments in protection and security 

measures. Planning for network protection is an enormous challenge given the complexity 

of today’s logistics systems, the interdependencies among them, and the diversity of 

hazards and threats. 

1.2.3 Vulnerability Assessment 

Most infrastructure systems are designed to handle disruptions that result from accidents 

and random acts of nature. The system reliability techniques have been proposed for 

estimating vulnerability through finding cut-sets, which are the sets of events that are 

most likely to disrupt a system. The system is robust if the combined probability of such 



8 

 

events is sufficiently low. The downside of this kind of analysis is that the infrastructure 

that resists against random failure or whose cut-sets have a low probability of occurrence, 

may not resist against low probability but high consequence disruptions, like an 

intelligent malicious attack, and this is why reliability analysis is not enough to prevent 

against high consequence low probability events (Garcia, 2008).   

Interdiction models have been used extensively over the past few years as a tool for 

assessing network vulnerabilities against worst-case disruptions. As the first step into 

modeling deliberate attacks, interdiction models have a long history in military and 

homeland security operations. Interdiction problems are inherently bi-level since they 

involve conflicting decisions of an interdictor, who tries to degrade the system 

performance, and decisions of system users who try to operate the system in an optimal 

way after interdictions.  

The interdiction studies can be categorized in two classes: network interdiction and 

facility interdiction. In network interdiction, which forms the majority of interdiction 

studies, the effect of losing network components, like arcs and nodes, on some network 

models has been studied. These network models are mainly the minimum cost flow, the 

shortest path, and the maximum flow models. Besides modeling the interruption of flow 

and paths, there has been some research on modeling the effects of interdiction on the 

overall connectivity of the network. In this regard, Grubesic, O’Kelly, and Murray (2003) 

studied the loss of internet services and communication connectivity when certain internet 

backbone links are disrupted.  



9 

 

The maximum flow interdiction problem takes place on a network with designated source 

and sinks nodes with capacitated arcs. The objective is to find a set of flows from source 

to sink that obey flow balance and capacity constraints, and moves as much total flow 

from the source to the sink as possible. Since the user’s goal is to maximize the flow, the 

interdictor has the goal of minimizing the user’s maximum flow. The effect of 

interdiction on the maximum flow problem was studied in Wollmer (1964), and Wood 

(1993).  

Wollmer (1964) represents the earliest mathematical study of an instance of network 

interdiction. Wollmer explores the problem of finding the most critical link, or the arc 

whose removal minimizes the maximum flow from the source node to the sink node, in a 

capacitated flow network. In this study, the interdictor can destroy exactly one arc and the 

user aims to maximize the flow on the remaining network.  

Ratliff, Sicilia, and Lubore (1975) broadens Wollmer’s (1964) basic model to the problem 

of finding a set of arcs in a capacitated network whose removal minimizes the maximum 

flow from the source node to the sink node. While investigating problems of drug 

interdiction, Wood (1993) generalized these models to allow for an interdiction using 

general resource constraints instead of cardinality constraints.   

Related to Wood (1993), the network interdiction model of Washburn and Wood (1995) 

establishes the game between an evader, who wants to traverse paths without being 

detected, and an interdictor, who aims to detect the evader by placing inspection points on 
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some network arcs. The interaction between these two players is modeled as a two-

person, zero-sum, simultaneous game (Cournot) and thus is quite different from 

traditional bi-level interdiction models.  

More specifically, an interdictor places inspectors strategically on some arcs of a 

transportation network to maximize the chance of detecting the evader, who could be a 

drug smuggler, moving secretly on that network. If the evader traverses arc   when an 

inspector is present, he will be detected with the probability   ; otherwise the evader 

won’t be detected.  

In a simultaneous game, none of the players can observe the other’s actions before acting 

himself. Therefore, the solution for this model portrays probabilistic mixed strategies for 

both players. In this case, the interdictor’s strategy defines a probability distribution over 

the inspections’ locations, and the evader’s strategy defines a probability distribution over 

different paths in the network. This is in a sharp contrast with solutions of bi-level 

sequential network interdiction models where deterministic pure strategies for both 

players will be found.   

In the shortest path network interdiction, the user of the network seeks the shortest path 

from the source node to the sink node while the interdictor wishes to take some actions to 

maximize the user’s shortest path cost. Interdiction in this case usually refers to 

eliminating arcs or increasing lengths of arcs.  
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In this regard, Fulkerson and Harding (1977) and Golden (1978) investigate the problem 

of maximizing the length of the shortest path in a network to slow enemy advancements 

using models in which the length of each network arc can be increased linearly within 

limits based on the amount of interdiction resources applied to it. In a closely related 

problem, Malik, Mittal, and Gupta (1989) seeks the k-most-vital-arcs in the network in 

which k arcs will be interdicted and interdiction decisions are binary. If an arc is attacked 

and it becomes destroyed its length becomes infinite, or if it is left unaffected it keeps its 

original length. Israeli and Wood (2002) developed the general resource constraint 

version of this problem.  

In the minimum cost flow interdiction problem, arc costs and capacities are given 

together with supplies and demands at every node. The network user tries to meet all the 

demands while considering the capacity constraints on each arc and minimizing total 

costs. As long as the material is homogenous, the minimum cost flow problem will be the 

best way of satisfying all the demands and minimizing the total costs, whereas when 

materials are heterogeneous, the multi-commodity network flow problem, which 

considers pairs of demands of different types, is the suitable modeling framework. In 

either case, the interdictor attempts to disrupt the network by removing a set of arcs to 

maximize the minimum cost of satisfying demands. As a clear example of this type of 

interdiction, Lim and Smith (2007) studied the revenue maximization variant of multi-

commodity network interdiction which, in the lower level, the network user maximizes 

the revenue by shipping commodities on the network and on the higher level the 
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interdictor destroys arcs to minimize the maximum revenue that the network user can 

make.  

More recently, interdiction models have been developed for service networks composed 

of facilities. The first published work in the facility interdiction of service networks was 

that of Church, Scaparra, and Middleton (2004). They devised two basic interdiction 

models known as r-interdiction median problem (RIM) and r-interdiction covering 

problem (RIC). The objective of both of these models is to find among   existing 

facilities a subset of   facilities whose loss would cause the worst-case service delivery to 

customers.  

The RIM is the direct opposite of the well known p-median problem. The objective of the 

p-median problem is to determine the best places of   facilities among a given number of 

potential places to satisfy customer demands and to minimize the demand-weighted total 

distance. The RIM on the other hand, seeks to maximize the demand-weighted total 

distance by disrupting   facilities out of   facilities when the customers of these   

facilities must be reassigned to other unaffected facilities.   

It should be noted that using deterministic strategies in the bi-level network interdiction 

may bring uncertainty elements into consideration. Cormican, Morton, and Wood (1998) 

developed a stochastic programming version of the maximum flow interdiction problem 

to examine how the interdictor can minimize the expected maximum flow when 

interdiction successes are not guaranteed. They also studied the situation in which arc 
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capacities are uncertain. Whiteman (1999) also considered uncertainty using Monte Carlo 

simulation of maximum flow interdiction models.  

It is worth mentioning that the use of an interdiction framework does not always presume 

the existence of an intelligent attacker. The interdictor sub-problem is merely used as a 

way to estimate the worst-case situation. Therefore, this framework is also applicable to 

problems involving natural disasters when the impact of disruptions are severe enough to 

warrant a highly risk-averse decision making strategy based on minimizing the effects of 

the maximum possible damage. 

1.2.4 Fortification Planning 

A crucial issue in today’s distribution and supply systems is to guarantee continuity and 

efficiency in service provision in the face of natural and man-made threats. If limited 

protective resources are available to increase system robustness, a key question is how to 

allocate these resources in order to preserve the functionality of the whole system as 

much as possible in the case of disruptions.      

At first glance, it seems that the only way to prevent, or even mitigate, the negative 

impacts of disruptions is through the use of design models to dramatically change the 

initial configuration of the system. However, redesigning the entire system is not always 

possible due to its large expenses. Instead, methods for protecting existing systems may 

not only be preferable over the short term, but may also lead to more benefits over the 

passive design strategies in the long term. In addition, many design models are suitable 
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for situations when natural or accidental attacks are major concerns. Therefore, it is 

obvious that modeling protection strategies against intentional attacks, which are worst-

case situations, is completely different since intelligent agents will try to inflict the 

maximum harm and may adjust their offensive strategies to circumvent initial design 

measures.  

One of the popular techniques for infrastructure protection planning against deliberate 

attacks is probabilistic risk assessment (PRA) (Kumamoto & Henley, 1996) which 

extends the traditional risk assessment for non-deliberate attacks (like natural disasters, 

technological failure, and accidents) to deliberate and intentional attacks. The PRA, 

which is quite common among many organizations including the U.S. Department of 

Homeland Security, in its simplest case scores the risk associated with individual attack 

scenarios as Risk=Threat*Vulnerability*Consequence. The threat is the probability of a 

particular attack, vulnerability is the probability that such an attack would be successful 

and the consequence points to the damage incurred by a successful attack in terms of 

economic losses or lives lost. In order to assess these quantities, subject-matter experts 

must be involved. Then, a prioritized investment plan based on the risk scores will be 

created. The PRA, as just described, has some shortcomings.  

First, it requires that event probabilities be defined as static inputs. But, the static 

probabilities are inappropriate for modeling behaviour of an intelligent adversary since 

intelligent adversaries can collect information (Mosleh, Bier & Apostolakis, 1988). 

Furthermore, even if PRA could measure risks correctly by static inputs, it offers no 
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optimized method for allocating a limited budget to minimize the risk. The method of 

spending down the prioritized list until a budget limit is reached is unlikely to be optimal.  

Another tool for optimizing the protection planning is game theory. Game theory 

provides a suitable framework for modeling interaction of different players in this 

environment. The players can be categorized as:  

 Those who want to protect their infrastructure against attacks (the network 

owners); 

 An adversary who is likely to see the protection efforts and wants to maximize the 

damage (the interdictor); 

 People who will see the result of interdictor’s attacks and will try to use the 

attacked infrastructure in the best possible way (the users).  

In Brown, Carlyle, Salmerón, and Wood (2005, 2006), two sorts of models to help 

safeguard systems were introduced: Attacker-Defender (AD), and Defender-Attacker-

Defender (DAD). Attacker-Defender, as a bi-level model, reveals the critical components 

in the network that would be attacked. On the other hand, Defender-Attacker-Defender, 

as a tri-level model, portrays the best set of decisions for the Defender to hedge the 

network against the worst-case attacks of the interdictor. Also, they argued that when the 

effect of attacking a system component can be easily computed, the simpler bi-level 

Defender-Attacker model is capable of finding the best fortification decisions. Finally, the 
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authors provided examples of applying these methods in protecting the strategic 

petroleum reserve, patrolling the border, and the electric power grid. 

Church and Scaparra (2007) add protection of critical facilities to the basic RIM model. 

The new model, which is called interdiction median problem with fortification (IMF), 

seeks to identify   facilities to be protected in a network of service facilities consisting of 

  facilities while   facilities are going to be interdicted. The objective of this model is to 

minimize the total demand-weighted shortest distance between     non-interdicted 

facilities and customers. The disruptions which render   facilities inoperable try to 

maximize the demand satisfaction cost, thus the network planner and the interdictor have 

conflicting objectives. It is also assumed that the interdictor has knowledge of which 

facilities have been protected. Since the formulation of IMF is based on enumerating all 

possible combinations of attacking   facilities out of   facilities, the number of feasible 

solutions grows exponentially with the increase in   and   and this results in a long 

computational time when solving it by the CPLEX solver. Scaparra and Church (2008a) 

develop a new formulation, called the maximal covering problem with precedence 

constraints (MCPC), to solve larger instances of the IMF. The new formulation has the 

advantage of reducing the size of the problem and thus larger problems can be solved to 

optimality by the CPLEX solver.  

In another paper by the same authors, a bi-level expansion of the RIM referred to as R-

Interdiction Median Problem with Fortification (RIMF) is proposed. The lower level of 

the RIMF corresponds to the RIM described earlier in which the interdictor, as the 
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follower, has to solve an interdiction problem. The upper-level of the RIMF is the 

fortification problem of the defender, as the leader. The proposed solution technique of 

the RIMF performs an implicit enumeration on a search tree. The main principle of this 

technique is based on the observation that at least one of the facilities that would be 

interdicted in the worst-case interdiction, or in the solution of the lower-level RIM, must 

be protected. This intuitive observation is repeatedly used in order to reduce the size of 

the search space. Thus, larger instances of RIMF can be solved to optimality by using this 

search tree.   

Aksen, Piyade, and Aras (2010) introduce two new aspects into the original RIMF model: 

general budget constraints for interdictions, as opposed to cardinality constraints, and 

limited but flexible capacity of facilities. Each facility has a flexible service capacity 

which has been determined at the outset according to the pre-attack assignment of 

customers. When a facility is interdicted, its customers pursue the nearest intact facility 

and this necessitates a capacity expansion in that facility proportional to the new demand 

reassigned to it. This new version is solved to optimality using an adaptation of the 

implicit enumeration algorithm described earlier on a binary tree.  

In a later paper, Aksen, Aras, and Piyade (2013) augment their 2010 paper by adding 

facility location concerns. More specifically, the defender needs to simultaneously decide 

where to locate facilities and which facilities to protect. This paper represents the first 

effort in integrating location, protection, and interdiction decisions on a median-type 
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facility service network as a static Stackelberg (Stackelberg, 1952) game between a 

defender and an attacker.   

In an effort to supplement the traditional network design models with the subsequent 

decisions of the interdictor, Smith and Lim (2007) introduced a three-level network 

design model. In the first level, the network designer constructs the network, while in the 

second level the enemy inflicts the damage to the network by reducing the capacity of 

some arcs. Finally, in the third level, the designer maximizes the post interdiction profit 

by solving a multi-commodity flow problem on the remaining network. 

While the need for an all-hazard approach to incorporate the possibility of worst-case and 

random attacks simultaneously is raised in Zhuang and Bier (2007), more recently, the 

idea of inserting probability and uncertainty into traditional fortification models has 

become more appealing. 

Liberatore, Scaparra, and Daskin (2011) studied a variant of RIMF model in which the 

number of attacks is unknown to the defender, and instead, the defender has access to the 

probability distribution of the number of facilities that could be attacked. In this case, the 

defender must safeguard the system against the expected number of attacks. The 

extension of fortification models by Zhu, Zheng, Zhang, and Cai (2013) embraces the 

vulnerability of protected facilities by attaching a probability of success to each protection 

decision of the defender. Subsequently, the impact of random attacks, the attacks when 

the target cannot be predicted, in the median type system of facilities, is discussed in 
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Zhang, Zheng, Zhu, and Cai (2014). In this case, the defender needs to preserve the 

system in a way that minimizes the expected cost of operating the system. Furthermore, in 

the same paper, the authors introduce a unified model that integrates worst-case and 

random attacks. Random attacks happen due to 1) misplacement or observation errors in 

the attacker’s side in imposing intentional attacks or 2) natural disasters. In both cases of 

random attacks, the defender is unable to predict where the attack is going to happen. 

Therefore, the defender has to protect the system against both types of random and worst-

case attacks.  

