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Abstract 

In spatial data analysis, linear, count or binary responses are collected from a large 

sequence of (spatial) locations. T his type of responses from the (spatial) locations 

may be influenced by certain fixed covariates associated to the location itself as well as 

certain invisible random effects from the members of the neighboring locations. Also 

the responses may be subject to certain model errors. In familial/ clustered setup, 

responses are collected from the members of a large number of independent families, 

where the pairwise responses within the family are correlated . In a spatial set up, the 

pairwise responses within a family of locations are correlated similar to the familial 

setup, but unlike in the familial setup, t he responses from neighboring families will 

also be correlated . In this thesis, unlike in the existing studies, we develop a moving 

or band correlation structure that reflects the correlations for within and between 

families. This is done first for linear (continuous) data and then for binary responses. 

As far as the inference are concerned, we discuss method of moments (MM) and 
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maximum likelihood (ML) approach for the est imation of parameters in linear mixed 

model setup. Because the exact likelihood estimation approach for the spatial binary 

models is complicated , we demonstrate how to use the generalized quasi-likelihood 

( GQL) approach for such models. 
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Chapter 1 

Introduction 

1.1 Motivation of the Problem 

Over the last two decades, analysis of spatial data has become an emerging area of re

search in many different fields, such as ecology, environmental science, epidemiology, 

geography, sociology or economics and forestry. The spatial data are realizations of 

random variables collected from a sequence of related geographical locations, where 

the responses collected from adjacent locations naturally become correlated. These 

correlations are referred to as spatial correlations. Note that a response from a given 

location is usually influenced by certain fixed covariates apart from some invisible, 

say random effects associated to this and other adjacent locations. It is of interest to 
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find the effects of the covariates after taking the spatial correlations of the responses 

into account. For various modeling for correlations and analysis of spatial data, we, 

for example, refer to Cressie (1993) , and Gaetan and Guyon (2010) . 

Note that for a continuous spatial responses, the spatial correlations have been mod

eled so far either by using certain dynamic relationship among the errors in a linear 

model, such as time series type ARMA error process (Basu and Reinsel1994, eqs. (1)

(2) , p. 89), or by using a mixed model approach where responses are assumed to be 

influenced by certain correlated random effects referred to as Spatial Random Pr-ocess 

as well as suitable independent errors (Kang, Cressie and Shi (2010) , eqs.(7)-(19), p. 

274- 275, and Jones and Vecchia (1993) , eq. (11) , p . 949) . For more on mixed model 

type spatial correlation processes, see also Cressie (1993, Chapter 3) and Gaetan and 

Guyon (2010, Section 1.8) . Note, however, that there is no unique way to model the 

spatial correlations of the responses collected from neighboring locations. Because of 

the fact t hat any two responses collected from locations which are far apart are likely 

to be uncorrelated , using ARMA type spatial errors those considered by Basu and 

Reinsel (1994) , for example, do s not appear to be appropriate, as ARMA process 

based correlation may not die even when lags between the responses are moderately 

large or large. Remark that an MA type spatial process could be appropriate to 
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model such correlations where correlations may be completely absent for a large lag. 

Let t here be S locations for a spatial problem. For s = 1, 2, · · · , S, let Ys be 

the response on a continuous scale collected from the s th location. Also, let X 8 = 

(.Tsl , ... , Xsp )' be the p dimensional fixed covariate vector corresponding to Ys and 

(3 = ((31 , · · · , (Jp)' be t he effect of X 8 on Ys· Further suppose that apart from X 8 , Ys be 

also influenced by an unobservable random effect 'Ys· J ones and Vecchia (1993, eq. 

(11) , p . 949) have used a linear mixed model to examine the effects of X 8 on Ys· Their 

model is given by 

Ys x~(J + "fs + E8 , for s = 1, · · · , S, (1.1.1 ) 

where, Es for s = 1, · · · , S are model errors and assumed to be independent . That is 

iid ( 2) 
E8 rv 0, 0", . (1. 1.2) 

As far as the random effects are concerned, Jones and Vecchia (1993) assumed that 

"(1 , · · · , "(s are correlated with covariance matrix for "( = ( "(1, · · · , "(s )' as 

cov( 'Y) = a~C, (1.1.3) 

C being t he S x S correlation matrix denoted as 

C = (csk) : S X S, (1. 1.4) 
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with Csk = 1 for s = k . In matrix notation this model (1.1.1) can be written as 

y (1.1.5) 

where Cov("y) =:= a~C, Cov(c:) = a; I s and the elements of"' and E are independent. 

Next by writing 

(1.1.6) 

a2 
with a6 = -1, Jones and Vecchia (1993) have estimated the parameters using the 

a"'' 

maximum likelihood approach. More specifically for known structure for V, they 

maximize the log likelihood function, that is, minimize 

( 1.1. 7) 

for the estimation of regression parameter (3 and the variance of the random effect a~. 

When V is known, that is C and a; are known, the maximum likelihood estimates of 

these parameters ((3 and a~) are given by 

/J (X'V- 1X)-1(X'V- 1y) 

1 A A 

S(y- Xf3)'V- 1(y- X (J). (1.1.8) 
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Note that, to model the covariance structure V, Jones and Vecchia (1993) have used 

a class of stochastic linear partial differential equations. More specifically, the pair

wise covariances between two responses corresponding to, say, sth and kth locations 

separated by a distance r, has been modeled as 

(1.1.9) 

where, g is a known function in terms of a modified Bessel function of the second 

kind order 1 ( see eqn. (6) in Jones and Vecchia (1993) , p. 948) and two additional 

parameters ¢* and o* arising from the part ial differential equation. This approach 

appears to have several pitfalls. First it seems appropriate to use the covariance form 

(1.1.9) to model the C matrix in (1.1.6) instead of the V matrix. Furthermore, this 

form in (1.1.9) is equivalent to time domain based ARMA(p, q) process which may or 

may not yield uncorrelated random effects even if lag is large, whereas it is practical 

to assume that the C matrix contains correlations those die out completely where two 

responses are taken from a moderately large distant locations. Some authors such as 

Cressie (1991, p. 85-86) have used exponential or say Gaussian covariance function 

which is dependent on the distance (r-) between two objects yielding zero correlation 

when the distance is large. In Jones and Vecchia's case, the correlation function may 

die even slower than that of the exponential correlation function considered by Cressie 

(1991) . We however feel that the correlations obtained from two reasonably far apart 
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distance responses should be zero, which require new modeling. 

Basu and Reinsel (1994) consider regres. ion models for spatial data that are observed 

on a two dimensional regular grid along with other explanatory variables, and the 

errors. Specifically they examined regression models with spatially correlated errors, 

have the marginal spatial response at site s ( indexed by say, coordinates i and j ) is 

modeled as: 

Ys x:f3 + Es, for s = 1, · · · , S. (1.1.10) 

Nate however that Es 's, for s = 1, · · · , S are correlated and follow a spatial unilateral 

first order ARMA model. By using a spatial cluster form with Y = (y1 , · · · , Ys)', 

E = (E1, · · · ,Es)' and X = (x1, · · · , x 5 )', the regression model (1.1.10) can be written 

as 

y X {3 + E, (1.1.11) 

where, the elements of vector E is assumed to satisfy the spatial unilateral first order 

ARMA(3, 3) model given by 

(1.1.12) 
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where, t9 1 , · · · t9 s are assumed to be independent with mean 0 and common variance 

a~, and as~ (0, a~) . In (1.1.12), a1 and e1 for j = 1, 2, 3 are referred to as autoregres

sive and moving average parameters respectively. Nate that this spatial correlation 

modeling by (1. 1.12) is similar to that of the correlation structure (1.1.9) considered 

by Jones and Vecchia (1993) . The difference between these two models is that Jones 

and Vecchia (1993) used spectral density approach whereas Basu and Reinsel (1994) 

used a t ime domain approach. Note however that using ARMA type correlation 

structure may be reasonable when spatial objects are equally spaced (that is, main

tain equal distance from each other). 

There also exist some studies where correlations are modeled for extended spatial 

temporal data. For example, we refer to the recent article by Kang, Cressie and Shi 

(2010). At a given t imet = 1, say, their spatial model (Kang, et. al.,(2010) eqn. (7), 

p. 274) has the form 

Ys /-ls + 'Us + ~s + E.s 

x~f3+w~'Y+ ~s+Es , for s= 1, · · · ,S, (1. 1.13) 

where, x~ is the p dimensional covariate collected for sst location, Ws is a vector of 

q dimensional known deterministic spatial basis functions and 'Y is a q dimensional 
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vector of random effects with zero mean vector and q x q covariance matrix. Note 

that f.Ls = x~f3 is usually referred to as a trend function and V 5 = w: ""f is a function 

of unobservable random effects. Also in (1.1.13) , ~s ~ (0, CJD and E.s ~ (0, CJ;) are 

referred to as the finite scale random component and measurement (or model) error, 

respectively. As opposed to the spatial t emporal case, these ~s and Es are not iden-

tifiable in the spatial-only model ( Cressie and Johannesson (2008) ). Thus, in spatial 

setup, this (1.1.13) model is simplified as 

for s = 1, · · · , S, (1.1.14) 

h * iid (0 2 ) ( ) w ere, Es rv , (Jc 0 Remark that Kang et. al. 2010 have chosen the q dimensional 

random effect vector "Y for all locations s = 1, · · · , S which may be appropriate only 

in some spacial cases such as when spatial locations are designed in a planned exper-

iment with equal distances among locations following a linear pattern say. Also it is 

not clear how the value of q is chosen. Furthermore, it is also not clear how the W s 

vector is chosen in practice. As opposed to these choices for q members of random 

effects at a location, it seems to be more practical to have a scheme where q8 random 

effects can be used for the s th location which will allow a more general variable design 

involving unequal member of random effects over t he locations. Similarly, a suitable 

scheme for the choice of W 5 is also needed. 
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Note that in some situations spatial data are collected in the form of binary responses. 

For example, we refer to Rathbun and Cressie (1994, Section 5.2) for the modeling 

of tree mortality data in spatial-temporal setup. Here survival of a tree is considered 

as a binary response and the responses would exhibit two way correlations. However , 

when responses are considered in a spatial setup, only the binary response for a tree 

is likely to be correlated with other neighboring binary responses, but would not be 

correlated with responses from far distant locations. These correlations are in general 

caused by some common invisible random factors shared by pairwise trees. However 

modeling such correlations is not so easy. For common covariates based correlation 

modeling we refer to t he model studied by Rathbun and Cressie (1994, eqns. (16) -

(17)) 0 

1.2 Objective of the Thesis 

In spatial setup, where responses, whether linear, count or binary, are collected from 

different locations under a selected region, these responses are in general influenced by 

covariates associated to the location as well as certain common random factors shared 

by neighboring locations. Unlike in the temporal setup where responses are collected 

repeatedly from a given location, the modeling of correlations for spatial responses is 
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not so straight forward. This is because spatia l responses from neighboring locations 

are likely to be correlated but when moved to a far distant , the pairwise correlations 

are likely to be zero. It is naturally difficult to maintain this moving nature for 

correlations. Most of the existing studies explained in the last section, however, use 

temporal type relationships among spatial responses and correlations are modeled 

accordingly. There a lso has been the use of random effects to study their influence 

on the spatial responses (Kang et . al. , (2010) ) but modeling for spatial correlations 

among neighboring responses is not adequately discussed. 

1. In Chapter 2, we propose a linear mixed model where weighted average of 

random effects from the member locations of a family is used to model the 

neighbor effects on a spatial response. vVhen these random effects are indepen

dent , the model reduces to the well known linear mixed model in generalized 

linear model (GLM) setup. However, when random effects are correlated (usu

ally equi-correlated) proposed model yields a familial correlation pattern for the 

correlations between members of two adjacent families. For simplicity, a special 

spatial linear pattern is considered to illustrate the spatial correlations. 

2. In Chapter 3, we demonstrate how to apply the well-known method of moments 

(MM) and maximum likelihood (ML) approach to obtain consistent and efficient 
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regression estimates. Estimation of the scale and correlation parameters are also 

discussed. A simulation study is also given . 

3. Unlike the linear mixed model cases, the spatial models for binary responses 

are not adequately addressed in the literature. We carry out the concept of 

weighted random effects used in linear mixed model case in Chapters 2 and 3, 

to the binary case and propose a new spatial correlation model for binary re

sponses in Chapter 4. Following the existing generalized quasi-likelihood (GQL) 

estimation approach developed for generalized linear mixed models (GLMM), 

we develop marginal GQL estimating equations for all parameters including re

gression effects, variance of random effects, and pairwise correlation of random 

effects. 



Chapter 2 

Spatial Linear Mixed Models 

In Section 1.1 we have reviewed the existing studies involving spatial analysis in 

linear mixed model setup. Most of these studies model the spatial correlation using 

temporal dynamic relationship. In this chapter, we propose a new familial random 

effects based spatial correlation model and deal with its marginal and correlation 

properties. 

2.1 Proposed Spatial Linear Mixed Model 

Con ider a region S containing S spatial locations following a sui table design to 

be discussed below. Let y8 be the response at the sth (s = 1, · · · , S) location, 
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where this response may be influenced by a multi dimensional fixed covariate vector 

x
5 

= (xs1, · · · , Xsp) ' containing the epidemiological and environmental information 

from the sth location, as well as by some random effects belonging to a cluster of size 

ns . We denote this cluster of random effects by a vector 1s = (1sJ, · · · , 1sj, · · · , 1snJ'. 

For the purpose of construction of 1s, we first define the sth cluster , that is, the neigh-

borhood of sth location as follows. 

Suppose that d;k denote the Euclidian distance between the centers of the sth spatial 

location and k tlt (any other) location. Also suppose that d* denotes a distance such 

that it is not necessary to seek for spatial correlations between the random effects of 

two locations apart from each other by a distance more than d*. We now define an 

indicator variable 5sk such that 

{ 

1 if d;k ~ d* for k = 1, · · · , S 
5sk = 

0 otherwise, 

(2.1.1) 

and the neighborhood of the sth location, that is, the sLh cluster is formed with all 

locations satisfying (2.1. 1). Let fs be this cluster or family of locations. For the sth 

cluster with . ize n 8 , (say), it follows from (2 .1.1) that 

s 
l:::: ssk = ns . 
k= "l 

(2 .1.2) 
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Suppose that the individual random effects of all S locations are denoted by 'Y~ , · · · , 'Ys· 

Now for s = 1, · · · , S we assume that 

(2.1.3a) 

and 

(2.1.3b) 

Also suppose that 'Ysk denotes the random effect of t he kth location that belongs to 

sth cluster or family satisfying (2.1.1 ). T hat is , for any k (= 1, · · · , S) 

'Ysk = 'YZ for k E f s· (2.1.4) 

Note that when k = s, 'Yss = 'Y; denotes the random effect of the s th location around 
s 

which the sth family is constructed. Next because L bsk = n5 by (2 .1.1), there are 
k = l 

only n
5 

locations with random effects satisfying (2.1.4). We relabel or rearrange the 

n5 random effects 'Ysk of the sth family with k E fs for 

- (- - - )' "18 = 'Ysl 1 • • • 1 "fsj s · · · ''Ysns 1 
(2.1.5) 

where, without any loss of generality, we use 'Ys l in (2 .1.5) to represent "'ss from 

(2.1.4), that is, 

"'s i "'ss * 'Ys' (2. 1.6) 
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is the random effect of t he center location. The remaining n s - 1 random effects in 

(2.1.5) will be identified from (2.1.4) in a convenient way depending on the problem 

of interest. 

