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LOW-POWER WIRELESS DISTRIBUTED SIMD ARCHITECTURE CONCEPT: 

AN 8051 BASED REMOTE EXECUTION UNIT 

Vyasa Sai, PhD 

University of Pittsburgh, 2013 

 

Power has become a critical aspect in the design of modern wireless systems, especially in 

passive device nodes such as Radio Frequency Identification (RFID) tags, sensor nodes etc. 

Passive RFID tags in particular use simple logic that is used to respond with a unique code or 

data to identify objects when queried by an interrogator, whereas wireless passive sensor devices 

use microcontrollers for sensor data processing. There is a need for a Minimal Instruction Set 

Architecture (MISA) for such passive nodes with regard to low power. In this context, passive 

node capabilities need to be explored, possibly to suit target applications, in order to enable more 

than just identification and perhaps less than those of a conventional microcontroller Instruction 

Set Architecture (ISA).  

 

This dissertation research demonstrates a low-power wireless distributed processor 

architecture concept. The data and program instructions are stored on a powered interrogator 

providing wireless supervisory control for the remote passive node that has a basic processing 

core called the remote execution unit (REU). The interrogator and the passive node (REU) 

combination can be viewed as a complete processor or as multiple processing units forming the 

basis for a wireless distributed Single Instruction Multiple Data (SIMD) processor.  
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This research introduces and investigates the REU architecture using an 8051-MISA with 

the goal of reducing power consumption of the system. A novel low power data-driven symbol 

decoder-CRC along with the 8051-MISA based execution core design form the frontend and 

core part of the REU architecture. Clocked and asynchronous digital logic implementations of 

the REU core design are presented and correspondingly the power, area and speed comparisons 

are also provided.  

 

Lack of strong support by commercial CAD tools is a major hurdle for synthesis of 

asynchronous designs. This research also presents a high-level design flow used to implement 

the asynchronous logic for the REU using traditional clocked CAD flows. This research work 

demonstrates immense potential to realize low power wireless passive sensor nodes for 

biomedical, automation, environmental, etc., applications especially while providing the basis for 

a programmable passive remote unit for distributed processing. 
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1.0  INTRODUCTION 

Wireless sensor networks (WSN) are generally made up of a set of autonomous multifunctional 

sensor nodes distributed throughout a specific environment for monitoring real world data. 

These sensor nodes are used to collect environmental data and transfer this data to the user 

through the network. Besides collecting raw data, a node may also need to perform 

computations on the recorded data, eliminating the need to transfer raw data to a central server 

for each measurement [1], [2].  

 

Consider a scenario with many raw sensor data readings that must be sampled 

simultaneously so as not to skew the measurements in time and correspondingly reducing the 

possible control bandwidth. The number of sensors required may be very large for some 

applications, e.g. environmental monitoring. By first principles, this situation is illustrated in 

Figure 1.1 for a set of n sensor nodes. In Figure 1.1, ε and ∆ represent the data transmit time 

from each sensor to the central server and the preprocessing or conditioning time for the data at 

the individual sensors done in parallel respectively. In many cases, the raw sensor data must be 

preprocessed or conditioned before being used in system calculations in order to reduce the 

transmitted data. The raw data readings are compared to a threshold value in order to determine 

whether this data needs to be transmitted or not. If the raw sensor data reading is above the 

threshold value, it is transmitted to the central server instantaneously; else an aggregate value is 

vys1
Typewritten Text
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transmitted that includes the current reading along with the other data readings below the 

threshold[1].The transmission time (nε) especially in such a scenario is significantly reduced as

opposed to preprocessing done at the central control where each and every sensor reading needs 

to be transmitted.  

 

    

Figure 1.1:  Timing Chart for a Sensor Network 

 

This decrease in the amount of transmitted data in turn reducing the frequent radio 

transmissions is critical in increasing the power efficiency of the node [1]. There are many 

scenarios, in which the sensor data at each node is preprocessed or conditioned before the 

central server can further use it e.g. biomedical, physiological monitoring, environmental 
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monitoring, etc, [1], [2]. The main design  constraint in such applications is the finite power 

budget for each wireless sensor node, as they require continuous and detailed monitoring over a 

long period of time. 

1.1 OVERVIEW OF POWER TERMINOLOGY AND LOW POWER TECHNIQUES 

Power has become a critical aspect in the design of modern processors and especially in 

wireless sensor devices such as embedded controllers, etc. The evolution of wireless devices 

with respect to size, weight, and battery life has enhanced their use in wider and more critical 

application spaces. For most portable devices, the integrated circuit (IC) components that form 

the digital processor are known to consume significant portions of the total system power [3]. 

High performance processors used in devices lead to the use of high clock frequency based 

designs that in turn lead to high power consumption. The IC typically dissipates power in the 

form of heat causing circuit degradation and operating failures. With the emergence of 

applications for battery-operated and battery-free portable wireless devices, thermal 

considerations and reliability issues increase and thus, there is a corresponding increased need 

for low power designs. 

 

Power consumed by digital CMOS circuits can be broadly classified into two types: 

Static Power Consumption and Dynamic Power Consumption as shown in equation (1). 

The power consumption equation is given as follows [3]: 

 

 

Ptotal = Pstatic + Pdynamic (1)
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Static power (Pstatic) also known as leakage power is consumed when the circuit is said 

to be inactive or static or in a non-switching state. The main source of static power is due to the 

leakage of current from supply rail to the ground via various paths in the circuit. The leakage 

current can arise from substrate injection, sub-threshold effects, tunneling effects, etc. Leakage 

power is also influenced by nanometer CMOS technologies. 

 

Switching power and internal power together add up for the dynamic power 

consumption (Pdynamic) of the circuit. Typically the dynamic power is dissipated when the circuit 

is active or in a switching state. Switching power dissipated is due to the charging and 

discharging of the load capacitance of the circuit. Internal power dissipated is due to the 

charging and discharging of the internal nodes of a cell. Also when both the PMOS and NMOS 

transistors are ON, short circuit current dissipates (short circuit) power that also contributes to 

the internal power consumption. Short circuit power is influenced by input transition times and 

the size of the transistors. For high performance systems, dynamic power is known to be the 

major portion of the total power consumption. The dynamic power can be described as follows 

[4]: 

 

 

Where switching activity is represented by α, CL is the load capacitance; Vdd, fclk, Ipeak, 

and tsc shown in equation (2) represent the supply voltage, frequency of the system clock, total 

internal switching current, and time duration of the short circuit current, respectively. 

 

 

Pdynamic = CLVdd
2 fclkα + tscVdd Ipeak fclk (2)
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A short overview of low power design techniques is presented in the following 

paragraphs. The following circuit techniques are most commonly used to minimize the power 

consumption in wireless sensor nodes [5], [6]. 

 

A significant amount of a high performance processor’s total power is being consumed 

due to the global clock that contributes to the dynamic power consumption. Asynchronous 

designs are increasingly becoming an integral part of numerous wireless sensor networks [7], 

[8], [9], [10] due to their low power advantages. These designs are characterized by the absence 

of any global periodic signal that acts as a clock. In other words, these designs do not use any 

explicit clock circuit, and, therefore, wait for specific signals that indicate completion of an 

operation before they go on to execute the next operation.  Low power consumption, no clock 

distribution, fewer global timing issues, the absence of clock skew problems are the primary 

advantages of asynchronous designs over synchronous designs. 

 

Power Supply Gating is also a low power circuit technique widely used to reduce the 

subthreshold leakage current of the system [11]. This process allows unused blocks in the 

system to be powered down in order to reduce the leakage current. This technique has been 

implemented in the Harvard sensor network system [12]. 

 

A subthreshold operation technique allows supply voltages (Vdd) lower than threshold 

voltages (Vth) to be used for lowering the active power consumption. This technique was first 

used in the complete processor design for wireless sensor networks at the University of 

Michigan [13], [14], [15].  
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1.2 OVERVIEW OF RFID BASED SYSTEMS 

1.2.1 RFID Tag based Systems 

RFID has become a key technology for automatic identification systems as it ensures automatic, 

accurate and real-time information tracking and management. RFID systems consist of tag(s) 

and interrogator(s) equipped with antennas as shown in Figure 1.2 [16]. The basic function of 

an RFID system is to automatically identify a person or an object that is “tagged.” In general, an 

RFID tag is mainly composed of a microchip, and an antenna, which is used for wireless data 

transmission. These tags, upon being queried by an RFID interrogator transmit data over the air 

to reply. The data exchange between an interrogator and a tag is through RF signals. RFID tags 

can be broadly classified based on their power source as Passive or Active tags. Active tags are 

battery powered for carrying out all their on-board processing and data transmissions. The read 

range of active tags is about 100m or greater, and these tags are priced at about $20 or more. 

Passive tags are low cost and battery-free. Passive tags are powered by the impinging RF wave, 

which is also used for communication from an interrogator. The size of a passive RFID 

microchip is very small, about 0.4mm2 [17], [18]. Low cost passive RFID tags are used in 

tracking, supply chain automation, contactless credit cards, human implants, mobile robotics, 

unmanned medical nursing, container safety, etc  

 

One of the well-known small and inexpensive passive RFID tag varieties is the 

Electronic Product Code (EPC). EPC tags are low cost and are designed to identify objects 

using a unique code [19]. These tags have a small amount of on-board memory. They store an 
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index to point to a database that stores information related to the tagged object, such as what is 

on a barcode.  

 

 

Figure 1.2:  General Passive RFID System Architecture 

 

The power consumption of a passive RFID microchip is one of the major limiting 

factors for read ranges of the tags. The basic design blocks of a microchip of an RFID tag 

consist of frontend, digital logic unit, and memory. The digital logic unit accounts for more than 

35% of the power consumed by the entire tag [20], [21]. The input data decoding procedure, 

generally part of the tag frontend, is also a significant source of tag power consumption [22]. 

These tags use a high frequency clocked symbol decoder block to implement the decoding 

process.  

1.2.2 RFID Sensor based Networks 

In general, deployment of conventional sensor networks for environmental monitoring is limited 

due to the active life span of the on-board non-rechargeable power source. The number of 

sensors required may be very large for such an application. The sensors are battery powered, 
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and there is overhead involved for the periodic maintenance of the battery-assisted sensors. 

There has been much research into prolonging the limited lifetime of WSNs through efficient 

circuit, architecture and communication techniques [5], [6]. In summary, the use of a WSN 

system is strictly limited by the battery life of the sensor nodes. RFID-based sensory systems, 

however are extremely useful for maintenance and deployment of many sensor units, but have 

the advantage of being battery-free. In addition to this advantage, the wireless characteristics 

and unique ID aspects of the RFID system are proving to be a great asset to WSN [23], [24], 

[25] for the development of WPSNs. 

1.2.2.1 Wireless Passive Sensor Networks  A WPSN is a non-disposable and cost efficient 

system that operates based on the incoming received power [23], [24], [26], [27], [28]. The 

concept to remotely feed a sensor node on the power from an external RF source has led to the 

emergence of WPSNs. This concept was first introduced to power a passive RFID tag.  It is well 

known that passive RFID design blocks form the basis for passive sensor node architectures 

[29]. Passive sensor node operating frequencies fall under the same industrial, scientific and 

medical (ISM) frequency bands as most RFID applications. The latest trend in environmental 

monitoring applications is to have sensor nodes operating at power levels low enough to enable 

the use of energy harvesting techniques [30], [31]. This facilitates a deployed system, in theory, 

for continuous sensing of a considerable extended period of time thereby reducing recurring 

costs. 

 

Building blocks of a typical RF based wireless sensor node architecture consist of a 

sensing unit, a communication unit, a processing unit and a power source as shown in Figure 

1.3 [23], [27]. The components of a sensing unit, in most cases, include a sensor(s) and an 
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analog-to-digital converter (ADC). A sensor is a device generally used to measure some 

physical quantity such as temperature, light, etc. The ADC is used to convert the typical 

received analog data signal into a digital signal so as to be processed by the microcontroller. 

The processing unit consists of a low power microcontroller and a storage block. The choice of 

the processing unit depends on the type of the power source available to the node. The 

microcontroller processes data, controls, and coordinates other component functionalities. The 

communication unit consists of an RF transceiver module that transmits and receives data 

to/from other devices connected to the wireless network. In the case of a WPSN, the power unit 

mainly delivers the RF-DC converted power to the rest of node units and also stores additional 

power based on availability.   

 

 

Figure 1.3:  General WPSN Node Architecture 

 

The major differences in the architectures of a conventional WSN node and a WPSN 

node are in the hardware of the power unit and the transceiver [23]. The power unit of the 

conventional WSN generally consists of a battery along with a support block called the power 

generator. The power unit for a WPSN node is basically an RF-to-DC converter-capacitor 

network. The converted DC power is used to wake up and operate the node or is kept in a 
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charge capacitor for future usage. A short range RF transceiver, typically a major power 

consuming unit on the node, is used in a conventional WSN as compared to a much simpler 

transceiver for modulated backscattering in the WPSN node [23], [32].  

1.2.3 Power Comparisons of passive RFID nodes 

Table 1.1 presents a current overview of the power consumption of various types of RFID based 

passive nodes. The RFID tag based digital processor design reported in [33], [34] is a 

conventional fixed function IC that is implemented as a non-programmable state machine that 

responds with a hard-coded ID when queried by the interrogator. In [35], [36] the sensor 

integrated passive RFID tag has a fixed ID assigned to each sensor in order to support 

maintenance and field deployment of many sensors. The associated digital processor does not 

support any arbitrary computation and typically reports sensed data in addition to the RFID tag 

functionality.  

 

WISP (Wireless Identification and Sensing Platform) is a battery-free sensing and 

computation platform that uses a low power full programmable microcontroller for enhanced 

functionality of the RFID tag based sensing [37], [38]. In [37], [38] the wireless passive RFID 

sensing design is compliant with the UHF RFID interrogator. Table 1.1 clearly illustrates the 

significant increase in power consumption from a typical RFID passive tag to the 

computationally enhanced passive RFID nodes. In [24], a general-purpose low power 16-bit 

programmable microcontroller (MSP430F2132) is used for managing the entire passive node. 

But the use of full microcontrollers is known to consume significant amounts of power 

especially in the context of passive sensing.  
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Table 1.1:  Power Comparisons of passive node based on their functionality 

 

 

 

 

 

 

 

 

 

1.3 STATEMENT OF THE PROBLEM 

Passive RFID technology is becoming increasingly common in different environments such as 

home, office, industry, hospitals, library, etc enabling quick and anytime access to real-time 

data on uniquely identifiable passive nodes throughout their entire lifetime. Passive RFID based 

sensor nodes such as passive RFID tags and WPSNs mainly deal with the collection or storage 

of data, and transmission of that data back to the interrogator. The interrogator primarily 

collects and processes the data sent by the nodes. Such nodes are typically not programmable, 

as they have conventional fixed function IC’s as their digital processors. This restricts the 

computational flexibility available to the node.  

 

Reference Full-Design 
Type 

Power 
(µW) Comments 

Man (2007) [33]  Passive RFID Tag 3.436* Process: 0.18µm 
Voltage: 1.8 V 

(*Baseband processor) 
Yang (2010) [34]  Passive RFID Tag 0.963* Process: 0.18µm 

Voltage: 1.1V 
(*Baseband processor) 

Cho (2005) [35]  Passive RFID Tag-Temperature & 
Photo Sensor 

5.1 Process: 0.25µm 
Voltage: 1.5 V 

Jun (2010) [36]  Passive RFID Tag-Temperature 
Sensor 

6* Process: 0.18µm 
Voltage:0.8 V 

(*Baseband processor) 
Joshua (2006) [37]  Passive RFID based Sensing 

platform-µC 
5400** 6MHz, 3V 

(**Microcontroller) 
Alanson (2007) [38] Passive RFID based Sensing 

platform-µC 
846** 3MHz, 1.8V 

(**Microcontroller) 
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WPSN being an emerging research area; there is little documentation on all the power 

efficient scenarios applicable to passive sensor devices. In [23], [24], [26], [27] efficient antenna 

designs, low-power transceivers were introduced for WPSNs. But it is not only important to 

have energy efficient front-end and power unit designs, there is also a need to have low-power 

novel processor designs that allow greater ranges for WPSN nodes. In the context of having 

preprocessing done at the sensor side, existing computationally enhanced nodes are known to 

consume considerable power as mentioned in Table 1.1. This limits the performance of an RFID 

system especially with respect to operating ranges. Thus, to create low power passive RFID 

based nodes either to fit the need of any particular class of applications or as a standalone, it is 

desirable to remove or reduce as many of the power consuming characteristics as possible.  

 

Low power IC design optimizations can be achieved at various levels, such as the 

algorithm-level, the architecture-level and the circuit-level. The research vision of this 

dissertation is to build a new generation of architectures for low power applications most of 

which are derived from new notions of distributed computing. Generally, distributed computing 

is mostly interpreted as multiple cores and processors. Serial, single thread processing is not 

viewed as distributed other than in data flow chains with proximate hardware elements.  