1.2.5 Rail-Truck Intermodal Transportation 

Rail-truck intermodal transportation is one of the most important parts of modern supply 

chains. In 2014, according to the Association of American Railroads (AAR), intermodal 

transportation was responsible for almost 22 percent of total revenue for major U.S. 

railroads surpassing the transportation of coal, which traditionally was the largest source 

of revenue for railroads. Also, the volume of intermodal traffic has increased dramatically 

from 3.1 million containers and trailers in 1980 to 13.5 million containers and trailers in 

2014 (AAR, 2015). 

Broadly speaking, rail-truck intermodal transportation refers to the transportation of 

freight from origins to destinations by a sequence of rail and truck transportations. 

Transfers from one mode to the other are performed at intermodal terminals. 
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The fundamental idea of intermodal transportation is to consolidate small loads for 

efficient long-haul transportation (by ocean vessels or rail), while using convenient local 

pick-up and delivery operations of trucks. In many cases, intermodal transportation is 

container-based transportation. The focus here is on rail-truck transportation of containers 

which has four main decision makers: drayage operator, terminal operator, network 

operator and intermodal operator. The drayage operator is responsible for the planning 

and scheduling of trucks between the terminals and shipper/receiver locations. The 

terminal operators take care of the terminal operations like loading, unloading and storage 

of containers. The network operator takes care of the infrastructure planning and 

formation of train services. Finally, the intermodal operator organizes the transportation 

of shipments on behalf of shippers by selecting the best available routes and services for 

each shipment (Macharis & Bentekoing, 2004). 

This model of transportation is quite different from the traditional rail carload service 

which has been in the spotlight of the academic community in previous decades (Assad, 

1980; Haghani, 1989). A fundamental aspect of carload service is that individual cars are 

grouped into blocks and that all the cars within the same block travel together over long 

distances. Such blocks are being formed in classification yards where cars are transferred 

from one block to another and blocks are placed on or dropped from trains. 

Intermodal traffic is now carried by exclusive intermodal trains operating between 

intermodal terminals and bypassing classification yards entirely. The intermodal network 
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of major U.S. railroads is also completely distinct from their regular freight traffic 

network and they only share main line tracks and other related infrastructure. 

Another distinction between intermodal trains and regular freight trains is emanating from 

the fact that in the intermodal trains, the travel of railcars, or containers, from the 

shipper’s location to the intermodal terminal happens over the road. This is completely 

different from the established tradition in regular freight trains in which railcars typically 

travel by a local freight train on a private rail line to the origin classification yard. The 

reverse of this process happens at the destination yard, and thus the entire travel of 

railcars is by rail.     

Yet another major difference between intermodal trains and traditional freight trains is 

that the former ones operate on a fixed schedule and are quite punctual, as opposed to the 

non-schedule based services of traditional freight trains.  

Considering the extreme prominence of rail-truck intermodal transportation, any effort to 

improve efficiency, competitiveness and reliability is highly valuable. Morlok and 

Spasovic (1995) is one of the first papers that dealt with this issue and identified cost 

reduction in the highway portion of this service as an approach to increase the 

competitiveness of intermodal transportation. In fact, for a long time, rail-truck 

intermodal transportation suffered from a high cost which is mainly due to the drayage 

operations, thereby precluding it from capturing high volumes of freight.  
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A number of studies based on surveys have tried to determine the important 

characteristics of intermodal service from the shipper’s perspective.  

In this regard, Murphy and Hall (1995) have observed that reliability is the most 

important factor for U.S. shippers rather than the cost. More importantly, the shipper’s 

perception of intermodal transportation is believed to have a higher impact on their 

decisions. In Evers, Harper, and Needham (1996), shippers decide on the mode of 

transportation and the specific carrier after they have formed a perception of available 

services. Based on this study, the main determinants of the shipper’s perception are: 

timeliness, availability, firm contract, suitability, restitution, and cost where the first two 

factors are the most important ingredients of the perception.  

In another study, Harper and Evers (1993) have found acceptability of rail-truck 

intermodal transportation as the most important determinant of the extent to which it can 

be regarded as a viable alternative to the traditional truck-based transportation. Based on 

this study, acceptability itself depends on the availability, quality and price of this service.  

The ability of rail-truck transportation to resist against the loss of its infrastructures, 

which can decrease the need for drayage operations and can increase availability and 

quality of this service, is clearly absent in these studies. More specifically, the idea of 

identifying critical components (like terminals and links) and then preparing appropriate 

plans to protect them against disruptions has not been addressed so far. Obviously, one of 

the most important decisions for network owners is to invest in fortification of their assets 
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and this kind of decision also deeply influences the downstream decisions of the 

intermodal operator who tries to select the best combination of rail/truck services to meet 

the demands with the minimum cost. Therefore, integrating decisions of the network 

operator and the intermodal operator will fill this gap.   

1.3 Conclusion 

In this literature review, the body of research regarding disruption planning in supply 

chains has been reviewed. Important planning efforts, like network design and 

interdiction models, have been examined. Based on this review, the issue of disruption 

planning in rail-truck intermodal transportation lacks proper attention and therefore needs 

to be investigated in future research studies. Regarding the high importance of rail-truck 

intermodal transportation, operations research specialists have to take initiatives to 

analytically address these issues and fill the research gap.  

The body of research in the rest of the thesis is classified into four chapters, which study 

four different developments of the original research question presented in Chapter One. In 

this regard, Chapter Two, Chapter Three, Chapter Four, and Chapter Five gradually 

develop and generate my research contributions where each chapter uses the results and 

improvements of earlier chapters. Lastly, Chapter Six reiterates research findings of the 

thesis and outlines a number of suggestions for the future research. Figure 1-2 outlines the 

organization of this thesis and the content of each chapter.  
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1.4 Motivation and Objectives 

Considering the utmost importance of rail-truck intermodal transportation, it is necessary 

to evaluate the vulnerability of this type of transportation against worst-case disruptions 

carefully. Also, proper plans should be provided to reduced such a vulnerability and 

improve the overall performance of the system in the wake of disruptions. Therefore, 

within this research, I endeavor to provide a proper analytical framework and efficient 
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solution techniques to address vulnerability assessment and fortification planning in the 

rail-truck intermodal transportation domain.  
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 Solving small-scale instances of the DAD problem using the CPLEX solver.  

 

 

 

 

 

 

 

 

 

 

 



27 

 

Chapter 2: A Defender-Attacker-Defender Framework 

to the Optimal Fortification of a Rail-Truck Intermodal 

Terminal Network 

2.1 Introduction 

Critical infrastructure plays a pivotal role in the wellbeing of each economy. Regarding 

their unique importance, a crucial issue in modern supply chains is to guarantee 

continuity and efficiency in the event of natural and man-made threats. Such a task is 

challenging, especially given the finite resources and the complexity of the transportation 

infrastructure.  

In this chapter, we make use of the Defender-Attacker-Defender framework to uncover 

the optimal strategy for fortifying a given number of rail-truck intermodal terminals, such 

that the losses resulting from worst-case attacks are kept at their minimum level.  

The proposed tri-level optimization model then is applied to a realistic-size case study 

and is solved using CPLEX. Finally, the results reveal some managerial insights and 

directions for future research.  

2.2 Problem Description 

In this section, we provide a formal statement of the problem, emphasize its complexity, 

and then state the modeling assumptions.   

The rail-truck intermodal transportation fortification problem entails hierarchical and 

sequential decisions amongst three players, i.e., the network operator, the interdictor, and 
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the intermodal operator (Figure 2-1).  Based on the classification presented in Macharis 

and Bontekoning (2004), the network operator is the owner of the railway infrastructure 

of the intermodal infrastructure such as terminals, tracks, and locomotives. At the highest 

level, the network operator attempts to minimize the cost of the worst-case disruption by 

fortifying a limited number of intermodal terminals.  Note that this is possible only if the 

owner knows the cost of the worst-case attack by the interdictor, and hence the latter’s 

problem is a part of the former’s. Next, in the middle level, the interdictor wants to 

maximize the minimum cost of using the system by attacking a limited number of 

(unprotected) terminals, which is achieved by having complete information about the 

intermodal operator’s problem. Finally, following the interdiction, the intermodal 

operator makes the best use of available resources on the reduced intermodal network 

(and possibly fewer train services) to meet customer demand at the minimum cost. Thus, 

the indicated interaction amongst the three players can be cast as a tri-level fortification 

planning problem using the Defender-Attacker-Defender (DAD) framework.  

It is important to consider the different types of decisions that these three players are 

making. At the highest level, the network operator needs to decide which terminals to 

protect. In the middle level, the attacker decides on what terminals to attack. Finally, in 

the lowest level, the intermodal operator aims to find the best load plan to serve all the 

customers which requires finding the best path for each shipper-receiver pair, and also the 

frequencies of train services to satisfy all the demands with the lowest cost.  
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Figure 2-1: Hierarchical structure of the fortification planning 

To have a better understanding of how a rail-truck intermodal transportation system 

works, it should be noted that this type of transportation comprises three distinct 

processes:  

 Inbound drayage, i.e., trucking service from the shipper location to the 

origin intermodal terminal 

 rail-haul between the intermodal terminals 

 Outbound drayage, i.e., trucking service from the destination 

intermodal terminal to the receiver location.  

A shipment that needs to be transported from the shipper’s location to the receiver’s 

location, first travels by trucks from the shipper’s location to the origin intermodal 

terminal. In the terminal, it will be transshipped from trucks to train and the train is 

responsible for terminal to terminal journey of the shipment. In the destination terminal, it 
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will be transshipped from train to trucks and finally, trucks are responsible for final 

delivery of the shipment to receiver’s location. Figure 2-2 shows this process.  

 

Figure 2-2: A Depiction of Rail-Truck Intermodal Transportation 

The intermodal operator focuses on the entire routing of the shipments, and endeavors to 

find the minimum-cost way to satisfy customer demand, given the available connections 

between the intermodal terminals and shippers/ receivers, and also the existing pre-

defined intermodal train services. 

It is also important to note that this sort of nested interaction among the players, which 

aims to find the best fortification decision to preserve the functionality of the intermodal 

infrastructure in the aftermath of disruption, makes the problem fairly complex.   

2.3 Defender-Attacker-Defender Framework 

In this section, we provide a tri-level mathematical formulation for the fortification 

problem described earlier. 

First, different components of the mathematical formulation, like assumptions, sets, 

parameters and decision variables, need to be defined and then the entire model is 

demonstrated. 
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2.4 Mathematical Model 

2.4.1 Assumptions 

 The demand has been defined for each shipper-receiver pair and is assumed to be 

fixed during the planning period.  

 The locations of terminals, shippers and receivers are assumed to be known. 

Therefore, the distances between any two of them (the length of the line 

connecting them) can be calculated.  

 The set of train services has been defined on the physical network and will be 

considered as an input to the model. The frequency of each service will be decided 

by solving the network operator’s problem. 

 It is assumed that terminals and rail links have enough capacity to handle the 

traffic and also it is assumed that there are always enough empty containers in 

origin terminals. 

 It is assumed that if either the origin or the destination terminal of a given train 

service becomes interdicted, the train service would not be able to operate. 

 It is assumed that if a given terminal becomes interdicted, the remaining terminals 

have enough capacity to make up for that.     
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 Direct trucking is allowed between each shipper-receiver pair to keep the 

intermodal operator’s problem always feasible. Due to its high cost, this type of 

direct shipment normally won’t be used when there is no attack to the system.  

 It is assumed that a protected terminal cannot be interdicted. 

 It is assumed that there is no congestion at the terminals. 

 It is assumed that if intermediate terminals associated with an intermodal train 

service are interdicted, the train can still serve the remaining terminals on its route 

by bypassing those interdicted terminals. 

2.4.2 Sets 

   Set of shippers indexed by   (   ) 

   Set of receivers indexed by   (   ) 

   Set of origin intermodal terminals which is the set of origin terminals for all shipper-

receiver pairs and is indexed by   (   ) 

   Set of destination intermodal terminals which is the set of destination terminals for all 

shipper-receiver pairs and is indexed by   (   ) 

 : Set of train services defined on the physical network and is indexed by       . Each 

service is characterized by its origin terminal, destination terminal, intermediate stops (for 

loading/unloading operations), and its capacity which is the number of containers that 

each train of that service can take. 
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   : Set of train services (     ) connecting terminal   (   ) to terminal   (   ). 

     The set of all service legs for a given train service     indexed by  . Each service 

leg of service     is defined as the rail link between any two consecutive stops of  . 

Therefore, the definition of service leg completely depends on the definition of service 

and the terminals at which it will stop. Let’s take a look at Figure 2-3 to define this set. 

Suppose that train service   (depicted by the dashed line) travels from    (origin) to    

(final destination) and has two intermediate stops at    and   while bypassing   . In this 

case, the rail segment between    and   , the rail segment between    to    and the rail 

segment between     and    are three service legs of this train service and therefore the 

set    is: {      ,       ,       }.  

 

 

 

      The set of pairs of terminals, covered by train service    , for which traveling 

between them entails using the service leg     . Based on Figure 2-3, traveling from    

to    needs to use the first leg, i.e. the leg       . In addition to that, traveling from    to 

   and traveling from    to    also require using the first leg. 

    Set of origin and destination terminals of train service    . 

 : Set of all terminals in the physical network. 

 

               

Figure 2-3. Train Service V defined on the network 
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2.4.3 Parameters 

      The fixed demand between shipper      and receiver     during the planning 

horizon. 

     The fixed cost of forming train service     between its origin terminal and its 

destination terminal. 

      Inbound drayage cost or the cost of sending a container using a truck from the 

shipper     to the origin terminal        . 

     : The cost of directly sending a container using a truck from the shipper     to the 

receiver        .  

    
   Outbound drayage cost or the cost of sending a container using a truck from the 

destination terminal         to the receiver    . 

    
   Train service cost or the cost of sending a container with train service   (   ) from 

origin terminal         to the destination terminal         when service   passes 

between   and  , or simply      . 

    The capacity of the train service    .  

   The maximum number of terminals that the network owner can protect. 

   The maximum number of terminals that the interdictor can destroy. 
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2.4.4. Intermodal Operator’s Decision Variables 

      : Number of containers from shipper     to receiver      that use terminal     as 

their origin terminal. 

      
 : Number of containers from shipper     to receiver     that use terminal     

as their destination terminal. 

        
 : Number of containers from shipper     to receiver     that use intermodal train 

service     to travel from terminal     to terminal     when   passes between   

and  , or      .  

     : Number of containers from shipper     to receiver     which use direct trucking 

service. 

  : Number of trains of service type     during the planning horizon (the frequency of 

the service type  ). 

