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ABSTRACT 

Glycophorins are a family of human erythrocyte membrane glycoproteins. At 

least four different sialoglycoproteins glycophorins, A (or a), B (or 6 ), C (or {3) and 

D (or y) have been detected in humans. Glycophorin A is the major sialic acid

containing protein of human erythrocyte membranes. It consists of 131 amino acids 

distributed in three structural domains. Glycophorin A is encoded by a single gene 

which gives rise to three different mRNAs, large (2.8 kb ), medium (1. 7 kb) and small 

(1.0 kb) in reticulocytes and in K562, a human erythroleukaemia cell line expressing 

glycophorin A on its surface. 

Six clones were isolated from a eDNA library constructed with K562 cell 

mRNA in )..gtlO phage using as a probe a synthetic oligonucleotide (GPA-N2) 

encoding amino acid numbers 30 to 40 of glycophorin A. Nucleotide sequencing of 

the six clones revealed that all contain an identical protein coding region except for 

the well known glycophorin AM-AN polymorphism and essentially identical 5" 

untranslated regions. In contrast, clones differ substantially in the length of their 3" 

untranslated regions. Examination of the 3" untranslated region of the largest clone 

revealed seven poly(A) addition signals (AATAAA). To study how the single gene 

encoding glycophorin A generates three different mRNAs, primer extension analysis 

and Northern blotting experiments were performed. These experiments supported the 
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findings of the eDNA sequencing and revealed that the three glycophorin A mRNAs 

differ in the length of their 3' untranslated region. The primary structure of the three 

glycophorin A mRNAs is deduced based upon the nucleotide sequence of various 

cDNAs, primer extension analysis and Northern blotting experiments. A mechanism 

is proposed for the generation of the three glycophorin A mRNAs from a single 

glycophorin A gene that involves differential processing of the 3' end of glycophorin 

A pre-mRNA utilizing multiple poly(A) addition signals. 

[Key words: human; erythrocyte; erythrocyte membrane; K562 cells; sialoglycoprotein; 

glycophorins; glycophorin A (a); eDNA cloning; mRNA; mRNA processing; 

polyadenylation]. 
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CHAP'I'ER 1 

INTRODUCI10N 

Glycophorins are a group of sialoglycoproteins present in erythrocyte 

membranes of humans and many animal species. At least four different sialic acid

rich glycoproteins termed glycophorins A (or a), B (or o), C (or 13) and D (or y) 

have been detected in humans. Members of this group of erythrocyte membrane 

proteins have been implicated in diverse phenomena such as regulation of membrane 

structure by controlling membrane fluidity, deformability and rigidity, erythrocyte 

senescence, and erythroid cell differentiation. Blood group antigens, MNSs are also 

found to be associated with glycophorins. Glycophorins, particularly glycophorin A, 

probably act as receptor for a number of entities including viruses such as, 

encephalomyocarditis virus (EMC), influenza virus, blue tongue virus and reovirus; 

possibly the malarial parasite, Plasmodium falciparum; and some bacterial strains. 

Since their detection in the late 1930s as blood group MN antigens 

glycophorins have served as model transmembrane proteins. A lot of information has 

been accumulated over past few decades about the biochemical characteristics and 

genetics of these sialoglycoproteins. The complete amino acid sequence has been 

determined for glycophorin A, B and C. 

Previous studies have shown that glycophorin A, the major sialoglycoprotein 
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of human erythrocyte membranes has a transmembrane orientation. It consists of 131 

amino acids, distributed in three structural domains. The extracellular NH2-terminal 

domain is composed of about 72 amino acids. The extracellular domain is followed 

by an intramembranous domain of about 23 amino acid residues inserted into the 

lipid bilayer. A short region comprising about 40 amino acid residues is exposed to 

the interior of the cell. 

At the time when this work was initiated it was known that glycophorin A is 

encoded by a single copy gene on chromosome 4 at q28-q31 • There was no information 

available about the primary structure of the mRNA for glycophorin A. Therefore, this 

work was initiated with an objective to clone eDNA for glycophorin A. It was hoped 

that information thus generated would be useful in the study of glycophorin A 

generally and also in its role as a virus receptor (particularly for EMC). However, 

while this work was in progress a partial eDNA sequence was published and the 

presence of three different sized mRNAs for glycophorin A were reported in human 

reticulocytes as well as in K562 cells. The sizes of these three mRNAs are about 2.8, 

1. 7 and 1.0 kb. Similar multiple RNAs were later shown to be present in human 

spleen erythroblast cells. Therefore, further efforts were concentrated in determining 

the primary structure of the three mRNAs. 

In eukaryotic cells production of multiple mRNAs from a single gene can 

involve multiple initiation sites, alternate splicing, differential termination or 
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processing at 3' ends. One way to distinguish between these mechanisms is to 

determine the primary structure of the mRNAs. eDNA cloning of glycophorin A 

mRNAs could provide some information about the structural differences between the 

three different glycophorin A mRNAs. The information thus generated could 

probably be used to predict the mechanism of production of these mRNAs from a 

single glycophorin A gene. 

I initiated the task of cloning and characterizing glycophorin A mRNAs with 

an objective of investigating the mechanism of generation of multiple mRNAs from 

a single gene. To achieve this goal I have isolated cDNAs encoding glycophorin A 

mRNAs from a K562 cell eDNA library using synthetic oligonucleotides as probes. 

I determined the nucleotide sequences of these cDNAs and used this information to 

predict the structure of the three glycophorin A mRNAs. Oligonucleotides were 

synthesized based upon the nucleotide sequence of various cDNAs encoding 

glycophorin A and then used as probes to check the validity of the prediction of 

primary structure of the three different glycophorin A mRNAs by Northern blotting 

of K562 mRNA. These studies have shown that the three glycophorin A mRNAs 

have similar 5' untranslated and coding region but they differ in the length of their 

3' untranslated regions. I have proposed a mechanism for the production of the three 

different mRNAs for glycophorin A that differ in their 3' untranslated region. 
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Review of Literature 

1.1. Scope of the review 

In this review I will present a brief description of glycophorins concentrating 

more on human glycophorin A. This will be followed by a description of various 

biological activities in which glycophorins specially glycophorin A has been implicated 

to have a role. In the latter part of this project efforts were concentrated on 

investigating the mechanism of generation of the three glycophorin A mRNAs that 

varied in the length of their 3"' untranslated region; the second part of this review is 

concerned with the biosynthesis of mRNAs with special emphasis given on processing 

of the 3"' ends of pre-mRNAs. 

1.2. Membranes 

The concept of membranes was first developed in the last century in an 

investigation of the penetration of pigments into damaged and undamaged plant cells 

(reviewed in Harrison and Lunt, 1975). In this early investigation it was observed that 

plant cells were osmotically sensitive and could change their volume according to the 

osmotic strength of the surrounding medium. Based upon this observation the term 

plasma membrane was coined to describe a boundary surrounding the cell. We have 

come a long way since these early observation regarding the existence of such a 

boundary to the present day understanding of the composition, structure, organization 

and function of not only the plasma membrane but other cellular membranes 
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important for normal operation of a cell (Harrison and Lunt, 1975). It is now well 

established that all eucaryotic cells are surrounded by plasma membranes. These 

membranes contain a lipid bilayer formed mainly of phospholipids in such a way that 

the hydrophobic side chains of these lipids are sequestered in the hydrophobic 

interior of the bilayer and the charged groups are exposed to the aqueous 

environment at both the intracellular and extracellular space (Karp, 1984). 

The fluid mosaic model presented by Singer and Nicholson (1971, 1972) is 

generally accepted to depict the arrangement found in all biological membranes. 

According to this model the bulk of phospholipids are arranged in the form of a 

discontinuous bilayer with their polar heads in contact with water and the associated 

proteins are either bound to the charged surface of the lipid bilayer mainly by 

electrostatic interactions (peripheral proteins) or intercalated to varying degrees in 

the hydrophobic interior of the bilayer (integral proteins). This latter type of protein 

is arranged in an amphipathic structure, that is, with the polar groups protruding 

from the membrane into the aqueous phase and the non-polar groups mostly 

intercalated in the hydrophobic interior of the membrane. A membrane in this model 

is envisaged as a two dimensional solution of proteins in a viscous phospholipid 

bilayer. Both lipids and proteins are capable of lateral mobility in the plane of the 

membrane (reviewed in Malhotra, 1980). 

Although the presence of a plasma membrane was first demonstrated in plant 
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cells much of the work has dealt with animal cell membranes. The human erythrocyte 

membrane has served as a model in the determination of the structural organization 

and function of membranes due to the ease with which it can be isolated without the 

contamination with other cellular membranes. 

1.3. Erythrocyte membrane proteins 

Sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis of proteins 

extracted from human erythrocyte membranes followed by coomassie blue staining 

revealed multiple bands; six of these bands arbitrarily designated I, II, III, IV, V and 

VI comprised about 60% of total human erythrocyte membrane proteins (Fairbanks 

et al., 1971). Periodic acid-Schiffs (PAS) staining of a gel containing separated 

erythrocyte membrane proteins revealed four bands designated P AS-1, P AS-2, P AS-3 

and PAS-4 (Fairbanks et al., 1971). Lenard (1970), also by SDS-polyacrylamide gel 

electrophoresis of human erythrocytes membrane proteins detected multiple bands 

which were stained with coomassie blue. This author (Lenard, 1970) further showed 

that human erythrocyte membranes contained at least 14 distinct proteins which were 

not degradation products of higher molecular weight components. Many of these 

erythrocyte membrane proteins have been identified and include a and {3 spectrin 

(bands 1 and 2), ankyrin (band 2.1), anion channel (band 3), actin (band 5), and 

glyceraldehyde 3-phosphate dehydrogenase (band 6, Cohen, 1983). In addition to the 

major proteins other erythrocyte membranes proteins involved in a number of 

functions have been detected. For example, at least 200 different proteins have been 
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detected by two dimensional polyacrylamide gel electrophoresis analysis of human 

erythrocyte membranes (Rubin and Milikowski, 1978). 

The structure, organization and functions of the erythrocyte membrane 

proteins have been reviewed a number of times (Steck, 1974; Marchesi et al. , 1976; 

Marchesi, 1979; Steck and Hainfeld, 1977; Bennet, 1985; Cohen, 1983; Chasis and 

Shohet, 1987). With the exception of sialoglycoproteins, most of the proteins of 

human erythrocyte membranes have been assigned a function, such as a role in 

contact with other constituents of the human erythrocyte membrane at the cell 

surface, a catalytic function or a capacity to support or stabilize the erythrocyte 

membrane structure (Marchesi, 1979). Some of the important characteristics of the 

major human erythrocyte membrane proteins will be described very briefly in the next 

section. 

1.3.1. Spectrin 

It is the most abundant skeletal protein of erythrocytes (about 105 

tetramers/cell), composed of two types of subunits, a and {3, of molecular weight 

240,000 and 225,000 daltons, respectively. These subunits are capable of self 

association to form heterodimers (a./3), tetramers (a./3)2 and high order oligomers. In 

addition to these self associations, the spectrins are also found to interact non

covalently with a number of other erythrocyte cytoskeleton proteins including, 

ankyrin, actin and protein 4.1 (Chasis and Shohet, 1987). 
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1.3.2. Protein 4.1 

The protein 4.1, a globular protein, has two components, 4.la and 4.lb of 

molecular weight 80,000 and 78,000 daltons, respectively. The dimer binds to the tail 

of the spectrin tetramer and plays an important role in the formation of a complex 

with spectrin and actin. Protein 4.1 may also act as a link between the cytoskeleton 

and the erythrocyte membrane (Chasis and Shohet, 1987). It is suggested that protein 

4.1 forms a link with glycophorin A (Anderson and Loverin, 1984; Mueller and 

Morrison, 1981 ), glycophorin C and possibly D (Reid et al., 1987a and b). 

1.3.3. Actin 

The monomeric form of human erythrocyte actin has a molecular weight of 

43,000 daltons and there are about 5 x lOS copies per cell. Most of the erythrocyte 

actin is present in the filamentous form, F-actin, which is composed of oligomers 

containing 12 to 17 subunits (Bennet, 1985). Erythrocyte actin associates weakly with 

spectrin and this association is enhanced by protein 4.1 (Chasis and Shohet, 1987). 

1.3.4. Ankyrin 

Ankyrin is a phosphoprotein of molecular weight 215,000 daltons that is 

present in 105 copies/cell. It binds to spectrin as well as the cytoplasmic part of band 

3 (anion transport channel). Ankyrin also binds to tubulin (Bennet, 1985). 
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1.3.5. Tropomyosin 

About 6 x lOS copies/cell of tropomyosin are present. The erythrocyte 

tropomyosin is similar to the non-muscle tropomyosin in many properties including, 

amino acid composition, and having two subunits of molecular weight, 29,000 and 

27,000 daltons. The monomeric units associate to form heterodimers which have the 

capability to interact with F-actin. Erythrocyte tropomyosin functions perhaps to 

stabilize actin filaments (Bennet, 1985). 

1.3.6. Myosin 

Erythrocyte myosin which contains Mg2+ ATPase activity is present in about 

6000 copies/cell, is composed of a heavy chain of molecular weight 210,000 daltons 

and two light chains of molecular weight 25,000 and 19,500 daltons. (Steck and 

Hainfeld, 1977). 

1.3. 7. Anion transport channel 

This is the most abundant protein of the human erythrocyte membrane as 

revealed by coomassie blue staining (band III, Fairbanks et al., 1970). This protein 

is also detected by PAS staining (Tanner, 1978). There are about 106 copies per 

erythrocyte (Steck, 1974). This protein runs as a characteristic diffused band on 

polyacrylamide gel with an apparent molecular weight of 86,000 to 90,000 daltons. It 

is an integral membrane protein that passes through the membrane many times to 

form a pore or channel through which passage of anions is controlled (Tanner, 1978). 
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1.4. Early studies on erythrocyte sialoglycoproteins 

A number of histochemical methods in combination with light or electron 

microscopy demonstrated the presence of carbohydrates associated with plasma 

membranes (reviewed in Winzler, 1970, 1972). The method most commonly employed 

for carbohydrate staining involves the periodic acid-Schiffs (PAS) reaction. This 

reaction depends on the periodate oxidation of vicinal hydroxyl groups in 

carbohydrates and the resultant production of aldehydes which react with aldehyde 

reagents such as acid fuchsin to give a pink product (Winzler, 1972). This staining 

method has been used extensively to characterize carbohydrate-containing molecules. 

Various studies have shown that carbohydrate-containing molecules of membranes 

include glycoproteins and glycolipids in addition to some free polysaccharides. 

Another important finding regarding carbohydrate was that the carbohydrate 

containing portions of these molecules in membranes were invariably distributed 

asymmetrically, i.e. mainly on the extracellular face (Winzler, 1970). 

The sialoglycoproteins now known as glycophorins were first characterized as 

blood group antigens, MN, the second blood group system discovered by Landsteiner 

and Levine (1927) following the discovery of the ABO system. Unlike the ABO blood 

group system which was identified accidentally by the presence in humans of 

antibodies reactive against erythrocytes of different individuals, the MN blood group 

system was discovered by reaction of erythrocytes with antisera which were raised in 

animals with the assumption that there must be more than one blood group system 
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in humans. To explain the serological relationship between M and N antigens these 

authors (Landsteiner and Levine, 1927) concluded that most likely these antigens 

were the products of co-dominant alleles (M and N) that resided at a single genetic 

locus (reviewed in Issitt, 1981). 

The erythrocyte sialoglycoproteins were subsequently shown to be involved in 

the phenomenon of haemagglutination. Hirst (1942) in his studies of influenza virus 

and chicken erythrocyte interaction (haemagglutination) demonstrated the presence 

of sialic acid on chicken erythrocyte receptors. It was demonstrated later that this 

binding was due to sialoglycoproteins (Gottschalk, 1960). Since then a number of 

other viruses have also been shown to attach to human erythrocytes and cause 

haemagglutination. Most of these viruses probably use the sialoglycoproteins, 

especially glycophorin A as their erythrocyte receptor (reviewed in Burness, 1981). 

The receptor for influenza virus isolated from human erythrocytes has been 

characterized repeatedly by many investigators and shown to be a virus 

haemagglutination inhibitor (Howe et al., 1957; Kathan et al., 1961; Kathan and 

Winzler, 1963; Burness and Pardoe, 1983). Kathan and Winzler (1963) showed that 

the M and N antigens were on the same molecule as the haemagglutination inhibitor. 

1.4.1. Sialopeptides 

The biochemical characterization of human erythrocyte glycoproteins began 



12 

with the observation that treatment of erythrocytes with proteolytic enzymes resulted 

in marked decrease in electrophoretic mobility of the erythrocytes. Investigations on 

the mechanism underlying this phenomenon revealed that the decrease in the 

electrophoretic mobility was due to a decrease in net surface electrical charge of 

erythrocytes brought about by the release of sialoglycopeptides. Many investigators 

have isolated and characterized the released sialoglycopeptides following proteolytic 

enzyme treatment of either intact erythrocytes or proteins isolated from erythrocyte 

membranes (reviewed in Winzler, 1970). For instance, Cook et a/. (1960) isolated a 

sialoglycopeptide by treating washed human erythrocytes with trypsin; based upon the 

absorption spectrum of the peptide they concluded that the polypeptide contained 

sialic acids (Cook et a/., 1960). Furthermore, release of this sialopeptide was 

correlated with about 20% decrease in net negative charge of erythrocytes which 

resulted in the concurrent decreased electrophoretic mobility of the erythrocytes 

(Cook et al., 1960). 

A glycopeptide which contained 30 to 50% of the sialic acid content of the 

intact erythrocytes and had a molecular weight of 10,000 daltons was isolated from 

human erythrocytes by trypsin treatment (Winzler et a/. 1967). In addition to 

containing sialic acid the glycopeptide also contained galactose, N-acetylglucosamine, 

and N-acetylgalactosamine. The carbohydrate moiety was found to be linked with 

proteins by an 0-glycosidic linkage between N-acetyl galactosamine and hydroxyl 

groups of serine and threonine. In addition to alkali-labile 0-glycosidic linked 
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oligosaccharide, the sialopeptide also contained carbohydrate in an N-glycosidic 

linkage (Winzler et al., 1967). 

A glycopeptide was released from isolated erythrocyte membrane glycoprotein 

preparation by trypsin or pronase treatment; this peptide was identical with the one 

isolated by trypsin treatment of intact erythrocytes (Lisowska, 1968). In addition to 

this carbohydrate-containing peptide another peptide, which contained an abundance 

of hydrophobic amino acids and no carbohydrate was also detected (Lisowska, 1968) 

most probably representing the intramembranous portion of glycophorin A. Trypsin 

treatment of human erythrocytes destroyed their M and N antigenicity with the 

release of sialic acids and hexosamines (Makela et al., 1960). Similarly, Ohkuma and 

Shinohara (1967) isolated a sialopeptide from pronase treated M, MN and N 

erythrocytes and concluded that these glycopeptides had structural similarities to each 

other. Burness and Pardoe (1983) isolated several sialoglycopeptides by treatment of 

glycophorin preparations with chymotrypsin. 

Characterization of the glycopeptides released from human erythrocytes or 

from proteins extracted from them established the existence of sialoglycoproteins in 

human erythrocyte membranes. Although human erythrocyte membranes contain at 

least four different sialoglycoproteins (also see section 1.5) glycophorin A is the major 

sialoglycoprotein of human erythrocytes and hence a major proportion of the 

glycopeptides released from the erythrocyte glycoproteins in various studies discussed 
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above must have been derived from glycophorin A. 

1.4.2. Characterization of glycoproteins of erythrocytes 

As mentioned above (section 1.3) human erythrocytes proteins fractionated by 

SDS-polyacrylamide gel electrophoresis followed by PAS-staining separated into four 

distinct bands (Fairbanks et al., 1971 ). Out of these four PAS bands the fastest 

moving band, just behind the tracking dye, was attributed to erythrocyte membrane 

glycolipid while the three slower moving bands labelled PAS-1, -2 and -3 were 

credited to erythrocytes sialoglycoproteins. With the exception of the band 3 protein 

which stained slightly with PAS (a minor band by PAS-staining), none of the other 

PAS-staining bands (P AS-1 to -4) were visible by stains for protein such as coomassie 

blue (Fairbanks et al., 1971). The proportion of the bands seemed to vary depending 

upon the conditions of isolation of the proteins. Therefore, it was speculated, that the 

P AS-2 and -3 were due to either contamination by other glycoproteins or were 

degradative products of P AS-1 generated during the isolation procedures (Marchesi 

et al., 1976). However, this speculation was not correct. In fact it had already been 

shown that the resolution of the human erythrocyte membrane glycoproteins 

depended upon the buffers and conditions used during isolation and electrophoresis 

(Teuch and Morrison, 1974) and indeed as will be discussed later (section 1.5) the 

erythrocyte membranes contain more than one sialoglycoprotein. 

Many of the minor PAS-stainable bands do not comprise unique glycoproteins, 
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but rather are aggregates of lower molecular weight proteins (Tanner, 1978). Using 

the buffer system of Fairbanks et al. (1971) at least seven PAS-stainable bands were 

reported by Tanner (1978). The proportion of P AS-1 and P AS-2 varied depending 

upon the solubilization conditions of the glycoproteins (Teuch and Morrison, 1974). 

In the phosphate buffer system, P AS-1 was the predominant form, whereas if the 

glycoproteins were dissolved in solutions containing Tris buffer more of the P AS-2 

was obtained (Teuch and Morrison, 1974). Furthermore, using the technique of two 

dimensional gel electrophoresis with 1251-labelled proteins of human erythrocyte 

membranes, it was shown that when the sialoglycoproteins were dissolved in Tris 

buffer with SDS and heated at 100°C before polyacrylamide gel electrophoresis, the 

PAS-2 form was favoured over PAS-1 (Teuch and Morrison, 1974). 

The observation that the two PAS bands ( -1 and -2) represent the major 

sialoglycoprotein of human erythrocytes, termed glycophorin A (Marchesi et al., 

1972), was confirmed by investigation of PAS bands in En( a-) cells which lack 

glycophorin A (Tanner and Anstee, 1976b ). P AS-1 and P AS-2 have a dimer-monomer 

relationship (Furthmayr and Marchesi, 1976) and appear to be in equilibrium in 

erythrocytes where the dimeric form of glycophorin A, stabilized by hydrophobic 

interactions between the two monomers, is predominant (Welsh et al., 1985). A 

synthetic peptide corresponding to the transmembrane domain of glycophorin A 

formed a specific reversible complex with native glycophorin A, glycoproteins of 

erythrocytes and of K562 cells in the absence of denaturants (Bormann et al., 1989). 
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Under similar conditions synthetic peptides containing amino acid sequence from 

transmembrane domains of glycophorin C or interleukin 2-receptor Tac antigen did 

not interact with the transmembrane domain of glycophorin A nor did these peptides 

inhibit the binding of the synthetic glycophorin A transmembrane polypeptide to 

native glycophorin A. Therefore, it was proposed that the membrane spanning 

domain of glycophorin A contained all the information necessary for membrane 

insertion and anchoring as well as for specific binding sites that mediate interaction 

between membrane glycoproteins (Bormann et al., 1989). 

The P AS-3 band is produced by glycophorin B (Furthmayer et al., 1975) which 

also shows up in SDS-polyacrylamide gel in the form of a heterodimer with 

glycophorin A (PAS-4) (Tanner, 1978). En( a-) cells which lack glycophorin A also do 

not stain for PAS-4 (Tanner and Anstee, 1976b) and the S-s-U- erythrocytes which 

lack P AS-3 glycoprotein, also do not show the P AS-4 band (Dahr et al., 1975b ). In 

addition to glycophorin A and B, at least two other sialoglycoproteins, C and D, are 

also found in human erythrocytes (Anstee, 1990; Cartron et al., 1990). 

1.5. Nomenclature of various glycophorins 

It is now generally agreed that human erythrocyte membranes contain at least 

four different sialoglycoproteins (Anstee, 1990; Cartron et al., 1990). These proteins 

were designated as a, /3, y and 6 in order of their increasing electrophoretic mobility 

(Anstee et al., 1979; Anstee and Tanner, 1986). Three of these sialoglycoproteins, a, 
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0 and 13, were also termed as A, B and C, respectively, in the order of their 

decreasing amount in erythrocyte membranes (Furthmayr et al., 1975). Dahr et al. 

(1978) used the designation which was based upon the blood group antigenicity of 

these sialoglycoproteins; MN for glycophorin A, Ss for glycophorin B and component 

D for glycophorin C. In recent years use of the designation by Furthmayr et al.(1975) 

has been more prevalent. Beside the four glycophorin bands, the PAS-staining of 

SDS-polyacrylamide gel of human erythrocytes shows other minor components some 

of which are due to homo- and hetro-dimers of glycophorin A and B (Anstee et al., 

1979; Furthmayr et al., 1975). The present perception of the original PAS bands 

(Fairbanks et al.,1971) is as follows: PAS-1 is a dimer of glycophorin A, PAS-2 and 

P AS-3 are monomers of glycophorin A and B, respectively. Additionally, yet another 

minor PAS band, PAS-2" is glycophorin C (component D) (Anstee et al., 1979) and 

Component E is glycophorin D (Anstee and Tanner, 1986). 

1.6. Isolation procedures 

Membrane glycoproteins such as glycophorins are associated firmly with the 

membrane Hpids. Therefore, to isolate these glycoproteins it is necessary to disrupt 

and dissolve the membranes while still maintaining the structures of the proteins. 

Various methods have been used to isolate intact glycoproteins from human 

erythrocytes membranes. Most of the earlier methods were based upon phenol 

extraction of erythrocyte membranes (Kathan et al., 1961; Springer et al., 1966; 

Winzler, 1969). In an attempt to isolate the haemagglutination inhibitor from the 
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human erythrocytes a glycoprotein preparation was recovered by extraction with 

phenol followed by chloroform-methanol mixture (Kathan et al., 1961). Since no 

further purification steps were performed this glycoprotein preparation was almost 

certainly contaminated with other glycoproteins. However, this preparation must 

contain glycophorin A as the predominant component, since the molecular weight of 

this component calculated from its sedimentation constant by analytical 

ultracentrifugation was found to be 31,000 daltons, a value similar to that obtained 

on the basis of amino acid sequence and carbohydrate content of glycophorin A 

(Tomita and Marchesi, 1975). 

Sialoglycoproteins from human erythrocyte membranes were isolated in an 

aqueous solution using pyridine-water mixture at 4°C and removing other membrane 

proteins by precipitation (Blumenfeld et al., 1970). Butanol extraction of human 

erythrocyte ghosts under high ionic condition also resulted in the extraction of these 

sialoglycoproteins in high yield as judged by estimation of MN activity; these 

sialoglycoproteins were further purified by gel filtration of the aqueous phase on 

sepharose 6B (Anstee and Tanner, 1974). Although this resulted in the isolation of 

the major sialoglycoprotein (glycophorin A) in fairly pure state, loading of samples 

at high concentration in SDS-polyacrylamide gel showed that the preparation still 

contained traces of other PAS-positive material (Anstee and Tanner, 1974). 

Extraction of human erythrocyte membranes with a mixture of chloroform-methanol 

followed by gel filtration on Sephadex G-100 resulted in the isolation of various 
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sialoglycoproteins which retained their MNSs activity and were free from other 

contaminating membrane proteins (Hamaguchi and Cleve, 1972). Another method 

for the isolation of the sialoglycoproteins used lithium diiodosalicylate (Marchesi and 

Andrews, 1971). Further modifications of this method incorporating lithium 

diiodosalicylate-phenol extraction followed by gel filtration in the presence of 

Zwitterionic detergent Arnmonyx-Lo resulted in the isolation of glycophorin A 

(Furthmayr and Marchesi, 1983). This preparation was fairly free from other 

sialoglycoprotein (B, C and D) which could then be isolated from the remaining 

preparation (from which glycophorin A had already been isolated) by preparative 

SDS-polyacrylamide gel electrophoresis. High-performance liquid chromatography 

in combination with lectin-affinity and metal-interaction chromatography was also 

used to separate glycophorins A, Band C from other proteins and to fractionate into 

individual components (Corradini et al., 1988) 

1. 7. Glycophorin A 

Glycophorin A is the major sialoglycoprotein of human erythrocytes since it 

comprises about 85% of the total PAS-stainable material (Cartron et al., 1990) and 

contains about 60% by weight of the total sialic acid of human erythrocytes 

membranes (Moulds and Dahr, 1989). A single erythrocyte contains about 2 x 105 to 

106 copies of glycophorin A (Anstee, 1990). 
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1. 7 .1. Molecular weight 

As discussed above (section 1.5) PAS-1 and -2 are the dimer and monomer 

forms of glycophorin A. The monomer runs with a mobility corresponding to a 

molecule of size at 36,000 daltons in SDS-polyacrylamide gel (Cartron et al., 1990). 

In an earlier study of human erythrocyte membrane sialoglycoproteins a molecular 

weight as high as 106 was proposed (Baranowski et al., 1959). Another study yielded 

a slightly lower value, about 6 x lOS daltons (Springer et al., 1966). These erroneous 

values were caused by aggregation of the sialoglycoproteins (Blumenfeld et al., 1970). 

Furthermore, estimation of molecular weight by SDS-polyacrylamide gel 

electrophoresis varies with the change in the concentration of acrylamide; for 

example, values of 53,000 and 40,000 daltons have been obtained in gels of 5 and 8%, 

respectively (Tanner and Boxer, 1972). The differing extent of binding of the 

detergents to carbohydrate rich and hydrophobic portions of the sialoglycoproteins 

in comparison to the non-membranous polypeptides used as standards for molecular 

weight calibration also contributed to these faulty values (Grefrath and Reynolds, 

1974; Tanford and Reynolds, 1976). However, as early as the 1960s values of about 

31,000 daltons were obtained from the sedimentation coefficient (Kathan et al., 1961; 

Morawieki, 1964). This is close to the value for molecular weight of glycophorin A 

deduced on the basis of amino acid and carbohydrate composition (Tomita and 

Marchesi, 1975). 
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1.7.2. Molecular organization, three structural domains 

The amphiphilic nature of the sialoglycoproteins of human erythrocytes first 

recognized by Morawieki (1964) was further clarified by Winzler (1969) on the basis 

of investigations on the sialopeptides released by trypsin treatment of human 

erythrocytes or glycoprotein extracted from erythrocyte membranes. Two peptides of 

very distinct characteristics were identified. One of these peptides was very rich in 

carbohydrate and the other in hydrophobic amino acids (Winzler, 1970). It was 

proposed that the sialoglycoprotein was anchored in the lipid bilayer through the 

hydrophobic polypeptide whereas the carbohydrate rich portion of the protein was 

exposed to the cytoplasm (Morawieki, 1964; Winzler, 1970). This prediction of 

orientation of glycophorin A has been found to be correct and is supported by the 

complete amino acid sequence of glycophorin A (Tomita and Marchesi, 1975) and 

various labelling methods discussed below. However, the original model of membrane 

anchoring is modified slightly in that the hydrophobic portion spans the lipid bilayer 

and the COOH-terminus passes completely through the membrane and is exposed 

to the cytoplasm (Tomita and Marchesi, 1975; Welsh et al., 1985). 

1. 7 .3. Amino acid sequence 

The complete sequence of the 131 amino acids in glycophorin A suggested the 

presence of three structural domains, namely extracellular (residues 1 to 64), 

intramembranous (residues 65 to 96) and cytoplasmic (residues 97 to 131) (Tomita 

and Marchesi, 1975; Tomita et al., 1978). The NH2-terminal carbohydrate rich region 
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which is exposed to the outside of the cell membrane is followed by a stretch of 

amino acids comprised mainly of uncharged residues (a hydrophobic region rich in 

leucine and isoleucine) inserted into the membrane. There is a clustering of charged 

residues at both ends of the hydrophobic region. The presence of a hydrophobic 

region enclosed within charged residues is topographically similar to a cross section 

of a phospholipid bilayer. The small COOH-terminal cytoplasmic domain is 

hydrophilic and rich in proline (Segrest et al., 1972). Although the presence of three 

structural domains of glycophorin A has been confirmed by many investigators the 

actual numbers of amino acids present in each of these domains has shown to be 

different from those originally proposed by Tomita and Marchesi (1975) and will be 

discussed in the next section). 

Based upon the studies involving various physical methods and conformational 

analysis it is suggested that glycophorin A contains a number of a-helical regions: 1) 

arginine-39 to tyrosine-52; 2) glutamine-63 to glutamic acid-70; 3) glutamic acid-72 

to leucine-89; 4) isoleucine-95 to lysine-101; and 5) leucine-118 to aspargine-125. With 

the exception of the structure of sequence "1", which occurs only at low pH and is 

possibly stabilized by non-covalent interaction with 0-linked oligosaccharides, the 

other helical conformations occur in the dimeric form of glycophorin A at 

physiological pH and ionic strength (Welsh et al., 1985). The a-helical conformation 

of sequence "3" is also in agreement with the generally observed conformation for 

membrane spanning domains of transmembrane proteins. 
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1.7.4. Labelling studies 

Various labelling studies performed in situ on sialoglycoproteins of human 

erythrocyte membranes are consistent with the amino acid sequence regarding their 

structural organization. In a study of the orientation of erythrocyte membrane 

proteins using the membrane impermeable reagent, formylmethionyl sulfone methyl 

phosphate (FMMP), it was observed that when intact ghosts were used, only a part 

of glycophorin A was labelled, whereas in leaky ghosts the whole of the glycophorin 

A was labelled (Bretscher, 1971 ). This was taken as an evidence that a part of 

glycophorin A is exposed to the outside of the cell membrane while another region 

is either located within the membrane or passes completely through it and is exposed 

to the cytoplasm thus becoming accessible to reagent only in leaky ghosts. 

Since FMMP is a low molecular weight reagent, it is possible that the 

membrane might be permeable to such a reagent in some conditions causing faulty 

labelling (Tanner, 1978). A study of the orientation of glycophorin A resulted in a 

similar conclusion using high molecular weight labelling reagent, lactoperoxidase 

which selectively labels tyrosine residues and can not cross cell membranes (Segrest 

et al., 1973). Only the residues present in the NH2-terminal domain of glycophorin 

A were labelled when lactoperoxidase was used with intact erythrocytes. The presence 

of label only in the NH2-terminal domain in intact erythrocytes indicated that this 

domain was exposed to the outside of the erythrocyte membrane; the COOH

terminal domain which contains one tyrosine residue, was not labelled on intact cells 
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indicating it is intramembranous or exposed to the inside of the cells (Segrest et al., 

1973; Morrison et al., 1974). 

Marchesi et al. (1972) arrived at similar conclusions using phytohaemagglutinin 

(PHA)-conjugated ferritin. When observed in electron microscope, PHA-conjugated 

ferritin was localized to the sites on the membrane that corresponded to the pattern 

of distribution of the electron dense particle (intramembranous particles) which were 

embedded between the two faces of the lipid bilayer. This suggested that the PHA 

receptors on the extracellular surface were connected physically to the underlying 

intramembranous particles. Further, trypsin digestion which modifies glycophorin A 

also modified the pattern of intramembranous particles, again indicating that the 

glycophorin A is embedded in the erythrocyte membrane. Other supporting evidence 

for a transmembrane orientation for glycophorin A was provided by immunochemical 

labelling methods. For instance, Cotmore et al. (1977) found that antibodies raised 

against ferritin conjugated to the region containing amino acids 102 to 118 of 

glycophorin A did not react with intact or trypsinized erythrocytes. However, the 

same authors reported that in fixed sections of these cells only the inner surface was 

labelled which confirmed the transmembrane orientation of glycophorin A and ruled 

out the possibility of faulty labelling due to rearrangement of membrane proteins 

during the labelling procedure. Bretscher (1975) provided further proof that the 

COOH-terminal lies in the cytoplasm by isolating an FMMP-labelled polypeptide 

(C2) by cyanogen bromide treatment of a glycophorin A preparation. When the 
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COOH-terminal peptide (C2) was subjected to finger print analysis using trypsin and 

chymotrypsin it yielded two main labelled peptides. These two peptides were identical 

to two other peptides (G1 and G2) previously shown to come from that part of 

glycophorin A which is on the cytoplasmic side of the membrane (Segrest et al., 

1972). Hence, it was concluded that the COOH-terminal region of glycophorin A lies 

in the red cell cytoplasm (Bretscher, 1975). 

The earlier prediction of the three structural domains in glycophorin A were 

further explored using the hydrophobic labelling reagents, such as 1-azido-4-

iodo[3H]benzene (Wells and Findlay, 1979). Most of the radioactivity was found to 

be incorporated in a chymotryptic peptide ( alanine-65 to arginine-98) which indicated 

that this region of glycophorin A lies predominantly within the membrane. Closer 

examination of the labelled products showed very little radioactivity up to histidine-66, 

suggesting that the point of entry into the lipid membrane environment was to the 

COOH-terminal side of histidine-66. When a photosensitive carbene attached 

covalently to fatty acids was used to label glycophorin A in reconstituted lipid vesicles 

a high level of incorporation was in glutamic acid-70 and the residues immediately 

adjacent to it in the COOH-terminal direction (proline-71 and glutamic acid-72 (Ross 

et al., 1982); this was interpreted by Welsh et al. (1985) as demonstrating that 

glutamic acid-70 to glutamic acid-72 were close to the membrane boundary. 

Therefore, it was proposed that glutamic acid-72 and tyrosine-93 define, respectively, 

the outer and inner limit of the membrane domain of glycophorin A in vivo. 
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Furthermore, it was suggested that the residues that span the membrane (isoleucine-

73 to serine-92) fold into an a-helical conformation with a length consistent with the 

dimensions of lipid bilayer (Welsh et al., 1985). These labelling studies have also 

defined the limits of the extracellular and intracellular domains. The extracellular 

NH2-terminal domains consists of amino acid residue 1 to about 72 and the COOH

terminal domain consists of amino acid residues 93 to 131 (Welsh et al., 1985). 

1. 7 .5. Carbohydrate structure 

The NH2-terminal domain of glycophorin A contains a very high proportion 

of serine and threonine. On average fifteen of these serine or threonine residues have 

simple oligosaccharide units linked through 0-glycosidic bonds (Dahr, 1986). In 

addition to these simple 0-linked oJigosaccharides there is a single complex 

oligosaccharide unit attached through an N-gJycosidic bond to the aspargine residue 

at amino acid position 26 (Tomita and Marchesi, 1975). 

1.7.5.1. 0-Iinked oligosaccharides 

The structure of the alkali-labile oligosaccharide units attached to serine and 

threonine residues in glycophorins was investigated by alkaline borohydride treatment 

(Winzler et al., 1967; Thomas and Winzler, 1969 a and b; Adamany and Kathan, 

1969). It was shown that most of the oligosaccharide was linked to the peptide chain 

through 0-glycosidic bonds from the anomeric carbon of N -acetylgalactosamine to 

the hydroxyl groups of serine and threonine. Further, the low molecular weight 
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oligosaccharides released by alkaline borohydride treatment were mostly 

tetrasaccharides containing N-acetylgalactosamine, galactose and N-acetyl neuraminic 

acid (sialic acid) with a molar ratio of 1:1:2, respectively [Fig. 1.1 (A)] (Thomas and 

Winzler, 1969 a and b; Adamany and Kathan, 1969). In addition to the 

tetrasaccharides alternate oligosaccharide structures were also proposed (Springer 

and Desai, 1975; Fukuda et al., 1987; Adamany and Blumenfeld, 1983). For example, 

an alternative structure [Fig. 1.1 (B)] of a pentasaccharide containing two galactose 

molecules per oligosaccharide unit was also proposed (Springer and Desai, 1975). 

However, it is believed that the tetrasaccharide structure shown in Fig. 1.1 (A) is the 

predominant structure (Fukuda et al., 1987; Adamany and Blumenfeld, 1983). 

Notwithstanding this, there is some evidence to support the presence of heterogeneity 

in the 0-linked oligosaccharides. Fukuda et al. (1987) reported that in addition to the 

tetrasaccharide [Fig. 1.1 (A)] which contains two sialic acid residues, and 

trisaccharides containing one sialic acid residue (monosialylated trisaccharides), 

glycophorins may also possess novel structures containing three sialic acid residues 

(trisialylated pentasaccharides). These authors found that the tetrasaccharide was the 

predominant form (78% ); whereas 17% and 5% of the 0-linked oligosaccharides 

were in the form of monosialylated trisaccharide and novel trisialylated 

pentasaccharide structures, respectively. Adamany and Blumenfeld (1983) reported 

a family whose individual members in addition to the common tetrasaccharide 

contained substitutions of varying chain lengths on N-acetylgalactosamine containing 

N-acetylglucosamine and galactose. 



Fig. 1.1. Structures of 0-linked oligosaccharides of glycophorin A. 

(A) As proposed by Thomas and Winzler (1969a, b) and 

(B) As proposed by Springer and Desai (1975) 

The abbreviation used are: N euNAc, N -acetyl neuraminic acid (sialic acid); Gal, 

galactose and GalNAc, N-acetyl galactosamine. 