 

Single Instruction Multiple Data (SIMD)  is a well know class of parallel computers in 

Flynn's taxonomy [39]. SIMDs have the ability to perform the same operation on multiple data 

simultaneously for processors with multiple processing units. Synchronisation between 

processors is not required. SIMD processing is also a form of vector processing. An add 

operation in a traditional scalar processor would produce a single result by adding up one pair of 
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operands. In a SIMD processor, a single add operation produces multiple sums of independent 

operand pairs on different processing units. Figure 1.4 represents the inherent parallelism in a 

SIMD processing flow. 

 

 

Figure 1.4:  A SIMD Processing Flow 

 

Applications where a single sample produces multiple values, which are operated on at a 

large number of data points can take advantage of the SIMD architecture. Due to the higher 

level of parallelism available in SIMD architectures, instructions can be simultaneously applied 

to all of the data in the processing units within a single operation. Such a conventional SIMD 

class of processor architecture typically has wired implementation of multiple processing units 

that execute the same instruction sequence on different data items. The reconfigurability and 

scalability of processing units in such wired SIMD implementations are not convenient. 

 

This research, however, will distribute single thread processing to a wirelessly 

connected digital processing core of a passive node executing sequential instructions as a single 
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thread paradigm. A conceptual distributed architecture with a reduced instruction set, combined 

with low power circuit techniques, will be introduced and investigated with the goal of reducing 

the power consumption of the system. These low-power considerations for the processing core 

will also be based on factors such as target application and trade-offs that can be made as long 

as the functionality required of an application is met within a given time constraint. There is a 

need for novel architectures that take into account such factors, especially for passive device 

applications.  

 

The low-power distributed architecture will consist of splitting the processor architecture 

of a node into two basic design blocks to support multiple remote passive processors with 

wireless reconfigurability. Each of the multiple passive processors is represented as a wireless 

node (WN), in Figure 1.5. The digital processing core of the WN will be the remote execution 

unit (REU), which will consist of instructions that provide basic flexibility in manipulating data. 

The other block forms the interrogator (active block), which will act as the control unit for the 

REU that supports the types of instructions such as decision, branching, etc. The WN will 

wirelessly execute instructions issued by the interrogator. In this scenario, the program to be 

executed by the WN will be stored in the interrogator and the commands will be transmitted to 

the REU one at a time. The interrogator remotely sends instructions to the WN, which are 

accordingly executed and corresponding results are communicated back to the interrogator. 

Thus, the interrogator and the REU based node combination can be viewed as a complete 

processor or as multiple processing units (nodes) forming a wireless SIMD distributed 

architecture class of processor systems.  
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Figure 1.5:  Wireless SIMD Network Architecture 

 

The wireless SIMD distributed processor architecture allows for a flexible wireless 

reconfigurability and scalability of the number of processing units as opposed to a conventional 

wired SIMD system. In other words, the REU based node lends itself a distributed architecture 

based remote node processor(s), which can be replicated to produce a wireless SIMD distributed 

processor system. 

 

As part of the dissertation research, the REU will be implemented in two ways to allow 

comparison especially with respect to power consumption, speed and area. Both the 

implementations will consist of a frontend block for RF communication and a core block as an 

execution unit. The frontend block will be used to decode the input command and check for 
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validity of the received command. Both the REU versions will have the same frontend 

implementation; the major implementation with the difference being the core design. The first 

REU core implementation will be a clocked design that executes instructions based on clock 

pulses provided wirelessly by the interrogator at essentially any frequency from DC to the limit 

of the wireless medium or the technology implementation of the REU. The other REU core 

implementation will be an asynchronous design that uses no explicit clocking mechanism. Both 

the asynchronous and the clocked REU designs will be implemented using clocked CAD tools. 

 

In summary, the main objectives of this dissertation are (1) to develop a low power 

programmable REU core design of the node processor as a wireless distributed architecture that 

operates remotely from the interrogator, and (2) to implement both the asynchronous and the 

clocked REU core designs and correspondingly investigate for comparison of their respective 

power consumptions.     

1.4 OUTLINE OF THE DISSERTATION 

 Chapter 2 introduces the distributed processor architecture concept. A sample instruction 

sequence flow between the interrogator and wireless node (REU) is presented for 

illustrative purposes using 8051 instructions. 

 

 Chapter 3 describes the proposed high-level architectures for the clocked and the 

asynchronous REU designs that include the individual REU front-end and the REU core. 
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This chapter also presents the 8051 subset of instructions chosen for REU design and 

associated concepts needed for the implementation of the REU architecture.  

 

 Chapter 4 presents the high-level design flow using clocked CAD flows that were used 

to design, synthesize, and implement the clocked and the asynchronous REU logic. It 

elucidates the modifications to the traditional clocked CAD flows in order to implement 

the clock-less modules of the REU design. This chapter also presents the post-layout 

simulation and verification results of the frontend, core and the entire REU. It also 

provides a comparison of power, area and speed for both the clocked and asynchronous 

REU core implementations.   

 

 Chapter 5 presents the conclusions and future directions of the dissertation research.  
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2.0  WIRELESS DISTRIBUTED PROCESSOR ARCHITECTURE CONCEPT  

2.1 THE ARCHITECTURAL EMBODIMENT 

Conventional processors have basic blocks such as Control, Memory and ALU connected and 

hard wired as a single processing unit. A conventional processor is basically distributed into 

blocks to support multiple remote passive processors with wireless reconfigurability. A wireless 

SIMD distributed architecture concept for low power applications is introduced in this section. 

The distributed architecture of a conventional processor consists of two blocks namely an active 

block and a WN block as shown in Figure 2.1. Active implies a battery or wired power source. 

The active block (also known as the C&M (control and memory) unit) is always connected to 

the power supply. This block contains major components such as the control and storage units 

that are larger in size and/or consume a considerable amount of power (for example: Controller, 

RAM, ROM, etc). The design of the C&M block can be very flexible as it can be designed as a 

synchronous design block due to constant power being supplied to it. The core of the passive 

block consists of a digital processing core is the REU. This block is not connected to any power 

supply instead uses power extracted from the incoming RF signal from the active block. Both 

the blocks communicate thru RF signals as they can be efficiently transmitted through free 

space. The RF modulated signal from the active block is demodulated for incoming commands, 

and the output is the simple modulation of the backscatter from the antenna. 
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Figure 2.1:  Proposed Distributed Architecture 

2.2 AN APPLICATION SCENARIO 

In an RFID based system, the active block acts as the interrogator and the WN acts as the 

passive tag. A typical RFID interrogator wirelessly transmits commands to the remote passive 

RFID tag, which then executes these commands and responds back to the interrogator [40]. 

Passive RFID tags typically use Application Specific Integrated Circuit (ASIC) design to 

provide logic to respond to commands from an interrogator. The commands from the 

interrogator can be viewed as instructions issued to a digital computer [41]. Thus, the 

interrogator and the tag combination can be viewed as a complete processor or as multiple 

processing units.  This will form the basis of the proposed distributed concept.  

 

The Control and Memory (C&M) is an RF equipped control and storage block and the 

WN block is an REU with minimal storage capacity. The first block is allowed the flexibility to 
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overall be a classical von Neumann or Harvard type architecture. Commands stored on this 

block are transmitted wirelessly to the REU. The intent is to keep the REU block as simple as 

possible so as to maintain low power requirements and/or an effective read range from the 

C&M. Any unnecessary complexity on the passive REU will be moved onto the C&M powered 

block.  One of the main power reduction techniques employed in the proposed REU design is to 

eliminate the need for a clock. The execution rate of the remote processor is to be controlled by 

the C&M block (interrogator).  

 

The focus of the current research is the elements and concepts of the design of a passive 

execution unit that operates remotely and wirelessly from the C&M. The low-power distributed 

architecture will provide the basis for a passive reconfigurable processor with multiple 

execution REU’s [42], [43]. This is a classical single instruction multiple data processor 

architecture as with the ILLIAC [44]. This distributed architecture has the potential for 

developing low power applications in sensor networks, radar, digital signal processing, 

instrumentation, measurement, medical electronics, embedded systems, etc. 

 

A basic state diagram for an RFID tag-Sensor node is shown in Figure 2.2 [35]. Such 

nodes are generally used in environment monitoring, traffic control, battlefield surveillance, etc. 

This RFID tag-Sensor node basically uses an RFID type unique code assigned to each sensor to 

enhance the wireless environment monitoring support and deployment procedures. The basic 

states of this type of transponder are On, Interrogating and Active. Upon receiving the 

energizing RF field, the transponder enters the On state. On request from the base station, the 

transponder enters the Interrogating state, and the demodulator and the decoder are activated to 
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enable the respective blocks. The basic blocks of the transponder include the ROM and the 

sensor block. The sensor and the ROM blocks are enabled exclusively by the command from 

the central server (interrogator) for power management [35]. There can be multiple sensor 

blocks based on the different types of sensors needed for an application. Finally, in the active 

state, the selected functional block is enabled and the requested information is sent back to the 

interrogator. The number of RFID tag-Sensor nodes may be very large in applications such as 

environmental monitoring and, hence, it is important for the nodes to be able to successfully 

send all the measured data to the interrogator avoiding collisions. The RFID (tag/interrogator) 

interface acts as a serial bus that travels through the air. In a wired serial bus application, bus 

contention is prevented by arbitration. The RFID interface also needs arbitration so that only 

one node transmits data over the “bus” at one time. Current RFID protocols use many existing 

collision prevention methods that make sure that only one tag communicates at one time [54]. 

 

 

Figure 2.2:  State Diagram of a (RFID tag-Sensor) Transponder 
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Wireless nodes basically sense specific aspects of a region in which they are deployed 

and occasionally send sensed data to the requested, interrogator. The sensed data generally 

contain errors due to many factors such as resource constraints and environmental factors. 

Therefore, the interrogators cannot rely on single-sensor data sensed at a point of time.  Data 

redundancy is another issue with the data sensed by various sensors. Hence in many 

applications the aggregated form of sensed data from single or multiple sensors over time is 

preferred [2]. Finding average temperature, velocity, location, pressure, etc., are well-known 

examples in many applications. When interrogators require an aggregated form of sensed data, 

performing computation of the sensed data and sending its aggregate reduces the 

communication overhead [45]. Existing RFID Tag-sensor nodes typically do not have any 

programmable arithmetic processing capabilities [35]. Adding lightweight computational 

elements based on the target application can enhance the wireless node.   

 

Sensor networks employ preprocessing at the node so that every sensor sample need not 

be transmitted on the radio therefore not consuming all the wireless bandwidth available to the 

network. Transmission of only necessary sensor data readings over the radio saves the available 

stored energy on the node. The focus of this dissertation is on low power solutions to wireless 

passive sensor node processor architectures based on 8051 instructions. The choice of the 8051 

is justified by the fact that it is still one of the most popular embedded processors [46], [47], 

[48], [49]. Furthermore, due to its small size and low cost, it has numerous applications where 

power efficiency is necessary. The 8051 microcontroller most commonly used in wireless nodes 

is considered as an example for exploring its ISA and its application to the proposed distributed 
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processor design concept. Using the 8051-ISA based customization of the REU architecture as 

part of the distributed architecture is illustrated in the following paragraphs. 

 

Consider a simple communication scenario between the interrogator and the node for the 

aggregation of sensor values at the node using an 8051 instruction [50]. The amount of 

temporary storage and the ALU capabilities of the WPSN node processor will be chosen to 

maintain low power requirements. Assume a 8051 default register bank (R0-R7) as the 

temporary memory space available for the execution unit. The major function is an ADD 

operation and, hence, the choices of the arithmetic instructions that would be part of the REU on 

the passive node are ADD A, Rn and/or ADDC A, Rn. The minimal data transfer instruction 

necessary would be the MOV A, Rn; MOV Rn, A and MOV Rn, #DATA (8-bit).  The passive 

node processor will support only those features required to interface and communicate with the 

interrogator. Therefore, the branch, comparison, load and store instructions compatible with the 

i8051 ISA will be implemented on the interrogator side rather than on the passive side.  

 

Consider an ADD operation: ADD A, R1 (A = A+R1), where R1 denotes one of the 

eight (R0-R7) 8-bit 8051 working registers for a selected register bank and A denotes the 8-bit 

accumulator register. Figure 2.3 represents a high-level sequence diagram for an ADD 

operation. Let the sensed data be stored in any of the sensor registers that could be any one of 

the (R0-R7) directly mapped to the sensor. The interrogator sends out instructions to transfer the 

sensed data stored in the sensor register to the R1 (assuming not a sensor register) and A 

registers respectively. These 8051 working registers along with the accumulator form the 

temporary storage on the REU processor. On receiving the ADD instruction, the passive node 
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processor (REU) performs the addition operation on the already existing value in the 

accumulator and the new R1 value. The computed result is stored in the accumulator register. 

Alternatively, the tag could then be instructed to send the result back to the interrogator in a 

register to memory transfer where the register is mapped as a transmitting buffer. The 

interrogator serves the role of main memory for storage of large data items. Loads (reads) and 

stores (writes) are performed by the interrogator and tag communicating data values using the 

over-the-air protocol. The C&M node will contain main memory that acts as the major storage 

area for the majority of data items. 

 

  

 Figure 2.3:  Sequence diagram for an ADD operation 

 

Sensor applications require special purpose hardware suitable to cater to a different set 

of requirements. It is necessary to explore the instruction architecture space in order to enhance 

the capability of the execution unit depending on the application. Characteristics of the target 

applications and the utility of the sensors make it important to choose applicable hardware for 

sensor networks on a case-by-case basis. Some of the well-known basic core algorithms form a 
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class of simple applications such as the sum-array (aggregation of all values in a list), Top10 

(finds top 10 values in a list), majority consensus (finds the majority values in a list), min-max 

finder (finds minimum and maximum values in a list), Binary search (typical search algorithm 

for a sorted list), Matrix Multiplication (matrix multiplication for small size matrices), etc. [50]. 

To arrive at an energy efficient processing solution on a sensor node, there are always 

communication/computation tradeoffs. Hence, the choice of a design for sensor node 

architecture not only depends on the various power management techniques, but also on the 

application space. 

 

The procedures to choose the components and the associated instructions based on the 

8051 architecture illustrated in this chapter can be used to generalize and extend these concepts 

to any microprocessor ISA such as the Motorola 6800, Intel 8085, etc. In summary, the 

distributed architecture components, especially the ones in the passive cell, need to be based on 

the target application requirements. Once the application requirements are determined, the ISA 

of the target architecture can be selected for the implementation of the distributed architecture. 

A minimal set of instructions based on the corresponding minimal register (ROM/RAM) storage 

can be chosen to form the target ISA. Because these instructions are dependent on registers of 

the target architecture, it is necessary to choose only the required registers, which can be part of 

the passive cell, providing maximum flexibility. Therefore, determination of the right 

combination of different factors blending into a distributed design will decide the power 

requirement of the passive cell based on the application. The next chapter introduces the 

proposed low power REU designs based on the 8051 ISA that form the passive cell architecture.  
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3.0  PROPOSED LOW POWER REU ARCHITECTURES 

This chapter presents the major contributions of this research: a novel data-driven symbol 

decoder and minimal 8051-instruction set based computation unit. The proposed decoder and 

computation unit form the basis for the REU frontend and the REU core architectures 

respectively. The input instruction is an encoded bit sequence that will have command bits (Op-

code) as well as data bits. The command bits instruct the processor to perform a specific 

operation on the input data bits. A data-driven CRC block is used as part of the frontend to 

check the validity of the received instruction. The frontend consists of registers and delay 

elements that are used to decode and store the received encoded instructions. The basic 

necessary set of instructions supported by the REU based on the target application is defined as 

the minimal ISA (MISA). The core unit is based on a MISA compatible with the 8051 ISA. The 

REU core consists of an 8051-compatible ALU unit and controller and requires a minimum 

number of temporary storage registers to support the selected 8051 instructions.  

 

Both the data-driven symbol decoder design and the computation unit designs can be 

independently used for various wireless applications such as RFID, WPSN, etc. A potential 

architecture for combining the data-driven decoder design and the execution unit to form the 

low power REU will be established in this chapter. The motivation for low power design 

choices and details of individual REU components will be also described in the following 
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sections. The major focus of this chapter will be to introduce the design philosophies, and 

elements of the REU architectures that have been implemented as custom asynchronous and 

clocked digital designs to reduce power requirements. 

3.1 REU FRONTEND 

3.1.1 Motivation 

Wireless serial data transfer environments are always prone to noise and transmitter-receiver 

synchronization issues especially over long distances [51].  The synchronization issues in 

general concern the need for the receiver to use the same clock frequency as the transmitter in 

order to accurately detect the transmitted data.  In modern data transmissions, all traditional 

receivers extract the original data from the encoded bit stream using an explicit clock.  This 

clock is extracted from the transmitted data, or is separately generated using additional circuitry 

[35], [52]. 

