
TOTAL OF 10 PAGES ONLY 
MAY BE XEROXED 









StJohn's 

Reduced Complexity Turbo Decoders 

by 

© Yassir Nawaz 

A thesis submitted to the 

School of Graduate Studies 

in partial fulfillment of the 

requirements for the degree of 

Master of Engineering 

Faculty of Engineering and Applied Science 

Memorial University of Newfoundland 

October, 2003 

Newfoundland 



1+1 Library and 
Archives Canada 

Bibliotheque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de !'edition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre reference 
ISBN: 0-612-99100-8 
Our file Notre reference 
ISBN: 0-612-99100-8 

L'auteur a accorde une licence non exclusive 
permettant a Ia Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I' Internet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

L'auteur conserve Ia propriete du droit d'auteur 
et des droits meraux qui protege cette these. 
Ni Ia these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

Conformement a Ia loi canadienne 
sur Ia protection de Ia vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

Bien que ces formulaires 
aient inclus dans Ia pagination, 
il n'y aura aucun contenu manquant. 



To mama, abu, saman, and khala 

ii 



Abstract 

Turbo codes are a class of forward error correction codes, which have outperformed all 

the previously known error coding schemes. The strength of this scheme lies in the 

parallel concatenation of component codes and their iterative decoding algorithm. 

Although turbo codes have found their way in a number of future wireless 

communications standards, their efficient implementation in hardware and software is 

still being actively researched. This study therefore focuses on the design of efficient 

turbo decoders. The dissertation begins with the description of encoding and decoding of 

turbo codes. Sliding window implementations of decoding algorithms, which are used to 

reduce the memory requirements in turbo decoders, are presented. The contribution of 

this work is the proposed modifications to the conventional sliding window 

implementations of SOY A, bi-directional SOY A and Max-Log-MAP based turbo 

decoders. The proposed modifications allow multiple bits to be released in a single 

decoding window thus reducing the computational complexity and increasing the 

decoding speed of turbo decoders. A performance and complexity comparison of these 

decoder implementations is also presented. 

iii 



Acknowledgements 

I would like to acknowledge the excellent supervision of Dr. Ramachandran Venkatesan 

and Dr. Paul Gillard during this work. This thesis could not have been completed without 

Dr. Gillard's ideas and Dr. Venkatesan's advice. I would also like to thank the School of 

Graduate Studies at Memorial University for supporting me financially during my 

M.Eng. program. 

Graduate study at the Faculty of Engineering has been a pleasant and valuable experience 

for me. I always found CERL (Computer Engineering Research Lab) to be a friendly and 

inviting place to work. I am especially thankful to my fellow students Atiq, Reza, Sainath 

and Li Cheng for the interesting academic discussions we had during the course of this 

work. 

iv 



Table of Contents 

List of Tables ........................................................................................ viii 

List of Figures ...................................................................................... .ix 

List of Abbreviations and Symbols ................................................................ xi 

Chapter 1 Introduction ............................................................................... 1 
1.1 A Brief History of Error Correcting Codes ........................................... 2 

1.1.1 Block Codes ................................................................... 3 
1.1.2 Convolutional Codes ........................................................... 4 
1.1.3 Concatenated Codes ......................................................... 5 
1.1.4 Turbo Codes .................................................................... 5 

1.2 Error Correcting codes for wireless communications ........................... 6 
1.3 Implementation of Error Correcting codes ........................................ 8 
1.4 Purpose of study ...................................................................... 9 
1.5 Organization of thesis .............................................................. 1 0 

Chapter 2 An Overview of Error Correcting Codes ........................................... 11 
2.1 Introduction .......................................................................... 11 
2.2 Block Codes ......................................................................... 12 

2.2.1 Encoding of Block Codes ................................................. 12 
2.2.2 Cyclic Codes ................................................................ 13 

2.3 Convolutional Codes ............................................................... 14 
2.3.1 Convolutional Encoder Structure ......................................... 15 
2.3.2 Systematic Convolutional Encoder ....................................... 16 
2.3.3 Recursive Systematic Convolutional (RSC) Encoder .................. 16 
2.3.4 Convolutional Encoder Representations ................................. 17 

2.3.4.1 Generator Representation ....................................... 18 
2.3.4.2 State Diagram Representation .................................. 18 
2.3.4.3 Trellis Diagram Representation ................................ 19 

2.4 Concatenated Codes ................................................................ 20 
2.4.1 Serial Concatenated Codes ................................................ 21 
2.4.2 Parallel Concatenated Codes .............................................. 22 

2.5 Turbo Codes ......................................................................... 23 
2.5.1 A Turbo Encoder ............................................................ 23 
2.5.2 Interleaving in Turbo Codes .............................................. 24 
2.5.3 Trellis termination in Turbo Codes ....................................... 25 
2.5.4 Punctured turbo codes ...................................................... 26 

2.6 Summary .............................................................................. 27 

Chapter 3 Iterative Decoding of Turbo Codes .................................................. 28 
3.1 Introduction .......................................................................... 28 

v 



3.2 System Model ....................................................................... 29 
3.3 Iterative Decoder Structure ........................................................ 30 
3.4 Component Decoders ............................................................... 33 

3.4.1 The Maximum A Posteriori Algorithm (MAP) ........................ 33 
3 .4.1.1 Introduction and Mathematical Preliminaries ................ 33 
3.4.1.2 Forward Recursion and Calculation of ak(s) .................. 35 
3.4.1.3 Backward Recursion and Calculation of ~k(s) ............... 38 
3.4.1.4 Calculation ofyk('s, s) .......................................... 38 
3.4.1.5 Iterative Decoding Using MAP Algorithm ................... 39 

3.4.2 The Max-Log-MAP Algorithm .......................................... .42 
3.4.3 The Log-MAP Algorithm ................................................ .44 
3.4.4 The Soft Output Viterbi Algorithm (SOV A) .......................... .45 

3.4.4.1 Forward Recursion in SOVA ................................... 45 
3.4.4.2 SOV A Traceback ............................................... .48 
3.4.4.3 Iterative Decoding using SOVA Algorithm .................. 51 

3.4.5 Bi-directional SOVA ...................................................... 51 
3.4.5.1 Rationale for Bi-directional SOVA ........................... 52 
3.4.5.2 Bi-directional SOVA Based Turbo Decoding ............... 55 

3.5 Summary ............................................................................. 56 

Chapter 4 Sliding Window Decoding of Turbo Codes ........................................ 58 
4.1 Introduction .......................................................................... 58 
4.2 Sliding Window Component Decoders .......................................... 59 

4.2.1 SOVA and Bi-directional SOVA ......................................... 60 
4.2.2 MAP and Max-Log-MAP ................................................. 61 
4.2.3 Comparison of SOV A and MAP ......................................... 62 

4.3 Multiple Bit Release Sliding Window Decoding ............................... 63 
4.3.1 SOVA and Bi-directional SOVA ......................................... 63 
4.3.2 The Effect of Modifications on Decoder Complexity and 

Performance ................................................................. 65 
4.3.3 MAP and Max-Log-MAP ................................................. 67 

4.4 Summary ............................................................................. 68 

Chapter 5 Performance of Multiple Bit Release Turbo Decoders ............................ 69 
5.1 Introduction .......................................................................... 69 
5.2 Simulation Setup .................................................................... 70 
5.3 Single Bit Release Component Decoders ....................................... 72 
5.4 Performance of Multiple Bit Release SOVA .................................... 72 
5.5 Speedup from Multiple Bit Release SOV A ..................................... 74 
5.6 Performance of Multiple Bit Release Bi-directional SOYA .................. 77 

5.7 Speedup from Multiple Bit Release Bi-directional SOVA .................... 78 
5.8 Performance of Multiple Bit Release Max-Log-MAP ......................... 79 
5.9 Speedup from Multiple Bit Release Max-Log-MAP ........................... 80 

vi 



5.10 Comparison of Bi-directional SOVA and Max-Log-MAP .................... 81 
5.11 Multiple Bit Release Punctured Turbo Codes .................................. 83 
5.12 Turbo Codes with Higher State Encoders ....................................... 87 
5.13 Overall Speedup of the Turbo Decoder .......................................... 89 
5.13 Summary ............................................................................. 89 

Chapter 6 Conclusions ............................................................................. 91 
6.1 Future Work .......................................................................... 93 

References ........................................................................................... 94 

vii 



List of Tables 

Table 5.1 Standard simulation parameters .................................................... 71 
Table 5.2 Speedup from an 8 bit release implementation of SOYA ...................... 76 
Table 5.3 Speedup from a 15 bit release implementation of bidirectional SOV A ...... 78 
Table 5.4 Speedup from multiple bit release Max-Log-MAP .............................. 81 

viii 



List of Figures 

Figure 2.1 Cyclic encoder for g(D) = 1 +D+D2 
.............................................. 14 

Figure 2.2 A (2, 1, 2) convolutional encoder ................................................ .15 
Figure 2.3 A (2, 1, 2) RSC convolutional encoder .......................................... 17 
Figure 2.4 State diagram of a (2, 1, 2) RSC encoder ........................................ 19 
Figure 2.5 Trellis diagram of a (2, 1, 2) RSC encoder ....................................... 20 
Figure 2.6 Serial concatenated code ........................................................... 21 
Figure 2. 7 Parallel concatenated code ......................................................... 22 
Figure 2.8 A rate 1/3 turbo encoder ............................................................ 24 
Figure 2.9 Trellis termination strategies for RSC encoder ................................. 26 
Figure 3.1 System model ........................................................................ 29 
Figure 3.2 An iterative turbo decoder ......................................................... 32 
Figure 3.3 MAP decoder trellis for a 4 state RSC code ..................................... 36 
Figure 3.4 Recursive calculation of ak (0) and /3k (0) ...................................... 37 

Figure 3.5 Forward recursion in SOV A decoding .......................................... .48 
Figure 3.6 Simplified trellis during SOV A traceback ....................................... 50 
Figure 3.7 Bi-directional SOVA based turbo decoder ....................................... 53 
Figure 3.8 Trellis formations in bi-directional SOVA ....................................... 53 
Figure 3.9 Path selections in SOV A decoding ................................................ 55 
Figure 4.1 One bit release sliding window decoding ........................................ 60 
Figure 4.2 BER performance of one bit release sliding window decoding ............... 62 
Figure 4.3 Multiple bit release sliding window decoding .................................. 64 
Figure 4.4 Performance analysis of multiple bit release sliding window decoding ..... 66 
Figure 5.1 BER performance comparison of simple SOV A, bi-directional SOV A 

and Max-Log-MAP .................................................................. 73 
Figure 5.2 BER performance comparison of multiple bit release sliding window 

Simple SOV A ........................................................................ 74 
Figure 5.3 BER performance comparison of multiple bit release sliding window 

bi-directional SOV A ................................................................. 77 
Figure 5.4 BER performance comparison of multiple bit release sliding window 

Max-Log-MAP ....................................................................... 79 
Figure 5.5 BER performance comparison of eight bit release sliding window bi-

directional SOV A and Max-Log-MAP ........................................... 82 
Figure 5.6 BER performance comparison of fifteen bit release sliding window bi-

directional SOV A and Max-Log-MAP ........................................... 82 
Figure 5.7 BER performance comparison of multiple bit release punctured bi-

directional SOV A .................................................................... 85 
Figure 5.8 BER performance comparison of multiple bit release punctured Max-

Log-MAP .............................................................................. 85 
Figure 5.9 Performance degradation in multiple bit release punctured bi-

directional SOV A .................................................................... 86 

ix 



Figure 5.10 Performance degradation in multiple bit release punctured Max-
Log-MAP ............................................................................ 86 

Figure 5.11 3G turbo encoder ................................................................... 87 
Figure 5.12 BER performance comparison of 8-state bi-directional SOYA .............. 88 
Figure 5.13 BER performance comparison of 8-state Max-Log-MAP .................... 88 

X 



3G 
3GPP 
ASIC 
AWGN 
BER 
CCSDS 
CD 
DVB 
DVD 
ESA 
FPGA 
IMT-2000 
LLRs 
MAP 
ML 
NASA 
RSC 
SOVA 
Bi-SOVA 
A 
B 
DMAP 
DsovA 
dmin 

Et/No 
E/No 
e 
k 
L(i) 
Lc 
Le 
M 
m 
N 
n 
r 

TJ 
Tr 
TMAP 
TsovA 
u 
v 

List of Abbreviations and Symbols 

Third Generation 
Third Generation Partnership Project 
Application Specific Integrated Circuit 
Additive White Gaussian Noise 
Bit Error Rate 
Consultative Committee for Space Data Systems 
Compact Disc 
Digital Video Broadcasting 
Digital Versatile Disk 
European Space Agency 
Field Programmable Gate Array 
International Mobile Telecommunications-2000 
Log Likelihood Ratios 
Maximum a Posteriori 
Maximum Likelihood 
National Aeronautics and Space Agency 
Recursive Systematic Convolutional 
Soft Output Viterbi algorithm 
Bidirectional Soft Output Viterbi algorithm 
forward path metric for Max-Log-MAP 
backward path metric for Max-Log-MAP 

decision depth of trellis for MAP 
decision depth of trellis for SOV A 
minimum code distance 
energy per bit to noise density ratio 
energy per symbol to the noise density ratio 
memoryless noise 
number of inputs in a convolutional encoder 
soft output expressed as log likelihood ratio 
channel reliability value 
extrinsic value 
SOV A path metric 
number of memory elements in a convolutional encoder 
number of bits released in a decoding window 
number of outputs in a convolutional encoder 
code rate 
time to build one trellis stage in forward direction 
time to complete SOV A traceback 
number of trellis stages in the backward recursion 
traceback depth of trellis for SOV A 
binary message sequence 
code sequence 

xi 



w weight of a codeword 
x modulated sequence 
y received sequence 
a forward path metric for MAP 
fJ backward path metric for MAP 
y branch metric for MAP 
r branch metric for Max-Log-MAP 
L1 metric difference 

CJ
2 

variance of zero-mean Gaussian noise 

xii 



Chapter 1 

Introduction 

Turbo Codes introduced by Berrou and Glavix in 1993 have revolutionized the field of 

error correction coding [1]. This powerful error correction technique is ideal for 

communications systems where significant power saving is required or the operating 

signal to noise ratio is very low. Wireless communications, with its rapid growth and ever 

increasing demand for transmission bandwidth, is its foremost candidate. Turbo codes 

therefore have already been selected for a number of wireless communications standards. 

This chapter begins by providing a brief history of the error correcting codes. Section 

1.2 discusses the error correcting codes used in wireless communications. Section 1.3 

focuses on the implementation of these codes. The remaining sections present the 

purpose and overview of this dissertation. 

1 



1.1 A Brief History of Error Correcting Codes 

Information transmitted in a communications system is always liable to errors due to 

channel impairments. To preserve the accuracy of the information during transmission 

error correcting codes are used. These codes are also called channel codes. Error 

correcting codes add structural redundancy to the source information prior to its 

transmission. This redundancy is then exploited at the receiver to detect and correct 

transmission errors in the received information. All modem error correcting techniques 

can be traced back to the ground-breaking work of Shannon [2], Hamming [3] and Golay 

[4]. While Shannon's work laid the theoretical basis of coding, Hamming and Golay 

developed the first practical error control schemes. 