(A) 

(B) 

ex f3 f3 
NeuNAc (2 .. 3) Gal (1 .. 3) GaiNAc- Ser (or Thr) 

ex I (2 •6) 

NeuNAc 

ex 

GaiNAc .. Ser (or Thr) 

NeuNAc (2:3) Gal ,/{(1 .. 3) 
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1.7.5.2. N-linked oligosaccharides 

Glycophorin A contains a single, alkali-stable, complex type of oligosaccharide 

unit attached to the aspargine-26 through an N-glycosidic linkage. Two different 

structures were proposed (Kornfeld et al., 1970; Thomas and Winzler, 1971 [Fig. 1.2 

(A) and Fig. 1.2 (B)]. However, both of these structures represent a carbohydrate 

composition that is very different (Marchesi et al., 1976) from that reported for a 

pure preparation of glycophorin A (Tomita and Marchesi, 1975). The reason for this 

discrepancy could be the difficulty in isolating the intact oligosaccharide unit. The 

aspargine residue to which the complex oligosaccharide unit is attached is directly 

linked to an aspartic acid residue. This aspargine-aspartic acid bond is relatively 

resistant to proteolytic cleavage, so that most of the glycopeptides derived from this 

region might have two aspartic acid residues, and calculation of the molar ratios of 

the carbohydrate residues would be misleading (Tomita and Marchesi, 1975). 

Furthermore, the earlier glycophorin A preparations used to analyze the 

oligosaccharide structure were almost certainly contaminated with other glycoproteins 

(Marchesi et al., 1976). Two alternate structures for N-linked oligosaccharide of 

glycophorin A have been proposed which were determined after the isolation of 

intact oligosaccharide units by hydrazinolysis (Irimura et al., 1981; Yoshima et al., 

1980). These structures have a carbohydrate composition more closely related to 

those isolated from a pure glycophorin A preparation also used for amino acid 

sequencing (Tomita and Marchesi, 1975). The two structures proposed by Yoshima 

et al. (1980) varied in their sialic acid composition [Fig. 1.3 (A) and (B)]. It was 



Fig. 1.2. Structures of N -linked oligosaccharide of glycophorin A. 

(A) As proposed by Kornfeld et al. (1970) and 

(B) As proposed by Thomas and Winzler (1971) 

The abbreviation used are: NeuNAc, N-acetyl neuraminic acid (sialic acid); Gal, 

galactose; GlcNAc, N-acetyl glucosamine; Man, mannose and Fuc, fucose. 



(A) 

(B) 

a f3 
NeuNAc (2 .. 3) Gal (1 .. 4) GlcNAc 

p ~ p 
p 

Gal (1 .. 4) GlcNAc ___. (Man)
3

(1 .. 4) GlcNAc .. (Asn) 

a f3 /p 
Fuc (1 ·2, 6) Gal (1 .. 4) GlcNAc 

NeuNAc 

! a (2 .. 6) 

Gal Gal 

l f3 (1 .. 3, 4) 

GlcNAc 

p (1 .. 2) l 

l f3 (1·3, 4) 

GlcNAc 

l p 

Man Man --..... GlcNAc 

a (1 .. 2) 



Fig. 1.3. Structures of N-linked oligosaccharide of glycophorin A 

as proposed by Yoshima et al. (1980). 

The abbreviation used are: NeuNAc, N-acetyl neuraminic acid (sialic acid); Gal, 

galactose; GlcNAc, N-acetyl glucosamine; Man, mannose and Fuc, fucose. 



GlcNAc Fuc 
Q p {1 1 p Q 1 

NeuNAc (2 -.6) Gal (1-4) GlcNAc (1-2) Man a (1-4) (1-6) 

" p p 
(A) Man (1 .. 4) GlcNAc (1 .. 4) GlcNAc 

13 Q 

Gal (1 -4) GlcNAc (1-2) Man / Q 

Q p p GlcNAc Fuc 
Q 1 /3 (1 ... 4) (1_.6) 1 

13 p 

NeuNAc (2-3) Gal (1-4) GlcNAc (1-2) Man 

Q (1 ... 6)\ 
(B) Man (1-4) GlcNAc (1 -4) GlcNAc) 

a /3 /3 a (1 ... 3y 

NeuNAc (2-3) Gal (1 -4) GlcNAc (1-2) Man 
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suggested that the structure which contained less sialic acid [Fig. 1.3 (A)] was a 

partially desialylated product of other form [Fig. 1.3 (B)], or alternatively the two 

structures had product-intermediate relationship in the biosynthesis of glycophorin A 

(Yoshima et al., 1980). An alternate structure for theN-linked oligosaccharide was 

also proposed (Irimura et al., 1981), which was similar in composition to those 

proposed by Yoshima et al. (1980) except that it contained no sialic acids (Fig. 1.4). 

Despite the variations these structures had a carbohydrate composition similar to 

those obtained for purified glycophorin A and hence could represent average 

structures of N-linked oligosaccharides of glycophorin A (Anstee, 1990). The minor 

variations could be a reflection of heterogeneity of this oligosaccharide unit similar 

to that observed for 0-linked oligosaccharides (Fukuda et al., 1987). 

1. 7 .6. Biosynthesis of glycophorin A 

Glycophorin A is expressed only in erythroid cells ( also see section 1.7.7.1). 

In addition to normal bone marrow cells, a few cell lines derived from human 

leukaemias also express glycophorin A on their surface, for example, K562 cells 

(Lozzio and Lozzio, 1975; Villeval et al., 1983), HEL cells (Papayannopoulou et al., 

1987) and OCIM1 and OCIM2 cells (Papayannopoulu et al., 1988). The K562 cell 

glycophorins have been extensively studied and evidence so far collected shows that, 

with some minor differences, K562 glycophorins are similar to those found on mature 

erythrocytes (Gahmberg et al., 1979). For instance, the 0-linked oligosaccharides of 

glycophorin A on K562 cell have less sialic acid than that of mature erythrocytes 



Fig. 1.4. Structure of N-linked oligosaccharide of glycophorin A 

as proposed by Irimura et al. (1981). 

The abbreviation used are: Gal, galactose; GlcNAc, N-acetyl glucosamine; Man, 

mannose and Fuc, fucose. 



p p Fuc 

Gal (1-4) GlcNAc (1- 2) Man a 1 
! (1 -6) 

{3 a (1-6) p 

GlcNAc (1 -4) Man (1 !4) GlcNAc (1-4) GlcNAc) 

f3 p l a (1-3) 

Gal (1-4) GlcNAc (1-2) Man 
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(Gahmberg et al., 1979). There are about 1.1 x 106 molecules of glycophorin A on 

each K562 cell (Gahmberg eta/., 1979). The glycophorin A found on erythrocytes is 

relatively immobile and not susceptible to ligand-induced redistribution as observed 

in K562 cells. Further, it was noted that there was lower activity of MN antigenic 

determinants in K562 cells, possibly a reflection of decreased sialylation of K562 cell 

glycophorin A (Gahmberg et al., 1984). 

The biosynthesis of glycophorin A has been studied in K562 cells (Jokinen et 

al., 1979; Gahmberg et a/.,1980, 1983; Morrow and Rubin, 1987). Two different 

pathways have been proposed (Gahmberg et al., 1980, 1983; Morrow and Rubin, 

1987). Cell free translation of 16 to 18S poly(A)+ RNA from K562 cells revealed that 

glycophorin A was synthesized as a single polypeptide of molecular weight 19,500 

daltons, which was about 5000 daltons more than that is expected based upon the 131 

amino acids of mature glycophorin A (Tomita and Marchesi, 1975); it was proposed 

that glycophorin A is synthesized with a cleavable signal peptide (Jokinen et al., 

1981). 

Cell free translation of poly(A)+ RNA from K562 cell in the presence of dog 

pancreas membranes (Jokinen et al., 1981) resulted in the synthesis of a precursor 

with apparent molecular weight, 37,000 daltons, which was similar to that obtained 

in vivo (Jokinen et al., 1979; Gahmberg et al., 1983). The peptide synthesized in vitro 

bound to a lentil lectin-Sepharose column which binds a-D-mannoside residues, 
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indicating the presence of N-glycosidic oligosaccharides. The same peptide showed 

a decrease in the molecular weight of only about 2000 daltons after endoglycosidase 

H treatment which cleaves N-glycosidically linked oligosaccharides. The decrease in 

apparent molecular weight after endoglycosidase treatment to 35,000 daltons and not 

to 19,500 daltons suggested that it also contained 0-linked oligosaccharides (Jokinen 

et al., 1981). 

Gahmberg et al. (1980) reported that tunicamycin which inhibits N

glycosylation, without affecting 0-glycosylation, did not inhibit the incorporation of 

glycophorin A into the membranes of K562 cells. This indicated that theN-glycosidic 

carbohydrate was not necessary for intracellular transport and proper membrane 

localization. Jokinen et al. (1985) detected two new precursors of apparent molecular 

weight of 24,000 and 30,000 daltons. These precursors were found to contain 0-

glycosidic oligosaccharides, but no N-glycosidic carbohydrate moiety. Jokinen et al. 

(1985) concluded that a fraction of glycophorin A molecules became 0-glycosylated 

at an early stage and another fraction at a later stage of biosynthesis. 

In contrast to the above pathway, a simpler pathway for glycosylation of 

glycophorin A in K562 cells was proposed (Morrow and Rubin, 1987). In this study 

a unique precursor was identified which contained both the N- and 0-linked 

oligosaccharides. In addition, two precursors of apparent molecular weight 27,000 and 

31,000 daltons were identified. The smaller of these contained one N-linked high 
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mannose type oligosaccharide and rapidly converted to a transient 31,000 

intermediate by addition of N-acetylgalactosamine residues to serine/threonine 

hydroxyl groups. Subsequent maturation involved conversion of the high mannose N

linked oligosaccharide to a complex type and addition of a galactose and terminal 

sialic acid residues to the 0-linked N-acetylgalactosamine residues. 

The discrepancy between these two studies (Jokinen et al., 1985; Morrow and 

Rubin, 1987) could be due to presence of two different populations of glycophorins 

in K562 cells having differences in the structure of their N-Iinked oligosaccharide 

(Silver et al., 1987). On the other hand, the two populations of glycophorin A 

precursors might reflect some heterogeneity in cell lines which may have arisen 

during the numerous in vitro passages of these cells since they were first isolated from 

a patient (Lozzio and Lozzio, 1975). 

1.7.7. Physiological functions of glycophorin A 

Glycophorins have been characterized extensively since they were discovered 

as blood group antigens, MN, in 1930s. Although there is some information on the 

function of glycophorins C and D (section 1.12), that for glycophorins A and B 

remains unknown. Nevertheless, many different functions have been suggested for 

glycophorins and some of these will be discussed in the following section. 
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1.7.7.1. Differentiation antigen 

Many studies have shown that glycophorins are expressed only on the surface 

of cells belonging to erythroid lineage and not expressed in other haemopoetic cells. 

For instance, Fukuda and Fukuda (1984) by cell surface labelling using periodate 

oxidation followed by reduction with NaBeHJ4 or by endo-Jj-galactosidase digestion 

(which oxidizes C-6 of galactose or N-acetylgalactosamine) followed by NaBeH]4 

reduction showed that glycophorins were present as major components in erythroid 

precursor cells, proerythroblasts and erythroblasts and absent from the surface of 

granulocytes and monocytes. Similarly, in another study using metabolic labelling and 

immunofluorescence, glycophorin A expression was also detected in the 

proerythroblast stage (Yurchenco and Furthmayr, 1980). Gahmberg et al. (1978), also 

detected glycophorin A expression only in erythroid cells using bone marrow cells 

with a glycophorin A specific antiserum in a staphylococcus protein rosseting assay. 

In a comparative study of 0-linked oligosaccharides attached to a group of 

closely related proteins, termed leukosialins, from various leukaemic cell lines it was 

shown that proteins of each haemopoetic cell lineage (erythroid, myeloid and 

lymphoid) contained a characteristic set of 0-linked oligosaccharide attached to their 

glycoproteins (Carlsson et al., 1986). Differences were found in the core structure as 

well as in the extent and linkage of sialylation. The structure of the 0-linked 

oligosaccharides in K562 leukosialin was similar to that of glycophorin A. When 

expressed in other cell lines such as HL-60 (a pro myelocytic) or HSB-2 (a T-
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lymphoid) leukosialin depicted a carbohydrate structure that was different from that 

found on K562 cells. Therefore, it was concluded that each cell line shows a specific 

carbohydrate structure that is characteristics of that particular cell line (Carlsson et 

al., 1986). 

It has been suggested that glycophorin A which does not seem to have an 

important physiological role to play during the circulatory phase of the erythrocytes 

life cycle might have an important function at earlier stages of erythroid cell 

development (Fukuda and Fukuda, 1984). While undergoing different stages of 

development, the erythroid precursor cells, in addition to showing the developmental 

stage specific expression of globin genes, also show a number of changes in their 

surface molecules (Fukuda and Fukuda, 1984). For example, there is change in the 

carbohydrate structure linked to band 3 protein; as a result the fetal i antigen is 

converted into adult I antigen (Fukuda and Fukuda, 1984). Similarly glycophorin A 

shows stage specific changes during maturation of precursor cells. For instance, the 

M and N antigen activity of glycophorins was either very weak or completely absent 

before the polychromatic normoblast stage even though glycophorin A molecules 

could be detected at the earliest recognizable erythroid precursor, the proerythroblast 

(Ekblom et al., 1985). Further, cells at various stages of erythroid differentiation 

showed very strong reaction with a polyclonal anti-glycophorin A antiserum. In 

contrast, a glycophorin A specific monoclonal antibody, R10 reacted very poorly with 

cells from earlier stages, namely, normoblast and basophilic normoblasts, but the cells 
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from polychromatic normoblast and later stages including mature erythrocytes showed 

strong reaction with the antibody R10. This increased level of reaction of monoclonal 

antibody with erythroid cells at later stages of development was due to the increase 

0-glycosylation and not due to an increase in glycophorin A content (Tonkonow et 

al., 1982). It was further reported that the human erythroleukaemic cell line, K562 

exhibited increased 0-glycosylation on induction with haemin (Gahmberg et al., 1984). 

These results were in contrast to the observation that increased globin gene 

expression in these cells resulted from increased mRNA levels induced by haemin. 

Glycophorin levels seemed to be constitutive and K562 cells exhibited no apparent 

increase in content after haemin induction (Tonkonow et al., 1982). However, there 

is one report suggesting that differentiation of erythroid cells was not accompanied 

by increased 0-glycosylation (Loken et al., 1987). These workers showed by 

immunofluorescence using two monoclonal antibodies, one dependent and the other 

independent of glycosylation, that glycophorin A expression in normal bone marrow 

was accompanied by coordinate glycosylation. 

Comparing the expression of glycophorin A with other glycoproteins, Fukuda 

and Fukuda (1984) noted that the glycophorin A content increased with maturation 

of erythroid cells and was a major component in erythroblasts generated in vitro. In 

contrast, band 3 was barely detectable at the erythroblast stage but seemed to appear 

slightly later, while two other glycoproteins, GP 105 and GP 95 appeared only in 

immature cells (Fukuda and Fukuda, 1984). These authors further noted that band 
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3 protein and spectrin expressiOn coincided with a stage in which they had a 

functional role, i.e. in mature erythrocytes. Therefore, it is possible that glycophorin 

A may also serve as an erythroid cell specific marker and take part in some cellular 

recognition process in later stages of erythroid development, while GP105 and GP95 

serve the same role in earlier stages. 

Glycophorin A may also have a role in the circulating erythrocyte. This would 

be consistent with the finding that it is found at a much higher level in mature 

erythrocytes (Fukuda and Fukuda, 1984; Gahmberg et al., 1984). The reported 

increased 0-glycosylation of glycophorin A (Gahmberg et al., 1984) possibly takes 

place in preparation for its function in the circulatory phase. Other supporting 

evidence for a role in mature erythrocytes can be drawn from a report which showed 

that as maturation occurs, proteins which are destined to be an important part of the 

erythrocyte membrane, such as spectrin are excluded from coated pits and remain at 

the cell surface. Other proteins such as the transferrin receptor present abundantly 

at earlier stages are endocytosed in coated pits and degraded. (Marshal et al., 1984 ). 

These authors reported that when K562 cells were induced to differentiate, they 

produced globin and redistributed glycophorin and spectrin to one pole of the cell. 

These apparent changes in glycosylation and redistribution of glycophorin A on cell 

surface during erythroid maturation seems to point towards the importance of these 

molecules at these stages (Fukuda and Fukuda, 1984). 
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1.7.7.2. Role in the removal of senescent erythrocytes from circulation 

It has been suggested that glycophorins and especially their carbohydrate 

moieties have a role in aging and sequestration of erythrocytes from the circulation 

(Aminoff, 1988). This speculation is based upon the observation that young and old 

erythrocytes in circulation have different sialic acid contents, the former having 10-

15% more. It was suggested that progression of desialylation of glycophorin A takes 

place as the erythrocytes age. The complete desialylation of glycophorin A results in 

the appearance of multiple galactose-beta-(1,3) N-acetylgalacotosamine disaccharide 

residues on erythrocytes. It is proposed that these residues are recognized by the 

reticuloendothelial system, resulting in the sequestration of these desialylated 

senescent erythrocytes from circulation. Aminoff (1988) has reviewed the evidence 

accumulated for or against this hypothesis but the matter is not resolved. 

1.7.7.3. Role in membrane function 

In its life span of 120 days each erythrocyte travels a long distance passing 

through narrow capillaries where it might undergo the stress of shearing forces 

(Chasis et al., 1985). Therefore, to keep the integrity of its membrane while 

performing its normal functions each erythrocyte must undergo drastic changes in its 

conformation, and be capable of regaining its shape. The transmembrane location of 

glycophorins, and especially of glycophorin A has led to the suggestion that 

glycophorin A may have a role in membrane deformability (Chasis et al., 1985). 

Binding of ligands specific for glycophorin A but not for blood group A and B nor 
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band 3 glycoprotein, with erythrocytes or resealed membranes resulted in a marked 

decrease in membrane deformability. This indicated that glycophorin A molecules 

were probably involved in the process of membrane deformability. Erythrocyte 

membranes or cytoskeletons prepared from erythrocytes after glycophorin A specific 

ligand binding contained glycophorin A. This partitioning of glycophorin A in the 

insoluble cytoskeleton fraction was not observed in the cells deficient in skeletal 

proteins such as spectrin or protein 4.1. Based upon these observations, Chasis et al. 

(1985) suggested that there is a ligand-induced interaction between glycophorin A and 

skeletal proteins and that this interaction can directly influence membrane 

deformability. This ligand-induced rigidity may have a significant role in shape 

changes during passage of erythrocytes through narrow capillaries. However, in a 

later report Chasis and Schrier (1989) pointed out that some rigid cells are capable 

of shape change, and, therefore, membrane deformability is not predictive of 

impaired capacity for shape change. 

It has been suggested that the interaction of glycophorin A with the 

cytoskeleton may have a role in signal transduction across the membrane similar to 

that of hormones and neurotransmitters receptors (Butterfield et al., 1983). This 

suggestion was based upon finding that modification of sialic acid on the outer 

surface of erythrocyte membranes induced alterations in the physical state of proteins 

on the opposite side of lipid bilayer. Such phenomena may be important in the 

normal functioning of erythrocytes. Haemin, a haemoglobin breakdown product is 
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elevated in aged erythrocytes. It also accumulates in the erythrocyte lipid bilayer and 

the protein skeletal network in individuals with sickle-cell anaemia and {3-

thalassaemia. It has been suggested that haemin disrupts skeletal protein-protein 

interaction (Wyse and Butterfield, 1989). Since there is some evidence that 

glycophorin A interacts with the cytoskeleton (Anderson and Lovrien, 1984), it is 

possible that the haemin-induced protein:protein disruption results in conformational 

changes in glycophorin A on the extracellular face of membrane which in turn results 

in changes in the conformation of cell surface sialic acid. The change in conformation 

of sialic acid may have some significance in the normal role of glycophorin A in 

maintaining the membrane integrity (Anderson and Lovrien, 1984). 

There is some support for the suggestion that 0-linked carbohydrates of 

glycophorin A may have a role in stabilization of the membrane (Pinnaduwage and 

Huang, 1989). In vitro studies with dioleoylphosphatidyl-ethanolamine showed that 

glycophorin A stabilized bilayers. This activity was dependent upon sialic acid content 

since neuraminidase treatment of glycophorin A before incorporation into 

dioleoylphosphatidyl-ethanolamine bilayer reduced its stabilizing ability. There is some 

evidence, supplied again by in vitro studies that incorporation of glycophorin A into 

large unilamellar vesicles of dioleoylphosphotidyl-choline increases bilayer 

permeability (Van Hoogvest et al., 1984). However, the physiological significance of 

such studies remains to be determined. 



48 

There is at least one report which suggests that glycophorins interact with 

cytoskeletal proteins, especially protein 4.1 of erythrocytes (Anderson and Lovrien 

(1984). It was shown that protein 4.1 associated specifically with the cytoplasmic end 

of glycophorin A on inside-out erythrocyte membrane vesicles and also with 

glycophorin A reconstituted into phosphotidylcholine vesicles. The evidence was that 

the specific association was inhibited with antibodies raised against an affinity purified 

cyanogen bromide fragment from the cytoplasmic domain of glycophorin A. This 

report was in contrast to other reports (Mueller and Morrison, 1981; Alloisio et al., 

1985) providing evidence that glycophorin C and D and not A interacted with 

cytoskeletal proteins (see section 1.12). 

Further evidence against interaction of glycophorin A and cytoskeletal proteins 

is that no abnormal phenotype such as elliptocytosis has been so far reported in the 

individuals with for instance En (a-) cells which show a complete lack of glycophorin 

A (Tanner and Anstee, 1976b). In contrast, as discussed in section 1.12 lack of 

glycophorin C and possibly of D does result in the abnormal phenotype of 

erythrocytes. It is possible that the interaction between glycophorin A and band 4.1 

only takes place in non-physiological conditions, such as in phosphotidylcholine 

vesicles and in inside out erythrocyte membrane ghosts but not in vivo. It is also 

possible that even though glycophorin A does interact with band 4.1 in vivo, this 

interaction is not essential for the maintaining the erythrocyte shape. Comparative 

analysis of the interactions of glycophorins A, B, C and D revealed that glycophorin 
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C and D bind strongly to the membrane skeleton and are difficult to solubilize 

whereas glycophorin A and B bind to a lesser extent and are mostly recovered in the 

soluble fraction (Bloy et al., 1987). 

Another role for the carbohydrate part of glycophorin A may be to decrease 

unwanted interaction with other cells or molecules (Vitala and Jarnefelt, 1989). This 

may help in decreasing the adherence of erythrocytes to capillaries during circulation. 

Glycophorin A is heavily glycosylated and has many negatively charged sialic acids 

which enables this glycoprotein to fit this role very well by causing negative charge 

repulsion. The carbohydrate component can have many conformations; in one 

extreme conformation they may be stretched out whereas in another extreme they 

may remain very close to the membrane. These conformational extremes, or any 

variation in between, may have a significance in acting as an obstacle for protein 

molecules in the plasma or in the surface membranes of other cells to get into close 

contact with erythrocytes (Vitala and Jarnefelt, 1989). 

Although glycophorin A has been implicated in many physiological functions, 

as reviewed above its normal function is still far from clear and much more work is 

needed to resolve this issue. 

1. 7 .8. Blood group activity of glycopborin A 

1.7.8.1. MN blood group activity 

The earliest investigations to characterize the MN antigens revealed that 
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neuraminidase treatment of erythrocytes destroyed their ability to react with anti-M 

and anti-N antibodies. This led Springer et al. (1976) to attempt to isolate the 

oligosaccharide structures that carry the determinants that are subjected to enzymic 

degradation. They concluded that theM and N antigens were associated with a tetra

and pentasaccharide structure, respectively, present on erythrocyte membrane 

sialoglycoproteins, the major one of which is glycophorin A. It was further noted that 

the oligosaccharide side chain contained N-acetyl galactosamine, galactose and had 

terminal sialic acid residues. Further, since neuraminidase which removes sialic acids 

also inhibits the MN antigen activity of the sialoglycoproteins, sialic acid must be 

involved and could have an important role in determining the structure of, and 

differences between M and N antigens. Springer et al. (1976) suggested that 

difference between M and N was that M contained an extra sialic acid residue. These 

authors believed that they could take M and degrade it to N by removal of one of the 

terminal sialic acid residues or add sialic acids to N antigen and convert it to M 

antigen. Evidence believed to support this assumption was the finding by many 

workers that the erythrocytes of type M + N- carried a small amount of antigen that 

reacted with anti-N (Baranowski and Lisowska, 1963; Lisowska and Jeanloz, 1973). 

Thus it seemed that the N might be a precursor to M. This weak N activity is actually 

associated with glycophorin B which has a very similar NH2-terminal structure to 

glycophorin A (Dahr et al., 1975a ). The activity of this cryptic 'N' antigen is revealed 

only after the erythrocytes are treated with trypsin which on intact cells or on 

membranes releases the NH2-terminal peptide from glycophorin A but not from 
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glycophorin B making the 'N' antigen of glycophorin B capable of reacting with anti-

N antibodies (Dahr et al., 1975a). The results of many investigators (reviewed in Issitt, 

1981) do not support the explanation of the nature of MN antigens by Springer et al. 

(1976). As discussed above (section 1.7.5.1), the pentasaccharide structure as 

proposed by Springer et al. (1976) is not found in glycophorin A to a great extent and 

both glycophorin AM and AN contain tetrasaccharide as the predominant form in 

addition to a small proportion of trisaccharides and pentasaccharides (Fukuda et al., 

1980). Furthermore, no difference in sialic acid content has been observed in the 

oligosaccharide chains isolated from M + N- and M-N + erythrocytes as would be 

expected if the hypotheses put forward by Springer et al. (1976) was correct (Dahr 

et al., 1975a; Blumenfeld and Adamany, 1978). 

Sadler et al. (1979) showed that purified sialyltransferases from porcine 

submaxillary glands restored M antigen activity to neuraminidase-treated intact 

human erythrocytes that were M + prior to removal of sialic acid and not to the 

neuraminidase-treated erythrocytes that were M- prior to the treatment with 

neuraminidase. This enzyme could not convert N + cells to M + cells. This provided 

the evidence that theN antigen was not a precursor of M antigen. 

The importance of the polypeptide backbone in determining the structure of 

the MN antigen was provided by amino acid modification studies (Morawieki, 1967; 

Lisowska and Duk, 1972, 1975). Acetylation of free amino groups of glycophorin A 
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by acetic anhydride treatment on intact erythrocytes or on an isolated NH2-terminal 

peptide derived from it resulted in the loss of serologically defined M and N activities 

suggesting that free amino groups were involved in the expression of the activity of 

these antigens (Lisowska and Duk, 1975). 

These observations were further supported by the amino acid sequence of 

glycophorin A (Tomita and Marchesi, 1975). This sequence was determined from 

glycophorin A isolated from pooled blood samples which contained M + N- and M

N +. However, the sequence was found to be quite homologous except that a few 

sites including position one and five of the NH2-terminus showed amino acid 

variation. Serine/leucine and glycine/glutamic acid were found to occupy positions one 

and five, respectively. It was later shown that this variation is actually due to amino 

acid polymorphism at these positions and defines the antigenic determinants of MN 

blood group system. The M glycophorin A contains serine and glycine at positions 

one and five, respectively, whereas N glycophorin A contains leucine and glutamic 

acid at these positions (Dahr et al., 1977; Wasniowska et al., 1977; Blumenfeld and 

Adamany, 1978; Furthmayr, 1978b; Lisowska and Wasniowska, 1978). 

Although the above finding of amino acid polymorphism revealed the major 

difference between M and N antigenicity it is appropriate to assume that 

carbohydrate residues are also an important part of the MN antigen system. 

Amidation of carboxyl groups of glycophorin causes loss of MN antigen suggesting 
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that sialic acids are involved in the expression of MN antigen (Ebert et al., 1972). 

Studies using periodate oxidation and a variety of MN specific lectins suggested that 

one of the sialic acid residues present at the end of 0-linked oligosaccharides was 

part of the MN antigen (Dahr et al., 1975a). 

The above discussion is consistent with the hypothesis that inherited 

differences of M and N reflect differences in the conformation of glycophorin A 

which results from amino acid differences found at the NH2-terminus of the molecule 

(Anstee, 1981). 

Use of synthetic peptides showed that the primary determinants of M and N 

antigenicity were contained in an octapeptide segment derived from NH2-terminal 

amino acids (residue 1 to 8) of glycophorin AM and AN, respectively (Pederson et al., 

1990). It was shown that theM-specific octapeptide without any carbohydrate could 

cause a significant decrease in the agglutination of erythrocytes of M antigenicity by 

monoclonal anti AM antibodies. Similarly, the N-specific octapeptide could also 

decrease agglutination of erythrocytes of corresponding antigenicity. It was further 

noted that leucine-1 of glycophorin AN and serine-1 of glycophorin AM were the 

primary determinant of their corresponding antigens (Pederson et al., 1990). 

1.7.8.2. Other blood groups of glycophorin A 

In addition to the major MN blood groups, there is a large body of literature 
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describing a number of other antigens associated with glycophorin A. Some of these 

are very well defined biochemically while others are still in their earlier stages of 

evaluation and their structures have not been worked out completely (reviewed in 

Issitt, 1981; Lisowska, 1988; Mould and Dahr, 1989; Anstee, 1981, 1990). Many 

variant antigens, usually occurring with low frequency in the population have been 

defined by antibodies found in human or animal immune sera. On the other hand, 

rare individuals with variant erythrocytes such as En( a-), lacking glycophorin A 

(Tanner and Anstee, 1976b ), or S-s-U-, containing defective glycophorins (Dahr et al., 

1975b ), or M\ lacking both glycophorin A and B (Anstee and Tanner, 1978) usually 

have in their sera alloantibodies directed against common antigens absent in their 

erythrocytes. 

The naturally occurring variant forms of glycophorins fall into three categories 

(reviewed in Lisowska, 1988): 1) those with changes in oligosaccharide structures, 

such as TF, Tn, Cad; 2) those with amino acid replacements in the polypeptide chain, 

for example, Me, Mg, He, Mil, Mill; and 3) hybrid sialoglycoproteins produced from 

fused genes encoding parts of various glycophorins, especially of A and B, for 

example, MiV, Dantu and Sta. Some additional cells, as mentioned above, are also 

known which completely lack glycophorin A [En( a-) cells] or lack glycophorin B (S-s

cells) or lack both glycophorin A and B (Mk cells) (Lisowska, 1988). The description 

of all of these variant forms of MN antigens is beyond the scope of the present 

review and will not be discussed further. 
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1.7.9. Virus receptor activity of glycophorin A 

Ever since it was reported that influenza virus caused agglutination of chick 

erythrocytes (Hirst, 1942), erythrocytes have been used extensively to study the 

mechanism of these interactions and the erythrocyte glycoproteins have served as 

model receptors for a number of viruses. These studies have shown that sialic acids 

are important for attachment of many viruses to erythrocytes (reviewed in Burness, 

1981). 

Hirst (1942) showed that the chick erythrocytes which were agglutinated by the 

influenza virus were modified in such a way that they no longer remained capable of 

interacting with fresh virus. It was suggested that this loss of haemagglutination 

activity was due to the presence of an enzyme (termed receptor destroying enzyme) 

in the virus coat capable of destroying the virus receptors on the erythrocyte surface 

(Hirst, 1942). The mechanism of this inhibition was first explained by Gottschalk 

(1960). It was shown that the haemagglutinating sites of the virus specifically bind to 

the sialic acid-containing receptors on adjacent erythrocytes causing them to 

agglutinate. An active neuraminidase in or close to the agglutinating sites in the virus 

removes sialic acids from the receptors. Hence the receptors no longer bind the virus, 

elution of the virus from the cells results and further agglutination of the cells can no 

longer take place. 

Most of the earlier studies on virus-erythrocyte interaction dealt with 
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erythrocytes, their membranes or with crude preparations of human erythrocytes 

sialoglycoproteins isolated from human erythrocytes which contained all four 

glycophorins (A, B, C and D), the major proportion of which is glycophorin A. Out 

of these four glycophorins, glycophorin A has been reported to be specific receptor 

on erythrocyte for a number of viruses such as encephalomyocarditis virus, influenza 

virus (Energren and Burness, 1977; Allaway et al., 1986), reovirus (Paul and Lee, 

1987), Blue tongue virus (Eaton and Crameri, 1989) and mengovirus (Anderson and 

Bond, 1987). 

The receptor activity of glycophorin A for encephalomyocarditis virus has been 

studied extensively by Burness and co-workers (reviewed in Allaway et al., 1986). 

These studies have shown that encephalomyocarditis virus attaches to erythrocytes 

of a number of species (Angel and Burness, 1977). The encephalomyocarditis virus 

apparently attaches specifically to the major sialoglycoprotein, glycophorin A 

(Energren and Burness, 1977). Treatment of erythrocytes with neuraminidase reduced 

encephalomyocarditis virus attachment to about 10% of the untreated control cells. 

This suggested that the receptor for encephalomyocarditis virus contained sialic acids. 

The evidence that this sialic acid containing human erythrocyte receptor site was 

glycophorin was provided by haemagglutination inhibition of encephalomyocarditis 

virus by glycophorin prepared from human erythrocytes (Energren and Burness, 

1977). As mentioned before, such preparations must have contained other 

sialoglycoproteins (glycophorins B, C and D) in addition to glycophorin A. To 
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distinguish among different sialoglycoproteins, the attachment of 

encephalomyocarditis virus was investigated with En( a-) cells which lack glycophorin 

A (Tanner and Anstee, 1976b) and S-s-U + cells which lack glycophorin B (Dahr et 

al., 1975b ). The lack of binding of encephalomyocarditis virus to En( a-) cells and 

normal binding to S-s-U + cells suggested that glycophorin A, not B, is the human 

erythrocyte receptor for encephalomyocarditis virus (Allaway and Burness, 1986). 

The location of the binding site for encephalomyocarditis virus on glycophorin 

A was investigated by treatment of glycophorins with proteolytic enzymes such as 

trypsin, chymotrypsin and ficin on intact erythrocytes, on isolated erythrocyte 

membranes or glycophorin preparations isolated from these cells (Allaway and 

Burness, 1986). When human erythrocytes were treated with chymotrypsin, which 

removes amino acid residues 1 to 34 from glycophorin A, there was very little or no 

effect on binding of encephalomyocarditis virus to these cells. This indicated that 

amino acid residues 1 to 34 with 12 0-linked oligosaccharide units were not 

important for encephalomyocarditis attachment. Proteolytic enzyme treatment of 

human glycophorin A in situ (Allaway and Burness, 1986) or of isolated glycophorin 

A (Burness and Pardoe, 1983) revealed the possible involvement of amino acid 

residues 35 to approximately 72, the possible point of membrane insertion of 

glycophorin A. Four of the amino acids in this region, residues 37, 44, 47 and 50 are 

glycosylated. A polypeptide, CH-0 (comprising amino acid residues 35 to 118) 

released from isolated glycophorin A by chymotrypsin treatment and purified by gel 
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filtration inhibited haemagglutination by encephalomyocarditis virus whereas other 

chymotryptic peptides released from glycophorin A did not (Burness and Pardoe, 

1983). Therefore, these binding studies localized the binding site for 

encephalomyocarditis virus to the chymotryptic peptide (CH-0) comprising amino 

acids 34 to 118 of glycophorin A. 

Trypsin treatment of erythrocytes which removes four more amino acids from 

glycophorin A than does chymotrypsin, i.e. residues 1 to 39, had a drastic affect on 

encephalomyocarditis virus attachment and reduced it to about 30% to 50% of 

control untreated cells (Allaway and Burness, 1986). These observation suggested that 

the receptor site for encephalomyocarditis virus on glycophorin A includes amino acid 

residues 35 to 39 and the oligosaccharide attached to threonine-37 may be 

particularly important. The residual 30 to 50% attachment after trypsin treatment 

also indicated that the segment containing amino acid residues 40 to about 72 (the 

segment exposed to the cell surface), together with the oligosaccharides on serine-44, 

serine-47 and threonine-50 may also be involved in encephalomyocarditis virus

erythrocyte interaction. 

Ficin is a proteolytic enzyme whose exact cleavage site on glycophorin A is 

not known, except that it cleaves glycophorin A closer to the cell surface than does 

chymotrypsin or trypsin. It removes about 50 amino acids from glycophorin A and 

releases all of the 16 oligosaccharide units. Treatment of human erythrocytes with 
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ficin completely destroyed the encephalomyocarditis virus binding to these cells. This 

provided further supporting evidence for the conclusion that the binding site for 

encephalomyocarditis possibly involves amino acid residue 35 to about 50 (Allaway 

et al., 1986). 

As mentioned above, oligosaccharides with their sialic acids are important for 

encephalomyocarditis virus attachment to glycophorin A (Burness and Pardoe, 1981; 

Energren and Burness, 1977). Removal of about 40% sialic acid from erythrocytes 

prevented haemagglutination by encephalomyocarditis virus, or attachment to 

glycophorin A. It was also indicated in these investigations that not all sialic acids of 

glycophorin A were important for encephalomyocarditis virus attachment (Burness 

and Pardoe, 1981 ). Further investigation on the role of sialic acids revealed that 

poly hydroxy side chains in sialic acid were not required for encephalomyocarditis virus 

attachment but carboxyl groups were involved in the attachment (Tavakkol and 

Burness, 1990). 

1.7.10. Malarial parasite invasion 

Several studies have shown that invasion of erythrocytes by the malarial 

parasite Plasmodium falciparum merozoite is dependent upon sialic acids (reviewed 

in Hadley et al., 1986 and Hermantin, 1987). Treatment of erythrocytes with 

neuraminidase reduces invasion; and erythrocytes with variant oligosaccharides such 

as Tn which have reduced amount of sialic acid and galactose, or Cad cells which 
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have an additional N-acetylgalactosamine residue are all resistant to invasion 

(Herman tin, 1987). Similarly En( a-) which completely lack glycophorin A and Mk cells 

which lack both glycophorin A and Bare partially resistant to invasion (Hadley et al., 

1987). As a result of these studies glycophorins particularly glycophorin A have been 

implied to be the primary erythrocyte receptor site for Plasmodium falciparum. 

Further evidence for the involvement of glycophorins in malarial parasite 

binding to human erythrocytes has been provided by the following competitive 

inhibition studies with glycophorins A or B: (i) glycophorin A embedded in liposomes; 

(ii) erythrocyte extracts containing variable amounts of sialoglycoproteins; (iii) 

enzyme-generated fragments of glycophorin A and Fab fragments of antibody 

prepared against glycophorin A; (iv) monoclonal antibodies directed against different 

portion of glycophorin A; and (v) human sera containing antibodies directed against 

glycophorin A, or various lectins; all of these studies support the suggestion that 

glycophorin A is the erythrocyte receptor required for Plasmodium falciparum 

invasion (reviewed in Hermentin, 1987). 

It has been suggested that the Wrb antigen located on glycophorin A, close 

to the membrane insertion site is involved in invasion by malarial parasites (Pasvol 

et al., 1982a, b; Ridgwell et al., 1983). Later studies using fresh Wrb+ and Wrb- cells 

showed that both types of cell are fully susceptible to invasion and hence perhaps the 

Wrb antigen does not have a specific role in malarial parasite invasion (Hermentin 
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et al., 1987). However, as mentioned before many observations supporting the role 

of sialic acids in 0-linked oligosaccharides of glycophorin A in malarial parasite 

binding have been made. It has been suggested that the sialic acid residues may be 

involved as the initial point of recognition and attachment in this process (Hermentin, 

1987). 

Pasvol et al. (1982a, b) put forward the hypothesis for the role of glycophorins 

A and B in invasion of erythrocytes by Plasmodium falciparum. According to the 

hypothesis, invasion takes place in two steps. The initial attachment of the merozoite 

surface coat to the erythrocyte may reflect a lectin-ligand-like interaction in which the 

parasite binds in a specific manner to a cluster of oligosaccharides present on 

glycophorin A, B or both. Once attachment has occurred and the apical end of the 

merozoite with its specialized organelle has orientated to the membrane, further 

specific conformational alterations in the erythrocyte may occur which trigger the 

process of erythrocyte deformation and parasite entry, possibly involving the Wrb 

antigen of glycophorin A. However, as mentioned earlier, a role for the Wrb antigen 

is open to doubt (Hermantin, 1987). 

Two studies (Okoye and Bennet, 1985; Friedman et al., 1985) provided 

evidence that another erythrocyte membrane protein, band 3 glycoprotein could be 

a receptor during invasion of human erythrocytes. However, a role for glycophorin 

A was not excluded since recently it has been shown that band 3 and the Wrb antigen 
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of glycophorin A interact. In any case, glycophorin A seems to be involved in the 

initial attachment in a relatively weak and relatively non-specific interaction; this is 

followed by transfer of the information to the cytoskeleton and since glycophorin A 

may interact with underlying cytoskeleton proteins such as protein 4.1 (section 1.7.7.3) 

it is a good candidate for this function of information transfer. 