Recall that in addition to X 5 , the response Ys at s th location/ cluster is also infiu-

enced by the invisible random effects of s th and other n 5 - 1 neighboring locations. 

These random effects are the components of '1s as defined in (2.1.5). Note that these 

random effects '1sJ., for Js = 1, · · · , n 5 may be independent or correlated depending on 

the correlation structure of 1'k and the sth family structure containing 1'k for k E is· 

Furthermore, whether the random effects are independent or correlated , they will 

change the variance of the response Ys· They also will cause correlation between Ys 

and Yk for s -::/= k , s, k = 1, · · · , S, when the sth and kth locations are influenced by 

some common random effects. If the responses are cont inuous, one may then use a 

suitable linear mixed model for the response Ys at the sth location. We propose this 

mixed model as 

1 (3 1 
I - f' 1 s Ys = xs + --1n Is+ Es, or s = ' . .. ' .;n; s 

(2 .1.7) 

where, Es denotes the model error at the sth location. We assume that Es ~ (0, a-;) . In 

(2.1.7), (3 is the effect of fixed covariates X 5 on Ys, and 1ns = (1, · · · , 1)' is the ns x 1 

unit vector. Note that the proposed model (2 .1.7) is similar to (1.1.14) considered by 
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Kang et al. (2010). The difference between the two models is that t he W 5 in (1.1.14) 

is a subjective spatial basis function and the components of 1 may or may not be 

associated with any spatial locations, whereas in (2.1.7) the components of 1s are 

identified as the random effects of the neighboring locations belonging to sth family. 

Also, we use W 8 = 1~,) ...jn; as a weight vector for 1s constructed based on the number 

of random effects in the sth family of locations for the following reasons: 

1. If 1~5s is used to understand t he influence of the random effects of the neigh-

boring locations, then these additive model produce 

when random effects are independent. However this model can produce infinity 

or large variance for a responses when n 5 is large, which does not appear to be 

practical. 

1 
2. An average of these random effects that is , -1~ 1s could yield the variance as 

n s 8 

( 
1 1 ~ ) 

var ns 1n. Is 

which is again not practical as it will go to zero when ns ----> 0. 

1 
3. Because of the above two difficulties we consider --1~ 1s as a weight function ...;n; " 

such that when random effects are independent the var ( ~ 1~s 1s) = a~ which 
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is same as the variance of the individual random effect . 

4. The advantage of using such weights is that the effects of correlation among 

random effects will be easily understood in the variance as well as covariance of 

the responses. 

5. Note however that in some situations it may be reasonable to use a general 

weight pattern as 

where these weights are referred as the spatial basis functions (by Kang, et. al., 

2010) and others. 

ote that, the original random effects ,; are iid , that is, ,; ~ (0, (J~) irrespective of 

whether they belong to certain family, we may then write '1s.i. ~ (0, (J~) under the 

sth family. Then the proposed linear equal weights ensure that the random effects 

for each of the locations belonging to the sth family are t reated as equal contributing 

towards the mean and variance of the responses. This implies that 

0 (2.1.8) 
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1 n s ) 
Var .,fiLs 0 ;ysj .• 

Js-1 

18 

(2.1.9) 

However, if the ;ysj. 's are correlated following a suitable correlation structure, then 

the combined variance will be affected by the additional pairwise correlations of the 

random effects. For example, if ;ysj, and ;ysj~ have the correlation ¢1.1.~, then the 

contributions of the random effects towards the variation in responses will be affected 

by these pairwise variable correlations. To be specific, in such a situation, one writes 

1 [ n. n s l ns ~ var(;ys.iJ + 2 I:, cov (;ysj,, ;ysjJ 
] .• - l ] .• <J. 

(2.1.10) 

However, in practice it may be reasonable to assume constant correlation between 

pairwise random effects belonging to the same spatial family. Suppose that ¢M~ = ¢ 

for all Js I: j~. Then (2.1.10) reduces to a simple form 

( 
1 1 - ) var .,fiLs l n., rs (2.1.11) 

More clearly, by following the model (2 .1. 7) and using (2.1.11) for the equally corre-

lated pairwise random effect case, for example, we may now write the marginal mean 



2.2 CORRELATIO MODEL FOR PAIRWISE RESPONSES 19 

and variance of Ys as 

(2.1.12) 

and 

f - iicl (0 2) or rsj, rv ) (J"' 
(2.1.13) 

2.2 Correlation Model for Pairwise Responses 

Note from (2.1.7) that the response Ys collected from the sth spatial location is influ-

enced by the random effects of a family of neighboring locations denoted by fs· We 

now consider another response y,. collected from the r t h ( r =f s) location which will 

also be affected by the random effects of a family of neighboring locations denoted 

by J, .. Note that, similar toYs, y,. is generated by the relationship (2.1.7) with n,. as 

the size of the family j~.. Also, similar to ;ys = (;ys l , · · · , ;ysj.,, · · · , ;ysn.J' under fs we 

denote the random effects belonging to the family J,. by ;y,. = (;yd, · · · , ;y,.Jr, · · · , ;;;rn,. )'. 

Further note that depending on the distance between the rth and sth locations, y,. and 

Ys may be affected by the random effects of some common locations. It is expected 

that the random effects belonging to both families J,. and f s corresponding to any two 

member locations will be correlated. It may also happened that the random effects 

of any two locations where one belongs to J,. and the other belongs to fs may also be 
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correlated when their distance djrJs for j,. E i,· but j,. ¢:. is and Js E is but Js ¢:. i ,.. 

For convenience of construction of the correlation structure between y,. and Ys, we 

now define 

• n,.
8 
=the number of members common to both the families (clusters) at r- th and 

sth locations, 

• n,. = number of members only from the r-th family such that 

It also holds for the sth family, that is, 

• nr-s =number of uncommon pairs of locations under i,. and is, but within the 

specified distance causing correlations between random effects of these uncom

mon locations. 

2.2.1 Computation of nrs and nrs= An illustration 

For clear visual understanding we display above common and uncommon pairs in the 

following figures. 
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n,. 
n rs 

Figure 2.1: Spatial families with n,.8 common locations and n,.8 uncommon pairs 

n, 
n,.s 

Figure 2.2: Spatial families with single common location 
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n,.s 
n,. 

n,. n, 

Figure 2.3: Spatial families with no common locations 

2. 2. 2 General spatial correlation design 

2.2.2.1 Spatia l linear mixed model: A s p ecia l case in a linear sequence 

Suppose that any two random effects corresponding to the locations within distance 

d* are correlated. Consider two families j ,. and is as mentioned earlier. Now to 

compute the family size, and common members and uncommon but correlated pairs 

we first give a computational scheme as follows. 

2.2.2.2 P a irwise spatia l families: A unified compu tationa l formula for 

linear spatia l sequence 

Let r( i, j) and s( i, j' ) be two distinct location of events on the linear scale with 

coordinates (i , j) and (i, j') . Suppose that for a given i, j ' > j. For this case, for 
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convenience we will use the notation s > r . Also let for a given l such that 2l + 1 = ns, 

and for u = -l, . .. , 0, · · · , l ; s + u indicates all locations in the sth family fs· Then 

the distance limit d* within which random effects of two locations are correlated can 

be understood as (s + l ) - (s - l ) = d*. Now for two spatial locations T =/= s with 

nT = ns, we define 

~uv ( S + V) - ( r + U) 

(s - r)+(v-u) 

where T, s = 1, 2, · · · , S and u , v = -l, · · · , 0, · · · , l . Then the number of members 

common to both the families (clusters) at r.th and sth locations is given by 

0 if ~ltV > 0 

(2.2.1 ) 

# {(s- T) + (v- u) = 0} if ~""::::; 0. 

Note if 0 < ~uv ::::; d* then the number of uncommon pairs nTs is given by 

nTs # {0 < (s- T) + (v - u) ::::; d* } 

- # ( { 0 < ( s - r) + ( v - u0 ) ::::; d* } U { 0 < ( s - r) + ( vo - u) ::::; d* } 

U{O < (s- T) + (v0 - uo) ::::; d*}) 

(2.2.2) 
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where for chosen ·u0 for u and v0 for v satisfying ( s - r) + ( v - u ) :s; 0, and the event 

Euv in (2.2.2) is defined as 

Euv = { 0 < ( S - r ) + ( V - U) :S: d*} . 

2.2.2.3 Examples: Based on d* = 4 

Example 2.2.1 Linear sequence of two families with three common locations. 

Figure 2.4 

In this example, we consider s - r = 2 units. For the two families f r and f s, it is 

clear that nr = ns = 5. Further, for t his simple spatial design , it is easy to count the 

number of common members and uncommon number of pairs of locations. These are 

given as 

nrs 3 

fir n r- n rs 5 - 3 = 2 

ns n s - n rs 5 - 3 = 2 

n .. s 1 
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We now verify that (2.2.1 ) and (2.2.2) may be applied to obtain the above sizes. To 

be more specific, 

6.uu ( S - r) + ( V - U ) 

2 + (v - u ) (2.2.3) 

where, ·u, v = - l , . . . , 0, .. . , l , with l satisfying 2l + 1 = nr = n s 5. For l = 2, 

6.uv's in (2.2.3) are 

E 'UO 'U Euu0 E uo uo 

C:. 2 + ( - 2 + 2) 2 X 

2 + (-2 + 1) 1 X 

2 + (-2 - 0) 0 

2 + (-2 - 1) -1 

2 + (- 2 - 2) -2 

2 + (- 1 + 2) 3 X 

2 + (-1 + 1) 2 X 

2 + (- 1 - 0) 1 * X + 

2 + ( - 1 - l ) 0 

2 + (- 1 - 2) -] 

2 + (0 + 2) 4 X 

2 + (0 + 1) 3 X 

2 + (0 - 0) 2 * X + 

2 + (0 -1 ) I * X + 
2 + (0 - 2) 0 

2 + (1 + 2) 5 

2 + (1 + 1) 4 

2 + ( I- O) 3 * 
2 + (1 - 1) 2 * 
2 + (1 - 2) * 
2 + (2 + 2) 6 

2 + (2 +I) 5 

2 + (2 - 0) 4 * 
2 + (2- 1) 3 

2 + (2 - 2) 2 * 
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Note that there are 6 cases and among these cases there are 3 cases with l::.uv = 0. 

That is, 

# {l::.uv = 0} = 3. 

Hence by (2.2.1) n,.s = 3. 

Next we select Uo and Vo satisfying ~uovo 2 + ( v0 - u,0 ) < 0. The selected val-

ues are 

u0 = 0,1 , 2 and v0 = - 2,-1, 0. 

For d* = 4, and for all possible values of u, and v we have 

# {0 < ~uv ~ d*} = 16. 

When u, = u,0 = (0, 1, 2) and v is general, that is, v = ( -2, - 1, 0, 1, 2) , we count the 

number of l::.uv satisfying 0 < l::.uv ~ d* and obtain #E,, 0v = 9. Similarly # Euvo = 9 

and # Euovo = 3 

Hence n,.s = 16 - 15 = 1 
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Example 2.2.2 Linear sequence of two families with one common location 

r 

Figure 2.5 

Consider s - r = 4 units . Similar to example 1, in t his case we have 

n ,.8 1 

n,.8 6 
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Example 2.2.3 Linear sequence of two families with no common locations but nr.s > 

0. 

r s 

Figure 2.6 

Heres - r = 6 units. We then have 

ri./' n,. - n,.s = 5 - 0 = 5 
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Example 2.2.4 Linear sequence of two families wit h no correlat ion Cnrs = 0) 

T s 

Figure 2.7 

Consider s - 1' = 9 units. We then have the following sizes 

n .,.8 0 

n,. n,. - n.,.s = 5 - 0 = 5 

ns ns - n.,.s = 5 - 0 = 5 

29 

2.3 Marginal and Correlation Properties of the Pro-

posed Spatial Model 

Recall from ( 2 .1. 7) , that t he s th response follows the model 

Ys ' {3 1 I - f s X 8 + ;;;:;- 1n "(8 + E8 , Or S = 1, · · · , , 
vns s 

(2.3.1) 
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where (3 is the regression effects of Xs on Ys for all s = 1, · · · , Sand ;ys = (;ysl , · · · , ;ysnJ' 

with Js( = 1, · · · , n5 ), ;ysJ. = rsk for any k E .f.s· Recall from (2.1.4) that rsk is the 

kth random effect in the sth family, t hat is, rsk = r'k for k E i s· Because by (2.1.3a), 

r'k ,....., (0, CT~) for any k = 1, 2, · · · , S. It t hen follows that for j 5 = 1, · · · , ns and for 

any k(= 1, ··· ,S) E is 

(2.3.2) 

Now for k =/= l consider 

{sk = fZ and * rsl = ll for k,l E is · (2 .3.3) 

Because by (2. 1.3b), corr(r'k, 11) = Okl¢'k1, for k = f s E i s and l = j~ E i s, it then 

follows that 

(2 .3.4) 

Because Okt = 1 ask, lEis, by using ¢'k1 = rPkl(s) , we write 

(2 .3.5) 

where these parameters CT~ in (2.3.2) and rPkl (s ) in (2 .3.5) are determined by t he 

properties of the random efl:'ects 'Y;, · · · , Is associated to all s locations, and following 

the specification (2 .3.3), namely rsk = r'k for k E i s· Also for the model error in 
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(2.3.1) , it has been assumed that 

iid ( 2) 
E8 "" 0, CJ€ • (2.3.6) 

Furthermore Es and 'Ysk (or 'YiJ are assumed to be independent 

2.3.1 Marginal Properties 

By using the model (2.3.1 )-(2.3.6), we now write t he mean and variance of Ys as in 

the following lemma. 

Lemma 2.3.1 The mean, E (Ys) and the variance, var(Y,) are given by 

(2.3.7) 

var(Ys) 

O"ss (say) . (2.3.8) 
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Note that for a special case when ¢1,1~ (s ) = ¢ for all .is i- .]~ , (2.3.8) reduces to a 

simpler forrn 

0'~ [1 + (ns - 1)¢] + 0'; (2.3.9) 

which further simplifies to 

(2.3.10) 

when random effects are independent, t hat is ¢1,1~ ( s) = ¢ = 0. 