2.4.5 Network Operator’s Decision Variable 

    Reflects the protection of terminal   (   ) if   =1 

2.4.6 Interdictor’s Decision Variable 

    Indicates the interdiction of terminal   (   ) if   =1  

2.4.7 Mathematical Formulation 

         

Subject to: 
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2.4.8 Explanation of the Constraints  

The objective function of the network operator’s problem, the outer problem, tries to 

minimize the total cost. In order to do that, the network operator has to decide which 

terminals to fortify and this is done by the first constraint in which a limited number of 

terminals will be protected. Based on the second constraint, the decision to protect a given 

terminal is a binary decision. The third constraint of the network operator’s problem is 

referring to the whole of the interdictor’s problem. Based on this constraint, the 

interdictor wants to maximize the cost of using the system. Within the network 

interdictor’s problem, the fourth constraint refers to the interdiction of some terminals 

among all terminals, by the interdictor. Based on this constraint, the interdictor has a 

limited budget to interdict a limited number of terminals in the network. The fifth 

constraint points to the binary nature of the interdictor’s decision. The sixth constraint 

connects the decisions of the network operator and the decisions of the interdictor. 

According to this constraint, a protected terminal cannot be interdicted by the interdictor. 

The seventh constraint refers to the whole intermodal operator’s problem. Based on this, 

the network operator tries to minimize the overall cost of using the system. The objective 

function of the intermodal operator’s problem is minimization of the cost of using the 

drayage paths and the rail services. The overall cost of using the system can be divided 

into two parts; the variable cost and the fixed cost.  
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The first three terms of the objective function of the network operator refer to the variable 

cost, i.e. the cost of which is proportional to the number of containers being sent from a 

given shipper to a given receiver. Therefore, the first three terms of the objective function 

calculate the total variable cost over all of the shipper-receiver pairs. The cost of sending 

a container by a truck mainly reflects the operations required to load, unload and transfer 

the container as well as driver hours in the drayage path. The inbound drayage cost is the 

cost proportional to driver hours from the shipper’s location to its origin terminal while 

the outbound drayage cost reflects the driver’s cost from the destination terminal to the 

receiver’s location. Also, the cost of sending a container directly from its shipper to its 

receiver reflects the driver’s cost from the shipper to the receiver. The variable rail 

service cost points to the cost associated with loading/unloading of a container from its 

origin terminal to its destination terminal.  

The fourth set of terms in the objective function denotes the fixed cost of forming train 

services of different types. The fixed cost of forming a train service reflects the cost of 

using human resources in the railway company (brakeman, engineer, and driver) and the 

cost of using the locomotive itself. This cost does not directly depend on the number of 

containers assigned to that service since for any number of containers (up to the train 

capacity) the same resources will be required. 

Within the operator’s problem, the eighth set of constraints points to the conservation of 

flow between a given origin terminal and all of destination terminals (those which are 

accessible from that origin terminal by different train services). In other words, the 
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containers that have been received by a given origin terminal will be transferred to all 

accessible destination terminals.  

The ninth set of constraints is similar to the eighth set since it points to the conservation 

of flow in destination terminals. In other words, the containers that have been transferred 

to a given destination terminal have came from different origin terminals using available 

train services between them. Therefore, each destination terminal will send out 

completely what it has received from the origin terminals and nothing will be lost.  

The tenth set of constraints states that demand must be satisfied for all shipper-receiver 

pairs. Therefore, the containers that have been transferred to a given receiver from 

different destination terminals have to be equal to the demand of the associated shipper-

receiver pair.   

The eleventh set of constraints calculates the frequency (the number of trains) of each 

train service. More precisely, the total number of containers that each train service can 

take during the planning horizon (the right hand side of the constraint) must be greater or 

equal to the total number of containers (from different shipper-receiver pairs) being 

transported on each of its service legs (the left hand side). 

The twelfth set of constraint connects the interdictor’s decision and the intermodal 

operator’s decision in such a way that if a given terminal becomes interdicted by the 

interdictor, then none of the services originating or ending at that terminal can be used 

anymore by the network operator.  Finally, the remaining sets of constraints (13, 14, 15, 
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and 16) are pointing to the integrality and non-negativity of network operator’s decisions 

(frequency and traffic assignment variables).  

2.5 Introducing a Realistic Case Study 

In an effort to explain the complexity of the problem, we reproduce a portion of the 

intermodal service chain network introduced by Verma, Verter, and Zufferey (2012), 

which is represented via a geographical information system (GIS) model using ArcView 

(ESRI, 2008). All resulting mathematical models were solved using CPLEX 12.6.0 (IBM, 

2014). Figure 2-4 and Figure 2-5 respectively depict 18 intermodal terminals and 37 

customers in the network, which are the access points for 399 demand pairs (i.e., shipper-

receiver pairs). A total of 62 types of intermodal train services differentiated by route, 

speed and intermediate stops are connecting these terminals. Among train services 31 

services are of regular type and have been shown in Appendix A, and another 31 services 

are express services and are 25% faster. Finally, the network operator has resources to 

fortify a limited number of terminals, the interdictor has resources to destroy/ disrupt a 

limited number of (un-protected) terminals, and the network operator has to meet demand 

using the reduced intermodal network.   

Terminals Legend Terminals Legend Terminals Legend 

Atlanta Atl Charlotte Cha Chicago Chi 

Cleveland Cle Cincinnati Cin Columbus Col 

Detroit Det Fort Wayne For Indianapolis Ind 

Jacksonville Jac Knoxville Kno Macon Mac 

New York NY Norfolk Nor Philadelphia Phi 

Pittsburgh Pit Richmond Ric Roanoke Roa 

Table 2- 1: Terminal Legends 
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Figure 2-4: Location of 18 Terminals (Adapted from: Verma & Verter, 2010) 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5: Location of 37 Customers (Adapted from: Verma & Verter, 2010) 
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2.5.1 Estimation of Parameters  

Cost: In the United States, trucks can travel at a maximum speed of 50 miles/hour, but 

due to lights and traffic an average speed of 40 miles/hour is assumed (Verma & Verter, 

2010). Normally drayage is charged in terms of the amount of time the crew (driver-

truck) is engaged, and an estimate of 300USD/hour including the estimated hourly fuel 

cost is used. As indicated there are two types of intermodal train services viz. regular and 

express. Average intermodal train speed was calculated using the Railroad Performance 

Measure website (RPM, 2014), and was estimated to be 27.7 miles/ hour for regular, and 

36.8 miles/hour for express service. Consistent with the published works, we estimated a 

rate of 0.875 USD per mile for regular and 1.164 USD per mile for express service. The 

hourly fixed cost of running a regular intermodal train is 500 USD per hour, which takes 

into consideration the hourly rates for a driver, an engineer, a brakeman, and an engine, 

which are 100 USD, 100 USD, 100 USD, and 200 USD, respectively. The express service 

is 50% more expensive at 750 USD per hour (Verma et al. 2012).   

2.6 Numerical Analysis 

In the first part of this section, the network operator (the Defender) has enough money to 

protect one terminal and the interdictor (the Attacker) has enough resources to disrupt one 

terminal while in the second part both of them have enough money to fortify/disrupt two 

terminals.  
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2.6.1 Part One: the Network Operator and the Interdictor Can Protect/Disrupt One 

Terminal 

In this part of the numerical analysis, the network owner has eighteen different strategies 

of protecting terminals (given in the form of tables) and each strategy is then followed by 

seventeen possible attack strategies of the interdictor. After each attack strategy, the 

network operator tries to meet as many demands as possible with the least cost. Appendix 

B summarizes the results of attacking different terminals.  

To show a typical interaction between the network owner and the interdictor, Table 2-2 , 

which is derived from Appendix B, describes the situation when the network operator (the 

first player) protects the terminal located in Atlanta and the interdictor (the second 

player), who knows the first player’s decision, tries to interdict a terminal among the 

remaining unprotected terminals. For each combination of the first two players’ decisions, 

the third player (the intermodal operator) decides to find the best set of services to satisfy 

demands with the least cost.  

Table 2-2: Results of defending/attacking 1 terminal  

According to Table 2-2, the cost associated with defending Atlanta is 12.26 million 

dollars. This is in fact the maximum cost that the interdictor can impose to the system, by 

attacking the terminal located in Philadelphia, following the protection of the terminal 

Defended 

Terminal 

Attacked 

Terminal 

Cost Imposed 

($) 

Computation 

Time (Sec) 

Cost Saving 

($) 

Atl Phi 12,263,378 221.4 378,200 
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located in Atlanta. The cost saving of defending the terminal at Atlanta, and instead 

leaving Philadelphia unprotected, amounts to 378,200 dollars.  

2.6.2 Part Two: the Network Operator and the Interdictor Can Protect/Disrupt Two 

Terminals 

In this part of the numerical analysis, the network owner has 153 different strategies of 

protecting terminals (given in the form of tables) and each strategy is then followed by 

136 possible attack strategies of the interdictor. After each attack strategy, the network 

operator tries to meet as many demands as possible with the least cost. Appendix C 

summarizes the results of attacking different pairs of terminals by the interdictor.  

Table 2-3: Results of defending/attacking 2 terminals  

According to Table 2-3, which is extracted from Appendix C, the best protection decision 

is to protect terminals located in New York and Atlanta and this decision results in the 

total cost of 13.01 million dollars. This is in fact the maximum cost that the interdictor 

can impose on the system, by attacking terminals located in Chicago and Indiana, 

following the protection of terminals located in New York and Atlanta. The cost saving of 

this protection decision is nearly 900,000 dollars which shows the extent to which 

suitable fortification planning can reduce the costs imposed on the system. Also, it is 

interesting to see that the cost saving in the case where two terminals are being 

protected/interdicted is much higher than the case in which one terminal is being 

Defended 

Terminals 

Attacked 

Terminals 

Cost Imposed 

($) 

Computation 

Time (Sec) 

Cost Saving 

($) 

NY, Atl Chi, Ind 13,016,982 1,513 889,593 
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protected/interdicted. This clearly shows that the cost saving of fortification increases 

with the increase in the budget of attacker and defender.  

2.7 Conclusion  

In this chapter, a framework for defending rail-truck intermodal transportation is 

introduced. Then, a mathematical model that can capture the decisions of the players and 

their interactions has been proposed.  

Also, a real case study of the intermodal chain of a railway company in the U.S. has been 

presented. Then, the mathematical model of the Defender-Attacker-Defender problem has 

been solved for the case study to find out the best decisions to protect the infrastructure. 

Due to the complexity of the problem, only two instances of the DAD model have been 

solved; the instances in which one terminal is going to be defended/attacked and the 

instance in which two terminals are going to be defended/attacked.  

The results of applying the fortification planning to the case study reveal huge 

improvements in the cost of running the system in the aftermath of interdictions. In other 

words, after the occurrence of interdictions, the system which has a suitable fortification 

plan is able to satisfy demands with lower cost compared to the systems which are left 

unprotected.    

The current model can be enhanced in a number of aspects. For example, these days, 

many customers are sensitive to the delivery time of their shipments and transportation 
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companies should take any action to deliver shipments on time. Adding such new aspects 

makes the model more realistic and more applicable for practical situations. 

In terms of solving the model, the proposed DAD model is very difficult. Therefore, 

efficient solution techniques need to be developed to solve large instances of the DAD 

problem efficiently. All these new aspects will be pursued in the next chapter.    
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Chapter 3: Protection Planning of a Rail-Truck 

intermodal Terminal Network: Extensions and Traffic-

based Solution Technique 

3.1 Introduction 

In this chapter, the tri-level defender-attacker-defender (DAD) approach proposed in 

Chapter Two will be enhanced in a number of directions so that it better fits to realistic 

situations. In addition to modeling enhancements, a new solution technique based on the 

traffic flow information is proposed that is able to solve this problem in an efficient 

manner. The proposed DAD will be applied to the realistic case study introduced in 

Chapter Two and then it will be solved by the developed solution technique. At the end, a 

variety of analyses has been done on the results to scrutinize the effects of fortification 

planning on the performance of the system.  

3.2 Problem Description 

In this section, the DAD model described in Chapter Two will be expanded in a number 

of directions. It is important to mention that two pertinent factors should be considered in 

making the routing decisions. First, since each intermodal terminal has a finite capacity, 

an interdiction may result in a situation where the remaining terminals in the network do 

not have enough capacity to meet demand. Second, punctuality is the mainstay of 

intermodal shipments (Nozick & Morlok, 1997; Verma et al, 2012), and hence late 

deliveries should be penalized as a function of the time delayed. Also, like the 

mathematical model presented in Chapter Two, direct trucking is permitted between each 
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shipper-receiver to ensure feasible solutions in the intermodal operator’s problem. From 

the mathematical programming point of view, a path-based modeling approach has been 

selected. In this approach, a set of possible intermodal paths for a given shipper-receiver 

pair is identified in the pre-processing phase. Then, a single variable is attached to each 

path. Adopting the path based approach results in fewer variables in the intermodal 

operator’s problem and this will facilitate solving this problem. Therefore, instead of 

attaching three variables to each intermodal path between a given shipper and a given 

receiver, only one variable will be used.      

3.3 Assumptions 

 The demand has been defined for each shipper-receiver pair and is assumed to be 

fixed during the planning period;  

 The locations of terminals, shippers and receivers are assumed to be known. 

Therefore, the distances between any two of them can be calculated;  

 The set of train services has been defined on the physical network and will be 

considered as an input to the model. The frequency of services will be decided by 

solving the network operator’s problem; 

 Rail links have enough capacity to handle the traffic and also it is assumed that 

there are always enough empty containers in origin terminals; 
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 If either the origin or the destination terminal of a given train service become 

interdicted, the train service would not be able to operate; 

 If intermediate terminal associated with an intermodal train service is interdicted, 

the train can still serve the remaining terminals on its route; 

 A protected terminal cannot be interdicted; 

 It is assumed that that the waiting time to receive the handling operations is 

insignificant and thus there is no congestion at the terminals; 

 Each terminal has finite traffic handling capacity, thus the remaining terminals in 

the network may not have enough capacity to make up for the capacity of 

interdicted terminals; 

 Delivery dates are specified when placing the order, and a penalty cost per 

container per hour is incurred for late deliveries; 

3.4 Path-based Defender-Attacker-Defender Framework 

In this section, we develop a tri-level mathematical formulation for the fortification 

problem introduced in the previous chapter, and then propose two distinct solution 

techniques for solving it.   

3.4.1 Mathematical Model 

Our notation and the model are provided below. 

Sets 
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  Set of shippers, indexed by i 

  Set of receivers, indexed by j 

    Set of intermodal paths between shipper i and receiver j, indexed by p 

   Set of intermodal terminals in the network, indexed by k 

   
   Set of intermodal paths between shipper i and receiver j which uses intermodal 

terminal k as either origin or destination. 