1.8. Glycophorin B 

1.8.1. Biochemical characterization 

The first indication that the erythrocyte sialoglycoproteins were a mixture was 

supplied by PAS-staining of the erythrocyte proteins separated by SDS-polyacrylamide 

gel electrophoresis (Fairbanks et. al, 1971). A sialogJycoprotein fraction prepared by 

a lithium diiodosalicylate-phenol procedure (Marchesi and Andrews, 1971) when 

subjected to gel filtration in Ammonyx-Lo separated into two fractions (Furthmayr 

et al., 1975). The major fraction was glycophorin A while the other fraction ran at the 

position of P AS-3 and revealed an apparent molecular weight of 25,000 daltons when 

analyzed by SDS-polyacrylamide gel electrophoresis. It comprised about 10% of the 

total PAS-stainable material of erythrocytes. Based upon the differences in tryptic 

digestion pattern and amino acid composition between the two fractions it was 

concluded that the minor fraction represented another sialoglycoprotein which had 

some features, such as sugar content and capacity to form high molecular weight 

aggregates in common with glycophorin A (Furthmayr et al., 1975). Some differences 

in structures of the two proteins were also noted. For example, unlike glycophorin A, 
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glycophorin B did not seem to possess any significant length of cytoplasmic COOH-

terminal domain (Furthmayr et al., 1975). 

The NH2-terminal peptide of glycophorin B contains sialic acid, galactose and 

N-acetylgalactosamine, supporting the notion that 0-glycosidically linked 

oligosaccharides of glycophorin B are of the type found in glycophorin A (Furthmayr, 

1978a; Dahr et al., 1980a, b). The similarities of 0-linked oligosaccharide of 

glycophorin A and B were further supported by the binding of Iectins, such as those 

from Madura aurantaca and Arachis hypogaea specific for 0-glycosidically linked 

oligosaccharides to glycophorin B (Tanner and Anstee, 1976a). The lack of binding 

with Phaseolus vulgaris and Ricinus communis lectins suggested that glycophorin B did 

not contain N-glycosidically linked oligosaccharides (Robinson et al., 1975; Tanner 

and Anstee, 1976a; Anstee et al., 1977). This was further supported by analysis of a 

crude preparation of P AS-3 (Furthmayr et al., 1975). 

The NH2-terminal tryptic peptide (residue 1 to 35) of glycophorin B was 

isolated by gel filtration in the presence of detergents (Furthmayr, 1978a; Dahr et al., 

1980a, b). The amino acid sequence of this peptide (Furthmayr, 1978), revealed that 

its first 26 residues were identical with those of glycophorin AN; the threonine and 

serine residues present in positions similar to those found in the NH2-terminal 

peptide of glycophorin A were also found to be glycosylated. Unlike in glycophorin 

A, aspargine-26 was not glycosylated in glycophorin B (Furthmayr, 1978a). The 
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absence of N-linked oligosaccharide was consistent with the absence of mannose and 

N-acetylglucosamine in glycophorin B (Furthmayr, 1978a). In view of the well 

established rule of glycosylation of aspargine residues which requires the sequence -

aspargine-X-serine or aspargine-X-threonine, glycophorin B can not be glycosylated 

at aspargine-26 due to lack of serine or threonine residue at the position 28 which 

is glutamic acid in glycophorin B (Lisowska, 1988). 

The complete amino acid sequence of glycophorin B has been determined by 

polypeptide sequencing (Blanchard et al., 1987). A fragment of glycophorin B 

comprising residues 36 to 71 and containing the intramembranous domain was 

isolated by high performance ion exchange and gel filtration in the presence of Triton 

X-100. The amino acid sequence of the intramembranous domain of glycophorin B 

was found to be similar to that of glycophorin A. The accuracy of the amino acid 

sequence was confirmed by isolation and sequencing of a eDNA clone (Siebert and 

Fukuda, 1987), except that glycophorin B was predicted to contain an extra amino 

acid ( alanine-72) not detected by peptide sequencing. The 72 amino acids of 

glycophorin B were predicted to be organized into three structural domains, a 

hydrophillic domain (residues 1 to 44), an intramembranous region (residues 45 to 

64) and a very short cytoplasmic tail (residues 65 to 72)(Anstee, 1990). In addition 

to the complete identity of the first 26 amino acids and the associated 0-linked 

oligosaccharides to that of glycophorin A, nucleotide and peptide sequencing 

predicted that glycophorin B has a similar sequence in the membrane spanning 
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domain. An important difference is that the region comprising amino acids 27 to 

about 57 of glycophorin A are missing from glycophorin B. However, residues 58 to 

100 of glycophorin A are also similar in sequence to residues 37 to about 72 of 

glycophorin B. 

1.8.2. Blood group antigens of glycophorin B 

Another blood group antigen associated wjth the MN sialoglycoproteins was 

detected by reaction with an antibody, anti-S, whose antigen was distinct from MN 

(Sanger and Race, 1947). These authors noted that S was produced by a gene at a 

locus very close to that at which M and N were situated. Levine et al. (1951) reported 

the discovery of anti-s, the antibody that defines the antigen antithetical to S. Using 

anti-S and anti-s, the different phenotypes: S+s-; S+s+ and S-s+ were recognized 

as representing the genotypes: SS; Ss and ss, respectively. Another antibody causing 

severe haemolytic reaction detected yet another antigen, termed U antigen which was 

also associated wjth the sialoglycoproteins of human erythrocytes (Wiener et al., 

1953). It was further shown by Greenwalt et al. (1954) that U is an MN system 

antigen, since two individuals with U- erythrocytes which lacked glycophorin B were 

also found to be S- and s-. 

The biochemical characterization of the nature of the Ss and U antigens 

revealed that they were associated with glycophorin B (Dahr et al., 1975a; Tanner 

and Anstee, 1976a; Anstee et al., 1979). Similar to the MN blood group system, an 
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amino acid polymorphism represents the structural differences between the S and s 

antigens. S+s- glycophorin B has Met at 29, whereas glycophorin B from S-s+ 

contains a threonine at this position (Dahr et al., 1980a). Apart from these amino 

acid differences, the receptor sites of anti-S antibodies and anti-s have only been 

characterized partially (Dahr et al., 1982). Amino acid residues 28, 34 and 35, as well 

as the oligosaccharide attached to threonine-25, might also be involved in defining the 

S and s antigens (Dahr et al., 1982). 

The U antigen is a labile structure located within residues 33-40 of glycophorin 

B and it requires lipids for optimal expression of activity (Dahr and Kruger, 1983). 

The U antigen is closely associated with the Rh blood group complex and is 

weakened or altered qualitatively in several erythrocytes that possess alteration in Rh 

blood group antigen. It has been suggested that glycophorin B and proteins encoded 

by the Rb locus form a complex during membrane biosynthesis (Dahr et al., 1987b ). 

The formation of such an aggregate might be necessary for U activity. 

As mentioned above, the NH2-terminal structure of glycophorin B is identical 

with that of glycophorin AN. This is why glycophorin B also carries an additional N

antigen, the cryptic antigen N, denoted 'N', to distinguish it from the N antigen of 

glycophorin A (Dahr et al., 1975a). The 'N' antigen is only weakly reactive in intact 

erythrocytes. However, it can be easily detected by agglutination tests with 

erythrocytes treated with trypsin, which cleaves the NH2-terminal 39 residues of 
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glycophorin A on intact erythrocytes or erythrocyte membranes and has no affect on 

glycophorin B in intact erythrocytes (Dahr et al., 1975a; Tomita et al., 1978). 

In addition to the common antigens, some other rare blood group activities 

such as He and Mv are also associated with glycophorin B and localized in its NH2-

terminal sequence (Dahr and Longster, 1984). The rare Miltenbergers (Mi) Mi-III, 

Mi-IV and Mi-VI are variants representing serologically related antigens of 

glycophorin B and generated by an insertion of a segment of a glycophorin A gene 

into the one for glycophorin B (Laired-Fryer et al., 1986). 

1.9. Glycophorin C 

SDS-polyacrylamide gel electrophoresis revealed that the band previously 

thought to be glycophorin A monomer, P AS-2 was actually composed of two 

components (PAS-2 and PAS-2 ')running very close together (Mueller and Morrison, 

1974). Furthmayr et al. (1975) called the PAS-2' protein glycophorin C which makes 

up about 4% of the total PAS-staining bands (Cartron et al., 1990). There are about 

50,000 to 100,000 glycophorin C molecules/erythrocyte (Anstee et al., 1984; Anstee, 

1990). Studies on En( a-) variant erythrocytes which lack glycophorin A (Tanner and 

Anstee, 1976b ), and on erythrocytes which are defective in glycophorin B, S-s-u

(Dahr et al., 1975b; Tanner et al., 1977) revealed that they had a normal P AS-2' 

confirming the distinct identity of glycophorin C. 
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Binding experiments showed that glycophorin C associates with Phaseolus 

vulgaris lectin indicating the presence of mannose and N-acetylglucosamine, the sugar 

components found in N-glycosidically linked oligosaccharide similar to that found at 

position 26 in glycophorin A (Tanner et al., 1977; Furthmayr, 1978a). Similarly, 

binding of Madura arantiaca and Arachis hypogaea lectins to glycophorin C and the 

presence of galactose, N -acetylgalactosamine and sialic acid in oligosaccharides of 

glycophorin C also suggested that it contained 0-linked oligosaccharide side chains 

sintilar to those found in glycophorin A (Anstee, 1981). 

Recently more detailed biochemical characterizations have been performed 

on glycophorin C preparations (Dahr et al., 1982; Blanchard et al., 1987). The amino 

acid sequence of an NH2-terminal tryptic glycopeptide comprising 47 amino acid 

residues (Dahr et al., 1982) and that of a hydrophobic peptide comprising residue 49-

88 (Blanchard et al., 1987) was determined by peptide sequencing. The remaining 

amino acid sequence was deduced from eDNA clones (Colin et al., 1986). 

Glycophorin Cis composed of 128 amino acids distributed in three structural domains 

(Colin et al., 1986). The extracellular NH2-terminal domain (amino acid residues 1 

to about 57) contains 13 0-linked oligosaccharides which resemble those found on 

glycophorin A in containing N-acetylgalactosamine, galactose and sialic acids and one 

N-linked oligosaccharide unit (Dahr and Beyreuther, 1985). About 24 amino acids 

(residues 58 to 81) are predicted to be inserted into the membrane bilayer (Colin et 

al., 1986). The intramembranous domain is followed by a cytoplasmic domain 
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(residues 82 to 128) comprising many charged residues (Colin et al., 1986). 

1.1 0. Glycophorin D 

The structure of glycophorin D is not known completely because it makes up 

a very small percentage of the human erythrocyte sialoglycoprotein preparation as 

revealed by SDS-polyacrylamide gel electrophoresis (Anstee et al., 1979). Some 

information available from immunological and biochemical studies suggests that 

glycophorin Dis immunologically and structurally related to glycophorin C (Anstee, 

1990; Cartron et al., 1990). Both glycophorin C and D carry the blood group Gerbich 

antigen (Anstee and Tanner, 1986) and polyclonal antibodies raised against purified 

glycophorin C or D react with antigenic determinants common to the COOH

terminus or intramembranous regions of both glycoproteins. Furthermore, when the 

peptides generated by enzymatic and acid cleavage of glycophorin C and D were 

compared most of the peptides from glycophorin D seemed to be identical to those 

from the intramembranous and COOH-terminal domains of glycophorin C, but some 

were present exclusively in glycophorin C digest (El-Maliki et al., 1989). Further, 

since murine monoclonal antibodies reacting with the NH2-terminal region of C but 

not with glycophorin D have been described this indicated that glycophorin D might 

be an abridged version of glycophorin C in its NH2-terminal region (Dahr et al., 

1987a). Preliminary amino acid sequence analysis of glycophorin Dis consistent with 

this assumption (El-Maliki et al., 1989). 
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1.11. Blood group antigens of glycophorin C and D 

Glycophorin C and D are associated with blood group antigens collectively 

known as Gerbich (Reid et al., 1987a, b). Gerbich 3 (Ge:3) is located in a region of 

glycophorin C (amino acid residue 42 to 49) that surrounds a tryptic cleavage site at 

position 48 and a glycosylated residue (serine-42) (Dahr et al., 1987a). Antisera raised 

against Gerbich 3 antigen of glycophorin C also bound to glycophorin D indicating 

that glycophorins C and D have common structural features recognized by anti

Gerbich 3 antibodies (Dahr et al., 1987a). The Gerbich 2 (Ge:2) antigen was localized 

to a tryptic peptide on glycophorin D comprising about 20 to 30 amino acid residues 

(Dahr et al., 1987a). It is interesting to note that even though both glycophorin C and 

D share identical amino acid sequence in this region only glycophorin D reacts with 

Gerbich 2 antisera and the reason for this strange behaviour is not known. However, 

other investigators (Kuczmarski et al., 1987) reported that their anti-Gerbich 2 

antisera reacted exclusively with glycophorin C. The resolution of this discrepancy 

must await further characterization of structural features of Gerbich 3 antigen. 

1.12. Functions of glycophorins C and D 

The normal physiological function of glycophorin A and B is not known (as 

discussed in sections 1.7.7). In contrast, there is evidence that both glycophorin C and 

D interact in normal erythrocytes through their cytoplasmic domains with skeletal 

protein 4.1 on the internal face of the phospholipid bilayer and this association is 

important for maintaining the normal discoid shape of erythrocytes (reviewed in 
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Anstee, 1990). Glycophorin C which is found in normal erythrocyte skeletal 

preparations was absent from skeletal preparations from an individual with hereditary 

elliptocytosis who had a total deficiency of band 4.1 (Mueller and Morrison, 1981). 

The glycophorin C content in the erythrocyte ghosts of individuals with homozygous 

4.1(-) hereditary elliptocytosis was sharply reduced and the glycophorin D content was 

also decreased, whereas in heterozygotes, the glycophorin C content seemed to be 

slightly reduced while that for glycophorin D seemed to be normal (Alloisio et al., 

1985). Many other individuals showing complete absence of glycophorin C (such as 

variant blood group, Leach type) or showing abnormal glycophorin C (such as Ge:-1, 

-2, -3 and Yus type) have been reported whose erythrocytes show an abnormal 

erythrocyte phenotype (i.e. elliptocytosis)(reviewed in Anstee, 1990). Therefore, it 

seems at least glycophorin C and possibly D has a functional importance, in the 

maintenance of human erythrocyte membrane integrity which is brought about by its 

interaction with cytoskeleton protein 4.1. 

1.13. Glycophorins of animal erythrocytes 

The presence of "glycophorin" like molecules on the erythrocyte surface has 

been described in many animal species, including: non-human primates such as 

common chimpanzees (Rearden, 1986), monkey (Murayama et al., 1989), in other 

mammals such as pig (Honma et al., 1980), horse (Murayama eL al., 1981), cow 

(Murayama et al., 1982), dog (Murayama et al., 1983), sheep (Lutz et al., 1976), goat 

(Fletcher et al., 1976), rabbit (Honma et al., 1982), rat (Laing et al., 1988) and mouse 
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(Sarris and Palade, 1982) and in chicken, the only avian species examined (Weise and 

Ingram, 1976). However, with the exception of monkey, pig, horse, bovine and mouse, 

in most of these species only very limited studies have been performed (reviewed in 

Krotkiewski, 1988). Nevertheless, all of the animal glycophorins characterized so far 

reveal at least one integral protein associated with the erythrocyte membrane. These 

proteins share a number of biochemical properties with human glycophorins, such as 

the presence of sialic acid and having the capability of forming high molecular weight 

aggregates (homo- or heterodimers or larger oligomers) when extracted from 

membranes. The molecular weights of these proteins range between 19,000 to 34,0000 

daltons, about 20-68% of which is due to carbohydrate. Frequently these glycophorins 

contain as much as 50% sialic acid by weight with the exception of rabbit erythrocyte 

glycophorin which has very little sialic acid. Most of these glycophorins contain 

multiple units of 0-linked oligosaccharide, usually in the form of tetrasaccharides but 

with some trisaccharides and pentasaccharides. A variety of sialic acids such as N

acetylneuraminic acid, N -glycolylneuraminic acid and 0-acetyl-N -acetylneuraminic 

acid are found in these sialoglycoproteins. Most of the animal glycophorins contain 

at least one, and some, such as pig contain even two N-linked oligosaccharides. 

Bovine erythrocytes contain two glycophorins, GP-1 and GP-2 with most unusual 

oligosaccharides containing a wide variety of 0-linked oligosaccharides, up to deca 

and undecasaccharide units (Krotkiewski, 1988). 
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To date the complete amino acid sequence has been determined by amino 

acid sequencing for glycophorins from erythrocytes of monkey (Murayama et al., 

1989), horse (Murayama et al., 1982) and pig (Honma et al., 1980). Recently, the 

complete amino acid sequence of a mouse glycophorin has been deduced from a 

eDNA clone (Matsui et al., 1989). Comparison of the amino acid sequences of these 

animal glycophorins with those of humans shows significant similarity only in the 

membrane spanning domains. There is one exception, however, the monkey 

glycophorin MK, described in more detail next shows additional similarity in the NH2-

terminal as well as in the COOH-terminal domain (Murayama et al., 1989). 

1.13.1. Monkey glycophorin (MK) 

This glycophorin contains 144 amino acids distributed in three domains, 

namely, extracellular, intramembranous and intracellular. The monkey glycophorin 

has 18 oligosaccharides attached 0-glycosidically to the peptide backbone through 

serine or threonine residues; noN-linked oligosaccharide is present (Murayama et al., 

1989). The molecular weight of monkey glycophorin MK is 35,000 daltons calculated 

on the basis of amino acid and carbohydrate content (Murayama et al., 1989). This 

glycophorin possesses both M and N blood group activity as determined by 

haemagglutination inhibition using commercially available anti-M and anti-N sera 

(Murayama et al., 1989). 
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1.13.2. Horse glycophorins HA and HB 

Two glycophorins HA and HB have been isolated from horse erythrocyte 

membranes with lithium diiodosalicylate:phenol extraction followed by preparative 

SDS-polyacrylamide gel electrophoresis and ion exchange chromatography in the 

presence of Ammonyx-Lo (Murayama et al., 1981). Glycophorin HA, the major 

component of horse glycophorin, has an apparent molecular weight of 20,000 daltons 

and contains 120 amino acids. There is no N-linked oligosaccharide in horse 

glycophorin, HA, but there are 10 0-linked oligosaccharides units mostly of the type 

found in human glycophorins with a preponderance of tetrasaccharides, with some 

disaccharides and trisaccharides (Fukuda et al., 1980). 

1.13.3. Porcine glycophorin 

This glycophorin contains 133 amino acids, with 10 0-linked oligosaccharide 

units giving a molecular weight of about 27,000 daltons (Honma et al., 1980). The 

carbohydrate structure of porcine glycophorin is quite different from that of humans. 

The major 0-linked oligosaccharide of porcine glycophorin is a trisaccharide which 

contains N-acetyl-glucosarnine not found in humans in their 0-linked oligosaccharides. 

In addition, other oligosaccharides including disaccharides, hexasaccharides and even 

some decasaccharides are present (Kawashima et al., 1982; Honma et al., 1980). 

1.13.4. Mouse glycophorin 

In mouse two glycophorins SGP 2.1 and SGP 3.1 with molecular ~eights of 
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46,000 and 31,000 daltons, respectively, have been isolated using the lithium 

diiodosalisylate:phenol extraction method (Sarris and Palade, 1982). The amino acid 

sequence of one of these mouse glycophorins was deduced by sequencing a eDNA 

clone and shown to consist of 168 amino acids (Matsui et al., 1989). Like other 

mammalian glycophorins, the mouse glycophorin shares amino acid sequence 

homology with human glycophorins, only in the intramembranous domain. The 

nucleotide sequences of the eDNA clone for mouse glycophorin revealed that unlike 

human glycophorins A and B, mouse glycophorin is synthesized without a cleavable 

signal peptide. Some murine erythroid cell lines also express two related glycophorins, 

termed Gp2 and Gp3 of molecular weight, 44,000 and 29,000 (Dolci and Palade, 

1989). It was noted that these glycoproteins show developmental stage specific 

changes in their oligosaccharides. 

1.14. Biosynthesis of mRNA 

Cells regulate many steps in the pathway from DNA to protein synthesis to 

control gene expression. Most genes are regulated at multiple levels beginning at the 

stage of transcription initiation, which is the predominant step in control of gene 

expression. In contrast, some other genes are transcribed at constant rates and their 

protein levels are regulated solely by processes that affect mRNA abundance. These 

post-transcriptional controls include alternate splice-site choice, 3' end formation by 

cleavage and polyadenylation, translation initiation and regulated mRNA degradation 

(or mRNA stability). Most of the control processes require either specific sequences 
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or secondary structures in the mRNAs or both (Alberts et al., 1989). Differential 

processing of pre-mRNA may also result in the generation of multiple products from 

a single gene. Two types of protein-coding transcription unit exist: simple 

transcription units that encode one protein; and complex transcription units that may 

encode two or more proteins produced by differential processing of the primary 

transcript, or in some rare cases produced by more than one primary transcript 

(Darnell et al., 1990). 

In eucaryotic cells mRNA synthesis is a complex process that takes place in 

the nucleus, and begins with the transcription of DNA by RNA polymerase II. The 

primary product of transcription, pre-mRNA, undergoes extensive modifications 

before it is transported to the cytoplasm to act as a template for protein synthesis 

(Blackburn and Gait, 1990). 

1.14.1. Transcription 

In eucaryotes most of the protein-coding genes contain a sequence, 

TATRAAR (R =A or T), the TATA box, about 25 to 35 nucleotides upstream from 

the RNA polymerase II start site. In addition to the TAT A box other upstream 

promoter elements, for example the CAAAT box are also present in many eucaryotic 

genes. Additional sequences termed enhancers also affect gene transcription and 

function even when located thousands of nucleotide upstream or downstream of the 

promoters and in either orientation with respect to the gene transcription. These 
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enhancer elements bind regulatory proteins, some of which are found only in a 

restricted cell type whereas others involved in the regulation of house keeping genes 

are found in large number of cells (reviewed in Alberts et al., 1989). 

Briefly, three general transcription factors (TFuB, TFuD and TFuE) are 

required to begin transcription. The transcription factor TF11D (tata-factor), a large 

protein complex, binds to the TAT A box and forms a stable, "committed", pre

initiation complex. This is followed by binding of RNA polymerase II. Neither TFnB 

nor TF11E can bind to DNA on its own. However, TFuB perhaps binds to the RNA 

polymerase II and may contact the DNA after binding to RNA polymerase II. TFuE 

can act as an A TPase and the energy released by ATP hydrolysis probably brings 

about conformational changes in some protein(s) in the pre-initiation complex. 

Alternatively the energy released by ATP hydrolysis probably assists in melting the 

DNA to make an open initiation complex which sets the stage for transcription to 

begin. An additional factor, an elongation factor, TFuS is also required for efficient 

transcription (reviewed in Darnell et al., 1990). 

1.14.2. Pre-mRNA processing 

The primary product of transcription, pre-mRNA is found in the 

heterogeneous nuclear RNA (hnRNA) fraction which contains components of various 

size from less than 2.0 to more than 200 kb. Only a small fraction of hnRNA is 

converted into mRNA (Darnell et al., 1990). In this process most of the hnRNA is 
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degraded so that even though the rate of production of hnRNA is about 58% of total 

RNA synthesis in a cell, the mRNA produced is only about 3% of the steady-state 

quantity of RNA in a cell. Most of this RNA loss is accounted for by removal of extra 

nucleotides from the pre-mRNA molecule (introns and 3 .... end flanking sequences) 

together with some RNA loss due to premature termination of transcription or to a 

portion of hnRNA that is not processed further (Alberts et al., 1989). Gene 

transcription generally continues beyond the 3 .... end of mature mRNAs. These extra 

nucleotides at 3 .... ends of pre-mRNAs are removed by endonucleolytic cleavage, 

followed by addition of a poly( A) tail to the 3 .... hydroxyl group of the terminal 

nucleotide (Darnell et al., 1990, see below, section 1.14.6). 

1.14.3. Capping 

As soon as about 10 to 20 nucleotides are synthesized, the primary transcript 

is capped at its 5 .... end (Blackburn and Gait, 1990). To achieve this, the 5 .... -

triphosphate of the primary transcript is hydrolysed to a disphosphate and a 

guanosine 5 .... -monophosphate is then transferred from GTP to the 5 .... end to give a 

5 .... -5.... pyrophosphate linkage. The N7 position of the terminal guanine is then 

methylated by the transfer of a methyl group from S-adenosylmethionine. In some 

cases the cap structure (7 MeG [5 .... -5 .... ]-ppp ~Y .... ) is further methylated at the 2 .... 

hydroxyl position of nucleotide "X" or both nucleotides "X and Y" (Blackburn and 

Gait, 1990). The 5 .... cap structure is essential for initiation of translation and probably 

protects the mRNAs from the action of nucleases (Mizumoto and Kaziro, 1987). 
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1.14.4. Splicing 

Transcription of most genes encoding proteins in eucaryotic cells results in the 

formation of pre-mRNA containing introns which are then removed by the process 

of splicing (reviewed in Sharp, 1987; 1988). Nucleotide sequence analysis of many 

genes containing introns has revealed that the pre-mRNAs contain moderately 

conserved short sequences at the intron-exon boundaries and a tendency for a 

pyrimidine-rich region just upstream of the 3" splice site. The first two nucleotides, 

GU and last two nucleotides, AG in introns are very well conserved. For splicing to 

occur, the 5" cap structure is essential. Splicing occurs in a large complex particle 

termed a spliceosome which is composed of a large number of proteins and several 

snRNPs including U1, U2, U4, U5 and U6 (Darnell et al., 1990). A novel RNA form, 

a lariat RNA which consists of a circular component with an extended tail is 

generated during splicing of pre-mRNA. Lariat RNAs are formed by a branch about 

20 to 50 nucleotides upstream of the 3" splice site, by linking an adenosine through 

a 2 "-5 "phosphodiester bond to the 5" end of the intron. The released intron is 

degraded very rapidly. A kinetic intermediate in the splicing of pre-mRNAs is 

generated by cleavage at the 5" splice site. This intermediate consists of the 5" exon, 

and the lariat RNA form of the intron linked by a normal phosphodiester bond to 

the 3" exon (Padgett et al., 1987). Analysis of splicing intermediates of chick oviduct 

ovalbumin mRNA revealed that splicing of various exons occur in a preferred 

pathway as opposed to an obligatory or completely random pathway (Lewin, 1987). 
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1.14.5. Transcription termination 

Once transcription by RNA polymerase II begins, it continues beyond the 3' 

end of the mature mRNA, sometimes very far past the poly(A) addition site 

(reviewed in Birnstiel et al., 1985; Platt, 1986; Proudfoot, 1989; and Darnell et al., 

1990). This phenomenon first observed in the analysis of pulse-labelled RNAs of the 

adenovirus major late transcription unit (Nevins and Darnell, 1978) has since been 

shown by the nuclear run-off transcription experiments to occur in a variety of 

eucaryotic genes, including globin genes from various animals, the dihydrofolate 

reductase gene of mouse, the ovalbumin gene of chicken and the calcitonin/calcitonin 

gene-related peptide gene of rat (Proudfoot, 1989). In these genes, transcription 

termination seemed to occur heterogeneously over a kb or more of 3 ' region 

sequences. For example, in the mouse a-amylase gene, transcription termination 

occurs over 2 to 4 kb past the 3' end of the mature mRNA. In contrast, in human 

a-globin gene, transcription termination occurs only 100 to 300 bases beyond the 3' 

end of mature mRNA. These above examples of termination of transcription give rise 

to the belief that instead of being a specific process the termination of transcription 

by RNA polymerase II occurs through a random process (Proudfoot, 1989). 

Linkage between transcription termination and 3' end formation was 

established by investigations on the a2-globin gene of a patient with a-thalassaemia. 

A single change of a base in the gene's poly(A) addition signal, AATAAA (a 

conserved sequence that is necessary for 3' end processing of pre-mRNA, see section 
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1.14.6.2.1 below) to AATAAG not only inactivated 3' processing, but also caused an 

increased level of transcription past the 3' flanking region where transcription 

termination normally occurs (Whitelaw and Proudfoot, 1986). 

Transfection with recombinant plasmids containing the adenovirus major late 

promoter and a poly(A) addition site of simian virus 40 revealed that when mutated 

poly(A) addition sites were used, a large amount of nuclear RNA complementary to 

the recombinant plasmid construct accumulated indicating that transcription 

termination was not taking place efficiently. In this way, it was established that 

sequences required for efficient cleavage/polyadenylation are also needed for efficient 

transcription termination (Connelly and Manley, 1988). 

Two models that involve active 3' end processing have been proposed to 

explain the mechanism of transcription termination. The first model was based upon 

investigations of nucleotide sequences required for efficient transcription termination 

within the mouse fj-major globin gene (Logan et al., 1987). Two DNA elements in the 

3' flanking region were required for efficient termination: an upstream sequence that 

included two poly(A) addition signals; and a downstream region previously shown to 

be involved in the transcription termination of RNA polymerase II in the mouse fj

major globin gene. It was proposed by Logan eta/. (1987) that the cleavage of the 

nascent transcript at the poly(A) addition site, occurring before the transcription by 

RNA polymerase II is complete, alters the conformation of the nascent RNA in such 
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a way that the transcription complex is destabilized and terminated. It was further 

suggested that either the cleavage event generates an uncapped 5" end that would 

be rapidly degraded, again destabilizing the transcription complex, or the polymerase 

II complex carried an anti-termination factor with it. The factor could leave the 

complex at the polyadenylation site, possibly marking the nascent RNA for cleavage 

and simultaneously altering the transcription complex preparing it to terminate at the 

next appropriate site (Logan eta/., 1987). 

In contrast to the model of termination presented above, an alternate model 

was proposed by Connelly and Manley (1988) implicating the 3" end processing 

mechanism directly in transcription termination. It was observed by these authors that 

the sequences required for efficient polyadenylation of simian virus 40 early mRNA 

were also required for transcription termination. It was proposed that as soon as 

RNA polymerase II passes an appropriate poly( A) addition site, 3" processing 

activities begin their action to produce a 3" end and polyadenylation takes place. 

Meanwhile the polymerase II continues transcription past the poly(A) addition site, 

still attached to a growing nascent transcript with the 5" end recently released from 

the 3" end of the mRNA sequence. This newly formed 5" terminus is unprotected, 

for instance, by a 5" cap structure and must therefore, be subjected to degradation 

by a 5" to 3" exonuclease activity which eventually may lead to termination of 

transcription beyond the 3" end of mature mRNA. This model of transcription 

termination predicted the existence of two factors: a helicase activity required to 
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unwind the nascent RNA (beyond the 3"' end of mRNA) which presumably base 

pairs with the anti-sense strand while being synthesized; and a 5 "' to 3"' exonuclease 

activity to degrade the nascent RNA transcript comprising the sequences beyond the 

poly( A) addition site of mature mRNA. Existence of such an exonuclease activity has 

been reported but no helicase activity has been cited as yet (Proudfoot, 1989). 

This second model accounts for often observed length heterogeneity seen in 

termination and the fact that, in different genes, termination of transcription seems 

to occur at very different distances downstream of poly(A) addition sites, 

characteristics of the particular gene in question. A gene having an inefficient poly( A) 

addition site would allow polymerase II to transcribe a considerable distance past it 

before cleavage occurs and hence the helicase and the exonuclease would have a lot 

more nascent transcript to act on before catching up with the RNA polymerase II 

(Proudfoot, 1989). 

The above discussion regarding transcription termination hints at a role for 

transcription termination in the control of gene regulation. For example, in the first 

model (Logan et al., 1987), the elongation factor can be subjected to regulation. 

Similarly a 5"' to 3"' exonuclease activity and (or) helicase activity could also be 

regulated. The passage of RNA polymerase II along the DNA could be blocked by 

the presence of protein factors. For example, in the adenovirus major late protein 

promoter a CAAT-box-binding protein associates with the CAAT box. Deletion of 
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the CAA T sequence from an adenovirus major late protein promoter-simian virus 40 

poly(A) addition site construct resulted in read through of transcription supporting 

the notion that the presence of the protein factor blocked the transcription (Connelly 

and Manley, 1988). 

Many cultured mammalian cells produce approximately equal amounts of full

length mRNA transcripts and short 5' capped RNAs of only a few hundred 

nucleotides (Darnell et al., 1990). This phenomenon of premature termination may 

point towards the inherent inefficiency of the transcription apparatus or indicate a 

normal regulatory process involved in the control of gene expression (Bentley and 

Groudine, 1986). These investigators showed that in undifferentiated growing HL-60 

cells, about half the transcripts from the cellular oncogene, c-myc, were full length 

and presumably gave rise to mature mRNA. In contrast, when the cells were induced 

to differentiate with retinoic acid, only 2 to 3% of c-myc transcripts were full length 

even though the transcription rate of the gene remained the same in induced and 

uninduced cells. Nuclear run off transcription experiments showed that this decrease 

in c-myc mRNA content was at the level of elongation (Bentley and Groudine, 1986). 

The site responsible for premature termination was mapped to two stretches ofT 

near the first exon-intron junction, about 300 nucleotide downstream of the 

transcription start site of the c-myc gene. By injection in Xenopus oocytes the 

sequence required for premature termination was further mapped to within a 95 base 

region located -130 to -35 relative to the exon-1/intron-1 boundary, was found to be 
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orientation dependent and was also active downstream of a heterologous promoter 

(Bentley and Groudine, 1988). 

This type of regulation is not unique to the c-myc gene; other examples of 

such regulation were noted in viral late transcription units, such as in the polyoma 

virus, simian virus 40 and adenovirus major late and also in cellular genes, such as 

Drosophila heat shock protein 70, human c-fos, mouse ,8-globin and immunoglobulin 

J.1. and 6 constant regions (Proudfoot, 1989). In mouse immunoglobulin J.1. and 6 

constant region genes, termination of transcription between J.1. and 6 exons prevents 

expression of 6 constant region polypeptides in certain early B cells. In later stages 

of B cell development, both J.1. and 6 polypeptides are expressed together by alternate 

splicing and in these B cells termination does not occur between J.1. and 6 (Mather et 

al., 1984). 

Some information is being generated regarding the specific sequence 

requirement for either regulated or normal transcription termination but the 

mechanism is not completely understood. Some of the features of a termination site 

are as follows (Manley et al., 1989). It requires a functional poly(A) addition signal 

(AAUAAA) and a sequence located at or near the actual site of termination. In the 

human a-globin gene, a 50-bp sequence located about 300 bp downstream of the 

poly(A) addition site was identified. This orientation-dependent sequence could 

facilitate termination not only at its natural position, but also within an intron, so long 

as a functional poly(A) addition site was inserted upstream. In adenovirus, an 
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inverted CCAA T box sequence just upstream of the late promoter functioned as a 

terminator sequence (Manley et al., 1989). In vitro transcription studies have shown 

that in poxviruses, the sequence I I I I I NT signals termination approximately 50 

nucleotides downstream (Earl et al., 1990). In vaccinia virus the signal is actually 

recognized in RNA as UUUUUNU. The presence of this element near the ends of 

many early poxvirus genes and its infrequent occurrence near the start or middle of 

those genes, suggested that this signal is also used in vivo (Earl et al., 1990). However, 

despite the common occurrence of this sequence in the middle of late genes, late 

mRNAs are long, vary in size and are apparently not terminated prematurely near 

these signals. This led to the suggestion that this I I I I I NT motif is utilized only in 

the early transcription system or, in late infection, requires a yet unrecognized 

sequence in addition to the termination signal, I I I I TNT (Earl et al., 1990). 

1.14.6. Polyadenylation 

Most eucaryotic mRNAs, with the exception of replication-dependent histone 

gene transcripts and some viral mRNAs, contain a stretch of A residues at their 3 ~ 

ends. The poly(A) tail is not encoded in the DNA but added post-transcriptionally 

to the 3 ~ hydroxyl group generated by cleavage of pre-mRNA (Darnell et al., 

1990). Alkaline hydrolysis and end group analysis provided strong evidence for the 

localization of poly( A) at the 3 ~ end of mRNAs (Brawerman, 1976). This was further 

supported by the use of highly purified exonucleases specific for the 3 ~ end of 

mRNAs (reviewed in Brawerman, 1976). 
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The presence of a poly( A) tail in eucaryotic mRNAs remained unnoticed until 

the 1960s even though there were many reports of mammalian RNAs rich in AMP 

(Hoyer et al., 1963; Salzman et al., 1964). For instance, an RNA component rich in 

adenine content was isolated from rat liver cytoplasm (Hadjivassiliou and Brawerman, 

1967). This RNA fraction labelled far more rapidly than ribosomal RNA with 

[
14C]orotic acid, was heterogeneous in size and was very effective in stimulation of 

protein synthesis by cell free extract from E.coli cells, properties suggesting that it 

probably represented an mRNA fraction. Lim and Cane11akis (1970) provided the 

evidence that globin mRNA contained a poly(A) tail by showing that a 9S RNA 

component from rabbit reticulocyte polysomes bound to polystyrene beads which bind 

purine-rich polyribonucleotides. 

The first estimate for the size of poly(A) tails was obtained by rate zonal 

sedimentation oflabelled poly( A) released from polysomes by ribonuclease treatment 

and was found to be about 80 nucleotide long (Lee et al., 1971). Another estimate 

based upon calibration curves relating poly(A) size to sedimentation coefficient was 

of about 220 (Jefferey and Brawerman, 1974). This latter value falls we11 within the 

range (200 to 250) of that found in most of mammalian cells and probably in all 

vertebrate cells (Darnell et al., 1990). In cells of lower animals and plants, the length 

of poly( A) tail may be shorter than in mammalian ce11s and the size is characteristic 

of that particular group of organisms. Once the mRNA reaches the cytoplasm, the 

poly( A) segment is decreased in size gradually as the mRNA ages and at steady state, 
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its size ranges between about 30 and 250 nucleotides (Darnell et al., 1990). 

1.14.6.1. Functions of poly(A) 

The wide existence of the poly(A) tail in mammalian mRNAs led many 

investigators to suggest that it helps to transport mRNAs from the nucleus to the 

cytoplasm (reviewed in Brawerman, 1976), controls mRNA stability (reviewed in 

Ross, 1988; Jackson and Standart, 1990) and aids in translation of mRNAs (reviewed 

in Bernstein and Ross, 1989; Munroe and Jacobson, 1990). Following is a brief review 

of these functions. 

1.14.6.1.1. Transport 

The inhibition of polyadenylation by the adenosine analog, cordycepin (3 ' 

deoxyadenosine) decreased the transport of mRNA from the nucleus to the 

cytoplasm. This observation led to the suggestion that nuclear polyadenylation is an 

essential step in the production of mRNAs for its transfer to the cytoplasm 

(Brawerman, 1981). Adenovirus mRNA produced in vitro in the presence of 

cordycepin lacking poly(A) tail was correctly spliced but did not enter the cytoplasm, 

further suggesting a role for poly(A) in mRNA transport (Zeevi et al., 1981). It 

appears, however, that the presence of a poly(A) segment is not an absolute 

requirement for mRNA transport to the cytoplasm, since histone mRNAs lacking 

poly( A) tails are efficiently transported to the cytoplasm (Perry et al., 1974) 
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1.14.6.1.2. mRNA stability 

The steady-state levels of many mRNAs are determined to a significant extent 

by their turnover rates (Ross, 1988). Transcriptional regulation seems to be important 

for the accumulation of cell type-specific mRNAs like globin in red cell precursors; 

a similar correlation between mRNA levels and transcription rates does not exist for 

housekeeping genes. Some genes are transcribed at a relatively low rate, but their 

mRNAs are fairly abundant. Other genes are transcribed at relatively high rates, but 

their mRNAs are rare. In such cases, the steady state mRNA level correlates with its 

stability. The turnover rate of mRNAs from many genes can affect the regulation of 

the gene (Ross, 1988). There are examples of the regulation of mRNA turn over rate 

influenced by sequences in the 5' or 3' untranslated regions (Ross, 1988). 

There is plenty of evidence implicating a role of poly(A) in mRNA stability 

(reviewed in Jackson and Standart, 1990; Bernstein and Ross, 1989). Several 

observations indicate that there is a correlation between the length of poly(A) and 

mRNA degradation: 1) The addition of poly(A) to some mRNAs stabilizes them; 2) 

some, but not all, mRNAs probably lose their poly(A) tail before they are degraded, 

suggesting that removal of poly(A) is a prerequisite for degradation and that an 

mRNA is more stable with its poly(A) tail; and 3) certain hormones and sugars that 

stabilize specific mRNAs induce elongation of poly(A) (Ross, 1988) (also see section 

1.14.6.1.4). 
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When injected into Xenopus oocyte the half life of rabbit globin mRNAs, with 

or without varying lengths of poly(A) was found to be dependent upon the poly A 

length (Nudel eta/. , 1976). This RNA had stability equal to that observed for normal 

mRNA [with a poly(A) tail length of about 150 As] as long as the length of poly(A) 

remained at least 32 nucleotides long. In contrast, the stability of an mRNA 

preparation with about 16 A residues was at least 10 times less than normal mRNA 

(Nudel eta/., 1976). Histone mRNAs that normally lack a poly(A) tail had a longer 

half life when polyadenylated before injection into oocytes (Huez el al., 1978). 