2.3.2 Corre lation Propert ies 

Now for any two spatial locations r and s such that ( r i- s), let the responses Yr 

and Ys be generated by (2.3.1) . Recall that y.,. is influenced by the nr number of 

neighboring locations but they belong to the family f T. Similarly Ys is influenced by 

the ns number of neighboring locations but they belonging to the family is · Also 

recall that depending on the distance between the rth and sth locations, Yr and Ys 

may be affected by the random effects of some common locations and uncommon 

pairs of locations. Thus the covariance, cov(Yr. , Y:,) between two responses at the rth 

and s th locations may be computed by using the following lemma. 
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Lemma 2.3.2 The covariance between two responses y,. and Ys at a given two spatial 

locations T and s ( T # s) is given by 

COV (Yr, Ys) 
1 ( n r n s ) 

.;n;:n;cov L 1rj,. , L 1sj. 
}r = l Js=l 

l n .r n . ., 

.;n;n:; L L COV (1r'j,., 1sj.) 
J-··=1 Js=l 

~ 2:: 2:: (jj kcP;ka~ 
J, k EfrUf., 

ars (say), (2.3.11) 

with 61k = 1 and ¢jk = 1 for j = k. More specifically 

1 

+ L ¢j.J~ a; + (2.3.12) 

j.,f.j~EG3 

By identifying the four groups G in (2.3.12) as 

and denoting t he correlation in the zt h (l = 1, 2, 3, 4) group as 

¢j~ for j , k E G1 , (2 .3.13) 
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we reexpress t he covariance in (2.3.12) as 

CTrs (J~ ( L ¢]~ + L ¢]~ 
;n;n: j ,kEG1 j,kEG2 

+ L ¢]~ + L Ojk¢]~) ) 
j ,kEG:l j,kEG4 

(2.3.14) 

2.3.2.1 An equi-correlation case within a distance d* 

Suppose tha t any two random effects wit hin a distance d* share a common family 

effect . In such a familial setup it is appropriate to assume that pairwise random 

effects within the family will be equally correlated. Let ¢ denote t his correlation , In 

this case, it follows from Figure 2.1 in Section 2.2.1 that 

1. j, k E G 1 provide variance and the covariance from nrs common members for 

t he rth and sth families of locations. 

2. For j =/= k, j, k E G2 the second term in (2.3.14) provides the total covariance 

among fi'T members belonging to fs n ir and n,s members belonging to i ,· n is· 

3. Similarly for j =/= k, j, k E G3 we have covariances between fis members belong-

ing to 1r n is and nrs members belonging to ir n is. 

4. F inally, for j, k E G4 , one obtains covariances among the members in],. and fs 

respectively. 
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Combining (1) to (4) vve now write the specific formula for CJ,.8 in (2.3.14) as 

CJ,.s k [n,.sCJ; + (n,.s(nrs - 1) + n,./n,. + n,.sns + n,.s) cPCJ;] 

1 
- - - [n,.s + (n,.s (n,.s - 1) + n,.snr + n,.sns + n·rs) ¢] (J;. 
Jn,.n8 

(2.3.15) 

Now let E be the covariance matrix of t he model (2.3.1) so that E = (CJ,.s) , where CJ,.s 

are defined as. 

[1 + (ns- 1)¢] CJ~ + CJ; if T = S , 

CJ,.s = (2.3.16) 

k {nrs [1 + (nrs - 1 + n,. + ns) ¢] + n,.s<P } (J; otherwise. 

In some cases it may happen that a family of locations may be independent from 

another family of locations. In this type of special sit uation, it is only necessary 

to compute the familial correlations of the responses under a given family. T hese 

correlat ions can be computed as a special case of Lemma 2.3.2 

Lemma 2.3.3 Consider two responses Ys.i. and YsJ~ within the s th family. For ob-

taining their correlations from two families based on the general results of Lemma 

2.3.2, one may suppress the family notation and denote these responses as Y.is and 
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y1~ . Now the covariance between these two responses y1, and YJ~ is given by 

(2.3.17) 

where ch1~ (s) is t he correlation between two random effects in (2 .3.5) . 

Proof: Becaus , 

I 1 I 

.X Js (3 + ;n:- 1nj
8 
Tjs + Ejs, j s E fs 

V ' "Js 

I (3 1 I ·I f x3., + --1n , TJ., + E1·t , ] 8 E s. 
s vn:;:, J .. s s 

and because 1~·j., 'Y.i. = 1 ;,"J~ 'Y.i~, one obtains the covariance between y1• and y1~ as in 

the lemma by comparing 'YJ. with , ,.1r and 'YJ.~ with 'Ysj. of Lemma 2.3.2 such that now 

f ,. n f s reduces to f s· Thus we simply use the first term ( L ¢f}~ ) from (2.3 .14) 
l8 ,l~EG1 

and write the cov (y1_,, y1J as 

(} . . , 
] .,], 

1 '"' ¢* 2 ~ L t .• t~ (J"~ 
V ' "J s ' "18 l., , l~ E f s 

2 

~ I: ¢)~ . 
j,kE f s 

(2.3.18) 
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Hence, for nJ., = n1~ = n 5 , (2.3.18) gives 

IJ . . , 
) s ) s 

which is the same as in the lemma. 

(2.3.19) 



Chapter 3 

Inference in Spatial Linear Mixed 

Model 

In the last chapter , more specifically in equation (2.3.1) we have used a linear model 

for the response Ys as a funct ion of location specified fixed effects as well as familial 

random effects, where the s th family contains n s neighboring locations each associated 

with an unobservable random effect. Note that correlation between any two responses 

Yr and Ys for r =/= s is also modeled through Lemma 2.3.1. Now for the inferences 

about the effects (3 of fixed covariates as well as random effects, it is convenient to 

write the combined model for all responses y1, · · · , y ,. · · · , Ys, · · · , Ys in a matrix form, 

which we provide as follows. 



3 .1 MODEL IN MATRIX NOTATION AND E ST IMATION 39 

3.1 Model in Matrix Notation and Estimation 

For convenience, we re-write the spatial model (2 .3. 1) in matrix notation as follows: 

y = X (J + U*G + E, (3.1.1) 

where Y = (y1 , · · · , y5 ) is the S x 1 vector of response variables, X = (x1 , · · · , xs)' 

is the S x p covariate matrix, (3 = ((31, · · · , (Jp)' is the corresponding p x 1 regression 

parameter vector , and E = ( E 1 , · • · , Es) is S x 1 error vector with zero mean and 
s s 

cov(t:) = CJ
2 I s. Furthermore, in (3.1.1) , for N = L n 8 , U* = EB -1-1~s : S x N, 

s=l s=1 Fs 
is a block diagonal matrix with its sth(s = 1, · · · , S) diagonal block as the 1 x ns 

vector with each elements as ~ , and G = Cr't , · · · , ;y~ · · · , 15 )' is an N x 1 vector 
v ns 

of familial random variables, where, it is likely that ;y~ and ;y~±l, for example, have 

some overlapping random effects. vVe now express the mean vector and covariance 

matrix of Y as 

p,((J) = E(Y) = (p,l ((J), · · · ,p.s(f3 ))' , (3.1.2) 

and 

(3.1.3) 

where f-ts(f3) = E(Ys) and CJ88 are given by (2.3.7) and (2.3.8) respectively, whereas 

for T =/= s, CJr-s is given by (2.3.14). Note that f-ts(f3 ) = E(Ys) is a function of t he 
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/3 parameter vector, and variances ass and the covariances ars are functions of the 

scale parameters a~ and a~ , and the correlation parameters ¢1k . Nate that ¢1k for 

j , k E [!,. U f s] have links with the original c/Jjk for j , k E S, the complete space. 

3.2 Generalized Least Squares (GLS) Estimation 

3.2.1 GLS Estimation of Regression Effect f3 

It is convenient to write an estimating equation for the regression effects /3 under the 

general model, that is, when random effects follow a familial correlation structure. 

T he est imation for {3 when random effects are independent becomes a special case. 

Because the /3 parameter is involved only in the mean function , we can use the 

standard generalized least squares (GLS) (Amemiya 1985) r suit to estimate /3 by 

solving 

0, (3.2.1 ) 

. ap, (!3) 
where by (3.1.2) , p,(/3) = (p,1(/3), · · · , /-ls(/3))' and 1-ls(/3) = x~/3 wtth of] = X 8 and 

by (3.1.3) , l: = (a,.8 (a~, a~, ¢1k)). 
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Note that the covariance matrix E does not involve fJ, and for knovvn E, the so-

lution for f3 from (3.2.1) is straightforward under the present linear mixed model. By 

(3.2.1) the generalized least squares (GLS) estimator of f3 has the forrnula given by 

(3.2.2) 

vvhere E i s given by (3.1.3). Note that /!JcLs in (3.2.2) requires E to be knovvn, that 

is a-~ , a-; and a ll ¢jk for j, k E [fr U fs] need to be estirnated. Hovvever, as these scal e 

and correlation parameters are unknovvn in practice, vve provide a consistent estima-

tion approach for these scal e parameters in Section 3.2.2. Note that the construction 

of the moment estimating equations vvill depend on the familial correl ation structure 

for the random effects. This vvill be done under tvvo scenarios: first, assuming that 

the randon~ effects are independent and then by using a fan~ilial correl ation structure 

for randon"l effects. 

Chapter 3 

Inference . 
In Spatial Linear l\IIi:xed 

l\IIodel 

In the l ast chapter, n~ore specifically in equation (2.3.1) vv have used a linear model 

for the response Ys as a function of location specified fixed effects as vvell as familial 

random effects, vvhere the sth family contains ns neighboring locations each associ ated 

vvith an unobservable randorn effect . Note that correl ation betvveen any tvvo responses 

Yr and Ys for r # s is a l so modeled through L emma 2. 3. 1. N ovv for the inferences 

about the ffects f3 of fixed covariates as vvell as random effects, it is convenient to 

vvrite the cornbined model for a ll responses y 1 , · · · , Yr · · · , Ys, · · · , Ys in a matrix form, 

vv hich vve provide as follovvs. 
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that is, 

E (/JcLS) E ([x'L:- 1xr1 [x 'L:- 1yJ ) 

(X'L:-1Xr1 
[X'L:- 1E (Y)] 

[X'L:-1xr1 [X'L: - 1X,8] 

,8. 

Furthermore it follows that 

V (/Jc LS) [X'L:-1 xrl X'L:-1 V(Y)I:-1 X [X'L:- 1 x r1 

[X'L:-1 x ri X'L:-1I:I:-1 X [X'L:-1 xrl 
= [x'L:-~xr1 [x'L:- lxJ [x'L:-~xr1 

[x'L:-~xrl , 

42 

(3.2.3) 

(3.2.4) 

which may be estimated directly by estimate the I: consistently, which we discuss in 

the next section. 
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3.2.2 Moment Estimation of Scale and Correlation Parame-

ters 

3.2.2.1 When Random Effects are Independent 

vVhen random effects are independent, the covariance ma trix E in (3.1.3) has the 

form 

if T = S 

(3.2.5) 

otherwise, 

(J2 
where Ra = _]_

2
. This is because for T = s it follows from (2 .3.8) that 

'Y (J 

Note that, ¢J.,j~ ( s) is the correlation between the random effects isf, and isj~ belonging 

to the sth family. Thus, when it is a.·surned that the random effects are independent, 

one writes ¢J.,j~ (s) = 0. That is , 

CJ 5 var (Ys) 
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. as in (3.2.5) . 

Next, for T # s even though the random effects are independent, CJTs the cavan-

ance between Yr· and Ys will not be zero. This is because in (2.3.14) , all groups except 

G1 contain correlation of pairwise random effects. These pairwise correlations in all 

groups except G1, are zero when random effects are independent. However, under 

G1 , one writes 

yielding, 

"" A.(I ) 6 <f'yk 

as 

Note that the covariance structure (3.2.5) produces the correlations between any two 

spatial responses y1' and Ys as: 

if 7' = s 
(3.2.6) 

otherwise. 

Now by exploiting the covariance structure (3.2 .5) we develop moment estimating 

equations for the scale parameters CJ2 and Ra-r as in the following section . 
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3.2.2.2 Estimation of Scale Parameters 

The moment estimates of the scale parameters are given in the following lemma. 

Lemma 3.2.1 By using the sample variance and lag one correlation we obtain the 

estimators for a 2 and Ra as: -r 

fJ2 (3.2.7) 

and 

(3.2.8) 

where, T 1 is the sample lag one correlation. 

Proof: Because E(Ys) = f-Ls, it is clear that 

by (3.2.5) . Consequently, we obtain the moment estimator of a 2 as in (3.2.7), where 

(3 is assumed to be known. 
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Next, for known (3, the sample lag one correlation of the model is given by 

S-1 

L (Ys - f.ts)(Ys+l - f.ts+l) j (S- 1) 
s =l 

s (3.2.9) 

L (Ys - Ms)2 
/ S 

s= l 

By using the first order approximation, one may obtain 

by (3.2.5) 

(3.2.10) 

Consequently, the moment estimating equation for Ra-r has the form 

S - 1 
Ra-y "'""' n s,s+ l 

rl = --~ ' 
S - 1 s= l Jnsns+l 

(3.2.11 ) 

yielding the moment estimator for Ra-r as in (3.2.8) . 

Note that , when needed, the scale parameters a~ and a; may be estimated as follows 
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by using their functional relationship with cr2 and Ra"': 

(3.2.12) 

and 

(3.2.13) 

Thus, to obtain f3cLS and moment estimators for the scale parameters we may use 

the following steps: 

Step 1: For a uitable initial values of 0'; and 0';, estimate j3 by using (3.2.2). 

Step 2: Using j3 estimate from Step 1, we compute 8'2 and Ra"' by (3.2.7) and 

(3.2.8) respectively. They provide estimates of cr~ and cr; as in (3 .2. 12) and (3.2.13). 

The moment estimates for the scale parameters from Step 2 are then used in Step 

1 to obtain an improved estimate of (3. This constitutes a cycle of iterations which 

cont inues until convergence. Note that because moment estimators considered have 

converge to their respective expectations, the convergence of the iterations is assumed 

by their moment property. 
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3.2.2.3 When Random Effects follow a Familial Correlation Structure : 

An Equi-corre lation (EQC) / Exchangeable M odel 

Recall t ha t in general under the whole spatial region 

,; "' (0, a~), s = 1, · · · , S (3.2.14a) 

and 

corr(')',~,,;) = 0,.8 ¢;.8 , r,s= 1, ··· , S. (3.2. 14b) 

We now assume that any two random effects ,; and ,; corresponding to the rth and 

sth locations when r, s E S, have the same correlation as ¢* = ¢ when 0,.8 = 1, where 

{ 

1 if d;s :S: d* for r, s = 1, · · · , S 
o.,.s = 

0 otherwise, 

with d* is the pre specified distance chosen by the user. 

It then follows that all random effects ~sl, · · · , ~sj., · · · , ~sns belonging to the same 

( sth) family have the correlation structure as 

for j 8 = j~ 
(3.2.14c) 

for ]s =/= j~, 

where ~sj. is t he .7!11 component of ~s = (~sl , · · · , ~sjs , · · · , ~snJ', as m (2. 1.5) , the 

vector of random effects for locations under the s th family / cluster. 
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3 .2.2.4 Estimation of Scale and Correlation Parameters 

ote that, when the random effects are exchangeable, the basic properties of the 

model (2.3.1) [see also (2.1.7)] such as, the mean, variance and the covariance are 

given by (2.3.7),(2.3.9) and (2.3.15) respectively. 