 

Manchester encoding and variable pulse width encoding techniques are very widely 

used in wireless digital transmissions [53], [25].  For example, a variable pulse width encoding 

technique is currently used in passive RFID tags [54].  Oversampling with a clock is a classical 

decoding process for pulse width modulated signals [35], [52]. The demodulated input to the 

decoder is the pulse interval encoded data that are converted to the regular binary symbols at the 

decoder output. The conventional decoding scheme is shown in Figure 3.1.  
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Figure 3.1:  Conventional Decoding Scheme 

 

The conventional decoder block represented in Figure 3.2 is a part of the conventional 

RFID tag frontend architecture [35], [52]. The decoder mainly consists of counters, registers, 

comparators, and a high frequency oscillator. This decoder is explicitly driven by a high 

frequency clock of several MHz. The demodulated input is converted to a series of binary 

symbols ‘1’ ‘s and ‘0’ ‘s by comparing the number of clock pulses occurring in each symbol 

period. In Figure 3.1, when the symbol period is high, ‘1’ is identified based on the occurrence 

of five (5) clock pulses whereas ‘0’ is identified based on the occurrence of only three (3) clock 

pulses. A typical data rate of 40kHz, corresponding to a symbol period length of 6.25µs, is 

considered as an example [54]. The decoded data are fed back to a digital block which actually 

runs at a much lower frequency range of about 40kHz - 640kHz [52]. Hence, a low frequency 

clock generator is required to convert the high frequency clock of several MHz to a low 

frequency clock to drive the digital backend of the tag.  Such high frequency operations 

consume considerable amounts of power [33], [55]. 
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Figure 3.2:  Conventional Decoder block of a passive RFID Tag 

 

The next section introduces a novel pulse width-coding (PWC) scheme for low power 

applications. The symbol width properties of the PWC scheme allow the traditional decoder at 

the receiver side to be replaced with a low-power data-driven decoding circuit. The major 

advantages of the proposed PWC scheme include minimal decoder hardware, synchronization 

among the transmitter, receiver, and low-power decoder. The low-power PWC scheme can be 

applied to various wireless passive device designs such as passive tags, passive sensor nodes, 

etc.  

3.1.2 Pulse Width Coding Scheme 

The PWC scheme represents symbol-0 with a square wave (with time period P0), which has a 

pulse width D0, and symbol-1 with a square wave (with time period P1), which has a pulse 

width D1, where D0 << D1 and P0 = P1.  Figure 3.3 represents an example 8-bit input symbol 

data stream “01011010” in the proposed PWC encoded format. From Figure 3.3, P0 and P1 
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represent time periods of symbol-0 and symbol-1, respectively. Each of symbol-1 and symbol-0 

occupies an active time span (i.e., pulse width interval) equal to that of D0 and D1, respectively. 

The PWC decoding mechanism is described in the next section. 

 

 

Figure 3.3:  Pulse Width Encoded Data 

3.1.3 PWC Decoding Mechanism 

The received waveform after demodulation results in an encoded digital data stream as shown in 

Figure 3.3. The proposed PWC decoding scheme is shown in Figure 3.4 using the encoded 

symbol data “01011010” as an example. The encoded data can be decoded by sampling (Signal 

A in Figure 3.4), with the same encoded data stream delayed by time ∆ (Signal B in Figure 3.4). 

In other words, Signal A (PWC encoded data) represents the input demodulated serial data 

representing the symbol data stream “01011010”. The Signal B is the delayed version of the 

incoming PWC Signal A. The rising edge of Signal B is used to sample the incoming Signal A. 

It can be clearly seen from Figure 3.3 that the first decoded output binary bit is “0”, second 

decoded binary bit is “1” and so on. At the rising edge of Signal B, the decoded bit is “1”, 
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whenever both the signals occur (i.e., especially symbol-1). Hence for the above-mentioned 

Signal A example, the output binary decoded bit sequence is “01011010”. For successful PWC 

decoding, it is necessary to have D0 < ∆ < D1.  One possible way of reduced power consumption 

is by minimizing the value of D0, which minimizes the delay circuitry in particular. 

 

 

Figure 3.4:  PWC Decoding Scheme 

3.1.4 Data-Driven Decoder Design 

This section introduces a data-driven decoder design to perform the PWC decoding. The term 

‘data-driven’ is used to indicate that the decoder is solely driven by the input data and, hence, 

eliminates the need for any typical external clock driven mechanisms.  

 

To implement the data-driven decoder as a digital circuit, the required components are a 

D flip-flop and a delay buffer.  The demodulated encoded data stream (Signal A in Figure 3.4) 

is connected to the input terminal of a traditional D Flip-Flop, and the same encoded data 



 32 

stream delayed by time ∆ (Signal B in Figure 3.4) is connected to the clock input.  This is 

shown in Figure 3.5. It is clear that the input encoded data is sampled at every rising edge of the 

delayed version of the same encoded data in order to distinguish ‘1’ and ‘0’. The incoming 

encoded data is decoded by data driven element shown in Figure 3.5 and corresponding 

decoded data is stored in a shift register following the decoding. This is a data driven 

mechanism that eliminates use of high frequency clock signals to decode the incoming data 

stream largely reduces the dynamic power consumption [56], [57]. 

 

  

 Figure 3.5:  Data-Driven Decoding Element 

 

A potential application for the data driven decoding scheme is in Gen-2 RFID systems 

[54].  These RFID systems currently use a variable pulse interval encoding to represent symbol-

0 and symbol-1 [54].  The proposed decoding circuit will reduce the power consumed at the 

receiver while the encoder design remains unchanged at the transmitter.   

 

The proposed decoding scheme illustrated in Figure 3.4 uses a self-clocking mechanism 

eliminating the use of an external clock [56]. This scheme basically uses delayed input data to 
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drive the decoder components such as a shift register, etc. In other words, the delayed input data 

acts as a clock to trigger components of the decoder.  

 

The block diagram for the proposed data-driven symbol decoder is shown in Figure 3.6. 

The decoder architecture consists of a shift register, comparator and a delay block. The delay in 

hardware generally translates to a buffer element. A buffer element is typically built using an 

even number of inverters. The proposed data-driven architecture eliminates the use of high 

frequency driven counters and a high frequency oscillator, which are typically used in the 

conventional decoder as shown in Figure 3.2.  

 

 

Figure 3.6:  Data-Driven Decoder-CRC Unit 

 

The simulation results have shown that the data-driven decoder consumes considerably 

less power when compared to the conventional decoder design [56]. These dynamic power 

consumption simulation results of the data-driven decoder and the conventional decoder were 

58nW and 9195nW respectively. The data-driven decoder forms the major part of the REU 
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frontend. The detailed implementation and the design methodology of the decoder as part of the 

REU frontend are presented in Chapter 4. 

3.1.5 REU Frontend Architecture 

Main Features of the Frontend Design are as follows: 

1) Data-Driven Decoder-CRC-16 block forms the REU frontend design. This block uses 

the low power self-clocking mechanism to decode the incoming instruction and check 

for validity of the received instruction.  

2) The REU design supports two types of instructions based on 8051 MISA:  

a. 25-bit Input Frame: LENGTH (1-bit)-OPCODE (8-bit)-CRC (16-bit) and  

b. 33-bit Input Frame: LENGTH (1-bit)-OPCODE (8-bit)-DATA (8-bit)-CRC (16-

bit)  

3) Supports a counter-less Variable-Length Instruction Identification algorithm 

implementation. 

 

The data-driven decoder-CRC implementation as shown in Figure 3.7 consists of a shift 

register of bit width ‘n’ that is used for decoding and storing the decoded input data stream. 

Here, ‘n’ is a function of the data width and the CRC length used for the input data stream. The 

encoded data are sampled at the rising edge of the delayed data in order to generate decoded 

bits, which are stored in the shift register and correspondingly used in the CRC check.  
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Figure 3.7:  REU Frontend Block Diagram 

 

Counters typically are used to keep track of the number of shifts especially in designs 

using shift registers. Counters in RFID symbol decoders are also used to count the number of 

clock pulses, which provides the basis for accurately decoding the incoming encoded data. 

Elimination of the counter hardware for low power needs alternate mechanisms to identify 

whenever the shift register is full. In the proposed architecture, an additional single-bit is added 

to the register and is the only additional hardware required to indicate that all the decode data 

have been successfully loaded into the register and is ready to be used for the next operation. 

Traditionally, all the flip-flops (registers) in a shift register are reset to ‘0’. In the proposed n-bit 

shift register design; the 0th register bit is reset to bit ‘1’, and all the remaining bits are set to 

‘0’(assuming left shift). When the content of the extra register is bit ‘1’, then the n-bit shift 

register is considered full. The only modifications needed to keep track of decoded data are: an 

extra 1-bit flip-flop (register) and the reset sequence to initialize the n-bit shift register. This 

forms the n-bit register in the decoder design.  

 

A pseudo-code is used as an example to differentiate the (25-bit and 33-bit) widths of 

the incoming instructions at the Frontend an algorithm along with an illustration of the above-

mentioned decoding process. Once the shift register indicates it is full, the decoded data are 
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checked for correct message transmission to the intended receiver. For variable instruction 

length inputs, the following algorithm is introduced.  

 

Counter-less Variable-Length Instruction Identification Pseudo-code 

Reset values:  

reg(33 downto 0) <= "0000000000000000000000000000000001";   // reset register  

len_detect16 and len_detect8  <= ‘0’;                                                  //reset flags  

 

On the rising edge of delayed data (data_clk), each decoded bit is stored in register 

“reg”. The ‘reg’ width is 34 (reg(33 downto 0)) at it included the storage space for the 33-bit 

instruction and extra bit. After decoding of every bit, the following pseudo-code is executed: 

 

if (rising_edge of data_clk) then          //check trigger edge 

if (len_detect8 = '0' and len_detect16 = '0') then           // check flag status   

   if (reg (1 downto 0) = “11”) then          // check register start bits 

    len_detect16 <= '1';                   // set flag to identify 16-bit   

   elsif (reg(1 downto 0) = “10”) then       // check register start bits 

      len_detect8<= '1';                      // set flag to identify 8-bit 

   end if; 

end if; 

end if; 
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The “len_detect8” and “len_detect16” are flags which are set on the first occurrence of 

“10” and “11” in the decoder register that stores the decoded input bit stream respectively. 

These flags are used to differentiate the two instruction lengths. The first bit in “10” represents 

the reset value of decoder register, reg(0), and the second bit ‘0’ indicates the opcode instruction 

length (25-bit). Similarly, the first bit in “11” represents the reset value of the decoder register 

reg(0) and the second bit ‘1’ indicates the opcode-data instruction length (33-bit). Once the 

length of the instruction is known, the different fields in the input instruction can be easily 

identified and processed accordingly. Only one of the two flags (either len_detect8 or 

len_detect16) is always high during every instruction execution process. 

 

In a traditional CRC hardware implementation, a simple shift register in combination 

with XOR logic performs serial CRC computations on an input serial data stream. The typical 

CRC design computation flow is shown in Figure 3.8 (a). This clocked decoder-CRC block is 

considered part of the frontend of an RFID passive tag and is known to consume a significant 

amount of power [55], [56]. 

 

Typically, a combinational design logic implementation of a CRC consists of simple 

registers (Flip-Flops) and XOR gates. The final CRC result is computed based on the initial 

value (seed), decoded data and the intermediate CRC values.  The decoded data and the 

appended CRC are stored in the n-bit register; the initial CRC value is stored in a seed register 

that is also used to store intermediate CRC values. In the context of a CRC design block 

implemented as a combinational logic in the proposed architecture, the CRC block is triggered 
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after the completion of the decoding process. The combinational CRC design computation flow 

for the data-driven decoder is shown in Figure 3.8 (a). 

 

 

Figure 3.8:  Design Computation Flow (a) Traditional clock-driven CRC (b) Data-

Driven Decoder-Combinational CRC [56] (c) Data-Driven Decoder-CRC [57] 

 

For the RFID clocked tag decoder and the data-driven decoder, the CRC computation 

for error detection check is performed only after the demodulated data are decoded and 



 39 

available for use. The clock-driven process requires extra clock cycles to drive the CRC circuit 

in addition to the cycles used for decoding each bit. Implementing the CRC design as a 

combinational block increases the complexity of the design as ‘n’ increases. Computing CRC 

after data decoding further slows down the processing speed of the frontend block of the target 

wireless device such as an RFID passive tag.  

 

The novelty of the proposed data-driven CRC implementation is the ability to take 

advantage of specific encoding properties of the input sequence in order to realize a self-

clocking CRC at the passive receiver side for low power applications. The proposed frontend 

design consists of an n-bit register for decoding and storing the incoming data and a typical 16-

bit register for performing CRC computation on the decoded bits. A data-driven implementation 

uses the delayed input encoded data as a clocking signal in order to sample the input data [56]. 

 

At every rising edge (signal going high) of the delayed encoded signal (also termed as 

delayed input data clocking symbols as in Figure 3.8 (b) and (c)), the encoded symbol is 

sampled, decoded and stored in a 1-bit flip-flop (register) as shown in Figure 3.7. At the same 

rising edge, typical CRC-CCITT fixed shift operations are performed on the 16-bit seed CRC 

register. On the falling edge (signal going low) of the same delayed encoded signal, the basic set 

of typical XOR operations are performed on the stored decoded bit obtained at the rising edge 

of the same symbol and/or intermediate CRC operations. This final computed CRC value is 

updated to the CRC output register. The proposed data-driven CRC computation flow has been 

illustrated in Figure 3.8 (c) [57].  
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A high-level input-output pin diagram of the REU frontend is shown in Figure 3.9. The 

decoded input instruction frame that is generated by the frontend acts as an input block to the 

REU core unit. A potential acceptable decoded “data_in” input frame to the frontend consists of 

two sizes: len(1-bit)-opcode(8-bit)-CRC(16-bit) and len(1-bit)-opcode(8-bit)-src_data(8-bit)-

CRC(16-bit) supported by the REU design. The len (bit) field is used to differentiate the two 25-

bit and the 33-bit frames. The opcode field represents the 8-bit 8051-instruction opcode format 

and the CRC represents the 16-bit code used to detect transmission errors in the received 8-bit 

opcode and/or src_data. The src_data field represents the 8-bit 8051-source data format. A 

typical CRC-16 polynomial of the form is g(x)= x16+x12+x5+1 is part of the frontend 

architecture.  The ‘ctr’ is set by the frontend block on receiving a valid input frame and is used 

as trigger for the sequence of events that must take place in order to execute a specific 

instruction on the REU. The detailed description of the input-output signals used in Figure 3.9 is 

presented in Table 3.1. The opcode is an 8-bit 8051-instruction opcode that includes a source 

register and the destination register [71]. The “src_data” is an 8-bit data that is generally part of 

the 16-bit 8051-instructions. The 8051 MISA based REU core supports a set of the 8-bit and 16-

bit 8051-instructions that will be explained in detail in the following section. 

 

 

 Figure 3.9:  REU Frontend Pin Diagram  
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Table 3.1: REU Frontend Input-Output Signal Descriptions 

Signal Bit-Width Descriptions Signal Bit-Width Descriptions 

Reset 1 
Used to reset the system for  
the start of a new program 

Dec_reset 1 
Used to reset necessary 
signals of the Front end 

block. 

Opcode 8 
Instruction opcode (part of the 

received frame sequence) 
ctr 1 

Write signal that enables 
writing data to the 8- 

register bank (temporary 
storage (set/reset by 

controller) 

data_in 8 

Encoded data that is either a 
Part of the 16-bit Instruction 

data (part of the received 
frame sequence) 

Sw_ctr* 1 
Used as the set/reset the 

frontend switch (*if 
switch used) 

sys_reset 1 
Used to reset the system for  
the start of a new program. 

Src_data 8 
Input data (data_in) to 

ALU 

 

The simulation, verification and implementation details of the REU frontend will be 

presented in Chapter 4. 

3.2 REU CORE DESIGN 

The passive REU is based on a reduced 8051 Instruction Set Architecture (ISA). The choice 

was based on providing a maximum 8051 flexibility using the default 8051 register bank. This 

reduced 8051 ISA forms the 8051 MISA that will be described in the following sections. 
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3.2.1 8051-MISA for REU 

The active block or in other words the interrogator will transmit program instructions to the 

REU that executes these instructions and returns the results back to the interrogator. The REU, 

for example, will have the capability to perform simple functions like OR, XOR, AND, ADD, 

etc. that will be compatible with the 8051. This interrogator and the REU together form a 

complete processor.  

 

8051 is an 8-bit microcontroller that includes an instruction set of 255 operation codes as 

shown in Table 3.2 [71]. The branch, comparison, load, and store instructions will be 

implemented on the interrogator side rather than on the REU side. The amount of temporary 

storage and the ALU capabilities of the REU will be chosen to maintain low power 

requirements. The REU will be programmed to execute a basic set of 8051-instructions that 

largely includes arithmetic (ADD, ADDC, SUBB, INC, DEC), Logical (ANL, ORL, XRL, 

CLR, CPL, RL, RLC, RR, RRC, SWAP), data transfer (MOV, XCH) and Boolean manipulation 

(CLR, SETB, CPL) instructions. The most demanding instructions like the divide (DIV), 

multiply (MUL) and decimal adjust (DA) will not been included in the MISA keeping the REU 

as minimal as possible, but form a part of the interrogator’s instructions set. The MISA can be 

further enhanced based on a case-by-case requirement for any chosen target application during 

the REU design process.  