The poly(A) of all mammalian cell mRNAs with the possible exception of 

mRNAs in oocytes are associated with a number of proteins. A common 78,000 

dalton protein is the predominant factor binding to all mRNAs (Bernstein and Ross, 

1989; Jackson and Standart, 1990). This poly(A) binding protein seems to be the 

component that is responsible for providing mRNA stability. It has been observed 

that once the poly(A) tract has reached some minimum length (about 30-40) further 

poly(A) shortening and subsequent degradation of mRNA takes place very rapidly 

(Bernstein and Ross, 1989). This observation is consistent with the view that poly(A) 

is associated with a poly(A) binding protein and organized into a nucleosome-like 

ribonucleoprotein complex (Bernstein and Ross, 1989). 

Although the poly(A) binding protein is found to be associated with a stretch 

of about 27 adenosine residues (Baer and Kornberg, 1983 ), the actual length of the 
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contact region is only about 12 nucleotides (Sachs et al., 1987). The association of 

poly(A) tails with poly(A) binding protein protects the mRNA from the action of 

non-specific nucleases resulting in increased stability of the mRNA. For instance, in 

a cell free mRNA decay system, Bernstein et al. (1989) investigated ,a-globin mRNA 

stability as a function of its association with poly(A) binding protein and observed 

that in the presence of a competitor poly( A) but not of poly(G ), poly(U) or poly( C), 

the ,a-globin mRNA degradation rate increased greatly. There was no affect on the 

stability of histone mRNA which is normally unpolyadenylated. These observations 

indicated that the high concentration of competitor poly(A) in the in vitro system 

exhausted the limited supply of poly(A) binding protein resulting in little or no 

retention of the binding protein to the poly(A) tract of ,a-globin mRNA which as a 

result became more prone to nuclease attack (Bernstein et al., 1989). 

The above discussion complies with the conclusion that the poly(A) binding 

protein protects the poly(A) tail and the mRNA attached to it. This implies that the 

poly(A) tail of mRNAs such as c-fos and c-myc undergoing very rapid shortening 

must be naked for a higher proportion of the time than stable mRNAs such as 

globin. A major determinant of the rapid turnover of these mRNAs as well as 

lymphokine mRNAs is multiple copies of an AU-rich motif with a consensus 

sequence, UAUUUAU common to the 3' untranslated regions of these mRNAs 

(Caput et al., 1986; Wilson and Treisman, 1988; Jones and Cole, 1987). It has been 

suggested that poly(A) binding protein readily migrates from the poly(A) tail to these 
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3" untranslated region instability sequences, leaving the poly( A) tract naked for a 

high proportion of the time thus making the mRNA vulnerable to degradation 

(Bernstein and Ross, 1989). 

1.14.6.1.3. Translation 

Results of some early studies involving in vitro translation systems and various 

methods of poly( A) tail removal Jed to the conclusion that poly( A) tails of mRNA do 

not aid in translation (Bard et al., 1974; Munoz and Darnell, 1974; Sippel et al., 1974; 

Soreq et al., 1974; Williamson et al., 1974; Spector et al., 1975). For instance, it was 

observed that artificial deadenylation or blockage of poly( A) tail with poly(U) did not 

significantly reduce the translatability of mRNA (Doe] and Carey, 1976). However, 

this conclusion was somewhat erroneous since it was based upon the use of 

translation systems that were later shown to reinitiate translation very poorly and thus 

were unable to detect little differences in mRNA translational efficiencies (Doel and 

Carey, 1976). These investigators showed that native ovalbumin mRNA containing 

a poly(A) tail was translated more efficiently than its deadenylated equivalent in 

reticulocyte lysates and no such difference was observed in a less active wheat germ 

extract. Many investigators have provided evidence that the presence of a poly( A) tail 

aids in translation. For instance, Deshpande et al., (1979) reported that native a.2!-£

globulin mRNA with an average length of poly(A) tail of 175 nucleotides was 

translated more efficiently and reached peak translatability faster than its poly(A)

poor counterpart with an average length of about 40 A residues. Similarly other 



93 

poly( A)-containing mRNAs such as chicken lysozyme and Xenopus ,8-globin mRNAs 

were translated more efficiently in Xenopus oocytes than their deadenylated 

counterparts (Drummond et al., 1985; Galili et al., 1988). 

It has been shown that, like enhancement of mRNA stability, the increased 

translatability of poly( A)-containing mRNAs also involves its association with poly( A) 

binding protein (Jackson and Standart, 1990; Munroe and Jacobson, 1990). Jacobson 

and Favreau (1983) found that exogenously added poly(A) inhibited translation of 

only the poly(At mRNAs but not of poly(Ar mRNAs. Further, this competitive 

inhibition of translation was dependent upon the size of competitor poly(A) and 

could be overcome by translating messenger ribonucleoprotein partcles (mRNPs) 

which presumably had bound poly( A) binding protein, instead of mRNA preparations 

devoid of any bound protein. Another important finding was that the poly(A)

mediated inhibition did not affect the average size of the polypeptide synthesized, 

suggesting that the inhibition occurred at the level of translation initiation. These 

observations have been confirmed in a variety of translation systems (reviewed in 

Munroe and Jacobson, 1990). Other experiments with a variety of reagents used 

separately to block different steps of the protein synthetic pathway revealed that in 

the absence of a poly(A) tail, the rate of 40S ribosome-mRNA complex joining with 

a 60S ribosome subunit to yield an 80S ribosome complex was reduced (Munroe and 

Jacobson, 1990). 
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1.14.6.1.4. Developmental regulation of polyadenylation 

In the early development of many animal species, translational regulation of 

several maternal mRNAs is correlated with changes in poJy(A) length; mRNAs that 

undergo poly(A) elongation are subsequently translated, while others that lose their 

poly(A) tails dissociate from ribosomes (Wickens, 1990a). Similarly other mRNAs 

undergo a change in poly(A) tail length as a result of fertilization. In somatic cells, 

an increase in poly(A) tail length results in enhanced translation of insulin, 

vasopressin and growth hormone mRNAs (Wickens, 1990a). It was demonstrated in 

frog oocytes that the nuclear and maturation-specific polyadenylation activities were 

distinct in substrate specificity and subcellular localization (Fox et al., 1989). The 

maturation-specific activity which did not seem to involve any nuclear activity, was 

perhaps cytoplasmic in origin and was dependent upon the AAUAAA sequence and 

another element UUUUUAU located a few nucleotides upstream from the poly(A) 

addition signal. Poly( A) tails of about 50 to 300 nucleotides were added to the 3' 

ends of maturation specific mRNA. Based upon these observations, Fox e1 al. (1989) 

proposed that this maturation-specific polyadenylation is responsible for translational 

activation of these mRNAs. Translational activation of dormant tissue-type 

plasminogen activator mRNA by polyadenylation during meiotic maturation of mouse 

oocyte has also been demonstrated (Yassalli et al., 1989). In these cells, as in the 

Xenopus oocytes, both elements (AAUAAA and UUUUUAU) were required for 

polyadenylation. 
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In contrast to maturation specific polyadenylation, deadenylation did not seem 

to require any cis-acting sequences (Varnum and Wormington, 1990). It was shown 

by investigation of various mRNAs that the deadenylation and translational 

inactivation of maternal mRNAs during Xenopus oocyte maturation occurred by a 

default pathway in which transcripts lacking the cytoplasmic poJyadenylation element 

(UUUUUAU) underwent poly(A) removal (Fox and Wickens, 1990; Varnum and 

Wormington, 1990). 

1.14.6.2. Sequence requirement for polyadenylation 

1.14.6.2.1. AAUAAA Sequence 

Comparison of the primary structure of many mRNAs revealed that the 

hexanucleotide, AAUAAA located about 20 nucleotide upstream from the 3" end of 

the mRNAs was important in polyadenylation (Proudfoot and Brownlee, 1976). After 

this first report of the presence of a sequence involved in the polyadenylation process, 

almost all mRNAs of higher eucaryotes have been shown to contain this 

hexanucleotide sequence at about 10 to 30 bases upstream to the 3' end of mature 

mRNAs. Berget (1984) analyzed 61 vertebrate sequences and detected AAUAAA 

sequence in about 90% of the cases, or a variant AUUAAA sequence in about 10% 

of the mRNAs. With the exception of the invariable U at position three of the 

hexanucleotide sequence, very rare variants of other n ucleotides were also detected 

in many mRNAs (Manley et al., 1988). Recently, Sheets et al. (1990) analyzed 269 

vertebrate eDNA sequences and detected this hexanucleotide AAUAAA or a very 
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close variant, the most common of which was AUUAAA, between 4 and 50 

nucleotides upstream from the poly(A) tail; 75 % had the sequence at a distance of 

15 to 25 nucleotides upstream of the poly(A) tail. 

The importance of the AAUAAA sequence for polyadenylation was 

established by studies of mutants of this hexanucleotide, occurring both naturally as 

well as created by recombinant DNA techniques. For instance, a patient with a

thalassaemia had a point mutation converting the AAUAAA sequence to AAUAAG 

resulting in a reduced level of a-globin mRNA (Higgs el al. , 1983). Similarly, a 

patient with ,8-thalassaemia had AAUAAA converted to AAUAAG and also 

produced reduced levels of ,8-globin mRNA (Orkin el al., 1985). 

Fitzgerald and Shenk (1981) studied the effect of deletion of a small number 

of bases in the vicinity of the AAUAAA sequence of simian virus 40 late 

transcription unit and showed that polyadenylation was prevented when these 

deletions included the AAUAAA sequence. It was further noted that the mutants 

carrying small deletions between the AAUAAA and the normal poly( A) addition site 

of simian virus 40 mRNA produced mRNAs polyadenylated at new downstream sites; 

this indicated that sequences downstream of AAUAAA were also important for 

accurate selection of the polyadenylation site (Fitzgerald and Shenk, 1981). Natural 

revertants of some of these artificially created mutants producing normal 

polyadenylated mRNAs revealed that they had regained the AAUAAA or a close 
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analogue of this polyadenylation signal (Swimmer and Shenk, 1981). Investigation 

with the adenovirus early 1A gene revealed that the hexanucleotide sequence 

(AAUAAA) was essential for cleavage of the primary transcript to produce the 3' 

end of mature mRNA (Mantell et al., 1983). In this work it was shown that a single 

point mutation converting the invariant U to Gin the AAUAAA sequence of the 

adenovirus early 1A gene mRNA decreased the efficiency of cleavage without having 

any effect on polyadenylation of those RNA which did get cleaved (Mantell et al., 

1983). 

The earlier studies on cleavage and polyadenylation were complicated by the 

apparent coupling of these processes in vivo, mainly because cleaved but non

polyadenylated RNAs were never detected, making it impossible to determine which 

of the two reactions were affected by a particular mutation. However, development 

of in vitro cleavage and polyadenylation systems have begun to shed some light on the 

requirement of AAUAAA sequence for cleavage, or polyadenylation or both 

(reviewed in Manley, 1988). These in vitro studies showed that a single base 

substitution in AAUAAA sequence reduces the efficiency of cleavage (Sheets et al., 

1990). However, the studies also showed that mutations in the hexanucleotide 

sequence also interferes with polyadenylation of the natural poly(A) addition site 

(Sheets et al., 1990). 

Sheets et al. (1990) did a systematic study of the effect of single base 
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substitutions in AAUAAA sequence to resolve the sequence requirement for cleavage 

and polyadenylation. These workers mutated all six nucleotides (one at a time) and 

created all 18 possible single base variations of the hexanucleotide sequence. With 

the exception of AUUAAA (the most common natural variant of AAUAAA) all of 

the single base substitutions caused a great reduction in the addition of poly(A) to 

RNAs that ended at the poly(A) addition site and also prevented the cleavage of 

RNAs that extended beyond the poly( A) addition site. It was further noted that both 

the efficiency of cleavage and polyadenylation varied with different point mutations 

in the hexanucleotide sequence and that the least effect was by the AUUAAA 

mutation. However, for a given point mutation, the extent of decrease in 

polyadenylation and cleavage was the same. This analysis showed that every base in 

the hexanucleotide sequence is required and provided evidence that the AAUAAA 

sequence is necessary for both of the 3' end processing reactions, implying that these 

two processing reactions required the same factor( s) (Sheets et al., 1990). 

1.14.6.2.2. Downstream sequences 

The discussion so far has been concentrated on the role of the AAUAAA 

sequence in cleavage/polyadenylation. In addition to the hexanucleotide, other 

sequences have also been implicated in 3' end processing of pre-mRNAs. Lai et al. 

(1979) first noted the presence of a downstream sequence involved in processing the 

3' end of the chicken ovomucoid gene mRNA. An AUGUGUUGGA element 

located 20 to 50 nucleotides downstream of the AAUAAA sequence has been 
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detected in several genes (Taya et al., 1982). The presence of multiple poly(A) 

addition signals in many genes which apparently were not always used, led to the 

suggestion that the almost invariant hexanucleotide sequence could not be the only 

sequence responsible for accurate cleavage/polyadenylation. (McDevitt et al., 1984). 

Therefore, it was suggested that since transcription proceeds beyond the poly(A) 

addition site, sequences distal to the poly(A) addition site may have a role in this 

process (McDevitt et al., 1984). These authors generated a series of deletion mutants 

in the adenovirus E2A transcription unit. Sequences downstream from the 3' end of 

the mature RNA were deleted and the transcript produced from these deleted genes 

were assayed for their ability to produce functional E2A mRNA. The analysis showed 

that about 35 nucleotides downstream to the poly(A) addition site were required for 

the formation of E2A mRNA (McDevitt et al., 1984). An extensive search of about 

200 mammalian and eucaryotic viral RNAs detected a sequence, YGUGUUYY (Y 

= pyrimidine), closely related to the AUGUGUUGGA element (Taya et al., 1982) 

in about 66% of those examined (McLauchlan et al., 1985). 

Birnstiel et al. (1985) compared various downstream sequences of the genes 

known at the time and pointed out that most showed an over representation of TGT, 

found sometimes repeated in conjunction with oligo-T stretches, in a region about 30 

base pairs downstream of the AA T AAA sequence. Therefore, these sequences which 

contained an over representation of G and T residues were termed "GT clusters" 

(Bimstiel et al., 1985). By comparing 74 genes Renan (1987) detected an element 
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located 5 to 20 bases downstream of the poly(A) addition site with the sequence 

TTGPNNN I I I I I I (P = A or G) in about half of the sequences. In some cases, this 

sequence overlapped with the conserved sequence YGTGTTYY (Y = C or T) 

reported by McLauchlan et al. (1985). There is considerable evidence that these 

downstream elements are important for the 3 'end processing of polyadenylated 

RNAs from a wide variety of genes such as the hepatitis B virus surface protein gene, 

simian virus 40 early and late transcription units, the rabbit 13-globin gene, the herpes 

simplex virus thymidine kinase gene, human a1, a2 and y interferon genes, chicken 

ovomucoid and chicken ovalbumin genes (reviewed in Birnstiel et al. 1985; Manley, 

1988). 

Downstream sequences located within about 50 bases 3' to the RNA cleavage 

site have been shown to be required for efficient and accurate polyadenylation of a 

number of mRNAs including those for simian virus 40 late proteins, rabbit 13-globin, 

bovine growth hormone and herpes simplex virus type 1 thymidine kinase gene in vivo 

(Ryner et al., 1989), and in vitro for pre-mRNA for adenovirus-2 L3 (Skolnik-David 

et al., 1987a, b), simian virus 40 late proteins and herpes simplex virus type 1 

thymidine kinase genes (Ryner et al., 1989). Unlike the AAUAAA sequence, the 

downstream sequences do not seem to be conserved to a great extent in different 

pre-mRNAs. However, there have been some reports of homologous sequence 

conservation (Ryner et al., 1989). 
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Gil and Proudfoot (1984) showed that accurate 3' end formation for the 

rabbit 13-globin gene required a 35 bp region extending from three nucleotides 5' to 

31 nucleotide 3' of the poly( A) addition site and that both of the GU- and U-rich 

elements were required for efficient processing. It was further noted that removal of 

either of these elements or changing the distance between the two elements 

decreased the efficiency of cleavage indicating that correct spacing between the two 

sequences is also necessary (Gil and Proudfoot (1987). 

Efficient use of the poly(A) addition site in simian virus 40 early mRNA in 

vivo required sequences between 5 and 18 bp downstream of the cleavage site and 

the same sequences were also needed for in vitro cleavage (Hart et al., 1985). Further 

experiments using a series of point mutants of this poly( A) addition site and of the 

GU-rich downstream element revealed that certain base changes decreased the 

efficiency of cleavage while others increased it (McDevitt et al., 1986). Moreover, the 

position of the downstream element relative to the AAUAAA and cleavage site was 

important since moving the element 40 nucleotide downstream, or inversion abolished 

the function (McDevitt et al., 1986). The adenovirus E2A downstream sequence also 

had similar properties with one difference and that was that it was U-rich. 

Mutagenesis studies recognized two different downstream elements both of which 

were shown to be equally active in restoring the cleavage activity to pre-mRNAs 

defective in cleavage (McDevitt et al., 1986). These viral studies supported the 

findings on rabbit 13-globin gene pre-mRNA processing (Gil and Proudfoot, 1984; 
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1987). However, one difference noted was that the ,8-globin gene had both the GU-

and U-rich sequences and both of these sequences were required for efficient 

cleavage (Gil and Proudfoot, 1987). 

Evidence from chemical modification of nucleotides in various sequences 

involved in 3" end processing of a synthetic pre-mRNA suggested that although each 

base in the hexanucleotide was required for cleavage, no single modification in the 

nucleotides downstream of the poly( A) addition site had any effect on cleavage. On 

the basis of these experiments, Conway and Wickens (1987) inferred that the critical 

features of the downstream elements were either diffuse or redundant. However, 

recently Levitt et al. (1989) constructed a synthetic poly( A) addition site based upon 

the highly efficient poly( A) addition site of rabbit ,8-globin and demonstrated that for 

efficient polyadenylation the minimum sequence required was AAUAAA and a 

GU/U clusters with a correct spacing of about 22 nucleotides between them. 

In addition to the GU/U clusters, other sequences have been implicated in 

having a role in cleavage/polyadenylation reactions. A pentanucleotide sequence, 

CA YUG (Y = pyrimidine) is found to be present in close proximity to the poly( A) 

addition site of many genes (Berget, 1984; Benoist et al., 1980). However, many genes 

lack this sequence and like GU/U clusters this sequence does not seem to be 

conserved (Manley, 1988). 
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In most mRNAs an adenosine residue is almost invariably present at the 

poly(A) addition site and is usually preceded by a cytosine residue (Sheets et al., 

1990). Therefore, the first A in the poly(A) tail is in fact part of the pre-mRNA, 

rather than the first residue added to the cleaved pre-mRNA. Hence, a cytosine is 

present at the 3" end of about 59% of mRNAs (Sheets el al., 1990). The terminal 

adenosine residue seems to have a role in the formation of the precise 3' end 

because substitution with other nucleotides influences the precise point of poly(A) 

attachment (Sheets et al., 1990). 

The above discussion regarding the role of downstream elements in 3 ' end 

processing illustrates the complexity of the process. However, as discussed above at 

least two different sequences are required for the formation of the 3' ends of 

mRNAs. Firstly, the almost invariable sequence (AAUAAA) which is present about 

25 nucleotide upstream from the 3" end of the mRNAs (Sheets et al., 1990). 

Secondly, the downstream element which is reported to be present anywhere between 

5 and 50 nucleotides downstream from the poly(A) addition signal (Bimstiel et al., 

1985; Renan, 1987: McLauchlan et al., 1985); many different consensus motifs have 

been proposed for the downstream sequence but it seems to be less conserved except 

that it shows an over representation of G and U. Additionally, the CA dinucleotide 

is present at the poly(A) addition sites of many mRNAs. 
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1.14.6.3. Biochemistry of polyadenylation 

The apparent in vivo coupling of cleavage/polyadenylation further adds to the 

complexity of various elements (section 1.14.6.2.1) implicated in having a role in the 

processing of 3/ ends of pre-mRNAs. For instance, due to the apparent coupling of 

the two reactions it seems to be difficult to distinguish which sequence is required for 

each of the two reactions (Manley, 1988). The other question is whether the two 

processes are obligatorily coupled to each other or can be separated from each other 

and lastly what is the mechanism of cleavage/polyadenylation and what are the factors 

involved in these reactions. The development of various in vitro systems has provided 

some answers to these questions (Manley, 1983; Moore and Sharp, 1984; 1985). Some 

of the findings utilizing these system are discussed below. 

The first successful in vitro reaction for polyadenylation that was specific for 

pre-mRNAs was performed using a whole-cell lysate of HeLa cells (Manley, 1983). 

It was shown that this lysate contained a poly(A) polymerase activity that efficiently 

added poly(A) tails to exogenously added pre-mRNAs. This addition of poly(A) was 

controlled since, after a length of poJy(A) tail similar to that obtained in vivo was 

achieved, no more nucleotides were added. However, this in vilro reaction system was 

not capable of performing the cleavage reaction to create the correct in vivo poly( A) 

addition sites and the poly( A) tail was added to the 3/ ends of the added RNAs. 

Nonetheless, this in vitro system was specific enough to add poly( A) tails to the 3/ 

ends of only those pre-mRNAs which had 3 / termini lying downstream of authentic 
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poly(A) addition sites. This polyadenylation of only the pre-mRNAs with authentic 

poly( A) addition sites implied that specific nucleotide sequences located near the 3" 

terminus of the pre-mRNA may be required for polyadenylation (Manley et al., 

1985). 

To resolve the specific nucleotide sequences requirement for polyadenylation 

Manley et al. (1985) constructed a number of rearranged and deleted DNA templates 

encoding simian virus 40 early pre-mRNA, transcribed them in a separate in vitro 

transcription system and incubated the resulting RNAs with the HeLa cell lysate 

mentioned above. It was observed that, as in vivo the AAUAAA sequence was 

necessary for polyadenylation in vitro. Furthermore, it was also shown, that in this in 

vitro system, efficient polyadenylation could take place even in the absence of 

cleavage to create authentic 3" ends. Therefore, it provided the evidence that 

cleavage/polyadenylation reactions which seem to be coupled in vivo could also occur 

separately in vitro and hence are not necessarily dependent upon each other (Manley 

et al., 1985). 

Another in vitro system for polyadenylation, also from HeLa whole-celllysates 

developed by Moore and Sharp (1984), could accurately polyadenylate at the L3 

poly(A) addition site of adenovirus. However, in situ synthesis of the pre-mRNA in 

the same extract was essential for the poly(A) addition site specific polyadenylation 

to take place (Moore and Sharp, 1984). Further improvement of this system 



106 

eliminated the need for in situ synthesis of pre-mRNAs, and exogenously added pre-

mRNA with the L3 polyadenylation site was accurately cleaved as well as 

polyadenylated (Moore and Sharp, 1985). The latter system was capable of 

reproducing both of the cleavage and polyadenylation reactions accurately and hence 

resembled more the in vivo situation. The reaction system could be further modified 

to perform only the cleavage reaction simply by the addition of the ATP analog, a.-/3-

methylene-adenosine 5' triphosphate. The separation of the two reactions indicated 

that cleavage and polyadenylation reactions were not coupled to the synthesis of pre

mRNA. Zarkower et al. (1986) assessed the role of the AAUAAA sequence in 

cleavage/polyadenylation by creating point mutations in the simian virus 40 late pre

mRNA and using the above in vitro system. These investigators provided evidence 

that efficient polyadenylation of the precleaved RNAs [RNAs with 3' termini at the 

poly( A) addition site] was dependent upon the AAUAAA sequence present upstream 

from the poly(A) addition site (Zarkower et al., 1986). 

Development of these in vitro cleavage/polyadenylation systems have opened 

up new avenues to study the mechanism and the regulation of polyadenylation, which 

was not possible to study with in vivo systems. The in vitro systems were manipulated 

to gain a better understanding of the role of various sequences in pre-mRNAs and 

the various protein factors involved in cleavage/polyadenylation as described next. 
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1.14.6.3.1. Protein factors 

In recent years biochemical fractionation of the in vitro systems has provided 

further understanding of the mechanism of 3/ end processing. These investigations 

have revealed the complexity of the reactions which require multiple factors 

(reviewed in Humphrey and Proudfoot, 1988; Manley, 1988; Wickens, 1990b). A 

description of some of the important features of these protein factors now follows. 

Polyadenylation of a pre-mRNA containing the AAUAAA sequence and 

having a 3/ terminus requiring cleavage to produce a poly( A) addition site has been 

shown to require at least two activities; an AAUAAA specificity factor and an 

enzyme that adds poly( A) to the 3/ hydroxyl group of pre-mRNA (reviewed in 

Humphrey and Proudfoot, 1988; Wickens, 1990b). 

1.14.6.3.2. Poly(A) polymerase 

A poly(A) polymerase activity detected about 30 years ago in crude cellular 

extracts was capable of adding poly(A) to any RNA such as tRNA (reviewed in 

Edmonds and Winter, 1976) and was partially purified (Bardwell el al., 1990a, b). The 

apparent non-specificity of the poly(A) polymerase seemed to indicate that it was 

perhaps not involved in polyadenylation of mRNAs (Wickens, 1990b ). However, it 

has been shown that indeed the classical poly(A) polymerase is the enzyme that adds 

poly( A) tails to pre-mRNAs by acquiring a specificity factor (see below). This poly( A) 

polymerase shares many biochemical properties with the classical poly( A) polymerase 
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including antigenicity (Terns and Jacob, 1989) and a molecular weight of 40,000 to 

60,000 daltons (Christofori and Keller, 1989; Gilmartin and Nevins, 1989). 

This enzyme was found to be very non-specific and polyadenylated any RNA 

in the presence of manganese and in the absence of a specificity factor (Christofori 

and Keller, 1989). However, the enzyme became very specific and polyadenylated 

only the AAUAAA-containing RNAs on the substitution of manganese with 

magnesium and the addition of a specificity factor (Christofori and Keller, 1989). 

Further, it was noted that the cleavage activity was part of poly(A) polymerase 

activity since even after extensive purification of the poly( A) polymerase the cleavage 

activity could not be separated from h (Christofori and Keller, 1989; Terns and 

Jacob, 1989). However, the last finding is not supported by others (Takagaki el al., 

1988, 1989) who showed that the cleavage activity and poly(A) polymerase were two 

separable entities as described in the next section. 

1.14.6.3.3. Specificity factor(s) 

It has been recognized that the cleavage/polyadenylation reaction is a very 

complex process and requires poly( A) polymerase and a number of factors including 

a specificity factor. Many investigators have characterized the factors involved in 3" 

end processing (Christofori and Keller, 1988; Gilmartin el al., 1988; McDevitt et al., 

1988; Takagaki et al., 1988; Gilmartin and Nevins, 1989). Some of the salient features 

of these factors and their role in 3" end processing will be discussed here briefly. 
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Takagaki et al. (1988; 1989) fractionated HeLa cell nuclear extract by 

ammonium sulphate precipitation and DEAE-Sepharose chromatography into two 

major fractions. One of these fractions contained a non-specific poly(A) polymerase 

which became AAUAAA-specific when mixed with another fraction containing a 

cleavage specificity factor (CSF). The cleavage specificity factor was required to 

confer AAUAAA dependence on the polymerase and contained specific cleavage 

activity (Takagaki et al., 1988). The cleavage specificity factor was further fractionated 

into three frac6ons: a) the cleavage stimulation factor (Cstf) which stimulated 

endonucleolytic cleavage several fold; b) the cleavage factor (CF) which was required 

for endonucleolytic cleavage, was actually composed of two factors (CF1 and CF2); 

and c) the specificity factor (SF) which was required for both cleavage and 

AAUAAA-dependent polyadenylation. It was shown that these above mentioned 

fractions together with a very highly purified poly(A) polymerase could perform 

accurate and efficient cleavage and polyadenyJation (Takagaki et al., 1989). 

It has been shown by a UV cross linking procedure to various polyadenylation 

substrates containing the AAUAAA sequence that a 64,000 daltons protein reacts 

with the AAUAAA sequence (Wilusz and Shenk, 1988). It was suggested by Wilusz 

et al. (1990) that the 64,000 dalton protein bound specificalJy to the AAUAAA 

sequence in the RNA polymerase II nascent transcripts and interacted with other 

factors to initiate 3' end processing of pre-mRNAs. This protein was found to cross

link to substrate RNAs only when the fractions containing cleavage stimulation factor 
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(Cstt) and specificity factor (SF) were mixed together in the presence of substrate 

RNA (Wilusz et al., 1990). This finding was consistent with the conclusion that this 

64,000 dalton protein was a constituent of the multicomponent complex required for 

the AAUAAA dependent polyadenylation of RNAs (Wilusz el al., 1990). It was 

shown that the 64,000 dalton protein was indeed one constituent of Cstf (Takagaki 

et al., 1989) which was composed of three distinct polypeptide chains of 77,000, 

64,000 and 50,000 daltons (Takagaki el al., 1990). 

Christofori and Keller (1988) fractionated a HeLa nuclear extract but obtained 

three different components involved in 3, end processing of pre-mRNAs; these were 

poly(A) polymerase, cleavage factor (CF) and cleavage and polyadenylation factor 

(CPF). The last component was a ribonucleoprotein complex containing Ull snRNP. 

These workers showed that for polyadenylation of precleaved RNA, poly(A) 

polymerase and CPF were sufficient, whereas for uncleaved pre-mRNAs all three 

fractions were required. It was suggested that the CPF corresponds to the cleavage 

specificity factor (CSF) characterized by Takagaki et al. (1988) as described above. 

However, further characterization of the cleavage and polyadenylation factor (CPF) 

revealed that it had a molecular weight of 180,000 to 200,000 daltons (Christofori and 

Keller, 1988), which was lower than 360,000 daltons reported for the cleavage 

specificity factor (CSF) characterized by Takagaki e1 al. ( 1988). 

Gilmartin and Nevins (1989) described a number of factors involved in 3' end 
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formation of mRNAs. These factors were: a) polyadenylation factor 1 (PFl) which 

had a poly( A) polymerase activity; b) polyadenylation factor 2 (PF2) a complex of 

multiple proteins, some of which interacted directly with the AAUAAA sequence and 

provided specificity to PF1; c) cleavage factor 1 (CF1); and d) cleavage factor 2 

(CF2). The CF1 and CF2 were shown to be required along with PF2 for cleavage 

activity. Gilmartin and Nevins (1989) presented a pathway of complex formation for 

the initiation of cleavage that was followed by polyadenylation. According to this 

proposed pathway PF1 and PF2 were required for specific polyadenylation of the 

cleaved RNA; both of these factors together with two additional factors CF1 and CF2 

were required for the endonucleolytic cleavage of the pre-mRNAs. The PF1 was 

suggested to be equivalent to the cleavage polyadenylation factor (CPF) characterized 

by Christofori and Keller (1988). It was further suggested by Gilmartin and Nevins 

(1989) that PF2 recognized the AAUAAA sequence and formed an unstable binary 

complex which in turn facilitated the binding of CFl that required a downstream 

GU/U cluster for efficient binding. Once this ternary complex was formed, the 

complex remained stable and could be viewed as committed for the processing of the 

poly(A) addition site. This was followed by binding of CF2 and PFl. The cleavage 

of the pre-mRNA could then take place and CF2 dissociated from the complex and 

polyadenylation at the correct poly(A) addition site could continue until about 200 

A residues were added (Gilmartin and Nevins, 1989). 

The mechanism of addition of poly(A) has been studied in some detail by 



112 

Sheet and Wickens (1989) who showed that this process occurred in two phases: in 

the first phase addition of each adenosine residue was dependent on the AAUAAA 

sequence and about 10 A residues were added one at a time; and in the second 

phase addition of A residues did not require AAUAAA but needed the oligo-(A) 

primer synthesized during the first phase. It was further noted that both reactions 

were catalysed by the same poly( A) polymerase and that the regulation of final length 

of poly(A) tail required a factor present in the HeLa cell nuclear extract (Sheet and 

Wickens, 1989). 

It is clear from the above discussion that cleavage/ polyadenylation reactions 

are very complex processes requiring a large number of factors. The interplay of 

these factors brings about two important results: cleavage of pre-mRNA to form the 

3' end; and addition of a poly( A) tail. The requirement of many factors makes this 

process a good candidate for post-transcriptional control of gene expression. Like 

alternate splicing, poly(A) addition site choice as a mode of gene expression control 

is well documented (Leff et al., 1986). One level of control where the poly(A) 

addition site choice could be regulated may be in the binding of various factors 

especially CF1 to the downstream GU/U sequences. The other possibilities are that 

either secondary structure of pre-mRNA in the vicinity of the poly(A) addition site 

might regulate its selection (Brown et al., 1991) or some protein factor(s) may be 

involved (Denome and Cole, 1988). 



CHAPTER2 

MATERIAlS AND METHODS 

2.1. Materials 

Most of the chemical reagents used were purchased either from Sigma 

Chemical Company (USA) or BDH Chemicals (Canada) unless stated otherwise. The 

oligo(dT)-primed J..gtlO eDNA library constructed from K562 cell poly( A)+ RNA was 

obtained from Clontech Laboratories Inc. (USA). Oligodeoxynucleotides were 

obtained from the following suppliers: I synthesized the mixture GP A-C manually at 

the Biochemistry Department of The University of British Columbia, Vancouver. 

Oligonucleotide GPA-N2 and the mixture GPA-Nl were obtained from the 

Biotechnology Service Centre, The Hospital for Sick Children, Toronto, Ontario; 

another oligonucleotide GP A-C2, same as coding strand and oligonucleotides 

complementary to the 3' untranslated region of glycophorin A, GP A-MS, GP A-MLl, 

GPA-ML2 and GPA-L were obtained from the DNA Synthesis Laboratory, 

University of Calgary, Alberta. 

Restriction endonucleases EcoRI, Kpni, Xhoi, Hindiii, Hpaii, Drai, Stui, Alui 

and BamHI were purchased from Bethesda Research Laboratories (Canada), Xmni, 

Rsai and Sac! were from New England Biolabs (USA). Bluescript plasmid vectors, 

XLl-Blue cells and the Bluescript Exo/Mung kit were obtained from Stratagene 
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(USA). The Sequenase kit was purchased from United States Biochemicals (USA) 

and the Geneclean kit was from Bio 101 Inc. (USA). 

Ultrapure cesium chloride, redistilled phenol, formamide, ultrapure agarose, 

RNA ladder molecular size markers, 5' DNA terminus labelling system kit, E. coli 

DH5a cells and plasmid vector pUC19 were purchased from Bethesda Research 

Laboratories (Canada). Ficoll, polyvinylpyrrolidone, bovine serum albumin (BSA), 

maltose, glucose, polyethylene glycol (PEG, 6,000), RNase A, ethidium bromide, 

diethylpyrocarbonate (DEP) and the antibiotics, ampicillin and tetracycline 

hydrochloride were obtained from Sigma Chemical Company (USA). Bacto-yeast 

extract, Bacto-tryptone, Bacto-Agar and dimethyldichlorosilane were purchased from 

BDH chemicals (Canada). The tissue culture medium Roswell Park Memorial 

Institute 1640 (RPMI 1640) and fetal calf serum were purchased from Flow 

Laboratories (Canada). M13 universal sequencing primer, M13 reverse sequencing 

primer, salmon sperm DNA, T4 polynucleotide kinase, nucleoside triphosphates and 

Sephadex G-50 were purchased from Pharmacia Laboratories (Canada). Yeast tRNA 

and alkaline phosphatase were purchased from Boehringer Mannheim (Canada). 

Reverse transcriptase was obtained from Life Sciences Inc. (USA). The nylon 

membranes Hybond-N, [y-32P]ATP (>5,000 Ci/mmol), [a-32P]dCfP (3,000 Ci/mmol) 

[a-35S]dATP (1350 Ci/mmol), Nick Translation and the Multiprime DNA Labelling 

System kit were purchased from Amersham (Canada) Ltd. T4 DNA ligase was 

purchased from New England Biolabs (USA). Dialysis bags (molecular weight cut, 
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12,000-14,000) were purchased from Spectrum Medical Industries Inc. (USA). Tris 

(hydroxymethyl) aminomethane (Tris) and mixed bed resin AG 501-XS were obtained 

from BioRad (USA). Oligo(dT)-cellulose (type 3) was purchased from Collaborative 

Research Inc. (USA). 

Methods 

2.2. General methods for the preparation of solutions 

Most of the solutions to be used for recombinant DNA work were routinely 

made with double distilled water that was deionized by passage through a Millipore 

filtration unit and sterilized by autoclaving at 15 lb/square inch at 121°C for a time 

period appropriate for the volume of the solution to be autoclaved. The reagents 

which could not be autoclaved were usually prepared in pre-autoclaved distilled water 

and sterilized by filtration through a 0.22 p.m cellulose nitrate membrane. 

2.3. K562 cell culture 

Human erythroleukaemic cells, K562 (Lozzio and Lozzio, 1975) were grown 

in an incubator at 37°C with C02:02 (5:95%) in the tissue culture medium RPMI 

1640 which was prepared according to the manufacturer's instruction with 10% fetal 

calf serum. To prepare cells for RNA extraction, 500-1000 ml of the growth medium 

was distributed in 5-10 flasks and inoculated with K562 cells (5 x 104/ml). The cells 

were allowed to grow for 4-6 days before harvesting for RNA extraction (section 

2.18.2). 



2.4. Microbiological techniques 

2.4.1. Luria-Bertani (LB) medium 
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The following components were dissolved in about 800 ml water in a 2 L flask 

Bacto-yeast extract 

Bacto-tryptone 

NaCl 

5 g 

10 g 

10 g 

The solution was adjusted to pH 7.4 by the addition of 10 M NaOH solution and the 

volume was made up to 1 L. If needed, the medium was distributed into smaller 

volumes, sterilized by autoclaving, cooled to the room temperature prior to the 

addition of glucose or maltose (0.2%, w/v, final concentration, from a 20% stock 

solution sterilized by filtration through a 0.22 JJ.m cellulose nitrate membrane) and 

(or) any other additional reagents (antibiotics, reagents for detection of f3-

galactosidase production) as required. 

2.4.2. Luria-Bertani (LB) medium containing agar 

For culture media requiring agar, 15 g Bacto-agar was added to 1 L of the 

liquid medium before autoclaving. To prepare the culture plates, the autoclaved agar 

medium was allowed to cool to 45-50°C before glucose and any other additional 

reagents as required were added. The contents of the flask were mixed by swirling 

gently and poured into the culture plates (100 x 15 mm or 150 x 15 mm). The agar 

was allowed to set at room temperature and the plates were then stored at 4°C till 

use. 
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2.4.3. Top agar/agarose medium plates 

The medium was prepared as described (section 2.4.1) for the liquid culture 

medium (LB) except 0.75% (w/v) of either agar or agarose was used instead of 1.5% 

agar. To prepare this medium, 0.75% (w/v) of either agar (for plates to be used for 

growing transformants) or 0.75% agarose (to be used for plaque lifts) was dissolved 

in LB medium by heating, distributed in 2.5 ml quantities for 100 x 15 mm plates or 

7.5 ml quantities for 150 x 15 mm plates and sterilized by autoclaving. To prepare the 

culture plates containing the top agar/agarose, the LB-agar plates stored at 4°C were 

pre-warmed by incubation at 37°C for a few hours. The top agar/agarose medium was 

liquefied by heating in a boiling water bath or a microwave oven and allowed to cool 

to about 48°C. Additional reagents (for e.g. glucose, maltose, antibiotics or reagents 

for the detection of ,8-galactosidase production) were added at this time and poured 

on top of the solid LB-agar plate swirling it very quickly for an even distribution of 

the agar/agarose solution in the form of a thin layer. 

2.4.4. Media for the detection of p-galactosidase production 

To prepare top agarose for screening bacterial colonies producing .a

galactosidase, the plates were prepared as described (section 2.4.3.) except that the 

liquefied top agar/agarose solution also contained 50 J..Ll Bluo-gal and 10 J..Ll isopropyl

,8-D-thiogalactopyranoside (IPTG)/2.5 ml top agar/agarose; Bluo-gal was stored as a 

2 mg/ml stock solution in dimethylformamide and IPTG was stored as a 100 mM 

stock solution in water. IPTG induces .a-galactosidase production in the cells 
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containing the gene turning the cells blue in the presence of the histochemical 

substrate (Bluo-gal). 

2.4.5. Ampicillin solution 

The stock solution containing 10 mg/ml ampicillin in water was sterilized by 

filtration through a membrane (0.22 J.Lm), stored in small aliquots at -20°C and used 

at the final concentration of 100 J.Lg/ml. 

2.4.6. Tetracycline solutions 

Stock solutions containing 15 mg/ml tetracycline hydrochloride in 50% ethanol 

was sterilized by filtration through a membrane (0.22 J.Lm ), stored in small aliquots 

at -20°C and used at the final concentration of 15 J.Lg/ml. 