One may then attempt to write appropriate ordinary moment equations in order 

to obtain method of moments (M:tvi ) estimators for t he scale parameters a~, a; and 

correlation parameter ¢. To be specific, following a t ime series approach (Box and 

Jenkins 1970) , one est imates these scale parameters by using three estimating equa-

tions that are constructed based on three basic statistics given by 

1 s 
S 2:(Ys- f.ls)2; lag 0 based, 

s = l 

(3.2.15) 

S- 1 

2:(Ys - f.ls)(Ys+l - 1-ls+I)j(S- 1) 
s= l 

s lag 1 based, (3.2. 16) 

2:(Ys - f.ls)2/S 
s= l 

S- 2 

2:(Ys- f.ls)(Ys+2 - f-ls+2)/(S- 2) 

s 
lag 2 based, (3.2. 17) s=l 

2:(Ys- f.ls)2/S 
s= l 
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Let W = (W1 , W2 , vV3 )' be the 3 - dimensional vector of these statistics and A = 

()q , A2 , A3 ) ' = E (W) . It then follows that the moment estimates of the parameters, 

that is, of~ = ( CJ~, CJ; , ¢ )', are obtained by solving the estimating equations 

W- A = 0, (3.2.18) 

where, the components Au's for u = 1, 2, 3 are 

from (2.3.9) 

(3.2.19a) 

(3.2.19b) 
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(3.2.19c) 

s 
respectively, wher , N = L ns in (3.2.19a) , also in (3.2.19b) 

s = l 

and in (3 .2.19c) 

Let ~MM = ( 8-~ , a-;, ¢)' denote the moment estimator of ~ which is the solution of 

equation (3.2.18). This solution may be obtained iteratively by using the customary 

ewton-Raphson iterative equation 

(3.2.20) 
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where( .) (,.) denotes the expression within brackets is evaluated at €MM(T). In (3.2.20), 

Pis the 3 x 3 derivative matrix of A with respect to~, that is, 

OAt oA1 oA1 
-

oCJ2 
'Y 

oCJ2 
( 

8¢ 

P = OA2 OA2 OA2 (3.2.21) -
oCJ2 oCJ2 8¢ 

'Y ( 

Consequently, by writing t he equation.· (3.2. 19a),(3.2.19b) and (3.2.19c) for AJ ,A2 , and 

A3 respectively, one obtains the formulas for the elements of the derivative matrix P 

in equation (3 .2.21) as 

oAl = CJ~ (N - S) 
8¢ s , 

with 

and 

CJ~A31 
S A2 (N- S), 

1 
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with 

3.3 Maximum Likelihood Estimation of the Pa-

rameters 

Recall that t he spatial linear mixed model in (3.1.1) , in matrix and vector notations, 

may be written as 

y X(J+U*G+E. (3.3.1 ) 

- -
Note that, it is convenient to deal with the covariance matrix of U*G instead of G. 

Here U* is a constant coefficient matrix as defined in (3.1. 1) . Let z=, denote the 

covariance matrix of U*G. That is, U*G rv N(O, I:,) where z=, = CT~V : S x S with 

V = (v,.8 ), V,.8 = 

2 ns 

1 + - ~ '" , (s) if r = s, n ~ 'P]sJs 

.s j.<j~ (3.3.2) 

where, 6,.8 and ¢;.s are defined in (2.1.1) and (2 .1.3b) respectively, and for j k ) 
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Furthermore in (3.3.1) , we write t: "' N (O, I:€), where I:€ = a; Is : S x S . To 

simplify the estimation of the model parameters rewrite the mixed model in (3.3.1) 

as 

Y = X (3 +f. or Y rv N (X(3, I:) (3.3.3) 

where, (3 is the regression parameter vector , and I: has the form 

(3 .3.4) 

that is, 

[ 2 

718 l CJ~ 1 + ns :2=, ¢J,j~ ( s) + a; if T = s, 
) s<Js 

I: = ( CJ,.s ) and CJ,.s = (3.3.5) 

otherwise. 

Now let 'ljJ be a vector of all distinct scale and correlation parameters in the model. 

Suppose t hat 'ljJ is of dimension q x 1. 

Note that, it is easy to write the likelihood function following (3.3.3) . That is, 

(3.3.6) 
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where S is the dimension of the response vector. Thus, the log likelihood function for 

{3 and 'lj; is given by 

l( f3, 'l/J I y) 
s 1 1 1 1 - 2ln(2n) - 2ln\I:\ - 2(y- X {3) I:- (y- X {3 ), 

1 1 
c-

2
ln\I:\ - 2 {y'I:- 1y- 2y'I:- 1 X {3 + [3' X 'L:- 1 X f3 } , (3 .3.7) 

where c is a constant. By differentiating the log-likelihood with respect to the regres-

sion parameter vector {3 we obtain 

(3.3.8) 

and the derivatives with respect to scale and correlation parameters 'lj.;i for i 

1, · · · , q, are given by 

Hence, the MLE for {3 and 'lj.;i for i = 1, · · · , q are obtained by solving 

!!!.._ = X'I:- 1Y- X'I::- 1 X {3 = 0 8{3 , 

(3.3.9) 

(3.3.10) 
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and 

(3.3.11) 

Note that, for known I: , the MLE of (3 has a simple form as 

(3.3.12) 

However, it is clear from (3 .3.11) that one does not have a. closed form formula for 

the MLE of 1/Ji · That is, it requires solving the non linear equation for 1/Ji by using 

iterative technique, such as Fisher scoring algorithm. For the purpose, we compute 

the second order derivative for i, j = 1, · · · , q as 

l ,hl/!j = o?j;~~?/J.i = - ~ (tr [L:- 1L:(i.i) + L:;Ul L:; (i)] + (y- X (3)'L:(i.il(y- X /3)) (3.3.13) 

0 [}L;(i ) 
with L:('i.i) = O?/Jj and, 
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Next we obtain 

-~tr [I:- 1I:(i.il + I;U) I;(iJ ] - ~E ((y - X (3) 'L;Wl (y - X f3) ) 

-~tr [I:- 1I: (ij ) + I;(J)I;(il]- ~E (trL:(ijl( y - X {3)(y - X {3 )') 

- ~tr [I:- li:(ij) + I;Ul i;(iJ] - ~t1· [I:(ij) I:] 

1 [ - 1 ( ") ] 1 [ - 1 [ - 1 -1 ] ] -
2

tr I: I: (ij) +I: 1 L:(i) - 2tr I: I: (j) I: I:(i) + I:(i) I: I:(j ) - I:wl 

1 
- 2tr [I:-1I:(ij)- I:- 1I:(j)I:-1I: (i) 

Thus, we obtain Fisher's score matrix 

(3.3.14) 

and the ( i, j) t h element of B,p is t ij with 

(3.3.15) 

Now for known {3, the MLE's (,Pi) of 7/Ji fori = 1, · · · , q, can be obtain by solving the 

maximum likelihood estimating equation (3.3.11). Let ,P = (,P1, · · · , ,Pq)' be the MLE 

of 7/J. T his solut ion may be reached by using the iterative equation method. Given 

the value of -JNn(t) at the tth iteration, ,PNIL(t + 1) is obtained by solving 

~ ~ [ -1(8l )] 7/J IIIL(t + 1) = 7/JM L ( t) + B ,p O'ljJ (t) , (3.3.16) 
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where [-](t) denotes that the expression within brackets is evaluated at ,(f;ML(t ), g~ is 

evaluated from (3.3 .9) and B; 1 is the inverse of B..p defined in (3.3.14). 

T hus, to obtain MLE ~ML of regression parameter vector (3 and the MLE ,(J;ML of 

all dist inct scale parameters in '1/J we may use the following steps: 

Step 1: For suit able init ial values of '1/J/s ( i = 1, · · · , q) estimate (3 by using (3.3.12). 

Step 2: Using (3 estimate from Step 1, we compute ,(J; by (3.3.16). 

Step 3 : Estimate of '1/J from Step 2 is used in Step 1 to obtain an improved esti-

mate of (3 which is further used in Step 2 for improved estimate of '1/J . 

These three Steps constitutes a cycle of iterations and t he cycles continue until con-

vergence. 

Vve remark that for the estimation of the variance components in I:, matrix, t here 

exists an approach where G are predicted first by using the so called BLUP (Best 

Linear Unbiased Predictor) approach and these estimates are used for the estimation 

of t he variance components see for example Searle, Casella, and McCulloch (1992, 
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Section 3.4) . This approach has, however convergence problems specially for binary 

and count data setup. See for example, t he discussion by Sut radhar (2011, Chapter 

4, p. 66). For t his reason, and also because we will deal wit h binary data in Chapter 

4, we do not follow the BLUP based approach. 

3.3.1 When Random Effects are Independent 

In practice there may be some sit uations where it is reasonable to assume that 

t he random effects in t he spatial region S are mutually independent. T hat is, 

¢jk = cov('yj, f'k) = 0. We simplify the likelihood based iterative equation (3.3.16) 

for t his special case. 

Note t hat, for t he computation of iterative equation (3.3.16), we need to compute 

8l 
B .p and fJ'IjJ for t his special case. However it is clear from (3.3.15) and (3.3.9) that B ,;_, 

8l 
and fJ 'IjJ need the formula for E and E(i). For t his purpose we first give the formulas 

forE and E(i) , as follows. Here E matrix contains two scale parameters, that is, q = 2 
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3.3.1.1 Computation of I: matrix 

In the present independent case ¢jk = 0 for j =!= k . This also implies that , ¢js1~ = 0 

for Js < j~ . But ¢j1 = 1 always. Thus by (3.3.2) t he elements of V matrix has the 

formulas 

if r = s, 
(3.3.17) 

otherwise, 

yielding I: = o-~V + o-; Is from (3.3.5) as 

E = (a,,) and a,,= { 
if r = s , 

(3.3.18) 

otherwise. 

3.3.1.2 Computation of I:: (i) 

From (3.3.18) it is straightforward that for 1/;1 = o-~ and 'lj;2 = o-;, 

if T = S 

otherwise, 

and 

82:: 
2::(2) = B·t/;

2 
= ( 0" sk(2)) with a , 21 = { 

1 if T = S 

0 otherwise. 
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3.3.2 When Random Effects Follow a Familial Correlation 

Structure: EQC /Exchangeble Model 

As opposed to the independent setup discussed in 3.2.2, there may be situat ions 

where pairwise random effects can be either independent (depending on the distance 

between two spatial locations) or equi-correlated (within a specified familial distance). 

To be specified, when k t h and zt h locations belong to fs (sth family), it follows from 

(2 .3.4) and (2 .3.5) that 

always, because they are within a specified familial distance. Further for r -=/: s and 

k E J,. and l E f s we write 

corr( ::Yrj, , ::Y s]s) 

yielding 

. . - { c/J'kt = c/J if d'kl :::; d*' 
cP)r ) s -

0 otherwise. 

Next in this equi-correlations setup, q = 3 and 'l/J = ('l/J1, 'l/J2 , 'ljJ3)' = (a~ , a;, ¢)' . Similar 

to last the section we now provide the formulas for I: and I:(i) in terms of 'l/J1 , 'l/J2 and 
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3.3.2.1 Computation of L:; matrix 

When random effects are EQC with correlation parameter ¢, in a similar way as in 

(3.3. 17) we can obtain the elements of V matrix from (3.3.2) as 

{ 

1 + (ns - 1)¢ 
v,.s = 1 

yn;;n; {nr-s [1 + (nr-s - 1 + n,. + ns) ¢] + n,.s¢} 
s 

if r = s, 

otherwise, 

yielding the elements of the covariance matrix L: in (3.3.5) given by 

{ 

[1 + (ns- 1)¢] a~ + a; 

a,.s = 1 {nr-s [1 + (n,.s - 1 + n,. + ns) ¢] + n.,.s¢} a~ 
yn;;n; 

if r = s, 

otherwise. 

3.3.2.2 Computation of L: (i) 

From (3.3.20) it is straightforward that for i = 1, 2, 3 we can obtain 

f)L; 
L: (l) = -

0 
= (a.,.s(l) ) with 

'1/JI 

{ 

1 + (ns - 1)¢ 
a,.s(l ) = 1 .,;n:;n; { n,.s [1 + (nr·s - 1 + n,. + ns) ¢] + nrscP} 

.s 

Next, we obtain L:(2) = 
0
°L; = (ars(z) ) with 

'1/Jz 

T = S 

{ 

1 if 
ars(2) = 0 

othervvise, 

if r = s, 

otherwise . 

(3.3.19) 

(3.3.20) 

(3.3.21) 

(3.3.22) 



---------------------------------------------------------------------------------------------------

3.4 A SIMULATION STUDY 63 

if r = s, 
(3.3.23) 

otherwise. 

3.4 A Simulation Study 

Recall that s denotes a location of events belonging to a spatial region S. That is 

s E S . Also recall from (2 .1.7) that, Ys is the associated measurement from the sth 

spatial location given by 

Ys 

(3.4. 1) 

where, U 8 = ( tL8 1 , • • • , tL8 p 1 )' is a p1-dimensional fixed covariate vector containing for 

example, the epidemiological or demographic information from the sth location, and 

Z8 = ( Z 81 , · • · , Z 8 p 2 ) ' is a p2-dimensional deterministic (or location dependent) vector of 

covariate containing the environmental information from the sth location. Here a and 

() are the fixed regression effects of tL8 and Z8 on Ys, respectively, that is {3 = (a' ,()')' is 

the effect of :r;~ = (v,~, z~) on Ys· Also in (3.4.1) , ;ysj. are random effects of ns locations 

belonging to the sth family, f s. Furthermore, as mentioned before f.8 are model errors 

""d 
and we assume that f.8 ~ (0, a;) . 
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3.4.1 Selection of Fixed Covariates 

In this simulation study, we choose S = 500 locations. With regard to the fixed 

covariates, we choose p1 = 3 and the associated covariates Us = (usl , Hs2, Us3)
1 as 

follows: 

1. Intercept covariate: 

U 8 1 = 1, for s = 1, 2, · · · , S 

2. Fixed epidemiological binary covariate (such as old or new spatial location) 

and 

if s is in old category, 

if s is in new category, 

3. Another epidemiological covariate (Geographical, say) 

'I.Ls3 = 

0 if 1 :S s :S S/8, (locations are on high ground , for example) , 

1 if S/8 + 1 :S s :S 3S/4, (on plane ground), 

0 if 3S/4 + 1 :S s :S S, (on high ground). 

For environmental type covariate Z 8 such as to understand the wind effects due to 

relative positions, we choose two sets of categorical variables each wi th three categories 

which may be represented by two categorical variables. To be specific to accommodate 

--- --- - - - -
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for example, t he winds from backward (or left) side of a location covering 180° we 

consider t he first set of categorical variables represented by two dummy variables 

( Zs l , z.d defined as: 

(1, 0) if 135° < w < 225°, 

(0, 1) if goo < w < 135° 
' 

(0, 0) if 225° < w < 270°, 

where, w is t he angle between sth and its neighboring (backward) locations of events. 