Shannon, in his pioneering paper in 1948, [2] introduced the concept of source entropy 

and channel capacity. He mathematically defined source entropy as the average amount 

of information in a source message and channel capacity as the maximum rate at which 

the information can be transmitted over this channel. He then showed that it was possible 

to achieve reliable communications over a noisy channel if the source entropy is lower 

than that channel's capacity. This remarkable result proved that it is not the accuracy with 

which the information can be transmitted that is limited, but the rate at which it can be 

transmitted error free. While Shannon established the channel capacity as the upper limit 

on transmission rate, he never explicitly stated how it can be practically reached. His 

channel coding theorem only guaranteed the existence of codes which can be used to 

achieve transmissions at channel capacity. The history of error correcting codes since 

1948 can therefore be characterized as the quest for this Holy Grail: The Shannon Limit. 

2 



Hamming discovered the first error correcting code while he was working at the Bell 

Labs. His code called Hamming code was a great achievement; however it was inefficient 

and required three check bits to protect four data bits. The deficiencies in Hamming 

codes were addressed by Golay who discovered two more powerful and significant 

codes: Binary Golay codes and Tertiary Golay codes [5]. The work by Hamming and 

Golay laid the foundations of coding theory. 

1.1.1 Block Codes 

The codes discovered by both Hamming and Golay grouped information symbols into 

blocks of length k and then added n-k check symbols to each block to obtain n-symbol 

code words. These types of codes are referred to as block codes. Golay codes were soon 

replaced by more powerful Reed-Muller codes in 1954 [6]. While Hamming and Golay 

codes were specific in terms of nand k, Reed-Muller codes were a class of binary codes 

with flexible design parameters. National Aeronautics and Space Agency (NASA) 

extensively used Reed-Muller codes throughout 1960s and 1970s. Reed-Muller codes 

were followed by cyclic block codes that had the property that the cyclic shift of a 

codeword was also a code word [7]. The cyclic property of these codes enabled the 

design of encoders and decoders with reduced complexity. Bose Chaudhary and 

Hocquenghem discovered an important subclass of cyclic codes in 1960 [8]. These codes 

are known as BCH codes. BCH codes were binary codes; however, soon Reed and 

Solomon extended them to non binary codes [9]. Reed Solomon codes had superior burst 

error protection but the absence of an efficient decoder prevented their wide spread use in 

3 



practical applications. In 1967 Berlekamp introduced an efficient decoding algorithm for 

Reed Solomon codes [10]. Since then Reed Solomon codes have been extensively in a 

wide range of applications including Compact Disc (CD) and Digital Versatile Disk 

(DVD) players. 

1.1.2 Convolutional Codes 

Block codes were successfully used for error correction however they suffered from 

certain drawbacks. Block codes required the entire code word to be received before the 

decoding process can be completed. This resulted in decoding delays. Another major 

drawback of block codes was their typical hard decision decoders. A hard decision 

decoder operates on binary channel output whereas a soft decision decoder operates on a 

continuous valued channel output. Soft decision decoding is more powerful than hard 

decision decoding because it does not suffer from the sub optimality that results from the 

quantization of the channel output. Therefore block codes with their hard decision 

decoders, although suitable for benign channels, were not ideal for noisy channels. 

To address these drawbacks of block codes, Elias introduced a new coding approach 

called convolutional coding in 1955 [11]. Instead of segmenting the data in blocks and 

adding redundancy to each block, convolutional codes add redundancy to a continuous 

stream of data using linear shift registers. The data at the decoder can therefore be 

decoded continuously with low latency. Another advantage of convolutional codes is that 

they can be decoded using soft decision decoders. Convolutional codes were more 

powerful than block codes however it was only after the discovery of a practical and 

4 



optimal decoding algorithm by Viterbi in 1967 that they began to see extensive 

application in communications systems [12]. Convolutional codes were used by NASA in 

deep space probes such as Voyager and Pioneer [5]. They are also used in second 

generation digital cellular standards such as GSM and have also been incorporated in 

future standards such as Third Generation (30) wireless systems [13]. 

1.1.3 Concatenated Codes 

Concatenated codes are formed by the concatenation of two codes separated by an 

interleaver. The role of the interleaver is to rearrange the information to provide 

protection against burst errors. There are two types of concatenated codes: serial 

concatenated codes and parallel concatenated codes. In serial concatenated codes the 

output of one encoder is interleaved and then encoded by the second encoder. This 

technique allows the use of different codes that complement each other. For example 

Reed Solomon codes with good performance at low noise can be combined with 

convolutional codes, which have a better performance at high noise. This coding scheme 

was proposed by Forney in 1966 and is still used by NASA and European Space Agency 

(ESA) in deep space communications [14]. 

1.1.4 Turbo Codes 

Parallel concatenation of two or more codes is called turbo coding. Berrou and Glavix 

introduced turbo codes in 1993. They decoded the code using an iterative decoding 

algorithm and achieved performance very close to the theoretical Shannon limit. Turbo 

5 



codes have outperformed all the previously known coding schemes and therefore are 

rapidly finding applications in future communications standards. Their superior 

performance actually comes from iterative decoding, in which component decoders share 

information to improve their individual decoded estimates. This sharing leads to an 

improvement in decoding performance with each decoding iteration. Although Berrou 

and Glavix used parallel concatenation of convolutional codes in their turbo coding 

scheme, it was soon realized that the iterative decoding technique can also be used to 

decode concatenated block codes. This led to the iterative soft decision decoding of 

concatenated block codes and several new decoding schemes based on this technique 

have been proposed recently [15]. Turbo codes, based on both block and convolutional 

codes, have finally provided us with the opportunity of designing practical 

communication systems that can operate very close to the channel capacity. 

1.2. Error Correcting Codes for Wireless Communications 

The choice of an error correcting scheme in a communications system is determined by 

the nature of the source information (i.e. type of application) and the type of 

communications channel. Sources of errors in wireless communications among others 

include low signal strength, shadowing and multipath fading. The problem of low signal 

strength is inherent to all the wireless channels. The strength of the received signal 

decreases as the distance between the receiver and transmitters increase. This is of 

significant importance in mobile wireless systems. The error correcting schemes for 

wireless communications must therefore, have good performance at low signal to noise 

6 



ratio. Convolutional codes generally outperform block codes at low signal to noise ratio 

and therefore were preferred for wireless communications. NASA's deep space probes, 

second generation cellular wireless standards and major commercial satellites used 

convolutional codes. Another source of errors in wireless communications is shadowing 

which results in the transmitted signal being completely blocked for a period of time. 

This causes burst errors in the transmitted information sequence. Convolutional codes, 

although efficient at low signal to noise ratio, are susceptible to burst errors. To address 

this problem concatenated codes were employed. NASA and ESA used them in Galileo 

and Giotto missions respectively. The Second generation GSM standard also uses 

concatenated codes. 

Turbo codes formed by the parallel concatenation of convolutional codes also have the 

properties desirable in a wireless channel code. Moreover iterative decoding of these 

codes gives near Shannon limit performance at low signal to noise ratio. Therefore 

convolutional turbo codes are emerging as the foremost choice of future deep space 

communications, mobile satellite/cellular communications and microwave links. Some 

examples are 

• lnmarsat's new multimedia service is based on turbo codes that allow the user to 

communicate with existing Inmarsat 3 spot-beam satellites from a notebook-sized 

terminal at 64 kbit/s. 

• The Third Generation Partnership Project (3GPP) proposal for International Mobile 

Telecommunications-2000 (IMT -2000) includes turbo codes in the multiplexing and 

7 



channel coding specification. The IMT -2000 represents the third generation mobile 

radio systems worldwide standard. The 3GPP objective is to harmonize similar 

standards proposals from Europe, Japan, Korea and the United States. 

• NASA's next-generation deep-space transponder will support turbo codes and 

implementation of turbo decoders in the Deep Space Network. 

• The new standard of the Consultative Committee for Space Data Systems (CCSDS) is 

based on turbo codes. The new standard outperforms by 1.5 to 2.8 dB the old CCSDS 

standard based on concatenated convolutional code and Reed-Solomon code. 

• The new European Digital Video Broadcasting (DVB) standard has also adopted 

turbo codes for the return channel over satellite applications. 

1.3. Implementation of Error Correcting Codes 

The real success of an error correction scheme depends not only on its power to correct 

errors but also on its ability of being incorporated into a practical communications 

system. For example scientists and engineers knew that they can achieve transmission 

rates close to channel capacity by increasing the length of the block codes, however due 

to the exponential increase in the decoder complexity it was not feasible to design a 

practical communications system with long block codes. Similarly several very powerful 

coding schemes did not find practical applications until decoding algorithms with 

reasonable complexity were found. Reed Solomon codes were proposed in 1960 but it 

was only after the discovery of Berlekamp decoder in 1967 that they were adopted in 

various communications and storage systems. Convolutional codes introduced in 1955 

8 



also had to wait for the arrival of Viterbi decoder in 1967 before they gained any practical 

significance. 

The introduction of turbo codes in 1993 revolutionized error correction coding 

because it was the first scheme that performed close to Shannon limit and was also 

practical. The real breakthrough therefore was not the parallel concatenation of codes but 

the powerful iterative decoding technique that was also practical. The iterative decoding 

of turbo codes, although practical, is still considerably more complex than many 

decoding schemes used in existing error correction schemes. To decode a block, the turbo 

decoder must go through several decoding iterations (anywhere from two to fifteen). 

Therefore each component decoder operates on the block several times making the turbo 

decoder so much slower. Hence designing turbo decoders which are fast, have reduced 

complexity, and consume less power is crucial to the success of future wireless networks. 

1.4. Purpose of study 

The purpose of this study is to investigate turbo coded systems for their implementation 

in wireless applications. The adoption of turbo codes as the standard channel codes for 

mobile satellite/cellular communications means their implementation in a range of 

wireless handheld devices. These devices must operate at fast link speeds, be small in 

size and weight, and consume little power. Since encoding in convolutional turbo codes 

is trivial, efficient implementations of turbo decoders are the key to the success of mobile 

networks. The nature of iterative decoding and the presence of interleavers prevent 

9 



parallel computation by component decoders. Increasing the speed of the individual 

component decoders however, can increase the overall decoding speed of the turbo 

decoder. This study therefore focuses on increasing the speed of component decoders, 

and then analyzing its resulting effects on the performance of iterative decoding. The 

benefits of the techniques studied in this thesis are not limited to mobile systems. They 

can be used for the efficient implementation of any turbo-coded system. 

1.5. Organization of thesis 

The rest of the thesis is organized as follows. Chapter 2 begins with an introduction to 

block codes followed by a detailed description of convolutional and turbo codes. Chapter 

3 presents iterative decoding of turbo codes. This includes the description of component 

decoding algorithms and how they are used in an iterative decoding scheme. We restrict 

our discussion to convolutional turbo codes as they have better performance at low signal 

to noise ratio than block turbo codes. Chapter 4 introduces sliding window decoding of 

turbo codes. It is used to reduce the decoder memory requirements. In this chapter we 

also introduce multiple bit release sliding window implementations of various component 

decoders. The proposed multiple bit release implementations increase the speed of 

component decoders without significant performance degradation. Chapter 5 focuses on 

the performance and speed analysis of these implementations. Through extensive 

computer simulations we generate the performance curves and calculate the 

corresponding speed-ups for multiple bit release implementations of turbo codes. Chapter 

6 provides conclusions and suggestions for the further extension of this work. 

10 



Chapter 2 

An Overview of Error Correcting Codes 

2.1 Introduction 

In this chapter we provide a general overview of error correcting codes [16]. We shall 

divide these codes into three categories: block codes, convolutional codes and turbo 

codes. Block codes encode k bit information blocks into n bit coded blocks and are based 

rigorously on finite field arithmetic and abstract algebra. Some of the most commonly 

used block codes are Hamming codes, Golay codes, BCH codes and Reed Solomon 

codes. Convolutional codes, on the other hand, convert the entire data stream into a single 

codeword. The encoded bits depend not only on the current input bits but also on the 

previous input bits. They are widely used in real time communication. Finally we use the 

concepts and terminologies from the block and convolutional codes to explain turbo 

codes, which can be defined as a parallel concatenation of two component codes 

separated by a random interleaver. 

11 



2.2 Block Codes 

A block code has n bit code words that contain k information bits and r parity bits, such 

that n = k + r. Such a code is referred to as an (n, k) block code where n and k are 

respectively the block length and information length of the code. The total number of 

code words in an (n, k) block code is 2k and the rate of the code is r = kin. 

2.2.1 Encoding of Block Codes 

The encoding process consists of breaking up the data into message blocks m of length k 

and then performing a one to one mapping of each message mi to a block of length n 

called a code word Xi. For linear codes this process can be described by a matrix 

multiplication 

x=mG, (2.1) 

where G has dimensions kxn and is called the generator matrix. Linear codes have the 

property that sum of two code words is also a codeword and thus all linear code words 

must contain the all-zero codeword. Following are a few important definitions regarding 

block codes. 

Hamming distance: The Hamming distance v(xi, x1) between the two code words Xi and 

x1 is the number of bit positions in which the two code words differ. 

Minimum distance: The minimum distance dmin of a code is the minimum distance 

between any two code words. 

d. =minv(x.,x.). 
mm i"-j 1 J 

(2.2) 

12 



A code with minimum distance dmin is capable of correcting all code words with t or less 

errors, where 

(2.3) 

Hamming weight: Hamming weight w(x) of a code word x is the Hamming distance 

between itself and the all-zero codeword 

w(x) = v(x,O), (2.4) 

where 0 or xo represents the zero code word. The Hamming weight can be found by 

counting the number of ones in the codeword. For linear codes the minimum distance is 

the smallest Hamming weight of all code words except the all zero word. 

dmin = min w(x ) . 
xo'O 

(2.5) 

2.2.2 Cyclic Codes 

A code is cyclic if any cyclic shift of a code word produces another code word. A code C 

is cyclic if for every code word x = (xo, XJ, ..... Xn-2. Xn-J) e C there is also a code word 

x' =( Xn-1, xo, XJ, ... .. Xn-2) e C. The generator matrix of a cyclic code can be expressed in 

the form 

go gl g n-k 0 0 

0 go gl g n-k 0 
G= (2.6) 

0 0 go gl gn-k 

A cyclic code can also be represented by a generator polynomial 

(2.7) 

13 



Similarly the message m and the codeword x can also be represented by polynomials and 

the encoding process becomes the polynomial multiplication x(D) = m(D)g(D). The 

polynomial multiplication can be implemented by a linear shift register network and thus 

the encoders for cyclic codes are extremely simple. Figure 2.1 shows a cyclic encoder for 

generator polynomial g(D) = 1 +D+D2 
• 

Figure 2.1. Cyclic encoder for g(D) = 1 +D+D2 

2.3. Convolutional Codes 

Convolutional codes are one of the most widely used channel codes in practical 

communication systems such as satellite communications, cellular mobile, digital video 

broadcasting etc. A convolutional encoder operates on a source data stream using a 

sliding window and generates a continuous stream of encoded symbols. Unlike an (n, k) 

block code where the n bit output of an encoder depends solely on k input bits, the n bit 

output of a convolutional encoder is constructed from the k bit input as well as m 

previous inputs. A convolutional code that generates n outputs from k inputs and m 

previous inputs is referred to as an (n, k, m) convolutional code. 