2.4.7. Bacterial cell culture 

The experiments involving bacteriological techniques were performed using 

standard aseptic techniques. The bacterial cells, unless stated otherwise, were grown 

either in the liquid culture medium, Luria-Bertani medium containing 0.2% (w/v) 

glucose and appropriate antibiotic(s) or the same medium with 1.5% (w/v) Bacto

agar. The culture was always initiated with an isolated colony that was grown on a 

culture medium plate containing appropriate antibiotic( s) to verify the bacterial 

strain. 
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2.4.8. Storage of bacterial cultures 

About 5-10 ml of liquid medium (LB) containing the appropriate antibiotic(s) 

was inoculated with a single bacterial colony and allowed to grow overnight by 

incubation at 37°C. This overnight culture was then distributed in 0.85 ml aliquots in 

microfuge tubes. To each of these tubes, 0.15 ml sterile glycerol which was previously 

sterilized by autoclaving was added, mixed and the tubes were then stored at -20°C 

or at -70°C. Just before use, a tube was withdrawn from the freezer, thawed and an 

aliquot streaked on LB-agar plate to generate isolated colonies by incubation at 37°C 

for about 18 h. The plate with the isolated colonies was either used immediately or 

stored at 4°C for future use until discarded after a few weeks. 

2.4.9. Storage of bacteriophage stocks 

SM medium: This medium was used for preparing dilutions and (or) storage of 

bacteriophage. . 

NaCl 

MgS04.7 H 20 

Tris-HCl (1 M, pH 7.5) 

Gelatin (2%, w/v) 

water 

sterilized by autoclaving 

5.8 g 

2g 

50 ml 

5 ml 

to 1 L 

To prepare the bacteriophage stock, an isolated plaque was mixed with 0.3 ml 
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overnight culture of E. coli C600 Hfl and incubated at 37°C for 15 min. This phage-

bacterial suspension was mixed with 7.5 ml top agarose (section 2.4.3), poured on an 

LB-agar plate with 0.2% maltose (section 2.4.2) and allowed to grow for about 18 h 

at 37°C. After this incubation period 5 ml SM medium was added to the plate which 

was then left standing at room temperature to allow for the diffusion of the phage 

particles from the agar. The resulting phage suspension was transferred to a glass 

centrifuge tube (Corex, 15 ml). The plate was rinsed with more SM medium (5 ml), 

the suspension transferred to the centrifuge tube and the plate was discarded. The 

lysate was then centrifuged at 10,000 rpm for 15 min at 4°C in a Beckman centrifuge 

using a JS-13 rotor. Following centrifugation, the cleared plate lysate was transferred 

to a clean tube and stored with a few drops of chloroform at 4°C or at -70°C with 

dimethyl sulfoxide at a final concentration of 7% if storage for long periods was 

desired. 

2.5. Phenol extraction of nucleic acids 

Phenol-chloroform solution: Double-distilled phenol melted by immersing the bottle 

in a 65°C water bath was mixed with an equal volume of TE [10 mM Tris-HCl, 1 mM 

ethylenediantinetetra acetic acid (EDT A) pH 8.0]. After mixing for a few minutes, 

the aqueous and organic layers were separated by centrifugation in a bench top 

centrifuge (Damon/IEC model, HN-S) at 2,000 rpm. The equilibrated phenol was 

then mixed with an equal volume of chloroform and isoamyl alcohol (24:1, v/v). 
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An equal volume of the phenol:chloroform:isoamylalcohol (25:24:1) solution 

was added to the nucleic acids (DNA or RNA) solution, mixed and centrifuged at 

room temperature to separate the organic and aqueous layers. When small volumes 

of nucleic acid solution were to be purified, centrifugation was performed using a 

microfuge tube in an Eppendorf centrifuge (model 5414) whereas larger volumes 

were centrifuged in a bench top centrifuge at about 4,000 rpm for 15 min at room 

temperature. After the first extraction, the aqueous layer was transferred to a clean 

tube and rextracted with the phenol solution once or twice more. The aqueous layer 

was transferred to a clean tube and subjected to extraction with a chloroform:isoamyl 

alcohol (24: 1) for a few times or until a clear interface was obtained. The clear 

aqueous solution was then subjected to ethanol precipitation described in the next 

section. 

2.6. Ethanol precipitation of nucleic acids 

About 0.1 volume of 3 M sodium acetate pH 4.8 and absolute ethanol 

prechilled to -20°C (two or two and half volumes for DNA or RNA solution, 

respectively) were added. The contents of the tubes were mixed together and the 

precipitates were allowed to form by storage at -20°C for about 18 h or for a short 

period (15 min) at -70°C if smaller volumes were involved. Precipitates were collected 

by centrifugation either in a Beckman centrifuge (model J-218) at 10,000 rpm using 

a Beckman JA-20 or JS-13 rotor at 4°C or for smaller volumes in an Eppendorf 

centrifuge at the maximum speed. Precipitates were washed twice in 70% ethanol, 
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centrifuging for short time between each wash and then dried under vacuum using 

either an in-house vacuum outlet for very small pellet or a vacuum oven (at room 

temperature) connected to a vacuum pump for larger pellets. The dried pellets were 

then dissolved in TE (10 mM Tris-HCl, 1 mM EDTA pH 8.0). 

2. 7. Quantitation of nucleic acids 

To determine the quantity of nucleic acids, an aliquot of the aqueous solution 

was diluted in water and examined in an Hitachi spectrophotometer (model, 100-80 

A). The optical density (OD) at 260, 280 and 320 nm was determined in a 1 em path 

length quartz cuvette. The reading of OD260 allowed calculation of concentration of 

nucleic acid in the sample. An OD of 1 was taken to correspond to approximately 50 

J.Lg/ml for double-stranded DNA, 40 J.Lg/ml for single-stranded DNA and RNA and 

20 J.Lg/ml for oligonucleotides (Maniatis et al., 1982). The ratio of OD at 260/280 was 

also determined which provided an estimate for purity of nucleic acid solution. Pure 

DNA and RNA solutions have 260/280 ratio of 1.8 and 2.0, respectively (Maniatis et 

al., 1982). In addition to the OD measurements, the nucleic acid solutions were also 

scanned in the same instrument between the wave length of 220-320 nm. 

2.8. Restriction endonuclease digestion 

Digestion with various restriction endonucleases was performed using 

appropriate buffer provided by the supplier of the restriction endonuclease at the 

recommended temperature for a few hours (usually for 1 h). When the plasmid 
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DNAs were prepared by the quick method (section 2.16.2.), 1 JJ.l of DNase-free 

RNase from a 10 mg/ml solution was also included in the reaction mixture to digest 

possible contaminating RNAs. Following the restriction digestion the DNA samples 

were analyzed by agarose gel electrophoresis as described in the next section. 

2.9. Agarose gel electrophoresis 

Agarose gel electrophoresis was performed according to the instruction 

provided by Maniatis et al. (1982) using either a submerged gel electrophoresis 

apparatus, BRL Model H4, 20 x 25-cm gel bed or H3, 11 x 14-cm gel bed or a Bio

Rad Mini-Sub cell, 7 x 10 em-gel bed. A 0.6-1.5 % agarose gel depending upon the 

size of DNA fragment to be analyzed, in Tris-borate-EDTA buffer (0.089 M Tris and 

boric acid, 0.002 M disodium EDTA pH 8.3) containing ethidium bromide (final 

concentration, 0.5 JJ.g/ml, w/v) was prepared. The gel was also submerged in the Tris

borate-EDTA buffer with 0.5 JJ.g/ml ethidium bromide. The DNA samples prepared 

by mixing with the gel loading dye (0.25 % bromophenol blue and xylene cyanol in 

15% Ficoll, type 400), loaded in the slots and electrophoresed at a constant voltage 

of about 5 V/cm. Electrophoresis was continued until the bromophenol dye travelled 

to about 1 em from the edge of the gel. The positions of the DNA bands were 

revealed by exposing the gels to transilluminated UV light to produce the ethidium 

bromide fluorescence. While still exposing to UV light the gel was photographed 

using the Polaroid film 665 or 667. 
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2.10. Recovery of DNA fragment 

DNA fragment were recovered from agarose gels by one of the following two 

methods. 

2.10.1. Electroelution method 

A gel slice containing the DNA band of interest was placed in a dialysis bag 

with 0.5 X Tris-borate-EDTA buffer ( 44.5 mM Tris and boric acid and 1 mM EDTA 

pH 8.3) sufficient to immerse the gel slice completely. The dialysis bag was then 

submerged in a shallow layer of 0.5 X Tris-borate-EDT A in the buffer reservoir of 

a small electrophoresis apparatus. The electric current ( 100 V) was then passed for 

2-3 h so that the DNA was electroeluted from the gel slice and bound to the inner 

wall of the dialysis bag. The polarity of the current was reversed for 2 min to elute 

the DNA from the walls of the dialysis bag and the solution containing the DNA was 

then collected in a microfuge tube. The gel slice was restained and observed under 

UV light to ensure that all of the DNA was electroeluted from it before discarding. 

The electroeluted DNA solution was then subjected to phenol extraction (section 2.5) 

followed by ethanol precipitation (section 2.6). 

2.10.2. Geneclean method 

Purification of DNA fragments was also achieved by binding to Glassrnilk (a 

suspension of silica matrix in water) and using other solutions provided in the 

Geneclean kit. The gel slice containing the DNA fragment of interest was placed in 
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a 1.5 ml mkrofuge tube. About two to three volumes of the saturated sodium iodide 

solution was added to cover the gel slice which was then incubated at 50°C for 5-15 

min or until the agarose in the gel slice was dissolved completely. About 5 J.£1 of 

Glassmilk suspension for each 5 J...£g or less DNA was added and the mixture 

maintained on ice for 5 min to allow for the adsorption of the DNA on the 

Glassmilk. The Glassmilk particles collected by a brief centrifugation (5 sec in an 

Eppendorf centrifuge), were resuspended in the washing solution provided in the kit 

and the pellet was washed twice more. The DNA was eluted from the Glassmilk in 

10-20 J...£1 water by incubating the tubes at 50°C for 5 min. The DNA solution thus 

obtained was separated from the Glassmilk by a brief centrifugation (1 min in the 

Eppendorf centrifuge), transferred to a clean tube and stored at -20°C until use. 

2.11. Oligonucleotides probes for screening 

The complete amino acid sequence of glycophorin A was known at the time 

when this work was initiated (Tomita and Marchesi, 1975). Two oligonucleotide 

mixtures GPA-N1 (a 21-mer mixture) and GPA-C (a 17-mer mixture) which are 

complementary to the coding sequence spanning the amino acid numbers 24-30 and 

122-127, respectively, were synthesized and used initially to screen a K562 l..gt10 

eDNA Library. While work described here was still in progress a partial eDNA 

sequence was published by Siebert and Fukuda (1986b). Therefore, an exact 

sequence oligonucleotide, GP A-N2 (33 nucleotide long) complementary to the coding 

nucleotide sequences spanning amino acid number 30-40 was designed and used 
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subsequently for screening. The selection of the amino acid number 30-40 was based 

upon the information that this region is unique for glycophorin A and is absent in the 

glycophorin B which is very similar to glycophorin A in many regions (Blanchard et 

al., 1987; Siebert and Fukuda, 1987). 

2.11.1. Purification of the oligonucleotides 

For purification of the oligonucleotide mixtures, GPA-C and GPA-N1, and the 

exact sequence oligonucleotide GPA-N2, the crude oligonucleotides were released 

from the solid support by treatment with concentrated NH40H solution. These crude 

oligonucleotides were then purified through a 20% polyacrylamide gel containing 7 

M urea as described below (section 2.11.1 and 2.11.1.2). 

2.11.1.1. Separation of oligonucleotides from solid support 

The fully protected oligonucleotides attached to the solid support were placed 

m 1.5 ml microfuge tubes and centrifuged for one min and the acetonitrile 

supernatant discarded, the remaining acetonitrile was evaporated by drying under 

vacuum. Enough concentrated NH40H solution (about 1.2 ml) was added making 

sure that the solid support with oligonucleotides attached to it was immersed 

completely in the solution. The top of the tube W(;lS closed and sealed tightly with 

parafilm and placed in a small vial (liquid scintillation counting vial) containing about 

5 ml NH40H solution. The top of the scintillation vial was closed and incubated at 

50°C in a water bath for about 18 h. The vial was removed from the water bath and 
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allowed to cool slowly to the room temperature. The pressure of the NH3 vapours 

developed during the incubation at 50°C was released very slowly by opening the top 

of the scintillation vial and the NH40H solution was removed from it and discarded. 

The oligonucleotides now dissolved in NH40H solution were distributed into 10 clean 

microfuge tubes. To each of these tubes 0.1 volume of 3M sodium acetate pH 7.5, 

was added and the oligonucleotides were precipitated by addition of five volumes of 

pre-chilled ethanol and storage at -20°C for about 18 h. The precipitated 

oligonucleotides were collected by centrifugation for 30 min in an Eppendorf 

centrifuge at 4°C. The oligonucleotide precipitates were then dried using a vacuum 

oven at room temperature, dissolved in sterile water and purified as described in the 

next section. 

2.11.1.2. Polyacrylamide gel electrophoresis of oligonucleotides 

Polyacrylamide gel (20%) containing 7 M urea was prepared as described in 

section 2.19.3.3. To prepare the samples for loading on the gel, 10 J..£1 crude 

oligonucleotide solution (from section 2.11.1.1) was mixed with 20 J.Ll gel loading dye 

containing formamide (0.1% bromophenol blue and xylene cyanol in 80% formamide) 

and heated at 90°C for 3 min followed by quick chilling on ice. An aliquot (10 J..Ll) of 

this denatured oligonucleotide solution was loaded per well and electrophoresis 

performed at a constant voltage (1600 volts) until the bromophenol dye travelled up 

to about the 2/3rd of the length of the gel. 
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Following the electrophoresis, the gel was transferred to a sheet of plastic film 

(Saran Wrap) which was placed on a thin layer chromatography plate containing 

silica. When the short wave length UV light is illuminated from above, the TLC plate 

fluoresces, the oligonucleotides which absorb the UV light appear as dark band 

against a fluorescent background. While still exposed to the UV light the gel was 

photographed using a Polaroid camera. The area of the gel containing the major 

band of oligonucleotide of appropriate size was sliced out using a sharp scalpel. The 

gel slice was then placed in a microfuge tube and covered with 0.5 M ammonium 

acetate solution (pH 7.5). Following the incubation at 37°C for about 18 h the tubes 

were vortexed for 1 min and centrifuged for 5 min in an Eppendorf centrifuge. The 

supernatant containing the oligonucleotide was withdrawn and transferred to a clean 

microfuge tube making sure not to carry over any particulate material. The volume 

of the oligonucleotide solution was then reduced to about 100 J.d by repeated 

extraction with n-butanol and centrifugation in an Eppendorf centrifuge to remove 

the upper organic layer between each extraction step. About 1 ml of absolute ethanol 

was added to the concentrated oligonucleotide solution and the precipitates were 

allowed to form by storage at -70°C for about 30 min. The precipitated 

oligonucleotides were then collected by centrifugation in an Eppendorf centrifuge for 

5 min at 4°C. The supernatant was discarded and the precipitated oligonucleotide 

pellets were dried under vacuum, dissolved in sterile water and stored at -20°C till 

use. 
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2.11.2. 5' End-labelling of oligonucleotides 

Oligonucleotides to be used as the probes for screening the eDNA library and 

Northern and Southern blots were labelled at their 5" ends using [ y-32P]ATP 

(Specific activity, >3,000-5,000 Ci/mmol) and T4 polynucleotide kinase (Sgaramella 

and Khorana, 1972) using the 5" DNA terminus labelling system kit as described 

below. 

About 2 J . .d of a solution containing 5-10 pmol oligonucleotide in water was 

added to a microfuge tube which was heated at 65°C for 3 min to denature the 

oligonucleotide and chilled on ice. The denatured oligonucleotide was mixed with 

about 50-100 J.LCi [y-32P]ATP in 5-10 J.Ll, 2.5 J.Ll of a 10 X forward reaction buffer 

supplied in kit and 1 J.Ll of T4 polynucleotide kinase (10 units) and spun for a few 

seconds in an Eppendorf centrifuge. Following the incubation for 30 min at 37°C the 

enzyme was inactivated by heating the tube for 3 min at 65°C. The unincorporated 

[ y-32P]ATP was separated as described next. 

2.11.3. Separation of the unincorporated [y-32P]ATP from the 5" end-labelled 

oligonucleotide 

The unincorporated [ y-32P]ATP was separated from the 5" end-labelled 

oligonucleotide by passage through a Sephadex G-50 column as described by Davis 

et al. (1986) as follows. About 10 ml Sephadex G-50 slurry previously autoclaved and 

equilibrated in TE (10 mM Tris-HCl, 1 mM EDTA pH 8.0) was poured in a sterile 
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disposable pipette (10 ml) containing a siliconized glass wool plug at the bottom. The 

column was washed with several volume of the TE and the sample was applied to the 

column in a total volume of about 100 J.d. The solution was allowed to pass through 

the column, the sample tube was rinsed with a few portions (100 J.d each) of TE 

which were added and allowed to pass through the column. These were then followed 

by addition of several 1 m1 samples of TE and collection of 10-15 fractions (1 m1 

each) of column eluate. About 2 J.Ll sample was withdrawn from each fraction into a 

separate scintillation vial containing 10 m1 Aquasol, and the amount of the 32P 

incorporated in the nucleic acids was determined by counting in a Beckman 

scintillation counter (model LS 8100 or LS 335). The 5 "end labelled oligonucleotides 

present in the first peak of the radioactivity were pooled together, and the specific 

activity (counts per min/J,.£g, cpm/J..£g) was calculated from the total cpm and the 

amount of oligonucleotide that was used for labelling (section 2.11.2). The 

unincorporated ATP in the second peak was discarded. 

2.11.4. Hybridization with oligonucleotides 

The hybridization as well as the washing temperatures for each of the 

oligonucleotide were determined experimentally using one of the following formulae 

as a guideline and the procedure of Wallace et al. (1979, 1981) with some 

modifications. 

1) Temperature of dissociation (Td) = 4 (G + C) + 2 (A + T) 
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Where: G, C, A and T are the total number of each of 

these nucleotides in the oligonucleotide (Bolton and McCarthy, 

1962). 

2) Temperature of Incubation (Ti) = Melting temperature (Tm) -15°C 

Tm = 16.6 log[M] + 0.41 [Pgc] + 81.5- Pm- B!L- 0.65[Pr] 

(Bonner et al., 1973) 

Where: 

M Molar concentration of to a maximum 

of 0.5 (1 X SSC contains 0.165 M Na+) 

Percent of G or C bases in the oligonucleotide 

probe (between 30 and 70) 

Percent of mismatched bases 

Percent of formamide in the buffer 

B 675 for synthetic oligonucleotide up to 100 

bases 

L Length of the oligonucleotide 

The oligonucleotides were allowed to hybridize initiaJJy with Southern and 

Northern blots and plaque replicas at a temperature which was about 15-25°C lower 

than their Tm or Td as described below. FoJJowing hybridization the blots were 

washed successively at higher temperatures raising the temperature 3-5°C after each 



132 

successive wash and exposing the blots to X ray film for about 14-18 h. The washing 

temperature which gave a high signal to background ratio as determined by 

autoradiography was then used in subsequent experiments. The following solutions 

were prepared in advance. 

Saline-sodium citrate (SSC) 20 X 

NaCl 

Trisodium citrate, disodium salt 

3M 

0.3 M 

The solution was adjusted to pH 7.0 with concentrated HCl then autoclaved and 

stored at room temperature. 

Saline-sodium phosphate-EDTA (SSPE) 20 X 

This was an alternate solution used instead of SSC for Northern blotting and 

consisted of the following reagents dissolved in water; 

3M 

0.2 M 

EDT A, disodium salt 0.02 M 

The pH was adjusted to 7.0 by the addition of NaOH (10 M), the solution was then 

autoclaved and stored at room temperature. 

Yeast tRNA 

About 100 mg tRNA was dissolved in 1 ml water and stored at -20°C. Just 
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before use, the solution was thawed at room temperature and denatured by boiling 

for 5 min in a water bath followed by quick chilling on ice. 

Denhardt's solution (50 X) 

BSA 

Ficoll 

Polyvinylpyrrolidone 

1% (w/v) 

1% (w/v) 

1% (w/v) 

The solution was sterilized by filtration and stored at -20°C. 

For hybridization of the oligonucleotides the Northern and Southern blots or 

plaque replicas were sealed in a plastic bag and prehybridized for about 2-6 h at a 

temperature which was about 15-25°C lower than the calculated Tm or Td (see 

above) in a prehybridization solution which consisted of the following reagents at the 

stated final concentrations; 

SSC or SSPE 

Denhardt's solution 

SDS 

Denatured salmon sperm DNA 

Denatured yeast tRNA 

Total volume 

( 6 X or 5X respectively) 

(5-10 X) 

(0.1-0.5%, w/v) 

(50-100 J..£g/ml, and (or) 

(100 J.Lg/ml) 

25-50 ml 
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Following prehybridization the fluid was drained from the bag and about 5-25 

ml of hybridization solution was added to the bag. The hybridization solution was 

identical in composition to the prehybridization solution except that it contained 

about 5-10 pmol of oligonucleotides labelled at their 5 ~end with 32P (specific activity, 

about 109 cpm/J,.£g). The hybridization was allowed to take place for about 18 h which 

was then followed by washing as described below. 

2.11.5. Washing Northern and Southern blots or plaque replicas hybridized with 32P

labelled oligonucleotides 

The hybridization solution was collected in a tube, by cutting a corner of the 

bag. If desired this solution was reused after denaturation by heating at 65°C for 10 

minutes, up to about two weeks after labelling. The filters now with the hybridized 

oligonucleotides were immersed in 2-6 X SSC (section 2.11.4) with or without 0.05-

0.1% (w/v) SDS and maintained at a temperature which was based upon the 

calculated Tm or Td of oligonucleotide (section 2.11.4). The membranes were 

generally washed for 5 min, wrapped between two layers of Saran Wrap while still 

quite damp and exposed to the X ray film (Kodak X-Omat AR or RP) with two 

intensifying screens at -70°C for about 18 h. To determine the temperature that gave 

the highest signal with a minimal background, the blots were washed successively at 

increasing temperatures (raising the temperature by about 3-5°C after each successive 

wash) and then re-exposed to the X ray film as above. 
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2.12. Double-stranded DNA as a probe 

The DNA to be used as a probe was either in the form of a plasmid or a 

eDNA fragment purified from the )... vector by one of the methods described 

previously (section 2.10). 

2.12.1. DNA labelling 

The DNA fragments or plasmid DNA were labelled with (a-32P]dCTP using 

the technique of nick translation (Kelly et al., 1970) or by random primer labelling 

techniques (Fienberg and Vogelstein, 1983, 1984) as described in the following 

sections. 

2.12.1.1. Nick translation 

DNA was labelled by DNA polymerase I and (a-32P]dCTP (>3,000 Ci/mmol) 

using the Nick translation kit containing all solutions (except the [ a-32P]dCTP) and 

following the instruction of the supplier of the kit. The reaction was performed at 

15°C for 2 h using the following conditions. 

DNA 0.5 J-Lg 

[ a-32P]dCTP 100 J-LCi 

Nucleotide buffer 30 J-LM 

DNA polymerase I 2.5 units 

DNase I 50 pg 

Tris-HCl pH 7.5 10 mM 
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Final volume 
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10mM 

25 ,ul 

The reaction was terminated by the addition of 0.5 M EDT A to a final concentration 

of 0.2 M. The unincorporated [ a-32P]dCTP was then separated by a Spun-column 

procedure (section 2.12.2) or by gel filtration on Sephadex G-50 columns (section 

2.11.3). 

2.12.1.2. Random primer labelling 

Double-stranded DNA was labelled by a random primer method using the 

Multiprime DNA labelling system kit obtained from Amersham. The reaction was 

performed following the manufacturer's instruction and using the reagents provided 

in the kit. The reaction tube contained the following reagents; 

DNA 

Multiprime Buffer solution containing 

dATP, dGTP and dTIP 

Primer solution containing random 

hexanucleotides in aqueous solution 

with BSA 

[a-32P]dCTP (>3,000 Ci/mmol) 

DNA polymerase I (Klenow fragment) 

Water to a final volume 

25 ng 

10 ,ul 

5 ,ul 

5 ,ul 

2 units 

50 ,ul 
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The reaction was performed for 5 h at room temperature or overnight at 15°C. 

The radioactivity incorporated into the DNA was determined by subtracting the 

trichloroacetic acid (TCA) precipitable cpm measured by scintillation counting 

(section 2.12.3) from the total cpm. The labelled DNA was used without further 

purification since in this protocol more than 70-90% 32P gets incorporated into the 

DNA and the remaining unincorporated 32P does not cause a high background. 

2.12.2. Spun-column procedure 

Sephadex G-50 slurry equilibrated in STE (10 mM Tris-HCl pH 8.0, 1 mM 

EDTA and 100 mM NaCl) was added to a 1 ml syringe that was plugged with glass 

wool. This mini column was then placed in a 15 ml glass centrifuge tube (Corex) 

containing a capless 1.5 ml microfuge tube so that the column eluate could be 

collected in the microfuge tube. This was centrifuged at 3,000 rpm in a Beckman 

centrifuge, using the JS-13 rotor at 4°C for 5 min. More Sephadex was added as 

required and the centrifugation was repeated until the packed column volume was 

about 0.9 ml. This was followed by the addition of 0.1 ml STE to the column and 

centrifugation as before. The addition of STE and centrifugation was repeated once 

more. The nick translation reaction mixture (total volume about 0.1 ml) was applied 

to the packed column which was centrifuged exactly as before collecting the column 

effluent now containing the 32P-labelled DNA in a clean microfuge tube. An aliquot 

of the purified DNA was then used to estimate the specific activity (cpm/J.Lg) by 

scintillation counting as described in the next section. 
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2.12.3. TCA precipitation of nucleic acids for determination of incorporated cpm 

The sample of nucleic acid whose cpm was to be determined was diluted in 

TE (10 roM Tris-HCl, 1 mM EDTA pH 8.0) and 1-2 J..£1 of diluted sample was spotted 

in duplicate on 2.4 em Whatman 540 filter discs. After air drying for a few minutes, 

the filter discs together with two blanks for background counting were immersed in 

a beaker containing about 10-20 milO% TCA (w/v) per disc and allowed to wash for 

15 min with intermittent shaking. The washing was repeated twice in fresh TCA 

solution (15 min each time) and the filters were dropped subsequently in 95% 

ethanol and acetone followed by air drying and counting with 10 ml Aquasol. The 

cpm and the amount of the DNA used for labelling were then used to calculate 

specific activity ( cpm/ J.Lg) of labelled probe. 

2.12.4. Hybridization of 32P-Iabelled double-stranded DNA probe 

Northern or Southern blots were placed in a plastic bag which was then sealed 

on all sides. One of the corners of the bag was then excised and prehybridization 

solution of the following composition added. 

sse 

Denhardt's solution 

SDS 

Denatured salmon sperm DNA 

Deionized Formamide 

Total volume 

6X 

5-10 X 

0.1-0.5% (w/v) 

50-100 J.Lg/ml 

50% (v/v) 

25-50 ml/bag 
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Northern and Southern blots were soaked in prehybridization buffer for 2-6 

h in a sealed bag on a rotator placed in a oven maintained at 42°C. Following the 

prehybridization, the solution was drained out of the bag by cutting a corner of the 

plastic bag and replaced with a hybridization solution, identical in composition to the 

prehybridization solution except that it contained about 106-107 cpm of the 32P 

labelled probe denatured by heating at 90°C for 3-5 min immediately before adding 

to prehybridization solution. The bag was resealed and hybridization was allowed to 

take place at 42°C for about 18 h. Following the hybridization, the fluid was collected 

in a tube by cutting the edge of the bag and stored at -20°C for reuse if desired. The 

membranes were washed and autoradiographed as described in the next section. 

2.12.5. Washing of the blots hybridized with 32P-labelled double-stranded DNA probes 

Following hybridization the blots were washed in an SSC solution (0.1-6 X 

SSC) with or without SDS (0.05-0.1 %, w/v) at various temperatures and exposed to 

X ray film (Kodak X-Omat AR or RP) in a cassette with two intensifying screens at 

-70°C for about 18 h. 

2.13. eDNA cloning 

K562 is a human erythroleukaemic celJ line isolated from a patient with the 

diagnosis of chronic myeloid leukaemia (Lozzio and Lozzio, 1975). These cells 

express glycophorins on their surface (Gahmberg et al., 1979). A eDNA library 

constructed from K562 cell poly(A)+ RNA and cloned into the EcoRI site of the 
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Agt10 vector using standard methods (Huynh et al., 1988) was purchased from 

Clontech Laboratories (USA). In this protocol, total poly(A)+ RNA is reverse 

transcribed into single-stranded eDNA using oligo( dT) primers. This is followed by 

partial digestion of template RNA with RNAse H to generate RNA primers, that are 

utilized for DNA polymerase I catalyzed second strand synthesis using the first strand 

of eDNA as template. The double-stranded eDNA is then treated with EcoRI 

methylase to protect internal EcoRI sites if present in cDNAs from subsequent action 

of EcoRI in the next step. EcoRI linkers are ligated at both ends of the double

stranded eDNA, the excess EcoRI linkers possibly ligated in tandem to ends of the 

cDNAs are removed by digestion with EcoRI and the double-stranded eDNA 

fragments containing EcoRI linkers at their ends are ligated into AgtlO arms. These 

arms are generated by the treatment of the Agt10 DNA with EcoRI, which utilizes 

the unique EcoRI site present in the nucleotide sequence of A coding for the A 

repressor (Huynh et al., 1988). The insertion of foreign DNA into this region inhibits 

the A repressor production and hence the recombinant phage can not lysogenize in 

the subsequent steps when the ligated eDNA-vector are packaged using the A 

packaging extract and amplified by growth in E.coli C600 Hfl (Hfl, high frequency 

lysogenization). Therefore, in this strain of E.coli only the recombinant phage can 

produce cell lysis and form plaques (Huynh el al., 1988). 

2.13.1. Estimation of phage titre 

The titre of the phage in the eDNA library or in clear lysate was measured as 
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described here. A few 10 fold serial dilutions of the phage suspension were made by 

diluting 1-10 J,tl in SM medium (section 2.4.9). An aliquot (100-300 J.tl) of an 

overnight culture of bacterial host strain C600 Hfl (an E. coli derivative supplied with 

the K562 cell eDNA library) was mixed with top agarose (section 2.4.3, 2.5 ml for 100 

x 15 mm plate or 7.5 ml for 150 x 15 mm plates) containing 0.2% maltose, poured 

on top of the preset plates containing LB-agar with 0.2% maltose (section 2.4.2) and 

allowed to set for a few minutes. An aliquot (5-10 J,tl) of each of the phage dilution 

was then spotted on the top agarose, spread to a small area and allowed to adsorb 

completely by keeping the culture plate at room temperature (with the top cover 

slightly open) for about 20 min. The plates were then incubated at 37°C to allow for 

the phage growth and appearance of the plaques ( 4-8 h). The number of the plaques 

was counted and used to calculate the plaque forming units/ml (PFU/ml) in the 

original phage suspension. 

2.13.2. Preparation of AgtlO plaques replicas on nylon membrane 

2.13.2.1. Plaque formation 

The plaques of eDNA library were formed on LB-agar plates containing 

maltose (0.2% ), by growing a sample of the eDNA library (phage suspension) in 

E.coli C600 Hfl by the method of Benton and Davis (1977) following the instructions 

provided by the supplier of the eDNA library as described here. 

A sample of the phage suspension containing about 25,000 PFU was mixed 
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with 300 J,£1 of an overnight bacterial culture of C600 Hfl that was grown in LB 

medium containing 0.2% (w/v) maltose (section 2.4.1). The mixture was incubated at 

37°C for 10-20 min to allow for the adsorption of the phage to the cells. About 7.5 

mi top agarose was liquefied by heating in a boiling water bath or in a microwave 

oven and cooled to a temperature of about 45°C. It was then mixed with the phage

cell mixture and poured on the top of the large LB-maltose plates (150 x 15 mm, at 

least two day old, prewarmed by incubation at 37°C). The top agarose was allowed 

to set by keeping the plates at room temperature for about 10 min. This was followed 

by incubation of the plates at 37°C for 4-8 h till the plaques appeared, making sure 

that they did not grow more than about 1.5 mm in size. After the plaque formation, 

the plates were sealed with parafilm and stored at 4°C for a few hours to harden the 

top agarose before making membrane replicas as described in the next section. 

2.13.2.2. Plaque transfer and DNA blotting 

The DNA from the plaques (2.13.2.1) was fixed following the instruction 

provided by Amersham manual, Membrane transfer and detection methods. A dry 

nylon membrane (Hybond-N, 132 mm diameter) was placed gently on the culture 

plate containing plaques using sterile flat tipped forceps avoiding any trapped air 

bubbles between the plate and the membrane. The membrane as well as the agarose 

underneath were marked at three or more asymmetric places for later alignment by 

puncturing holes with a 18-gauge needle attached to a syringe containing water proof 

ink. The membrane was peeled off carefully after a total of 2 min incubation to allow 
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for phage particles to adsorb on the membrane which was immersed immediately in 

the denaturing solution containing 0.5 M NaOH and 1.5 M Nael. Following the 

denaturation for 1 min, the membrane was placed sequentially in the neutralization 

solution (0.5 M Tris-He1 pH 8.0, 1.5 M Nae1) and SSe (3 X) for eight and five 

minutes, respectively, after which the membrane was placed on Whatman 3 MM 

paper and allowed to air dry for a few minutes. A second replica was made in the 

same way from each master plate except that 3 min was allowed for adsorption of the 

plaques. When all replicas were made, the dried membranes were placed between 

layers of Whatman 3 MM paper, baked in a vacuum oven at 80°e for 2 h, then 

stored in sealed plastic bags. The master plates were sealed with parafilm and stored 

at 4°e. 

2.13.2. Screening the eDNA library 

The plaque replicas made in duplicate from a K562 A.gtlO eDNA library were 

screened for the clone(s) encoding glycophorin A by hybridization with 5/ end

labelled oligonucleotide GPA-N2 as described in section 2.11.4. Prehybridization was 

performed for 2-6 h at 50°e in a solution containing the following reagents (prepared 

as described in section 2.11.4 ). 

sse 

Denhardt's solution 

SDS 

6X 

10 X 

0.5% (w/v) 
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Final volume 
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100 J.Lg/ml 

25 ml/bag 

Hybridization was performed in about 10 ml prehybridization solution 

containing 5" 32P-labelled GPA-N2 (about 108 cpm, specific activity, 109 cpm/J.Lg), at 

the appropriate temperature (section 2.11.4) for about 18 h. The duplicate 

membranes were next washed in 6 X SSC at 55°C for 5 min. While the washed 

membranes were still quite damp, radioactive ink (prepared by diluting an aliquot of 

32P in water proof ink) was spotted on the needle marks made previously during 

plaque transfer procedure. The membranes were then wrapped between two layers 

of Saran Wrap and exposed to Kodak X-Omat RP film for about 18 h with two 

intensifying screens at -70°C. Plaques showing hybridization and retaining the signal 

on both replicas were identified on their corresponding master culture plates and 

lifted as described in the following section. 

2.13.4. Plaque purification 

Membranes showing a positive hybridization signal were superimposed on their 

corresponding master plates, making use of the orientation marks on the plates, 

membranes and the films. The plaques or area showing positive hybridization signals 

were removed using the wide end of a sterile pasteur pipette. The agar-agarose plug 

containing the putative positive clone was then placed in a tube containing about 5 

ml SM medium with a drop of chloroform and stored at 4°C for 6 h to overnight to 
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allow for the phage particles to elute into the medium. Following the incubation at 

4°C, the tube was vortexed for a few seconds, centrifuged in an Eppendorf centrifuge 

to separate the agarose and cellular debris from the phage suspension and the clear 

supernatant containing the phage particles released from the plaques transferred to 

a clean tube. The titre of the phage suspension was determined as described in 

section 2.13.1, an appropriate dilution was replated as described in 2.13.2, plaque 

replicas were made and rescreened (secondary screening). Each sample was re-plated 

and screened with GPA-N2 several times until a membrane showing 100% positive 

plaques was obtained. 

Once the Agt10 plaques containing eDNA encoding glycophorin A were 

biologically pure, they were grown on a large scale, and their DNA extracted and 

purified (sections 2.14). The DNA was then subjected to restriction digestion with the 

enzyme EcoRI as described in section 2.8, analyzed on an agarose gel (section 2.9) 

and blotted on the nylon membrane by the procedure of Southern (1975) as 

described in section 2.17. and probed with oligonucleotides and (or) eDNA fragment 

(sections 2.11.4 and 2.12.4). 

2.14. Isolation of A DNA 

DNA from various AgtlO eDNA clones was isolated by a large-scale method 

of bacteriophage A preparation (Maniatis et al., 1982) which involved three major 

steps described next. 
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2.14.1. Preparation of phage lysates 

A single isolated colony of E.coli C600 Htl was introduced into 50 ml LB 

medium with 0.2% (w/v) maltose (section 2.4.1) and incubated overnight at 37°C on 

a rotator. Next day the OD600 of the culture was measured in a cuvette of 1 em path 

length and an appropriate sample inoculated into a 2 L flask containing about 200 

ml LB medium such that the final OD600 was 0.1 (or 8 x 107 cell/ml, assuming 1 

OD600 = 8 x 108 cells/ml, Maniatis et al., 1982). The culture was allowed to grow as 

before for about 2 h or till the OD600 of the culture reached about 0.4 (about 4 x 1010 

cell/ 200 ml culture). This logarithmic phase culture was then split into four parts and 

each was mixed with a volume of A.gt10 lysate to give about 5 x 105 PFU per 1010 

cells and incubated at 37°C for 20 min, mixing intermittently to allow for the phage 

adsorption to take place. Each phage-cell mix was added to a 2 L flask containing 

500 ml LB medium with 0.2% (w/v) maltose and incubated at 37°C with vigorous 

shaking for a few hours until complete lysis was apparent. About 10 ml chloroform 

was added and the lysate was agitated for a further 30 min at 37°C. 

2.14.2. Purification of A. phage 

The lysate was cooled on ice to room temperature and pancreatic DNase and 

RNase A were added to give final concentration of 1 J..Lg/ml each and the flask kept 

at room temperature for 30 min. Solid NaCl was dissolved in the lysate to a final 

concentration of 1 M and allowed to stand on ice for 1 h. The cellular debris was 

removed by centrifugation at 10,000 rpm in a Beckman centrifuge using JA-14 rotor 

' . ,II 

• 
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for 10 min at 4°C. The cleared lysate was transferred to 500 ml Erlenmeyer flasks 

and the phage particles precipitated by dissolving solid polyethylene glycol (PEG 

6,000) to a final concentration of 10% (w/v) and storage on ice for about 18 h. The 

precipitated phage particles were collected by centrifugation at 10,000 rpm in a 

Beckman centrifuge using JA-14 rotor for 10 min at 4°C. The supernatant was 

discarded and the centrifuge bottles containing the precipitated phage particles were 

allowed to drain completely by inverting them on paper towels. The pellets were then 

resuspended in SM medium (about 32 ml/2 L lysate) by shaking on a rotator for 12-

24 h. The resuspended phage particles were then vortexed with an equal volume of 

chloroform for 30 sec and centrifuged at 3,000 rpm in a low speed centrifuge (IEC 

model PR6) for 15 min at 4°C. The upper aqueous layer containing the phage was 

removed and 0.5 g soHd CsCl was added for each millilitre of phage suspension. This 

solution was then layered on a step gradient prepared in a Beckman SW 41 tube by 

layering 2.5 ml CsCl solutions prepared in SM medium with the final densities of p 

1.45, p 1.5 and p 1.7. Following centrifugation in a Beckman ultracentrifuge (model 

L5-65) at 22,000 rpm for 2 h at 4°C, the band containing the bacteriophage particles 

visible at the interface of 1.45 and 1.5 layers was collected by puncturing the side of 

the centrifuge tube with a 21-gauge needle connected to a 2 ml syringe. Enough CsCl 

solution (1.5 g/ml) was added to the phage suspension to fill a SW 50.1 rotor tube 

which was then centrifuged at 35,000 rpm for 24 h at 4°C. The band containing the 

phage particles was collected with the help of a needle and syringe and the DNA 

isolated as described below. 
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2.14.3. Extraction of).. DNA 

The CsCl was removed from the purified bacteriophage solution by dialysing 

for about 1-2 h against a 1000 fold volume of dialysis buffer (50 mM Tris-HCl pH 

8.0, 10 mM NaCl and 10 mM MgC12). Dialysis was repeated once more with fresh 

buffer and the phage solution was transferred to 1.5 ml tubes (0.5 ml/tube ). This was 

followed by addition of EDT A, proteinase K solutions and SDS to give final 

concentrations of 20 mM, 50 J..Lg/ml, and 0.5%, respectively, and the tubes were 

incubated at 65°C for 1 h for protease digestion. The digest was extracted once with 

phenol equilibrated in TE (10 mM Tris-HCl, 1 mM EDT A pH 8.0) then with phenol

chloroform (1:1). Finally, the aqueous layer was extracted with chloroform only. The 

phage DNA was precipitated on ice by addition of 0.1 volume of 3 M sodium acetate 

and 2.0 volumes of ethanol. The precipitated DNA was collected either by 

centrifugation in an Eppendorf centrifuge or by spooling out the large DNA fibres 

on the closed end of a sterile pasteur pipette. The DNA was then washed in 70% 

ethanol dried under vacuum, dissolved in water and the concentration determined by 

measuring OD260 as described in section 2.7. The DNA solution was stored at 4°C. 