Similarly to accommodate for example, the winds from forward (or right) side of a 

location covering 180° we consider t he second set of categorical variables represented 

by two other dummy variables (z8 3, Z 8 4) defined as: 

(1,0) if 315° < w < 360° , & 0 < ·1/J < 45° 

(0 , 1) if 45° < w < go0 , 

(0, 0) if 270° < w < 315° ' 

for which, w is the angle between sth and its neighboring (forward) locations of events. 

For the fixed regression effects, we chose a= (a1, a 2 , a 3 ) ' and e = (B1, B1, B2, B3, B4)', 

that is, 

(3 = (a', e')' = (0.3, 0.5, - 0.5, 0.6, 0.4, 0.5, 0.2)' (3.4.2) 
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Note that, we have chosen these components of (3 from some practical point of view. 

For example, a 2 = 0.5 indicates posit ive effects of older or aged plants on the yields. 

3.4.2 Selection of Model Errors 

The model error Es in (3.4.1) is given as 

iid ( 2) 
Es "" N 0, CJE (3.4.3) 

As far as the error variance cr; is concerned, we consider 

cr; = (0 .5, 1.0, 2.0) . (3.4.4) 

3.4.3 Selection of Independent Random Effects 

Consider 1; as 

*~N(O 2
) ls > CJ"Y · (3.4.5) 

Under this assumption in (3.4.5), it follows that 

- * iid N(O 2) f f /s]s = lj. "" , cr"Y or J s E s · (3.4.6) 

For values of cr~ , we select 

(J~ = (0.75, 1.0, 1.5) . (3.4.7) 
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ate that, here we have chosen relatively large values for a~ because it is important 

to examine whether the estimation methodology works for such large values, given 

that it is understands to that no such technical problems arises for small values. 

3 .4.3.1 Simulated Estimates Under Independent Random Effects Struc

ture 

Once the spatial data Ys is generated using (3.4.1) based on regression parameters 

from (3.4.2) , model error variance from (3.4.4) and random error variance from (3.4.7), 

we now proceed for the estimation of these parameters (/3, a; and a~) following the 

GLS approach discussed in Section 3.2 and the ma.,-ximum likelihood method discussed 

in Section 3.3. 

Note that the estimating formulas involve the specific form for the I: matrix given by 

(3.2.5). To obtain this specific form under the present spatial linear sequence setup, 

one needs to know n,.5 the number of common members to both the families at the 

rth and the sth locations. For convenience, we provide these values along with the 

values of n,. as follows: 
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The number nr for rth family using figure 3.1 is given by 

3 for r = 1, S, 

'nr = 4 for T = 2, 5 - 1, 

5 for r = 3, · · · , S - 2, 

68 

(3 .4.8) 

and nr·s the number of members common to both families at the rt.h and st.h locations 

are given as follows: 

For r = 1 and s = 2, · · · , S 

3 for l1 - s l = 1, 

3 for 11 - s l = 2, 

n l s = 2 for l1- s l =3 (3.4.9) 

1 for l1 -sl = 4. 

0 otherwise. 

For r = 2,s = 3, · · · , S 

4 for 12 - sl = 1, 

3 for 12- s l = 2, 

n 2s = 2 for 12 - sl = 3 (3.4.10) 

1 for 12- s l = 4, 

0 otherwise. 
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For T = 3, · · · , S - 2, and s = 4, · · · , S - 1 

4 for IT- sl = 1, 

3 for IT- sl = 2, 

'nrs = 2 for IT- sl = 3 (3.4. 11) 

1 for IT- sl = 4, 

0 otherwise, 

and for the remaining pairwise locations, the number of common members are 

ns- 4,S = 1, 

ns-3,S = 2, 

ns- 2,s = 3, 

ns- I,s = 3, 

'nr·,S- l = 0, 

n,.5 = 0, 

for T = 1, 2 · · · , S - 6, 

for T = 1, 2 · · · , S - 5. 

(3.4.12) 

For the GLS estimation of {3, we use (3.2.2), where the I: matrix was constructed by 

using a;, a~, n,. (T = 1, · · · , S) and n,.5 T # s, (r·, s = 1, · · · , S) as explained above, 

where n,. and n,.
8 

are known based on the spatial distance design. The parameters 

involved in the I: matrix, that is, a; and a; are estimated by the method of moments 

following the moment equations (3.2.12) and (3.2.13). 
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Next for maximum likelihood estimation of the parameters , we use the estimating 

formula (3 .3.12) for the regression parameter {3 which is same as t he GLS ba ·ed 

estimating formulas for {3 in (3.2.2) . Now because {3 is estimated for a known ~ 

matrix and this matrix is a function of CJ~ and CJ; apart from n ,. and n ,.5 , we obtain 

the ma.,'Cimum likelihood est imates of these scale parameters CJ~ and CJ; by solving 

the likelihood estimating equation (3.3.11). Note that these non-linear equations are 

solved by using t he iterative equation (3 .3.16). 

The data generation and estima tion of the parameters are repeated 1000 times. The 

simulated means (SMs) and simulated standard errors (SSEs) of the estimators are 

presented in the following tables from Table 3.1 to Table 3.4 under the G LS approach 

and in Table 3.5 under the maximum likelihood approach. Note that the results in 

3.1 were computed by using lag 1 based moment estimators, which is most practical. 

However , to see any benefi t of using pooled information we have used up to lag 2, lag 

3, and lag 4 to find the results in 3.2, 3.3, and 3.4 respectively. But the results do 

not indicate any significant difference. 
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Table 3.1: The SMs and SSEs of the GLS estimates of the r egression pa-
rameter and moment estimates for the variance components using sam-
pie la g 1 correlation with true r egression paramet er va lues chosen as 
/3 = (al , a2, a3, el , e2, e3, e4)' = (0.3, 0.5, -0.5, 0.6, 0.4, 0.5, 0.2)' a nd for selected 
va lues of the va riance components <J; and <J~ . 

(a ) Estimates of the regression parameters 

Quantity Regression parameters 
(]"2 

€ 
(]"2 (]"2 a t a2 a3 e1 e2 e3 e4 

1.0 0.25 1.25 SM 0.287 0.499 -0.499 0.606 0.408 0.506 0.205 
SSE 0.226 0.116 0.135 0.178 0.113 0.171 0.212 

0.75 1.75 SM 0.287 0.500 -0.498 0.607 0.409 0.505 0.202 
SSE 0.257 0.120 0.195 0.188 0.117 0.181 0.229 

1.0 2.0 SM 0.287 0.500 -0.498 0.608 0.409 0.505 0.201 
SSE 0.270 0.122 0.219 0.191 0.118 0.185 0.234 

1.5 2.5 SM 0.287 0.500 -0.498 0.608 0.409 0.505 0.200 
SSE 0.295 0.125 0.259 0.196 0.120 0.190 0.242 

(b) Est imates of the variance components 

Quantity Variance parameters 
(]"2 

€ 
(]"2 (]"2 (]"2 

€ 
(]"2 (]"2 

1.0 0.25 1.25 SM 0.983 0.241 1.224 
SSE 0.087 0.084 0.081 

0.75 1.75 SM 0.985 0.727 1.712 
SSE 0.096 0.150 0.131 

1.0 2.0 SM 0.986 0.971 1.956 
SSE 0.100 0.183 0. 157 

1.5 2.5 SM 0.988 1.457 2.445 
SSE 0.110 0.250 0.213 
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Table 3.2: The SMs and SSEs of the GLS estimates of t h e regression pa-
rameter and moment estimates for the variance components using up to 
sample lag 2 correlation with true regression parameter values chosen as 
(3 = (a l , a2, a3, el , e2, e3, 84)' = (0.3, 0.5, - 0.5, 0.6, 0.4, 0.5, 0.2)' and for selected 
values of the variance components a; and a~ . 

(a) Estimates of the regression parameters 

Quantity Regression parameters 
a2 

€ 
a2 a2 al a2 CX3 e , e2 fh e4 

1.0 0.25 1.25 SM 0.287 0.499 -0.499 0.606 0.408 0.506 0.205 
SSE 0.226 0.116 0.135 0.178 0.113 0.172 0.212 

0.75 1.75 SM 0.287 0.500 -0.498 0.607 0.409 0.505 0.202 
SSE 0.257 0.120 0.195 0.188 0.117 0.181 0.229 

1.0 2.0 SM 0.287 0.500 -0.498 0.608 0.409 0.505 0.201 
SSE 0.270 0.122 0.218 0.192 0.118 0.185 0.233 

1.5 2.5 SM 0.287 0.500 -0.498 0.608 0.409 0.504 0.201 
SSE 0.295 0.125 0.259 0.196 0.120 0.190 0.242 

(b) Estimates of the variance components 

Quant ity Variance parameters 
a2 

€ 
a2 a2 a2 

€ 
a2 a2 

1.0 0.25 1.25 SM 0.987 0.238 1.224 
SSE 0.083 0.080 0.081 

0.75 1.75 SM 0.985 0.727 1.712 
SSE 0.096 0.150 0.131 

1.0 2.0 SM 0.991 0.964 1.956 
SSE 0.104 0.189 0. 157 

1.5 2.5 SM 0.995 1.450 2.445 
SSE 0.120 0.261 0.213 
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Table 3.3: The SMs and SSEs of the GLS estimates of the regression pa-
rameter and moment estimates for the variance compone nts using uo to 
sample lag 3 correlation with true regression paramet er values chosen as 
fJ = (ol, 02, 03 , el' e2 , e3, 84)' = (0.3, 0.5 , -0.5, 0.6 , 0.4, 0.5, 0.2)' and for selected 
values of the variance components 0'; and 0'~ . 

(a) Estimates of the regression parameters 

Quantity Regression parameters 
(72 

f 
(72 (72 0] 02 03 e1 e2 e3 e4 

1.0 0.25 1.25 SM 0.287 0.499 -0.499 0.606 0.408 0.506 0 .. 205 
SSE 0.226 0.116 0.135 0.178 0.113 0.171 0.213 

0.75 1.75 SM 0.287 0.500 -0.498 0.607 0.409 0.505 0.202 
SSE 0.257 0.120 0.195 0.188 0.117 0.181 0.229 

1.0 2.0 SM 0.287 0.500 -0.498 0.608 0.409 0.505 0.201 
SSE 0.270 0.122 0.218 0.191 0.118 0.185 0.234 

1.5 2.5 SM 0.287 0.500 -0.498 0.608 0.409 0.505 0.200 
SSE 0.295 0.125 0.259 0.196 0.120 0.190 0.242 

(b) Estimates of the variance components 

Quantity Variance parameters 
(72 (72 (72 (72 2 (72 

€ f 
(7 

1.0 0.25 1.25 SM 0.988 0.236 1.224 
SSE 0.085 0.082 0.081 

0.75 1.75 SM 0.994 0.717 1.712 
SSE 0.106 0.160 0.131 

1.0 2.0 SM 0.997 0.959 1.956 
SSE 0.117 0.199 0.157 

1.5 2.5 SM 0.988 1.457 2.445 
SSE 0.110 0.250 0.213 
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Table 3.4: The SMs and SSEs of the GLS estimates of t h e regression pa-
ramet er and moment estimates for the var ia nce componen ts u sing up to 
sample lag 4 corre la tion wit h true r egression parameter values chosen as 
(3 = (al, a2, a3 , el , e2 , e3, e4)' = (0.3, 0.5, - 0.5, 0.6, 0.4, 0.5, 0.2)' a nd for selected 
values of the variance components a; and a~ . 

(a) Estimates of the regression parameters 

Quantity Regression parameters 
a 2 

€ 
a2 a2 al a2 a3 e1 e2 e3 e4 

1.0 0.25 1.25 SM 0.287 0.499 -0.499 0.606 0.408 0.506 0.205 
SSE 0.226 0.116 0. 135 0.178 0.113 0.171 0.212 

0.75 1.75 SM 0.287 0.500 -0.498 0.607 0.409 0.505 0.202 
SSE 0.257 0.120 0.195 0.188 0.117 0.181 0.229 

1.0 2.0 SM 0.287 0.500 -0 .498 0.608 0.409 0.505 0.201 
SSE 0.270 0.122 0.218 0.192 0.118 0.185 0.234 

1.5 2.5 SM 0.287 0.500 -0.498 0.608 0.409 0.505 0.200 
SSE 0.295 0.125 0.259 0.196 0.120 0.190 0.242 

(b) Estimates of the variance components 

Quantity Variance parameters 
a2 a2 a2 2 a2 a2 

{ a€ 
1.0 0.25 1.25 SM 0.983 0.241 1.224 

SSE 0.087 0.084 0.081 
0.75 1.75 SM 0.998 0.714 1.712 

SSE 0.124 0.175 0.131 
1.0 2.0 SM 1.003 0.953 1.956 

SSE 0.142 0.219 0.157 
1.5 2.5 SM 1.012 1.432 2.445 

SSE 0.181 0.305 0.213 
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Table 3.5: The SMs and SSEs of the ML estimat es of t h e r egression and 
variance components w ith true regression paramet er values chosen as f3 = 

(cx1, cx2 , cx3 , ()1, ()2 , ()3 , ()4 )' = (0.3, 0.5, - 0.5 , 0.6, 0.4, 0.5, 0.2)' and for selected values 
of the va r iance components CJ; and CJ~ . 

(a) ML Estimates of the regression parameters 

Quantity Regression rarameters 
(J2 

f 
(J2 CXJ CX2 CX3 ()1 ()2 ()3 ()4 

1.0 0.25 SM 0.290 0.500 -0.498 0.602 0.407 0.501 0.196 
SSE 0.229 0.119 0.132 0.177 0.112 0.175 0.204 

0.75 SM 0.287 0.500 -0.498 0.607 0.409 0.505 0.202 
SSE 0.257 0.120 0.195 0.188 0.117 0.181 0.229 

1.0 SM 0.286 0.500 -0.496 0.602 0.408 0.502 0.195 
SSE 0.271 0.124 0.214 0.190 0.116 0.188 0.226 

1.5 SM 0.283 0.500 -0.495 0.601 0.407 0.503 0.195 
SSE 0.295 0.127 0.253 0.195 0.119 0.233 0.242 

(b) ML Est imates of the variance components 

Quantity Variance parameters 
(J2 

€ 
(J2 

1.0 0.25 SM 0.983 
SSE 0.082 

0.75 SM 0.998 0.714 
SSE 0.124 0.175 

1.0 SM 0.981 0.979 
SSE 0.095 0.173 

1.5 SM 0.980 1.471 
SSE 0.101 0.232 
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The results from Table 3.1 to Table 3.4 show that the model parameters are esti

mated very well by using the GLS approach. All estimates for regression parameter 

and variance components appear to be unbiased , except that the variance components 

estimates become slightly biased when CJ~ is large. However this bias appears to be 

insignificant . As far as the simulated standard errors of the estimates are concerned , 

the SSEs of the GLS estimates of the regression estimators appear to increase in a 

slow rate when CJ~ increases. However, the SSEs of the estimates of the CJ~ in partic

ular get larger when true value of CJ~ gets larger which is expected . 