   Set of intermodal train services defined on the network, indexed by v 

    Set of service legs for train service v, indexed by l 

      Set of intermodal paths using service leg l of train service v 

Variables 

   
 

  Number of containers using intermodal path p between shipper i and receiver j 

      Number of containers using direct trucking service between shipper i and receiver 

j 

    Number of train services of type v 

       
1 if terminal   is protected

                            otherwise
   

        
1 if terminal   is interdicted

                               otherwise
   

Parameters 

   Maximum number of terminals that the network owner can protect 

   Maximum number of terminals that the interdictor can disrupt 
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  Cost of transporting a container from shipper i to receiver j on intermodal path p 

      Cost of sending a container using trucks on the shortest path from shipper i to 

receiver j 

   
 
  Expected travel time from shipper i to receiver j on intermodal path p 

     Delivery time using truck on the shortest path from shipper i to receiver j 

      Delivery due date promised by shipper i to receiver j 

     Number of containers demanded by receiver j from shipper i   

      Penalty cost per container per hour between shipper i and receiver j  

    Capacity of train service v 

     Fixed cost of operating train service v 

    Capacity of intermodal terminal k 

(P) 

                  (1) 

subject to: 

                  (2) 

                                                                          (3) 

where, 

                      (4) 
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 subject to:  

                               (5) 

                                                             (6) 

                                                        (7) 

where, 

                
            

 
  
 
     

             
                 

        

            

    
                                                                                                           (8) 

subject to: 

    
 

     
                                                            (9) 

      
 

         
                                    (10) 

      
 

                                                      (11) 

                                                                       (12) 

   
                                                                                (13) 

                                                                             (14) 

(P) depicts the tri-level optimization model that will be used to make protection planning 

decisions. It should be mentioned that     is a multi-variable function of   and   such 

that, in each level of the problem, only one of these variables is considered and thus      

reduces to a single-variable function. The outer level problem belongs to the network 

operator whose objective is to minimize total cost in the aftermath of disruptions by 
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fortifying a given number of intermodal terminals. Constraint set (3) enforces the binary 

nature of the terminal fortification decision. The middle level problem belongs to the 

interdictor who intends to maximize the total cost of using the system. Constraints set (5) 

depicts the finite resources available for interdiction or disruption of intermodal terminals, 

whereas (6) represents the binary nature of the interdiction decisions. Constraint set (7) 

combines the decisions of the network operator and the interdictor by prohibiting the 

disruption of fortified terminals. Finally, the inner level problem belongs to the network 

operator who intends to minimize the total cost of using the system. Note that this is a 

variant of the multi-commodity flow problem with capacity, delivery time, and penalty 

cost considerations. The objective function, i.e., (8), will capture the overall cost of 

moving shipments using rail-truck intermodal paths, any direct trucking service if 

applicable, the penalty costs for late deliveries, and the fixed cost of running different 

intermodal trains in the network. Constraint set (9) ensures the demand is satisfied either 

using the intermodal option or through the direct truck service. Constraint set (10) 

enforces the capacity at various terminals in the network, and that the interdicted 

terminals cannot be either origin or destination of intermodal paths to meet the demand. 

Constraint set (11) determines the number of intermodal trains of a specific type needed 

in the network. Finally, the sign and integrality restrictions are imposed through 

constraints set (12) to (14).   

3.5 Numerical Analysis 

3.5.1 Parameter Estimation: 
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Due Dates:  Three different due dates have been defined: long, regular, and short. The 

distance (d in miles) between each shipper and each receiver was estimated in ArcView 

GIS (ESRI, 2008). Next, the travel time (in hours) was computed as d/40, where the 

denominator indicates the speed of trucks.  Finally, constants of 10, 15 and 20 were added 

to the travel time to obtain, respectively, the short, regular and long delivery due dates for 

each shipper-receiver pair. The penalty cost is set at 40 dollars per container per hour of 

lateness. Also, the cost of running train services follows the calculations of the previous 

chapter.  

Demand Levels and Terminal Capacity:  The inner problem belonging to the intermodal 

operator was solved in CPLEX 12.1.0 (IBM, 2014) on the dataset used in Verma et al. 

(2012), and the solution was decoded to estimate the traffic volume through each 

intermodal terminal.  It was assumed that the terminal utilization was 80%, and hence the 

terminal capacity is 1.25 times (i.e., 1 divided by 0.8) the traffic volume through each 

terminal, and the demand level was deemed medium. Finally, we assumed that high 

demand level would account for 95% of terminal capacity and hence multiplied the 

medium demand by 1.1875 (i.e., 95 over 80), whereas low demand would result from 

65% terminal capacity.   

3.6 Solution Algorithms  

In this section, we will first comment on the computational burden of the problem and 

then outline various algorithms that can solve this problem. These solution algorithms are 

as follows. 
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 Complete enumeration 

 Implicit enumeration 

 Traffic-based heuristic 

3.6.1 Complete Enumeration 

Complete enumeration proceeds by determining an exhaustive combination for defending 

and interdicting terminals. For example, for the case of defending/attacking two terminals 

in the network of eighteen terminals, the number of combinations amounts into 

   
 
     

 
        possible defense and attack strategies. For each defense and attack 

strategy, the network operator’s problem is solved assuming that the terminals attacked 

under this strategy have been disrupted. For each given defense strategy, the effect of all 

the ensuing attack strategies will be compared. The worst-case disruption following each 

defense strategy yields the total cost associated with the adoption of that defense strategy. 

The defense strategy with the lowest associated cost will be selected as the best defense 

strategy. Applying this procedure to the current case study will result in protection of 

intermodal terminals in Philadelphia and in Atlanta. The CPU time for this problem 

setting was 902.14 seconds, and it ranged from 241.1 seconds to 2063.18 seconds for the 

other eight scenarios.   

It is easy to see that the complete enumeration technique will become rather cumbersome 

if more than two terminals have to be considered for fortification and interdiction. For 

example, the number of strategies requiring evaluation for the “three terminals” example 



57 

 

would be 371,280.  Thus, there is a need for a more efficient solution technique. This will 

be elaborated in the next sections of this chapter.  

3.6.2 Implicit Enumeration  

Under implicit enumeration, we first obtain the list of the worst-case disruptions which 

has been provided by examining all of the attack strategies. For the case of 

attacking/defending two terminals, an exhaustive combination for interdicting two 

terminals for our problem instance will be translated into    
 
      possible attacks. 

Then, for each attack strategy, the intermodal operator’s problem is solved assuming that 

the terminals listed under this strategy have been out of service. The resulting solution 

gives us the total cost associated with each attack strategy, and the worst-case disruption 

would result from the strategy with the highest cost. The corresponding strategy called for 

the interdiction of intermodal terminals in Philadelphia and in Atlanta. This information 

will be passed to the implicit enumeration scheme proposed in Scaparra and Church 

(2008a). This was coded in C# and the entire search took 76.5 seconds. This solution 

algorithm is using a considerably reduced search space collectively containing only the 

defense strategies that will prevent the worst-case disruption. We next provide detail on 

how this enumeration scheme works.  

As indicated above, the decoded solution of the inner problem suggested highest cost by 

interdicting Philadelphia (Phi) and Atlanta (Atl) together.  Hence, fortifying either or both 

these terminals would preclude the worst-case disruption. The implicit enumeration 

scheme starts at the root node, i.e., node 1, by finding the worst-case disruption without 



58 

 

fortification (i.e., Phi and Atl). At each node, we determine set O, which lists the 

terminals for which at least one must be protected to prevent the worst-case.  For 

instance, at node 1, terminal Phi or Atl could be fortified. By selecting Phi randomly, we 

branch on either to protect it or not to protect it.   

 

Figure 3-1: Tree Search 

If Phi were not fortified, then the terminal at Atl would have to be considered for 

fortification (i.e., node 2). If even Atl is not fortified, then set O is empty thereby 

implying that none of the other fortifications can prevent the worst-case disruption, and 

the resulting node is fathomed (i.e., grey shade). This means that the worst-case attack at 

node 1 still possible. On the other hand, if Atl is fortified, then the worst-case disruption is 

prevented, and the elements for set O must be updated by solving the interdiction 
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problem with the latest information (i.e., Atl is fortified). Thus, the updated set O contains 

NY and Phi as elements representing the most disruptive interdiction given that Atl is 

fortified. At node 3, only one fortification resource is left, we continue the search process 

by arbitrarily selecting NY. If NY is not fortified, it is possible that it is disrupted together 

with Phi thereby resulting in a fathomed node. But if it is fortified, then the interdiction 

problem is solved given that NY and Atl are fortified.  The updated set O contains Atl and 

Ric, both of which would be interdicted thereby resulting in a cost of around $12.2mn 

(i.e., dark shade).   

At the left branch of node 1, if Phi were fortified, the interdiction problem is solved 

thereby resulting in terminals Ind and Atl in the updated set O.  Arbitrarily selecting Ind, 

if it is fortified then the protection resources have been exhausted, and the resulting 

interdiction problem yields Cha and Atl terminals as the most disruptive. At the same 

time, no further branching is possible and the associated cost is around $12.1mn. But if 

Ind is not fortified, then the updated set O only contains Atl at node 5. If Atl is not 

fortified, then it will be attacked together with Ind thereby being fathomed.  On the other 

hand, if Atl is fortified, then the interdiction problem is solved again to yield Chi and Ind 

as the most disruptive terminals, and the associated cost is around $11.9mn. The search 

cannot continue any further since all the defensive resources have been used. 

The CPU time for the remaining eight scenarios ranged from 16.3 seconds to 336.24 

seconds, which is quite good. We note that, given the definition of criticality for our 

problem instance, it is possible to arrive at the same solution more quickly by combining 
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information about the traffic flow through each terminal and (an adapted version of) the 

implicit enumeration of Scaparra and Church (2008a).   

3.6.3 Proposed traffic-based heuristic   

The proposed heuristic works in two steps. First, the capacitated multi-commodity flow 

problem for the network operator is solved (i.e., the inner level problem in (P)). The 

resulting solution is decoded and the traffic volume through each terminal is estimated 

and ranked, in descending order, of throughput terminal traffic.  Since there is enough 

resource to protect two terminals, fortifying the top two candidates on the list would make 

the worst-case disruption impossible.   

In the second step, just like Scaparra and Church (2008a), the identity of the two 

terminals was supplied as input at the root node 1 in Figure 3-1. If Phi were fortified, then 

we update set O by including the third terminal from the list generated in step one. For 

instance, at node 4 in Figure 3-1, Ind would be selected from the list without solving the 

interdiction problem as in Scaparra and Church (2008a). If Ind is fortified then the 

protection resources are exhausted, and we select the fourth terminal on the list generated 

in step one, i.e., Cha, which would be interdicted along with Atl. The process continues as 

outlined in Figure 3-1, except that we have done away with the need to solve the 

interdictor’s problem at each node and simply consult the list generated in step one. This 

has a positive bearing on the computational time, which for the given problem instance 

was 37.86 seconds compared to 76.5 seconds using the enumeration technique of 

Scaparra and Church (2008a).   
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It is important to reiterate that the proposed traffic-based heuristic worked well for the 

small problem instances in which only two terminals being fortified/attacked, but may not 

for much larger instances.  

To conclude, the proposed heuristic is quicker than the other two solution techniques. 

Table 3-1 reports the relevant figures, where BC refers to the Base-Case (the situation in 

which the system performs its normal operations and no attack has happened), CE to 

complete enumeration, IE to the implicit enumeration scheme of Scaparra and Church 

(2008a), and Heuristic to the proposed traffic-based heuristic.   

Due 

Date 

Demand 

Level 

CPU Time (Seconds) 

BC CE IE Heuristic 

Short 

Low 5.81 902.14 76.50 37.86 

Medium 7.90 1313.36 142.87 48.12 

High 1.48 260.48 17.91 9.32 

Regular 

Low 7.82 1362.13 123.33 49.52 

Medium 1.15 1282.12 285.51 32.57 

High 1.11 243.00 16.30 7.23 

Long 

Low 25.31 2063.18 336.24 149.87 

Medium 1.08 241.10 26.54 7.14 

High 9.66 859.00 96.80 55.72 

Table 3-1 Summary of computation time 

3.6.3.1 Numerical Analysis 

In this subsection, we will first provide a snapshot of the solution for the nine scenarios 

developed using the due date and demand level combinations as outlined in section 4.2, 

and then comment on terminal utilization and network connectivity.   
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3.6.3.2 Analysis of Results 

Following the enumeration, the resulting costs for all the leaf nodes (i.e., dark shade) was 

compared to conclude that the optimum strategy is to fortify Phi and Atl, which means 

that the interdictor would disrupt Chi and Ind and the system cost will be $11,944,726. 

Table 3-2 summarizes the results for the nine scenarios of due date and demand. For each 

scenario, three cases were considered: base case which is the normal situation of the 

system; interdiction without fortification, and interdiction with fortification. This 

categorization amounts to twenty-seven problem cases.   

It is clear from all the nine scenarios that fortification improves the performance of the 

transportation system thereby resulting in lower costs vis-à-vis no protection.  In fact, for 

the short due date setting, the performance improvement ranges from 7% for low to 9.2% 

for high demand levels. In other words, fortification has reduced the adverse effect of 

interdiction in each setting. It was noticed that the improvement was higher for scenarios 

where due dates were short and demand high versus long due date and low demand.  

Finally, express train service was mainly used with short due dates because of the 

pressure to deliver before the specified time and to prevent the penalty cost.   

In terms of the traffic distribution, in the base case of all scenarios, no direct trucking has 

been used. With the occurrence of interdiction, the direct trucking service is taking place. 

Also, having fortification in place helps reduce the reliance of expensive truck-only 

transportation and return more traffic to the intermodal system which leads to an 

enormous cost reduction. 
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Due 

Date 

Demand 

Level 

Cases OFV 

($ mns) 

Percent of Traffic Intermodal Trains 

Intermodal Truck Regular Express 

Short 

Low 

Base Case 9.93 100 0 25 12 

W/out Fort 12.84 46.22 53.78 16 6 

With Fort 11.94 66.07 33.93 19 5 

Medium 

Base Case 10.99 100 0 26 10 

W/out Fort 14.34 44.05 54.95 17 6 

With Fort 13.26 66.19 33.81 19 5 

High 

Base Case 13.61 100 0 36 14 

W/out Fort 17.80 43.18 56.82 15 8 

With Fort 16.15 59.81 40.19 19 11 

Regular 

Low 

 

Base Case 9.67 100 0 36 0 

W/out Fort 12.71 46.23 53.77 22 0 

With Fort 11.78 66.08 33.92 24 0 

Medium 

 

Base Case 10.70 100 0 36 0 

W/out Fort 14.20 43.05 54.95 23 0 

With Fort 13.07 66.18 33.82 25 0 

High 

 

Base Case 13.26 100 0 48 3 

W/out Fort 17.65 43.18 56.82 27 0 

With Fort 16.18 63.82 34.18 32 1 

Long 

Low 

 

Base Case 9.60 100 0 36 0 

W/out Fort 12.67 46.23 53.77 22 0 

With Fort 11.73 66.08 33.92 24 0 

Medium 

 

Base Case 10.62 100 0 36 0 

W/out Fort 14.16 45.05 54.95 24 0 

With Fort 13.02 66.19 33.81 25 0 

High 

 

Base Case 13.17 100 0 48 0 

W/out Fort 17.60 43.18 56.82 27 0 

With Fort 16.12 65.82 34.18 33 0 

Table 3-2: Snapshot of the nine scenarios 

3.6.3.3 Capacity and Network Connectivity  

It should be clear that since interdiction of terminals renders them unusable, relevant 

traffic would have to be re-routed using alternative terminals thereby impacting their 

utilization.  Since each terminal in the network has a finite capacity, it may not always be 

possible to reassign traffic to other terminals. In other situations, an interdiction may 
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result in shippers and/or receivers losing their connectivity to the intermodal network and 

in such cases demand would have to be met using direct trucking service. In this 

subsection, we analyze average capacity utilization of terminals and the lack of 

connectivity for the twenty-seven cases under the nine scenarios (Table 3-3). The lack of 

connectivity is defined as the total number of containers originating from customers who 

lost their connections to the network due to the interdiction divided by the total demand in 

the network.       