2.15. Sub-cloning 

2.15.1. Competent cell preparation 

Competent cells were prepared by a modification of the Hannahan procedure 

(1988) and the following reagents were prepared as described next. 
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RbCl 

MnC12.4H20 

Potassium acetate 

CaC12.2H20 

Glycerol 
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100mM 

50mM 

30mM 

10mM 

15% (w/v) 

The resulting solution was adjusted to pH 5.8 with 0.2 M acetic acid and s·terilized by 

filtration through a 0.22 J..l.m membrane and stored frozen at -20°C till just before use. 

RF2 

Morpholinopropanesulfonic acid pH 7.5 30 mM 

RbCI 10 mM 

CaC12.2H20 75 mM 

Glycerol 15% (w/v) 

Adjusted to pH 6.8 with 10M NaOH and sterilized by filtration through a 0.22 J.£ID 

membrane and stored frozen at -20°C till just before use. 

S.O.C medium 

Bacto-tryptone 

Bacto-yeast extract 

NaCI 

KCl 

2% (w/v) 

0.5% (w/v) 

10mM 

2.5 mM 
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MgC12-MgS04 20 mM (10 mM of each salt) 

glucose 20 mM 

All reagents except glucose and MgC12-MgS04 were dissolved in the appropriate 

amount of water and the solution was adjusted to pH 7.4 by addition of 10M NaOH 

and autoclaved. If necessary 1.5% agar was added before autoclaving. Just before use 

glucose and MgC12-MgS04 solutions sterilized by filtration were added from 20%, 

w/v and 1M stock solution, respectively. 

A freshly isolated single colony obtained by streaking a stock culture either of 

DH5a or XLl-Blue cell directly on S.O.C medium plates was inoculated into 10 ml 

S.O.C medium and incubated at 37°C. The bacteria were allowed to grow overnight 

at 37°C with shaking after which 5 ml culture was added to a 2 L flask containing 100 

ml S.O.C medium and allowed to grow at 37°C with shaking until the OD600 of the 

culture reached about 0.5. The culture medium was then chilled on ice and 

centrifuged at 5,000 rpm at 4°C for 15 min in a Beckman JA-14 rotor. The cell pellet 

was resuspended in 40 ml pre-chilled RFl and kept on ice for 15 min. The cell 

suspension was again centrifuged and the pellet obtained resuspended in 8 ml RF2. 

The resulting cell suspension was then added in 100-200 J . .d/1.5 ml microfuge tube for 

storage at -70°C. Just before use for transformation these cells were taken out of the 

freezer and placed on ice till just thawed. An aliquot (about 100 J.Ll) was then added 

directly into the tubes containing the DNA sample. 
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2.15.2. Preparation of plasmid vectors for cloning 

Purified plasmid DNA (section 2.16.1) was digested with an appropriate 

restriction endonuclease as described in section 2.8 except that 5 J.Lg DNA was used 

for digestion. The completion of digestion was examined by analyzing the digest by 

agarose gel electrophoresis (section 2.9). The digested DNA was phenol extracted to 

destroy the restriction endonuclease and ethanol precipitated (section 2.5 and 2.6) 

before dissolving in water. The DNA was then treated to remove the 5' terminal 

phosphate groups from the digested vector DNA with 11 units of calf intestinal 

alkaline phosphatase for 30 min at 37°C in 50 mM Tris-HCl buffer pH 9.0 containing 

1 mM MgC12 and spermidine and 0.1 mM ZnC12. The reaction mixture was heated 

at 65°C for 15 min to inactivate the phosphatase and phenol extracted (section 2.5) 

before ethanol precipitation (section 2.6). The precipitates were dissolved in water 

(50 ng/J.Ll) and stored at -20°C till use. 

2.15.3. Ligation 

Ligation buffer ( 5 X) 

Tris-HCl pH 7.4 

MgC12 

DDT 

Spermidine 

ATP 

BSA 

0.5 M 

0.1 M 

0.1 M 

10mM 

10mM 

1 mg/ml 
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The following reagents were mixed in a 0.8 ml microfuge tube 

DNA restriction fragment 

Plasmid DNA (Bluescript 

or pUC 19) 

ligation buffer 

T4 DNA ligase 

Final volume 

3 J.Ll (about 0.5 J.Lg) 

1 J.Ll (about 50 ng) 

4 j..Ll 

0.5 J.Ll ( 4 units/ J.Ll) 

10-20 j..Ll 

The tubes were incubated at 15°C for about 18 h or at room temperature for 4 h. 

and the ligated DNA was diluted 1-5 fold with TE (10 mM Tris-HCl, 1 mM EDTA 

pH 8.0) depending upon the initial concentration of DNA in the ligation reaction and 

used either immediately for transformation or stored at -20°C. 

2.15.4. Transformation 

Transformation of competent bacterial cells was performed using the following 

protocol modified from that of Hannahan (1988). The DNA in 5-10 J.Ll water or TE 

(10 mM Tris-HCI, 1 mM EDTA pH 8.0) were gently swirled for 5 sec with about 100 

J.Ll competent cells in RF2 (section 2.15.1) in a Falcon tube (2059). A control plasmid 

DNA (pUC 19 or Bluescript) was also included to monitor the efficiency of 

transformation. The mixture was kept on ice for a further 30 min then given a heat 

shock for exactly 45 sec by transferring the tubes into a 42°C water bath. The tubes 

were immediately placed on ice for 5 min, 0.9 ml S.O.C medium that was kept at 
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room temperature added and the tubes incubated at 37°C with gentle shaking for a 

further 1 h. The transformation mixture was plated on S.O.C agar plates (section 

2.15.1) with appropriate antibiotic(s) either directly by spreading on the surface or 

by mixing with 2.5 or 7.5 ml top agarose containing Bluo-gal (50 JJ.g/2.5 ml or 150 JJ.g/ 

7.5 ml top agarose/agar) and IPTG (10 mM) (section 2.4.4). The plates were 

incubated at 37°C for about 18 h to allow for the growth of the transformants. The 

number of transformants was determined by counting the colonies which were then 

screened for the presence of fragments of interest as described in the following 

section. 

2.15.5. Screening the transformants 

A few white colonies were transferred using a sterile tooth pick to the surface 

of a plate containing Bluo-gal and IPTG with appropriate antibiotic. A few of the 

white colonies which grew after about 18 h at 37°C were then transferred to about 

5 ml LB medium with 0.2% (w/v) glucose containing appropriate antibiotic (section 

2.4.1) and incubated at 37°C for overnight on a shaker. The plasmid DNA was 

isolated by a quick plasmid preparation method (section 2.16.2) and subjected to 

restriction followed by gel analysis (sections 2.8 and 2.9) to identify clones containing 

fragments of the desired size. Whenever identification of the appropriate clone by 

simple restriction analysis was difficult, the digested DNA was blotted on nylon 

membrane and the clones of interest then identified by hybridization with 32P-labelled 

oligonucleotides (section 2.11.4) or 32P-labelled eDNA (section 2.12.4). Following the 
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identification of a particular clone, a stock culture was made by growth in LB 

medium and stored at -70°C until required at which time a sample was grown as 

described in section 2.4. 

2.16. Isolation of plasmid DNA 

Plasmid DNA was isolated by an alkaline lysis method (section 2.16.1) 

(Birnboim and Daly, 1979) using the protocol given in Molecular Cloning (Maniatis 

et al., 1982). For quick screening of transformants, following the subcloning or 

exonuclease III deletion, a mini plasmid DNA preparation (Budowle, 1985) (section 

2.16.2) was also used. 

2.16.1. Large scale isolation of plasmid DNA 

The following reagent were prepared freshly from stock solutions: 

Solution I 

Glucose 

Tris-HCI pH 8.0 

EDTA pH 8.0 

Lysozyme 

Solution II 

NaOH 

SDS 

50mM 

25 mM 

10mM 

5 mg/rnl 

0.2M 

1% (w/v) 
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Potassium acetate solution pH 4.8 

To 60 mJ of 5 M potassium acetate stock solution 11.5 ml glacial acetic acid 

was added and the volume was made up to 100 ml. The resulting solution was 3M 

with respect to potassium and 5 M with respect to acetate (Maniatis et al., 1982). 

About 10 mJ LB medium (section 2.4.1) with appropriate antibiotic(s) was 

inoculated with a single isolated bacterial colony that was grown on a selective 

medium and the tube was incubated at 37°C with shaking for about 18 h. About 0.5 

ml of the overnight culture was added to a 2 L flask containing 500 ml LB medium 

and incubated at 37°C with vigorous shaking until the OD600 of the culture reached 

to about 0.6. The culture medium was centrifuged at 4,000 rpm for 10 min at 4°C 

using a Beckman JA-14 rotor to collect the bacterial pellet which was then 

resuspended in about 50 ml STE (10 mM Tris-HCl pH 8.0, 1 mM EDTA and 100 

mM NaCl) and transferred to a polypropylene tube and centrifuged at about 3,000 

rpm in a bench top centrifuge for 5 min. The pellet was resuspended in 7.5 ml 

solution I by mixing gently and then transferred to a SW 28.1 tube (pollyallomer) and 

left at room temperature for 5 min. To this solution 15 ml solution II was added, the 

tube was covered with parafilm, mixed by inversion and left on ice for 10 min. About 

11 ml of potassium acetate solution was added to the tube, covered with parafilm, 

mixed by inverting the tube sharply several times and then left on ice for 10 min. The 

precipitated high molecular weight DNA was then separated from the plasmid 

solution by centrifugation at 22,000 rpm at 4°C for 20 min using Beckman SW 28.1 
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rotor. The supernatant was collected in two Co rex tubes (about 17 ml/tube ), 10.2 ml 

isopropanol was added per tube, mixed well and incubated at room temperature for 

15 min. The precipitated plasmid DNA was collected by centrifugation in a Beckman 

JA 14 rotor at 10,000 rpm, for 30 min at room temperature, resuspended in 70% 

ethanol and recentrifuged at 10,000 rpm for 10 min. The washed pellet was dried 

under vacuum for about 30 min then dissolved in 9 ml TE (10 mM Tris-HCl, 1 mM 

EDT A pH 8.0) and purified further to isolate closed circular plasmid DNA. 

One gram of solid CsCl was added for every millilitre of DNA solution and 

mixed gently to completely dissolve the CsCl. To this solution, 0.8 ml ethidium 

bromide (10 mglml) for every 10 ml of the solution was added and mixed thoroughly. 

The density of the resulting solution (determined by weighing a sample) was adjusted 

to 1.55 glml by dissolving more CsCI if necessary. This solution together with the 

furry, purple aggregates due to the complexes formed between ethidium bromide and 

bacterial proteins was transferred to Beckman 75 Ti rotor cellulose nitrate tubes. The 

tubes were topped up with light parafilm oil and centrifuged at 45,000 rpm for 36 h 

at 20°C. After the centrifugation, two bands were visible, the upper band consisting 

of linear chromosomal DNA and nicked circular plasmid DNA, and the lower band 

containing closed circular plasmid DNA. The lower band was collected by puncturing 

the side of the centrifuge tube with a 21-gauge needle attached to a 2 ml syringe. The 

ethidium bromide was removed by vigorous shaking of equal volumes of the plasmid 

solution and n-butanol followed by brief centrifugation in a bench top centrifuge at 
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about 2,000 rpm for 3 min. The upper n-butanol layer was discarded and the lower 

aqueous layer transferred to a clean tube and the extraction was repeated until the 

colour due to ethidium bromide disappeared completely. The resulting aqueous 

solution was dialysed against several changes of TE (10 mM Tris-HCI, 1 mM EDTA 

pH 8.0) and the DNA collected by ethanol precipitation (section 2.6). 

2.16.2. Mini preparation of plasmid DNA 

The plasmid DNA was also isolated by the rapid procedure of Budowle (1985) 

which is based upon the alkaline lysis method of Birnboim and Daly (1979) described 

in section 2.16.1. An isolated colony with the appropriate plasmid was added into 5 

ml of LB medium with relevant antibiotic and incubated at 37°C with vigorous 

shaking for about 18 h. About 1.5 ml overnight culture was centrifuged for 30 sec in 

a microfuge tube and the pellet obtained resuspended in 0.1 ml solution I (section 

2.16.1) by vortexing for a few seconds. After keeping on ice for 30 min 0.2 ml 

alkaline-SDS solution (solution II, section 2.16.1) was added and the contents of the 

tube mixed thoroughly by vortexing the tube which was then left on ice for 5 min and 

0.15 ml 3 M sodium acetate solution pH 4.8 was added. The contents of the tube 

were mixed as before and the tube was incubated on ice for 30 min with occasional 

shaking to allow for precipitation to occur. The solution was centrifuged in an 

Eppendorf centrifuge for 15 min at 4°C and the supernatant was collected in a clean 

microfuge tube. Two volumes of absolute ethanol was added, the contents of the tube 

mixed well by inverting several times and precipitation of plasmid DNA was allowed 
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to occur by incubation of the tube at -70°C for 10 min. The precipitated plasmid 

DNA was collected by centrifugation in an Eppendorf centrifuge for 15 min at 4°C. 

The pellet contairung the plasmjd DNA was washed twice in 70% ethanol, dried 

under vacuum, dissolved in 20-30 J.Ll of water or TE (10 mM Tris-HCl, 1 mM EDTA 

pH 8.0) and stored at 4°C. 

2.17. Southern blotting 

2.17.1. DNA blotting 

The DNAs with or without restriction endonuclease digestion were 

fractionated on 0.6-1.5% (w/v) agarose gels (section 2.9) and transferred to nylon 

membranes by the techniques of Southern (1975) and Amersham manual, Membrane 

transfer and detection methods with some modifications. Following electrophoresis and 

photography of the gel it was transferred to a glass dish and the DNA was denatured 

by shaking the gel in the denaturation solution (0.5 M NaOH, 1.5 M NaCI) for 15 

min. Denaturation was repeated once more with a fresh solution and the gel 

neutralized by immersing in neutralizing solution (1.5 M Tris-HCl pH 8.0, 1.5 M 

NaCl) and shaking for 15 mjn. Neutralization was repeated once more follpwed by 

a brief rinsing in 20 X SSC. 

The transfer of the DNA was allowed to take place for about 18 h. After the 

transfer, the position of the wells was marked on the nylon membrane, the gel was 

restained briefly in 1 J.Lg/ml ethidium bromide to check for completion of the transfer. 
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The membrane, now with the transferred DNA was baked in a vacuum oven at 80°C 

for 2 h then stored in a sealed plastic bag till required for hybridization as described 

in the sections 2.11.4 or 2.12.4. 

2.17.2. Probe stripping and reuse of the DNA blots 

If the Southern blots were to be reused, the first probe was removed by 

immersing the membranes in 0.4 M NaOH that was maintained at 45°C. The 

incubation at 45°C was continued with agitation for 30-45 min. This was then followed 

by neutralization in a solution containing 0.2 M Tris-HCl pH 8.0, 0.1 X SSC and 0.1% 

SDS (w/v) at 45°C for 30-45 min. The excess solution was removed from the 

membranes by placing between two layers of Whatman 3 MM paper. The 

membranes were then exposed to Kodak X-Omat AR or RP X ray film for about 18 

h to check for the complete removal of the previous hybridization signal. 

2.18. RNA methods 

2.18.1. Preparation of glassware and solutions for RNA work 

Glassware to be used for RNA work was sterilized by autoclaving at 121 °C at 

15 lb/square inch, followed by baking for 30 min at 180°C, or for more than 6 h at 

121°C. The glass centrifuge tubes used for RNA extraction were siliconized by 

immersing in dimethyldichlorosilane (2% in 1,1,1,trichloroethane). The siliconized 

tubes were then washed thoroughly with water followed by autoclaving, and baking 

as described above. The polyallomer centrifuged tubes were treated with 0.2% DEP 
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solution (in autoclaved water) followed by autoclaving. The reagents to be used for 

RNA work were kept separate from the rest of the reagents and dispensed directly 

from the original containers into the glassware specially treated for RNA work 

without the use of a spatula. The solutions were routinely made in autoclaved water, 

usually treated with 0.2% DEP for 12-18 h and autoclaved. The non-autoclavable 

solutions were made in autoclaved water and sterilized by passage through 0.22 J.,Lm 

cellulose nitrate membranes. 

2.18.2. Isolation of RNA 

Total cytoplasmic RNA was isolated by an SDS-phenol method (Hiatt, 1962, 

Taylor, 1979) as described by Gahmberg et al. (1979) followed by passage through 

an oligo( dT)-cellulose column (Aviv and Leder, 1972) to separate poly( A)+ RNA. A 

quick method (Badley et al., 1988) was also employed. These methods are described 

in the following sections. 

2.18.2.1. SDS-phenol method of RNA extraction 

K562 cells were grown in RPMI 1640 medium as described in section 2.3. The 

cells were collected by centrifugation at 2,000 rpm for 5 min in a bench top centrifuge 

and washed by resuspension in PBS (0.01 M phosphate buffer pH 7.4 containing 0.15 

M NaCl and 0.1 mg/ml cycloheximide) and centrifuging as before. The cells were 

resuspended in a volume of lysis solution A (0.01 M Tris-HCI pH 7.4, 0.01 M NaCl, 

15 mM MgC12 and 30 J.,Lg/ml Polyvinyl sulphate) that was about 10 times the volume 
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of cells and the tube was incubated on ice for 20-30 min to allow for cell swelling. 

The swollen cells were broken by 20-25 strokes in a Dounce homogenizer. The 

broken cell suspension was centrifuged at 3,000 rpm at 4°C for 10 min in a Beckman 

JS-13 rotor to collect the nuclei which were discarded. The supernatant containing 

the total cytoplasmic RNA was collected in a fresh tube and SDS was added to a 

final concentration of 2% and the resulting solution was heated in a water bath at 

65°C for 5 min. An equal volume of phenol solution maintained at 65°C was added 

and the procedure of phenol extraction (section 2.5) followed by ethanol precipitation 

(section 2.6) were employed. 

The precipitated RNA was collected by centrifugation at 10,000 rpm for 30 

min at 4°C using a Beckman JS-13 rotor. The pellet was resuspended in 70% ethanol 

followed by centrifugation as before. Washing the RNA pellet with ethanol was 

repeated twice. The washed pellet was dried under vacuum, dissolved in DEP-treated 

water, subjected to spectrophotometric measurement and one more round of ethanol 

precipitation. The resulting RNA solution was then stored at -70°C till oligo( dT)

cellulose chromatography was performed as described in the next section. 

2.18.2.2. Oligo( dT)-cellulose chromatography 

About 0.2-0.5 g oligo(dT)-cellulose (type 3) was resuspended in DEP-treated 

water, poured into a small column (10 ml, Econo column, BioRad) and the oligo( dT) 

activated by passing about 10 column volumes of 0.1 N NaOH through the column. 
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This was followed by washing the column with 10 or more column volumes of water 

until the pH of the effluent dropped to neutrality. The column was then equilibrated 

by passing through about 10 column volumes of binding buffer (25 mM Tris-HCl pH 

7.4, 0.5 M NaCl containing 0.5% SDS (w/v). The RNA in binding buffer was heated 

at 65°C for 5 min and cooled to the room temperature. This denatured RNA was 

then passed through the equilibrated oligo( dT)-cellulose column. Unbound material 

from the first passage of RNA through the column was applied once more to achieve 

maximum binding of the poly(A)+ RNA. The column was then washed with binding 

buffer until the OD260 of the buffer reached back ground. The RNA was then eluted 

in 3 ml DEP-treated water. The eluted RNA solution was denatured, readjusted 

quickly to the binding conditions as before (now without SDS) and allowed to pass 

through the column which was now equilibrated in the binding buffer without SDS. 

The poly(A)+ RNA was then eluted in 3 ml DEP-treated water and subject to 

ethanol precipitation (section 2.6). The precipitate was collected by centrifugation, 

dried under vacuum and dissolved in DEP-treated water and stored at -70°C until 

use. 

2.18.2.3. Quick RNA extraction method 

The SDS-phenol method is a very lengthy procedure requiring multiple steps 

including phenol extraction and two ethanol precipitations which may result in losses 

of the RNA. Therefore in later stages of this work a simpler method (Badley et a/., 
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1988) requiring no phenol extraction and a single ethanol precipitation was employed 

which is described now. 

K562 cell were grown in RPMI 1640 medium as described in section 2.3 and 

collected by centrifugation at 2,000 rpm for 10 min in a bench top centrifuge. The 

cells were washed by resuspension in serum-free RPMI 1640 medium and centrifuged 

as before. The washing procedure was repeated twice more followed by suspension 

of the cells in about 10 ml of the lysis solution B [0.2 M NaCl, 0.2 M Tris-HCl pH 

7.5, 1.5 mM MgC12, 2% SDS (w/v), 200 J.Lg/ml Proteinase K] at a concentration of 

about 109 cell/mi. The cells were homogenized with a polytron homogenizer (Ultra 

Turrax, Janke Knukel) at medium speed for 10-15 sec and the resulting cell lysate 

was incubated for 1 h in a water bath maintained at 50°C. 

About 0.4 g oligo( dT)-cellulose was prepared as follows. In a 50 ml 

polypropylene centrifuge tube the dried oligo( dT)-cellulose was resuspended in DEP

treated water. The resuspended cellulose was collected at the bottom of the tube by 

centrifugation at about 500-1,000 rpm in a bench top centrifuge for about 20 sec, the 

supernatant discarded and the pellet was resuspended in the binding buffer (10 mM 

Tris-HCl pH 7.5, 0.5 M NaCl). The cellulose was allowed to equilibrate in the buffer 

for a few minutes followed by centrifugation as described above. A few millilitres of 

the binding buffer was added to the pellet until incubation of the lysate at 50°C was 

complete. The salt concentration of the lysate was adjusted to 0.5 M by the addition 
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of 5 M NaCI. The cell lysate was then mixed with the equilibrated oligo( dT)-cellulose. 

The poly(A)+ RNA was allowed to bind to the cellulose by agitating the tube on a 

rotator for about 15 min at room temperature followed by incubation for 5 min 

without agitation. This was followed by centrifugation as before to obtain the 

oligo(dT)-cellulose pellet now with the bound poly(A)+ RNA. The supernatant was 

discarded and the pellet was washed in large volumes of binding buffer, centrifuging 

between each wash until the supernatant was no longer cloudy. The oligo( dT)

cellulose was then resuspended in about 10 ml fresh binding buffer and poured into 

a small column and washing continued until the OD260 of the effluent was less then 

0.05. The column was then allowed to run dry and the poly(At RNA was eluted 

using several 0.5 ml fractions of DEP-treated water. The OD of an aliquot from each 

fraction was measured at 260 nm. The fractions containing poly(A)+ RNA were 

pooled and subjected to ethanol precipitation (section 2.6) and the poly(At RNA 

was dissolved in DEP-treated water and stored at -70°C till use. 

2.18.3. Northern transfer 

Poly( A)+ RNA was fractionated according to size on a 1% (w/v) agarose gel 

containing 2.2 M formaldehyde (Lehrich et al., 1977, Goldberg, 1980) with some 

modifications (Maniatis 1982) and the instructions provided in the Amersham 

manual, Membrane transfer and detection methods as described next. 
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The agarose gel electrophoresis was performed as described in section 2.9 

except that the agarose solution and the buffers were as described here. About 1 g 

agarose was suspended in about 50 ml of DEP-treated water, autoclaved and allowed 

to cool to a temperature of about 50°C. To this agarose solution reagents were added 

so that the final concentrations were as follows: 0.04 M morpholinopropanesulfonic 

acid (MOPS), 0.01 M sodium acetate pH 7.0, 1 mM EDTA pH 7.5, 2.2 M 

formaldehyde and 0.2 J.Lg/ml ethidium bromide. 

To prepare the RNA sample for electrophoresis, 10 J.Lg RNA dissolved in 5 

J.Ll DEP-treated water was mixed with 2 J.Ll 10 X MOPS buffer (0.4 M MOPS, 0.1 M 

sodium acetate pH 7.0, 10 mM EDTA pH 7.5), 3.5 J.l.l formaldehyde, 10 J.Ll formamide 

which was previously deionized by shaking with a mixed bed resin, AG 501-X8. The 

RNA was denatured by incubating at 65°C for 15 min and the tubes were chilled 

quickly by placing on ice and 2 J.Ll gel loading dye, containing 50% glycerol, 0.25% 

bromophenol blue and xylene cyanol and 1mM EDT A pH 8.0, was added to each 

tube. The RNA was electrophoresed at a constant voltage (5 V/cm) in 1 X MOPS 

buffer for about 4 h. Following the electrophoresis, the RNA was visualized by UV 

transillumination and photographed (section 2.9). The gel was rinsed briefly in the 

transfer buffer (20 X SSPE, section 2.11.4) and blotted onto nylon membrane for 

about 18 has described for Southern blotting (section 2.17.1) but without any further 

treatment of the gel. Transfer of the gel was monitored by restaining the gel in 

ethidium bromide followed by visualization under UV light. The membrane with the 
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transferred RNA was air dried and baked at 80°C for 2 h to fix the RNA on the 

membrane. These blots were then stored in a sealed plastic bag until required for 

hybridization. 

2.18.4. Removal of the probes from Northern blots 

Whenever a Northern blot was to be reused, the first probe was removed by 

following the instructions of the Amersham manual Membrane Transfer and Detection 

Methods. A solution containing 5 mM Tris-HCl pH 8.0, 2 mM EDTA and 0.1 X 

Denhardt's solution (section 2.11.4) was heated up to about 80°C and poured in a 

glass tray. The membrane was immersed in this solution and the tray incubated in a 

shaking water bath maintained at 65°C. Incubation was continued for 2 h. The blot 

was removed from the tray, blotted briefly on Whatman 3 MM paper, wrapped in 

plastic film and exposed to the Kodak X-Omat AR or RP X ray film for about 18 h 

to check for the complete removal of the probe. 

2.18.5. Primer extension analysis 

Either 50-100 J..Lg of total RNA or 10 J..Lg poly(A)+ RNA from K562 cells was 

mixed with 0.5-1 p mole 32P-labelled GPA-N2 in annealing buffer (10 mM Tris-HCl 

pH 8.3) and the volume was made up to 25 J..LL The RNA was then denatured by 

heating at 80°C for 3 min and cooling on ice for 5 min, followed by annealing of the 

primer at 42°C for 1 h. This annealed RNA-primer mixture was diluted 1:1.5 with 

reverse transcriptase buffer and 7 U ( 1 J..Ll) of reverse transcriptase were added. The 
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reaction was allowed to take place by incubation of the tube at 42°C for one h. The 

reaction mixture was then treated with 20 J.£g DNase-free RNase per tube at 37°C for 

20 min. The primer extended products were then purified by extraction with phenol 

solution (section 2.5) followed by ethanol precipitation (section 2.6). The pellet was 

dissolved in water and analyzed by electrophoresis on a sequencing gel containing 5% 

polyacrylamide and 7 M urea as described in the section 2.19.3.3, followed by 

autoradiography using Kodak X-Omat AR film with two intensifying screens at -70°C. 

2.19. Nucleotide sequencing 

The nucleotide sequence of the cDNAs was determined by Sanger's dideoxy 

nucleotide sequencing method (Sanger et al., 1972). EcoRI generated fragments were 

subcloned into the plasmid vector pUC19 and nucleotide sequenced using double

stranded plasmid DNA. The EcoRI generated fragments were also cloned into the 

plasmid vectors Bluescript-SK or Bluescript-KS and their nucleotide sequences were 

determined using single- or double-stranded plasmid DNA with or without 

exonuclease III-mung bean nuclease deletion. The various oligonucleotides used for 

nucleotide sequencing included the M13 universal primer, M13 reverse sequencing 

primer, SK and KS primers (for the Bluescript vectors only), and GPA-N2 and GPA

C2 an 18 mer of composition based upon the coding sequence of glycophorin A. The 

sequencing reactions were performed using the instructions provided in the manual 

for the Sequenase kit. These different methods will now be described in the following 

sections (2.19.1 to 2.19.3). 
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2.19.1. Exonuclease III-mung bean nuclease deletion 

The eDNA fragments to be sequenced were subcloned into the EcoRI site of 

the Bluescript or pUC 19 by the procedures described in section 2.15. The eDNA 

fragments subcloned into the Bluescript vectors were also subjected to the 

exonuclease III-mung bean nuclease deletion procedure using the exonuclease III 

deletion kit to produce a nested set of deletions in the eDNA fragments. The 

technique takes the advantage of the requirement of exonuclease III for double

stranded DNA; exonuclease III does not digest 3" single-stranded overhangs, but 

digests 3" ends from blunt ends or 5 " overhangs. The polylinker in Bluescript vectors 

places unique 3 " restriction sites on the outside edge of the polylinker and 5" and 

blunt restriction sites internally. To create deletions in the insert but not in the vector 

the plasmid DNA is digested with two restriction enzymes, one producing a 3" and 

other a 5" overhang or blunt end. The double digestion is then followed by 

exonuclease III-mung bean nuclease treatment. Taking advantage of the convenient 

location of restriction sites and predictable progression of the exonuclease III reaction 

a nested set of deletions can be produced easily (Bluescript, Exo/Mung DNA 

Sequencing System, Instruction manual). The details of the deletion procedure is 

described next (sections 2.19.1.1 to 2.19.1.3). 

2.19.1.1. Digestion with two restriction enzymes 

The plasmid DNA to be subjected to the deletion procedure was isolated by 

the large scale method (section 2.16.1). About 25 p,g of this DNA was then digested 
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sequentially with appropriate restriction endonuclease producing a 3" overhang and 

another producing a 5" overhang. Completion of each digestion was monitored by 

electrophoresing an aliquot on a 0.8% agarose gel. After each restriction 

endonuclease digestion, the DNA was purified by phenol extraction (section 2.5) and 

ethanol precipitation (section 2.6). The double-digested DNA was then dissolved in 

water and treated with exonuclease III as described below using the reagents 

provided in the exonuclease deletion kit. 

2.19.1.2. Exonuclease III treatment 

To produce a nested set of deletions of varying length simultaneously, a single 

exonuclease III reaction was set up from which aliquots were withdrawn at different 

time points. In a microfuge tube the following reagents were placed. The volume of 

each reagent was multiplied by the number of samples to be withdrawn at different 

time points. 

Digested DNA from section 2.19.1.1 5 J.l.g 

Exonuclease III buffer (2 X) 12 J.l.l 

2 Mercaptoethano1 (100 mM) 2 J.l.l 

Exonuclease III (80 units) 1 J.l.] 

Water to a final volume 25 J.l.l 

Before initiating the exonuclease III reaction, a separate stop solution was prepared 

for each time point by diluting 40 J.1.l mung bean nuclease buffer (5 X, provided in the 
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exonuclease deletion kit) in 135 ,u.l of water, and the tubes were placed on ice. This 

buffer solution in addition to terminating the exonuclease III reaction at various time 

points, served as a buffer for mung bean reaction in the next step. To begin the 

exonuclease III treatment the tube was placed in a water bath maintained at 37°C 

and the reaction was initiated by addition of the exonuclease III. Samples of about 

25 J.£1 were then withdrawn at the time intervals of 30-60 sec (for about 5 min) and 

immediately mixed with the diluted mung bean buffer and the mixture flash frozen 

by submerging the sealed tube in liquid nitrogen. When all the samples were 

withdrawn, the tubes were heated at 65°C for 15 min, placed on ice and treated with 

mung bean nuclease. 

2.19.1.3. Mung bean nuclease treatment 

Each exonuclease III-digest withdrawn at different time intervals was mixed 

with 1 ,u.l (15 units) of mung bean nuclease and incubated at 30°C for 30 min after 

which nuclease was inactivated by adding the following reagents. 

SDS (20%, w/v) 

Tris-HCl pH 9.5 (1 M) 

LiCl (8 M) 

Phenol-chloroform solution ( 1:1) 

4 ,u.l 

10 ,u.l 

20 ,u.l 

250 ,u.l 

The reagents were mixed thoroughly and the aqueous and organic phases were 

separated by centrifugation in an Eppendorf centrifuge at room temperature for 5 
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min. The aqueous layer was transferred to a clean tube and extracted with an equal 

volume of chloroform followed by centrifugation to separate the organic and aqueous 

layers. The aqueous layer was again transferred to a clean tube, yeast tRNA was 

added to give a final concentration of 10 ng/J..£1, and the nucleic acids were 

precipitated by the adding 0.5 ml cold ethanol and storage at -20°C for about 18 h. 

The precipitates were collected by centrifugation in an Eppendorf centrifuge, and the 

pellet dried under vacuum then dissolved in water. An aliquot from each time point 

was analyzed on a 0.8% (w/v) agarose gel (section 2.9) to determine the average size 

of the exonuclease 3-mung bean nuclease treated DNA The fragment of the most 

suitable size for nucleotide sequencing was re-ligated (section 2.15.3) and used to 

transform competent E.coli XL1-Blue cells (section 2.15.4). Clones with an 

appropriate deletion were then selected by the procedures described previously 

(section 2.15.5) and nucleotide sequenced using either the double-stranded plasmid 

DNA isolated by a quick method (section 2.16.2) or a large scale method (section 

2.16.1). In some cases single-stranded DNA isolated by the procedure described 

below (section 2.19.2) was also used. 

2.19.2. Isolation and purification of single-stranded plasmid DNA 

The single-stranded DNA was isolated and purified by a polyethylene glycol 

method (Dente et al., 1983) described in Bluescript Exo/Mung DNA sequencing system 

instruction manual as follows. An isolated colony from LB-agar plate containing 

ampicillin and tetracycline, was added into double strength YT medium (1.6% Bacto-
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tryptone, 1% Bacto-yeast extract and NaCl) and incubated at 37°C for about 18 h. 

About 300 J.£1 of the overnight culture (7.5 x 108 cells) was added into a 50 ml tube 

containing 3 ml of 2 X YT medium and allowed to grow for about 2 h at 37°C with 

shaking until the OD600 of the culture reached about 0.3/ml (about 2.5 x 108 cells/ml). 

At this stage the helper phage, an M13 derivative, R408 or VCSM13 (provided in the 

exonuclease deletion kit) was added at a multiplicity of infection of about 20:1 

(phage:cells) and the mixture was once again shaken at 37°C for about 8-12 h. The 

bacterial cells and debris were removed by centrifugation in an Eppendorf centrifuge 

for about 30 min and the supernatant was transferred to a clean tube. To the clear 

supernatant 0.25 volume of precipitating solution (20%, w/v PEG 6000, 3.5 M 

ammonium acetate pH 7.5) was added and the precipitate was allowed to form at 

0°C for 15 min. The precipitate was then collected by centrifugation for 15 minutes 

in an Eppendorf centrifuge. The tubes were drained thoroughly and the pellet was 

resuspended in about 200 J.£1 water. The single-stranded plasmid DNA solution thus 

obtained was vortexed for 1 min with 200 J.£1 phenol-chloroform (1:1). The organic 

and the aqueous phases were separated by centrifugation for 5 min in an Eppendorf 

centrifuge at the room temperature. Phenol-chloroform extraction was repeated a few 

more times (usually 3-5) until a clear interface was obtained. The resultant solution 

was extracted once with chloroform only. The single-stranded DNA was then 

precipitated by the adding 150 J.£1 of 7.5 M ammonium acetate pH 7.5 and 600 J.£1 

chilled absolute ethanol and keeping on ice for 15 min. The precipitated single

stranded DNA was collected by centrifugation in an Eppendorf centrifuge at 4°C for 

20 min. The resultant pellet was dried under vacuum for about 15 min and dissolved 
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in water (25 J.£1) and stored at 4°C. The DNA was examined by agarose gel 

electrophoresis (section 2.9). 

2.19.3. Nucleotide sequencing of double-stranded or single-stranded plasmid DNA 

Single-stranded plasmid DNA was used without any further treatment for 

nucleotide sequencing, whereas the double-stranded plasmid DNA was subjected to 

denaturation by treatment with NaOH (Hattori and Sakaki, 1986) as describe below. 

2.19.3.1. Denaturation of the double-stranded plasmid DNA 

About 2-3 J.Lg of double-stranded plasnlid DNA (10 J.£1) was mixed with an 

equal volume of 0.4 M NaOH and incubated at room temperature for 5 min. The 

denatured DNA was precipitated by the addition of 0.8 volume 5 M ammonium 

acetate pH 7.5 and 4 volumes pre-chilled absolute ethanol and transferring to a -70°C 

freezer for 10 min. The precipitate was collected by centrifugation in an Eppendorf 

centrifuge for 15 min at 4°C, dried under vacuum and dissolved in 7 J.Ll water. 

2.19.3.2. Sequencing reaction 

The sequencing reactions using either single-stranded or double-stranded 

plasmid DNA were performed using the Sequenase kit containing the modified T7 

polymerase following the instructions and with the reagents provided by the 

manufacturer. The reaction was divided in three major steps, annealing, labelling and 

termination. 
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2.19.3.2.1. Annealing 

About 7 J..Ll template plasmid DNA, 2 J..Ll sequenase buffer and 1 J..tl primer 

solution (0.5-1 pmol) were mixed together, heated at 65°C for 3 min and allowed to 

cool slowly (about 30 min) till the temperature of the water bath (a 250 ml beaker) 

decreased to about 30-35°C. 

2.19.3.2.2. Labelling reaction 

The annealed DNA solution was centrifuged briefly in an Eppendorf 

centrifuge to bring the evaporated material to the bottom of the tube and the 

following reagents were added in the in the given order. 

Dithiothreitol (DTT, 0.1 M) 

Labelling mix 

e5S] dATP 

Sequenase (diluted 1:7) 

1 J..Ll 

2 J.Ll 

1 J.Ll (10 J.L Ci) 

2 J.Ll 

After each addition, the content of the tubes were mixed by pi petting back and forth 

with the help of a Pipette Man. The reaction was allowed to take place by incubation 

at room temperature for 5 min. 

2.19.3.2.3. Termination reaction 

Four tubes labelled C, T, A, and G were prepared containing 2.5 J.Ll of the 

appropriate termination mixture and warmed to 37°C while the labelling reaction was 

taking place. Following the 5 min incubation of the labelling reaction, 3.5 J.Ll was 

transferred to each of the four termjnation reaction tubes (labelled C, T, A, and G), 
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mixed quickly and the incubation continued for a further 5 min at 37°C to allow for 

the termination reaction to take place. The reactions were stopped by adding 4 J.£1 

stop solution provided by the supplier of the kit. The tubes were heated at 75°C for 

3 min, chilled on ice and analyzed on a sequencing gel immediately or stored at -20°C 

till used later. 

2.19.3.3. Sequencing gel 

Sequencing gels 0.35 mm x 380 mm x 430 mm containing 6% polyacrylamide 

and 7 M urea prepared in Tris-borate-EDT A buffer (1M Tris and boric Acid, 0.4 M 

EDTA pH 8.3) were pre-run for about 30 min at a constant power of about 90 watts 

in a Hoefer Scientific Instrument SE 1500 sequencing apparatus with Tris-borate

EDT A as the running buffer. Samples for analysis were denatured by heating at 75°C 

then chilled on ice immediately before transferring about 4 J.LI of each to wells formed 

using a shark's tooth comb. Electrophoresis was usually performed until the 

bromophenol blue dye had reached the bottom of the gel (about 2.5 hours). To read 

more than 150 nucleotides, multiple loading of the same sequencing reaction were 

performed. After the electrophoresis was complete each gel was fixed in 1 L of a 

10% acetic acid-10% methanol solution for about 30 min to leach out the urea from 

the gel, dried at 90°C under vacuum using a gel dryer (Biorad-model 583) for about 

1 h then exposed to Kodak X-Omat AR film with two intensifying screen for 12-18 

h at -70°C. The nucleotide sequences were read manually and analyzed using 

Microgenie from Beckman or PC/GENE from IntelliGenetics sequencing 

programmes or both. 