14 



vo 

u 

VJ 

Figure 2.2. A (2, 1, 2) convolutional encoder 

2.3.1 Convolutional Encoder Structure 

A convolutional code introduces redundant bits in the data stream through the use of 

linear shift registers. The encoder of an (n, k, m) convolutional code consists of a bank of 

k linear shift registers. Depending on the number of shift registers a convolutional code 

can become very complicated and therefore we shall restrict our discussion to 

convolutional encoders with only one shift register: binary convolutional codes. Figure 

2.2 shows a (2, 1, 2) convolutional encoder. 

The code rate r of a convolutional code is defined as 

k 
r=-, 

n 
(2.8) 

where k is the number of parallel input information bits and n is the number of parallel 

output encoded bits at any time interval. The constraint length K of a convolutional 

encoder is defined as 

K=m+ 1, (2.9) 

15 



where m is the maximum number of stages in a shift register. The shift register stores the 

state of the convolutional encoder. The term constraint length refers to the number of 

previous bits on which the current output depends. The encoder shown in Figure 2.2 has a 

code rate of 1/2 and a constraint length of 3. 

2.3.2 Systematic Convolutional Encoder 

Systematic convolutional encoders encode in such a way that the unmodified input 

information stream is contained in the encoded output data sequence. This provides the 

systematic encoders with a significant advantage over nonsystematic encoders: the 

message is displayed in the encoded sequence and can be read directly from the received 

sequence thus eliminating the need for an inverter which is required if a nonsystematic 

encoder is used. Furthermore, the inverter for a nonsystematic code may not exist in 

which case a finite number of channel errors may cause an infinite number of decoding 

errors. Such codes are referred to as catastrophic codes. Systematic codes on the other 

hand do not require inverters and can never be catastrophic. 

2.3.3 Recursive Systematic Convolutional (RSC) Encoder 

A recursive systematic convolutional encoder can be obtained from a nonrecursive 

nonsystematic encoder by feeding back one of its encoded outputs to its input. The RSC 

encoder shown in Figure 2.3 is obtained from the nonrecursive nonsystematic encoder of 

Figure 2.2 by feeding back one of its outputs. 

16 



vo 

Vt 

Figure 2.3. A (2, 1, 2) RSC convolutional encoder 

A recursive convolutional encoder tends to produce codewords with increased weight 

relative to a nonrecursive encoder. This results in fewer codewords with lower weights 

which leads to better error performance. For example consider an input sequence 

u=( ... ,0,1,0,0,0,0,0,0,0, ... ) containing a single 1 to a nonrecursive convolutional encoder. 

The encoder will emerge and then go back to an all-zero state within a finite number of 

transitions. The encoder output will contain finite number of 1s corresponding to the 

minimum distance of the code. However this input when given to a recursive encoder 

will result in a 1 eternally cycling through the encoder shift register. This will repeatedly 

produce 1s in the encoder output stream resulting in a codeword of increased weight. The 

recursive and systematic nature of RSC encoders thus provide significant advantages 

which justify use of RSC encoders in many communication systems. 

2.3.4 Convolutional Encoder Representations 

A convolutional encoder can be represented in several different but equivalent ways: 

17 



1. Generator representation 

2. State diagram representation 

3. Trellis diagram representation. 

2.3.4.1 Generator Representation 

A Generator representation shows the hardware connection of the shift register taps to the 

modulo-2 adders. For an RSC encoder a feed-forward as well as a feedback polynomial is 

specified for each output. For example the RSC encoder of Figure 2.3 can be represented 

in generator form as 

G(D)=[1, 1+Dz ]. 
1+D+D2 

(2.10) 

where 1 corresponds to the systematic output vo and 1 +D2/1 +D+D2 corresponds to the 

output v1 with 1 +D2 being its feed-forward and 1 +D+D2 the feedback polynomial. 

2.3.4.2 State Diagram Representation 

The state diagram of a convolutional encoder is a graph that consists of nodes 

representing the encoder states, and directed lines representing the state transitions. 

Figure 2.4 shows the state diagram of the RSC encoder of Figure 2.3. The state of the 

encoder is defined as the contents of its shift register, and this is also referred to as 

encoder's memory contents. If m denotes the memory of the encoder then there are 2m 

possible states. Each directed line is labeled with an input/output pair. Given the current 

state of the encoder the information sequence at the input determines the path 

18 



0/00 

1111 

Figure 2.4. State diagram of a (2, 1, 2) RSC encoder 

through the state diagram and the output sequence. It is customary to begin the 

convolutional encoding from the all-zero state. 

2.3.4.3 Trellis Diagram Representation 

A trellis diagram is derived from a state diagram by tracing all the possible input/output 

sequences and state transitions. The Trellis diagram of the RSC convolutional encoder of 

Figure 2.3 is shown in Figure 2.5. The black circles at each stage of the trellis represent 

the four possible states of the encoder and the directed lines represent the transition from 

one state to the next. The solid lines represent the transition caused by the input symbol 0 

and dotted lines represent the transition caused by input symbol 1. We shall assume that 

the encoder will start from all-zero state and therefore some states in the first two stages 

19 



time: 0 1 2 3 4 5 

00 00 00 00 00 

slsz = ooe • ,' • ··- ·····'iii!~!!· ···f~~~·• 11 11 11 ' ' ' 11 11 

11 

• .. 
00 

10 
;\ 

10 ,' ·. ' . 
/'.,, 

'01 

• 
01 01 ,' 

'41& ,/ 

•. ,., 10 ,. i':l'. 10 

.01 / 

itr·· io 
Figure 2.5. Trellis diagram of a (2, 1, 2) RSC encoder 

of the trellis are inaccessible. That is why certain transitions in the initial stages of the 

trellis are omitted in the trellis diagram. The output of the encoder at each transition is 

also labeled in the diagram. 

2.4 Concatenated Codes 

A concatenated code is composed of two separate codes that are combined together to 

form a larger code. The primary reason for using a concatenated code is to achieve a low 

error rate with an overall decoder complexity which is less than that required for a single 

code of corresponding performance. There are two types of concatenated codes: serial 

concatenated codes and parallel concatenated codes. 

20 



Input 
Encoderl Encoder2 Modulator ,... 

rt=ktlnt 
,... 

rz=kz/nz 
,... 

,,. 
Channel 

.. 
Ou tput 

Decoderl Decoder2 Demodulator ... ... ... 
~ ..... ~ 

Figure 2.6. Serial concatenated code 

2.4.1 Serial Concatenated Codes 

The transmission scheme for serially concatenated codes is shown in Figure 2.6. The total 

code rate for this serial concatenation is 

(2.11) 

Serial concatenated codes have been used in space communication, with convolutional 

codes as the inner code and low redundancy Reed Solomon codes as the outer code. 

Another application of concatenation codes is the concatenation of two convolutional 

codes where the inner decoder uses a soft-input/soft-output decoding algorithm to 

produce soft decisions for the outer decoder. 

21 



___. Encoder! Multiplexer Modulator 
~ ... 

put In 
-

___. Encoder2 ,,. 
f---

Channel 

Ou tput 
Concatenated 

Decoder 
,,. 

+-- (depends on ... Demultiplexer .... Demodulator 
decoder 

.... 

structure) 

Figure 2.7. Parallel concatenated code 

2.4.2 Parallel Concatenated Codes 

The transmission scheme for parallel concatenated codes is shown in Figure 2. 7. The 

total code rate for this parallel concatenation is 

(2.12) 

In both serial and parallel concatenation schemes an interleaver is incorporated between 

the two codes to decorrelate the received symbols thus increasing the burst error 

correction capability of the code. 

22 



2.5 Turbo Codes 

Turbo codes are formed by connecting two identical systematic codes in parallel. These 

component codes may either be block or convolutional codes and the turbo code formed 

by their concatenation is referred to as block or convolutional turbo code accordingly. 

The original turbo codes, presented by Berrou and Glavieux in 1993, used recursive 

systematic convolutional (RSC) encoders as component encoders and it is customary to 

refer to these convolutional turbo codes as simply turbo codes. From here onwards we 

shall also use the term turbo codes to refer to convolutional turbo codes. 

2.5.1 A Turbo Encoder 

A turbo encoder is formed by the parallel concatenation of two RSC encoders separated 

by an interleaver. Figure 2.8 shows the diagram of a rate 1/3 turbo encoder obtained 

through the parallel concatenation of two identical rate 1/2 RSC encoders. The first 

encoder (RSC Encoder 1) operates on the input sequence u directly. The output of this 

encoder consists of two sequences vo and v 1· The sequence vo is identical to the input u 

since the encoder is systematic. The second sequence v1 is the parity check sequence 

calculated by this encoder. The second encoder (RSC Encoder 2) receives an interleaved 

information sequence denoted by ii . Only the parity check sequence from the second 

encoder, denoted by v2, is transmitted. The information sequence vo and the parity check 

sequences v 1 and v2 are multiplexed to generate the output of the turbo encoder. This 

results in an overall code rate of 1/3. 

23 



u ... ... vo 

_ .. RSC .. ... 
Encoder 1 

... VJ 

I Interleaver I 
.. RSC .. 

u ... 
Encoder 2 

... 

Figure 2.8. A rate 113 turbo encoder 

2.5.2 Interleaving in Turbo Codes 

The interleaver used in turbo codes is a permuter or a scrambler defined by a permutation 

of L elements with no repetition. The interleaver plays two important roles in turbo codes. 

1. It is used to generate a long block code from small memory convolutional encoders. 

The code block length depends on the interleaver length L. 

2. It decorrelates the inputs to the two encoders. This helps in the decoding process, 

where iterative algorithms based on information exchange between the two 

component decoders are used. The decorrelated input ensures that there is a high 

probability that after the correction of some errors in the first decoder some of the 

remaining errors will be corrected in the second decoder. 

24 



In addition to the above two roles, interleavers are also designed to achieve tasks such as 

increasing the minimum weight of the codewords, termination of both encoders in the all 

zero state, and puncturing. We will discuss the trellis termination and puncturing in the 

following subsections. 

2.5.3 Trellis Termination in Turbo Codes 

Trellis termination means driving the encoder to the all zero state. We drive the encoder 

to the all zero state at the end of a block to ensure that the initial encoder state for the next 

block is also the all zero state. For convolutional encoders we terminate the trellis by 

appending m zero bits, also known as tail bits, at the end of the information block, where 

m is the memory of the encoder. This strategy however does not work in RSC encoders 

due to the feedback. The tail bits required in this case depend on the state of the encoder 

after L information bits where L is the information block length. A simple solution to this 

problem is shown in Figure 2.9 [17]. After L information bits have been shifted in the 

encoder the switch is moved from position A to position B form clock cycles. This drives 

the encoder to the all zero state. If a pseudorandom interleaver is used, it is highly 

unlikely that both component encoders in a turbo encoder will terminate in the all-zero 

state. Therefore only the first encoder is forced to return to the all-zero state and the 

second encoder is not forced to any particular state. The unknown state of the second 

encoder results in a performance degradation; however for large interleaver size this 

degradation is negligible. It is possible to drive both encoders to the all zero state by 

using a special interleaver such as Block Helical Simile interleaver [18]. 

25 



vo 

Figure 2.9. Trellis termination strategy for RSC encoder 

2.5.4 Punctured Turbo Codes 

Puncturing is used in turbo codes to increase the code rate. For example the output of the 

rate 1/3 turbo encoder shown in Figure 2.8 can be punctured to obtain higher code rates 

such as 1/2, 2/3, 3/4, 5/6 and so on. During puncturing some output bits of vo, VJ, and vz 

are deleted according to a chosen pattern defined by a puncturing matrix P. A rate 1/2 

turbo code can be obtained from a rate 1/3 code by using the following puncturing pattern 

P=[l ~l (2.13) 

where the puncturing period is two. The position of zeros indicates the bits from the 

encoder output that are punctured. In the first cycle v2 is deleted by the zero in the third 

row of the first column and similarly in the second cycle v1 is deleted by the zero in the 

second row of the second column followed by the deletion of vz in the next cycle and so 

on. 

26 



2.5.5 Summary 

In this chapter we presented an overview of error correcting codes. We began by 

reviewing the most commonly used codes, i.e. block codes and convolutional codes. 

Block codes divide information bits into blocks and then map each information block to a 

unique code block. Convolutional codes encode the entire information stream into a 

single word through the use of shift registers. We further illustrated convolutional codes 

by introducing recursive systematic convolutional (RSC) encoders and various 

representations of convolutional encoders. This was followed by concatenated codes and 

finally, an introduction to turbo codes. We used the concepts and terminologies 

introduced in the preceding sections to define turbo codes and showed that a turbo 

encoder can be constructed from two RSC encoders separated by an interleaver. 

27 



Chapter 3 

Iterative Decoding of Turbo Codes 

3.1 Introduction 

In this chapter we describe the iterative decoding of turbo codes. Turbo codes are formed 

by the parallel concatenation of two RSC codes. The optimal decoding of such coding 

schemes is extremely complex. It has also been found that optimal decoding schemes 

used for turbo codes perform only marginally better than the iterative decoding schemes 

[19]. Furthermore, several turbo coding schemes, based on iterative decoding, have been 

found that approach the Shannon limit thus providing an almost optimal performance 

[20]. Hence, iterative decoding schemes are almost exclusively used in the decoding of 

turbo codes. We begin this chapter with the description of a communication system 

model. We then present the general structure of an iterative decoder followed by a 

detailed description of the component decoders used within this iterative decoder. 

28 



~ 
-----.o""] Encoder 

L....-----1 

3.2 System Model 

v ...,, Modulator 

Memory less 
noise 

1--.;.;..x_...,~~-4--ei--..<...Y_...,~I Decoder ~ 
Figure 3.1. System model 

We shall use the system model shown in Figure 3.1 to illustrate the decoding methods in 

this chapter. A binary message sequence, denoted by u is given by 

U = (Ut, Uz, U3, .... .. , Ur, .... .. , UL), (3.1) 

where uris the message symbol at timet and Lis the sequence length. We will assume 

that all message symbols are generated independently and have equal a priori 

probabilities. The encoder encodes this binary message and produces a code sequence v. 

The code sequence is then modulated to produce a modulated sequence x. The code and 

modulated sequences are further explained as 

(3.2) 

where 

is the codeword of length n. 

The modulated sequence is represented as 

(3.3) 

where 

29 



is the modulated codeword of length n and 

i = 0,1, ... , n-1. (3.4) 

Equation (3.4) suggests a mapping of coded bit v1,i = 1 toxt.i = +1 and vt.i = 0 to x1,i = -1. 

The modulated sequence is corrupted by additive white Gaussian noise resulting in the 

received sequence 

y = ( y ' y ' y ' ..... , y , ...... , y ), 
-1 -2 -3 -t -L 

(3.5) 

where 

and 

i = 0,1, ... , n-1, (3.6) 

where e1,i is the zero-mean Gaussian noise random variable with zero mean variance a 2
• 

Each noise sample is independent from the others. The decoder receives the sequence y 

and after decoding provides an estimate of the input to the encoder. We shall represent 

the decoded bit at time unit k as uk, in the description of the decoding methods. 

3.3 Iterative Decoder Structure 

The general structure of an iterative turbo decoder is shown in Figure 3.2. Two 

component decoders are linked by interleavers in a way similar to that of the turbo 

encoder. Each component decoder receives three inputs 

1. The systematic channel output (information) bits, 

30 



2. The parity bits transmitted by its corresponding component encoder, 

3. Information about the concerned bits from the other component decoder. This is also 

known as a priori information. 