Within each scenario, the Base Case has the highest average capacity utilization resulting 

from the connectedness of all shippers/ receivers and the proper working of all terminals, 

which also implies no direct truck service. Within each scenario, interdiction without 

fortification (i.e., W/out Fort) has the lowest capacity utilization since 23% of the 

customers have lost connectivity with the intermodal network, and have to make use of 

the direct trucking service to move shipments. It was noticed that interdiction with 

fortification (i.e., With Fort) yielded better capacity utilization than the without settings 

because the worst-case disruptions have been avoided, and relatively fewer customers 

lose connectivity to the intermodal network. In eight of the nine scenarios, 19% of the 

traffic loses connectivity and in one scenario only 3% of traffic is losing the connectivity. 

This shows that in the most difficult scenario, short due date and high demand, 

fortification is able to retain connectivity better than other scenarios. stemming from the 

fortification of Phi and Atl, and the interdiction of Chi and Ind. Finally, it was observed 
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that for a given due date level, average capacity utilization was linearly related to the 

demand level. 

Due 

Date 

Demand 

Level 
Cases 

Avg. 

Cap. 

Utz. 

Number of terminals (utilization) 
% 

loss 
Upto

25 

Upto

50 

Upto

65 

Upto

80 

Upto

90 

Upto

100 

Short 

Low 

Base Case 72% 0 0 1 14 3 0 0 

W/out Fort 53% 4 6 4 2 0 2 23 

With Fort 60% 3 3 3 7 2 0 19 

Medium 

Base Case 80% 0 0 0 11 7 0 0 

W/out Fort 57% 4 3 6 2 1 2 23 

With Fort 66% 2 3 4 4 4 1 19 

High 

Base Case 95% 0 0 0 0 0 18 0 

W/out Fort 66% 4 2 3 5 1 3 23 

With Fort 81% 2 0 5 2 1 8 3 

Regular 

Low 

 

Base Case 72% 0 0 2 14 1 1 0 

W/out Fort 52% 4 7 4 1 0 2 23 

With Fort 62% 3 3 3 6 2 1 19 

Medium 

 

Base Case 79% 0 0 0 10 7 1 0 

W/out Fort 55% 4 3 8 0 1 2 23 

With Fort 68% 2 3 4 5 1 3 19 

High 

 

Base Case 96% 0 0 0 0 2 16 0 

W/out Fort 63% 3 4 2 6 0 3 23 

With Fort 81% 2 2 3 2 1 8 19 

Long 

Low 

 

Base Case 71% 0 0 5 10 2 1 0 

W/out Fort 52% 4 6 5 1 0 2 23 

With Fort 62% 3 3 4 5 2 1 19 

Medium 

 

Base Case 79% 0 0 2 8 7 1 0 

W/out Fort 55% 4 3 8 0 1 2 23 

With Fort 67% 2 3 5 3 3 2 19 

High 

 

Base Case 96% 0 0 0 0 1 17 0 

W/out Fort 63% 4 3 7 1 0 3 23 

With Fort 81% 2 2 3 2 1 8 19 

Table 3-3: Capacity Utilization and Connectivity 

At the end of this section, it should be noted that although the simple flow-based heuristic 

developed here is able to solve the problem efficiently, for larger attack/defense budgets, 

it is quite incapable of doing so. Therefore there is a need to develop a new solution 

technique to cope with larger problem instances. In the next section a solution algorithm 
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based on decomposition will be introduced which is quite capable of dealing with the 

computational burden of large instances of this problem. 

3.7 Conclusion  

In this chapter, we developed a path-based version of the tri-level DAD framework to 

reduce the computational difficulty of this problem. The resulting complexity, and the 

model characteristics, motivated the development of an efficient solution technique. 

Specifically, a traffic-based heuristic has been proposed to solve small instances of the 

DAD problem on the realistic infrastructure of a class I railroad operator. Also, the 

computational performance of the proposed traffic-based heuristic was compared with the 

existing technique.   

It should be mentioned here that the proposed solution technique in this chapter is using a 

combination of implicit enumeration of Scaparra and Church (2008a), to break the tri-

level problem into a set of bi-levels, and then uses a traffic-based heuristic to solve each 

bi-level problems. Thus, the proposed method extends the method proposed by Scaparra 

and Church (2008a), which is only useful in bi-level settings, to be applicable for tri-level 

setting.    

Preliminary results of applying the traffic-based solution technique to larger problem 

instances, i.e. problems with more than two attacks/defenses, show a declining trend in 

the quality of its solutions. This indicates the need for a more advanced solution 

technique for dealing with large-scale problem instances.   
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Chapter 4: A Decomposition-based Solution Technique 

for Protection Planning of a Rail-Truck Intermodal 

Terminal Network 

4.1 Introduction 

In this chapter, a new solution technique to solve large instances of the DAD problem is 

proposed. The new solution technique benefits from decomposing the three-level DAD 

problem into smaller sub-problems which can be solved efficiently. This enables the 

proposed solution technique to solve fairly large problem instances. The new solution 

technique has been applied to different problem instances derived from the realistic case 

study defined in Chapter Two. The results of solving these instances by the 

decomposition based solution technique prove the merits of this solution technique in 

terms of the quality of the obtained solutions and computational time. 

4.2 Decomposition based Heuristic 

As it is mentioned in Chapter Three, the proposed traffic-based heuristic is not able to 

produce solutions of high quality for large problem instances of the DAD problem. This 

generates motivation for developing an efficient solution technique for larger instances of 

the DAD problem.  

To begin with the new solution technique, it is important to note that problem (P), shown 

in section 3.4.1, is a very complex and difficult problem. In fact, it has been proved that 

even a bi-level problem is NP-hard (Jeroslow, 1985), and therefore (P), as a tri-level 
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problem, is at least NP-hard. In order to solve (P) efficiently, a two stage solution 

technique is proposed. In the first stage, an implicit enumeration technique as proposed in 

Scaparra and Church (2008a) is used to break the tri-level DAD problem into a set of 

smaller bi-level AD sub-problems (Figure 3-1). In the second stage, the proposed 

decomposition-based solution technique solves each resulting AD, and the set of 

decisions leading to the lowest cost subsequent attack is the best fortification plan.   

4.2.1 The First Stage 

The Implicit Enumeration technique reduces the computational burden of the outermost 

level (i.e., network operator) by implementing a rather simple but intuitive observation.  It 

states that the optimal solution of the network operator should entail fortification of at 

least one of the terminals that would be interdicted in the worst-case attack (Scaparra and 

Church, 2008a).  

It is important to reiterate that the implicit enumeration scheme of Scaparra and Church 

(2008a) reduces the tri-level DAD problem to a set of bi-level AD problems, and then 

each bi-level AD problem needs to be solved. After solving all the generated bi-level AD 

problems, we can determine the best protection plan.  We next propose an efficient 

solution technique for the bi-level AD problems.   

4.2.2 The Second Stage 

The prevalent technique for solving AD problems is based on duality theory, wherein the 

dual of the inner problem is combined with the outer problem to create a single-level 
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problem (Wood, 2011).  It is important to note that this approach would work only if the 

variables in the inner problem are real valued, or if integer, they can be relaxed without 

losing integrality. The innermost component of (P) contains train frequency variables, 

which are inherently integers, and hence cannot be relaxed without losing accuracy. To 

overcome this difficulty and to solve AD problems properly, we adapt the classical 

Bender’s decomposition technique (Benders, 1962) to account for the integer variables in 

the inner problem, which is consistent with the approach in the literature (Gabriel, Shim, 

Conejo, de la Torre, & García-Bertrand, 2010; Losada,  Scaparra, Church & Daskin, 

2012).   

The proposed decomposition breaks the bi-level AD problem into a master problem (MP) 

and a sub-problem (SP). In the first step, SP (which is the intermodal operator’s problem) 

is solved to determine the routing plan and the optimum number of intermodal train 

services, wherein the latter are integer valued. The output of SP becomes the parameters 

used to build the MP, which is a single level interdictor’s problem. To make this more 

explicit, we next outline the specific steps involved.   

Once the SP is solved and the train frequency variables are fixed to their optimum 

(integer) values, the intermodal operator’s problem exhibits unimodularity, i.e., which 

means that other integer variables could be relaxed without obtaining non-integer values 

(Wolsey, 1998). Thus, the dual of the intermodal operator’s problem can be taken. To that 

end, we define three sets of dual variables corresponding to constraints (9) to (11) in (P).   
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                                                                    (9) 

      
 

         
                                               (10) 

      
 

                                                             (11) 

If the dual of the intermodal operator’s problem is attached to the interdictor’s problem, 

we end up with the following objective function: 

     
                                              (15) 

which can be simplified to the following form:  

                                                (16) 

Since this objective function is independent of variable  , we can further simplify it to 

obtain the following objective function: 

                                                                                 (17) 

This objective function is subject to the following constraints: 

               
 

                    
  

                    (18) 

                         (19) 

                           (20) 
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                  (21) 

                                  (22) 

                  (23) 

                   (24) 

                     (25) 

where, 

   
   

   
      

                  
      

   
                  

                                                              (26) 

     
                               

                     
                                                               (27) 

Note that (16)-(27) represents a single level problem that optimizes both the interdictor’s 

and the dual of the intermodal operator’s problem over all the variables. 

It is important to note that the objective function (16) has some non-linear terms in the 

form of          , since both  
 
 and    are decision variables, and therefore it cannot 

be solved easily. Therefore, we next outline a suitable linearization scheme to facilitate 

solving the combined single level AD problem.   
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4.2.3 Linearization Scheme 

Each non-linear term of                  can take two values depending on the 

value of the binary variable   . It can be       if     , or it is zero if     .  Now, 

we replace each term           by a new variable called   , and add constraints sets 

(28) to (30) to ensure that    will get the right values. Note that M is a large positive 

number.   

                   (28) 

                     (29) 

              (30) 

If     , (28) and (29) will ensure that       and      , respectively.  Note that 

the intersection of the boundaries of these three constraints is      .  

Also, because it is a maximization problem and    is negative, the correct value of    

would be   . On the other hand, if     , the intersection of the boundaries of all the 

three inequalities would imply     .   

To formalize the discussion in this section, we next introduce the notations and 

parameters used to outline the pseudo code for the decomposition algorithm to solve the 

bi-level AD problems (Figure 4-1). Finally, we depict the interaction between the master 

problem and the sub-problem in Figure 4-2.   
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Notations and Parameters 

MP:  Master problem 

SP:  Sub-problem 

LB:  Lower bound 

UB:  Upper bound 

h:  Index for iteration of the solution algorithm 

      List of interdicted terminals in the MP at iteration h 

     
    Objective function value of the sub-problem 

     
    Objective function value of the Master problem 

      Vector of the optimal customer allocation to intermodal paths in iteration h 

      Vector of the optimal frequency of train services in iteration h 

      Vector of the optimal customer allocation to intermodal paths so far 

Max_iteration: Maximum number of iterations 

     The desired optimality gap 

Initial values 

       

       

     

      

While             and                   

Solve SP (  ) to determine the best load plan   , the frequency of trains    and 

     
  

If (     
     , then:       and        and         

  

If (            , then go to the Report. 

Solve MP (  ) to determine the interdiction plan     and      
  

If (     
     , then:         and         

  

If (            , then go to the Report. 
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Return to the While condition 

Report   ,  ,        
  and      

  as the outputs of the solution algorithm. 

END 

Figure 4-1: Pseudo code for the decomposition algorithm 

 

Figure 4-2: Interaction between the master problem and the sub-problem 

4.3 Numerical Analysis 

In this section, we first provide an outline of the case study developed using realistic 

publicly available information, along with the estimation of the relevant parameters. We 

then discuss the solution, algorithmic efficiency, and managerial insights.   

4.3.1 Problem setting 

The analytical framework developed in this section was applied to problem instances 

generated using the realistic railroad infrastructure of a class I railroad operator in the 

United States introduced earlier in section 2.5. Parameters like cost and terminal 

capacities are similar to what have been introduced in section 3.5. Also, in this section, 

we focus on medium level of the demand and due date.  
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Finally, we set the optimality gap   in the decomposition algorithm to 1%, and the 

maximum number of iterations to 10.   

4.3.2 Solution 

The analytical framework was implemented in C# using CPLEX 12.6.0 concert 

technology on a PC with Core 2 Quad, 2.4 GHz processor with 4 GB of RAM.  For 

expositional reasons, and also to demonstrate the efficiency of the proposed solution 

methodology, we define four scenarios. The first scenario, referred to as EX, finds the 

exact solution for the proposed DAD problem and therefore it applies the optimal 

fortification. It makes use of the implicit enumeration, to transform DAD problem to a set 

of ADs, and then uses the complete enumeration technique to find the optimal solution of 

each AD problem. The second scenario, referred to as PH, finds a heuristic solution for 

the DAD problem. It makes use of the implicit enumeration technique to transform the 

DAD to a set of ADs, and then uses the proposed decomposition-based heuristic to solve 

each produced AD. The third scenario, referred to as WC, solves an AD problem to 

identify the critical terminals and then fortifies them. To find the solution of the AD 

problem, WC uses a complete enumeration. Note that, as explained in Figure 3-1, this is 

equivalent to providing the list of worst-case disruption to the root node to initialize the 

implicit enumeration scheme. Finally, for comparative assessment, we also indicate the 

solution for interdiction without fortification instances, and refer to them as NO.  It is 

important to reiterate that no terminal is defended under this scenario, which is qualified 

via NO* in the last column in Table 4-1.   
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Number of terminals Scenarios ($) 

Fortified Interdicted EX PH WC NO* 

0 0 10,700,751 

1 1 12,620,928 12,842,074 

2 2 13,073,754 14,202,436 

3 3 12,746,283 13,894,151 15,174,754 

4 4 12,717,366 14,180,059 15,731,475 

5 5 12,777,930 12,818,637 13,073,155 16,293,981 

6 6 12,517,981 13,030,159 16,487,783 

7 7 12,236,503 13,256,471 16,600,378 

8 8 15,793,979 12,474,923 16,655,991 16,681,282 

9 9 15,206,223 12,284,193 16,735,853 16,769,569 

Table 4-1: Objective function values for the four scenarios 

The first row of Table 4-1 depicts the situation where no terminal is either fortified or 

interdicted; hereafter referred to as the Base-Case, and returns a single unique solution 

across all scenarios.  The nine subsequent rows provide a snapshot of the results when 

both the number of terminals fortified and interdicted is increased.  While we provide the 

details on the CPU time later in this section, it is important to indicate that the last two 

problem instances (i.e., shaded in grey) could not be solved within a reasonable amount 

of time.  Hence, the reported solutions are the best ones encountered within the cut-off 

times of three hours and six hours for these two instances, respectively.   

From Table 4-1 we derive five interesting points.  

 First, all the scenarios with fortification outperform the one without, and that it 

exhibits increasing cost with higher numbers of interdicted terminals.  The latter point 

should be clear since higher numbers of interdicted terminals implies increased 

reliance on the more expensive transportation option, i.e., direct truck service.   
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 Second, scenario WC does not provide a better solution than either EX or PH.  This 

result is consistent with observations of Church and Scaparra (2008a, b) and Brown et 

al. (2006) who advise against using the output of the interdiction model to make 

fortification decisions, since such strategies are suboptimal and will never provide the 

best protection against worst-case disruptions.   