CHAP'IER 3 

RESULTS AND DISCUSSION 

3.1. Isolation of eDNA clones encoding glycophorin A 

The primary structure of glycophorin A is very similar to that of glycophorin 

B in many regions (Blanchard et al., 1987; Siebert and Fukuda, 1987). The NH2-

terminus of glycophorin AN (positions 1 to 26 from the NH2-terminus of glycophorin 

A) has an amino acid sequence which is identical to the NH2-terminal sequence of 

glycophorin B (glycophorin A numbering is used in the present report). In addition, 

both have highly homologous regions between amino acids numbered 59 to 100. A 

segment comprising amino acids 27 to about 56 and about 30 amino acids of the 

carboxyl terminus of glycophorin A are missing from glycophorin B (Siebert and 

Fukuda, 1987). To select eDNA clones encoding glycophorin A, oligonucleotide 

mixtures GPA-N1 and GPA-C which were derived from the glycophorin A amino 

acid sequence spanning residues 24 to 30 (21-mer mixture) and 122 to 127 (a 17 -mer 

mixture), respectively, were synthesized and used for hybridization to screen a )..gtlO 

eDNA library constructed from K562 cell RNA. While this work was still in progress 

a partial eDNA sequence was reported (Siebert and Fukuda, 1986b ). Therefore, the 

exact sequence oligonucleotide GP A-N2 was synthesized based upon this published 

sequence, complementary to the nucleotides encoding residues 30 to 40 of 

glycophorin A, and used to screen the K562 cell eDNA library. 
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Northern blotting experiments performed previously (section 4.3.2.1) had 

shown that hybridization of GPA-N2 to K562 cell RNA at 50°C followed by washing 

in 6 X SSC for 5 min at 60°C gave the best signal of mRNA bands over a very low 

background. Therefore, oligonucleotide GPA-N2 was hybridized with a i..gtlO K562 

cell eDNA library that was blotted on nylon membranes under the conditions 

established by Northern blotting. About 20 membranes containing a total of about 

5 x lOS plaques (about 2.5 x 104 plaques/membrane) were screened using these 

conditions and several showed spots of GPA-N2 hybridization. Only those spots which 

were present on duplicate membrane replicas were considered to represent 

potentially positive clones, for example, the spot P in Fig. 3.l(A) and (B). Any other 

spot which was present only on one of the two duplicate membranes, for example, 

the spot Bin Fig. 3.l(B), was ignored. In this way, the primary screening of the K562 

cell eDNA library resulted in the detection of seven individual spots. The plaques and 

(or) area surrounding them, corresponding to the spots on the membranes, were 

identified on their respective master plates. These potentially positive plaques and 

(or) the area surrounding them were then lifted off the culture plates by removing 

an agar plug and suspending it in SM medium. The phage particles were allowed to 

elute out of the agar into the SM medium. 

Each potentially positive plaque identified by primary screening was subjected 

to secondary screening. The number of PFU /ml in the phage suspension was 

determined and a sample of an appropriate dilution was mixed with E. coli C600 Hfl 



Fig. 3.1. Screening a KS62 library to the isolate eDNA clones encoding 

glycophorin A: Primary Screening. 

A sample containing about 2.5 x 104 PFU of the K562 eDNA library (i..gtlO phage) 

was mixed with E.coli C600 Hfl, spread on a 150 x 10 mm plate containing LB agar 

with maltose and allowed to grow until plaques were visible. Membrane replicas were 

prepared in duplicate (A and B) by transferring and fixing the DNA on a nylon 

membrane (Hybond-N, 132 mm), hybridized with GPA-N2 at 50°C and washed at 

60°C. The large, dark, circular spots (arrow heads) represent the marks obtained by 

spotting diluted radioactive ink on membranes for orientation with the master plate. 

P and B with an arrow head represent a potentially positive plaque present on both 

of the membrane replicas and a background spot, respectively. 
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and plated to produce a small number of plaques (100-1000/plate). Duplicate 

membrane replicas were made from these plates and hybridized with oligonucleotide 

GPA-N2 as described for primary screening. This secondary screening resulted in 

identification of several plaques from one primary spot on each plate (for example, 

see in Fig. 3.2). Out of about 100 plaques present, about nine showed hybridization 

with GP A-N2. This indicated that the phage suspension obtained after first round of 

screening (i.e. primary screening) contained extraneous plaques in addition to the 

ones showing specific hybridization. These unrelated plaques must have been picked 

up along with the truly positive clone; this is quite normal for high density screening 

in which the presence of a large number of plaques over a small area makes it very 

difficult to accurately identify the plaque corresponding to a hybridization spot on a 

membrane. Therefore, the process of identifying the positive clones followed by its 

isolation was repeated at least twice more or until a plaque was biologically purified 

and was completely free of any other contaminating plaques. For example, out of the 

several plaques showing hybridization in the second round of screening, a well

separated plaque (Pin Fig. 3.2) was lifted from its corresponding master culture plate 

and subjected to two more rounds of screening. Fig. 3.3 shows the results of the 

tertiary screening of the plaque identified in Fig. 3.2. The master culture plate 

corresponding to this membrane contained about 300 plaques. A large proportion of 

these plaques hybridized with GPA-N2 indicating further enrichment but not a 

complete biological purification of the primary clone. One of these tertiary plaques 

was lifted from the master culture plate corresponding to this membrane and 



Fig. 3.2. Screening a K562 library to the isolate eDNA clones encoding 

glycophorin A: Secondary screening. 

The plaques obtained by growing a sample containing about 100 PFU of the phage 

suspension after primary screening were transferred in duplicate (A and B) to 90 mm 

diameter nylon membranes and hybridized with GP A-N2 as for primary screening. 

The large, dark, circular spots indicated by arrow heads represent marks produced 

by spotting diluted radioactive ink on membranes for orientation with the master 

plate. P represents the plaque picked and used for the next round of screening 

(tertiary). 
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Fig. 3.3. Screening a K562 library to the isolate eDNA clones encoding 

glycophorin A: Tertiary screening. 

A sample containing about 300 PFU of the phage suspensiOn obtained after 

secondary screening was grown and transferred in duplicate (A and B) to 90 mm 

diameter nylon membranes. The membranes were hybridized with GPA-N2 as for 

primary screening. The arrow heads represent marks obtained by spotting diluted 

radioactive ink on membranes for orientation with the master plate. P represents the 

plaque picked and used for biological purification of the clone in the final round of 

screening (quaternary). 
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subjected to another round of screening. At this stage, the membrane contained 

about 200 plaques and every one of them showed hybridization with GPA-N2 

indicating the biological purification of the clone (Fig. 3.4 ). Therefore, one plaque 

was picked from the plate corresponding to this membrane, resuspended in SM 

medium and the resulting phage suspension used as a source of inoculum for growth 

in subsequent steps. 

The process of repeated screening was continued for each primary spot until 

a plaque was considered to be biologically purified. In this way, out of seven primary 

clones, six were biologically purified. These six individual clones denoted by the 

numbers A-gpa1, A-gpa3, A-gpa4, A-gpa5, A-gpa6 and A-gpa7 and were grown up on 

a large scale. DNA was extracted from each of these clones and after restriction 

endonuclease digestion analyzed on an agarose gel as described in next section. 

3.2. Confirming the identity of eDNA clones 

3.2.1. Agarose gel electrophoresis 

AgtlO is a 43 kbp, linear, double-stranded DNA A bacteriophage-derived 

cloning vehicle into which cDNAs that have EcoRI linkers ligated to their ends are 

cloned at the unique EcoRI site (Huynh et. al., 1984, also section 2.13). Therefore, 

as a first step to characterize the cDNAs, A DNA was isolated from each of the six 

clones. About 2 J.J.g of the AgtlO DNA was digested with EcoRI to release the eDNA 

fragment(s) from the cloning site in the vector. The digestion mixture was divided 



Fig. 3.4. Screening a K562 library to the isolate eDNA clones encoding 

glycopborin A: Quaternary screening. 

A sample containing about 100-300 PFU of the phage suspension obtained after 

tertiary screening was grown and transferred in duplicate (A and B) on a nylon 

membranes of 90 mm. The membranes were then hybridized with GP A-N2 as for 

primary screening. The arrow heads represent marks obtained by spotting diluted 

radioactive ink on membranes for orientation with the master plate. P represents the 

plaque picked up and used as a source of inoculum for phage growth. 
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into two equal portions and both were analyzed on a 0.8% agarose gel. DNA bands 

were visualized by ethidium bromide fluorescence (Fig. 3.5); note that only one half 

of the gel containing one set of digested DNA is shown. The sizes of eDNA 

fragments were calculated by comparing with the mobilities of molecular size markers 

run on a parallel lane (Fig. 3.5, lane M). EcoRI digestion of .AgtlO DNA containing 

eDNA produced a fragment of about 0.8 kbp from each of the six clones (Fig. 3.5, 

lanes 1 and 3 to 7). In addition to this common 0.8 kbp fragment, two of the six 

clones, .A-gpa3 and .A-gpa5 also contained a fragment of about 0.9 kbp (Fig. 3.5, lanes 

3 and 5) and still another, .A-gpa6, contained an additional fragment of about 1.3 kbp 

(Fig. 3.5, lane 6). Therefore, the combined size of the eDNA fragments in various 

clones were 0.8 (.A-gpa1, .A-gpa4 and .A-gpa7), 1.7 (.A-gpa3 and .A-gpa5) and 2.1 kbp 

(.A-gpa6). 

3.2.2. Southern blotting 

To further characterize the eDNA clones, the DNA from the gel shown in Fig. 

3.5 together with the remaining half of the gel referred to above was blotted on a 

nylon membrane. The membrane was divided into two halves, each containing one 

set of the six cDNAs. One half of the membrane was used for the hybridization with 

oligonucleotide GPA-N2. The same membrane was also used to hybridize with the 

0.8 kbp fragment of .A-gpa6 after the removal of the first probe (GP A-N2). Similarly 

the other half of the membrane was used for hybridization with oligonucleotide GP A

Nl and subsequently with GPA-C. These oligonucleotides are described 



Fig. 3.5. Agarose gel electrophoresis of DNA isolated from glycophorin A eDNA 

clones and digested with restriction endonuclease EcoRI. 

DNA fragments were detected by staining the gel with 0.5 J,.Lg/ml ethidium bromide. 

Numbers above the lanes indicate clones i..-gpal, i..-gpa3, i..-gpa4, i..-gpa5, i..-gpa6 and 

i..-gpa7. Lane M contains Hind III-generated phage i.. DNA fragments as molecular 

size markers run on the same gel. The position and sizes in kbp of the markers and 

various eDNA fragments is also indicated. 
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in section 3.1. The results of all these hybridizations are described in the next section. 

3.2.2.1. Oligonucleotide hybridization 

When oligonucleotide GPA-N2 was incubated with the Southern blot of 

cDNAs at 50°C and washed for 5 min at 60°C (the same conditions were used for 

screening the eDNA library using this oligonucleotide), only the 0.8 kbp bands of the 

six clones hybridized (Fig. 3.6, lanes 1 and 3 to 7). The same 0.8 kbp band from each 

of the six clones hybridized with oligonucleotides GPA-C [Fig. 3.7 (A)] as well as with 

GPA-N1 [Fig. 3.8 (A)]. Since GPA-N1 and GPA-C were mixtures containing 508 and 

98 different oligonucleotides, respectively, it was necessary to make sure that they 

were hybridizing specifically. 

The Td for exact sequence oligonucleotide GPA-C was calculated to be 44°C 

(section 2.11.4). Therefore, GPA-C was hybridized at 37°C with the Southern blot, 

washed for 5 min in a solution containing 6 X SSC at 39°C and exposed to X ray film 

[Fig. 3.7 (A)]. The blot was washed again in a similar solution for 5 min but at higher 

temperatures [45°C and 50°C, Fig. 3.7 (B) and 3.7 (C) respectively]. The 0.8 kbp 

fragments of six clones retained the signal of hybridization even after washing at 45°C 

and 50°C, the temperatures which were 1 °C and 6°C higher than the calculated Td, 

respectively. The retention of signal of hybridization after washing at a temperatures 

close to the Td of GP A-C indicated that it was hybridizing specifically. 



Fig. 3.6. Hybridization of 32P-labelled oligonucleotide GPA-N2 with a Southern blot 

of DNA isolated from glycophorin A eDNA clones and digested with restriction 

endonuclease EcoRI. 

The blot was hybridized at 50°C and washed at 60°C as described in methods. 

Numbers above the lanes indicate clones l-gpal, l-gpa3, l-gpa4, l-gpa5, l-gpa6 and 

J..-gpa7. The position of the 0.8 kbp fragment is indicated by the arrow. 
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Fig. 3. 7. Hybridization of 32P-labelled oligonucleotide GPA-C with a Southern blot 

of DNA isolated from glycophorin A eDNA clones and digested with restriction 

endonuclease EcoRI. 

The blot was hybridized at 37°C and washed subsequently at: 39°C (A), 45°C (B) and 

50°C (C) and exposed to X ray film between each wash as described in methods. 

Numbers above the lanes indicate clones A-gpal, A-gpa3, A-gpa4, A-gpa5, A-gpa6 and 

A-gpa7. The position of the 0.8 kbp band is indicated by the arrow. 
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The Td for exact sequence oligonucleotide GPA-N1 was calculated to be 58°C 

(section 2.11.4) Therefore, hybridization with oligonucleotide GPA-N1 at 52°C was 

followed by washing in a solution containing 6 X SSC for 5 min at 52°C and exposure 

to X ray film [Fig. 3.8 (A)]; the blot was washed once again in a similar solution for 

5 min at a 57°C [Fig. 3.8 (B)]. The 0.8 kbp fragments of the six clones retained the 

signal of hybridization of this oligonucleotide after washing at both temperatures 

indicating specific hybridization. 

Hybridization of Southern blots containing cDNAs with GPA-N2, GPA-C and 

GP A-N1 clearly demonstrated that the 0.8 kbp fragment from each of the six clones 

contained sequences complementary to these oligonucleotides (Fig. 3.6 to 3.8). In 

contrast, neither the 1.3 nor the 0.9 kbp fragments showed hybridization with any of 

the three oligonucleotides (Fig. 3.5). Since oligonucleotides synthesized to recognize 

glycophorin A hybridized with the 0.8 kbp fragments from the six clones, it was clear 

that all six cDNAs were derived from glycophorin A specific mRNA(s). 

The oligonucleotides represented three different segments of the glycophorin 

A amino acid sequence spanning regions containing amino acid 24 to 30 (GPA-N1), 

30 to 40 (GPA-N2) and 122 to 127 (GPA-C). All these oligonucleotides hybridized 

to the 0.8 kbp fragments suggesting that the cDNAs contained the region spanning 

amino acids 22 to 127 and probably the full coding sequence for glycophorin A since 

this contains only 131 amino acids. These oligonucleotide hybridization experiments 



Fig. 3.8. Hybridization of 32P-labelled oligonucleotide GPA-Nl with a Southern blot 

of DNA isolated from glycophorin A eDNA clones and digested with restriction 

endonuclease EcoRI. 

The blot was hybridized at 50°C and washed subsequently at: 52°C (A) and 57°C (B) 

and exposed to the film between each wash as described in methods. Numbers above 

the lanes indicate clones l-gpal, l-gpa3, l-gpa4, l-gpa5, l-gpa6 and l-gpa7. The 

position of the 0.8 kbp band is indicated by the arrow. 
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also suggested that the 0.8 kbp fragments, in addition to probably containing the full 

coding sequence, also contained some nucleotides representing the 5 ', 3' or both 

untranslated regions since only 393 nucleotides are required to code for the 

glycophorin A amino acid sequence. The lack of hybridization of any of the 

oligonucleotides to the 1.3 and 0.9 kbp fragments implied that these fragments must 

represent either the 3' or 5' untranslated region of glycophorin A mRNA. Another 

possibility that these fragments represented some unrelated DNA ligated to authentic 

glycophorin A eDNA during the cloning procedure although very unlikely was not 

ruled out at this stage. 

3.2.2.2. Hybridization with 0.8 kbp fragment 

The 0.8 kbp EcoRI fragment of A.-gpa6 was isolated by electroelution, labelled 

with 32P by the random primers labelling method and used as a probe for 

hybridization with the Southern blot that had previously been used for hybridization 

with GPA-N2 (section 3.2.2.1). The 0.8 kbp fragment of each of the six clones showed 

hybridization after a very stringent wash in 0.1 X SSC at 65°C (Fig. 3.9, lanes 1 and 

3 to 7). This indicated that the 0.8 kbp fragments from the six eDNA clones have 

similar sequences. In contrast neither the 0.9 kbp fragments from A.-gpa3 or A.-gpa5, 

nor the 1.3 kbp fragment from A.-gpa6 showed hybridization, strengthening the notion 

that these fragments did not share sequences with any of the 0.8 kbp fragment and 

did not code for the glycophorin A amino acid sequence. 



Fig. 3.9. Hybridization of the 32P-labelled 0.8 kbp fragment of A.-gpa6 with a 

Southern blot of DNA isolated from eDNA clones and digested with restriction 

endonuclease EcoRI. 

The blot was hybridized at 42°C with 50% formamide, the final stringent wash was 

performed at 65°C and the blot was exposed to X ray film as described in methods. 

Numbers above the lanes indicate clones A.-gpal, A.-gpa3, A.-gpa4, A.-gpa5, A.-gpa6 and 

A.-gpa7. The position of the 0.8 kbp band is indicated by the arrow. 



201 

~-gpa 1 3 4 5 6 7 

.. 



202 

The conclusions drawn from the Southern blot analysis of the cDNAs with 

either the 0.8 kbp fragment of A.-gpa6 or with oligonucleotides as probes can be 

summarized as follows; (i) the six eDNA clones isolated by screening the K562 cell 

eDNA library with oligonucleotide GPA-Nl encode glycophorin A; (ii) the 0.8 kbp 

fragment of the six eDNA clones had similar sequences which probably spanned the 

full coding region of the of glycophorin A in addition to some nucleotides of 3' or 

5" untranslated regions; and (iii) the 1.3 and 0.9 kbp fragments probably represented 

the 3' or 5" untranslated regions of glycophorin A mRNA. 

3.3. Restriction mapping 

).. DNA containing a eDNA insert isolated from each of the six clones was 

subjected to restriction analysis using endonucleases Kpnl, Xhol, Sacl, Xbal, Hindlll, 

Stul and Dral to characterize the eDNA clones and to establish the relationship 

among them. However, the restriction analysis did not unveil any dissimilarities apart 

from the differences of size of various eDNA fragments. 

The identical size of the 0.9 kbp fragment of l..-gpa3 and l..-gpa5 (section 3.2.1) 

suggested that perhaps they had similar nucleotide sequences. It was also possible, 

however, that they differed internally which might or might not result in creation or 

removal of some of the restriction sites. Restriction analysis was performed to 

investigate the relationships between the two 0.9 kbp fragments of l..-gpa3 and A.-gpa5 

and the 1.3 kbp fragment of l..-gpa6. Bluescript plasmids which contained these eDNA 
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fragments were digested with a selection of restriction enzymes (section 3.4.2). The 

enzymes used were chosen based upon the prediction of restriction sites, obtained by 

examination of the complete nucleotide sequence of A-gpa6 with MicroGenie and 

(or) PC/GENE computer programmes. The restriction analysis using the enzymes 

Hindiii, Hpaii, Xbal, AZul, Xmnl and Rsal revealed no internal differences except 

that both of the 0.9 kbp fragments lacked some of the sequences which were present 

in the 3' end region of the 1.3 kbp fragment. 

The restriction analysis of A DNA from the six clones performed directly or 

after subcloning into plasmid vectors provided further support to the view that the 

six eDNA clones had similar sequences in their 0.8 kbp fragments. Further, the two 

0.9 fragments shared some sequences with the 5' region of the 1.3 kbp fragment. 

3.4. Subcloning 

3.4.1. Subcloning in pUC 19 plasmids 

DNA isolated from A-gpal, A-gpa3, A-gpa4, A-gpa5, A-gpa6 and A-gpa7 was 

separately digested with EcoRI and a sample of each was analyzed by agarose gel 

electrophoresis to confirm completion of restriction digestion. The remaining 

digestion mixture from each of the eDNA clones was then purified by phenol

chloroform extraction and the DNA fragments ligated into the plasmid vector pUC19 

which had been linearized at its unique EcoRI site. A sample of this ligated DNA was 

then used to transform competent E.coli DHSa cells. A large number of 
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transformants were obtained a few of which were picked, grown up and subjected to 

plasmid DNA isolation by the quick method (section 2.16.2). The plasmid DNA, with 

or without EcoRI digestion was then subjected to agarose gel analysis which revealed 

that many of the clones contained DNA inserts of size other than 0.8, 0.9 or 1.3 kbp. 

This indicated that perhaps they represented some unrelated DNAs accidentally 

cloned into the plasmid vector probably because the entire restriction digestion 

mixture of AgtlO DNA containing eDNA fragments was used for ligation with the 

plasmid vector without prior purification of the eDNA inserts. Hence, it became 

evident that identifying the clones containing the eDNA fragment would be very 

difficult if digestion with EcoRI followed by gel analysis was used for identification 

of subclones. Therefore, to identify the subclones, plasmid DNA was blotted on nylon 

membrane and subjected to Southern analysis using the following as probes: 32P

labelled oligonucleotide GPA-N2 or 0.8 or 1.3 kbp fragments of A-gpa6. Many 

subclones containing the 0.8 kbp fragment of A-gpa1, A-gpa3, A-gpa4, A-gpa5 and A

gpa6 were identified using this approach. One clone was selected for each of the 

fragments to be subcloned, grown up and subjected to the large scale plasmid DNA 

isolation procedure (section 2.16.1 ). At this stage, no subclones representing the 0.8 

kbp fragment of A-gpa7, the 0.9 kbp fragments of A-gpa3 and A-gpa5, or the 1.3 

fragment of A-gpa6 were obtained. However, these fragments were later successfully 

sub-cloned into the Bluescript vectors. 
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3.4.2. Subcloning in Bluescript plasmids 

The experiment described in the previous section showed that if the entire 

digestion mixture was used for ligation with vector, identification of subclones was 

difficult. Therefore, in subsequent experiments the 0.9 kbp eDNA fragments from 1-

gpa3 and 1-gpa5, the 0.8 kbp from 1-gpa6 and 1-gpa7, and the 1.3 kbp from 1-gpa6 

were purified by Geneclean prior to ligation with the Bluescript plasmids (KS and 

SK) in their unique EcoRI site. The ligated DNAs were then used to transform 

competent E.coli XL1-Blue cells. A large number of transformants were obtained. 

About 30 were picked, grown up and subjected to plasmid DNA isolation using the 

quick method (section 2.16.2). The digestion of the resultant plasmid DNA with 

EcoRI followed by agarose gel analysis revealed that about 80% contained eDNA 

inserts of appropriate size. One clone was selected for each of the eDNA fragments 

to be subcloned, grown up and subjected to the large scale plasmid DNA isolation 

procedure (section 2.16.1). 

3.5. Nucleotide sequencing 

cDNAs cloned in plasmid vectors were sequenced by the dideoxy sequencing 

method (Sanger et a!. , 1972) using the Sequenase kit. Either double-stranded or 

single-stranded plasmid DNA were sequenced using various sequencing primers 

including the M13 universal sequencing primer, the M13 reverse sequencing primer, 

oligonucleotides GPA-N2 and GPA-C2 and two more primers (SK and KS) which 

were specific for the Bluescript plasmids only. Initially partial sequences of all eDNA 
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fragments were determined to find out the relationships among them (sections 3.5.1 

and 3.5.2). The complete nucleotide sequence was then determined for the eDNA 

clone .A-gpa6 which is described in section 3.5.3. 

3.5.1. Nucleotide sequence of the 0.8 kbp EcoRI fragment of various cDNAs 

Partial nucleotide sequences of subclones representing the 0.8 kbp fragments 

of .A-gpa1, .A-gpa3, .A-gpa4, .A-gpa5, and .A-gpa7 were determined using various 

primers. The primers used for sequencing included the M13 universal, the M13 

reverse, GP A-N2 and GPA-C2 oligonucleotides. Comparison of these partial 

nucleotide sequences with that of the .A-gpa6 revealed that although the cDNAs 

differed slightly from each other in size, they contained the complete nucleotide 

sequence of glycophorin A. This information is summarized in diagrammatic form in 

Fig. 3.10 (A). 

Glycophorin A is an integral membrane protein, like all other integral 

membrane proteins (Kreil, 1981; Sabatini et al., 1982) it is also synthesized with a 

cleavable signal peptide (Jokinen et al., 1981). It was found that all of the 0.8 kbp 

fragments of the six clones contained nucleotides representing a 19 amino acid-long 

signal peptide as reported earlier for a single clone encoding glycophorin A isolated 

by Siebert and Fukuda (1986b). 

Examination of the nucleotide sequence of the 5 ~ untranslated regions of the 

various cDNAs showed that they vary slightly, probably a reflection of eDNA cloning 



Fig. 3.10. Nucleotide sequence of glycophorin A eDNA derived from clones 1..-gpa3 

and l..-gpa6, together with the predicted amino acid sequence represented by the 

single letter code. 

(A) Diagrammatic representation of the size and location of the various eDNA clones 

sequenced. Abbreviations: El and E2, EcoRl sites; 5' U, 5' untranslated region; S, 

signal peptide; C, coding sequence; and 3' U, 3' untranslated region. The bold 

vertical lines represent the location of polyadenylation signals. (B) Horizontal arrows 

indicate the direction and approximate position of the regions sequenced. (C) 

Nucleotide sequences in bold and marked # Al to A 7 above the line indicate 

polyadenylation signals. The regions recognized by the various oligonucleotides used 

for screening eDNA clones, Southern and Northern blotting and for primer extension 

are underlined and in bold; the names of the oligonucleotides are given above the 

appropriate nucleotide sequences. Note that the 3' end of oligonucleotide GPA-Nl 

and the 5' end of oligonucleotide GP A-N2 overlap by three nucleotides. Also note 

that oligonucleotides GPA-Nl and GPA-C are mixtures whereas the others are exact 

sequence oligonucleotides. 
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(C) 

1 CAGGAACCAGCTCATGATCTCAGG 

25 ATGTATGGAAAAATAATCTTTGTATTACTATTGTCAGCAATTGTGAGCATATCAGCATCAAGTACCACTGGTGTGGCAATGCACACTTCA 
M Y G K I I F V L L L S A I V S I S A S S T T G V A M H T S 

GPA-N1 GPA-N2 
115 ACCTCTTCTTCAGTCACAAAGAGTTACATCTCATCACAGACAAATGATACGCACAAACGGGACACATATGCAGCCACTCCTAGAGCTCAT 

T S S S V T K S Y I S S Q T N D T H K R D T Y A A T P R A H 
GPA-C2 

205 GAAGTTTCAGAAATTTCTGTTAGAACTGTTTACCCTCCAGAAGAGGAAACCGGAGAAAGGGTACAACTTGCCCATCATTTCTCTGAACCA 
E V S E I S V R T V Y P P E E E T G E R V Q L A H H F S E P 

295 GAGATAACACTCATTATTTTTGGGGTGATGGCTGGTGTTATTGGAACGATCCTCTTAATTTCTTACGGTATTCGCCGACTGATAAAGAAA 
E I TL I I FGVMAGVI GT ILL I SYG I RRL I KK 

GPA-C 
385 AGCCCATCTGATGTAAAACCTCTCCCCTCACCTGACACAGACGTGCCTTTAAGTTCTGTTGAAATAGAAAATCCAGAGACAAGTGATCAA 

S P S D V K P L P S P D T D V P L S S V E I E N P E T S D Q 

475 TGAGAATCTGTTCACCAAACCAAATGTGGAAAGAACACAAAGAAGACATAAGACTTCAGTCAAGTGAAAAATTAACATGTGGACTGGACA 
END 

#A1 
565 CTCCAATAAATTATATACCTGCCTAAGTTGTACAATTTCAGAATGCAATTTTCATTATAATGAGTTCCAGTGACTCAATGATGGGGAAAA 

655 AAATCTCTGCTCATTAATATTTCAAGATAAAGAACAAATGTTTCCTTGAATGCTTGCTTTTGTGTGTTAGCATAATTTTTAGAATTGTTT 

745 GAGAATTCTGATCCAAAACTTTAGTTGAATTCATCTACGTTTGTTTAATATTAACTTAACCTATTCTATTGTATTATAATGATGATTCTG 
#A2 

835 TCAAATGAAAGGCTTGAAATACCTAGATGAAGTTTAGATTTTCTTCCTATTGTAAACTTTTGAGTCTGGTTTCATTGTTTTAAATAAATT 

925 AAGGGGACACTAAAGTCCTATCATTCATTCCTTCATTCTGAACAGGCAAGATATAATATTACATGAATGATTACTATATTTTGTTCACAC 
tiA3 

1015 TAATAAAGCTTATGCTCAGAAATGCCATACACACACACAAACACACACATTTATCATTTAATGCATAAATCAACACAAAAGGTTTTCCCA 

1105 TTAATATGAAATATTACATATATATAAGTGCCATATTTAAAATAATTTGTCTAACAGTAGAACTATGTCGGAGCACTCACTGAAGCTTCG 

1195 ATTTCCCACTGAAAGAGTTATTTGTTGTAAGTAGAGTTATCCCGGAGAAGGAAAAAGAACTTACGACCTTTCTTTATAACAGAAAGCTCA 

1285 ACTCTAAATTCAACAAGATGTGCAAACCGGACATGCAGGTGAATATTTTAATAGGTTACTATAAGGTTCTCAATTAAATTCTTTAATCTG 
#A4 

1375 TCCAGTCCCAGTTTCTCTTATTAATAAAACTTTGGAAATTGCTTTAAACCATTTAAAGGAAATTTCTAGATATAGAAACTAAAGGACTGT 

1465 GACTATACAGTGTCACTCATTTGTAGTAAAACTTAAAAAGCAAAAACAAAAAACAAAAAAGACCTTCCTGTGATACTTTATTTCCGAACT 
#AS GPA-MS 

1555 AATAAAAATCTATATGACTTTTTATTATTGTGTGATAACCAAGTAAATGTTTTCTATTTTCGATATTTTCAGGCATGGTAACAGAAATTT 
iiA6 

1645 ACCTTTTAATAAATTAAAAAATCTAAATTTTAACCTACTTGTATGTTCGGAGAGTGTTTTTGTACTATATTGACTACTTAAAATAGAGAA 
GPA-Ml2 

1735 TGAGACTAAGAAGGGAACATTTCTGTTGATACATGTTTTTTAAAAGTAATTTTTAAGAGCATTATTAGGTTAATTTAATCCAATTAATGA 
#A7 GPA-Ml1 

1825 CCCAAATGCCAAGGTAATTTTAAATTTACATTTTTAATAAAAGCAACATGTTGAAACAAGAGAGGGTGAGATTAACCTTTTTGCTAAAGT 

1915 AATTTACAAGTCAAAGACAGGAAGAGATCAGAGTGAATGTGCCTTCTTAACCAGAGCTACAGAATTTAGTGAATAATTAAAGTACAAACT 
GPA-L 

2005 GCTTTGACCTCCTTGAACTTTTCCAAGCAATTTCTCTGTACTTCTATATATGAATGTCTTAGCCAATTTTCTGCTACTATAACAGAATAC 

2095 GACAGACTGCC 
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artifacts, i.e. incomplete synthesis of cDNAs in this region. The 5' untranslated region 

for .i..-gpa1, .i..-gpa5 and .i..-gpa6 had 24 bases, that for .i..-gpa7 had 36 bases and that 

for .i..-gpa3 and .i..-gpa4 had 42 bases. In addition as stated before, .i..-gpa3 had 24 

bases more at the 3' end than the other 0.8 kbp fragments corresponding to 

nucleotides 747 to 771 in the nucleotide sequence of .i..-gpa6 [section 3.5.3, Fig. 3.10 

(C)]. Further, the 0.8 kbp fragment from .i..-gpa5 had the complete coding sequence 

for the AN polymorphic form of glycophorin A in which leucine and glycine are found 

in positions one and five (numbered from the NH2-terminus), respectively, whereas 

the other five 0.8 kbp fragments had the coding sequence for glycophorin AM which 

contains serine and glutamic acid in these positions (Dahr et al., 1977; Wasniowska 

et al., 1977; Blumenfeld and Adamany, 1978; Furthmayr, 1978b; Lisowska and 

Wasniowska, 1978). Apart from these differences, the six 0.8 kbp fragments were 

identical. 

3.5.2. Nucleotide sequences of the 1.3 and 0.9 kbp EcoRl fragments 

Partial nucleotide sequence of the 0.9 kbp fragments from .i..-gpa3 and .i..-gpa5 

and a comparison with that of the 1.3 kbp fragment of .i..-gpa6 revealed that both of 

the 0.9 kbp fragments were similar in sequence to one end of the 1.3 kbp fragment 

indicating that the 1.3 kbp fragment was an extension of the 0.9 kbp fragment. The 

complete nucleotide sequence of .i..-gpa6 determined later was compared with that 

of the 0.9 kbp fragments; it revealed that both of the 0.9 kbp fragments had 

nucleotide sequences identical to those of .i..-gpa6 extending from nucleotide 771 to 
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nucleotide 1667 [(Fig. 3.10 (C)]. 

Since neither the 1.3 kbp nor the 0.9 kbp fragments contained any overlapping 

sequences to 0.8 kbp fragments of the six clones, it was concluded that these 

fragments Jay outside the 0.8 kbp fragments, i.e. in the 5 ~ or 3 ~ untranslated regions. 

This view was also supported by the lack of oligonucleotide hybridization to the 0.9 

and 1.3 kbp fragments in the Southern blots of the six eDNA clones (Fig. 3.6 to 3.9). 

However, the placement of these fragments either at 5 ~ or 3 ~ untranslated region 

remained enigmatic. While this work was still in progress the nucleotide sequence of 

a eDNA encoding glycophorin A was published by Rahuel eL al. (1988) comparison 

of which with that of the 1.3 kbp fragment of .A-gpa6 revealed some homology; more 

than 160 nucleotides of the 1.3 kbp fragment of .A-gpa6 [nucleotides 771 to 935, Fig. 

3.10 (C)] were found to be similar to those in the 3 ~ untranslated region of the 

eDNA (nucleotides 803 to 967) isolated by Rahuel et al. (1988). Therefore, the 1.3 

kbp fragment of .A-gpa6 as well as the 0.9 kbp fragments of .Agpa3 and .Agpa5 must 

have arisen from the 3 ~ untranslated region of glycophorin A mRNA (Fig. 3.10 A 

and B). The gaps indicate that no continuous fragment containing these sequences 

had been isolated in the present study. Once these fragments were localized to the 

3 ~ untranslated region it became clear that beside having minor differences in 5 ~ 

untranslated regions, the cDNAs varied greatly in the length of their 3 ~ untranslated 

regions. There were about 270 nucleotides of the 3 ~ untranslated region in .A-gpa1, 

.A-gpa4, and .A-gpa7, 1190 in .A-gpa3 and .A-gpa5, and 1628 in .A-gpa6. 
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3.5.3. Complete nucleotide sequence of J..-gpa6 

Since partial sequencing of the six eDNA clones did not reveal any major 

difference in the coding or 5' untranslated region but revealed that they differed in 

the length of their 3' untranslated regions, further efforts were concentrated on 

determining the complete nucleotide sequence of the largest clone, J..-gpa6. With the 

exception of a few regions the nucleotide sequence analysis of most of the J..-gpa6 

eDNA was performed in both orientations to determine the complete nucleotide 

sequence without any ambiguities (Fig. 3.10 B). To achieve this goal, the 0.8 kbp 

fragment of J..-gpa6 was subcloned into the Bluescript vector. The 1.3 kbp fragment 

was also subcloned separately in two opposing orientations in the Bluescript vectors. 

This was followed by subjecting the Bluescript subclone containing the 0.8 kbp 

fragment of J..-gpa6 to exonuclease III-mung bean nuclease deletion procedure to 

remove nucleotides from the 3' end (section 2.19.1). The two Bluescript subclones 

containing the 1.3 kbp fragment of J..-gpa6 in opposite orientation were also subjected 

to the exonuclease III-mung bean nuclease deletion procedure. 

The nucleotide sequence of various subclones with different extents of 

deletions was determined using various primers, including the M13 universal, M13 

reverse, KS, SK, GPA-N2 and GPA-C2. The nucleotide sequence determined for the 

J..-gpa6 insert is shown in Fig. 3.10 (C). This nucleotide sequence of J..-gpa6 also 

contains the sequence of the small EcoRI fragment (24 nucleotides) of J..-gpa31ocated 

between two internal EcoRI sites [Fig. 3.10 (A)] corresponding to nucleotides 747 and 
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771 [Fig. 3.10 (C)]. This fragment was not detected in any of the subclones except in 

a subclone of l..-gpa3. It was possible that due to its small size this fragment remained 

undetected and was lost at some stage of cloning. 

The sequence depicted in Fig. 3.10 (C) in addition to containing 393 

nucleotides encoding 131 amino acids residues of glycophorin A, also contained 24 

nucleotides of 5/ untranslated region, 57 nucleotides encoding a signal peptide 19 

arrtino acids long and 1628 nucleotides of the 3/ untranslated region. As mentioned 

before (chapter 1) glycophorin A is encoded by a single gene and produces three 

different sized mRNAs (2.8, 1.7 and 1.0 kb, Siebert and Fukuda, 1986b). The 

examination of the nucleotide sequence in the 3/ untranslated region revealed the 

presence of seven polyadenylation signals (AAUAAA) giving rise to the notion that 

they may have a role in the production of multiple mRNAs from a single glycophorin 

A gene. 

It was interesting to note that even though the coding region was only 450 

nucleotides long and the 5 / untranslated region contained only 24 nucleotides, the 

eDNA contained a very large 3/ untranslated region more than three times the length 

of the coding region. It should be noted however, that this eDNA clone l..-gpa6 of size 

about 2.1 kbp did not fully represent the largest glycophorin A mRNA whose size is 

2.8 kb. Therefore, the actual size of the 3/ untranslated region of the largest mRNA 

must be more than 1628 nucleotides long. 
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3.6. Discussion 

3.6.1. Comparison with sequences for other glycophorin A cDNAs 

Nucleotide sequences similar to that presented in Fig. 3.10 (C) have been 

reported by other groups (Rahuel et al., 1988; Siebert and Fukuda, 1986a, b; Tate 

and Tanner, 1988). Comparison of the sequence I had found for nucleotides 1 to 488 

in A-gpa6 [Fig. 3.10 (C)], revealed that it was identical to that reported by Kudo and 

Fukuda (1989) for a glycophorin A genomic clone isolated from a K562 cell genomic 

DNA library. Another genomic clone termed A6 isolated from a human leucocyte 

genomic DNA library also had nucleotide sequence similar to nucleotides 1 to 488 

of A-gpa6 (Vignal. et al., 1990). Further, nucleotides 90 to 935 of A-gpa6 were 

identical to nucleotides 10 to 854 for a clone isolated from a human foetal liver 

eDNA library containing almost the full coding region, starting from amino acid four 

of glycophorin A, and more than 400 nucleotides of 3 ~ untranslated region in 

addition to a poly (A) tail (Rahuel et al., 1988). The sequence of the 5 ~ untranslated 

region and the coding region of the eDNA clones I isolated was similar to that of a 

composite eDNA reported by Rahuel et al. (1989) from a human foetal liver eDNA 

library, but varied slightly in the 3 ~ untranslated region. These differences in 

sequence of the 3" untranslated region could be attributed to sequence polymorphism 

for the clones isolated from two different tissues, or to sequencing artifacts. 

The A-gpa6 sequence reported here also differed from the first partial 

glycophorin A eDNA sequence from a K562 cell eDNA library reported by Siebert 
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and Fukuda (1986b) but agreed, except for one base, with the revised sequence 

published by the same authors (Siebert and Fukuda, 1986a). The difference was that 

T not A was present in i..-gpa6 at position 228 [Fig. 3.10 (C)]; however, this 

difference would result in a silent mutation. 

Tate and Tanner (1988) sequenced a glycophorin A eDNA clone named ALP1 

which was obtained from a human reticulocyte eDNA library. The sequence was 32 

nucleotides longer than i..-gpa6 at the 5" end and terminated at nucleotide 935 [Fig. 

3.10 (C)] but also contained 16 nucleotides of a poly (A) tail. The size of 

approximately 970 nucleotides for this clone suggested that it was derived from the 

smallest glycophorin A mRNA of about 1.0 kb size. The following nucleotide 

positions in ALP1 which contained the bases given in parentheses differed from those 

in i..-gpa6 [Fig. 3.10 (C)]: 62(A), 83(T), 95(A), 96(G), 117(T) and 552(C). The bases 

in positions 83, 95 and 96 in ALP1 would result in glycophorin A with leucine and 

glutamic acid at amino acid residues one and five, instead of serine and glycine which 

the sequence in the present report predicts [Fig. 3.10 (C)]. This demonstrates that 

ALP1 and i..-gpa6 code for the polymorphic N and M forms of glycophorin A, 

respectively. The difference at nucleotide 62 would result in glutamic acid at amino 

acid position minus seven in the signal sequence in ALPl and alanine in i..-gpa6. It 

was suggested that the amino acid at this position represents yet another polymorphic 

site in glycophorins AM and AN with a glutamic acid in AN and an alanine in AM 

(Tate and Tanner, 1988). The sequence I obtained for eDNA clone i..-gpa5, like 
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ALP1, had bases T, A and G in positions 83, 95 and 96 and, therefore, codes for 

glycophorin AN. Unlike ALP1, however, l-gpa5 had the same base as l-gpa6 in 

positions 62 which would result in alanine and not glutamic acid as predicted by Tate 

and Tanner (1988). Hence, the data presented in this thesis do not support the 

conclusion drawn by Tate and Tanner (1988) regarding the minus seven position. 