The component decoders use the inputs from the channel as well as the a priori 

information from the other decoder in the decoding process. They also provide the 

reliability information for each decoded bit. This reliability information, along with the 

bit estimate, is known as soft output of the component decoder. These soft outputs are 

typically represented as log likelihood ratios (LLRs). The magnitude of the ratio gives the 

reliability estimate and the sign, the bit estimate. For example LLR for the value of a 

decoded bit Uk is given by 

(3.7) 

where P(uk = +1) is the probability that bit uk = +1, and P(uk = -1) is the probability that 

Uk = -1. 

In the first iteration, the first component decoder takes channel output as its input and 

produces soft output. This soft output is the first decoder's estimate of the received data 

bits and is used as additional information by the second decoder. The second decoder 

uses this information along with the channel output to produce its own estimate of the 

data bits. This completes the first iteration. In the second iteration the first decoder again 

decodes the same channel output but this time it also uses the additional information 

provided by the output of the second decoder in the first iteration. This additional 

31 



1 Deinterleaver L ... 
I..., 

2:ko 
... 

~e Comp ~.1 r ... ,...1 Interleaver .. Decoder 1 .. 

~e 
lko ~ 

Interleaver I .. 
~ ~ Comp ... 1 I 

.. 

... Decoder 2 ~ .. 

I Deinterleaver I 

,,. t 
Figure 3.2. An iterative turbo decoder 

information helps the first decoder improve its estimate and obtain more accurate soft 

outputs. These outputs are then used by the second decoder as a priori information and 

the cycle is repeated. After each iteration, the bit error rate (BER) of the decoded bits 

tends to fall, however the improvement in performance decreases with increasing 

iterations. For this reason the number of iterations is usually limited to a small number 

such as eight [23]. 

The iterative nature of decoding requires that the same information must not be reused 

more than once in each decoding step. Therefore, we must subtract any redundant 

information from the inputs of the component encoders. This leads us to the concept of 

extrinsic and intrinsic information which we shall consider later in this chapter. 

32 



3.4 Component Decoders 

The component encoders used in iterative decoding of turbo codes must have the ability 

to use a priori information as well as provide reliability information for each decoded bit. 

Two decoders that satisfy the above criteria are MAP (maximum a posteriori algorithm) 

proposed by Bahl et al. [21], and SOVA (soft output Viterbi algorithm) proposed by 

Hagenauer and Hoeher [22]. Let us now consider these component decoders in detail. 

3.4.1 The Maximum A Posteriori Algorithm (MAP) 

The MAP algorithm was introduced by Bahl et al. in 1974 to estimate the a posteriori 

probabilities of the states and the transitions of a Markov source observed in a 

memoryless noisy channel. When used to decode convolutional codes, the algorithm is 

optimal in terms of minimizing decoded BER. It examines every possible path through 

the convolutional decoder trellis, and was considered infeasibly complex in most 

applications. For this reason it was largely ignored before· the discovery of turbo codes. 

However due to the iterative decoding used in turbo codes, Berrou et al. employed MAP 

decoding in their seminal paper on turbo codes. 

3.4.1.1 Introduction and Mathematical Preliminaries 

Let us now examine the theory behind the MAP algorithm. We shall assume binary 

coding. For each decoded bit uk, the MAP algorithm gives the probability that this bit was 

+1 or -1, given the received symbol):. This is equivalent to finding the a posteriori LLR 

L(ukl~. where 

33 



(3.8) 

If Sk-t='s is the previous state and Sk=s is the present state in a trellis, then we can use 

Bayes' rule and the fact that only one transition between Sk-I and Sk could have occurred 

at the encoder to rewrite the above equation as 

(3.9) 

where ( 's , s ) ~ Uk = + 1 is the set of transitions from previous state's to present state s 

that can occur if the input bit Uk = + 1, and similarly for ( 's, s ) ~ Uk = -1. For brevity we 

shall write P(S k-t ='sA S k = sA 2:_) as P('s As A 2:_). 

Let us now consider the individual probabilities in the above equation. We can split 

the received sequence 1: into three sections: the received codeword associated with the 

present transition ):k, the received sequence prior to the present transition 'J.i<k, and the 

received sequence after the present transition 'J.i>k· We can thus write 

P('s A s A y) = P('s A s A y . A y A y . ) . 
- -j<k -k -j>k 

(3.10) 

Let's assume that the channel is memoryless, i.e. the future received sequence will 

depend only on the present state and not on the previous state or the present and previous 

received channel sequences. Now we can use the Bayes' rule P(aA b) = P(alb)P(b) to 

rewrite the individual probabilities 

P('s A s A y) = P('s A s A y . A y A y . ) 
- -j<k -k -}>k 

= P(y. Is)· P('s As A y. A y ) 
-}>k -}<k -k 

34 



= P(y. ls)·P({y As}l's)·P('sAy. ) 
-j>k -k -j<k 

= /A(s) · YkC's, s) · ak-1C's ), (3.11) 

where 

• ak_1('s) = P('s A y . ) is the probability that trellis is in state 's at time k-1 and the 
-J<k 

received sequence up to this point is y . . 
-j<k 

• fJk(s) = P(y. Is) is the probability that trellis is in state s at time k and the future 
-]>k 

received sequence will be y. . 
-j>k 

• YkC's, s) = P( { y As} I 's) is the probability that at time k-1 trellis was in state's, it 
-k 

moves to state s at time k and the channel sequence for this transition is l.k. 

Figure 3.3 shows a section of a four state trellis with this split of the received sequence. 

From Equations (3.10) and (3.11) we can finally write the conditional LLR for uk 

( 

Ics,s)~ ak-l ('s). Yk ('s' s). [Jk (s) J 
L(uk I y) = ln ="=-u..::....k=_+l________ . 

- L..)'s,s)~ ak-1 ('s) · yk ('s, s) · [Jk (s) 
uk=-l 

(3.12) 

The MAP algorithm calculates the ak(s) and fJk(s) for all states throughout the trellis and 

uses Equation 3.12 to deliver the conditional LLRs. Let us see how the values of ak(s), 

/3k(s) and Yk(s) are calculated. 

3.4.1.2 Forward Recursion and Calculation of ak(s) 

From the definition of ak-1C's) in Equation 3.11, we can write 

35 



,,,. 

• • • . :~ .. 

• • ... 

ak-t ('s) 

Figure 3.3. MAP decoder trellis for a 4 state RSC code 

=P(s A y. A y ) 
-j<k -k 

= '"V P(s A's Ay. A y ) , L.... -j<k -k 
all's 

• :,'~ 

.... ill: • 

(3.13) 

where in the last step we split the probability P(s A y . ) into sum of joint probabilities 
-j<k+l 

P(s A's A y. A y ) over all possible previous states. Again using Bayes' rule and 
-j<k -k 

assuming a memoryless channel we can write 

ak(s) = "P(s A's AY. A y ) L.... -J<k -k 
all's 

= '"V P( {sAy } I {'sAy . }) · P('s A y . ) L.... -k -;<k -j<k 
all's 

= " P( { s A y } I 's) · P('s A y . ) L.... -k -j<k 
all's 

36 



ak(O) 
ak-1 (0) • ji:~····· • flk+l (0) 

Yk (0,0~ .. 
fJk (0) 

Yk+t (0,0) 

•' 
yk (1,0) 

ak-t(1) •• • • yk+1 (0,2) 

• • ':h. fJk+l (2) 

• • • 
l.k+1 

ak (0) = ak_1 (0) · yk (0,0) + ak_1 (1) · yk (1,0) 

fJk (0) = fJk+1 (0) · Yk+1 (0,0) + fJk+1 (2) · Yk+1 (0,2) 

Figure 3.4. Recursive calculation of ak (0) and fJk (0) 

= I ak-1C's) · YkC's, s). (3.14) 
all's 

Thus the values for ak(s) can be calculated easily from the Yk('s, s) values recursively. 

Figure 3.4 shows how ak(s) can be calculated recursively using ak-I( 's) and yk('s, s) for a 

four state RSC code. Notice that because of the binary trellis we only have two previous 

states that can transit into a current state. 

37 



3.4.1.3 Backward Recursion and Calculation of Pk(s) 

The values of pk(s) can also be calculated recursively in a similar manner during a 

backward recursion. The backward recursion starts at the last stage of the trellis and 

moves in the reverse direction. Using a derivation similar to that of Equation 3.14 we can 

show 

Pk-I('s) = L Pk(s) · Yk('s, s). (3.15) 
all's 

Figure 3.4 again shows the calculation of one Pk-IC's) value from Pk(s) and 'YkC's, s) 

recursively. 

3.4.1.4 Calculation of 'YkC's, s) 

Let's consider how we can calculate the transition probability values YkC's, s) in Equation 

3.11 from the received channel sequence and the a priori information. From Equation 

3.11 and Bayes' rule we have 

Yk('s,s)= P({y As}l's) 
-k 

= P({y I {'sA s}) · P(s I 's) 
-k 

(3.16) 

where Uk is the bit required for the transition from state 's to s and P(uk) is the a priori 

probability of this bit. JJc is the codeword associated with this transition. Thus the 

transition probability YkC's, s) is given by the product of the a priori probability of the bit 

required for this transition and the probability that, given the codeword associated with 

38 



this transition &. was transmitted, we received sequence l.k. Assuming a memory less 

Gaussian channel with BPSK (binary phase shift keying) modulation, P(l_k I !k) is given 

as [23] 

n 

P(l_k I !k) = IT P(ykl I xkl), (3.17) 
1=1 

where Xkt and Ykt are individual bits within the transmitted and received codewords l.k 

and&. respectively and n is the number of these bits in each codeword. 

3.4.1.5 Iterative Decoding Using MAP Algorithm 

As the first MAP decoder receives the channel values Ykt. it uses these values and the a 

priori LLRs L(uk) (which are provided by the other component decoder in iterative 

decoding) to calculate yk('s , s) according to Equations 3.16 and 3.17. The Yk( 's, s) are 

used to calculate ak(s) recursively from Equation 3.14. This constitutes the forward 

recursion of the MAP algorithm. Once all the channel values have been received and all 

YkC's, s) have been calculated, backward recursion starts. fJk(s) are calculated in the 

backward recursion according to Equation 3.15. Finally all the calculated values of ak(s), 

"(k('s, s ), and /3k(s) are used in Equation 3.12 to calculate the values of a posteriori LLRs 

In iterative decoding the output of the first MAP decoder provides the a priori 

probabilities for the second MAP decoder. However these probabilities should come from 

an independent source. Recall that we calculated the a posteriori LLRs L(uk IX.) from a 

39 



priori LLRs L(uk) and the received sequence Ykl· L(uk) was provided by the other decoder 

and Ykz consisted of systematic bits yks, common to both MAP decoders. Therefore in 

order to provide the second decoder with independent a priori knowledge we must 

subtract the effect of the above two terms from the a posteriori LLRs of the first decoder. 

It can be shown [1] that, for a systematic code, output of the MAP decoder given by 

Equation 3.12 can be re-written as 

(3.18) 

where L(uk) is the a priori LLR given by(1), and Lc is the channel reliability value and Yks 

is the received version of the transmitted systematic bit Xks = Uk. Lc is further explained as 

4a 
Lc =--2' 

20' 
(3.19) 

where 0'
2 is the variance and a is the fading amplitude of the noise. For zero-mean 

Gaussian noise, a= 1. 

The final term Le(uk) is derived from the a priori information sequence L(un) and the 

received channel information sequence .1: excluding the received systematic bit Yks and the 

a priori information L(uk) for the bit uk. So it is called the extrinsic LLR of the bit uk. It is 

this extrinsic LLR that is passed on to the second decoder as its a priori LLR. 

Now we are ready to summarize the iterative decoding with MAP decoders. The first 

MAP decoder receives the channel sequence which consists of both the systematic and 

the parity bits. It uses this sequence and the a priori information available to calculate its 

40 



estimate of the conditional LLRs of data bits Uk. k=1,2 .. N. Note that in the first iteration 

of the first component decoder there is no a priori information available, and hence P(uk) 

in Equation 3.16 will be 0.5. The extrinsic information Le(uk) is then calculated from 

Equation 3.18 which is then passed on to the second decoder. Next the second MAP 

decoder starts its operation. It receives the channel sequence containing the systematic 

bits and the interleaved parity bits from the second encoder. The second decoder uses this 

sequence and the a priori information (interleaved extrinsic information Le(uk) from the 

first decoder) supplied by the first decoder to calculate its own estimate of the conditional 

LLRs. This completes one iteration of the turbo decoder. In the second iteration the first 

decoder again processes its received channel sequence but this time its a priori 

information is provided by the extrinsic value of the second decoder calculated in the first 

iteration. This results in improved estimates of a posteriori LLRs by the first decoder. The 

second iteration continues with second decoder using a priori values derived from the 

improved a posteriori LLRs of the first decoder to improve its own estimates. The 

iterative process proceeds and with each iteration, BER of the decoded bits falls. 

However the improvement in performance diminishes with increasing number of 

iterations. Therefore for time and computational complexity reasons, the number of 

iterations is usually limited to a small number such as eight. At the end of the iterative 

process the a posteriori LLRs are taken from the second decoder and a hard decision is 

made on the received sequence. 

41 



3.4.2. The Max-Log-MAP Algorithm 

The MAP algorithm as described above is extremely complex due to the multiplications 

involved in the recursive calculation for ak(s) in Equation 3.14 and ~k-I('s) in Equation 

3.15. However its complexity can be dramatically reduced without affecting its 

performance. This is done by transferring the recursions in to the log domain and 

invoking an approximation to reduce its complexity. Max-Log-MAP was initially 

proposed by Koch and Baier [24]. It simplifies the MAP algorithm by transferring the 

calculation of ak(s), ~k(s), and yk('s, s) into the log arithmetic domain and then using the 

approximation 

(3.20) 

Let us define Ak(s), Bk(s) and r k('s, s) as 

(3.21) 

(3.22) 

(3.23) 

Now we can re-write Equation 3.14 as 

= ln(Iak_1 ('s)yk ('s,s)J 
all's 

= ln(Iexp[Ak_1('s)+rk('s,s)]J 
a It's 

= max(Ak_1 ('s) + rk ('s, s)). 
's 

(3.24) 

42 



Equation 3.24 implies that for each path coming into a state Sk=s at the present stage of 

the trellis, the algorithm adds a branch metric term rk('S' s) to the previous Ak-J('S) to 

find the new Ak(s) value for that path. Since there are two paths coming in to a present 

state the path with the higher branch metric is selected. Thi.s is known as the 'survivor' 

path and all the other paths are discarded. This value of Ak(s) then gives the natural 

logarithm of the probability that trellis is in state Sk=s at stage k given the received 

sequence up to this point is "J.i<k· Note that because of the approximation of Equation 3.20 

we only considered one path, the Maximum Likelihood (ML) path, in the calculation of 

this probability. Therefore the algorithm gives us the probability of the most likely path 

through the trellis to the present state Sk=s and not the probability of any path through the 

trellis to state Sk=s. Therefore Max-Log-MAP algorithm is a sub-optimal algorithm when 

compared to the original MAP algorithm. 

Similar to the forward recursion of Equation 3.24, for backward recursion we can write 

Bk-I('s) = max(Bk (s) + fk ('s, s)), (3.25) 
s 

and for the branch metrics fk('s, s) we can write 

(3.26) 

n 

where C is a constant and can be omitted and the term LYktxk1 is weighted by the 
1=1 

channel reliability value Lc of Equation 3.19. 

43 



Finally we substitute the above approximations into our Equation 3.12 to obtain a 

posteriori LLRs that the Max-Log-MAP algorithm calculates. 