 Third, the proposed decomposition heuristic is able to find the optimal solution in all 

but one problem instance. This clearly proves the high quality of solutions obtained 

by this method.    

 Fourth, for both EX and PH, compared to WC, the cost shows less fluctuations and 

even with the increase in the number of attacked/defended terminals it starts 

decreasing which is in sharp contrast with the trend observed in NO scenario. The 

cost associated with implementing each of these four defense scenarios has been 

plotted in Figure 4-3 for different numbers of attacked/defended terminals. It is 

obvious in this figure that PH demonstrates the best performance compared to other 

scenarios since it shows a very consistent and generally decreasing trend. We 

postulate that the costs would decrease further if the program was allowed to naturally 

terminate for the eight- and nine-terminals problem instances. This is because 

although the number of terminals interdicted increases, the defender is also able to 

fortify a larger number of (more important) terminals, which in turn forces the 

interdiction of terminals not likely to increase the resulting cost. 
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 Fifth, for the last two rows and within the specified cut-off time, the best encountered 

solutions with PE are much better than that with EX. We elaborate on this when 

discussing the computational time. Also, the cost associated with implementing WC 

increases sharply for 8 and 9 attacked/defended terminals and this scenario indeed 

produces results as poor as the results of the NO scenario.   

 

Figure 4-3: Cost imposed to the system following each defense scenario 

Table 4-2 depicts the split of traffic between the rail-truck intermodal system and the 

expensive truck-only option under the different problem settings. As expected, the entire 

traffic uses the intermodal option when the infrastructure is functioning normally, i.e., 

Base-Case.  Note that the proportion of shipments using the truck-only option increases 

with the number of terminals interdicted for the NO scenario, which is expected because 

fewer train services could be routed on the reduced network.  Furthermore, as indicated in 

Table 4-1, WC results in a suboptimal fortification plan, since the proportion of traffic 

using the expensive truck-only option is only better than the NO scenario. Finally, under 
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both EX and PH, the proportion of traffic using truck-only maxes out around 40%, which 

demonstrates the effectiveness of both fortification strategies in ensuring that the majority 

of the intermodal network are operational –irrespective of the interdiction budget. The 

above observations are entirely supported by the number of trains of both regular and 

express types being used in the four scenarios (Table 4-3). It should be evident that with 

the higher number of interdictions (and fortifications) faster trains are used when possible 

to avoid late deliveries.   

Number of terminals Percent of traffic between T/ RT 

Fortified Interdicted EX PH WC NO* 

0 0 0/100 

1 1 28.3/71.7 34.4/65.6 

2 2 33.9/66.1 55.0/45.0 

3 3 
33.7/66.3 

51.4/48.6 64.9/35.1 

4 4 56.1/43.9 79.9/20.1 

5 5 38.2/61.8 40.3/59.7 47.5/52.5 84.1/14.9 

6 6 30.5/69.5 41.7/58.3 90.4/9.6 

7 7 26.0/74.0 46.5/53.5 93.4/6.6 

8 8 75.8/24.2 28.5/71.5 96.0/4.0 95.0/5.0 

9 9 66.2/33.8 24.7/75.3 98.3/1.7 99.1/0.9 
Table 4-2: Traffic split between truck-only (T) and rail-truck intermodal (RT) 

Number of terminals Number of Express/ Regular trains 

Fortified Interdicted EX PH WC NO* 

0 0 0/36 

1 1 0/28 0/27 

2 2 0/25 0/23 

3 3 
1/26 

1/20 0/20 

4 4 1/19 0/12 

5 5 1/24 1/20 0/10 

6 6 0/26 0/24 0/6 

7 7 1/29 1/22 0/5 

8 8 0/13 1/30 0/4 0/4 

9 9 1/15 0/31 0/3 0/1 
Table 4-3: Number of intermodal train services 
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4.3.3 Computational Performance 

We next comment on the computational performance of the proposed heuristic. Table 4-4 

reveals that the number of possible outcomes needing evaluation increases exponentially 

with the number of terminals fortified and interdicted, which in turn impacts the CPU 

time. Although the computation time for both EX and WC is rather comparable, the latter 

results in suboptimal solutions and hence is not of much interest. PH is able to return 

solutions as good as EX, except for one problem instance (Table 4-1), in much shorter 

time.  It is easy to see that this is possible because while both EX and PH are benefiting 

from  the implicit enumeration scheme to convert the tri-level problem into a set of bi-

level AD problems, in the PH each of the resulting ADs is solved efficiently by the 

heuristic decomposition depicted in Figure 4-2 (and Section 4.2.2). In the EX, on the 

other hand, each bi-level AD is solved by embarking on the complete enumeration of all 

the possible attack possibilities. In an effort to further highlight the effectiveness of the 

decomposition component of PH, we have listed, under the title HD, the total CPU time 

required for executing the heuristic decomposition, described in the pseudo code of 

Figure 4-2. It should be clear that in this table while both WC and the proposed 

decomposition scheme are solving bi-level AD problems to find the worst-case attack, the 

latter is able to return the solutions that WC returns, i.e. the highest quality solutions, in 

significantly lower CPU time. In fact, the performance of the proposed heuristic in 

solving AD problems is independent of the attack budget while the performance of the 

WC is sharply impaired by an increase in the attack budget. Finally, it is important to note 

that the major part of the computation time under PH must be attributed to the first stage, 
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i.e., the implicit enumeration scheme outlined previously, since the implicit enumeration 

transforms the DAD problem into too many bi-level ADs. Although each of the produced 

ADs can be solved very efficiently, by using the proposed decomposition heuristic, 

solving a lot of them will eventually increase the CPU time. In Chapter Five, we will 

demonstrate a metaheuristic-based tree search process, which enables us to transform the 

DAD problem to a fewer number of bi-level ADs so that the execution of PH can be 

expedited.   

# Fortified/ 

Interdicted 

# Possible 

Outcomes 
EX 

PH 

Total             HD 
WC 

1 18 77 10 3.09 77 

2 153 286 33 2.92 286 

3 816 1,570 86 2.12 1,569 

4 3,060 5,747 364 2.32 5,745 

5 8,568 15,450 1,206 2.01 15,435 

6 18,564 32,271 3,361 1.96 32,117 

7 31,824 47,395 13,304 2.02 46,314 
Table 4-4: CPU time (seconds) for the three fortification techniques 

4.3.4 Insights 

In this section, we comment on the intermodal terminals that should be fortified, and also 

provide some insights on their utilization under different problem instances.  The 

terminals which are fortified are exactly the same for EX and PH, except in one problem 

instance. For the five-terminal problem instance, the intermodal terminal at Chicago was 

fortified under EX, and Jacksonville under PH. As indicated earlier, since the output of 

the interdiction model is used to make fortification decisions in WC, the list of terminals 

has less similarity to the other two.   
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Finally, it should be clear that since interdiction of terminals renders them unusable, 

relevant traffic would have to be re-routed using alternative terminals thereby impacting 

their utilization. Since each terminal in the network has a finite capacity, it may not 

always be possible to reassign traffic to other available terminals in the network. Also, an 

interdiction may result in shippers and/or receivers losing their connectivity to the 

intermodal network and in such cases demand would have to be met using direct trucking 

service. For expositional reasons, and without losing generality, we analyze terminal 

capacity utilization for three distinct problem instances: Base-Case; and, 

fortification/interdiction of three-terminal and seven-terminal problem instances (as 

shown in Table 4-5).   

Number 

Fortified 

Number 

Attacked Cases 

Avg. Cap. 

Utz. 

Number of Terminals on each 

Category of Utilization 

% 

loss 

<25 <50 <65 <80 <90 <100 

0 

0 Base-Case 79% 0 0 0 10 7 1 0 

3 
NO 

46% 6 4 6 0 1 1 71.7 

7 26% 14 2 0 1 0 1 95 

3 3 

WC 61% 4 4 2 4 1 3 37 

EX 
68% 3 3 1 7 3 1 24.7 

PH 

7 7 

WC 58% 9 1 3 2 0 3 31.4 

EX 
68% 10 0 2 2 2 2 1 

PH 

Table 4-5: Capacity utilization of the terminals 

As expected the average capacity utilization of active terminals is the highest under the 

Base-Case, which results from normal functioning of all terminals and not using any 

direct trucking service. With no fortification, the average utilization drops from 46% to 

26% when the number of terminals interdicted increases from three to seven and the loss 
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in connectivity increases from 71% to 95%. Therefore, with no fortification, it is almost 

impossible to connect shippers and receivers by the rail truck intermodal network when 

seven terminals have been attacked. It was interesting that the average capacity utilization 

under both EX and PH was always better than that under WC. Also, with the increase in 

the number of fortified and attacked terminals from three to seven, while WC shows a 

drop in the average capacity utilization from 61% to 58%, the capacity utilization under 

EX and PH was stable at 68%. In terms of the loss in connectivity, with the increase in 

the number of fortified/attacked terminals, all the defense strategies, i.e. WC, EX and PH, 

show a decreasing trend. Specifically, the drop in the loss of connectivity under EX and 

PH is remarkable such that almost all the demands could be shipped by the rail-truck 

intermodal network. This highlights the importance of having suitable defense strategies 

in place which will enable the rail truck network to deliver almost all the demands from 

the shippers to the receivers even in the tough condition when seven terminals have been 

attacked. 

4.4 Conclusion 

In this chapter, we developed a decomposition-based heuristic to deal with larger 

instances on the realistic infrastructure of a class I railroad operator. In addition, the 

computational efficiencies of proposed heuristics were highlighted in relation to the 

existing techniques.   

Computational experiments shed light on some interesting observations. First, spending 

the finite resources judiciously to fortify a given number of intermodal terminals would 



85 

 

improve the post-interdiction performance of the remaining intermodal transportation 

system dramatically. The cost saving of having such a suitable protection plan in place is 

an important input to high level decision makers who need to compare costs and benefits 

of launching this protection plan. Second, contrary to intuition, using the output of the 

Attacker-Defender problems, except for small instances, will never achieve the optimal 

fortification. This means that optimization of fortification should be addressed directly. 

Finally, in most of the cases, the proposed decomposition-based heuristic is capable of 

returning high quality solutions in a reasonable amount of time. Specially, the proposed 

heuristic for solving the AD problems is producing excellent results in a very short time.    

Although the proposed heuristic decomposition, compared to other solution techniques, 

produces the best results, its performance in dealing with large instances drops sharply. 

Such a rapid decline in the computational performance can be attributed to the fact that 

the size of the problems are increasing so fast. Also, it might be the case that the tree 

search component of the decomposition based heuristic is not efficient enough in dealing 

with the sharp increase in the size of the solution space. Therefore, we conjecture that 

there might be a better way to cope with the increased size of the problem. This will 

constitute the inspiration for the next chapter where a more efficient solution technique 

for large-scale instances will be suggested.   
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Chapter 5: Tabu Search Metaheuristic for Solving 

Protection Planning in Rail-Truck Intermodal 

Transportation 

5.1 Introduction 

At the end of the previous chapter we conjectured the reason for the declining 

performance of the proposed decomposition-based heuristic on large instances. To see 

what exactly challenges the proposed decomposition technique in solving large scale 

instances of the DAD efficiently, Table 5-1 provides very useful information.  

 

 

 

 

 

Table 5-1: Rapid growth of size of the tree search 

According to this table, the number of nodes produced by the implicit enumeration 

technique is increasing very fast when the number of attacks/defenses increases. More 

specifically, in each search tree like Figure 3-1, two types of nodes could be identified: 

processed nodes, and leaves. The processed nodes are those nodes in which a bi-level AD 

problem must be solved (this includes node 3, node 4, and all the dark shade nodes in 

Figure 3-1). The leaves are a subset of processed nodes which are the ending nodes of the 

Number of terminals No of intermediate nodes 

Fortified Interdicted Leaves Processed Total 

2 2 3 6 11 

3 3 14 25 49 

4 4 54 100 199 

5 5 198 370 739 

6 6 745 1,387 2,773 

7 7 2,722 5,281 10,561 

8 8 8,566 17,817 35,633 

9 9 27,551 60,410 120,819 
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tree in which the worst-case attack is prevented in them (this only includes the dark shade 

nodes in Figure 3-1). The total column in this table indicates the total number of nodes 

produced in the search tree. For each problem instance, the difference between the total 

column and the process column indicates the number of nodes in which there is no need 

to solve a bi-level AD problem. The optimal solution is the set of decisions that lead to a 

leaf with the lowest objective function value. As it is clear in Table 5-1, with the increase 

in the number of attacks/defenses, the total number of nodes and especially the total 

number of processed nodes will increase dramatically. Although at each of these 

processed nodes the resulting bi-level problem will be solved very efficiently with the 

proposed solution technique, having too many of these nodes eventually increases the 

computational time and makes the proposed decomposition technique incapable of 

solving big instances of the DAD problem. To circumvent this issue, there is a need for 

another solution technique that bypasses all these intermediate nodes and produces the 

leaves directly. Such a technique should also act intelligently in the solution space and be 

able to find good solutions very fast.  

5.2 Literature Review 

5.2.1 Metaheuristics 

Approximate solution techniques, or heuristics, have been used since the early days of 

operations research to deal with computationally difficult problems. Development of 

complexity theory in the early 197 ’s makes it clear that most of these problems are NP 

hard and, thus, there is little chance to find efficient exact solution techniques for them. 
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As a result of this conclusion, the role of heuristics in solving NP hard optimization 

problems has been recognized since in many cases heuristics are the only practical way to 

handle such problems.   

The most prevalent and simplest heuristic approach is the local search technique 

(Gendreau, 2003). The local search can be imagined as an iterative search that begins with 

an initial feasible solution and then gradually improves it by applying some local 

modifications. At each iteration of this heuristic, local modifications will be applied to the 

current solution and among the produced solutions the best improving one will be 

selected. The search terminates when it faces a local optimum with regard to the local 

transformations that it applies.  

A serious drawback of this heuristic is that the local optimum found, in most of the cases, 

is very far from the global optimum solution. In local search, primary factors that 

influence the quality of the solution obtained and computation time are the richness of the 

set of transformations that are performed at each iteration of the heuristic and the initial 

solution.  In the late 197 ’s and the early 198 ’s, by inspiration from natural 

phenomenon, many other heuristic approaches were proposed which provided better 

results. The advent of these techniques, which Glover (1986) called metaheurstics, 

produced a lot of hope since they help the local searches escape from the local optimum 

trap.  



90 

 

Generally speaking, metaheuristics are approximate solution methods that establish a 

connection between local search procedures and higher-level search strategies. Creating 

this link makes the overall search process competent enough to cross over from local 

optima by implementing a thorough and robust search of the solution space.  

While metaheuristics are not able to confirm the optimality of their solutions, this 

weakness seems negligible when considering the fact that exact procedures are often 

unable to find solutions whose quality is close to that obtained by metaheuritics. Such a 

good performance of metaheuristics in recent years, especially in dealing with real life 

optimization problems with a combinatorial nature, has made them the first choice in 

handling computationally difficult problems.  