 

Table 3.2 represents the 8051 instruction set by opcode. The instructions highlighted in 

bold represent all 116 instructions that form the MISA instruction set of the REU core design. 
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Only the instructions highlighted in bold-italic represent the instructions that are part of the 

8051 instruction ISA.  

 

Table 3.2:  REU-8051 Instruction Subset (MISA) 

 

The remaining two instructions highlighted only in bold form the set of instructions that 

have been modified to suit the REU requirements. A modified instruction with respect to its 

common 8051 functionality is the MOVX instruction (MOVX @Ri, A). The 8-bit instruction 

opcode used for this MOVX instruction is “11110010”. The functionality of the instruction was 

modified to suit the target REU core design. Upon the execution of this instruction, data 

 0x00 0x01 0x02 0x03  0x04 0x05 0x06 0x07  0x08 0x09 0x0a 0x0b  0x0c 0x0d 0x0e 0x0f 

0x00 NOP  AJMP  LJMP  RR  INC  INC  INC  INC  INC  INC  INC  INC  INC  INC  INC  INC 

0x10 JBC  ACALL  LCALL  RRC  DEC  DEC  DEC  DEC  DEC  DEC  DEC  DEC  DEC  DEC  DEC  DEC 

0x20 JB  AJMP  RET  RL  ADD  ADD  ADD  ADD  ADD  ADD  ADD  ADD  ADD  ADD  ADD  ADD 

0x30 JNB  ACALL  RETI  RLC  ADDC  ADDC  ADDC  ADDC  ADDC  ADDC  ADDC  ADDC  ADDC  ADDC  ADDC  ADDC 

0x40 JC  AJMP  ORL  ORL  ORL  ORL  ORL  ORL  ORL  ORL  ORL  ORL  ORL  ORL  ORL  ORL 

0x50 JNC  ACALL  ANL  ANL  ANL  ANL  ANL  ANL  ANL  ANL  ANL  ANL  ANL  ANL  ANL  ANL 

0x60 JZ  AJMP  XRL  XRL  XRL  XRL  XRL  XRL  XRL  XRL  XRL  XRL  XRL  XRL  XRL  XRL 

0x70 JNZ  ACALL  ORL  JMP  MOV  MOV  MOV  MOV  MOV  MOV  MOV  MOV  MOV  MOV  MOV  MOV 

0x80 SJMP  AJMP  ANL  MOVC  DIV  MOV  MOV  MOV  MOV  MOV  MOV  MOV  MOV  MOV  MOV  MOV 

0x90 MOV  ACALL  MOV  MOVC  SUBB  SUBB  SUBB  SUBB  SUBB  SUBB  SUBB  SUBB  SUBB  SUBB  SUBB  SUBB 

0xa0 ORL  AJMP  MOV  INC  MUL  UNDEF MOV  MOV  MOV  MOV  MOV  MOV  MOV  MOV  MOV  MOV 

0xb0 ANL  ACALL  CPL  CPL  CJNE  CJNE  CJNE  CJNE  CJNE  CJNE  CJNE  CJNE  CJNE  CJNE  CJNE  CJNE 

0xc0 PUSH  AJMP  CLR  CLR  SWAP  XCH  XCH  XCH  XCH  XCH  XCH  XCH  XCH  XCH  XCH  XCH 

0xd0 POP  ACALL  SETB  SETB  DA  DJNZ  XCHD  XCHD  DJNZ  DJNZ  DJNZ  DJNZ  DJNZ  DJNZ  DJNZ  DJNZ 

0xe0 MOVX  AJMP  MOVX  MOVX  CLR  MOV  MOV  MOV  MOV  MOV  MOV  MOV  MOV  MOV  MOV  MOV 

0xf0 MOVX  ACALL  MOVX  MOVX  CPL  MOV  MOV  MOV  MOV  MOV  MOV  MOV  MOV  MOV  MOV  MOV 
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available in the accumulator register will be transferred to a destination register. The destination 

register is used to hold data that is transmitted out of the REU based on the request from the 

interrogator. The other modified instruction is the NOP that can be used as an external reset sent 

by the interrogator to the REU in order to clear up all the data from the previous operations 

from the registers and signals. 

 

For instance, an ADD operation R3 =#R1+R2, where Ri denotes a register, i#=#0,1,2,.. 

The interrogator sends out the R1 and R2 values to load and store it in the temporary storage on 

the REU. Then, the ADD operation is performed by the REU and the computed result is sent 

back to the interrogator on request. The interrogator will contain main memory that acts as the 

major storage area for large volumes of data items. This is the same technique used to power 

passive RFID tags. Thus such tags do not need periodic battery replacements [35].  This makes 

such tags suitable for embedded tag applications, especially where long-term monitoring is not 

economical.   

 

Table 3.3 contains the notes for data addressing mnemonics for the instruction sets 

described in  3.4.  

 
 

Table 3.3:  REU-8051 Data Mnemonics 

Rn Working registers (R0-R7) 
#data 8-bit constant embedded in instruction 

A Accumulator 
 

The choice of 116 instructions is based on providing a maximum 8051 flexibility using 

the 8051 register bank (R0-R7 /A) register set.  3.4 represents the selected MISA of 116 
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instructions for the REU along with the corresponding description for each instruction. Thus 

reducing the selected instructions to less than half of the 256 instructions usually supported by 

an 8051. Using the MISA significantly reduces the power consumption of the system when 

compared to systems using the entire 8051-ISA. The 8051-MISA is used for both the 

asynchronous and the clocked versions of the REU core design implementations.  

 

Table 3.4:  MISA 8051 Instructions 

Instruction Type Description Bytes 

ADD A, Rn Arithmetic Add register to 
accumulator (A) 1 Byte 

ADD A, #data Arithmetic Add immediate 
data to A 2 Bytes 

ADDC A, Rn Arithmetic Add register to A 
with carry flag 1 Byte 

ADDC A, #data Arithmetic 
Add immediate 
data to A with 

carry flag 
2 Bytes 

SUBB A, Rn Arithmetic 
Subtract register 

from A with 
borrow 

1 Byte 

SUBB A, #data Arithmetic 
Subtract immediate 
data from A with 

borrow 
2 Bytes 

INC A Arithmetic Increment A 1 Byte 
INC Rn Arithmetic Increment register 1 Byte 
DEC A Arithmetic Decrement A 1 Byte 
DEC Rn Arithmetic Decrement register 1 Byte 

ANL A, Rn Logic AND register to A 1 Byte 

ANL A, #data Logic AND immediate 
data to A 2 Bytes 

ORL A, Rn Logic OR register to A 1 Byte 

ORL A, #data Logic OR immediate data 
to A 2 Bytes 

XRL A, Rn Logic Exclusive OR 
register to A 1 Byte 

XRL A, #data Logic 
Exclusive OR 

immediate data to 
A 

2 Bytes 
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Table 3.4 (continued) 

CLR A Logic Clear A 1 Byte 
CPL A Logic Complement A 1 Byte 
RL A Logic Rotate A left 1 Byte 

RLC A Logic Rotate A left 
through carry 1 Byte 

RR A Logic Rotate A right 1 Byte 

RRC A Logic Rotate A right 
through carry 1 Byte 

SWAP A Logic Swap nibbles 
within A 1 Byte 

MOV A, Rn Data Transfer Move register to 
accumulator (A) 1 Byte 

MOV A, #data Data Transfer Move immediate 
data to A 2 Bytes 

MOV Rn, A Data Transfer Move A to register 1 Byte 

MOV Rn, #data Data Transfer Move immediate 
data to Rn 2 Bytes 

XCH A, Rn Data Transfer Exchange register 
with A 1 Byte 

NOP Program No operation 1 Byte 

CLR C Boolean 
Manipulation Clear carry flag 1 Byte 

SETB C Boolean 
Manipulation Set carry flag 1 Byte 

MOV @R0, A Data Transfer 
Move A to 
destination transfer 
register 

1 Byte 

 

3.2.2 CLOCKED REU CORE 

The clocked core design of the proposed REU is presented in this section.  

3.2.2.1 Architecture  A high-level view of the architecture of the clocked REU core unit is 

shown in Figure 3.10. The clocked REU core architecture mainly consists of three blocks, 

namely, a controller, ALU and register file. The decoded input instruction frame that is 

generated from a frontend block acts as an input to REU core unit as shown in Figure 3.10. The 
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opcode is an 8-bit 8051-instruction opcode that includes a source register and the destination 

register. The 116-instruction built-in REU core supports dual length 8051-instructions. The 

“data_in” input port accepts 8-bit data that are part of the 16-bit 8051-instructions.  

 

 
 

Figure 3.10:  High-level Clocked REU Core Architecture  

 

The REU core block is the major block that is clocked in order to compute the 

corresponding execution of an instruction. The ALU unit is basically responsible for arithmetic 

and logic operations on 8-bit operands and each of which will be implemented as a 

combinational block. The register file will be implemented as a sequential block that acts as a 

temporary data memory, which is triggered by the clock signal. The register file consists of nine 

8-bit registers that represent the eight working registers (R0-R7) and an accumulator (A). The 

controller will be modeled behaviorally as a sequential logic block based on a set of states for 

every decoded instruction.  
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Each state will be triggered by the rising edge of the received clock signal implying the 

number of states needed for an instruction equals the number of clock pulses as illustrated in 

Table 3.5. 

 

Table 3.5:  Clocked REU Cycles 

 

 

 

 

 

 

 

 

 

 
 

 

Under each state, a group of signals is either set or reset corresponding to the received 

instruction. It should be noted that the ALU computation will be implemented as a 

combinational logic and executed in one cycle, but the initial and the final set of cycles are 

essential to set/reset signals of the core and frontend which are necessary at the start/end of 

every instruction. Table 3.6 represents the description of each set of signals connected internally 

or externally to/from controller, ALU and the register file. The REU core architecture is shown 
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in Figure 3.10. It also includes signals that involve the frontend and a switch design, which will 

be explained in the following sections.  

 

Table 3.6:  Clocked REU Intermediate Signal Descriptions 

 

3.2.2.2 Low Power Techniques  The following are the main low power techniques used to 

reduce power for the clocked REU design: 

(a) MISA for REU   

The main power reduction technique is the reduced ISA for the REU implementation. As the 

program to be executed by the REU is stored in the interrogator (C&M) side, the need for 
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program memory at the REU is eliminated. There still may be a need for local scratch pad 

memory at the REU, although the number of bytes is drastically reduced in order to possibly 

satisfy the power requirements. The REU executes the commands wirelessly issued by the 

interrogator. The MISA chosen for the REU consists of 116 instructions compatible with the 

8051 ISA. The choice of MISA relies on a set of instructions dependent on the nine 8-bit 

register (R0-R7 and/or accumulator) based operations. 

(b) Programmable Clock Frequency based Wireless Gating   

A clock signal is known to toggle for every cycle of a processor even if the inputs and outputs 

remain constant. This significantly contributes to the dynamic power consumption of the 

processor. Hence it is necessary to avoid clock transitions inside any digital block when it 

becomes idle. Clock gating is a well-known technique used in clocked designs to reduce the 

dynamic power consumption. This technique allows only necessary portions of the circuitry to 

switch thus reducing the switching power of the design [21], [46].   

 

Consider a scenario of an Interrogator and a tag setup. Assume that the tag has its core 

digital processor in the form of the proposed clocked REU. The execution rate of the entire 

REU circuitry is controlled by the clocking of the interrogator that acts as a control unit via 

wireless commands. In other words, the interrogator transmits clock signals wirelessly to the 

REU that steps thru each set of finite states associated with individual received instructions. The 

concept of wireless clock gating comes from the fact that the interrogator, not only transmits a 

series of global periodic clock signals, but also has the knowledge of the exact number of clock 

signals and the corresponding clock frequency required. This allows the REU circuit to switch 

at a desired low frequency for only a required number of states keeping the dynamic power 
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consumption in check. The major clock gating logic is on the interrogator side, tracking the 

number of exact clock signals required for each of the 8051-REU instructions. But once the 

received instruction is decoded asynchronously by the frontend at the REU side, a control signal 

is set high after which the clock signals are received by the REU and subsequently REU states 

are stepped thru accordingly.  

 

The low power advantage is based on three main factors: programmable multi-clock 

frequency (lowering clock frequency), clock gating, and no dedicated clock generator for the 

REU. Wireless clocking also provides the flexibility of a programmable clock frequency for the 

REU that can be tuned, based on the necessity. 

3.2.3 ASYNCHRONOUS REU CORE  

3.2.3.1 Motivation  Asynchronous designs are increasingly becoming an integral part of 

numerous wireless applications [10], [62], [63], [64], [65] due to their low power advantages. 

Low power consumption, no clock distribution, fewer global timing issues, no clock skew 

problems, higher operating speed, etc., are advantages of asynchronous circuits over 

synchronous circuits. Low power design especially plays an important role in high-performance 

microprocessors, digital circuits, etc. which use high frequency clocked designs [3]. Power 

consumption increases as the clock frequency increases. Asynchronous design is largely 

autonomous and is not governed by any explicit clock. In other words, asynchronous designs do 

not use any clock circuit and, hence, wait for a specific amount of time or specific signals that 

indicate completion of an operation before they go on to execute the next operation. These 

potential advantages provide the necessary motivation for considering an asynchronous design 
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for the REU core. The distributed architecture concept is based on classic microprocessor ISA’s 

and architecture for low power applications. 

3.2.3.2 Architecture  A high-level view of the operation of the asynchronous REU core unit is 

shown in Figure 3.11. The decoded input instruction frame that is output from a frontend 

decoder block acts as an input to REU core unit. The input frame to the core unit consists of 

three fields: ‘reset’ (1-bit), “opcode” (8-bit), and “data_in” (8-bit). The reset bit is used as part 

of every instruction as this actually initiates the start to every new set of related operations 

corresponding to a specific task. The ‘ctr_bit’ is set/reset by the front-end block that is actually 

used as trigger for the sequence of events that need to take place in order to execute a specific 

instruction on the REU. The opcode is an 8-bit 8051-instruction opcode that includes a source 

register and the destination register. The data_in is an 8-bit data that is generally part of the 16-

bit 8051-instructions. The 116-instruction built-in REU core currently supports dual length type 

of 8051-instructions.  

 

The REU core architecture mainly consists of three blocks namely controller, ALU and 

register file. The decoded input frame is received by the controller and based on the instruction 

opcode; it performs the expected operation along with setting up the signals necessary to initiate 

an ALU operation, write or reads to/from register file, etc.  The ALU unit is basically 

responsible for arithmetic and logic operations.  
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Figure 3.11:  High-level Async-REU Core Architecture  

 

The asynchronous REU core design is not governed by a global clock and, hence, uses 

specific delays in order to activate after the completion of the previous operation. In other 

words, each block of REU core has an enable signal in order to activate the operation as 

opposed to clocking each block to finish its respective operation. The ‘ctr_bit’, register file 

write signals and ‘alu_flag’ single bit signals are used as enable signals for the controller, 

register file, and ALU respectively. Table 3.7 represents the description of each set of signals 

connected internally or externally to/from controller, ALU and the register file. A top-level 
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VHDL code of the REU core architecture shown in Figure 3.11 is presented in the Section 

1.01(a)(i)Appendix E. 

 

Table 3.7:  Asynchronous REU Intermediate Signal Descriptions 
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3.2.3.3 Low Power Techniques  The following are the main low power techniques used to 

reduce power for the asynchronous REU design: 

(a) MISA for REU   

The main power reduction technique is the reduced ISA for the REU implementation. As the 

program to be executed by the REU is stored in the interrogator side, the need for program 

memory at the REU is eliminated. There still may be a need for local scratch pad memory at the 

REU, although the number of bytes is drastically reduced in order to possibly satisfy the power 

requirements. The REU executes the commands wirelessly issued by the interrogator. The 

MISA chosen for the REU consists of 116 instructions compatible with the 8051 ISA. The 

choice of MISA relies on a set of instructions dependent on the nine 8-bit register (R0-R7 

and/or accumulator) based operations. 

(b) Asynchronous design   

The REU core block will be implemented as delay based logic. REU core architecture is not 

based on any global clock, but is event driven. In other words, certain critical signals are 

allowed to occur after a particular time interval. This time interval (delay) is generally based on 

the time required to complete a previous operation with a valid result. A sample scenario for an 

ADD operation is considered below:  

 

Figure 3.12 represents a high-level sequence diagram for an ADD operation. If we 

consider an ADD operation: ADD A, R1 (A = A+R1), where R1 denotes one of the eight (R0-

R7) 8-bit 8051 working registers for a selected register bank and A denotes the 8-bit 

accumulator register. Once the frontend receives the encoded instruction, it is decoded into the 
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corresponding 8-bit 8051 binary opcode and checked for its validity. On decoding the valid 

instruction, the opcode is passed onto the REU core for processing. The controller of the core 

decodes the opcode accordingly and activates all signals corresponding to the add operation. On 

successful opcode, ‘reg_rd’ (register read signal), ‘acc_rd’ (accumulator read signal), ‘alu_flag’ 

(begin computation signal) and ‘result_acc_wr’ (accumulator result write signal) are all set at 

different times based on processing delay. These delay times are based on the order of 

occurrence and time taken to finish an operation. The order of events for an ADD operation: R1 

and accumulator values are read from the register file; the ALU unit performs addition on the 

data and finally the computed result is written back into the accumulator. The ‘reg_rd’ and 

‘acc_rd’ are set as soon as the instruction is decoded, ‘alu_flag’ is set only after the register and 

accumulator data are read and available for addition, ‘result_acc_wr’ is set as soon as add 

operation is done and ready with the result. All the signals are reset to zero after the result is 

successfully stored in the accumulator. A detailed timing diagram for these signals is presented 

in Figure 3.12 where δ1 represents the time required to read the necessary data from the register 

file for the operation and δ2 represents the time required to compute the ALU operation and 

produce the result, which is then ready to be written back to the accumulator. 
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Figure 3.12:  Timing scenario for an ADD operation 

 

The main set of control signals delayed by a specific time interval for the REU-Core 

include ‘reg_rd’, ‘acc_rd’, ‘reg_wr’, ‘acc_wr’, ‘result_reg_wr’, ‘result_acc_wr’, ‘alu_flag’ and 

‘dec_reset’. The next section presents the entire REU architecture that integrates the REU core 

with the frontend for low power applications. 