= max(Ak_1 ('s) + rk ('s, s) + Bk (s)) 
('s ,s)=> 
uk=+1 

- max(Ak_1 ('s) + rk ('s, s) + Bk (s)). 
('s,s)=> 
uk=-1 

(3.27) 

Equation 3.27 means that in order to calculate the a posteriori LLR L(uk I~) of the bit uk. 

the algorithm considers every transition from trellis stage Sk-I to Sk and then groups them 

into two categories: transitions which might have occurred if uk = + 1 and those which 

might have occurred if Uk = -1. It then selects the best transition in each group and the a 

posteriori LLRs are found based on these 'best' transitions. 

3.4.3 The Log-MAP Algorithm 

The Max-Log-MAP algorithm gives a slightly degraded performance due to the 

approximation of Equation 3.20 [25]. However this approximation can be made exact 

using the Jacobian logarithm 

(3.28) 

44 



where fc(x) can be thought of as a correction term. Therefore in the Log-Map algorithm 

the values of Ak(s) and Bk(s) are calculated using forward and backward recursions 

similar to the Max-Log-MAP, however the maximization in Equations 3.24 and 3.25 is 

complemented by the correction terms of Equation 3.28. These correction terms can be 

stored in a look up table. Consequently although it is only slightly more complex than the 

Max-Log-MAP algorithm, the Log-MAP algorithm gives exactly the same performance 

as the MAP algorithm. 

3.4.4 The Soft Output Viterbi Algorithm (SOV A) 

The Soft Output Viterbi Algorithm (SOV A) is a variation of the classical Viterbi 

algorithm [26]. The classical Viterbi algorithm is a hard decision algorithm and can not 

be employed in iterative decoding. Hagenauer et al. proposed two modifications, which 

enable a Viterbi decoder to accept a priori information as well as provide soft outputs for 

each decoded bit, thus fulfilling the requirements for iterative decoding [22]. Let us now 

consider the SOV A algorithm in detail. 

3.4.4.1 Forward Recursion in SOV A 

Given the received sequence y , the forward recursion in both classical Viterbi and SOV A 

algorithms is meant to find the Maximum Likelihood (ML) path through the trellis. Let 

us define 

• ~~ to be a path through the trellis i.e. ~~ is the state sequence which gives the states 

along this path at state Sk=s and stage kin the trellis. 

45 



• y. to be the received channel sequence up to and including the stage k in the 
-JSk 

trellis. 

The probability of a path ~~ being correct can then be defined as 

(3.29) 

where p(y . ) is constant for all the paths ~k through the trellis to stage k. The 
-JSk 

probability that path ~~ is correct is then directly proportional top(~~ A l...jsk) . Therefore 

the path through the trellis for which this probability is the highest is our ML path. 

Similar to the calculation of ak(s ), of Equation 3 .14, in the forward recursion of MAP, we 

need a path metric for the forward recursion of SOV A. It is obvious that this metric must 

maximize p(~~ A l...jsk) and should be computable in a recursive manner. Let us see how 

this metric can be derived. If a path ~~ at stage k of the trellis contains a path ~L1 at 

stage k-1 of the trellis then we can use the definition of /'k( 's, s) in Equation 3.11 to write 

(3.30) 

Now we can define our metric M (~~) as 

(3.31) 

Using Equation 3.26 and omitting the constant term we can write 

46 



(3.32) 

This is our SOVA path metric which can be calculated recursively and also includes the a 

priori termukL(uk). We should mention here that the path metric used in the classical 

Viterbi algorithm does not contain this a priori term. Notice that forward recursion in 

SOV A is identical to the forward recursion of Max-Log-MAP algorithm, i.e. calculation 

of Ak(s). Therefore during the forward recursion, path metrics of all the paths coming into 

a state are computed. The path with the highest metric is then selected and the remaining 

paths are discarded. This path is known as the 'survivor' path. Once the entire trellis has 

been built, we take the survivor with the highest metric at the last stage of the trellis and 

designate it as the ML path. Figure 3.5 shows the forward recursion in SOVA algorithm. 

As the channel sequence is received, path metrics are calculated using Equation 3.32. 

A solid arrow denotes a transition resulting from a -1 input bit, and a dashed arrow 

represents an input bit of+ l.We show the survivor paths and their corresponding metrics 

in black, and discarded paths and their corresponding metrics in grey. The absence of 

certain branches in the last two stages of the trellis indicates that we forced the trellis to 

terminate in the all-zero state. The ML path is indicated with bold arrows. Once we find 

the ML path we can make hard decisions on the received sequence. The input bits 

required for the transitions along the ML path give the decoder estimate of the received 

information sequence. This constitutes the output of a classical Viterbi decoder. 

47 



K=O 1 2 3 4 5 6 7 8 9 

ool 
I 

2 ... , 
I 

5j.' 
I 

7.11!1 
I I I \ I I I 

I I I 
I I I 

\ I I I 
I I 1-
I I 'I 
I I I 
I I I 
I 

' 
\2.21 \: 

' 01 ' 
I 
I I I 
I I I 
I 

I '1f \ I I ,_ 
' 14.1 I 

~ ' I II 
I I I 
I I I 
I I I I I I I I I I 

I 

' 
-2.2 I 

' ' 10 

11' ' ----~ 
5.7 ' ' Received: (-2.1.-0.1) (-1.4,-1.4) (-1.7.-0.5) (0.9,0.5) (1.2,-1.7) (-1.1,-1.1) (-0.7.-0.8) (-2.4, -1.9) (-1.6, -0.9) 

Figure 3.5. Forward recursion in SOV A decoding 

3.4.4.2 SOV A Traceback 

The SOVA metric defined in Equation 3.32 takes into account the a priori information 

ukL(uk), however to satisfy the requirements of iterative decoding, the algorithm must 

also provide soft outputs. For the binary trellis of Figure 3.5, forward recursion calculates 

metrics for both paths merging into every state and then rejects the path with the lower 

metric. If the two paths ~~ and ~~ reaching a state Srs have metrics M (~~) and M (~~) 

and ~~ is the survivor path with the higher metric then we can define the metric 

difference as 

48 



(3.33) 

The probability that we made the correct decision when we selected ~~ and rejected i~ 

is given by 

P(~~) P(correct decision at Sk=s) = __ .....::::..:;:...;_____ 
P(~~) + P(i~) 

From our metric definition in Equation 3.31 we can write 

M(s'k) e -
P(correct decision at Srs) = = 

eM<~~) +eM<~~) 1 + etii. ' 

(3.34) 

(3.35) 

and the Log Likelihood ratios, LLRs are simply given by ~sk. Let us see how we can find 

the LLRs which give the reliability of the bit decisions along the ML path. Figure 3.6 

shows a simplified version of the trellis shown in Figure 3.5. We show the ML path in 

black whereas the grey colored paths are the discarded paths that merge with the ML 

path. In order to determine the reliability of the bits given by ML path we consider the 

probability that the paths merging with the ML path were incorrectly discarded. This can 

be done by considering the metric difference !J:k for all states s; along the ML path. It is 

shown by Hagenauer in [27] that this LLR can be approximated by 

L(uk I y) z uk min~~i, 
- z=k .. L 

(3.36) 

Uk*U~ 

where uk is the bit estimate given by the ML path and Lis the total number of stages in 

the trellis. Equation 3.36 means that in order to determine the soft value of the bit at stage 

k of the trellis, we first consider all discarded paths that merge with the ML path after 

stage k. The discarded paths that give the same estimate for the bit at stage k as the ML 

49 



K=O 1 2 3 4 5 6 7 8 9 

ooe ~- J.Oe ·4.~ ..,e ..,e 8._ 1- 1 .. 1~ 
\ \ 9.3, 4.2, 9.5, lt. 
\ \ I \ I I I 
\ \ I \ I I I I 

\ \ I I I I I 
\ \ I \ I I • o1e \ e \~- \ e - ,.e e \ 

\ \ 
\ I \ I \ I \ \ .61 I 

we I 2. 

ue • e 
LLR: -11.0 

Figure 3.6. Simplified trellis during SOV A traceback 

path, are ignored since they do not affect the reliability of the decision of uk. For the 

remaining discarded paths the metric differences are computed. The minimum metric 

difference is then selected which gives the soft value of the bit at J(h stage of the trellis. 

For example in the calculation of the LLR of the bit at k=O, only the discarded paths 

which merge with the ML path at k=3 and k=4 have bit estimates different from the ML 

path. The metric differences at these mergers are 11.6 (7.2-(-4.4)) and 11 (8.6-(-2.4)) 

respectively and the estimate from ML path at k=O is uk =-1. The soft output at this stage 

is therefore -11.0. The LLRs of the remaining bits are calculated in a similar fashion. 

50 



3.4.4.3 Iterative Decoding using SOV A Algorithm 

The iterative decoding with SOY A decoders is identical to the iterative decoding with 

MAP decoders explained in Section 3.4.1.5. As the channel sequence is received, the first 

SOY A decoder starts its decoding process. It uses the channel sequence and the a priori 

information to calculate the LLRs of the received bits. These LLRs provide the first 

decoder's estimate of the received bits. Extrinsic information is then calculated from 

these LLRs using Equation 3.18, which is interleaved and passed on to the second SOYA 

decoder as its a priori information. The second decoder which receives its own channel 

input (i.e. systematic bits and parity bits from the second encoder) uses this a priori 

information in its decoding process. The soft output of the second decoder is then used to 

compute its extrinsic information which is then passed on to the first decoder. In the 

second iteration the first decoder uses this information to improve its own estimates. New 

extrinsic information is calculated from these improved estimates and passed on to the 

second decoder. The iterative process continues until reliable estimates are available. As 

explained in Section 3.3, the number of iterations is usually limited to eight. 

3.4.5 Bi-directional SOV A 

In an effort to increase the performance of SOY A-based turbo decoding, Fossorier et al. 

introduced bi-directional SOYA [28]. They also showed that bi-directional SOYA can 

perform as well as Max-Log-MAP in turbo decoding. As the name suggests, bi

directional SOYA operates in forward as well as backward directions. Figure 3.7 shows a 

bi-directional SOYA based turbo decoder. 

51 



Note that there are four component decoders in this scheme. Two of the component 

decoders, i.e. SOY A 1 and SOY A 2, are identical to the SOY A decoder explained in 

Section 3.4.4, and the remaining two decoders i.e. B-SOY A 1 and B-SOY A 2 are what 

we call backward SOY A decoders. The backward SOY A decoder is similar to the regular 

SOY A decoder except the former operates in the reverse direction. Whereas the regular 

SOY A starts from the first stage of the trellis and moves in the forward direction, 

backward SOY A starts from the last stage of the trellis and moves in the reverse direction 

till it reaches the first stage of the trellis. Figure 3.8 shows the operation of forward and 

backward SOY A. 

3.4.5.1 Rationale for Bi-directional SOV A 

Let us first consider the forward SOY A. The SOY A calculates the metric differences tls~ 

between the ML path and the discarded paths merging with the ML path at each state 

along the ML path (see Figure 3.5). It then selects the best path among the discarded 

paths, with a bit estimate opposite to the ML path to compute the reliability value of the 

bit. Although this path is the best among the discarded paths which merged with the ML 

path, the overall best path with the bit estimate opposite to that of the ML path may have 

been discarded before it could remerge with the ML path. Figure 3.9 shows an example 

scenario. Path 1 is the ML path and path 3 is the overall best path with bit estimate 

opposite to the ML path. However path 3 was discarded at stage i and path 2 survived 

instead, merging with the ML path. Therefore we can assume that in general reliability 

52 



B-SOVAl B-SOVA2 

SOVAl SOVA2 

c:!:J : Interleaver [EU : Deinterleaver 

Figure 3.7. Bi-directional SOYA based turbo decoder 

- m~H.• "''!'!et ',7. 
- ,"' .• ' .....• ~ilt'., ·'"• ,_,,\ '.t{rJ, 

G(, 0 > ::C(i "'• 
•. ·;: 

I / ' ,. ,_Ali\ 
0• ''"'''-m • •:/··· tt>-

il ........ -

..• ·:;ii. 

BSOVAJ BSOVA2 

',,' , 
' ' ,,,, /-" '>. 

: ";~>)!!,;:· '>n:~ 
o r•1?Tlt:/ :, 'o ,:e 

SOVAJ SOVA2 

Figure 3.8. Trellis formation in bi-directional SOYA 

53 



values provided by SOY A are overestimated. Let us see how bi-directional SOY A can be 

used to improve these estimates. 

The hard decisions of forward and backward SOY A, when operating on the same 

information, are identical. This is because they both choose the same ML path through 

the trellis. The 'quality' of the reliability values for both forward and backward SOY A is 

also the same. This means that if we replace forward SOY A with backward SOY A in a 

regular SOY A based turbo decoder there will be no improvement or degradation in the 

performance. Therefore backward SOY A has no advantage over forward SOY A as such. 

However the magnitudes of the reliability values delivered by forward and backward 

SOYA are different. The difference is due to the selection of different 'discarded' paths 

in forward and backward SOYA during the calculation of these reliability values. We can 

exploit these differences by using both forward and backward SOY A to improve the 

overall performance of a turbo decoder. Returning to our example in Figure 3.9, we note 

that although the best path (path 3) with bit estimate opposite to ML path (path 1) was 

discarded before it could remerge with the ML path, this path can survive and remerge 

with the ML path in backward SOY A. In general even if the best path does not survive, 

backward SOY A may still find a path better than that in forward SOY A. Therefore by 

comparing the soft values of the forward and backward SOY A and selecting the ones 

with lower magnitudes, we can avoid the overestimated reliability values calculated by 

conventional SOY A. We must note here that bi-directional SOYA does not consider all 

possible paths through the trellis and therefore is not optimal. Thus it does not have the 

same performance as the MAP algorithm. 

54 



Path-1 

• I 
I 
I 

e • e 
I 
I 
I 
I 

e e • e 
I 

I I 
I I 
I I 

-------------------------~-----------~--------------~ 
Time index i-1 ! i ! 

Figure 3.9. Path selection in SOV A decoding 

3.4.5.2 Bi-directional SOV A Based Turbo Decoding 

The bi-directional SOVA based turbo decoding is illustrated in Figure 3.7. As the channel 

sequence is received both component decoders (SOVA 1 and B-SOVA 1) in the first 

stage of the turbo decoder start their operation. Note that both component decoders 

receive the same channel sequence and a priori information. Since they both operate 

independent of each other, they can start their operation simultaneously. However the B-

SOVA 1 cannot start its operation till the entire codeword has been received. This is 

because it decodes the codeword in the reverse direction. After both the decoders in the 

first stage calculate their soft outputs, we have two estimates for each decoded bit. We 

select the estimate that is smaller in magnitude and pass it on to the second stage of the 

turbo decoder. The second stage also has two decoders: SOV A 2 and B-SOV A 2. The 

55 



extrinsic information received from the first stage of the turbo decoder is passed on to 

both decoders in this stage as their a priori information. The decoding process in this 

stage is identical to the process in the first stage. The extrinsic information from this stage 

is passed on to the first stage and the iterative decoding process proceeds. 