To better understand differences among metahueristics, there is a need to classify them 

based on their individual characteristics. Among different existing classifications, the 

most important and yet popular one is based on the number of solutions that the 

metaheuristic uses at the same time. In this regard, some metaheuristics work on a 

population of solutions while the others work on a single solution at a time. Algorithms 

working on a single solution are called single thread or trajectory methods and this 

category includes local search based metahueristics like Simulated Annealing, Tabu 

Search and Variable Neighborhood Search. On the other hand, algorithms that perform 

the search on a set of solutions and evolve them together are called population-based 

algorithms. This category includes methods like Genetic Algorithm, Ant Colony 

Optimization and Artificial Immune System.   
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Metahueritics have witnessed enhancements and improvements since their inception. As 

the latest development in metehuristics, hybrid metaheuristics have become more popular 

in the recent years since they take advantage of strengths of each of the individual 

components to better explore the search space. This hybridization includes the 

hybridization of population-based methods with trajectory methods, or hybridization of 

metahueristcs with optimization techniques.  

5.2.2 Tabu Search  

Tabu search was proposed independently by Glover (1986) and Hansen (1986), and has 

witnessed a continuous improvement since then. It has been successfully applied to a 

wide variety of problems and has produced remarkable results on hard combinatorial 

problems, such as quadratic programming (Merz & Freisleben, 2002), vehicle routing 

problems (Gendreau, Hertz, & Laporte, 1994; Taillard, Badeau, Gendreau, Guertin, & 

Potvin, 1997), and flow shop sequencing (Nowicki & Smutnicki, 1996).  

Tabu search is based on the idea that intelligent problem solving must capitalize on the 

synergy of adaptive memory and responsive exploration. The emphasis on adaptive 

memory makes tabu search capable of exploiting strategies that mimic human problem 

solving skills. Having such an adaptive memory enables tabu search to search the solution 

space efficiently and effectively. Since local information gathered during the search forms 

a memory to guide the search, tabu search differs from local searches that do not take 

advantage of memory and thus depend only on semi-random processes that implement a 

form of sampling. Also, the emphasis on responsive exploration stems from the fact that a 
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bad strategic choice can often yield more information than a good random choice since 

the former is able to rectify its path and learn from the past but the later is unable to react 

to the new information. 

To better see the difference between tabu search and a simple descent local search, let us 

assume that the goal is to minimize f(x) where     and the neighborhood of a given 

solution     is characterized by     .  

A simple descent method only allows moves to neighbor solutions that improve the 

current objective function value and it terminates the search when no improving solution 

can be found in the neighborhood of the current solution. The final   obtained by this 

method is indeed a local optimum, since it is at least as good as all the solutions seen so 

far.  

Tabu search, on the other side, permits moves that may impair the current objective 

function value but the moves are chosen from a modified neighborhood           . 

Short term and long term memory structures are both playing roles in determining the 

specific composition of      .  

More specifically, short term memory is responsible to exclude certain elements of      

to form      . Long term memory, on the other hand, may expand       to include 

some solutions not directly found in      such as solutions found in the past history of 

the search that has been identified as high quality neighbors of these past solutions.  

Tabu search, which extends the regular local search, has three main components: 
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 Search space and neighborhood structure; 

 Tabu List; and 

 Aspiration Criteria. 

In the next few subsections, each of these components will be elaborated in more details. 

Search space and neighborhood structure 

The search space of tabu search is the set or collection of all possible solutions that can be 

considered during the search.  

Closely related to the definition of the search space is that of neighborhood structure. If 

we denote the current solution by  , at each iteration of the tabu search, local 

transformations that can be applied on   produce a set of neighboring solutions denoted 

by      in the search space as the neighborhood of solution  . 

Tabu List 

A tabu list is one of the main distinctions of tabu search compared to the local search. The 

idea behind a tabu list is to prevent the search from returning back to where it came from 

and therefore prevent endless cycling from happening. This is achieved by declaring tabu 

moves that reverse the effect of recent moves. Tabu moves are usually stored in short 

term memory and the most commonly used form of implementing the tabu list is to 

prohibit reverse transformations from the current solution. In implementing the tabu list, 

one could record the complete solutions visited recently. Although this implementation is 
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accurate, it requires a lot of storage and may make the search expensive. Alternatively, 

one could record only the last few transformations that have happened on the current 

solution and add them to the tabu list to prohibit the reverse transformations.   

Aspiration Criteria 

While tabu lists are fundamental elements of tabu search, sometimes they are too 

restrictive and may prohibit attractive moves even when there is no danger of cycling. 

Therefore it is necessary to use algorithmic devices, called aspiration criteria, to override 

tabu lists. The simplest and probably most popular criterion is to allow a move listed in 

the tabu list if it leads to a solution with a better objective function than the currently best- 

known objective function.  

5.3 A Simple Outline of Tabu Search Algorithm 

Preliminary Steps 

 Find an initial solution.  

 Set the best solution to the initial solution and set the best objective function 

value based on the objective function value of the initial solution. 

 Set the initial tabu list to empty.   

While termination condition not reached do 

 Search the allowable neighborhood of the current solution.  

 Find the best solution in the allowable neighborhood. 
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 Update the best solution and best objective function value. 

 Form the tabu list for the current solution.  

End 

5.4 Tabu search Implementation for solving the DAD problem 

In this section, an application of tabu search in solving the DAD problem will be 

elaborated. First, we need to clearly define each component of the tabu search algorithm 

and then we outline the algorithm in a flowchart.  

Solution Representation 

Each feasible solution for the Defender’s problem (network operator) is represented by a 

binary array of length   where   is the total number of terminals in the network. When a 

given cell   is filled with 1, the corresponding terminal, i.e. terminal  , will be defended. 

Therefore, the array contains   cells filled by 1 where   is the maximum number of 

terminals that the network operator can protect. The remaining       cells in the 

solution array will be filled with 0.  

Neighborhood Structure  

At each iteration of the search, local transformations that can be applied on the current 

solution generate a set of neighborhood solutions in the search space. In this algorithm, 

the local transformation is defined as swapping the values of two cells when one cell 

contains one and the other contains zero. This type of transformation is called 1-swap and 
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is depicted in Figure 5-1 on a given solution array with 6 terminals (   ) and 3 

defenses (   ). It should be noted that the total number of 1-swap movement on a 

solution array equals to   
 
      

 
         .  

  

Figure 5-1: 1-swap movement 

In the similar way, 2-swap transformation can be applied on a given solution in which 

two cells containing zero values will exchange their contents with two cells containing 

one values. Figure 5-2 shows an example of applying 2-swap transformation on a given 

solution. Also, the total number of 2-swap transformations on a solution array with    

terminals and       defended terminals equals to:   
 
      

 
 . 

 

Figure 5-2: 2-swap movement 
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Tabu List 

The tabu list contains information regarding the four recent swaps. Therefore, it is 

impossible to perform a swap operation between two cells if the reverse of that swap 

happened in the last four iterations of the algorithm. Also, it is important to note that 

when, at the end of an iteration, a swap is happening, the most recent swap is entering the 

list of tabu swaps and the oldest swap is exiting the tabu list and is not considered as a 

tabu swap any more. Therefore, we can think of the tabu list as a First in First out 

(FIFO) queue with the length of four in which with the entrance of a new swap the oldest 

swap leaves the queue. Figure 5-3 depicts the flow chart of the proposed tabu search. To 

fully understand this diagram, the following notation should be introduced.  

 : Index of the number of iterations 

 : Index of the number of iterations without improvement 

  : The initial solution 

  : The current solution 

  : The best solution found in the neighborhood of    

At the beginning of the algorithm, both indexes are set at zero and the current solution is 

set at the initial solution. Also, maximum number of iterations is set at 10 and the 

maximum number of iterations without improvement is set at 4. Then, all the neighbors of 

the current solution will be analyzed and the best one will be selected. If the best neighbor 
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is improving the best solution found so far, then the search continues by increasing the 

index of number of iteration. 

 

Figure 5-3: Flowchart of the proposed tabu search algorithm 

Otherwise, the index of the number of iterations without improvement will be 

incremented. Following that, the stopping condition is checked. The search stops if either 

the number of iterations or the number of consecutive iterations without improvement 

reaches their pre-defined limits. If the search continues, the current solution will be 

replaced with the best solution found in the neighborhood of the previous iteration. In 
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other words, the current solution in each iteration, except for the first iteration, is the best 

solution found in the neighborhood of the previous current solution. The search continues 

until the stopping criteria are met. At the end, the best solution found so far will be 

reported as the output of this algorithm.   

5.5 Numerical Analysis 

In this section, we will pay attention to the results of solving the DAD model with the 

tabu search algorithm described in the previous section. To find the best setting, four 

different variants of the tabu search algorithm, depicted below, have been proposed and 

then coded in C# using CPLEX 12.6.0 concert technology on a PC with Core 2 Quad, 2.4 

GHz processor with 4 GB of RAM. These variants are:   

 Variant 1: In the first variant, the tabu search algorithm starts from a randomly 

generated solution. To generate the neighborhood of the current solution, 1-swap 

transformation is used. 

 Variant 2:  In the second variant, the tabu search algorithm begins with the output 

of the AD problem. In other words, the worst-case attack generated by the 

interdictor is the starting point of the tabu search algorithm. Then, a 1-swap 

transformation is used to generate the neighboring solutions.  

 Variant 3:  In the third variant, the tabu search algorithm begins with a random 

solution. The 2-swap transformation is used to generate the neighboring solutions.  



100 

 

 Variant 4:  In the fourth variant, the tabu search algorithm begins with the output 

of the AD problem and the 2-swap transformation is employed to generate the 

neighboring solutions.  

To compare the performances of these four variants of the tabu search algorithm, different 

instances of the DAD problem have been solved by these variants and the results have 

been analyzed according to their objective function values and the computation times. 

Also, to take into account the random starting point in both Variant 1 and Variant 3, each 

problem instance has been solved ten times by these two variants and the average 

objective function value and average computation time have been reported. Furthermore, 

it should be added here that at each of these ten runs, due to the randomness of the 

starting point, Variant 1 and Variant 3 may have similar starting points. 

Table 5-2 shows the objective function values of solving the DAD problem for different 

problem instances (different number of attacked/defended terminals) by four distinct 

variants of the tabu search algorithm.  

According to this table, all variants of the tabu search algorithm are capable of finding the 

optimal solution for different instances of the DAD problem and thus are quite effective 

and accurate. 
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Table 5-2: 

Objective Function Values of Solutions Found by Four Variants of Tabu Search 

Table 5-3 reveals the computational performance of these variants of the tabu search 

algorithm in solving different instances of the DAD problem.  

According to Table 5-3, in comparing Variant 1 and Variant 2, both of which are based 

on 1-swap transformations, Variant 2 shows a much better computational performance. 

The reason why Variant 2 outperforms Variant 1 can be attributed to the fact that this 

variant of the tabu search is taking advantage of results of the AD model to start the 

search with. Although the output of the AD model is not the optimal solution for the 

DAD problem, it could be used as a good starting point.   

 

 

  

      

   

   

   

   

   

   

   

   

   

Number of terminals OFV found by Tabu Search 

Fortified interdicted Variant 1 Variant 2 Variant 3 Variant 4 

1 1 12,620,928 

2 2 13,073,754 

3 3 12,746,283 

4 4 12,717,366 

5 5 12,744,060 

6 6 12,517,981 

7 7 12,236,503 

8 8 11,878,142 

9 9 11,598,194 
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Table 5-3: Computational Performance of Four Variants of Tabu Search 

Also comparing Variant 3 and Variant 4, which both take advantage of 2-swap 

transformation, confirms that the output of the AD problem should be considered as a 

good starting point for the tabu search algorithm since Variant 4 outperforms Variant 3. 

Examining the results of Variant 2 and Variant 4, which use the output of the AD model 

as the starting point but have different transformations to generate the neighborhood, 

makes it clear the extent to which the type of transformation can influence the 

computational performance. According to this table, while both Variants 2 and Variant 4 

show almost the same performance on very small-scale problem instances, on larger 

instances, Variant 4 needs excessively longer computation time to find the optimal 

solution than Variant 2. This can be attributed to the fact that applying the 2-swap 

transformation produces more neighboring solutions than applying 1-swap transformation 

Number of terminals Computation Time of Tabu Search (Seconds) 

Fortified Interdicted Variant 1 Variant 2 Variant 3 Variant 4 

1 1 13 11 15 12 

2 2 210.3 42 759.2 42.9 

3 3 424.3 209 3,501.7 3,031.5 

4 4 968.5 379 7,620.3 3,858.4 

5 5 1,174.2 324 7,613.6 3,395.7 

6 6 1,724.0 407 8,126 4,551.6 

7 7 1,669.8 906 11,664.5 5,549.2 

8 8 2,144.1 917 29,601.2 7,240.9 

9 9 3,270.9 1,668 40,256.62 12,680 
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and thus enlarges the size of the neighborhood at each iteration of the search. This makes 

2-swap transformation less efficient than 1-swap transformation. The same trend is 

observable when comparing Variant 1 and Variant 3 and thus the 1-swap transformation 

is producing a better search space and is considered more efficient than the 2-swap 

transformation.  

It should be concluded from this table that using the output of the AD problem, as the 

starting point, and having 1-swap transformation, to produce the neighborhood, are 

improving the performance of tabu search and thus Variant 2 which benefits from both of 

these two factors should be considered as the optimal design of the tabu search in solving 

the DAD problem.  

5.6 Insights 

Comparing the results of Table 5-3 and Table 4-4 is very informative. It reveals that 

Variant 2, as the optimal design of tabu search, is a viable and efficient solution technique 

for solving big instances of the DAD problem. More specifically, for small instances, i.e. 

4 attacks/defenses or fewer, the decomposition technique proposed in the previous 

chapter is performing better and should be considered as an efficient solution technique. 

This can be attributed to the fact that, in these small instances, the proposed 

decomposition-based technique produces fewer numbers of intermediate nodes and 

therefore is quite efficient for tackling problems of these sizes. On the other hand, for 

large problem instances, Variant 2 of the tabu search is performing much better than the 

decomposition-based solution technique and should be deemed as the dominant solution 



104 

 

technique for large problem instances. Consequently, depending on the number of 

attacks/defenses, the appropriate solution technique for solving the DAD problem can be 

identified such that for problems with relatively few attacks/defenses, four or fewer , the 

proposed decomposition-based heuristic should be selected and for problems with more 

than four attacks/defenses, Variant 2 of the proposed tabu search should be picked.   

5.7 Conclusion 

In this chapter, a tabu search algorithm for solving the DAD problem has been 

introduced. The results of solving the DAD problem with this algorithm prove the 

competency of this algorithm in dealing with large-scale instances of such a difficult 

problem.  
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Chapter 6: Conclusion and Future Research 

6.1 Conclusion 

Despite the practical importance of rail-truck intermodal transportation, the research on 

this type of transportation is still in its infancy. In this dissertation, we proposed a set of 

models to improve the performance of this type of transportation in the wake of worst-

case disruptions. In particular, each chapter of this dissertation plays an important role is 

attaining this objective. 