3.3 PROPOSED REU ARCHITECTURES 

The data-driven decoder in combination with a data-driven CRC form the frontend block of the 

REU as described in Section 3.1. The REU core consists of the 8051 compatible ALU unit and 

a set of temporary storage registers as illustrated in the previous sections. A possible 

combination of the frontend and the core blocks to form the REU architecture is explained in 
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this section. Two types of high-level architectures of the proposed REU are shown in Figure 

3.13 and Figure 3.14 respectively.  

 

 

Figure 3.13:  Proposed Clocked REU High-level Block Diagram 

 

The clocked REU architecture shown in Figure 3.13 has its execution rate controlled by 

the wireless clocking of the interrogator, which acts as the control unit through the wireless 

commands. The demodulated input command is shifted into the frontend registers through a 

switch. The main functionality of the switch is to accurately channelize the demodulated input 

(encoded cmd first and clock signals later) according to the frontend and the REU core 

respectively. Before transmission, the encoding scheme at the interrogator ensures that a valid 

command and valid CRC are both true only when the full command instruction has been shifted 

into the frontend registers. This is accomplished by a few additional bits in the command that 

signals when both command/instruction and CRC are true, to switch the input from the frontend 

to the clocking core circuit for the logical operation of the REU. On successful execution of the 

command, the core resets the frontend and switch designs, making it ready to receive its next 
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command. The asynchronous REU architecture shown in Figure 3.14 has its execution rate 

controlled by the incoming rate of the wireless command. It has the common frontend block 

implementation of the clocked REU.  The main difference between both the REU designs with 

respect to implementation is only the core block. The core represented in Figure 3.14 is 

implemented as an asynchronous design. 

 

Asynchronous designs may be known for low power, but are much harder to design. 

Such implementations are not based on the global periodic pulses typically known as the clock 

signal. The implementation and verification of an asynchronous design is a much longer process 

when compared to the synchronous designs because great care must be taken to ensure timing 

and data integrity. There are no standard commercial complete design solution tools for 

asynchronous designs. Hence, the lack of strong support of commercial CAD tools is a major 

hurdle for synthesis of asynchronous designs. 

 

 

Figure 3.14:  Proposed Asynchronous REU High-level Block Diagram 
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The REU has been designed; synthesized and implemented using standard CAD tool 

flows. It should also be noted that these tools were solely designed with an intent to test and 

implement clocked designs. Using these tools to reasonably respond to asynchronous designs is 

a task in itself. Both the clocked and asynchronous REU core architectures were implemented 

as digital designs. The implementation process of both the architectures enables a valid 

comparison between the clocked and asynchronous design performance in aspects of power, 

speed and area. Considerable time has also been spent to ensure successful implementations 

allowing a valid comparison. The post-layout level details of the verification and 

implementation of both the versions of the REU core design and their corresponding power, 

area and speed results are presented and compared in the next chapter.   
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4.0  REU DESIGN IMPLEMENTATIONS AND RESULTS 

This chapter presents a high-level design flow for clocked and asynchronous REU designs, 

along with the corresponding post-layout simulation results. Another significant contribution of 

this research is the high-level design flow of asynchronous REU architectures using 

synchronous or clocked CAD (computer-aided design) tools. The minimum modifications to the 

traditional clocked CAD flows necessary for the successful implementation of such 

asynchronous templates are introduced in the next section. 

  

A standard ASIC flow begins at the specifications for the target design. Once the design 

specifications are clear, the design is partitioned into logical modules. Each logical module is 

modeled using an electronic design automation based descriptor language such as VHDL (very-

high-speed integrated circuits hardware descriptor language). The design is tested for functional 

correctness using functional simulation based testbenches. 

 

Lack of strong support of commercial CAD tools is a major hurdle for the synthesis of 

asynchronous designs. Asynchronous VHDL designs are known to use necessary delay 

constructs such as wait, delay, etc.; as part of the VHDL implementation due to the absence of a 

global clock. These VHDL delay constructs are not synthesizable. Standard VHDL compilers 



 62 

(for example Xilinx ISE, Altera Quartus II, etc.) are not known to synthesize VHDL code that 

implements an asynchronous design. Based on the Conventional Hardware Descriptor 

Languages, most asynchronous design methodologies [66], [67], [68] that have been proposed 

are not very accessible to standard high-level design tools. Current implementation of 

asynchronous designs involve either use of an entirely new cell library and/or specialized tools. 

These act as impediments in the adoption of existing clocked CAD flows in the implementation 

of asynchronous designs. A high-level CAD flow is introduced in this section for the REU 

designs, especially the asynchronous ones, which requires minimum changes to traditional 

clocked design flow. 

4.1 DESIGN FLOW IMPLEMENTATION USING CLOCKED CAD TOOL FLOWS 

The remaining section discusses the proposed design flow of implementing an REU architecture 

using state of the art clocked CAD tools. This section illustrates different design and 

verification phases starting from the VHDL design all the way to the design layout, including 

the CAD flow modifications necessary for the asynchronous templates as well. 

 

Synchronous designs are governed by a global clock for the accurate and timely 

execution of the functions. Asynchronous design is largely autonomous and is not governed by 

any explicit clock. In other words, asynchronous designs do not use any clock circuit and, 

hence, wait for specific signals that indicates completion of an operation before they go on to 

execute the next instruction.  
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The REU architectures introduced in Chapter 3 consist of three major components : 

frontend, clocked core and asynchronous core. Once the design specifications are clear, the 

design is partitioned into logical modules. Each logical module is modeled using VHDL. Figure 

4.1 presents the different modules that depict the major blocks of both the REU architectures 

shown in Figure 3.13 and Figure 3.14. Each module is first simulated and verified 

independently. On successful individual verifications, the modules are combined to form the 

final design and were finally again verified for the overall expected functionality.  

 

 Figure 4.1:  Modules (a) Clocked REU (b) Asynchronous REU  

 

The testbenches especially used for the verification of REU core designs typically cover 

all types of instructions that are part of the 8051-MISA covering operations performed on all the 

different registers available. The testbenches used for the frontend cover dual length based 

8051-MISA encoded instructions. The overall testbench used for the REU, includes performing 

operations on just received data and data currently stored in these registers, is setup, for 
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instance, on the lines of an sum-array application.  The order of instructions starts with storing 

different data in the available registers and then performing all various operations such as 

addition with carry, logic operations, etc. on the existing and the new data. The repetition of 

instructions is based on various combinations of using the same operation-different register, 

different operations-same register with different data. The details of the testbenches are 

described in the later sections. 

 

The REU tool based design flow process along with the verification is illustrated in 

Figure 4.2. All the design flow modifications as shown in Figure 4.2 are specifically applicable 

only for asynchronous designs.  

 

Figure 4.2: High Level Design Flow 
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The major steps (Figure 4.2) used to implement the REU design are given in the 

following sections [69]: 

4.1.1 Simulate and Verify the VHDL design using ModelSim  

Mentor Graphic’s ModelSim tool is typically used to simulate and debug the design for the logic 

verification. The REU design blocks, which include both the clock driven and asynchronous 

templates, are modeled using VHDL. 

 

The VHDL based asynchronous blocks of the REU design use delay constructs for exact 

timing requirements in order to implement functional correctness, in contrast to the clocked 

design versions. The frontend design uses input data as a clock instead of an external global 

clock as shown in Figure 4.3. The “data” signal shown in Figure 4.3 acts as the input data port, 

“data_clk” signal is defined as an internal signal that stores the input data, and “tmp” is realized 

as a shift register to store the decoded data. Delay constructs embedded in the design are 

necessary and are not only used in the frontend to successfully decode and store input 

instructions into elements such as a shift register, but also to delay asynchronous core related 

specific signals so as to activate them after the completion of a previous operation. The design 

using VHDL delay constructs are not synthesizable.  

 

Figure 4.3: A portion of the sample VHDL code  
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The purpose of this exercise is to verify the logical operation of the design in simulation. 

A customized testbench is used to verify the correct functionality of the clocked and the 

asynchronous based designs in ModelSim SE 6.4 on a Linux based platform. 

4.1.2 Generate a synthesizable design using Synopsys Design Compiler  

Given the successful verification of the VHDL file using ModelSim, the next step is to generate 

a synthesized net-list for the design using the Synopsys Design Compiler.  

 

The “dc_shell” command interface provides a script execution environment based on 

TCL (Tool Command Language). The basic directives of a TCL script include setup 

environment variables, constraints, basic compilation directives, etc.  

 

In case of clock driven modules, the main parameter for synthesis is the specification of 

the clock frequency in the TCL script. In case of the asynchronous modules, all the statements 

that involve the non-synthesizable VHDL delay constructs are identified and removed. It is 

necessary to identify specific cell names and their corresponding inputs and outputs in the 

schematic of the design in order to insert the necessary delays.  

 

The major modification in the script for asynchronous modules is to avoid specifying 

any target clock frequency for synthesis. The other major modification to the TCL script is the 

inclusion of necessary delays using the TCL based delay commands. The synthesizable delay 
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commands normally available are ‘set_max_delay’ and ‘set_min delay’, which can be 

separately inserted into the TCL script during the synthesis process. These commands have 

options to specify start/end sets of cells and their inputs/outputs pins in the schematic along with 

a fixed target delay value. Identification of the necessary cells and their corresponding 

begin/end points in the design schematic is the key to maintaining the timing of the entire 

system which in turn aids the correct working of the design. Figure 4.4 shows a sample usage of 

‘set_min_delay’ command along with the required parameters. These parameters in Figure 4.4 

represent a delay of 0.3 ns, origin cell name U11 and its output port Y, destination cell name 

tmp_reg [] and its corresponding input port CLK.  

 

Figure 4.4: A portion of a sample TCL script with the delay command 

 

In the case of clock based designs, the above mentioned modification to the TCL script 

is not necessary. Typically, during the synthesis process for any type of design, Design 

Compiler, after executing the updated TCL script, reads in the synthesizable VHDL file and 

generates a synthesized cell-level net-list in Verilog according to a standard cell library. The 

generated Verilog file shares the same I/O ports as the initial VHDL, along with the description 

of cells and their interconnections. These cells typically consist of basic components such as 

AND gate, OR gate, D-F/F, etc. Another necessary timing constraint file produced after 

synthesis is called the SDC (Synopsys Design Constraints) file, which is input during the place 
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and route process. SDC is a TCL based format constraining file. Generally, clocked CAD flows 

assume a virtual clock (or use specific clock for clocked designs) for all its purposes, if a clock 

is not explicitly specified as in the case of asynchronous designs. The SDC file does contain 

timing constraints related to an assumed virtual clock. Hence the SDC file is modified to 

remove these virtual clock dependencies before using this file in the process to produce the 

layout. 

 

The next step is to compile and simulate the generated net-list Verilog file along with 

the target library using ModelSim. This net-list is checked for any delay issues, clock speeds 

(only in case of synchronous design), or any errors caused due to the misinterpretation of the 

input design by the synthesis tool. On the successful verification of the net-list using the 

previous testbench for correct functionality, the layout of the chip is generated. 

4.1.3 Generate the layout using Cadence Encounter  

After successful synthesis of a design, the Cadence Encounter tool is used to perform a physical 

place and route of the previously obtained net-list of standard cells. 

 

The two files obtained after post-synthesis, namely the Verilog net-list file and the 

modified SDC file, are provided as input to the Encounter tool. Next, a sequence of events need 

to be performed : to import the design, specify the floor plan, power planning, placement, 

timing check and finally to route the design. In the above sequence of events, it is necessary to 

skip an important procedure called the “clock tree synthesis” (an integral part of generating 
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layout for any clocked circuit) for asynchronous based templates. The use of automatic pre-

place optimization done during the cell placement process is also restricted in order to have all 

the delay elements intact in the design. This modification is not included as part of the layout 

generation of any clock based design. 

 

After verification of the entire design for connectivity and geometry, the final place and 

route layout is obtained, along with the derived post-place and route net-list file and a generated 

standard SDF (standard delay format) file. The generated SDF file contains library cell models 

and related delay information.  

 

The resulting post-place and route net-list are simulated and verified for the expected 

functional operation using ModelSim along with the SDF file. Design of a working 

asynchronous/clocked circuit chip is complete on the successful post-layout functional 

verification.  

4.1.4 Power estimation with Cadence Encounter  

There are two options of generating power reports for a design. One option is to generate a basic 

power report that does not require any specific testbench and the other is a testbench based 

power report. The basic power report provides a general overall power consumption of the 

design and the testbench based power report provides power consumption of the design based 

on the switching activity mentioned in the testbench. During the final leg of the place and route 

process, under report tab there is a power option available with Encounter to produce the basic 
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power report. The testbench based power report generation involves a switching activity file 

called the VCD (Value Change Dump) file that is derived from the initial testbench using 

ModelSim. During the final leg of the place and route process, the generated VCD file is input 

to the power rail analysis option available with Encounter to produce the power report. 

4.2 REU POST-LAYOUT SIMULATION RESULTS 

4.2.1 Clocked REU Core 

The REU core acts as a controller for the entire REU architecture that decodes the command, 

performs the corresponding ALU operation and generates control signals for the register file. The 

REU core is currently designed as a finite state machine and the clock is used to trigger each one 

of the sets of states based on the decoded command/instruction. The individual blocks of the 

current clocked REU system consist of a register file and a controller. Each individual block is 

tested for accurate operation by a sample testbench. The testbench that is used includes 

instructions for moving necessary data to all the eight registers. The post-layout simulation and 

verification of the clocked REU core design has been successfully completed as shown in Figure 

4.5 for a clock frequency 10 MHz for the 8051 instructions. For the detailed testbench used in 

this simulation is shown in the Section 1.01(a)(i)Appendix B. For all the input, output and signal 

definitions used in the Figure 4.5 refer to the Chapter 3. The register value in reg5 (01010101) is 

added to the accumulator value (10101010) to obtain a result of 11111111, which is stored as the 

first non-zero value in the result_data_temp register (highlighted by an arrow marker in Figure 

4.5). This is the first ALU instruction executed in the testbench. After the execution of the final 
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instruction (MOVX) of the testbench, each of the corresponding intermediate multi-bit register 

values are highlighted in rectangular orange box shown in Figure 4.5. The accumulator data 

(01010101) from the previous instruction is transferred to the destination register (des_out) and 

is highlighted by an orange-circled marker in Figure 4.5. All the REU instructions have been 

successfully verified for the expected operation. 

 

The area dimension including the pads of the 8051 core and REU core layout as 

estimated by Cadence Encounter is 67596 µm2 and 15748 µm2 respectively. Figure 4.6 shows 

the layout of the REU core chip. The core layout area occupied by the clocked REU core is 

about 7,917 µm2 (91 x 87). 
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4.2.2 Asynchronous REU Core 

The asynchronous REU consists of the REU core and frontend as main blocks. The successful 

post-layout verification of the REU core design has been simulated as shown in Figure 4.7. The 

clocked core version’s testbench is used for the asynchronous core simulation with the same 

order and frequency except for the clock signal. For all the input, output and signal definitions 

Figure 4.6: Clocked REU Core Layout 
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used in the Figure 4.7 refer to the Chapter 3. The add operation result (11111111) same value as 

in the case of clocked version is highlighted by an arrow marker in Figure 4.7. The accumulator 

data (01010101) from the previous instruction is transferred to the destination register (dest) that 

is the same value as in the case of the clocked version and is highlighted by an orange-circled 

marker in Figure 4.7. The corresponding intermediate multi-bit register values are highlighted in 

rectangular orange box shown in Figure 4.7. All the REU core instructions have been 

successfully verified for the expected operation. 

 

Figure 4.7 represents the simulation results for a testbench consisting of the sample set 

of instructions of the ones used for testing the clocked REU core design. Figure 4.8 shows the 

layout of the asynchronous REU core design. The dimension of the core area layout as 

estimated by Cadence Encounter is 9,024 µm2  (96 x 94). 
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Figure 4.8: Asynchronous REU core Layout 

4.2.3 REU Frontend 

The decoder and the CRC block architectures introduced in Chapter 3 were independently 

simulated and verified. Both the decoder and the CRC blocks were successfully integrated to 

form the frontend REU design. Figure 4.9 represents a sample simulation for the Front-end 

design of the REU design. According to the data-driven encoding scheme, the testbench 

consists of encoded ‘0’s and ‘1’’s with ‘0’ having a pulse width much less than the pulse width 
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of a ‘1’. This testbench uses a pulse width of ‘1’, about 100 ns and the pulse width of ‘0’ = 2.5 

ns, encoded bit-period is about 250 ns and a data clock is delayed by 3 ns.  