3.5 Summary 

This chapter presents an overview of iterative decoding of turbo codes. We began our 

discussion by defining a channel model followed by the introduction to the principles of 

iterative decoding. We explained the importance of soft-input soft-output component 

decoders and the concept of log likelihood ratios (LLRs). Next we presented in detail, the 

description of the algorithms used in component decoders. The MAP algorithm calculates 

the a posteriori LLRs of individual bits by examining every possible path through the 

trellis. This results in optimum performance but makes the resulting decoder 

computationally complex. Max-Log-MAP and Log-MAP, presented in the subsequent 

sections transform the calculations in MAP, to the log domain, thereby making them 

considerably less complex. The second algorithm we presented was the SOY A algorithm, 

which is a modification of the classical Yiterbi algorithm. It finds the ML path through 

the encoder trellis that corresponds to the ML transmitted sequence. The algorithm then 

considers the discarded paths together with the ML path to compute the LLRs of the 

individual bits in the ML sequence. Bi-directional SOYA consists of a forward and a 

backward SOY A. Backward SOY A is identical to forward SOY A except that it operates 

on the received sequence in the reverse direction. Backward SOY A can often find 'better' 

56 



discarded paths through the trellis which could have been missed in the forward SOV A, 

thus leading to an overall improvement in performance. 

57 



Chapter 4 

Sliding Window Decoding of Turbo Codes 

4.1 Introduction 

The turbo coding schemes presented in previous chapters perform close to the Shannon 

limit only for very long frame lengths [1]. Their performance deteriorates with a decrease 

in the frame length. For example a 10,000-bit code outperforms a 1000-bit code by 

0.7dB, and a 169-bit code by 1.6 dB at BER of 10-4 [23]. A long frame length, however, 

means a long decoding trellis for which the memory requirements as well as the decoder 

complexity are excessive from an implementation view point. In order to reduce the 

decoder complexity without affecting its performance significantly, we use longer frame 

lengths (e.g. 1000-bit or more) but decode the frames with sliding window component 

decoders [17]. The sliding window implementations of component decoders, i.e. MAP, 

Max-Log-MAP, SOVA and bi-directional SOVA reduce the decision depth of the trellis 

to around five times the encoder constraint length which eliminates the need to store the 

58 



trellis for the entire frame in memory. We begin this chapter with a review of 

conventional sliding window implementations of these algorithms. We then present new 

multiple bit release techniques which further reduce the complexity of the decoders 

significantly without any performance degradations. 

4.2 Sliding Window Component Decoders 

The component decoders (Max-Log-MAP, SOV A and bi-directional SOV A) explained in 

the previous chapter are all trellis based decoders with identical forward recursion. The 

number of trellis stages formed in the forward recursion is equal to the frame length of 

the code. Since the trellis has to be stored in the memory, for longer frame lengths, the 

decoder memory requirements are huge. However, it is possible to make reliable 

decisions after a relatively small number of trellis stages. This number is referred to as 

the decision depth D of the component decoder. The minimum decision depth is usually 

five times the encoder constraint length [17]. The reason we can make reliable decisions 

after the decision depth is that after this depth all the survivor paths at a given stage of the 

trellis tend to originate from the same initial state and have same first edge. The decoding 

decision corresponding to this edge will therefore not be affected by the subsequent trellis 

stages. This implies that we only need to compute and store the decision depth of the 

trellis to decode a single bit. This depth constitutes our decoding window. Once the bit in 

the decoded window is released, the next stage of the trellis is built and the window slides 

forward. A generalized sliding window decoding process is shown in Figure 4.1. 

59 



:e 
' • ••• 

', ' '· ~; ,..._ \ 

,,;,~: .. ~ ,· / •. / 

Figure 4.1. One bit release sliding window decoding 

Let us now examine the sliding window implementations of Max-Log-MAP, SOYA and 

bi-directional SOYA component decoders in detail. 

4.2.1 SOV A and Bi-directional SOV A 

To explain the sliding window SOY A algorithm we define the following terms. 

DsovA Decision depth of trellis for SOY A. 

TsovA Traceback depth of trellis for SOYA. 

TsovA is the total number of trellis stages, where the discarded path merging with the ML 

path is considered to find the reliability value of decoded bit. For single bit release 

SOY A, forward recursion starts by building the first DsovA stages of the trellis. This is 

followed by SOYA traceback at each stage of the trellis in the current window. TsovA in 

this case equals DsovA· The decoded bit at the first stage of the trellis is released and the 

60 



decoding window slides forward by one trellis stage. The decoded bit at the second trellis 

stage is released in this window followed by another slide of the window and so on. 

Decoding of bi-directional SOYA is the same as simple SOVA except that sliding 

window in backward SOV A starts from the last stage in the trellis and moves in the 

opposite direction, thus releasing the bits in reverse order. 

4.2.2 MAP and Max-Log-MAP 

The parameters for MAP and Max-Log-MAP algorithms are defined as follows. 

DMAP Same as DsovA 

T MAP Number of trellis stages in the backward recursion which is the same as DMAP or 

DsoVA· 

Forward recursion in the MAP algorithm is similar to the forward recursion in SOV A, the 

only difference being the actual calculation of path metrics. Max-Log-MAP however has 

forward recursion equivalent to that of SOV A. The forward recursion in both MAP and 

Max-Log-MAP is followed by a backward recursion instead of a traceback as was the 

case in SOV A. This backward recursion is identical to the forward recursion but proceeds 

from the last stage in the decoding window to the first stage. T MAP therefore is always the 

same as DMAP in the sliding window decoding of MAP and Max-Log-MAP. After the 

release of the decoded bit, the window slides forward in the same manner as explained 

previously for SOV A. 

61 



0 
10 

-1 
10 

-2 
10 

-3 ii 10 

-4 
10 

-5 
10 

-6 

K=3, Block length=1000, No of Blocks=10,000, Random lnterleaver 

...... Max-Log-MAP full length decoding 

... .,. .. Bi-directional SOYA full length decoding 

.... Max-Log-MAP 1 bit sliding window decoding 
... Bi-directional SOYA 1 bit sliding window decoding 

10 ~--~--~----~--~----L---~--~----~--~--~ 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Eb/NO db 

Figure 4.2. BER performance of one bit release sliding window decoding 

4.2.3 Comparison of SOV A and MAP 

The bit error rate (BER) performance comparison of full frame length decoding and 

sliding window single-bit release decoding for bi-directional SOYA and Max-Log-MAP 

is shown in Figure 4.2. A turbo encoder with pseudorandom interleaver and RSC 

component encoders of constraint length 3 have been used. The value of DsovA IDMAP and 

TsovAITsovA for the sliding window component decoders is 15. It is evident from the 

simulation results that sliding window implementations perform reasonably close to full 

frame length implementations. Moreover they are significantly less complex and 

therefore more suitable for practical implementations. 

62 



4.3 Multiple Bit Release Sliding Window Decoding 

We have seen in the previous section that sliding window implementations significantly 

reduce the memory requirements of component decoders. However, to ensure high 

performance, the component decoders and hence the turbo decoder must also be able to 

decode at very high speeds. One way to increase the speed of the component decoders is 

to release more than one bit in a single decoding window. This will result in the fewer 

slides of the window and hence faster decoding of the encoded frame. Vucetic and Yuan 

suggested a Max-Log-MAP based decoder in which multiple bits are released by 

doubling the size of sliding window [17]. In this thesis however, we will study the effect 

of progressively releasing multiple bits in the Max-Log-MAP decoder. Additionally we 

will also analyze SOVA and bi-directional SOVA for multiple bit release 

implementations. One bit release sliding window decoding will be our reference for 

performance and complexity analysis. We begin by considering a number of 

modifications to one bit release sliding window implementations, which allow multiple 

bits to be released in one decoding window. We then examine the rationale behind these 

modifications and their probable influence on decoder complexity and performance. 

4.3.1 SOV A and Bi-directional SOV A 

In order to facilitate the release of N bits in one decoding window we consider the 

following modifications. 

63 



D+(N-1) 
T 

' • • • • 0, • • "{YiJ% """, 
\/d''; ..... ,, d 

(.{ ,_/"< 
,' j 

><:. / 

'• ' :~~i ~\~~~;' )d I •• (il: , . / :-t~ . i • •• • • l • I ! 

c\-<• f 

Figure 4.3. Multiple bit release sliding window decoding 

1. Increase the decision depth of trellis by N-1 

Dmult_SOVA = DsovA + (N-1) where 1 ~ N ~ DsovA 

2. Keep Tmult_sovA same as TsovA and use the same ML and discarded paths in the 

decoding of all the N bits in a decoding window. 

3. After N bits in a window have been decoded, slide the window forward by N trellis 

stages. 

Figure 4.3 shows theN bit release sliding window decoding graphically. The decoding 

process begins with a forward recursion which builds Dmult_sovA trellis stages and finds 

the ML path. This is followed by the sov A traceback in which T mult_SOVA discarded 

paths, one at each stage in the SOV A traceback depth, are considered. The ML path and 

the discarded path at each trellis stage in the SOV A traceback are not only used to 

64 



calculate the soft value of the decoded bit at the first stage of the trellis but also for the 

decoded bits at trellis stages k=n, where 2-:::;.n<.:::N. Once the SOV A traceback is complete 

and N bits are released, the window slides forward by N trellis stages. 

4.3.2 The Effect of Modifications on Decoder Complexity and 

Performance 

Let us first consider how these modifications will reduce the computational 

complexity of the component decoders. The number of computations in the forward 

recursion of SOV A and MAP remain unaffected by the modifications. The reason is that 

even though we are building the trellis in steps (i.e. N stages after each slide of the 

window), the number of stages required to decode the entire block is still the same. The 

number of SOV A trace backs, however, is reduced by a factor of N which implies fewer 

computations and an overall increase in the decoder speed. This increase comes at the 

expense of additional hardware i.e. memory to store N-1 additional stages of the 

elongated trellis and logic to enable the release of N bits simultaneously. The amount of 

additional hardware required is proportional toN. 

In order to determine the effect of proposed modifications on the decoder 

performance, we analyze how they will affect the reliability of individual bits released in 

a decoding window. An increase in the trellis decision depth implies more reliable ML 

paths for the first N-1 bits in the window. The ML path for the Nh bit has the same length 

as in one bit release implementation and therefore its reliability is unaffected. On the 

other hand, keeping SOV A traceback length unchanged means that all but the first bit in 

65 



One-bit release 

Multiple-bit release 

Figure 4.4. Perlormance analysis of multiple bit release sliding window decoding 

the decoding window now have a reduced traceback. A reduced traceback implies fewer 

discarded or alternate paths available in the decoding process. It is clear from the above 

discussion that while the first modification tends to increase the reliability of individual 

bits, the later has the opposite effect. Consider the example shown in Figure 4.4. We 

compare a 3 bit release implementation (N=3) to a single bit release implementation. As 

discussed above the reliability of the first bit d1 will increase since the length of the ML 

66 



path D, used in its decoding has increased by 2 while its traceback length Tis unchanged. 

The reliability of the last bit d3 will decrease since the length of its ML path is the same 

as it was in one bit release implementation while its traceback length has decreased by 2. 

The intermediate bit d2 has the length of its ML path increased byl, however at the same 

time its traceback length has also decreased by 1. Therefore its reliability may increase, 

decrease or remain unaffected depending on these individual effects. In general we can 

expect the effect of two modifications to balance each other and therefore multiple bit 

release implementations to have performances similar to single bit release 

implementations. Moreover if the two effects are not uniform and decoded bits at 

different positions are affected differently, we can exploit these differences to even 

increase the overall performance of a turbo decoder. This is the motivation behind the 

multiple bit release implementation presented above. 

4.3.3 MAP and Max-Log-MAP 

A multiple bit release sliding window MAP and Max-Log-MAP can be implemented 

in a fashion similar to that of SOV A explained above. The key difference is the length of 

backward recursion which in the case of MAP and Max-Log-MAP is the same as forward 

recursion i.e. Dmult_MAP = Tmult_MAP. The performance and complexity analyses are also 

similar to those of SOV A. The number of computations in the forward recursion of MAP 

and Max-Log-MAP remains unaffected by the modifications. The number of 

computations in the backward recursion increases in each window; however, the number 

67 



of total windows is reduced by a factor of N, leading to an overall reduction in 

computations. 

4.4 Summary 

In this chapter we have discussed sliding window decoding of turbo codes. The sliding 

window approach allows us to use large block lengths but at the same time design 

decoders with reasonable complexity. All the component decoding algorithms presented 

in Chapter 3 (and the turbo decoders based on them) are suitable for sliding window 

implementations. 

We described a generalized sliding window implementation in which one bit was 

released after each slide of the window and we also showed that the performance of 

sliding window decoding is comparable to that of full block length decoding. Next we 

examined the possibility of increasing decoding speed by releasing multiple bits in each 

decoding window. The proposed modifications to single bit release SOYA, bi-directional 

SOYA and Max-Log MAP enabled the release of multiple bits with a very little increase 

in hardware complexity. We also analyzed that multiple bit release implementations 

should be comparable in performance to the single bit release implementations. We shall 

investigate this claim more thoroughly by examining the BER (bit error rate) simulation 

results of these implementations in Chapter 5. 

68 



Chapter 5 

Performance of Multiple Bit Release Turbo 

Decoders 

5.1 Introduction 

Multiple bit release implementations of component decoders, presented in Chapter 4, 

increase the decoding speed by enabling the release of multiple bits in a decoding 

window of trellis based decoding algorithms such as SOY A, bi-directional SOY A and 

Max-Log-Map. In Chapter 4 we also conjectured that multiple bit release 

implementations can be comparable to single bit release implementations in terms of 

BER performance. In this chapter we shall verify this claim by simulating the 

performance of a turbo coded system with turbo decoders based on SOYA, bi-directional 

SOYA and Max-Log-MAP component decoders. We shall also estimate the possible 

speedups that can be obtained from multiple bit release implementations relative to single 

69 



bit release implementations. This will provide us with speed versus performance trade

offs for various multiple bit release implementations. Finally we shall simulate the 

performance of multiple bit release punctured turbo codes to confirm that results obtained 

for non-punctured turbo codes also hold for punctured turbo codes. We must note here 

that multiple bit release implementations and their corresponding speedup estimates 

provided in this chapter are for component decoders. Since these component decoders 

operate in an iterative fashion in a turbo decoder, a faster component decoder translates 

into a faster turbo decoder. The BER performance results presented in this chapter 

however are for the turbo coded system which employs these multiple bit release 

component decoders. 

5.2 Simulation Setup 

In order to simulate the encoding process, random binary sequence u of length L is 

generated. This sequence is then encoded by a turbo encoder that consists of two identical 

RSC encoders of Figure 2.3, separated by a pseudo-random interleaver. The encoded 

sequence vis then mapped to signal levels using an antipodal baseband signaling scheme 

characterized by 

x = 2v-l. (5.1) 

The channel symbols are then corrupted by additive white Gaussian noise resulting in the 

received sequence 

y = x + e, (5.2) 

70 



Table 5.1. Standard simulation parameters 

Channel Additive White Gaussian Noise (A WGN) 

Component Encoders 2 identical RSC codes (SOY A, bi-directional SOY A 

& Max-Log-MAP) 

RSC parameters Constraint Length K = 3, forward polynomial= 1 +D4
, 

feedback polynomial= 1 +D+D2 (Figure 2.3) 

lnterleaver 1000 bit random interleaver 

Decoding iterations 8 

Decoding window size 5xK(constraint length) 

for1 bit release SOY A: 

DsovA 

DMAP 5xK(constraint length) 

where e is the zero-mean Gaussian noise random variable with variance CF
2 

• The 

variance CF
2 is calculated according to the desired energy per bit to noise density ratio, 

Et/No. using the relation 

(5.3) 

where E/No is the energy per symbol to the noise density ratio. For coded channels E8/N0 

is related to EJNo by 

E/No = Et/No + 10logJO(r), (5.4) 

71 



where r is the code rate. For the non-punctured turbo coding scheme of Figure 2.8, used 

in our simulations, r is 1/3. 