In Chapter Two, the basic mathematical model for defending rail-truck intermodal 

transportation is put forward. Then, two small instances of the proposed model were 

applied to a realistic network of Norfolk Southern, a Class I railroad company in the US, 

and were solved by using CPLEX. The results indicate the effectiveness of having a 

sound fortification plan to hedge against worst-case attacks.  

In Chapter Three, the basic model developed in Chapter Two was expanded. Also, a 

heuristic solution technique-based on the traffic flow information was proposed. The 

traffic-based heuristic proved to be an appropriate solution technique, in terms of 

efficiency and quality of solutions, in solving small-scale problems of fortification 

planning in the Norfolk Southern network. 

In Chapter Four, a heuristic solution technique based on decomposition was proposed. In 

the first stage of this heuristic, the implicit enumeration (Scaparra and Church, 2008a) is 

used to break the DAD problem into a set of AD subproblems. In the second stage, each 

of the AD problems generated in the first stage is solved using a Bender’s decomposition 
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approach. The Bender’s decomposition approach for solving AD subroblems is quite 

efficient and is able to produce high quality results. Also, the decomposition based 

heuristic is able to solve DAD problems and yielding high quality solutions in a 

reasonable amount of time.    

In Chapter Five, an efficient tabu search-based solution technique for solving DAD 

problems is introduced which is able to further improve the performance of the 

decomposition-based heuristic, developed in Chapter Four, especially in large-scale 

problem instances. Different variants for the tabu search-based heuristic, like the initial 

solution and the neighborhood structure, are compared. According to extensive 

experiments, it is determined that the tabu search heuristic that uses the result of the AD 

subproblem, as the initial solution, and takes advantage of 1-swap transformation, as the 

neighborhood structure, outperforms the other variants and thus should be considered in 

solving large instances of the DAD problem. Furthermore, depending on the size of the 

problem instance, the decomposition based heuristic, developed in Chapter Four, or the 

tabu search, developed in Chapter Five, should be used in solving the DAD problem 

instances.   

6.2 Future Directions 

The following suggestions will help improve applicability of this dissertation.   

6.2.1 Network Design Considerations 

The network operator is responsible for long terms decisions. In addition to protection 

planning, the network operator will be responsible for designing the network. More 
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specifically, the network operator could decide about the initial capacity of terminals and 

available services while both of them were assumed to be given in this thesis.  

Terminal capacities could be endogenous to the model such that the initial allocation of 

capacity is performed to ensure that the remaining network always has enough capacity to 

meet the demand in the aftermath of disruptions.  

Design of intermodal train services which is called service network design (Crainic, 

2000) could be decided such that the network always keeps a certain amount of 

connectivity following interdictions. This reduces the need for the high-cost trucking 

system and therefore reduces the cost imposed to the transportation system. 

To add more realism to the current DAD model, empty container distribution (Dejax & 

Crainic, 1987) on the network could also be integrated into the model. In the current 

model, we assumed that empty cars are always available in shippers/receivers locations. 

But, due to the imbalance on the demand, this may not be true and therefore, the network 

operator has to deliberately make a plan to deliver empty containers to the customers.  

Obviously, adding these two important network design aspects to the network operator’s 

responsibilities improves the quality of service for the customers on the demand side. 

However, this augmentation comes with the cost of increasing the size and the complexity 

of the current DAD model. For example, adding the capacity allocation problem to the 

network operator makes the DAD model a nonlinear mixed integer program which is 

inherently more difficult than the current mixed integer DAD model.     
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6.2.2 Uncertainty and Asymmetric Information  

The current model can be augmented by adding uncertainty elements into different 

aspects of decision making. This suggestion is motivated by the fact that in reality the 

players may not have access to all the information they would need, especially about what 

the other players are opt to, and thus the symmetry of information may not be hold. Thus, 

developing models to work with asymmetric information is of high practical importance. 

For instance, the network operator may not know the exact number or the magnitude of 

attacks in advance. Thus, the operator may have to work with respective probability 

distributions to safeguard the network against the expected number of attacks or against 

expected magnitude of attacks.   

Also, the success of attack and defense actions may not be guaranteed such that a given 

attack is successful with a certain probability or, in the same way, a given defense is 

successful with a certain probability.   

6.2.3 Random Attacks 

Instead of defending the system against worst-case attacks, we could consider defending 

the system against random attacks. The idea is that instead of safeguarding against 

unlikely worst-case attacks, it’s good to be prepared for high probability random 

disruptions in the system. Ideally, it is appropriate to be prepared for both kinds of 

disruptions, i.e. random and worst-case; at the same time which has been called the all-

hazard approach by Zhuang and Bier (2007). 
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Embracing random disruptions, either instead of or together with worst-case ones, needs 

fundamental changes in the way the interdictor operates. Obviously, this will create more 

reasonable and realistic results but requires more computational changes as well.   

6.2.4 Efficient Solution Methods for the Intermodal Operator’s Problem  

The intermodal operators’ problem, or the inner-most problem, is a capacitated multi-

commodity network flow problem with train frequency variables and is currently solved 

using the CPLEX solver.  

Preliminary investigations showed that solving the intermodal operator’s problem for a 

larger data set is very difficult and challenging for CPLEX. Therefore, new solution 

techniques, including heuristic ones, should be considered in solving the intermodal 

operator’s problem for large scale instances. For instance, Benders decomposition 

(Benders, 1962) or dual-ascent methods (Barnhart, 1993) could be considered to solve the 

intermodal operator’s problem in a more efficient way.  

Solving the intermodal operator’s problem more efficiently also enables a deeper 

evaluation of the efficiency of the proposed decomposition technique and the proposed 

tabu search since it allows solving a larger data set by them. This will reveal more 

insights about the weaknesses and strengths of these techniques.  
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Appendix A: Defined Train Services on the Network 

Service 

Number 

Origin Destination Intermediate Stop(s) 

1 Atlanta Detroit Knoxville 

2 Atlanta New York Knoxville 

3 Atlanta Philadelphia Charlotte, Richmond 

4 Charlotte Chicago Indianapolis 

5 Charlotte Detroit Columbus 

6 Charlotte New York - 

7 Chicago Charlotte Indianapolis, Cincinnati 

8 Chicago Jacksonville Indianapolis, Atlanta 

9 Chicago New York - 

10 Chicago Philadelphia Pittsburg 

11 Cincinnati Jacksonville Knoxville, Atlanta, Macon 

12 Columbus Norfolk Pittsburgh 

13 Detroit New York Columbus 

14 Detroit Philadelphia Cleveland, Pittsburgh 

15 Indianapolis Atlanta - 

16 Indianapolis New York Cleveland 

17 Indianapolis Philadelphia Columbus, Pittsburgh 

18 Jacksonville Chicago Atlanta, Indianapolis 

19 Jacksonville Philadelphia Richmond 

20 Columbus Philadelphia Pittsburgh 

21 New York Atlanta Roanoke, Knoxville 

22 New York Charlotte Richmond 

23 New York Chicago Cleveland, Fort Wayne 

24 New York Detroit Columbus 

25 New York Indianapolis Pittsburgh, Columbus 

26 Philadelphia Atlanta Roanoke, Knoxville 

27 Philadelphia Chicago Columbus, Fort Wayne 

28 Philadelphia Detroit Pittsburgh, Cleveland 

29 Philadelphia Indianapolis Cleveland, Columbus 

30 Philadelphia Jacksonville Richmond 

31 Philadelphia Memphis Roanoke 
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Appendix B 

Defended 

Terminal 

Attacked Terminal Resulting Cost 

($) 

1 Chicago 11620650 

2 Fort Wayne 10922063 

3 Detroit 10957771 

4 Cleveland 10833657 

5 New York 10924925 

6 Indianapolis 11906369 

7 Columbus 11130345 

8 Pittsburgh 11257889 

9 Philadelphia 12263378 

10 Cincinnati 10912389 

11 Roanoke 10833657 

12 Richmond 11645654 

13 Norfolk 10942267 

14 Knoxville 10965458 

15 Charlotte 11515479 

16 Atlanta 12641578 

17 Macon 10834852 

18 Jacksonville 11437338 
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Appendix C 

Defended 

Terminal 

Attacked Terminals Resulting Cost 

($) 

1 Chicago, Fort Wayne 11497305 

2 Chicago, Detroit 11697341 

3 Chicago, Cleveland 11437820 

4 Chicago, New York 11480154 

5 Chicago, Indianapolis 13016982 

6 Chicago, Columbus 11622864 

7 Chicago, Pittsburgh 11671667 

8 Chicago, Philadelphia 12771238 

9 Chicago, Cincinnati 11486950 

10 Chicago, Roanoke 11590971 

11 Chicago, Richmond 12230896 

12 Chicago, Norfolk 11516827 

13 Chicago, Knoxville 11547768 

14 Chicago, Charlotte 11922874 

15 Chicago, Atlanta 13105000 

16 Chicago, Macon 11409413 

17 Chicago, Jacksonville 11895539 

19 Fort Wayne, Detroit 10837946 

19 Fort Wayne ,Cleveland 10739310 

20 Fort Wayne, New York 10781656 

21 Fort Wayne ,Indianapolis 11829614 

22 Fort Wayne, Columbus 10920713 

23 Fort Wayne ,Pittsburgh 11004526 

24 Fort Wayne, Philadelphia 12097796 

25 Fort Wayne, Cincinnati 10785805 

26 Fort Wayne, Roanoke 10889826 

27 Fort Wayne, Richmond 11530177 

28 Fort Wayne, Norfolk 10815736 

29 Fort Wayne, Knoxville 10845397 

30 Fort Wayne, Charlotte 11368210 

31 Fort Wayne, Atlanta 12633231 

32 Fort Wayne, Macon 10708268 

33 Fort Wayne, Jacksonville 11307913 

34 Detroit, Cleveland 10775018 

35 Detroit, New York 10823771 

36 Detroit, Indianapolis 11790404 

37 Detroit, Columbus 10962754 

38 Detroit, Pittsburgh 11023391 

39 Detroit, Philadelphia 12153466 

40 Detroit, Cincinnati 10822129 
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41 Detroit, Roanoke 10926150 

42 Detroit, Richmond 11566075 

43 Detroit, Norfolk 10852022 

44 Detroit, Knoxville 10873689 

45 Detroit, Charlotte 11405170 

46 Detroit, Atlanta 12597366 

47 Detroit, Macon 10744592 

48 Detroit, Jacksonville 11337900 

49 Cleveland, New York 10721487 

50 Cleveland, Indianapolis 11723616 

51 Cleveland, Columbus 10947592 

52 Cleveland, Pittsburgh 11075136 

53 Cleveland, Philadelphia 12086612 

54 Cleveland, Cincinnati 10729636 

55 Cleveland, Roanoke 10833657 

56 Cleveland, Richmond 11473582 

57 Cleveland, Norfolk 10759513 

58 Cleveland, Knoxville 10789227 

59 Cleveland, Charlotte 11312041 

60 Cleveland, Atlanta 12578167 

61 Cleveland, Macon 10652099 

62 Cleveland, Jacksonville 11251744 

63 New York, Indianapolis 11743681 

64 New York, Columbus 10908655 

65 New York, Pittsburgh 10975388 

66 New York, Philadelphia 13906575 

67 New York, Cincinnati 10771683 

68 New York, Roanoke 10896389 

69 New York, Richmond 11482407 

70 New York, Norfolk 10801560 

71 New York, Knoxville 10809952 

72 New York, Charlotte 11405490 

73 New York, Atlanta 12647001 

74 New York, Macon 10694146 

75 New York, Jacksonville 11289176 

76 Indianapolis, Columbus 11862696 

77 Indianapolis, Pittsburgh 11813444 

78 Indianapolis, Philadelphia 12931394 

79 Indianapolis, Cincinnati 11801447 

80 Indianapolis, Roanoke 11851345 

81 Indianapolis, Richmond 12489059 

82 Indianapolis, Norfolk 11777202 

83 Indianapolis, Knoxville 11805689 

84 Indianapolis, Charlotte 12222763 

85 Indianapolis, Atlanta 13444974 
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86 Indianapolis, Macon 11669787 

87 Indianapolis, Jacksonville 12193394 

88 Columbus, Pittsburgh 11173583 

89 Columbus, Philadelphia 12231529 

90 Columbus, Cincinnati 10899648 

91 Columbus, Roanoke 11003669 

92 Columbus, Richmond 11643594 

93 Columbus, Norfolk 10857559 

94 Columbus, Knoxville 10959079 

95 Columbus, Charlotte 11467288 

96 Columbus, Atlanta 12747663 

97 Columbus, Macon 10822111 

98 Columbus, Jacksonville 11421755 

99 Pittsburgh, Philadelphia 12328966 

100 Pittsburgh, Cincinnati 10982105 

101 Pittsburgh, Roanoke 11086126 

102 Pittsburgh, Richmond 11726051 

103 Pittsburgh, Norfolk 10977008 

104 Pittsburgh, Knoxville 11041696 

105 Pittsburgh, Charlotte 11560822 

106 Pittsburgh, Atlanta 12817200 

107 Pittsburgh, Macon 10904568 

108 Pittsburgh, Jacksonville 11504213 

109 Philadelphia, Cincinnati 12118403 

110 Philadelphia, Roanoke 12216560 

111 Philadelphia, Richmond 12734222 

112 Philadelphia, Norfolk 12148403 

113 Philadelphia, Knoxville 12164237 

114 Philadelphia, Charlotte 12653748 

115 Philadelphia, Atlanta 13626754 

116 Philadelphia, Macon 12040937 

117 Philadelphia, Jacksonville 12376534 

118 Cincinnati, Roanoke 10874008 

119 Cincinnati, Richmond 11513934 

120 Cincinnati, Norfolk 10799918 

121 Cincinnati, Knoxville 10827772 

122 Cincinnati, Charlotte 11352392 

123 Cincinnati, Atlanta 12605569 

124 Cincinnati, Macon 10691255 

125 Cincinnati, Jacksonville 11292095 

126 Roanoke, Richmond 11607273 

127 Roanoke, Norfolk 10903939 

128 Roanoke, Knoxville 10927077 

129 Roanoke, Charlotte 11477098 

130 Roanoke, Atlanta 12602092 
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131 Roanoke, Macon 10796471 

132 Roanoke, Jacksonville 11399010 

133 Richmond, Norfolk 11543864 

134 Richmond, Knoxville 11564054 

135 Richmond, Charlotte 12034687 

136 Richmond, Atlanta 12910642 

137 Richmond, Macon 11436397 

138 Richmond, Jacksonville 11853388 

139 Norfolk, Knoxville 10859673 

140 Norfolk, Charlotte 11382323 

141 Norfolk, Atlanta 12647291 

142 Norfolk, Macon 10722381 

143 Norfolk, Jacksonville 11322026 

144 Knoxville, Charlotte 11510000 

145 Knoxville, Atlanta 12850683 

146 Knoxville, Macon 10752042 

147 Knoxville, Jacksonville 11350460 

148 Charlotte, Atlanta 13255074 

149 Charlotte, Macon 11274855 

150 Charlotte, Jacksonville 11860872 

151 Atlanta, Macon 12583258 

152 Atlanta, Jacksonville 13120304 

153 Macon, Jacksonville 11237401 

 

 