When the result of Table 3.5 obtained under MLE are compared to any of the tables 

from 3.1 to 3.4 the regression estimates appear to be almost the same. However the 

maximum likelihood approach produces the estimates of CJ~ with less bias and smaller 

simulated standard errors as compared to t he moment approach. T his indicates the 

optimal behavior of the ML approach in t he present spatial regression set up. 
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3.4.4 Selection of Random Effects: Exchangeable (EQC) Fa-

milial Correlation 

Recall that in general 

/'; "" (0, (J~) (3.4. 13a) 

and 

(3.4. 13b) 

Now to develop a equi-correlation structure for the random effects of the member 

locations of the sth family, that is, to develop 

for · ., .ls = .Js 
(3.4.14) 

for Js =/= j~, 

one has to develop an appropriate correlation structure among all ')';, · · · , ')'; , · · · , f's 
which will provide the correlations as in (3.4.14) for the members of the sth family. 

3.4.4.1 Special Case w it h Linear Spatial Sequences 

To illustrate this development , for simplicity suppose that all s locations are in a linear 

sequence and they form a family of correlated random effects at a given location (say 

r) where the distance between the rth and any other locations (says), that is, d;s :S: d*. 
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This produces a correlation structure for /'; ( s = 1, · · · , S) of the form 

1 for d;.s = 0 

corr (l',*., /'; ) = ¢ for d;,
8 

:s; d* (3.4.15) 

0 for d;,8 > d*, 

which generates a band correlation matrix with pairwise correlation ¢ within the 

band, where the band width is determined by the spatial distance (lag) d* . We 

present this sit uation in the form of following figures. 

Figure 3.1: Equi-correlation based linear spatial sequences 

3.4.4.2 Generation of 1; satisfying (3.4.15) 

In this special case, we consider d* = 4 and for S = 500 generate /'~, · · · , ')'; · · · , /'s, 

following the correlation structure (3.4.15). To be specific ford*= 4 

(3.4.16) 
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For this (3.4.16) to happen, we generate/'; in a sequence as follows: 

N(O,CJ~) 

N ( ¢1'~, CJ~( 1 - ¢ 2)) 

* I * * /',. 1'1' · · · ''Yr·- 1 

where for r = 2 · · · , 5, 

* ( * * )' A (r·) ,1-. 2 11 
'Y(r-1} = 1'1' · · · ''Yr-1 ' 21 = 'f'(J-y r-1 ' A(r} 2 

22 = (J'Y' 
A(r}- (A(r))' 

12 - 2 1 

and 

and for r = 6, · · · , S the (r - 1) x (r - 1) dimension matrix Ai'? is given by 

CJ2 when 1L = v 
'Y 

A('")= (>,(r)) = 
11 uv ¢0"~ when [u - v[ = 1, · · · , d* 

0 for [u - v[ > d* , 

and 

Now to use (3.4. 1) to generate y8 , we need to identify -;ys = (-;ys l 1 • • • ,-;ysj., · · · ,-;ysnJ' 

under f
5

• This identification should be chosen from t he following table. 
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Table 3.6: Familial random effects corresponding to spatia l random effects 
under the linear sequence wit h d* = 4 

Family Family Random Effects Corresponds to original random effects 
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3.4.4.3 A Simulation Study Based on Random Effects with Familial (EQC) 

Correlation Structure 

Recall that when the random effects follow a familial correlation structure, the pair-

wise correlations between two responses are given by (2 .3.16), where ¢ is the pairwise 

correlation between random effects arising from neighboring locations. Note that un-

like when the random effects were independent (3.2.5) , the variances and covariances 

of the responses now contain ¢ in addition ton,., n,.8 , n,., n8 and n,.8 . For convenience 

we reproduce (see (2 .3.16) the formula for variances and covariances here as 

if r = s, 
(3.4.17) 

otherwise. 

Further note that the values for n ,. and n ,.8 remain the same as in the previous 

simulation study discussed in Section 3.4.3. The values of the remaining sizes that is, 

nn ns and n,.s may be computed following the general formula discussed in Section 

2.2.2.2. We compute these values for the d* = 4 case as follows . 
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For r = 1 and s = 2, · · · , S 

2 for ls-11=3, 

5 for ls-11=4, 

9 for Is - 11 = 5, 

nls = 6 for Is- 11 = 6, (3.4.18) 

3 for Is - 11 = 7, 

1 for ls-11=8, 

0 otherwise. 

For r = 2 and s = 3, · · · , S 

1 for Is- 21 = 2, 

3 for Is - 21 = 3, 

6 for Is - 21 = 4, 

10 for Is- 21 = 5, 
n2s = (3.4.19) 

6 for Is - 21 = 6, 

3 for Is - 21 = 7, 

1 for Is - 21 = 8, 

0 otherwise. 
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For r = 3, · · · , S - 3, and s = 4 , · · · , S - 2 

1 for Is- r l = 2, 

3 for Is- r l = 3, 

6 for Is- r l = 4, 

10 for Is- r l = 5, 
nr-s = (3.4.20) 

6 for Is- rl = 6, 

3 for Is- r l = 7, 

1 for Is- r·l = 8, 

0 otherwise. 

For r = 1, · · · , S - 2, and s = S - 1 

1 for IS- 1 - r l = 2, 

3 for IS- 1- r l = 3, 

6 for IS - 1- rl = 4, 

10 for IS- 1 - r l = 5, 
n ,.,s- 1 = (3.4.21) 

6 for IS- 1 - r l = 6, 

3 for IS- 1- r l = 7, 

1 for IS- 1 - r l = 8, 

0 otherwise. 
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and for r = 1, · · · , S- 1, and s = S 

2 for IS- ri = 3, 

5 for IS- ri = 4, 

9 for IS- ri = 5, 

nrs = 6 for IS- rl = 6, (3.4.22) 

3 for IS- Ti = 7, 

1 for IS- rl = 8, 

0 otherwise. 

Next the number of members only from the rth family may be easily computed by 

using the formula fi.,. = n.,. - n,.8 , where the number of n,. and n,.8 were given in 

Section 3.4.3 .1. However, for the sake of completeness, we provide the values for 'fi,. 

as follows. 

For r = 1 and s = 2, · · · , S 

0 for is - 11 ~ 2, 

Is- 11 - 2 for 2 < is- 11 ~ 4, (3.4.23) 

3 otherwise. 
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For r = 2 and s = 3, . . . , S 

0 for Is - 21 :::; 1, 

n2 = Is- 21 - 1 for 1 < Is- 21 :::; 4, (3.4.24) 

4 otherwise. 

For r = 3, · · · , S - 3, and s = 4 , · · · , S - 2 

for 1leqls - rl :::; 4, 
(3.4.25) 

otherwise. 

For r = 3, · · · , S - 2, and s = S - 1 

n, ~ { ~s - 1 - r I 
for IS - 1 - rl :::; 4, 

(3.4.26) 

otherwise, 

and for r = 3, · · · , S- 1, and s = S 

for 1 :::; IS - Tl :::; 4, 
(3.4.27) 

otherwise. 

Also, the number of members only from the sth family is computed as follows: 

For r = 1, 2, · · · , S- 3, and s = 2, · · · , S - 2 

for 1 < Is- rl :::; 4, 
(3.4.28) 

otherwise. 
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For T = 1, · · · , S - 2, and s = S - 1 

0 for JS - 1- T\ :::; 1, 

iis-1 = \S- 1- T\ - 1 for 1 < \S- 1 - T\ :::; 4, (3.4.29) 

4 otherwise, 

and for T = 1, · · · , S - 1, and s = S 

0 for \S- T\ :::; 2, 

iis = \S - T\ - 2 for 2 < \S- T\ :::; 4, (3.4.30) 

3 otherwise. 

Data Generation: 

We consider the same covariate design, that is, X 8 = (u~, z~)' and choose the same 

true values for f3 as in Section 3 .4.1. However , as our objective is to examine the 

eflect of familial correlation ¢ for random effects, we choose a moderately large value 

for ¢ = 0.3 (given that a moving average order 1 correlation cannot exceed 0.5) , and 

examine the estimation performance for variance parameter O"~ = 0.75 and 1, and 

(J; = 1.0. 

Note that it is now important to generate the random effects /'; (s = 1, · · · , S) such 

that they follow a moving familial or band structure with correlations either ¢ or 0. 
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For this, for the selected value of ¢ = 0.3 , we generate the random effects following 

Section 3.4.4.2 . Alternatively, one may generate the S-dimensional random effects 

using, for example, the FORTRA 90 IMSL subroutine R iVN, where Cholesky 

decomposit ion is used for standardization. Once the random effects are generated, 

we use them in the model (3.4.1) to generate the correlated responses {Ys}· For the 

spatial size we choose S = 500. 

Estimation Performance 

When the number of parameters increases, it becomes relatively difficult to write 

appropriate moment equations for all parameters. However , the ML approach does 

not have this problem in the present setup. We, thus, consider t he 11 approach 

and examine its performance in estimating all parameters /3, cr~, cr; and ¢. To be 

specific we use the estimating formula (3.3.12) for the regression parameter /3 which is 

same as the GLS based estimating formulas for /3 in (3.2.2). Because /3 is estimated 

for a known I: matrix and this matrix is a function of cr~ , cr; and ¢ apart from 

nr , ns, n,.s , fi,., fis and n ,.s, in a given simulation, we use suitable initial values such 

as cr~ = 0.1 , cr; = 0.1 and ¢ = 0.0, to obtain the /3 est imate at the first step, We 

then use the stimate of /3 to obtain the maximum likelihood estimates of these scale 
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correlation parameters a~, a; and ¢ by solving the likelihood estimating equations 

(3.3. 11). Note that these non-linear equations are solved by using the iterative equa

tion (3.3.16). These estimates are then used in (3.3.12) to obtain improved estimate 

of {3 . This constitutes a cycle which continues until convergence. This we repeat for 

50 simulations. Note that, because we have to conduct a large spatial sequence with 

S = 500, each simulation takes a considerable computing time requiring a relative 

large amount of comput ing t ime for 50 simulations. However , given t ime is not a 

problem, we would obtain better estimates if simulation number is increased. 

The simulated estimates along with the standard errors are presented in Table 3.7. 

The results from the Table 3.7 indicate that the ML approach performs well in es

timating all parameters including ¢ parameter. For example for this ¢ = 0.3 case 

when a;= 1.0 and a~= 0.75, the estimates for the components of {3 were found to be 

/J = (0.271 , 0.500, - 0.559, 0.590, 0.399, 0.509, 0.201)' which are close to the true values 

of the regression parameters. The¢ parameter value, (that is,¢ = 0.3) was estimated 

as 0.28 which is quite satisfactory. The a~ parameter was found to be slightly under 

estimated as 0.69 , whereas a; was estimated much better as 0.98. 

Note that we have also carried out a simulation study based on 500 simulations 
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with results shown in Table 3.8, whereas the above simulation results were based on 

50 simulations. When the results in Table 3.8 are compared to Table 3.7, as expected, 

these appears to be a big improvement in estimates, they are being much closer to 

the true values. For example, for a} = 1.0, a~ = 1.0, and ¢ = 0.3 the estimates from 

Table 3.7 are found to be 0.974, 0.971 and 0.296 respectively, whereas these estimates 

from Table 3.8 are 0.988, 1.005 and 0.309 respectively, showing a big bias reduction. 

This happened, however with same or slight larger variances. 

Table 3. 7: The SMs and SSEs of the ML estimates of the regression and 
scale parameters with true regression parameter values chosen as (3 = 

(a]) a2, a3, el , e2, e3 , e4)' = (0.3, 0.5, -0.5, 0.6, 0.4, 0.5, 0.2)' and for selected values 
of the variance compon ents a~ and a; when ¢ = 0.3. 

(a) ML estimates of the regression pararneters 

Quantity Regression parameters 
a2 

f 
a2 a l a2 a3 e1 e2 e3 e4 

1.0 0.75 SM 0.275 0.500 -0.559 0.590 0.399 0.509 0.201 
SSE 0.322 0.120 0.312 0.224 0.127 0.146 0.245 

1.0 SM 0.275 0.498 -0.573 0.588 0.399 0.509 0.202 
SSE 0.341 0.124 0.344 0.231 0. 131 0.148 0.254 

(b) ML estimates of the variance and correlation parameters 

Quantity Variance and correlation 
a2 

f 
a2 a-

f a ¢ 
1.0 0.75 SM 0.981 0.687 0.281 

SSE 0.109 0.373 0.182 
1.0 SM 0.974 0.971 0.296 

SSE 0.096 0.212 0.107 
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Table 3.8: The SMs a nd SSEs of t h e ML estimat es of the r egression and 
scale pa ra m et e rs wit h true regression p a ra m et e r values chosen as (3 = 

(a l , a 2, a3, el , e2, e3, 84) 1 = (0.3, 0.5, -0.5, 0.6, 0.4, 0.5, 0.2)' and for selected values 
of the va rian ce components O"; a nd O"; when ¢ = 0.3 . 

(}2 
( 

(}2 

1.0 0.75 

1.0 

(a) M L estimates of the regression parameters 

Quantity Regression parameters 

a1 a2 a 3 e1 e2 e3 

SM 0.286 0.495 -0.495 0.600 0.403 0.507 

SSE 0.330 0.109 0.328 0.197 0.112 0.185 

SM 0.286 0.494 -0.495 0.602 0.404 0.506 

SSE 0.362 0.11 1 0.373 0.200 0.111 0.188 

(b) ML estimates of the variance and correla t ion parameters 

Quantity Variance and correlation 
(}2 

E 
(}2 ¢ 

1.0 0.75 SM 0.310 
SSE 0.213 0.146 

1.0 SM 1.005 0.309 
SSE 0.097 0.245 0.126 

e4 
0.209 
0.257 
0.209 
0.260 
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We have also est imated the regression and variance parameters by ignoring ¢, that 

is , by using ¢ = 0 (same as assuming random effects are independent). T he results 

based on 500 simulations are presented in Table 3.9. It is clear from the table that 

the approach produces highly biased estimates specially for the variance components 

a; and a~. This is however, not surprising because of the fact that ¢ = 0 does not 

mean t hat t he responses are pairiwse independent. Also, ¢ = 0 produces incorrect 

variances for the responses. Consequently, the MLE for a; and a~ are bound to be 

adversely affected . This would also happen if one uses Weighted Generalized Leaset 

Squares (WGLS) technique, when ¢ = 0 would lead to wrong weights. 

Table 3.9: The SMs and SSEs of the ML estimat es of t he regression and 
scale parameters with true r egression paramet er values chosen as /3 = 
(a l , a2 , a3, el , e2, e3, e4)' = (0 .3, 0.5, -0.5, 0.6, 0.4, 0.5, 0.2)' and for selected value 
of the variance components a~ = 1.0 and a; = 1.0 when ¢ = 0.3. 

a2 
€ 

a2 

1.0 1.0 

(a) ML estimates of the regression parameters 

Quantity Regression parameters 
a 1 a2 a3 e1 e2 e3 

SM 0.294 0.494 -0.507 0.597 0.402 0.506 
SSE 0.366 0.124 0.369 0.203 0.121 0.193 

(b) ML estimates of the variance and correlation parameters 

Quantity Variance and correlation 

1.0 1.0 SM 
SSE 

0.841 
0.057 

a 
1.930 
0.256 

e4 
0. 199 
0.246 
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The results based on 500 simulations are presented in Table 3.10 by considering 

random effects are independent , providing satisfactory results. 