The received sequence is decoded by a turbo decoder which consists of two 

component soft-in soft-out decoders operating in parallel as shown in Figure 3.2. The 

number of decoding iterations is limited to eight and the component decoders used in our 

simulations are SOV A, bi-directional SOV A and Max-Log-MAP. A summary of the 

standard parameters used in the simulations is given in Table 5.1. 

5.3 Single Bit Release Component Decoders 

Figure 5.1 shows the bit error rate (BER) performance comparison of one bit release 

SOV A, bi-directional SOV A and Max-Log-MAP. While both bi-directional SOV A and 

Max-Log-MAP are better than simple SOVA it is interesting to note that bi-directional 

SOVA is consistently better than Max-Log-MAP. Similar results were also reported for 

normal or full length decoding of bi-directional SOV A and Max-Log-MAP in [28]. We 

shall use these single-bit release curves as our reference, and compare the performance of 

multiple bit release implementations against these curves. 

5.4 Performance of Multiple Bit Release SOV A 

The BER performance results for multiple bit release SOV A are shown in Figure 5.2. As 

we increase N, i.e. the number of bits released in a single window, there is little effect on 

the performance of the turbo decoder. For example, for N=4 and N=8 the performance is 

almost identical to the single bit release implementation i.e. N=l. As we explained in 

72 



1.... 
Q) 
..c 

1 0
o 1000 bit interleaver, 10,000 blocks, 8 iterations 

--e-- Simple SOVA 
-·-·-+·-·-· Bidirectional SOVA 
----e---· Max-Log-Map -1 

1 0 -· ·--.......... ... .. ... 

·······-... :.::.:::.:::.::··-s., 
........................ 

·····-.. :~::::~:---... 
........ --. ......... 

"· ... , ......... 
····· ... ····a 

.... "' ............ .. ... .. 
·····-.•. :::::·····-... 

....... , "' ........ 
......... , .......... .. 

· ........... ~ .. .. 

"~:=:::::.:_: 
10·5~------~--------~------~--------~ 

0 0.5 1 1.5 2 
Eb/NO db 

Figure 5.1. BER performance comparison of one bit release simple SOV A, bi-directional 

SOV A and Max-Log-MAP 

Section 4.3.2, this implies that the decrease in reliability due to the reduced traceback is 

balanced by the increase in reliability due to the increased length of the forward 

recursion. However as we increase N beyond 8, the performance starts to degrade and for 

N=15 (original length of the window), the performance degrades significantly. At this 

point the effect of reduced traceback dominates the effect of increased window length. 

73 



1 0
o 1000 bit interleaver, 10,000 blocks, 8 iterations 

---e--- 1 bit 
-·-·-•·-·-· 4 bits 
----e---· 8 bits 
---+-- 15 bits 

1 o-4c__ ___ --L._ ___ __,_ ____ _L__ ___ __j 

0 0.5 1 1.5 2 
Eb/NO db 

Figure 5.2. BER performance comparison of multiple bit release sliding window simple 

SOVA 

5.5 Speedup from Multiple Bit Release SOV A 

It is evident from Figure 5.2 that with the proposed modifications we can release up to 8 

bits in a decoding window without any performance degradation. This means that in the 

decoding of a block by a component SOV A decoder, we can reduce the number of 

traceback windows by a factor of 8. This reduction leads to an increase in the overall 

decoding speed. The magnitude of this speedup depends on the implementation details 

and can vary significantly from implementation to implementation depending on the 

74 



speed versus hardware tradeoffs employed. In order to compare the efficiency of multiple 

bit release implementations of SOV A against single bit release SOV A we consider a 

simple and efficient implementation. We will assume that all the path metrics at a given 

stage of the trellis in the forward recursion can be calculated simultaneously. Therefore 

the time to build a single trellis stage in the forward recursion is constant and we will 

refer to it as T1. For a block of length L, we need to build as many forward trellis stages. 

Therefore, irrespective of the window size, the time to complete the forward recursion for 

the entire block is given by LxT1. 

The SOV A traceback simply involves the comparison of the differences between the 

ML path and the discarded paths at each trellis stage in the traceback window. Since all 

the metrics have been calculated and stored in the forward recursion, these differences 

can be calculated in parallel followed by a comparison. We will refer to the time that it 

takes to compute the metric differences and their comparison followed by the selection of 

the best metric difference as Tt. Recall that the length of traceback window in multiple bit 

release implementations does not change and therefore we can safely say that Tt will be 

the same irrespective of the value of N. The number of traceback windows in the 

decoding of a block is determined by the value of N. For N=l the window slides by one 

trellis stage after the release of a bit estimate and therefore there are L traceback windows 

where Lis the size of the block. For N=2 however, 2 bits are released in each window and 

the window slides by 2 trellis stages. Therefore the number of traceback windows is 

reduced by a factor of 2. Now we can calculate the approximate time it takes to decode a 

block by anN bit release component SOV A decoder as 

75 



Table 5.2. Speedup from an 8 bit release implementation of SOV A 

TtfTt Speedup 

Tt = 0.5 T1 1.41 

Tt = TJ 1.77 

Tt = 1.5 T1 2.11 

Tt=2TJ 2.40 

Tt=4T1 3.33 

Time to decode 1 block = time for forward recursion + time for tracebacks 

L = LxT1 +-XI:. 
N 

(5.5) 

Equation 5.5 gives us an idea of the speed up that we can achieve with multiple bit 

release implementations. The magnitude of the speedup depends on the ratio of T1 and Tt 

and the value of N. For example if T1 and Tt are equal, an 8 bit release (N=8) 

implementation will translate in to a speed up of 1.77 over the single bit release 

implementation. Table 5.2 shows the speedups that can be achieved from an 8 bit release 

implementation for some possible values of T/TJ- It is evident from the table that 

reducing T1 with respect to Tt leads to higher speedups. A higher value of N also improves 

the speed further however as we have seen from the BER simulation results, the 

performance of SOV A based turbo decoder begins to deteriorate when N is increased 

beyond 8 when compared against single bit release implementations. 

76 



1 0
o 1000 bit interleaver, 10,000 blocks, 8 iterations 

-e- 1 bit 
-·-·-•·-·-· 4 bits 

1 o-1 
----a---· 8 bits 
--+- 15 bits 

10-5~------~------~~------~------~ 
0 0.5 1 1.5 2 

Eb/NO db 

Figure 5.3. BER performance comparison of multiple bit release sliding window bi-

directional SOYA 

5.6 Performance of Multiple Bit Release Bi-directional SOV A 

The BER performance results for multiple bit release bi-directional SOY A are shown in 

Figure 5.3. As we increase N, i.e. the number of bits released in a single window, the 

performance of the turbo decoder improves slightly. An 8 bit release bi-directional 

SOYA implementation is consistently better than single bit release bi-directional SOYA 

after 0.5 db. However if we release 15 bits, which is the size of the original window in 

one bit release implementation, there is no significant deterioration in performance. This 

77 



Table 5.3. Speedup from a 15 bit release implementation of bidirectional SOVA 

TtfTt Speedup 

T1 = 0.5 Tt 1.45 

Tt = Tt 1.88 

T1 = 1.5 Tt 2.27 

T1 =2Tt 2.65 

Tt = 4 Tf 3.95 

implies that for smaller values of N the increase in reliability due to the increased length 

of forward recursion surpasses the decrease in reliability due to the reduced traceback, 

thus leading to an overall increase in the reliability of decoded bit estimates. For larger 

values of N, however, the two effects more or less balance each other. Bi-directional 

SOV A therefore is much more resilient to a reduced traceback than SOV A. 

5.7 Speedup from Multiple Bit Release Bi-directional SOVA 

The speedup analysis of bidirectional SOV A is similar to the one presented for SOV A in 

Section 5.5. Since we can release 15 bits in bi-directional SOV A without any 

performance degradation, a speedup of 1.875 can be achieved when T1 and T1 are equal. 

The possible speedups from a 15 bit release implementation for different values ofT /Tt 

are shown in Table 5.3. 

78 



1 0
o 1000 bit interleaver, 10,000 blocks, 8 iterations 

---e- 1 bit 
........ A ........ 4 bits 

1 o·1 
----e---· 8 bits 
~ 15 bits 

1 o-sL__ ___ ,_l,_ ___ ____j_ ____ ..,L__ ___ __J 

0 0.5 1 1.5 2 
Eb/NO db 

Figure 5.4. BER performance comparison of multiple bit release sliding window Max-

Log-MAP 

5.8 Performance of Multiple Bit Release Max-Log-MAP 

The BER performance results for multiple bit release Max-Log-MAP are shown in Figure 

5.4. The performance of the turbo decoder improves consistently with an increase in N. 

As we explained in Section 4.3.3, a multiple bit release implementation of Max-Log-

MAP means an increase in the length of forward as well as backward recursion. This 

obviously leads to an improved performance, as more reliable estimates are available in 

the forward as well as backward directions. 

79 



5.9 Speedup from Multiple Bit Release Max-Log-MAP 

The forward recursion of Max-Log-MAP is identical to that of SOV A; however, it is 

followed by a backward recursion instead of a traceback. Since this backward recursion is 

identical to the forward recursion we can safely assume that the time it takes to build a 

trellis stage in the forward direction is equal to the time it takes to build a stage in the 

backward direction. Now we can estimate the time required to decode a single block 

using a Max-Log-MAP component decoder as: 

Time to decode 1 block =LxT1 +~xT1 xDmutr 
N MAP' (5.6) 

where Tt is the time to build one trellis stage and Dmult_MAP is the size of the decoding 

window in multiple bit release Max-Log-MAP or MAP decoding. It must be noted that 

towards the end of the block the size of the decoding window gets smaller. The above 

equation does not take this into account and therefore is not exact. However if Dmult_MAP is 

significantly smaller than L, this approximation is acceptable. Moreover we will use the 

above equation for the comparison of single and multiple bit release decoders 

maintaining the same assumptions across all implementations. Let us now calculate the 

speedup from multiple bit release implementations. We can rewrite Equation 5.6 as 

. ( D +N -1) Ttme to decode 1 block= LxT1 1 + MAP N , (5.7) 

where DMAP is the length of the original window(N=l) in one-bit release implementation 

and Dmult_MAP = D MAP + N -1 . We use Equation 5.1 to calculate the speedups for 

different values of N for DMAP =15. The results are listed in Table 5.4. 

80 



Table 5.4. Speedup from multiple bit release Max-Log-MAP 

N Speedup 

2 1.78 

4 2.90 

8 4.26 

15 5.46 

5.10 Comparison of Bi-directional SOVA and Max-Log-MAP 

Figures 5.5 and 5.6 show the BER performance comparison of bi-directional SOVA and 

Max-Log-MAP for N=8 and N=15 respectively. For N=8 bi-directional SOV A is 

consistently better than Max-Log-MAP whereas both decoders have a similar 

performance for N=15. In order to compare the decoding speed, we consider equations 

5.5 and 5.6. The first term in both equations i.e. LxT1 is same since it represents the time 

of forward recursion which is identical in SOV A and Max-Log-MAP. The difference in 

the speed of the decoders therefore depends on the terms Tt in Equation 5.5 and 

T1 X Dmutt_MAP in Equation 5.6. For a 4-state decoder Dmutt_MAP must be greater than 15 

(five times the encoder's constraint length), which is the minimum window size required 

to make reliable decisions. Furthermore, for the same window size T/T1 can range from 

0.5 to 2 for the implementation described in Section 5.5. Therefore we can safely say that 

the decoding speed of bi-directional SOVA is higher than that of Max-Log-MAP. 

81 



1 0
o 1000 bit interleaver, 10,000 blocks, 8 iterations 

-e- max-log-map T=0=15+ 7 
........ bi-sova 0=15+7, T=15 

··~ .. 

1 o·5 
0~----~0~.5~----~1------~1.~5----~2 

Eb/NO db 

Figure 5.5. BER performance comparison of eight bit release sliding window bi-

directional SOV A and Max-Log-MAP 

1 0
o 1000 bit interleaver, 10,000 blocks, 8 iterations 

-e- max-log-map T=0=15+14 
........ bi-sova 0=15+14, T=15 

1 o·5L__ ___ _,__ ___ ___j__ ___ --,-L=--__ ____...J 

0 0.5 1 1.5 2 
Eb/NO db 

Figure 5.6. BER performance comparison of fifteen bit release sliding window bi-

directional SOV A and Max-Log-MAP 

82 



The above analysis assumes a 4-state encoder. However let us also examine how the two 

decoders compare for 8 or 16 state encoders. An increase in the number of states implies 

an increase in the minimum decoding window length required for making reliable 

decisions. For example, Dmutt_MAP must be greater than 20 or 25 for an 8 or 16-state 

encoder respectively. An increase in the window size will have no effect on TJ and a very 

little effect on T1• An increased window implies a longer ML path and therefore more 

discarded paths in the SOV A traceback. Since the metric differences in SOV A traceback 

can be computed in parallel this only translates into a time penalty of using a larger 

comparator for comparing and selecting the best metric difference. A higher state encoder 

will therefore only enhance the speed difference between bi-directional SOYA and Max

Log-MAP. 

5.11. Multiple Bit Release Punctured Turbo Codes 

Puncturing is used to increase the rate of a turbo code and many practical channel coding 

standards employ punctured turbo codes. Therefore it is worthwhile to analyze the 

performance of multiple bit release component decoders in a turbo coded system which 

employs puncturing. The simulation of a punctured coded system is very similar to the 

one described in Section 5.2. The encoding operation is followed by an additional 

puncturing block which punctures the output of the encoder according to a fixed 

puncturing pattern to obtain the desired code rate. The turbo decoder used for the non

punctured codes can also be used to decode punctured codes; however, the punctured bits 

must be inserted in the received sequence at the decoder input. Since punctured bits are 

83 



not transmitted, we insert a neutral value in the stream where coded bits were punctured. 

For the antipodal baseband signaling scheme of Section 5.2, where bits 0 and 1 are 

mapped to signal levels -1 and 1 respectively, 0 would be the neutral value. 

Figures 5.7 and 5.8 show the BER performance results for punctured turbo codes with 

multiple bit release bi-directional SOVA and Max-Log-MAP respectively. We have 

obtained a rate 1/2 code from a non punctured rate 113 code by puncturing the output of 

the two encoders alternately. In the figures the puncturing pattern is represented by a 

puncturing vector where 0 denotes the bit positions that were punctured. The results show 

that for punctured turbo codes the variation in performance due to the variation in N 

follow a pattern similar to the one we observed for non-punctured codes in Figures 5.3 

and 5.4. This indicates that the behavior of multiple-bit release decoders does not change 

in a punctured turbo coded system. 

When a code is punctured to increase the code rate, the performance of the coded 

system deteriorates. For a turbo coded system with conventional component decoders the 

performance drops approximately 0.6 dB, when the code rate is increased from 1/3 to 1/2 

[23]. The comparison of non-punctured and punctured fifteen bit release SOV A and 

Max-Log-MAP in Figure 5.9 and 5.10 also shows a similar deterioration in performance. 