 

 

Figure 4.9: Frontend Post-Layout Simulation  

 

The received encoded data is successfully decoded, and its format is of the form: 

LENGTH (1-bit)-OPCODE (8-bit)-CRC (16-bit), in other words a 25-bit input “0-00001000-

1010110100110110”. The binary data highlighted as a circle represents the decoded data that is 

stored in the 34-bit shift register denoted by the ‘tmp’ signal output shown in Figure 4.9. The 

input data that is used as a clock signal for sampling the corresponding data signal is delayed by 

3ns to produce the expected decoded output. The LENGTH (bit) field is used to differentiate the 

two variable length input frames (LEN-OPCODE-CRC [25-bit] and LEN(1-bit)-OPCODE(8-

bit)-DATA(8-bit)-CRC(16-bit) [33-bit]) supported by the REU design. The OPCODE here 

represents the 8-bit 8051-instruction opcode format and the CRC -16 represents the 16-bit code 

used to detect transmission errors in the received 8-bit OPCODE. The CRC-16 polynomial was 

used to generate the above CRC value is g(x)= x16+x12+x5+1.  
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Figure 4.9 represents a successful 25-bit input data format simulation result for the 

Front-end design. The 25-bit input frame input was used as the testbench:  “0-00001000-

1010110100110110”(in decoded format). The CRC-16 register was initially loaded with FFFFh 

and the “tmp” register with all 0’s except for tmp(0). Now all of the 16 bits of the received 

CRC, and then the input bit stream is clocked into the “tmp” register beginning with the MSB. 

On identifying the input frame length, the decoder samples the encoded input frame on every 

rising edge of the delayed data to produce the correct decoded output as shown in register “tmp” 

as in Figure 4.9. As shown in Figure 4.9, the CRC-16 register simultaneously computes the 

CRC-value along with the decoding process and the transmitted data are valid as the of the CRC 

register value equals 1D0Fh at the end of the decoding process. This CRC register is denoted by 

“CRC16_reg” and its corresponding value is highlighted in the orange circle as shown in Figure 

4.9. On identifying the validity of the 8-bit opcode, two main outputs are successfully updated 

with accurate values: opcode (8-bit) (“opcode_out”) and control signal (“ctr”). It can be clearly 

seen from Figure 4.9 that the “opcode_out” and the “ctr” output registers are successfully 

updated with “00001000” (outlined in an orange rectangular box in Figure 4.9) and ‘1’ 

respectively at the end of the decoding process. This opcode represents an INC Rn instruction. 

A decoder reset (“dec_reset”) was also included in the testbench that was used to reset certain 

flags used for the internal operation of the REU core design at the end of the every instruction 

execution. This pin is triggered by the REU core design output and is not controlled externally. 

A sample VHDL code and a corresponding TCL script are presented in the Section 

1.01(a)(i)Appendix C and Section 1.01(a)(i)Appendix D respectively. 
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Figure 4.10 shows the layout of the frontend design. The area dimension including pads 

for the layout as estimated by Cadence Encounter is 91 x 90 µm2. The total number of cells used 

in the design as estimated by the Synopsys Design Vision is 607. 

 

 

Figure 4.10: Layout of the REU Frontend 

 

The clocked REU frontend design differs with the asynchronous REU frontend design 

mainly with the switch output signal that is the input to the REU core as illustrated in Chapter 3. 

The area occupied by the clocked REU frontend is the same as that of the asynchronous version. 
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4.2.4 Clocked REU  

On successful post-layout verfication of the REU core and frontend, a switch component was 

implemented as demultiplexer and was tested for its functionality. On successful verfication of 

the switch design, it was intergrated with the fronend and REU core components as shown in 

Chapter 3 to form the clocked REU design. The successful post-layout of the entire clocked 

REU design has been successfully simulated and verified for various frequencies ranging from 

1MHZ to 80 MHz. Figure 4.11 and Figure 4.12 represent successful simulation results of 

processing multiple variable (25 bit and 33-bit) instruction data formats for clocked REU with 

the Switch design at a clock frequency of 10 MHz.  

 

 

Figure 4.11: Clocked REU Post-Layout Simulation 

Instruction Sequence-Simulation Test Bench for Figure 4.11: 

CLR A and Content after execution in A =00000000 

MOV R0, #DATA1 and Content after execution in R0 =01010101 

MOV R1, #DATA2 and Content after execution in R1 = 10101010 

MOV R2, #DATA3 and Content after execution in R2 = 00001000 

MOV A, R0 and Content after execution in A = 01010101 
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ADD A, R1  and Content after execution in A = 11111111 

ADD A, R2  and Content after execution in A = 00000111 

MOVX @ R0 and A Content after execution in the output register dest_t = 00000111 

 
 
In Figure 4.11, the result (stored in dest_t register) of the adding three 8-bit binary 

numbers stored in R0 R1 and R2 respectively. The result highlighted by an orange circled marker 

represents the successful update of the final result of the add operation A and R2. Finally the 

successful transfer of the computed data (A  dest_t) to the output register “dest_t”. In Figure 

4.12, the zoomed in Figure 4.11 version of the successful final add operation result update in the 

accumulator, and its transfer (A  dest_t) to the output register “dest_t” has been verified and 

updated accordingly. 

 

 

Figure 4.12: Final Result Simulation (zoomed_in version of Figure 4.11) 

 

Figure 4.13 shows the layout of the clocked REU chip. The area dimension of the layout 

as estimated by Cadence Encounter is 142 x 139 µm2.  
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Figure 4.13: Clocked REU Layout 

4.2.5 Asynchronous REU  

On successful independent post-layout verfications of the asynchronous REU core and frontend, 

both of these modules were intergrated to form the asynchronous REU design as shown in 

Chapter 3. This entire REU design was successfully simulated and verified for various variable 

(25 bit and 33-bit) instruction data formats as shown in Figure 4.14. 

 

The simulation of the asynchronous REU design shown in Figure 4.14 uses the same 

testbench as described in the previous section for the clocked design. 



 83 

 

Figure 4.14: Asynchronous REU Post-Layout Simulation 

 

In Figure 4.14, the result (stored in “dest_t” register) of the adding three 8-bit binary 

numbers stored in R0 R1 and R2 respectively. The result highlighted by an orange circled marker 

represents the successful update of the final result of the add operation A and R2. Finally the 

successful transfer of the computed data (A  dest_t) to the output register “dest_t” is 

completed.  

 

Figure 4.15 shows the layout of the asynchronous REU chip. The core area dimension of 

the asynchronous REU layout as estimated by Cadence Encounter is 108 x 107 µm2. The core 

area dimension of the clocked REU layout for comparison is about 102 x 99 µm2. 
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Figure 4.15: Asynchronous REU Layout 

4.3 REU COMPARISONS 

Both REU designs mainly consist of a core block and a frontend block. The main 

implementation difference between both the REU design versions is the core design, as both 

have the same the frontend design implementation. The 116 8051-instructions based REU core 

has been implemented both as a clocked and an asynchronous design. This section presents the 

comparisons of both the REU core implementations in terms of power, speed and area.  
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4.3.1 Power  

The current 8051 models used in wireless biomedical sensor applications; embedded systems, 

etc., typically run at clock frequencies of 50MHz or greater [46], [47], [48], [49]. An existing 

8051 Microcontroller core model [71] was identified and is used as a reference model for 

comparison with the clocked REU and the asynchronous REU. This complete ISA based 8051 

core (256 instructions) is a fully synchronous design compatible with the Intel 8051 µC. This 

architecture has a higher performance average compared to the traditional one as it executes 

most of the instructions in one clock cycle. This model and its derivatives are used in wireless 

sensor applications [46].  

 

The 8051 core model consists of four major blocks: ALU, control unit, serial interface 

unit and timer-counter. This 8051 core model has been debugged for a successful compilation 

of all its design blocks. This core design has been successfully synthesized using a target 45nm 

PTM technology for a supply voltage of 1.1 V. Hence, use of a common target technology, 

libraries and supply voltage for all the three models (clocked REU core, asynchronous REU 

core and the 8051 µC core) makes a justification for an accurate power comparison.  

 

Figure 4.16 shows the layout of the 8051 core chip. The area dimension including the 

pads of the layout as estimated by Cadence Encounter is 262 x 258 µm2. The total number of 

cells in the layout estimated using Synopsys Design Vision is 11,022. 

 



 86 

 

Figure 4.16: 8051 µC Core Layout 

 

The clock speed for execution with the clocked design is a major determining factor for 

power consumption. Figure 4.17 summarizes the total power, dynamic power and leakage 

power values for the complete ISA based 8051 core (256 instructions) at 1 MHZ, 10 MHZ, 30 

MHZ, 60 MHz and 80 MHZ clock frequencies respectively. These power values were generated 

by Cadence Encounter power option based on the input target clock frequency for the design. It 

can be clearly seen from Figure 4.17, as the frequency increases from 1 MHZ to 80 MHZ, the 

total power consumption also increases.  
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Figure 4.17: 8051uC: Power Consumption Vs Clock Frequency 

 

Figure 4.18 reports a power comparison graph for direct data visualization of the 

clocked REU core (116 instructions) for a frequency range of 1 MHZ - 80 MHZ. It can be 

clearly seen from Figure 4.17 and Figure 4.18 that as the frequency increases from 1 MHZ to 80 

MHZ, the dynamic power consumption increases which in turn contributes to increase in the 

total power consumption for both the complete ISA based 8051 core (256 instructions) and the 

clocked REU core (116 instructions) models. There is about 79 % decrease in the total power 

consumption of the clocked REU core when compared to the 8051 core design. The major 

reason for low power consumption of the clocked REU core when compared to the 8051 core is 

that the REU supports less than half the regular 8051 ISA. This savings in power is thus 

credited to the interrogator/REU distributed architecture concept. 
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Figure 4.18: Power Consumption Vs Proposed REU Core Design Types 

 

Figure 4.18 also illustrates the individual and the total power consumption values for the 

asynchronous REU core (116 instructions). The total power consumption of the asynchronous 

core is a fixed value for any frequency sweep. This fixed value of the asynchronous core design 

lies within the range of power consumption values of the clocked core design at 30MHZ and 

60MHZ respectively, as shown in Figure 4.18. With the increase in clock frequency, the 

dynamic power consumption of the clocked core is the main contributor to the total power 

consumption. It can be clearly seen that the power consumption of the clocked core has 

significantly higher power consumption at higher frequencies when compared to the 

asynchronous core. The next section presents the execution speed comparisons for the 

asynchronous and the clocked REU cores.  
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4.3.2 Speed  

Given that the frontend designs are the same in both cases, the execution time for 

comparison is based solely on the time to complete an instruction execution once the instruction 

has been determined to be valid. Obviously, execution (operation) time for the asynchronous 

version is fixed by the minimum delays possible in the REU design for the given technology, 

which will have some minimal difference from instruction to instruction but is not affected by 

the clock frequency. The execution time for the clocked version is solely the clocking time 

required for the execution of an instruction. The speed comparison for the clocked REU core is 

consequently relative to the clock frequency chosen. The following Figure 4.19 is an illustration 

of the execution time versus the clock frequency in the range of 10 MHZ-80 MHZ for the 

clocked REU core for set of sample instructions. The execution time for the clocked REU 

instructions decreases with the clock frequency. 

 

 
 Figure 4.19: Execution time vs Instruction Type for REU Clocked Core 
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From Figure 4.18, it can be seen that the total power consumption value of the clocked 

core running at 60MHZ is the closest upper bound to the total power consumption value of the 

asynchronous core. Hence, the execution speed of the asynchronous core is compared to the 

clocked core running at 60 MHZ.  

 

Figure 4.20: Execution Time vs Instruction Type      

 

Figure 4.20 illustrates the execution time comparisons of the 8051 instructions that are 

part of the asynchronous core and the clocked core running at 60 MHZ. It can be seen from this 

figure that the clocked core executes its instructions accordingly in one, two and three clock 

cycles, whereas the asynchronous core executes the same set of instructions at a much faster 

rate. As the clock frequency is lowered (<<60MHz), the clocked core will have lower execution 

speeds whereas the asynchronous core will have a constant and much faster execution speed.  
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4.3.3 Area    

The third basis of comparison is layout area required to fabricate the REU chip.  Area is also a 

function of the actual subset of the 8051 instructions required.  However, for the purpose of 

example in this research, the set of 116 instructions have been chosen for implementation.  

 

The layout area of the 8051 core (256 instructions) compared to the clocked (116 

instructions) REU and the asynchronous (116 instructions) REU core are presented in Figure 

4.21. As can be seen from this figure, the clocked core (116 instructions) occupies slightly less 

area than that of the asynchronous core (116 instructions). The clocked and asynchronous 

difference is mainly due to delay elements required in the asynchronous core. It can be clearly 

seen a significant reduction in the core area for both versions of the REU core when compared 

to the 8051 core. The total occupied core area by the clocked and asynchronous REU core 

designs are about 84% and 81% respectively lower when compared to the 8051μC core.  

 

 
Figure 4.21: Layout Area Comparisons  
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4.3.4 Summary    

This research has explored speed, area and power consumption for both the clocked and 

asynchronous REU core implementations based on 116 8051-instructions to understand their 

corresponding tradeoffs. The asynchronous core design has definite advantage of low power 

consumption with those of a clocked design at high frequencies (>>40MHZ). For low 

frequencies (<<40MHZ), the asynchronous design has a definite speed advantage at the cost of 

additional power consumption.  

 

Based on the available power requirements, it is either necessary to use a clocked core 

running at very low frequencies compromising on the speed or use the asynchronous core 

running at much higher execution speeds. It can be concluded in such a context that the use of 

asynchronous or clocked design will depend on the power and execution speed requirements of 

the applications. 
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5.0  CONCLUSIONS  

A WPSN system of passive nodes is remotely powered by an RF source and hence power 

consumption is a critical concern in such systems. This dissertation has presented novel low 

power programmable solutions applicable to such wireless nodes. A low-power wireless 

distributed node processor design concept has been demonstrated. A data-driven symbol 

decoder as part of the REU frontend has also been introduced as opposed to the conventional 

over-clocking symbol decoding process used in RF based devices. The clocked and 

asynchronous versions of the REU core design, synthesis and layout generation were 

successfully performed. Simulation results for area, speed and power of the post-layout REU 

design were presented. It is evident from the post-layout results that the proposed asynchronous 

REU core has lower power consumption when compared to the clocked version at higher 

frequencies. The clocked REU core design running at low frequencies (<<30 MHz) have an 

edge over using the asynchronous core with respect to power consumption, but run at much 

slower speeds. The target application requirements of power, speed, functionalities play an 

important role in choosing the ISA subset for the REU. A high-level asynchronous design flow 

has also been presented which is necessary to implement the asynchronous core using clocked 

CAD tool flows. This research provides the user with the flexibility of the 8051 software and 

development tools with the opportunity to further optimize the power, area and speed of the 

REU for any specific application if necessary.  
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This research has the potential to realize WPSN node applications for environmental, 

structural and medical fields especially while providing the basis for a programmable, 

reconfigurable and a low power passive processing unit for distributed computing. 

5.1 CONTRIBUTIONS 

This dissertation provides multi-domain low power solutions to increase the range of wireless 

passive devices such as RFID based nodes, generally used in biomedical sensors, environmental 

monitoring, supply chain logistics, etc. This research presented innovative architectures and 

design methodologies in the context of such power-constrained wireless nodes.  

 

The interrogator and a set of passive nodes in combination are viewed as a wireless 

SIMD distributed system with the REU as the digital processing core of the passive node. This 

dissertation research has successfully designed and implemented both the clocked and 

asynchronous programmable REU core architectures based on the 116 instructions subset of the 

8051 ISA. A high-level design flow for the asynchronous REU core implementation using 

synchronous CAD tools was also developed. The REU frontend was also implemented as a 

data-driven symbol decoder architecture for low power applications. The simulated power 

results show that the asynchronous REU core consumes considerably less power when 

compared to the clocked REU core running at high frequencies. The interrogator/REU 

architecture concepts and design elements related to instruction choices and separation of 

hardware between the interrogator and REU blocks introduced in this dissertation can be 
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extended to implement other microprocessor ISA’s, e.g. Motorola 6800, Intel 8085, etc. The 

primary contributions of this work are listed as follows: 

 

 Introduced the Wireless SIMD Distributed Architecture Concept 

o To remotely execute a subset of instructions on the passive nodes (REU) while 

requiring low power. 

 Design and Implementation of a Low Power Programmable REU architecture  

o REU Frontend  

 Implemented as a data-driven symbol decoder-CRC design that eliminates 

the need for high frequency oscillators for low power applications. 

o REU Core  

 A subset of the 8051 ISA determined appropriate was chosen to implement 

the logic of the REU core for low power. 