Table 3.10: The SMs and SSEs of the ML estimates of the regression and 
scale parameters with true regression parameter values chosen as /3 = 

(at , 0:2, a3, el , e2 , e3, e4)' = (0.3 , 0.5, -0.5, 0.6, 0.4, 0.5, 0.2)' and for selected value 
of the variance components CJ~ = 1.0 and CJ; = 1.0 when ¢ = 0.0 

(J2 
€ 

(J2 

1.0 1.0 

(a) ML estimates of the regression parameters 

Quantity Regression parameters 
a 1 a2 0:3 e] e 2 e3 

SM 0.289 0.501 -0.499 0.603 0.408 0.498 
SSE 0.281 0.124 0.222 0.189 0.119 0. 190 

(b) M L estimates of the variance and correlation parameters 

Quantity Variance and correlation 

1.0 1.0 SM 
SSE 0.103 0.260 

0.012 
0.060 

e4 
0.190 
0.228 



Chapter 4 

Spatial Mixed Models for Binary 

Response 

There are situations in practice when binary responses are collected from neighboring 

and hence correlated locations. For example, in a forestry study one may be interested 

to examine the effects of certain suitable covariates on the damage status (yes or no) 

of a tree, perhaps done by insects in a harsh weather, in a selected region of study. 

In fact some authors such as Rathbun and Cressie (1994) have developed a survival 

point process for a long leaf pine forest in Southern Georgia, USA, where survival 

(yes or no) rates were studied over a period of nine years from 1979 to 1987. To be 

specific, we refer to Rathbun and Cressie (1994 Section 5.2) for a spatial temporal 
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binary model. For a given year , this model reduces to the spatial binary model. For 

this case by suppressing the t ime T notation, Rathbun and Cressie's (1994 equation 

(16) ) spatial binary probability model in our notation of previous chapters , may be 

written as 

(4.0.1) 

where vV,.8 = 'rf,.8 (Xs , lls,j,. -Ssjs11 < d* , r =/= s, T , S = 1, · · · , 5 ; j ,. = 1, ·· · ,n,.; Js = 

1, · · · , n 5 ), NI,"J, is the binary response of the .J;h member of the Tth family, W,.5 is 

a known function say, T}rs of covariates ( X 8 ) from other locations belonging to f s, 

these locations in f s being correlated with the locations belonging to f ,. depending on 

the distance criterion ( < cl*) . Note that unlike t hese authors, we have denoted the 

responses by y,,. (r = 1. · · · , S) and in our notation f ,. is t he r th family consisting of 

n,. members. Thus y,. = NJ,.1 , 111Tl being the binary response for the first member of 

the T th family. However instead of W,.8 we will use a. linear function of random effects 

from the f ,. family to influence y,. ( on top of x,.) and write 

r =/= s (4.0.2) 

where some of the components of ;y~(s) = (1r-l(s) > · · · , 1mr(s)) for example, suppressing 

the subscript (s), ;y,.]r may be correlated with some components of ;y~(r) = (1sl (r), · · · , 1sn_, (,.)), 
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say ;y,"J,. depending on the distan ce between the .7~" member of the Tth family (j,. E i,.) 

and ]!" being the member of the sth family (js E i s) of locations whether dj,.J. ::; d* or 

dj,j, > d*. Note that using 1r·(s) in the formula for P (Y,. = 1) is justified because we 

are interested to compute all possible pairwise correlations, s being another location 

and the common random effects between T t h and s th locations will cause the corre-

lation between y,. and Ys· Following (4.0.2) we may write the model for the binary 

response Ys from the sth location where a family i s formed at this sth location. To be 

specific 

P(Ys = 1 I i s, J,.) = [ 1 ] , 
1 + exp x~,6 + Fs 1~,1s(,.) 

[
'a 1 ,_ ] 

exp Xs fJ + Fs I ns l s(r) 

(4.0.3) 

L W * 1 
I - d W * 1 

I - H T' h d h d' 'b . et r·(s) = ~ 1n,. /-r(s) an s(r·) = Fs I n, l s(r·) . vv lt regar to t e lStn utwn 

of the random effects we use the same assumpt ion as for spatial linear mixed model 

(2. 1.7). Thus by (2.1.8) - (2.1.IO) we write 

(4.0.4) 

and 

( 4.0.5) 
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In the special case when pairwise random effects are equi-correlated, that is, <hi: = ¢, 

for Jr f j~, t his variance reduces to 

(4.0.6) 

Furthermor , the linear functions of the random effects defined for the rth and sth 

locations, namely W,~(s) and W s*(T) are correlated and for the special equi-correlated 

random effects their covariance, by (2.3.16), has the form 

4.1 B asic Properties 

For convenience we consider the standardized spatial linear function 

W * 
·r(s ) 

w,·(s) = --,-, 
*2 

CTTr 

(4.0.7) 

(4. 1.1) 

where cr;,. = var(W;(s) ) = cr~ [1 + (nr- 1)¢] as in (4.0.6), and rewrite the probability 

function ( 4.0.2) as 

exp [ X~.(3 + cr;.} Wr(s) J 
P(Y,. = 1 I fn f s) = [ 1 ] 

1 + exp x;.f3 + cr,7 w ,.(s) 

(4. 1.2) 

where W,·(.s) rv N(O, 1). 
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Before proceeding towards the development of estimation techniques for the param-

eters {3, CJ~ and ¢ involved in the binary mixed model (4 .0.2),(4.0.3) and (4. 1.2) we 

provide the basic proper ties such as the conditional means variance. and covariances 

in Section 4.1.1 and corresponding uncondi tional first and second order moments in 

Section 4.1.2. Note that these marginal and product moments of order two are help-

ful in understanding the mean and correlation structures of the response under the 

model, and along with the product moments of order three and four, they may be 

exploited to develop the desired GQL estimation approach for regression and scale 

parameters. The later product moments of order three and four are discussed in 

Section 4.2.5 in the context of estimating the scale parameters CJ~ and ¢. 

4.1.1 Conditional First and Second Order M oments 

In notation u ·ed 111 (4.1.2), we write the conditional moments as m the following 

lemma. 

Lemma 4 .1. 1 Conditional on vV,·(s), that is conditional on th random effects in-

volved in J,., the mean and the variance of t he response y,. are given by 

= 1r;(w,.(s)), (say) (4.1.3) 
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and 

(4.1.4) 

Next condition on both l¥ ,.(s) and W s(r-), that is , conditional on the random effects 

involved in j~. and fs, the covariance between Yr and Ys for T "=/: s is given by 

* * * * Jf,,. 7r s - 7r.,. 7r s 

0. (4.1.5) 

4.1.2 Unconditional First and Second Order Moments 

The corresponding unconditional mean, varian ce and covariance are given m the 

following lemma: 

Lemma 4. 1. 2 By (4.1.3) the unconditional mean and variance of the spatial binary 
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response y,. are given by 

E(Y,.) 

f n,~(W,.(s))<.I>(W,(s) )dW,.(.s) 

7f,. = ~t., .' 

and 

var(Y;.) [E(Y,.) ]2 

Because Y,. is binary, E (Y,.2) = E (Y,.). Thus 

var(Y,.) = E (Y,.) - n; 
2 

7f,. - 7f,. 

99 

( 4. 1.6) 

n,.( l - n,.) (4.1.7) 

where, <I>(.) in ( 4.1.6) is the standardized normal density. ote that this integral in 

(4.1.6) i difficult to evaluate. However, there exists a simulation approach (Jiang 

(1998), Sutradhar (2011) p. 123) as well as a binomial approximation approach to 

solve this integration. Because the generation of the standard normal variable, namely 
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Wr(s ) rv N(O, 1), is simple, we follow the simulation approach to compute the expec-

tation in (4. 1.6). 

Let W,.(s)(j) denote the yth (j = 1, · · · , J ) simulated value for W,.(s), where J is 

large enough such as J = 500 or more. We may then approximate t he mean in ( 4.1.6) 

as 

E(Y,.) 

'Tr r. ( 4.1.8) 

and hence the approximate variance in ( 4. 1. 7) reduces to 

var(Y,.) 7f,.(1 - 7f,.) CJ,.,., (4.1.9) 

Lemma 4.1.3 The unconditional covariance between two spatial responses y,. and 

Ys from locations r and s ( T #- s ) is given by 

COV (Y,. , Ys) 

(4.1.10) 
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where 

Ars E(Y,.Ys) 

j exr[x;fl +<r;}~d'l ] exp [x:,fl + u;}~*l ] 
1 + exp [x~,B + O';,?wr(s)] 1 + exp [x:,,e + cr;l1¥s(r)] 

;f;(Wr(s), Ws(r) )dW,·(s)dWs(r), 

;f;(vV,.(s), Hls(r·)) being the bivariate normal density for vV,.(s ) and W s(r), where 

and correlation between Wr-(s ) and W s(r) is given by 

(
W* W* ) r·(s) s(r· ) 

corr - -, , - -1 
*2 *2 cr,.,. O'ss 

*/ *.!. cov (W,~(s) ' w;(r-) ) , 
2 2 

0',.,. 0' ss 

by (4.1.1 ). It then follows by (4.0.6) and (4.0.7) that 

I l 

[ * * ]2 0' ,.,.0' ss 

101 

(4.1.11 ) 

(4.1.12) 

which is same as the corr ( W,~(s) , Ws*(r)). Note that similar to ( 4. 1.8) A,.s in ( 4. 1.11) 

can be approximated as 

(4.1.13) 
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where 

( 
W .. (sl ) rv N2 r ( O ) , ( ~ p;, ) l 
Ws(r-) 0 Pr-s 1 

(4. 1.14) 

yielding 

(JTS (4. 1.15) 

4.1.2.1 Generation of two Correlated Standardized Normal Values 

Let 

(4.1.16) 

we now find 

(4.1.17) 

I I 

such that L: {r-s)L:{r-s) = I:(,·s) · Let T = a + d = 2, g2 = 15 = ad- be= (1 - p;;) > 0 and 

t2 = T + 2g = 2 + 2J1 - p;,
8

• It then follows ( Somayya (1997) ) that 

a + g 
lu = 

t 

1 + J 1 - p;.; 

1 + J1 - p;.; 
2 

(4.1.18) 
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ll2 = 
b p;s 

l21) (4.1.19) - = 
[2{1 + J1- p;.;}] 

= 
t 

and 

l22 
d+g 1 + J1- p;; 
-- = 

t [2{1 + J1 - p;n] 

= 
1 + J1 - p;.; 

ln. ( 4.1.20) = 
2 

Consequently 

( ~ ) [( ) l ~r(s) 0 
rv N2 ' h ' 

~s(r) 0 

(4.1.21) 

implying that 

( 

~c(>) ) 

\il s (T) 

(4.1.22) 

where l11 , l 12 and l22 have the formulas as in (4. 1.18) , (4.1.19) and (4.1.20), respec-

tively. 
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4.1.2.2 Computational Formula for A,.8 

Thrning back to (4. 1. 13) and by using (4.1.22) we compute >.,.8 as 

>.,. 
1 J exp [ x~.,6 + (J ;.J { ln w ,.(s) (j) + ll2 w s{!-) (.j) }] 

J ~ 1 + exp [x~,6 + CJ;J {t11 W,.(s)(j ) + l12Ws(r·)(.j )}] 

exp [ x~,6 + CJ ;_j { l1 2 Wr-(s) (.j) + l 11 Ws(r-) (.j) } J 

1 + exp [ x~,6 + (J ;i { ll2 w ,.(s) (j ) + lu w s(T) (j)}] 
( 4.1.23) 

where W,.(s) (.j ) rv N(O, 1) and W8 (,.) (j) rv N (0.1), and also W,·(s )(j ) and W 5 (,.}(j) are 

independent . 

Remark that when the parameters ,6, CJ~ and ¢ are known or estimated , CJ.;,. , CJ;8 , lu , 

and l12 become known. Then the computations for if,. by (4.1.8) and A,.s by (4. 1.23) 

are computed by generating two sets of independent normal values, namely Wr-(s}(j) 

and w 8(T) (.j ) for j = 1, . • . l J . 

4.2 Estimation for Correlated Random Effect Based 

Parametric Spatial Mixed Model 

Recall that the present spat ial binary response model ( 4.1.2) involves the regression 

parameter vector ,6, the individual random effects CJ~, and the pairwise correlation pa-

rameter ¢ . All these parameters are present in the means, variances and covariances 
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of the binary response model. To be specific , we have computed the uncondit ional 

mean, that is, E(Y,.) ~'if,. by (4.1.8) for all T = 1, · · · , S and the unconditional co-

variance namely cov(Y,., Ys) ~ >.,.8 - 7f,.7f8 = (i.,.8 by (4.1.15), where these formulas 

contain /3, CJ~ and ¢. Note that for independent familial binary models, the associated 

parameters were consistently and efficiently estimated by using the generalized quasi-

likelihood (GQL) approach, see for example, Sutradhar (2011, Section 5.2.3). In the 

present setup, the neighboring families are correlated and far distant familes would 

be uncorrela ted (independent). However , because the correlation structures among 

the members of t he same family as well as between the members of the neighboring 

families are constructed in the last section, we exploit them here and following Su-

traclhar (2011), develop the GQL approach for the estimation of /3 , CJ~ and ¢. More 

specifically in the following three subsections, we demonstrate how to develop the 

marginal GQL estimating equations for the parameters. T hese marginal equations, 

for example, the marginal estimating equation for f3 will be solved by assuming that 

other parameters CJ~ and ¢ are known. Similarly the marginal estimating equation 

for CJ~ will be solved by assuming that f3 and ¢ are known, and so on. 
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4.2.1 Marginal GQL Estimation for f3 

Because the regression parameter vector /3 is of our main interest and because a7..,. is 

a known function of 7r,., it is sufficient to exploit the first order responses {Yr· , r = 

1, · · · , S} to estimate /3 involved in {'irr· = E (Y,.) , T = 1, · · · , S}. Consider 

y (yJ ,Yz, · · · ,ys)' , (4.2. 1) 

with 

E(Y) 7f (- - - )' 7fJ .. . 7f .. . 7rs 
' ) T) ) . 

(4.2.2) 

Next because 

(4 .2.3) 

where ars is constructed in (4.1.15), following Sutradhar (2011, Section 5.2.3) and for 

known 0'~ and rjJ, we solve the GQL estimating equation for /3 given by 

EJ'ir'- - 1 -
8/3 2: (y - 7r) = 0. (4.2.4) 

Remark that as mentioned above, Sutradhar (2011, Section 5.2.3, equ. (5 .52)) has 

constructed the GQL estimating equation for independent families where binary re-

spouses from the members of a given family were correlated . In the present spatial 

setup, unlike Sutradhar (2011 Section 5.2.3) the binary responses from the neighbor-

ing families are likely to be correlated. Thus, in general, families are not treated as 
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independent to each other. However the far distant families would be independent. 