Therefore, multiple bit release component decoders behave very much like conventional 

component decoders in a punctured turbo coded system. 

84 



K=3, 1000 bit interleaver, 1,000 blocks, Puncturing vec(110101] 
10°r---------,------r==================7=~==~ 

-- 1 bit release Punctured Bi-Sova 
··--+-·· 8 bit release Punctured Bi-Sova 
··•·· 15 bit release Punctured Bi-Sova 

'<~ .... 
'-.'\, 
'·~ 

... ~ 

'~ ,~,\ 
... ~ ... 

'· 1 o·4~--------::"-=-----------c------------,-L::----------: 
0 0.5 1 1.5 2 

Eb/NO db 

Figure 5.7. BER performance comparison of multiple bit release punctured bi-

directional SOV A 

K=3, 1000 bit interleaver, 1,000 blocks, Puncturing vec[110101] 
10°r---------,--r============================~ 

-- 1 bit release Punctured Max-Log-MAP 
........ 8 bit release Punctured Max-Log-MAP 
....... 15 bit release Punctured Max-Log-MAP 

1 o·4 ~--------::-'-::---------_j_-----------,-"::----------!. 
0 0.5 1 1.5 2 

Eb/NO db 

Figure 5.8. BER performance comparison of multiple bit release punctured Max-Log-

MAP 

85 



K=3, 1000 bit interleaver, 1,000 blocks, Puncturing vec[1101 01] 
10°r---------,------r==~~~7=~~~=======, 

--+- 15 bit release Bi-Sova 
--+-- 15 bit release Punctured Bi-Sova 

1 o·5':----------=""=--------',-------:-"-=-----~ 
0 0.5 1 1.5 2 

Eb/NO db 

Figure 5.9. Performance degradation in multiple bit release punctured bi-directional 

SOVA 

K=3, 1000 bit interleaver, 1 ,000 blocks, Puncturing vec[11 01 01] 
10o,_----~-r===~~==========~~======~ 

--+- 15 bit release Max-Log-MAP 

10"1 

10"2 

... 
Ill 
..c 

10"3 

10"4 

10"5 

0 0.5 

--+-- 15 bit releasePunctured Max-Log-MAP 

1 
Eb/NO db 

1.5 2 

Figure 5.10. Performance degradation in multiple bit release punctured Max-Log-MAP 

86 



vo 

VJ 

u 

Figure 5.11. 30 turbo encoder 

5.12 Turbo Codes with Higher State Encoders 

The BER simulation results presented so far in this chapter are for turbo coded systems 

with four state component encoders. We have already established in Section 5.10 that 

speedup estimates derived for turbo codes with four state component encoders also hold 

for codes with higher state component encoders. Let us now confirm that the same is also 

true for the performance of the turbo coded system which employs component encoders 

with more than four states. Figure 5.11 shows the standard turbo encoder for 30 wireless 

communication systems [30]. It consists of two eight state RSC component encoders. 

Figures 5.12 and 5.13 show the BER simulations results for turbo coded systems that use 

the eight state encoder of Figure 5 .11. We must mention here that 30 wireless standard 

87 



K=4, 1000 bit interleaver, 10,000 blocks 
10°,---------,----------,-------r==========~ 

-- 1 bit release 
-·-·+-·- 4 bit release 
--•-- 8 bit release 
-+- 15 bit release 

1 o·7'-----------_.__ ________ ___._ __________ '----------
o 0.5 1 1.5 2 

Eb/NO 

Figure 5.12. BER performance comparison of 8-state bi-directional SOVA 

..... 
(JJ 
..c 

K=4, 1000 bit interleaver, 10,000 blocks 
10°r---------,----------,-------r==~~==7=~ 

--+- 1 bit reelase 
-·-·•-·- 4 bit release 
--•-- 8 bit release 
-+- 15 bit release 

10-5'----------:-'-::------------'------------,-"=----------: 
0 0.5 1 1.5 

Eb/NO 

Figure 5.13. BER performance comparison of 8-state Max-Log-MAP 

88 



allows multiple frame lengths (between 40 and 5114 bytes), and the exact permutation of 

the interleaver is determined, based on the frame length according to predefined rules. 

However we have used a fixed frame size of 1000 bits and a random interleaver in our 

simulations. The results demonstrate a similar trend as was observed for four state 

encoders and even better performance than in the case of four state encoders. 

5.13 Overall Speedup of the Turbo Decoder 

The speedup estimates presented in this chapter are for the component decoders used in a 

turbo decoder. These component decoders operate in an iterative fashion in a turbo 

decoder. However the output of a component decoder has to be interleaved, or 

deinterleaved, before it can be given to the next decoder. The time required for 

interleaving is relatively small compared to the decoding time of component decoders for 

long frames (i.e. 1000 bits). If we ignore the time used by the interleavers I deinterleavers 

then the speedup estimates derived for component decoders also hold for the Turbo 

decoder. For example if a 15 bit release implementation of bi-directional SOV A provides 

a speedup of 2.65 over single bit release bi-directional SOVA, then a turbo decoder 

based on 15 bit release implementation will be approximately 2.65 times faster than the 

turbo decoder using single bit release bi-directional SOV A. 

5.14 Summary 

In this chapter we have presented the performance comparison of turbo coded systems 

with multiple bit release component decoders. We simulated the performance of these 

89 



systems and demonstrated that multiple bit release implementations can be used to 

increase the decoding speed without any degradation in performance. In case of Max

Log-MAP and bi-directional SOV A the performance actually improved slightly by 

releasing multiple bits. The comparison of turbo coded systems with different component 

decoders also established the superiority of multiple bit release bi-directional SOV A over 

multiple bit release Max-Log-MAP in speed as well as performance. Finally we extended 

our simulations to punctured turbo codes and turbo codes with higher state encoders. The 

speed and performance advantages obtained by using multiple bit release component 

encoders were confirmed in these systems as well. 

90 



Chapter 6 

Conclusions 

In this thesis design issues related to the implementation of high speed, low complexity 

turbo decoders have been investigated. Chapters 1 and 2 provided the background on 

error correcting codes. Chapter 3 explained the iterative decoding of turbo codes along 

with the description of several decoding algorithms. Sliding window decoding, which is 

used to reduce the decoder memory requirements, was presented in chapter 4. To increase 

the decoding speed, multiple bit release sliding window turbo decoders were also 

proposed in this chapter. Chapter 5 examined the BER and speed performance of the 

proposed multiple bit release decoders. The speedups obtained from these 

implementations and their effects on the decoder's performance were also discussed. Two 

publications resulted from this work: [29] and [31]. 

The results obtained in chapter 4 (Figure 4.2) demonstrate that sliding window 

decoding can be used to reduce decoder memory requirements without significant 

91 



performance degradation. Building on these results, multiple bit release sliding window 

implementations for SOV A, bi-directional SOV A and Max-Log-MAP based turbo 

decoders have been considered. These implementations sought to increase the decoder 

speed without affecting its performance. The BER simulation results in chapter 5 proved 

that it is possible to increase the speed and reduce the computational complexity of 

SOV A, bi-directional SOV A and Max-Log-MAP based turbo decoders through the 

proposed modifications. A comparative analysis of these results indicated that while 

considerable speedups can be achieved in SOV A based turbo decoder, bi-directional 

SOV A and Max-Log-MAP based turbo decoders are more suitable for such 

implementations. Bi-directional SOVA, due to its higher decoding speed and slightly 

better performance than Max-Log-MAP, proved to be the most suitable algorithm for 

multiple bit release sliding window implementations of turbo decoders. 

The above results were also confirmed with punctured turbo codes and turbo codes 

with different constraint lengths (or encoder states). The increase in speed and 

performance was obtained at the expense of certain modifications which require extra 

hardware i.e. memory to store extra trellis stages and logic to release multiple bits. 

However this increase was modest and was greatly outweighed by the gain in the 

decoding speeds. The results obtained in this thesis argue strongly in favor of multiple bit 

release sliding window implementations of turbo decoders due to their reduced 

computational complexity, improved performance and faster decoding speeds. 

92 



6.1 Future Work 

The purpose of this study was to research the design of fast and low complexity turbo 

decoders for future wireless networks. Therefore, implementation of multiple bit release 

sliding window turbo decoders, analyzed in chapter 5, in silicon (ASICIFPGA) would be 

a natural progression of this work. Recent advances in turbo coding have led to the 

emergence of several new techniques. Multiple bit release sliding window decoders can 

also be used to the benefit of these techniques. Some suggestions are: 

• Multiple turbo codes presented in [32] have recently been shown to outperform 

conventional turbo codes. A multiple turbo encoder consists of 3 or more simple 

component encoders and the turbo decoder consists of the same number of 

component decoders. Since the component decoders in multiple turbo codes are the 

same as in conventional turbo codes, the component decoders explained in chapter 5 

can be used in a multiple turbo decoder to increase its speed. However the 

performance of the multiple turbo decoder which employs these multiple bit release 

sliding window component decoders will have to be verified through BER 

simulations. 

• To increase the speed of decoding, a method has been proposed in [33] to divide the 

received frame in smaller slices and then decoding them in parallel. If the size of a 

single slice is large enough i.e. multiple decoding windows, then multiple bit release 

decoding can be employed in each slice independently leading to an overall increase 

in decoding speed. 

93 



References 

[1] C. Berrou, A. Glavieux, and P. Thitimasjshima, "Near Shannon limit error-correcting 
coding and decoding: Turbo-codes,"in Proc., IEEE Int. Conf on Commun., (Geneva, 
Switzerland), pp. 1064-1070, May 1993. 

[2] C.E. Shannon, "A mathematical theory of communication," Bell Sys. Tech. J., vol. 27, 
pp. 379-423 and 623-656, 1948. 

[3] R. W. Hamminf, "Error detecting and correcting codes," Bell Sys. Tech. J., vol. 29, 
pp. 147-160, 1950. 

[4] M.J.E Golay, "Notes on digital coding," Proc. IEEE, vol. 37, p. 657, 1949. 

[5] S. Wicker, Error Control Systems for Digital Communications and Storage. 
Englewood Cliffs, NJ: Prentice Hall, Inc., 1995. 

[6] D. E. Muller, "Application of boolean algebra to switching circuit design," IEEE 
trans. on Computers, vol. 3, pp. 6-12, Sept. 1954. 

[7] E. Prange, "Cyclic error-correcting codes in two symbols," Tech. Rep. TN-57-103, 
Air Force Cambridge Research Center, Cambridge, MA, Sept. 1957. 

[8] R.C. Bose and D.K. Ray-Chaudhuri, "On a class of error correcting binary group 
codes," Information and Control, vol. 3, pp. 68-79, Mar. 1960. 

[9] I.S. Reed and G. Solomon, "Polynomial codes over certain finite fields," SIAM 
Journal on Applied Mathematics, vol.8, pp. 300-304, 1960. 

[10] E.R. Berlekamp, R.E. Peile, and S.P. Pope, "The application of error control to 
communications," IEEE Commun. Magazine, vol. 25, pp. 44-57, Apr. 1987. 

[11] P. Elias, "Coding for noisy channels," IRE Conv. Record, vol. 4, pp. 37-47, 1955. 

[12] A. J. Viterbi, "Error bounds for convolutional codes and an asymptotically optimum 
decoding algorithm," IEEE Trans. Inform. Theory, vol. 13, pp. 260-269, Apr. 1967. 

[13] 3rd Generation Partnership Project, "Technical specification group radio access 
network: Multiplexing and channel coding (FDD)." 3GPP TS 25.212 V3.1.0, 1999. 

[14] G. D. Forney, Concatenated Codes. Cambridge, MA: MIT Press, 1996. 

94 



[15] 0. Aitsab and R. Pyndiah, "Performance of Reed-Solomon block turbo codes," in 
Proc., IEEE GLOBECOM, (London, UK), pp. 121-125, Nov. 1996. 

[16] S. Gravano, Introduction to Error Control Codes, New York: Oxford University 
Press, 2001. 

[17] Branka Vucetic and Jinhong Yuan, Turbo Codes: Principles and Applications, 
Norwell, Massachusetts: Kluwer Academinc Publishers Group, 2000. 

[18] A.S.Barbulescu and S.S. Pietrobon, "Terminating the trellis of turbo-codes in the 
same state," Electron. Lett., vol. 31, no. 1, pp. 22-23, Jan. 1995. 

[19] M. Breiling and L. Hanzo, "The super-trellis structure of turbo codes," IEEE Trans. 
Inform. Theory, vol. ? , Sep. 2000. 

[20] C. Berrou, "Some critical aspects of turbo codes," in Proc. Int. Symp. Turbo Codes 
and Related Topics, (Brest, France), pp. 26-31, Sep. 1997. 

[21] L.R.Bahl, J.Cocke, F.Jelinek, and J.Raviv, "Optimal decoding of linear codes for 
minimizing symbol error rate," IEEE trans. Inform. Theory, vol. ?, pp.284-287, 
Mar.1974. 

[22] J.Hagenauer and P.Hoeher, "A Viterbi algorithm with soft-decision outputs and its 
applications," IEEE Globecom, pp.1680-1686, 1989. 

[23] J. P. Woodard and Lajos Hanzo, "Comparative study of turbo decoding techniques: 
An overview," IEEE trans. Vehicular Technology, vol. 49, 2208-2232, Nov. 2000. 

[24] J.A.Erfanian, S.Pasupathy, and G.Gulak, "Reduced complexity symbol detectors 
with parallel structures for lSI channels," IEEE trans. Commun., vol.42, pp. 1661-
1671, 1994. 

[25] P.Robertson, E.Villebrun, and P.Hoeher, "A comparison of optimal and sub-optimal 
MAP decoding algorithms operating in the log domain," in Proc. Int. Conf 
Communications, pp. 1009-1013, June. 1995. 

[26] G. D. Forney, "The Viterbi algorithm," Proc. IEEE, vol. 61, pp. 268-278, Mar. 1973. 

[27] J. Hagenauer, "Source-controlled channel decoding," IEEE Trans. Commun., vol. 
43,pp.2449-2457,Sep. 1995. 

[28] J.Chen, M.Fossorier, S.Lin and C.Xu, "Bi-directional SOV A decoding for Turbo
codes," IEEE Commun. Letters, vol. CL-4, pp.405-407, Dec. 2000. 

95 



[29] Yassir Nawaz, R. Venkatesan and Paul Gillard, "Multiple bit release sliding window 
turbo decoding," in Proc. 3rdint. Symp. Turbo Codes and Related Topics, (Brest, 
France), pp. 26-31, Sep. 2003. 

[30] IEEE 802.16 Broadband Wireless Access Working Group, "Methods for using 
concatenated convolutional turbo codes in IEEE 802.16a." IEEE 802.16a-02/80, 
2002. 

[31] Yassir Nawaz, R. Venkatesan and Paul Gillard, "Sliding Window Implementation of 
3G Turbo Decoder," in Proc. IEEE NECEC, (St Johns, Canada), pp. ? , Nov. 2003. 

[32] P. C. Massey and D. J. Costello Jr., "New low-complexity turbo like codes," in 
Proc. IEEE Information Theory Workshop, (Cairns, Australia), pp. 70-72, Sept. 
2001. 

[33] D. Gnaedig, E. Boutillon, M. Jezequel, V. C. Gaudet and P. G. Gulak, "On Multiple 
Slice Turbo Codes," in Proc. 3rdint. Symp. Turbo Codes and Related Topics, (Brest, 
France), pp. 343-346, Sep. 2003. 

96 