 Implemented asynchronous and clocked REU core designs based on the 116 

instructions subset of the 8051 ISA. 

• The resultant asynchronous design was found to consume lower 

power and have higher instruction execution speeds when compared 

to the clocked REU core design at high frequencies.    

o Developed a high-level CAD design flow for an asynchronous REU core 

 Modified the traditional clocked design flow in order to accomplish an 

asynchronous design implementation. 
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5.2 FUTURE DIRECTIONS 

While the development of a low power REU is the focus of this dissertation research, the 

methodology of distributing program execution can be applied to other application fields such 

as compiler theory, distributed computing and environmental monitoring and wireless body 

sensor networks. Additionally, design parameter based security features can also be enhanced 

while providing a basis for a programmable passive processing unit. 

 

The asynchronous nature of the REU provides for many opportunities for timing 

variations based on the instruction being executed and the amount of energy harvested by the 

REU. Exploration of such opportunities available to such REU designs can open up research 

avenues especially in enhancing the lightweight privacy and security features of the device.  

 

The passive REU design is a type of flexible ASIC that can be used with remote sensing 

devices such as implantable medical sensors within the human body or long term environmental 

monitoring. The power, area and speed of such a design can be satisfactorily evaluated on a 

development tool before actually producing a custom programmable ASIC. Such a design 

process needs new tools to be able to target any ISA. This will require further development of 

new compilation techniques that focus on optimizing the execution of the distributed program. 

 

The incorporation of sensors with the REU lowers the deployment cost enabling sensor 

networks to be deployed in applications such as Internet of Things (IOT) where they were 

previously too costly to develop a viable solution. Such a REU based passive device will need 

to be adapted for such applications enabling continued development of the existing protocols. 
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APPENDIX A 

8051 INSTRUCTION DESCRIPTIONS 

Table A1 represents 8051 instructions along with the corresponding description for each instruction.  

Table A1:  8051 Instruction Descriptions 

Instruction Description Instruction Description 
ACALL Absolute Call MOV Move Memory 

ADD, ADDC Add Accumulator (With 
Carry) MOVC Move Code Memory 

AJMP Absolute Jump MOVX Move Extended Memory 

ANL Bitwise AND MUL Multiply Accumulator by 
B 

CJNE Compare and Jump if Not 
Equal NOP No Operation 

CLR Clear Register ORL Bitwise OR 
CPL Complement Register POP Pop Value From Stack 
DA Decimal Adjust PUSH Push Value Onto Stack 

DEC Decrement Register RET Return From Subroutine 
DIV Divide Accumulator by B RETI Return From Interrupt 

DJNZ Decrement Register and 
Jump if Not Zero RL Rotate Accumulator Left 

INC Increment Register RLC Rotate Accumulator Left 
Through Carry 

JB Jump if Bit Set RR Rotate Accumulator Right 

JBC Jump if Bit Set and Clear Bit RRC Rotate Accumulator Right 
Through Carry 

JC Jump if Carry Set SETB Set Bit 
JMP Jump to Address SJMP Short Jump 

JNB Jump if Bit Not Set SUBB Subtract From 
Accumulator With Borrow 

JNC Jump if Carry Not Set SWAP Swap Accumulator Nibbles 

JNZ Jump if Accumulator Not 
Zero XCH Exchange Bytes 

JZ Jump if Accumulator Zero XCHD Exchange Digits 
LCALL Long Call XRL Bitwise Exclusive OR 
LJMP Long Jump UNDEF Undefined Instruction 
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APPENDIX B 

 TESTBENCH FOR CLOCKED REU CORE @ 10MHz 

The following script is a detailed testbench that was used in the post-layout simulation and 

verification of the 116 8051 instructions of the clocked REU core design for a 10 MHZ clock 

frequency. This testbench simulation is presented in Figure 4.5 as part of Chapter 4. 

--------------------------------------------- 
---TESTBENCH FOR CLOCKED_REU_CORE---10Mhz 
--------------------------------------------- 

force -freeze rst 1  
force -freeze ctr 0  
force -freeze sw_ctr 0  
force -freeze clk 0 
run 50000 ps 
force -freeze rst 0  
run 250000 ps 
------------------------------------------------------- 
--------------MOVE DATA TO ACCUMULATOR---------- 
force -freeze ctr 1  
force -freeze sw_ctr 1 
##### MOVE DATA TO ACCUMULATOR ###### 
force -freeze  op_code 01110100 
force -freeze src_data  10101010 
run 25000 ps 
 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
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force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
--------------MOVE DATA TO all REGISTERS---------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO REGISTER R0 ###### 
force -freeze  op_code 01111000 
force -freeze src_data  10101010 
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO REGISTER R1 ###### 
force -freeze op_code 01111001 
force -freeze src_data 00011000 
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
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force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO REGISTER R2 ###### 
force -freeze op_code 01111010  
force -freeze src_data 01010100  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO REGISTER R3 ###### 
force -freeze  op_code 01111011  
force -freeze src_data  10101010  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
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force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO REGISTER R4 ###### 
force -freeze  op_code 01111100  
force -freeze src_data  01010101  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO REGISTER R5 ###### 
force -freeze  op_code 01111101  
force -freeze src_data  01010101  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
------------------USING ADD A,Rn-------------------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
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force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### SET CARRY TO ZERO ###### 
force -freeze  op_code 11000011  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### ADD contents of REGISTER R5 TO ACCUMULATOR ###### 
force -freeze  op_code 00101101  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
----------------USING INC Rn---------------- 
--Current value in R4  = 01010101 
----INC R4          -- R4  = 01010110 
---------solution--- 
-------R4 = 01010110 
--------------------------------------------------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
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##### INC Rn ###### 
force -freeze  op_code 00001000  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
------------------USING ADD with #data------------- 
----MOV A,#16H   --A  = 00010110 
----ADD A,#33    --A  = 01001001,#33=00110011 
---------solution--- 
-------C = 0 
-------ACC = 49H 
--------------------------------------------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO ACCUMULATOR ###### 
force -freeze  op_code 01110100 
force -freeze src_data  00010110  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
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force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### ADD #DATA TO ACCUMULATOR ###### 
force -freeze src_data  00110011 
force -freeze  op_code 00100100  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
------------------USING ORL--------------------- 
--MOV A,#C3H --A  = 11000011 
--MOV R5,#55H --R5 = 01010101 
--ORL A,R5    --A  = 11010111 or D7H 
---solution--- 
--ACC = D7H 
---------------------------------------------------------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO ACCUMULATOR ###### 
force -freeze  op_code 01110100  
force -freeze src_data  11000011  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
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run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### ORL contents of REGISTER R5 TO ACCUMULATOR ######   
force -freeze  op_code 01001101  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
----------------USING INC A---------------- 
----MOV A,#E4H     --A  = 11100100  
----INC A          --A  =11100101 or (E5) 
---------solution--- 
-------ACC = E5H 
---------------------------------------------------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO ACCUMULATOR ###### 
force -freeze  op_code 01110100  
force -freeze src_data  11100100  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
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force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### INC A ###### 
force -freeze  op_code 00000100 
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
----------------USING DEC A---------------- 
----ACCUMULATOR ALREADY HAS 11100101  
----DEC A          -- A  = 11100100  
---------solution--- 
-------ACC = E4H 
------------------------------------------------------------------ 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### DEC A ###### 
force -freeze  op_code 00010100  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
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force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
----------------USING SUBB with #data---------------- 
---Initially assume Carry is '0' 
----MOV A,#C9H     --A  = 11001001  
----SUBB A,#22    --A  =10100111 or (A7)  ,#22 = 00100010 
---------solution--- 
-------C = 0 
-------OV = 0 
-------AC = 0 
-------ACC = A7H 
------------------------------------------------ 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO ACCUMULATOR ###### 
force -freeze  op_code 01110100  
force -freeze src_data  11001001  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
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force -freeze ctr 1 
force -freeze sw_ctr 1 
##### SET CARRY TO ZERO ###### 
force -freeze  op_code 11000011  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### SUBB #DATA TO ACCUMULATOR ###### 
force -freeze  op_code 10010100  
force -freeze src_data  00100010  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
----------------USING SUBB (A-R2) WITH CARRY------------------ 
---Initially assume Carry is '1' 
----MOV A,#0C9H  --A  = 11001001 
----MOV R2,#54H  --R2 = 01010100 
----SUBB A,R2    --A  = 01110100  
---------solution--- 
-------C = 0 
-------AC = 0 
-------OV = 1 
-------ACC = 74H 
---------------------------------------------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
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force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO ACCUMULATOR ###### 
force -freeze  op_code 01110100  
force -freeze src_data 11001001  
run 25000 ps 
 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### SET CARRY TO ONE ###### 
force -freeze  op_code 11010011  
run 25000 ps 
 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### SUBB contents of REGISTER R2 from ACCUMULATOR ###### 
force -freeze  op_code 10011010  
run 25000 ps 
 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
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run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
----------------USING DEC Rn---------------- 
--Current value in R0  = 10101010 
----DEC R0          -- R0  = 10101011 
---------solution--- 
-------R0 = 10101011 
-------------------------------------------------------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### DEC Rn ###### 
force -freeze  op_code 00011000  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
------------------USING ANL--------------------- 
--MOV A,#C3H --A  = 11000011 
--MOV R5,#55H --R5 = 01010101 
--ANL A,R5    --A  = 01000001 or 41H 
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---solution--- 
--ACC = 41H 
--------------------------------------------------------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO ACCUMULATOR ###### 
force -freeze  op_code 01110100  
force -freeze src_data  11000011  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### ANL contents of REGISTER R5 TO ACCUMULATOR ###### 
force -freeze  op_code 01011101  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
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force -freeze clk 0 
run 50000 ps 
----------------USING ADDC with #data---------------- 
---Initially assume Carry is '0'-------------- 
----MOV A,#C3H     --A  = 11000011 
----ADDC A,#A9H    --A  = 01101100, #A9=10101001 
---------solution--- 
-------C = 1 
-------OV = 1 
-------AC = 0 
-------ACC = 6CH 
---------------------------------------------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO ACCUMULATOR ###### 
force -freeze  op_code 01110100  
force -freeze src_data  11000011  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### CLR CARRY TO ZERO ###### 
force -freeze  op_code 11000011  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
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force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### ADDC #DATA TO ACCUMULATOR ###### 
force -freeze  op_code 00110100  
force -freeze src_data  10101001  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
------------------USING ANL with #data------------- 
----MOV A,#C3H   --A  = 11000011 
----ANL A,#55    --A  = 01000001 or 41,#55=01010101 
---------solution--- 
-------ACC = 41H 
----------------------------------------------------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO ACCUMULATOR ###### 
force -freeze  op_code 01110100  
force -freeze src_data  11000011  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
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run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### ADD #DATA TO ACCUMULATOR ###### 
force -freeze src_data  01010101  
force -freeze  op_code 01010100  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
----------------USING ADDC ------------------------ 
---Initially assume Carry is '1' 
----MOV R0,#0AAH --R0  = 10101010 
----MOV A,#0C3H  --A   = 11000011 
----ADDC A,R0    --A   = 01101110 OR 6EH 
---------solution--- 
-------C = 1 
-------OV = 1 
-------AC = 0 
-------ACC = 6E 
---------------------------------------------------------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO ACCUMULATOR ###### 
force -freeze  op_code 01110100  
force -freeze src_data  11000011  
run 25000 ps 
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force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### SET CARRY TO ONE ###### 
force -freeze  op_code 11010011  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### ADDC contents of REGISTER R3 TO ACCUMULATOR ###### 
force -freeze  op_code 00111011   
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 



 116 

force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
------------------USING ORL with #data------------- 
----MOV A,#C2H   --A  = 11000010 
----ORL A,#11    --A  = 11010011 or C3, #11 = 00010001 
---------solution--- 
-------ACC = C3H 
--------------------------------------------------------------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO ACCUMULATOR ###### 
force -freeze  op_code 01110100  
force -freeze src_data  11000010  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### ORL #DATA TO ACCUMULATOR ###### 
force -freeze src_data  00010001  
force -freeze  op_code 01000100  
run 25000 ps 
 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 



 117 

run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
------------------USING XRL--------------------- 
--MOV A,#C3H --A  = 11000011 
--MOV R5,#55H --R5 = 01010101 
--XRL A,R5    --A  = 10010110 or 96H 
---solution--- 
--ACC = 96H 
---------------------------------------------------------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO ACCUMULATOR ###### 
force -freeze  op_code 01110100  
force -freeze src_data  11000011  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### XRL contents of REGISTER R5 TO ACCUMULATOR ###### 
force -freeze  op_code 01101101  
run 25000 ps 
force -freeze clk 1 
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run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
------------------USING XRL with #data------------- 
----MOV A,#C2H   --A  = 11000010 
----XRL A,#11    --A  = 11010011 or D3, #11 = 00010001 
---------solution--- 
-------ACC = D3H 
------------------------------------------------ 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO ACCUMULATOR ###### 
force -freeze  op_code 01110100  
force -freeze src_data  11000010  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
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force -freeze sw_ctr 1 
##### XRL #DATA TO ACCUMULATOR ###### 
force -freeze src_data  00010001  
force -freeze  op_code 01100100  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
--------------CLR ACCUMULTOR---------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
force -freeze  op_code 11100100  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
--------------CPL ACCUMULTOR---------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
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force -freeze sw_ctr 1 
force -freeze  op_code 11110100  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
--------------RR ACCUMULTOR---------- 
--Before = A C2h =11000010 
--After = A = 61h =01100001 
--------------------------------------------------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO ACCUMULATOR ###### 
force -freeze  op_code 01110100  
force -freeze src_data  11000010  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
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run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### ROTATE RIGHT ACCUMULATOR BY BIT ###### 
force -freeze  op_code 00000011  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
--------------RRC ACCUMULTOR---------- 
--Before = A C2h =11000010 and C=0 
--After = A = 01100001 and C = 0 
---------------------------------------------------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO ACCUMULATOR ###### 
force -freeze  op_code 01110100  
force -freeze src_data  11000010  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
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force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### ROTATE RIGHT ACCUMULATOR BY BIT WITH CARRY ###### 
force -freeze  op_code 00010011  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
--------------RL ACCUMULTOR---------- 
--Before = A = C2h =11000010 
--After = A = 85h = 10000101 
-------------------------------------------------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO ACCUMULATOR ###### 
force -freeze  op_code 01110100  
force -freeze src_data  11000010  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
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run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### ROTATE LEFT ACCUMULATOR BY BIT ###### 
force -freeze  op_code 00100011  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
--------------RLC ACCUMULTOR---------- 
--Before = A = C2h =11000010 and C = 0 
--After = A = 85h = 10000100 and C = 1 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO ACCUMULATOR ###### 
force -freeze  op_code 01110100  
force -freeze src_data  11000010  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
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run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### ROTATE RIGHT ACCUMULATOR BY BIT WITH CARRY ###### 
force -freeze  op_code 00110011  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
--------------SWAP ACCUMULTOR---------- 
--Before = A = C5h =11000101 
--After = A = 5Ch = 01011100  
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO ACCUMULATOR ###### 
force -freeze  op_code 01110100  
force -freeze src_data  11000101  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
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run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### SWAP (NIBBLE) ACCUMULATOR ###### 
force -freeze  op_code 11000100  
run 25000 ps 
 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
------------------USING XCH A,Rn--------------------- 
--MOV A,#C3H  --A  = 11000011 
--MOV R0,#AAH --R0 = 10101010 
--XRL A,R0    --A  = 10101010 AND R0 = 11000011 
---solution--- 
--A  = 10101010 and R0 = 11000011 
----------------------------------------------------------------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE DATA TO ACCUMULATOR ###### 
force -freeze  op_code 01110100  
force -freeze src_data  11000011  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
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force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### XCH EXCHANGE contents of REGISTER R0 AND ACCUMULATOR ###### 
force -freeze  op_code 11001000  
run 25000 ps 
 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
------------------MOV A,R5--------------------- 
--MOV A,R5 
--Before = A = 10101010  
--After = A = 01010101 
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------------------------------------------------------ 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE contents of REGISTER R5 TO ACCUMULATOR ###### 
force -freeze  op_code 11101101  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
------------------MOV R0,A--------------------- 
--MOV R0,A 
--Before = R0 = 11000011   
--After = R0 = 01010101 
----------------------------------------------------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE contents of REGISTER R5 TO ACCUMULATOR ###### 
force -freeze  op_code 11111000  
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
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force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
------------------MOV @R0,A--------------------- 
--MOV @R0,A 
--TRANSMITTING REGISTER (T) <- A (8-bit) 
--Transfer ACC data to an external register (data_out) used to transmit data   
--Before = data_out = 00000000   
--After = data_out = 01010101 
------------------------------------------------------- 
force -freeze  op_code 00000000 
force -freeze ctr 0 
force -freeze sw_ctr 0 
run 200000 ps 
force -freeze ctr 1 
force -freeze sw_ctr 1 
##### MOVE contents of REGISTER R5 TO ACCUMULATOR ###### 
force -freeze  op_code 11110010 
run 25000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
force -freeze clk 1 
run 50000 ps 
force -freeze clk 0 
run 50000 ps 
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APPENDIX C 