Because when the location Tis far away from the location s, that is, s >> T , the far 

distant families namely fr and ! s will have nrs = n,.s = 0. Consequently, in many 

practical situations, the I: = var(Y) will have a band pattern. That is, for s > > T, 

(irs becomes zero, making a large number of off diagonal with zeros. This makes 

the inverse of t he I: matrix (I:-1) manageable, even though I: is a large dimensional 

( S x S) matrix. 

Let !JcQL be the solution to the marginal GQL estimating equation ( 4.2.4). This 

solution may be obtained where [·](t) denotes that the expression within the square 

brackets is evaluated at (3 = !JcQL(t) , the estimate obtained for the tth iterat ion. In 

(??) the derivative matrix ~~ can be computed by using the formula for ~; from 

(4.1.8) for all T = 1, · · · , S, that is, 

~~- = ~ t 7r;(Wr(s)(j))[l- 7r;(Wr(s)(j))]xr- . 
j = l 

(4.2.5) 

Note that the GQL estimator for (3 satisfying ( 4.2.4) is consistent because E(Y) = 1f 

which makes the estimating equation ( 4.2.4) unbiased. Furthermore, because~ is the 

true covariance matrix of Y , t he (3 estimator will also be more efficient than any other 

- -
estimators t hat uses ~ = I or a working version of~-
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4.2.2 Marginal GQL Estimation for 0'; 
For the estimation of 0';, we exploit all lag zero (squared) and lag one (pairwise 

product) second order responses. Let 

( 2 2 2 )' UJ = y 1 , ... , y.,. , . . . , y S (4.2.6) 

and 

l£2 = (y,y2, · · · ,y,.y,.+l, · · · ,Ys-IYs)', (4.2.7) 

where Yr-± I are the responses from the adjacent neighbors of the rth location. Because 

y?, = y,., we write u 1 = y = (y1, · · · , Ys.Y. Further let 

u (4.2.8) 

with 

E (U ) = A (4.2.9) 

where A1 = E(U,) (1T1 , ··· ,7Ts)' and A2 = E (U2) = (>.", 2,· ·· , >-"s- I,s)' . Suppose 

that we can compute or approximate the covariance matrix for U . Let D = cov(U) 

denote this matrix. Then for known (3 and ¢ we write the second order based GQL 

estimating equation for 0'; as 

( 4.2.10) 
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where 7T,. in ,\1 has the formula given in (4.1.8), and A.,.5 in A2 has the formula given 

in (4.1.23) . Note t hat both 7T,. (r- = 1, · · · , S) and >:,.5 (r- =f. s, T , s = 1, · · · , S) 

are functions of (3, (}~ and ¢. However the estimating equation (4.2.10) requires the 

derivatives of 7T,. and >:,.s with respect to (/~ only. These derivatives are given in Sec-

tion 4.2.4. Note that Din (4.2.10) is constructed in Section 4.2 .5. 

Let ;~GQL be the solution to the marginal GQL estimating equation (4.2.10) . This 

solut ion may be obtained by using the customary ewton Raphson method. Given 

that value of ;~GQL(t) at t he tth iteration, ;~GQL(t + 1) is obtained as equation 

[ - -l-l [ - l ~2 - ~2 8>-' - 1 a>. ax - 1 -
(l'YGQL(t + 1)- (l"'GQL(t) + 8(}2[2 8(}2 8(}2[2 (u - ,\) 

"( "( (t) "( (t) 

(4.2.11) 

where [·] (I) denotes that the expression within brackets is evaluated at ;~GQL(t). 

4.2.3 Marginal GQL Estimation for ¢ 

For t he estimation of ¢ we use the same base statistic u given in ( 4.2.8) and its mean 

as in (4.2.9). Then for known (3 and(/~ we write the GQL estimating equation for ¢ 

as 

(4.2. 12) 
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which is similar to ( 4.2.10) forO"~, but these equations are different because the deriva-

tives with respect to ¢ and O"~ are different . 

Let ¢cQL be the solution to the marginal GQL estimating equation (4.2.12) . This 

solution may be obtained by using the customary Newton Raphson method. Given 

that value of ¢cQL(t) at the tth iteration, ¢cQL(t + 1) is obtained as equation 

(4.2.13) 

where [·](t), denotes that the expression within brackets is evaluated at ¢cQL (t) . 

4.2.4 

4 .2.4 .1 

Computation of D erivatives 

ax 
Computation of a 2 

0"-y 

ax 
The derivative vector a 

2 
involved in the GQL estimating equation ( 4.2.10) can be 

0"-y - -
ax ax ax 

computed by using the derivatives a ~ and a ~. However the derivative a ~ can be 
0"-y 0"-y 0"-y 

computed by obtaining the derivatives using aa:;r; (r = 1, · · · , S) only, where 1fr is 
0"-y . 

given by (4. 1.8). Similarly the derivative aa>,~ can be computed by using the formula 
0"-y 

for aa>,r; from (4.1.23) for all T =f. s, T, s = 1, · · · , S . 
0"-y 



4.2 ESTIMATION FOR CORRELATED RANDOM EFFECT BASED PARAMETRIC 

SPATIAL MIXED MODEL 111 

87f,. 
Computation of 

8 2 
: 

(J'Y 

otice that in (4.1.8), CJ~ is involved only in CJ;,. , by (4.0.6) which has the formula 

CJ;r- = CJ~ [1 + (n,.- 1)¢]. It then follows that 

81f,. 1 ~ *( ( '))[ *( ( ') )] [ ( ) ] Wr(s)(J ) ( ) 
0(J2 J L.,; 1f,. w,·(s) J 1- 7f.,. w,·(s) J 1 + n .. - 1 <I> *.!. . 4.2.14 

'Y j = l 2CJ .. i 

. 8>-.,.s 
ComputatiOn of -

8 2
: 

(J'Y 

For convenience, using ( 4.1.23) we rewrite 3:,.8 as 

where 

exp [x~,B + CJ.~J { tuWr-(s)(j) + l12Ws(,.)(j )} J 

1 + exp [ x~.,B + CJ;J { l , , W,.(s) (j) + l12 vVs(r· ) (j)}] ' 
and 

exp [ x~,e + u.:i { t,2 w .. (s) (J) + z11 ws(r) (j)} J 

1 + exp [ x~,B + (J :i { l12 W,.(s ) (j) + lu W s( r) (j)}] . 

(4.2.15) 

(4.2.16) 

(4.2.17) 

ote that q1J in (4.2. 16) and q2j in (4.2.17) depend on CJ~ only through u;,. 

u~ [1 + (n .. - 1)¢ ]. This is because l 11 and l12 involved in these functions depend on 

p.;
8 

((4.1.18)- (4.1.20)) which is free frorr1 u~. For clarity we rc-cxpress CJ~ as follows 
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which is a function of the ¢ parameter only. 

I 

[ O";,.O";sJ2 
n.,.s [1 + (nrs - 1 + fi.,. + fis)<P + n,.s<Pl O"~/ ,;n;:n; 

I 

[0"~( 1 + (n,.- 1) ¢)0"~( 1 + (ns- 1)¢)] 2 

n.,.s [1 + (n,.s- 1 + n,. + ns)<P + n,.s<Pl I ..;n;n; 
I 

[1 + (n,.- 1)¢)(1 + (ns- 1)¢)]2 

(4.2.18) 

It then follows that 

(4.2 .19) 

and similarly 

It then follows from (4.2.15) that 

~ J 
OA,.8 _ ~ """ [EJq11 . 
00"2 - J 6 00"2 Q2] 

~ j=l ~ 

(4.2.21) 

aq1 · aq2 · 
where ~ g and ~ g are given in (4.2.19) and (4.2.20) respectively. This completes 

UO" ~ UO" ~ 

the computation for the derivative required in the GQL estimating equation ( 4.2.10) 

forO"~. 
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8>..' 
Computation of o¢ 4.2.4.2 

ax 
Next the derivative vector o¢ involved ~n the G~L estimating equation ( 4.2. 1~) can 

ax ax ax 
be computed by using the derivatives a¢ and a¢. Further the derivative a¢ can 

be computed by computing the derivatives using ~~- (r = 1, · · · , S) only, where 

ax 
if,. is given by (4.1.8). Similarly the derivative a¢ can be computed by using the 

OArs 
formula for o¢ from (4. 1.23) for all T =/= s, T, s = 1, · · · , S . 

0Jrr
Computation of o¢ 

Notice that in ( 4.1.8), ¢ is involved only in O";,., by ( 4.0.6) which has the formula 

O".~r- = 0"~ [1 + (nT - 1)¢] . It then follows that 

81f,. 
8¢ 

1 ~ *( ( ')) [ *( ( '))] [( ) 2] w,·(s) (j) ( ) J L 1r,. W,·(sl J 1- 1r,. W,.(s) J n,.- 1 O""~ * 1 . 4.2.22 
j= l 20",./ 

· 8>..,.s 
Computation of o¢ : 

Note that q1J and q2 j are involved in :\,.5 in (4.2.15) contains O";,., 0";8 , lu , and l12 which 

all are function of ¢ . For convenience, we compute the derivatives of these functions 

with respect to ¢ . T hat is, 

( 4.2.23) 
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Furt her 

with 

= 

!:::! [ * *' 2 
U 11 P,.sP,.s 
8¢ J1 - p;; 1 + J 1 - p;.; 

l~ 1 (say), 

8¢ 
[n,.s - 1 + n,. + ns + nrsll vn;n; 

1 

[(1 + (nr - 1)¢)(1 + (ns- 1)¢)]2 

n,.s [1 + (n,.s- 1 + n,. + ns)¢ + n:,.s¢] [(ns - 1)J1 + (n,. - 1)¢] 

~(1 + (n,.- 1)¢) (1 + (ns- 1)¢) 

(4.2.24) 

(4.2.25) 

n,.s [1 + (n,.s - 1 + n,. + 'i'is)¢ + n:,.s¢] [(n,. - 1)J1 + (ns - 1)¢] 
- ) (4.2 .26) 

~(1 + (n,. - 1)¢) (1 + (ns - 1)¢) 

and 

2 ( 1 + J 1 - p;;) 
l~2 (say), 

for which p;~ may be replaced by using (4.2.26). It then follows that 

( 4.2.27) 

(4.2.28) 
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and similarly 

( 4.2.29) 

It then follows from (4.2.15) that 

- J 
8>-rs _ !_ "' [8qlJ . . 8q21 ] 
8¢ - J L 8¢ Q2J + q,J 8¢ 

J=l 

(4.2.30) 

8ql .' 8q2 . 
where 

8
¢ and 

8
¢ are given in ( 4.2.28) and ( 4.2.29) respectively. This completes 

the computation for the derivative required in the GQL estimating equations ( 4.2 .12) 

for ¢ . 

4 . 2. 5 Construction of the Covariance Matrix n 

We write the covariance matrix n = cov(U) as 

(4.2.31) 

where :E = var(Y) , P = cov(U1 , U2) and M = cov(U2) . For clarity, we write the 

formulas for these matrices in the following sub sections. 
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4.2.5.1 Construction of L: 

Recall that (4.1.9) for 1· = 1, · · · , S, the diagonal elements of the I: matrix is given 

by 

CY7-r = var(Y,.) = 7f.,.(1 - 7f.,.) . (4.2.32) 

Similarly by using (4.1.15), forT =/= s, the off diagonal elements of the L: matrix is 

given by 

( 4.2.33) 

where 7f.,. (r- = 1, · · · , S ) in both (4.2.32) and (4.2.33) is comput d by (4. 1.8) and Ar·s 

in ( 4.2.33) is computed by ( 4.1.13). 

4.2 .5 .2 C onstruction of P 

The construction of the P matrix requires the components of cov(Y.,., Y,Y,+J) for all 

values ofT FLnd s. 

C ase 1: For T = s 

cov(Y,., Y.,.Yr+ l) 

- -
Ar·,,·+l - 7f,.A.,.,,.+l 

>.,.,,+ I (1 - 7f,.). (4.2.34) 
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Case 2 : For T =/= s , one requires the computation of the distinct third order moments 

given by 

8,.s,s+ 1 - 1f,.>-s,s+ 1 (say). (4.2.35) 

Note that t he exact computation for the third order moments Ors,s+l , similar to but 

different than (4.1.23), requires the generation of three correlated standardized ran-

dam effects. Hence this approach would be naturally complicated . However, as the 

consistency of the estimator does not require the exact covariance matrix D, some 

authors such as Prent ice and Zhao (1991) [see also Sutradhar (2011), section 8.3.1] 

have used a normal approximation to the binary data where binary responses are 

treated to be normal but with correct means, variances and covariances. We follow 

this approach and derive o,.s,s+l from 

Thus, 

(4.2.36) 

where 1f,. and (3,.
5

, for example, are correct means and covariances for the binary 

responses. This completes the construction of S x S(S -1) / 2 dimension of P matrix. 
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402.5.3 Construction of M 

The computation of the elements of the S(S + 1) / 2 x S(S + 1)/ 2 matrix M requires 

the computation of cov(Y,OY,0+1 , YsYs+d for all T, s = 1, 0 0 0 , S - 1. 

Case 1: ForT= s , we obtain 

- -
Ar,T+ 1 ( 1 - A,o,,.+ I) ( 402037) 

Case 2: ForT -::/= s , we compute the fourth order moments given by 

( 402038) 

Under the normality assumption, similar to the approach of third moments, we fol-

low Prentice and Zhao (1991) [see also Sutradhar (2011 , section 80301 )] and derive 

~r,r+ 1 ,s,s+ 1 from 
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Thus, by using (4.2.39) , we then obtain the fourth order product moment under 

normality as 

~T,r+ l ,s,s+ l 

(4.2 .40) 

This completes the construction of the S(S + 1)/ 2 x S(S + 1)/2 matrix M. 



Chapter 5 

Concluding Remarks 

In spatial regression setup, the responses from the neighboring locations are bound to 

be correlated. It is important to take such correlations into account while estimating 

the regres ion effects of t he covariates on the responses from the locations. Our litera

ture review indicated that the existing studies modeled the spatial correlations mainly 

through temporal type (time series oriented) dynamic relationship. In this thesis we 

proposed a unified random effects approach to model the spatial correlations. The 

correlation models are developed in such way that even if the random effects from 

different locations are independent, the responses from neighboring locations still 

would be correlated. Under specialized linear sequence of spatial locations, we have 

examined the performance of the well-known MM and ML approaches in estimating 
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the regression effects and variance of the random effects. Note that in this problem, 

correlations were mainly functions of the number of members nr- (in the T th family) 

and the number of common members n,.8 (between rth and sth family). It was found 

that the estimates were in complete agreement with the true values of the parameters. 

When random effects are pairwise correlated ( equi-correlated), we have developed 

a scheme how they can be generated and incorporated in the correlation model for 

the responses. We have generalized the correlation model for linear data to the binary 

data case. As far as the inference is concerned , all necessary computations are shown 

in order to develop a consistent and efficient GQL approach. 

Note that the proposed new correlation models may be applied for efficient real life 

data analysis both for linear and binary cases. Furthermore, it would be useful to 

blend this spatial correlation modeling concept with available temporal correlation 

model for temporal data, in order to develop familial longitiudinal type combined 

correlation models. However, these are beyond the scope of the present thesis. 
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