VHDL CODE FOR FRONTEND  

library ieee ; 
use ieee.std_logic_1164.all ; 
use ieee.std_logic_arith.all ; 
use ieee.std_logic_unsigned.all ; 
 
entity frontend is 
  port(data : in  std_logic; 
       reset : in  std_logic; 
       dec_reset : in  std_logic; 
 
       sys_reset : out  std_logic; 
       ctr : out std_logic ; 
       srcdata : out std_logic_vector(7 downto 0); 
       opcode_out  : out std_logic_vector(7 downto 0)); 
end frontend; 
 
architecture frontend_beh of frontend is 
 
  signal tmp: std_logic_vector(33 downto 0); 
  signal data_clk: std_logic; 
  signal crc16_reg, crc_int : std_logic_vector (15 downto 0); 
  signal xor12   : std_logic; 
  signal xor0    : std_logic; 
  signal xor5    : std_logic; 
  signal xor16   : std_logic; 
  signal reg4,reg11,reg15 : std_logic; 
  signal sregout  : std_logic_vector(7 downto 0); 
  signal flag8, flag16   : std_logic; 
 
  begin 
 
    process (data_clk,data,tmp,reset,dec_reset) 
     
 variable flag8, flag16   : std_logic; 
 
      begin  
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      if ((reset = '1' and dec_reset = '1') or (reset = '1' and dec_reset = '0') or (reset = '0' and dec_reset = '1') 

then  
 
     if(reset = '1') then 
   sys_reset <= '1'; 
                else  
   sys_reset <= '0'; 
     end if; 
 
  tmp <= "0000000000000000000000000000000001"; 
  data_clk <= '0'; 
                crc16_reg <= "1111111111111111"; 
  crc_int <= "0000000000000000"; 
  sregout <= "00000000"; 
  xor12 <= '0'; 
                xor0 <= '0';  
                xor5 <= '0'; 
                xor16 <= '0'; 
  reg15 <= '0'; 
  reg11 <= '0'; 
         reg4 <= '0'; 
 
  flag16 := '0'; 
  flag8 := '0'; 
  srcdata <= "00000000"; 
  opcode_out <= "00000000"; 
   
  ctr <= '0'; 
   
     else  
 
 data_clk <= data; 
 
 if(reset = '0') then 
  sys_reset <= '0'; 
        end if; 
  
        if (data_clk'event and data_clk='1') then  
 
           tmp <= tmp(32 downto 0) & data; 
 
 
  reg15 <= crc16_reg(15); 
  reg11 <= crc16_reg(11); 
         reg4 <= crc16_reg(4); 
 
  crc16_reg(15 downto 13) <= crc16_reg(14 downto 12);  
                crc16_reg(11 downto 6)  <= crc16_reg(10 downto 5); 
  crc16_reg(4 downto 1)   <= crc16_reg(3 downto 0);  
 
  xor16 <= reg15 ; 
  crc16_reg(12) <= '1'; 
       crc16_reg(5) <= '1'; 
                crc16_reg(0) <= '1';  
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  if (flag16 = '0' and flag8 = '0') then 
 
   if (tmp(1 downto 0) = "11") then 
  
    flag16 := '1'; 
 
   elsif (tmp(1 downto 0) = "10") then  
      flag8 := '1'; 
 
   end if; 
    
  end if; 
 
  ctr <= '0'; 
 
       end if; 
 
 if(data_clk = '0')then 
 
                xor16 <= reg15 xor tmp(0); 
    crc16_reg(12) <= xor16 xor reg11; 
       crc16_reg(5) <= xor16 xor reg4; 
                crc16_reg(0) <= xor16 xor '0'; 
 
  crc_int <= crc16_reg; 
 
   
 
        if (tmp(33) = '1' and flag16 = '1') then  
 
   if(crc_int = "0001110100001111") then  
 
   --Received data CRC-16 CHECK FOR 1D0F 
 
    opcode_out <= tmp (31 downto 24); -- 8-bit opcode 
                         srcdata <= tmp (23 downto 16); -- 8-bit data 
    ctr <= '1'; 
    
          else 
   
                  ctr <= '0'; 
    
   --Ignores the command if the received data is invalid 
 
          end if; 
                end if; 
 
        if (tmp(25 downto 24) = "10" and flag8 = '1') then  
 
   if(crc_int = "0001110100001111") then  
 
   --Received data CRC-16 CHECK FOR 1D0F 
 
    opcode_out <= tmp (23 downto 16); -- 8-bit opcode 
    ctr <= '1'; 
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   else 
   
                  ctr <= '0'; 
    
   --Ignores the command if the received data is invalid 
 
          end if; 
   
       end if; 
 
 end if; 
 
     end if; 
     
     
    end process; 
  
end frontend_beh; 
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APPENDIX D 

TCL SCRIPT FOR FRONTEND 

              #################################################### 
# Change following configurations for your design  # 
#################################################### 
# HDL file names (.v or .vhd)                      # 
set my_HDL_files frontend.vhd 
 
 
# Top-level Module / Entity name                   # 
set my_toplevel frontend 
 
 
# The name of the clock pin                        # 
# If no clock-pin exists, pick anything            # 
set my_clock_pin no_clk 
 
# Target frequency in MHz for optimization         # 
set my_clk_freq_MHz 200 
 
# Delay of input signals (Clock-to-Q, Package etc.)# 
set my_input_delay_ns 0.1 
 
# Reserved time for output signals (Holdtime etc.) # 
set my_output_delay_ns 0.1 

 
              #################################################### 

define_design_lib WORK -path ./DC_WORK 
file mkdir DC_reports 
set verilogout_show_unconnected_pins "true" 
set_ultra_optimization true 
set_ultra_optimization -force 
 
set ext [file extension $my_HDL_files] 
if { $ext == ".v" } { 
    analyze -f verilog $my_HDL_files 
} elseif { $ext == ".vhd" } { 
    analyze -f vhdl $my_HDL_files 
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} else { 
    puts "File Format Error!" 
    quit 
} 
 
elaborate $my_toplevel 
 
current_design $my_toplevel 
 
#set_dont_touch [get_nets tmp] 
 
#set_min_delay 1.5 -from data -through U17 -to tmp_reg[0] 
#set_max_delay 0.5 -from {in} -to {out} 
 
#set_wire_load_model -name "" -library "gscl45nm" 
 
check_design 
link 
uniquify 
 
set my_period [expr 1000 / $my_clk_freq_MHz] 
 
set find_clock [ find port [list $my_clock_pin] ] 
if { $find_clock != [list] } { 
   set clk_name $my_clock_pin 
   create_clock -period $my_period $clk_name 
} else { 
   set clk_name vclk 
   create_clock -period $my_period -name $clk_name 
} 
 
# If input need to be buffered, enable this        #  
#set_driving_cell  -lib_cell INVX1  [all_inputs] 
set_input_delay $my_input_delay_ns -clock $clk_name [remove_from_collection [all_inputs] 

$my_clock_pin] 
set_output_delay $my_output_delay_ns -clock $clk_name [all_outputs] 
 
compile -ungroup_all -map_effort medium 
check_design 
 
set_min_delay  3 -from U302/Y -to {tmp_reg[0]/CLK tmp_reg[1]/CLK tmp_reg[2]/CLK 

tmp_reg[3]/CLK tmp_reg[4]/CLK tmp_reg[5]/CLK tmp_reg[6]/CLK tmp_reg[7]/CLK tmp_reg[8]/CLK 
tmp_reg[9]/CLK tmp_reg[10]/CLK tmp_reg[11]/CLK tmp_reg[12]/CLK tmp_reg[13]/CLK tmp_reg[14]/CLK 
tmp_reg[15]/CLK tmp_reg[16]/CLK tmp_reg[17]/CLK tmp_reg[18]/CLK tmp_reg[19]/CLK tmp_reg[20]/CLK 
tmp_reg[21]/CLK tmp_reg[22]/CLK tmp_reg[23]/CLK tmp_reg[24]/CLK tmp_reg[25]/CLK tmp_reg[26]/CLK 
tmp_reg[27]/CLK tmp_reg[28]/CLK tmp_reg[29]/CLK tmp_reg[30]/CLK tmp_reg[31]/CLK tmp_reg[32]/CLK 
tmp_reg[33]/CLK xor16_reg/CLK reg15_reg/CLK reg11_reg/CLK reg4_reg/CLK flag16_reg/CLK 
flag8_reg/CLK crc16_reg_reg[0]/CLK crc16_reg_reg[1]/CLK crc16_reg_reg[2]/CLK crc16_reg_reg[3]/CLK 
crc16_reg_reg[4]/CLK crc16_reg_reg[5]/CLK crc16_reg_reg[6]/CLK crc16_reg_reg[7]/CLK 
crc16_reg_reg[8]/CLK crc16_reg_reg[9]/CLK crc16_reg_reg[10]/CLK crc16_reg_reg[11]/CLK 
crc16_reg_reg[12]/CLK crc16_reg_reg[13]/CLK crc16_reg_reg[14]/CLK crc16_reg_reg[15]/CLK} 

 
set_min_delay 3.5 -from U149/Y -to {ctr_reg/S} 
 
set_min_delay 4 -from dec_reset -to {U320/B} 
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compile -incremental_mapping -map_effort medium 
 
check_design 
redirect ./DC_reports/constraint_violators.rep { report_constraint -all_violators -verbose } 
 
set filename [format "%s%s"  $my_toplevel "_SYN.v"] 
write -f verilog -output $filename 
 
set filename [format "%s%s"  $my_toplevel "_SYN.sdf"] 
write_sdf $filename 
 
set filename [format "%s%s"  $my_toplevel ".sdc"] 
write_sdc $filename 
 
redirect ./DC_reports/timing.rep { report_timing } 
redirect ./DC_reports/power.rep { report_power } 
redirect ./DC_reports/area.rep { report_area } 
redirect ./DC_reports/clock.rep { report_clock } 
redirect ./DC_reports/resource.rep { report_resource } 
redirect ./DC_reports/cell.rep { report_cell } 
 
quit 
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APPENDIX E 

VHDL CODE FOR ASYNCHRONOUS REU CORE  

The following vhdl code represents a top-level module of the asynchronous REU core design 

described in Figure 3.11 as part of Chapter 3. 

------------------------------------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.all; 
use IEEE.STD_LOGIC_ARITH.all; 
use WORK.REU_opcode_lib.all; 
------------------------------------------------------------------------------ 
entity top_ctr_rfile is 
     
    port(   rst              : in  STD_LOGIC ; 
            op_code : in  STD_LOGIC_VECTOR (7 downto 0) ; 
            src_data : in  UNSIGNED (7 downto 0) ; 
            ctr_flag : in STD_LOGIC; 
 

                          dec_reset :out STD_LOGIC; 
            dest   : out UNSIGNED (7 downto 0); 

                          des_cy  : out STD_LOGIC; 
            des_ac  : out STD_LOGIC; 
            des_ov  : out STD_LOGIC 
 ); 
             
end top_ctr_rfile; 
 
------------------------------------------------------------------------------- 
 
architecture BHV of top_ctr_rfile is 
 
component reu_base is 
        port(   rst              : in  STD_LOGIC; 
              op_code : in  STD_LOGIC_VECTOR (7 downto 0); 
              src_data   : in  UNSIGNED (7 downto 0); 
  ctr_flag : in STD_LOGIC; 
  result_wr : out  STD_LOGIC; 
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               acc_final_wr : out  STD_LOGIC;   
               acc_rd : out  STD_LOGIC;         
               acc_wr : out  STD_LOGIC; 
               acc_data_out: out  UNSIGNED (7 downto 0); 

data_reg : out  UNSIGNED (7 downto 0); 
 rd : out  STD_LOGIC; 
 wr : out  STD_LOGIC; 
             reg_index :out  STD_LOGIC_VECTOR (3 downto 0); 
 exe_state :out UNSIGNED (4 downto 0); 
 src_3   : out  UNSIGNED (7 downto 0); 
 alu_flag_out : out  STD_LOGIC; 
             src_cy  : out  STD_LOGIC ); 
end component reu_base ; 
 
component rfile is 
    port(rst          : in  STD_LOGIC; 
          reg_index    : in  STD_LOGIC_VECTOR (3 downto 0); 
          in_data      : in  UNSIGNED (7 downto 0); 
          result_in_data  : in  UNSIGNED (7 downto 0); 
          result_wr    : in  STD_LOGIC;  
          rd           : in  STD_LOGIC; 
          wr           : in  STD_LOGIC; 
          out_data     : out UNSIGNED (7 downto 0)); 
end component rfile ; 
 
component alu is 
    port(   rst : in STD_LOGIC; 

alu_state :in  UNSIGNED (4 downto 0); 
src_1   : in  UNSIGNED (7 downto 0); 

 src_2   : in  UNSIGNED (7 downto 0); 
 src_3   : in  UNSIGNED (7 downto 0); 
             src_cy  : in  STD_LOGIC; 
             alu_flag : in STD_LOGIC; 
 dec_reset : out STD_LOGIC;  
             des_reg   : out UNSIGNED (7 downto 0); 
             des_acc : out UNSIGNED (7 downto 0); 
 des_out   : out UNSIGNED (7 downto 0); 
             des_cy  : out STD_LOGIC; 
             des_ac  : out STD_LOGIC; 
             des_ov  : out STD_LOGIC ); 
end component alu ; 
 
component acc_reg is 
    port(rst          : in  STD_LOGIC; 
          acc_data      : in  UNSIGNED (7 downto 0); 
          final_acc_data  : in  UNSIGNED (7 downto 0); 
          acc_final_wr    : in  STD_LOGIC;  
 acc_rd           : in  STD_LOGIC; 
          acc_wr           : in  STD_LOGIC; 

acc_data_out     : out UNSIGNED (7 downto 0) ); 
end component acc_reg; 
 
  
    signal data_from_reg_temp  : UNSIGNED (7 downto 0); 
    signal data_from_acc_temp  : UNSIGNED (7 downto 0); 
    signal in_data_temp  : UNSIGNED (7 downto 0);  
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    signal reg_index_temp: STD_LOGIC_VECTOR (3 downto 0); 
    signal reg_rd_temp : STD_LOGIC; 
    signal reg_wr_temp : STD_LOGIC; 
    signal result_wr_temp : STD_LOGIC; 
    signal src_3_temp  : UNSIGNED (7 downto 0); 
    signal src_cy_temp : STD_LOGIC; 
    signal alu_state_temp  : UNSIGNED (4 downto 0); 
    signal dest_reg_temp  : UNSIGNED (7 downto 0); 
    signal reg_flag_temp :STD_LOGIC; 
    signal acc_flag_temp :STD_LOGIC; 
    signal alu_flag_temp :STD_LOGIC; 
    signal acc_data_out_temp : UNSIGNED (7 downto 0); 
    signal final_acc_data_temp : UNSIGNED (7 downto 0); 
    signal acc_final_wr_temp : STD_LOGIC; 
    signal acc_rd_temp : STD_LOGIC; 
    signal acc_wr_temp : STD_LOGIC; 
 
begin 
 
    controller:  reu_base port map (rst => rst, 
                                  op_code => op_code, 
    src_data   => src_data, 
    ctr_flag => ctr_flag, 
 
                reg_index => reg_index_temp, 
                rd => reg_rd_temp, 
                wr => reg_wr_temp, 
    result_wr  => result_wr_temp, 
                                  acc_final_wr    => acc_final_wr_temp, 
     acc_rd          =>acc_rd_temp, 
             acc_wr    => acc_wr_temp, 
                                  acc_data_out => acc_data_out_temp, 
    alu_flag_out => alu_flag_temp, 
 
    data_reg => in_data_temp, 
    exe_state => alu_state_temp,  
                src_3   => src_3_temp, 
                src_cy  => src_cy_temp); 
  
   reg_file: rfile port map (rst => rst, 
             reg_index  => reg_index_temp, 
             in_data    => in_data_temp, 
             out_data   => data_from_reg_temp, 
                                  result_in_data =>dest_reg_temp, 
    result_wr => result_wr_temp, 
             rd         => reg_rd_temp, 
             wr         => reg_wr_temp); 
 
     alu_comp: alu port map (   rst => rst, 
             alu_state  => alu_state_temp, 
             src_1   => data_from_acc_temp, 
             src_2   => data_from_reg_temp, 
                                  src_3   => src_3_temp, 
    src_cy  => src_cy_temp, 
    alu_flag => alu_flag_temp, 
    dec_reset => dec_reset, 
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    des_acc   => final_acc_data_temp, 
    des_reg => dest_reg_temp, 
    des_out => dest, 
             des_cy  => des_cy, 
             des_ac  => des_ac , 
                                  des_ov  => des_ov );  
 
   reg_acc: acc_reg port map(rst       => rst, 
             acc_data  => acc_data_out_temp, 
             final_acc_data  => final_acc_data_temp, 
             acc_final_wr    => acc_final_wr_temp, 
     acc_rd          =>acc_rd_temp, 
             acc_wr    => acc_wr_temp, 
     acc_data_out    => data_from_acc_temp  ); 
                                      
end BHV; 
 
-- end of file -- 
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