Finally the differences at positions 117 and 552 represent silent mutations. 

3.6.2. Relationships between cDNAs and mRNAs 

The eDNA clones I isolated can be grouped into three size classes; 0.8 kbp (l

gpa1, l-gpa4 and l-gpa7), 1.7 kbp (l-gpa3 and A.-gpa5) and 2.1 kbp (A.-gpa6). Mere 

comparison of these three size classes with those of the three glycophorin A mRNAs 

gave rise to the notion that these cDNAs were representative of the three 

glycophorin A mRNAs. The three smaller cDNAs (l-gpa-1, l-gpa4 and l-gpa7) of 

size 0.8 kbp could arise from the smallest (1.0 kb) glycophorin A mRNA. The two 

medium sized-eDNA clones (l-gpa3 and l-gpa5) could represent the medium size 

(1.7 kb) mRNA. The eDNA clone (A.-gpa6) could be an incomplete representation 

of the largest (2.8 kb) glycophorin A mRNA. 

However, a closer examination of the nucleotide sequence data revealed that 

the three smallest cDNAs of 0.8 kbp could be generated from any of the large 

cDNAs, since there were two sites [beginning at nucleotide 747 and 771, Fig. 3.10 

(C)] containing the recognition sequence for the restriction endonuclease, EcoRI. The 
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significance of the two sites is that EcoRl was used during cloning to remove excess 

EcoRI linkers from eDNA fragments before insertion into the EcoRI site of the lgtlO 

vector (section 2.13). Hence, the 0.8 kbp fragment could have been generated by 

EcoRI digestion of eDNA derived from any one of the glycophorin A mRNAs due 

to incomplete protection of the two sites by EcoRI methylase during the cloning 

procedure. Nevertheless, it seems reasonable to postulate that at least one of the 

three 0.8 kbp cDNAs was derived from the 1.0 kb mRNA, since the latter was found 

to be the second most abundant of the three glycophorin A mRNAs (section 4.3.2.1). 

The two medium sized-cDNAs (l-gpa3 and l-gpa5) of sizes 1.7 kbp seemed 

to be derived from the medium length ( 1. 7 kb) glycophorin A mRN A. Both of these 

eDNA clones had similar coding regions except that l-gpa5 encoded glycophorin AN 

while clone l-gpa3 encoded glycophorin AM. Both clones had similar 5 ~ untranslated 

regions except l-gpa3 had 17 nucleotides more than l-gpa5 in this region. When the 

sequences at the 3 ~ end of these two clones were compared, they showed a complete 

identity up to nucleotide 1667 with l-gpa6 [10 nucleotides downstream from poly( A) 

addition signal # 6, Fig. 3.10 (C)]. Since these two clones (i.e. l-gpa3 and l-gpa5) 

apparently derived from two distinct glycophorin A mRNAs (encoding glycophorin 

AM and AN) had identical 3 ~ end sequences it was reasonable to suggest that this 

identity could not arise by chance but represented the true 3 ~ end of the mRNAs of 

this class (i.e. 1.7 kb). Therefore, these cDNAs (l-gpa3 and l-gpa5) most probably 

represented the structure of medium size glycophorin A mRNA of similar size (1.7 
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kb) encoding glycophorins AM and AN. The presence of poly(A) sequence in either 

of these clones would have confirmed that they were derived from 1. 7 kb mRNA. 

Unfortunately a poly(A) sequence was absent from the subclones for both of the l..

gpa3 and l..-gpa5. The sequence was probably lost at some stage of cloning and hence 

could not provide the evidence supporting the conclusion that the two medium size 

cDNAs (1..-gpa3 and l..-gpa5) were derived from 1.7 kb mRNA. 

Clones l..-gpa3 and l..-gpa5 of size 1. 7 kb could not have been derived from 

mRNA of 1.0 kb. However, another possibility was that the cDNAs were reverse 

transcribed from the largest glycophorin A mRNA by internal priming. The 

nucleotide sequence of the largest eDNA clone [J..-gpa6, Fig. 3.10 (C)] showed that 

in a position close to the 3 ' end of the two clones, between nucleotides 1660 and 

1671 in the l..-gpa6 sequence, there is an A-rich stretch which could serve as a 

template for oligo ( dT) primed eDNA synthesis. Hence, it was also possible that the 

two medium size eDNA clones were derived from the large mRNA by priming in this 

region. However, the possible origin of A.-gpa3 and A.-gpa5 from 2.8 kb mRNA by any 

mechanism seemed very unlikely since it would imply that at least three of the six 

eDNA clones which I isolated were derived from the least abundant mRNA (section 

4.3.2.1). Therefore, the most reasonable conclusion is that A.-gpa3 and A.-gpa5 were 

derived from the medium sized-mRNA. 
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The eDNA clone of size 2.1 kbp ().-gpa6) certainly could not have been 

derived from the two smaller mRNAs of sizes 1.7 or 1.0 kb. Therefore, it seemed to 

represent, although incompletely, the largest glycophorin A mRNA of size 2.8 kb. 

Regardless of whether or not the three size classes of the eDNA were 

representative of three mRNAs for glycophorin A, differences in the primary 

structure of the three glycophorin A mRN As could be predicted on the basis of the 

eDNA sequences. No major differences were found in the 5 ' untranslated or coding 

regions. Indeed the only differences were found in the length of the 3 ' untranslated 

region. Furthermore, the presence of seven poly(A) addition signals in A-gpa6 

suggested that they may have a role in generating multiple glycophorin A mRNAs 

from a single gene. It is proposed that multiple glycophorin A mRNAs are produced 

by differential processing at the 3' end of pre-mRNA, via mechanisms discussed in 

chapter 4. 



CHAP'I'ER 4 

RESULTS AND DISCUSSION 

4.1. Investigation of mRNA structure 

Nucleotide sequences of the six eDNA clones did not reveal any differences 

in the coding regions. If the three glycophorin A mRNAs are all represented by the 

six cDNAs it would suggest that these mRNAs also do not vary in the coding region. 

It was, however, possible that the three glycophorin A mRNAs differed in their 5' 

or 3' untranslated regions or in both. I performed primer extension analysis and 

Northern blotting experiments using K562 cell RNA to investigate these possibilities. 

4.2. Primer extension analysis 

K562 cell RNA [total and poly( A)+] was subjected to primer extension analysis 

using oligonucleotide GPA-N2 as a primer which codes for amino acids 30 to 40 in 

the glycophorin A sequence [Fig. 3.10 (C)]. This analysis should establish the length 

of the 5' untranslated region of the three glycophorin A mRNAs. Oligonucleotide 

GPA-N2 was selected as a primer since it would only anneal with the mRNAs for 

glycophorin A but not with that of glycophorin B (also see section 3.1). The size of 

the expected product was calculated as follows: the signal peptide was 19 amino acids 

long (57 nucleotides); this was followed by 29 amino acids (87 nucleotides) of 

glycophorin A sequence to the start of the region coded by GPA-N2; and the 
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oligonucleotide GPA-N2 was itself 33 nucleotides long. Adding these nucleotides gave 

177 nucleotides (Fig. 3.10 (C)]. Furthermore, nucleotide sequencing of the six eDNA 

clones had shown that they contained 24 (J..-gpa1, J..-gpa5, J..-gpa6), 36 (J..-gpa3, J..

gpa4) and 42 ().-gpa7) nucleotides of 5'' untranslated region. Therefore, a fragment, 

at least 201 nucleotides long (including at least 24 nucleotides of the 5 ~ untranslated 

region) was expected to be produced using GPA-N2 as a primer in the reverse 

transcriptase reaction. Furthermore, if there was a single initiation site for all three 

glycophorin A mRNAs, only one major product was expected whereas if there was 

more than one initiation site giving rise to mRNAs of different sizes additional 

products of more than 201 nucleotides were also expected. 

To determine the size of primer extended product the 0.8 kbp eDNA insert 

from ).-gpa6 subcloned in Bluescript plasmid was nucleotide sequenced using GPA

N2. This nucleotide sequencing reaction was run side by side with the primer 

extension reaction (lanes G, A, T, C in Fig. 4.1). By reading the nucleotide sequence 

of the eDNA fragment the size of various bands could be determined; the size of the 

primer extended product could then be deduced accurately by comparing its position 

with those of bands in sequencing lanes. 

Primer extension analysis of K562 cell poly( A) + RNA revealed a single, major 

product greater than 201 nucleotides long [Fig. 4.1 (A), lanes 1 and 3]. A fragment 



Fig. 4.1 Primer extension analysis of K562 cell RNA. 

Oligonucleotide GP A-N2 was used as a primer to extend 10 and 5 J.Lg K562 cell 

poly(A)+ RNA (lanes 1 and 3, respectively), or 50 and 100 J.Lg total RNA (lanes 2 

and 4, respectively). The reaction products were analyzed on a 5% polyacrylamide 

gel containing 7 M urea and the dried gel was exposed to X ray film for: (A) 4 days, 

or (B) 14 days. The numbers on the left indicate the positions that products 

containing 150 and 200 bases would be found based on sequencing reactions (lanes 

G, A, T and C) which used a Bluescript plasmid containing 0.8 kbp EcoRI fragment 

of l-gpa6 and oligonucleotide GP A-N2 as a primer. The suggested position of the 

major, full-length, primer-extended product is indicated by 5 ". 
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of similar size was also obtained when total K562 cell RNA was used as template [Fig 

4.1 (A), lanes 2 and 4]. The size of the major product was found to be about 230 

nucleotides when its position was compared with the band in the nucleotide 

sequencing reactions of the Bluescript plasmid as described above. 

With the exception of some faint bands which might represent the 5' 

untranslated region most of the bands in the lower part of the gel that were of 

smaller sizes than 201 nucleotides in length [Fig. 4.1 (A), lanes 1 and 3) were 

presumably due to premature termination during reverse transcription. None of these 

additional bands could be functional 5 ' end as they were too small to even approach 

the 5' end of the coding region. The above conclusion was consistent with the 

nucleotide sequence analysis I performed, as well as that of others (Siebert and 

Fukuda, 1986a, b; Tate and Tanner, 1988; Rahuel el al., 1988). These nucleotide 

sequence analyses had shown that various clones did not have any major variation in 

the coding regions. Therefore, it was safe to assume that the three glycophorin A 

mRNAs did not differ in their coding sequence (also see section 3.5). Hence, the 

bands in the lower part of the gel were presumably due to premature termination. 

It was also possible that minor components of higher molecular size remained 

undetected. Therefore, the gel was exposed for longer periods [Fig. 4.1 (B)]. No 

additional higher molecular size bands were visible even after a long exposure of 14 

days [Fig. 4.1 (B), lanes 1 to 4). 
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Another point worthy of consideration was that the three mRNAs were 

present in approximate proportions of 30%, 60% and 10%, for the large, medium 

and small mRNAs, respectively (discussed in section 4.3.2.1). Thus, if each mRNA 

was transcribed from its own unique 5' terminus, three bands in approximately these 

proportions were expected to be produced by reverse transcription of glycophorin A 

mRNAs. This was not the case for the multiple bands produced by primer extension 

[Fig. 4.1 (A)]. 

The primer extension experiments showed that all three glycophorin A 

mRNAs had the same 5' end which in turn represented a unique initiation site for 

transcription of the glycophorin A gene. This analysis also revealed that the length 

of the 5' untranslated region for the three glycophorin A mRNAs was about 53 

nucleotides long. Similar lengths of 5' untranslated region have been reported by 

other investigators (Tate and Tanner, 1988; Kudo and Fukuda, 1989, Rahuel et al., 

1989, Vignal et al., 1990). 

4.3. Northern blotting 

Nucleotide sequencing of various eDNA clones isolated in the present study 

showed that they varied in the length of their 3 ' untranslated region which suggested 

that the three glycophorin A mRNAs also differed in this region. Further, primer 

extension analysis performed around the same time when Northern blotting 

experiments were performed, revealed that the three glycophorin A mRNA do not 



226 

vary in their 5" untranslated regions. Hence, to confirm these findings of primer 

extension analysis and nucleotide sequence of the cDNAs I performed Northern 

blotting experiments using various oligonucleotide probes. Furthermore, since the 

nucleotide sequence analysis of various cDNAs suggested that the three glycophorin 

A mRNAs vary in the length of their 3" untranslated regions, the Northern blotting 

experiments were also performed to set up the limits of the 3" untranslated regions 

in the three glycophorin A mRNAs as described in following sections. 

4.3.1. Design of oligonucleotides 

The sequences of oligonucleotides GP A-MS, GP A-MLl, GP A-ML2 and GPA

L were complementary to the sequences of 3" untranslated regions in the largest 

eDNA clone (A.-gpa6). Additionally, oligonucleotide GPA-N2 that was complementary 

to the coding sequence and was used for screening the eDNA library was also used 

for Northern blotting experiments. The selection of these particular sequences was 

based upon the following rationale. 

4.3.1.1. Oligonucleotide GPA-N2 

This oligonucleotide (33 nucleotides long) contained sequences complementary 

to a region of glycophorin A not present in glycophorin B (amino acids 30 to 40, 

section 1.8.1 and section 3.1 ). This oligonucleotide was expected to hybridize only 

with the glycophorin A mRNAs and since the three glycophorin A mRNAs were not 

expected to vary in their coding regions it was predicted that GP A-N2 would 

hybridize to all three glycophorin A mRNAs. 
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4.3.1.2. Oligonucleotide GPA-MS 

Nucleotide sequencing of two middle-sized eDNA clones (namely l..-gpa3 and 

1..-gpaS of sizes 1. 7 kbp) revealed that they had similar sequences with a minor 

difference in that l..-gpa3 encoded glycophorin AM while 1..-gpaS encoded glycophorin 

AN (section 3.5). Hence they must represent two distinct glycophorin A mRNAs. The 

similarity in size of clones l..-gpa3 and l..-gpa5 to that of the medium-sized mRNA 

suggested they were reverse transcribed from this mRNA. Furthermore, the 

nucleotide sequence of the two clones was identical to that of l..-gpa6 in the 3' 

untranslated region up to nucleotide 1667 which was 10 nucleotides downstream from 

the poly( A) addition signal# 6. If the notion was correct that the two eDNA clones 

of 1.7 kbp in length represented the middle size mRNA species, then any 

oligonucleotide complementary to the region beyond poly(A) addition signal #2 

extending up to nucleotide 1667 would hybridize with the mRNA of 1.7 and 2.8 kb 

and not with that of 1.0 kb in length. Therefore, oligonucleotide GP A-MS was 

synthesized which was complementary to nucleotides 1623 to 1647, four nucleotides 

5' to the poly( A) addition signal #6 in the sequence of l..-gpa6 [Fig. 3.10 (C)]. 

4.3.1.3. Oligonucleotide GPA-MLl and GPA-ML2 

There were seven poly( A) addition signals in l..-gpa6 and six in l..-gpa3 and l..

gpa5. There were about 200 nucleotides between poJy(A) addition signal# 6 and# 

7 [Fig. 3.10 (C)]. Since no poly(A) tail was detected in either subclones of l..-gpa3 and 
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A.-gpa5 it was not possible from nucleotide sequence data to determine if these clones 

completely represented the 1.7 kb mRNA species or if they lacked some sequences 

of the 3' untranslated region including as far as poly( A) addition signal # 7. 

Therefore, to further define the 3' boundary of the 1.7 kb mRNA, oligonucleotides 

GPA-ML1 and GPA-ML2 were synthesized. Oligonucleotide GPA-ML1 was 

complementary to the l..-gpa6 sequence from nucleotide 1871 to 1894 (five 

nucleotides 3' to poly( A) addition signal # 7 and oligonucleotide GPA-ML2 was 

complementary to the nucleotides 1814 to 1838, 21 nucleotides 5' to the poly( A) 

addition signal # 7 [Fig. 3.10 (C)]. If the poly(A) addition signal # 6 was used for 

producing the medium size (1.7 kb) glycophorin A mRNA then this mRNA would 

not show hybridization with both oligonucleotides GP A-ML1 and GP A-ML2. Since 

the small (1.0 kb) mRNA could not have sequences complementary to nucleotides 

1814 to 1838 or to 1871 to 1894 it was predicted that it would not show hybridization 

with GPA-ML1 or GPA-ML2. Obviously the large mRNA (2.8) should show 

hybridization with the above two oligonucleotides (GPA-MLJ and GPA-ML2). If the 

1.7 kb mRNA species was generated by using poly( A) addition signal# 7 both of the 

larger glycophorin A mRN As ( 1. 7 and 2.8 kb) would be expected to hybridize with 

oligonucleotides GP A-ML2 and only the large glycophorin A mRNA would hybridize 

with GPA-MLl. 
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4.3.1.4. Oligonucleotide GPA-L 

eDNA clone J..-gpa6 was concluded to have been derived from the largest 

glycophorin A mRNA (section 3.6.2). If the prediction that the medium-sized 

glycophorin A mRNA was derived by 3" end processing utilizing poly( A) addition 

signal# 6 was correct this mRNA (1.7 kb) would not contain sequences down stream 

from poly(A) addition signal #6 or #7. Hence, oligonucleotide GPA-L recognizing 

sequences [nucleotides 2056 to 2081, Fig. 3.10 (C)] downstream from the poly(A) 

addition signal# 7 (nucleotides 1661 to 1666) was not expected to hybridize with the 

medium size (1.7 kb) glycophorin A mRNA. Therefore, it was predicted that GPA-L 

would hybridize only with the large glycophorin A mRNA (2.8 kb) and not with the 

smaller mRNAs (medium, 1.7 kb or small, 1.0 kb). 

4.3.2. Oligonucleotide/ds eDNA fragment hybridization 

4.3.2.1. RNA hybridization with GPA-N2/0.8 kbp EcoRI fragment of J..-gpa6 

Oligonucleotide GPA-N2 was hybridized with K562 cell RNA at 50°C and 

washed subsequently for 5 min in 6 X SSC containing 0.1% SDS at 60°C and exposed 

to X ray film (Kodak X-Omat AR) with two intensifying screens at -70°C for about 

18 h. After washing at 60°C and exposure to the film K562 cell poly(A)+ RNA 

revealed a sharp band and two very broad bands labelled 2.8, 1. 7 and 1.0 kb, 

respectively [Fig. 4.2 (A), lane 2]. In contrast, the poly(AY RNA lanes showed a very 

low level of hybridization of GP A-N2 with 18S and 28S ribosomal RNAs [Fig. 4.2 (A) 

lane 1]. The membrane was washed once again at 65°C [Fig. 4.2 (B)]. Under these 



Fig. 4.2. Northern blotting ofK562 cell RNA using as probes oligonucleotide GPA-N2 

and the 0.8 kbp EcoRI fragment of .i..-gpa6. 

K562 cell RNA was separated on a 1% agarose gel and blotted on nylon membrane 

which was then hybridized with 32P-labelled GPA-N2 (A, B), or with 32P-labelled 0.8 

kbp EcaRI fragment of .i..-gpa6 (C). The lanes contained: 1) Poly(AY RNA, 2 J.Lg, or 

2) poly(A)+ RNA, 10 J.Lg. The single lane in (C) contained poly(A)+ RNA. The final 

washing temperatures were: A) 60°C, B) and C) 65°C. The numbers 5.0 and 2.0 kb 

indicate the positions of the 28S and 18S ribosomal RNA, respectively. Positions of 

the three glycophorin A mRNAs large (2.8 kb), medium (1.7 kb) and small (1.0 kb) 

are also indicated. 
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conditions essentially the same result was obtained [Fig. 4.2 (B)]. The strongest signal 

of the three glycophorin A mRNAs bands was obtained after washing at 60°C but the 

background hybridization was slightly higher at this temperature than after washing 

at 65°C. This was clear in the lanes containing poly(AY RNA which showed very little 

hybridization signal with 28S and 18S ribosomal RNAs only after washing at 65°C 

[Fig. 4.2 (B), lane 1). The washing at 65°C resulted in very little background 

hybridization but the intensity of specific hybridization signal was also reduced. 

Nevertheless the background level of hybridization was low enough at 60°C so as not 

to interfere with the detection of specific signals. Therefore, for subsequent 

experiments hybridization with GPA-N2 at 50°C was followed by washing at 60°C. 

The size of the three RNAs detected by GPA-N2 was calculated by comparing 

their mobilities with those of the molecular size markers (0.24 to 9.5 kb RNA ladder, 

Bethesda Research Laboratories, Canada) run in parallel lanes (data not shown). The 

RNA band largest in size was found to be about 2.8 kb, whereas the size of two 

smaller RNAs proved to be difficult to measure accurately due to the broadness of 

the bands representing them. The larger of these two broad bands (labelled 1. 7 kb 

in Fig. 4.2) had a range in size between 1. 7 to 2.2 kb depending upon whether the 

leading or the lagging edge of the band was used to calculate the size. Similarly 

estimates for the smaller band ranged between the size of 1.0 to 1.2 kb. mRNAs of 

similar sizes have been reported previously by Siebert and Fukuda (1986b) (i.e 2.8, 

1.7 and 1.0 kb) isolated from K562 and human reticulocyte cells. Tate and Tanner 
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(1988) characterised three mRNAs also from K562 cells with the sizes of 3.2, 2.0 and 

1.2 kb. The three mRNAs from human spleen erythroblast were also described to 

have sizes of 2.2, 1. 7 and 1.0 kb (Rahuel et al., 1989). It is clear that although these 

various groups were dealing with the same three mRNAs encoding glycophorin A, 

their estimation of size was not very accurate, perhaps due to inherent difficulty in 

calculation of the accurate size of the broad RNA bands. I calculated the size of the 

large rnRNA to be about 2.8 kb and clearly not 3.2 or 2.2 kb. Furthermore, the two 

smaller species, as mentioned above had at least some component of 1. 7 and 1.0 kb 

as presented by Siebert and Fukuda (1986b ). Therefore, for these reasons and also 

because the three mRNAs were first reported by Siebert and Fukuda (1986b) their 

nomenclature will be used through out this dissertation, i.e. the large mRNA of 2.8 

kb, medium of 1. 7 kb and small of 1.0 kb. 

Densitometric scanning of the Northern blot shown in Fig. 4.2 revealed that 

the medium size glycophorin A mRNA was the most abundant (60%) followed by 

small (30%) and the large mRNAs (10% ). Similar proportions for the three 

glycophorin A mRNAs was also observed when another blot containing poly(A)+ 

RNA also from K562 cells was probed with the 0.8 kbp EcoRI fragment of /.-gpa6 

[Fig. 4.2 (C)]. The smear below the 1.0 kb mRNA [Fig. 4.2 (C)] was most probably 

due to the glycophorin B mRNA which was reported to be of size about 0.6 kb 

(Siebert and Fukuda, 1986a, b) or 0. 7 kb (Tate and Tanner, 1988). Glycophorin A 

and B share a considerable sequence homology both at amino acid as well as at the 
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nucleotide sequence levels (Blanchard et al., 1987; Siebert and Fukuda, 1987, also see 

section 3.1). The 0.8 kbp EcoRI fragment of A.-gpa6 which included the 24 

nucleotides of the 5' untranslated region as well as full coding region for glycophorin 

A might be expected to hybridize with the glycophorin B mRNA. Further, the smear 

below the 1.0 kb band could also be due to hybridization of the 0.8 kbp fragment 

with the transcript of a recently isolated novel glycophorin gene called E or inv which 

shares some sequence homology with glycophorin A, and which was reported to be 

of 0.7 kb in size (Kudo and Fukuda, 1989). Alternatively, the smear below the small 

mRNA band might represent the degradation products of glycophorin A mRNAs. 

4.3.2.2. Hybridization with GPA-MS 

Oligonucleotide GPA-MS which was complementary to the nucleotides 1623 

to 1647 in the eDNA (A.-gpa6), terminating just four nucJeotides 5' to the poly( A) 

addition signal # 6 [Fig. 3.10 (C)] was hybridized with K562 cell RNA at 50°C and 

the final stringent washes were performed at 50, 53, 57, and 62°C in 6 X SSC 

containing 0.05% SDS [Fig. 4.3 (A), (B), (C) and (D), respectively]. Under these 

conditions, when GPA-MS was hybridized with the K562 poly(A)+ RNA it revealed 

a broad band in the size range of about 1. 7 kb and a less abundant sharp band of 

about 2.8 kb but no 1.0 kb mRNA [Fig. 4.3 (A), lane 1 ]. These bands retained the 

signal after washing at higher temperatures [Fig. 4.3 (B), (C) and (D), lanes "1"]. This 

oligonucleotide did not show hybridization with the poly(AY RNA to any great extent 

(Fig. 4.3 (A), (B), (C) and (D), lanes "2"] even at the lowest washing temperature 



Fig. 4.3. Northern blotting of K562 cell RNA using as probe 32P-labelled 

oligonucleotide GPA-MS. 

K562 cell RNA was separated on a 1% agarose gel and blotted on a nylon membrane 

which was then probed with 32P-labelled GPA-MS. The lanes contained: 1) Poly(A)+ 

RNA, 10 IJ.g, or 2) poly(AY RNA, 2 IJ.g. The final washing temperatures were: A) 

50°C, B) 53°C, C) 57°C and D) 62°C. The numbers 5.0 and 2.0 kb indicate the 

positions of the 28S and 18S ribosomal RNA. The positions of the two glycophorin 

A mRNAs of 2.8, 1.7 kb showing specific hybridization are also indicated by arrow 

heads on the right hand side of the figure. 
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(50°C, Fig. 4.3 lane 2). Therefore, it was concluded that the hybridization of 

oligonucleotide GPA-MS was specific and the bands observed in poly(A)+ RNA lanes 

were due to specific hybridization with the glycophorin A mRNAs of 2.8 and 1.7 kb. 

The hybridization of GPA-MS with the medium-sized glycophorin A mRNA 

suggested that this mRNA contained the sequences at least up to the poly(A) 

addition signal# 6, close to nucleotide 1647 (GPA-MS). The lack of hybridization to 

the smallest glycophorin A mRNA confirmed the prediction that this RNA did not 

contain the sequences complementary to oligonucleotide GPA-MS. 

4.3.2.3. Hybridization with GPA-MLl and GPA-ML2 

Oligonucleotides GP A-ML1 and GPA-ML2 were hybridized with K562 cell 

RNA at 50°C and the final stringent washes were performed at 50, 53, 57, and 62°C 

in 6 X SSC containing 0.05% SDS. The oligonucleotide GPA-ML1 which was 

complementary to nucleotide 1871 to 1894 [beginning 5 nucleotides 3' to poly( A) 

addition signal # 7] in the eDNA l..-gpa6 sequence, hybridized with the 2.8 kb mRNA 

and, in addition, with a much less abundant component of about 2.0 kb [Fig. 4.4 (A), 

(B), (C) and (D), lanes "1"]. This oligonucleotide showed very little hybridization with 

the poly(AY RNA [Fig. 4.4 (A), (B), (C) and. (D), lanes "2"] indicating that this 

oligonucleotide hybridized specifically with the poly( A)+ RNA. The successive washes 

at increasing temperature showed that the 2.8 kb component retained the signal of 

hybridization to a great extent, while the 2.0 kb component showed a very low level 



Fig. 4.4. Northern blotting of K562 cell RNA using as probe oligonucleotide GPA

MLl. 

K562 cell RNA was separated on a 1% agarose gel and blotted on a nylon membrane 

which was then hybridized with 32P-labelled GPA-MLl. The lanes contained: 1) 

poly(A)+ RNA, 10 JJ.g, or 2) poly(At RNA, 2 JJ.g. The final washing temperatures 

were: A) 50°C, B) 53°C, C) 57°C and D) 62°C. The numbers 5.0 and 2.0 kb indicate 

the positions of the 28S and 18S ribosomal RNA. The position of the 2.8 kb mRNA 

is also indicated by the arrow head on the left hand side of the figure. 
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of hybridization signal after washing at 57°C [Fig. 4.4 (C), lane 1 ]. Therefore, this 

hybridization experiment was taken to conclude that the 2.8 kb mRNA included 

sequences up to at least nucleotide 1894 but the bulk of the medium-sized mRNA 

lacked these sequences. 

Oligonucleotide GPA-ML2 which was complementary to nucleotides 1814 to 

1838 [terminating 21 nucleotides 5 ~ to the poly( A) addition signal # 7] hybridized 

with the 2.8 kb mRNA and, in addition, to less abundant 2.0 kb and 5.0 kb 

components but not with the 1.0 kb mRNA [Fig. 4.5 (A), (B), (C) and (D), lanes "1"]. 

The hybridization of this oligonucleotide with the 2.0 kb component was much 

stronger than that observed with GPA-ML1 (compare Fig. 4.4 and 4.5, lanes "1"). The 

poly(AY RNA also showed a detectible level of signal [Fig. 4.5 (A), (B) and (C), 

lanes "2"]. The same hybridization pattern was retained after each successive higher 

temperature wash except that the 5.0 kb component lost signal to a greater extent 

than the 2.0 kb component [Fig. 4.5 (B), (C) and (D), lanes "1", also see section 

4.3.2.5] . In contrast, the poly(AY lanes (Fig 4.5, lanes "2") showed that the 2.0 and 

5.0 kb components retained the signal in a equal proportion which suggested that 

both 18S and 28S ribosomal RNAs hybridized with GPA-ML2 at a low leveL As 

concluded above for GPA-ML1, hybridization with GPA-ML2 was taken to indicate 

that the 2.8 kb RNA contained sequences at least as far as nucleotide 1838 but that 

most of the medium size mRNA did not contain sequences up to nucleotide 1814 to 

1838. 



Fig. 4.5. Northern blotting of KS62 cell RNA using as probe oligonucleotide GPA

ML2. 

K562 cell RNA was separated on a 1% agarose gel and blotted on a nylon membrane 

which was then hybridized with 32P-labelled GPA-ML2. The lanes contained: 1) 

poly(A)+ RNA, 10 J.Lg or 2) poly(At RNA, 2 J.Lg. The final washing temperatures 

were: A) 50°C, B) 53°C, C) 57°C and D) 62°C. The numbers 5.0 and 2.0 kb indicate 

the positions of the 28S and 18S ribosomal RNA. The position of the glycophorin A 

mRNAs of 2.8 kb is also indicated by the arrow head on the left hand side of the 

figure. 
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4.3.2.4. Hybridization with GPA-L 

Oligonucleotide GPA-L which was complementary to nucleotides 2056 to 2081 

in the eDNA (1..-gpa6) was hybridized with K562 cell RNA at 50°C and the final 

stringent washes were performed at 50, 53, 57, and 62°C in 6 X SSC containing 

0.05% SDS. Under these conditions, GPA-L hybridized with the 2.8 kb mRNA 

species and with two much less abundant components of about 2.0 and 5.0 kb [Fig. 

4.6 (A), (B), (C) and (D), lanes "1"]. Similar 2.0 and 5.0 kb components showed very 

low levels of hybridization in poly(At K562 cell RNA Janes when the membranes 

were washed at 50°C; this indicated that GPA-L did not hybridize with 18S and 28S 

ribosomal RNAs to a great extent [Fig. 4.6 (A), (B), (C) and (D), lanes, "2"]. The 

hybridization pattern in the lanes containing poly(A)+ RNA remained the same after 

washing at higher temperatures except that the 5.0 kb component lost most of the 

signal after washing at 57°C [Fig. 4.6 (C), lane 1 ]. Furthermore, the intensity of the 

hybridization signal of GPA-L with the 2.0 kb component in poly( A)+ lanes was less 

than with oligonucleotides GPA-MLl and GPA-ML2 (compare Fig. 4.4 to 4.6, 

lanes"l"). The results of hybridization of oligonucleotide GPA-L were taken to 

indicate that the large glycophorin A mRNA contained sequences including and 

beyond the nucleotides 2056 to 2081. Moreover, it was also concluded that the bulk 

of medium size mRNA did not contain the sequence complementary to this 

oligonucleotide. 



Fig. 4.6. Northern blotting ofKS62 cell poly(A)+ RNA using as probe oligonucleotide 

GPA-L. 

1{562 cell RNA was separated on a 1% agarose gel and blotted on a nylon membrane 

which was then hybridized with 32P-labelled GPA-L. The lanes contained: 1) poly(A)+ 

RNA, 10 JJ.g or 2) poly(AY RNA, 2 JJ.g. The final washing temperatures were: A) 

50°C, B) 53°C, C) 57°C and D) 62°C. The numbers 5.0 and 2.0 kb indicate the 

positions of the 28S and 18S ribosomal RNA. The position of 2.8 kb mRNA is also 

indicated by the arrow head on the left hand side of the figure. 
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The following conclusions can be drawn from the results of Northern blotting: 

(i) the hybridization of the various oligonucleotides suggested that the structures of 

these cDNAs accurately reflected the structures of the mRNAs; (ii) the 1.0 kb mRNA 

did not extend as far as nucleotides 1623 to 1647 (GPA-MS, Fig. 4.3); (iii) most of 

medium size (1.7 kb) mRNA extended beyond nucleotides 1623 to 1647 (GPA-MS, 

Fig. 4.3) but not as far as far as 1814 to 1838 (GPA-ML2, Fig. 4.5) or 1871 to 1894 

(GPA-ML1, Fig. 4.4); (iv) A minor component of about 2.0 kb recognized by GPA

ML1, GPA-ML2 and GPA-L (Fig. 4.4, 4.5 and 4.6) might be present; and (v) the 3' 

region of the 2.8 kb mRNA extended beyond nucleotide 2105 (i.e. beyond the end 

of clone l..-gpa6). 

4.3.2.5. The nature of the 2.0 kb component 

Oligonucleotides GPA-ML1, GPA-ML2 and GPA-L detected minor 

components of sizes 2.0 and 5.0 kb which suggested non-specific hybridization of 

these oligonucleotides with 18S and 28S ribosomal RNAs since similar 2.0 and 5.0 kb 

component were also detected by Northern blot analysis of poly( A)- RNA. (Fig. 4.4 

to 4.6, lanes "2"). However, the hybridization with the 2.0 kb component could not 

be attributed only to the hybridization with 18S ribosomal RNA as the level of 

hybridization with this component which varied for each oligonucleotide used was 

found to be different from that observed with the 5.0 kb component. Therefore, it 

was possible that the 2.0 kb component was in fact a fraction of a mixture of 

glycophorin A mRNA species designated medium-sized (1.7 kb). The highest level 
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of hybridization with this 2.0 kb component was observed with oligonucleotide GP A-

ML2 (Fig. 4.5) followed by GPA-MLl (Fig. 4.4) and GPA-L (Fig. 4.6), decreasing in 

that order. This indicated that a much larger fraction of the medium size mRNA 

species contained the sequences complementary to oligonucleotide GPA-ML2 than 

to GP A-MLl or GP A-L. This implied that although the most of the medium size 

RNA did not contain sequences complementary to all three oligonucleotides some 

fraction of the mRNA did contain sequences complementary to these 

oligonucleotides, i.e. the 1. 7 kb mRNA species was found to be heterogenous. 

Consistent with this idea was the observation that 1.7 kb mRNA was present as a 

broad band (Fig. 4.2). Furthermore, the different level of hybridization of the three 

oligonucleotides with the 2.0 kb component also suggested that the fractions of the 

medium size RNA containing the sequences complementary to these oligonucleotides 

was not equal, i.e. the fraction containing sequences complementary to GPA-ML2 

was significantly higher than to GPA-MLl and GPA-L. 

4.4. Discussion 

4.4.1. Investigations on differences among the three glycophorin A mRNAs 

In eucaryotic cells differential processing of the primary transcript can give rise 

to multiple mRNAs that differ from each other in their coding regions or in their 5 '

or 3 '-untranslated regions (Leff et al., 1986). Nucleotide sequencing of various eDNA 

clones, primer extension analysis of K562 cell mRNA and Northern blotting 

experiments indicated that although the three glycophorin A mRNAs had similar 



248 

nucleotide sequences they differed in the length of their 3' untranslated region. The 

following is a description of the possible differences in primary structures of the three 

glycophorin A mRNAs. 

4.4.1.1. Differences in the 5' untranslated region 

Nucleotide sequencing showed that the six eDNA clones encoding glycophorin 

A isolated in the present study did not differ significantly in their 5" untranslated 

region. (section 3.5). The small differences in the number of nucleotides in the 5" 

untranslated regions could not contribute to a significant degree to the size 

differences observed in three classes of eDNA. Assuming that the all three 

glycophorin A mRNAs were represented by the six cDNAs it was concluded that the 

three glycophorin A mRNAs also did not vary in the length of their 5 " untranslated 

region, a conclusion supported by primer extension analysis of K562 cell RNA as 

described next. 

Primer extension analysis (section 4.1) revealed that the three glycophorin A 

mRNAs had similar 5' untranslated region of about 53 nucleotides suggesting that 

the 5' untranslated region of glycophorin A mRNAs did not contribute to the large 

size differences seen among the three glycophorin A mRNAs. These findings were 

consistent with a single initiation site for the synthesis of the three glycophorin A 

mRNAs, a conclusion that was also supported by other published reports. For 

instance, Sl nuclease mapping showed the presence of a single initiation site for the 



249 

glycophorin A gene isolated from a K562 cell genomic library (Kudu and Fukuda, 

1989). The same report concluded that the 5" untranslated region was 55 nucleotides 

long. An identical length (55 nucleotides) was reported for the 5' untranslated region 

of a glycophorin A eDNA isolated from a human reticulocyte library (Tate and 

Tanner, 1988). Rahuel et al. ( 1989) also obtained an identical length (55 nucleotides) 

for the 5" untranslated regions by primer extension analysis of the three glycophorin 

A mRNAs isolated from spleen erythroblasts. The difference of two nucleotides in 

the length of the 5" untranslated region obtained in the present work and that 

reported by others could be attributed to sequencing gel artifacts. For instance, 

overexposure of the autoradiographs might have caused an error in determining the 

accurate length of the diffused band representing the primer extended product. 

Therefore, it was concluded that a similar 5" untranslated region of 55 nucleotides 

was present in the three glycophorin A mRNAs. It is interesting to note that a similar 

length was also reported for the 5' untranslated region of another sialoglycoprotein, 

glycophorin B, which is presumably derived from an ancestral gene in common with 

glycophorin A (Kudo and Fukuda, 1989). 

4.4.1.2. Differences in the coding region 

Nucleotide sequence analysis of the 0.8 kbp EcoRI fragments of the six eDNA 

clones did not reveal any differences in the segment corresponding to the coding 

region for glycophorin A except those representing the polymorphism of glycophorin 

AM and AN (section 3.5). If the assumption that all three mRNAs were represented 
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eDNA clones isolated in this work was correct, then the natural conclusion would be 

that the three glycophorin A mRNAs also had similar coding sequences. This 

assumption was supported by hybridization of the 0.8 kbp EcoRI fragment of eDNA 

clone l-gpa6, and of oligonucleotide GPA-N2 to K562 cell RNA on Northern blots 

(section 4.2.2.1). Hybridization of other oligonucleotides also with the K562 cell RNA 

(Siebert and Fukuda, 1986b) supported this notion. Moreover, the nucleotide 

sequence I found and that reported by others for cDNAs isolated from a K562 cell 

eDNA library (Siebert and Fukuda, 1986a, b), a human reticulocyte eDNA library 

(Tate and Tanner, 1988) and a human fetal liver eDNA library (Rahuel et al., 1988) 

were found to be virtually identical in the coding region and in the 5' and 3' 

untranslated regions (also see section 3.6.1) supporting the assumption that all three 

glycophorin A mRNAs shared common sequences. Finally, the amino acid sequence 

of glycophorin A has been known for a long time (Tomita and Marchesi, 1975; 

Tomita et al., 1978) but apart from the polymorphism of the MN blood group locus 

(Dahr et al., 1977; Wasniowska et al., 1977; Blumenfeld and Adamany, 1978; 

Furthmayr et al., 1978; Lisowska and Wasniowska, 1978) no other major distinct 

forms of glycophorin A have been reported. Therefore, it was concluded that all 

three mRNAs have identical coding regions thereby excluding this region as the basis 

for the observed size differences. 
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4.4.1.3. Differences in the 3, untranslated region 

The nucleotide sequence analysis of the six eDNA clones isolated in the 

present study showed that they varied in the length of their 3, untranslated region 

(section 3.5). Furthermore, seven poly(A) addition signals were detected in the 

nucleotide sequence of the largest eDNA clone, J..-gpa6. The presence of multiple 

poly( A) addition signals and various lengths for the 3' untranslated regions in the 

eDNA clones suggested that these poly(A) addition signals could be used 

differentially to produce the three glycophorin A mRNAs; this was possible only if 

the mRNAs also differed in the length of their 3' untranslated regions. A close 

examination of poly(A) addition signals revealed that they were located in positions 

suitable to generate mRNAs of 1.0 and 1.7 kb. Obviously, the largest size eDNA (J..

gpa6) of only 2.1 kb could not encode the complete nucleotide sequence of the large, 

2.8 kb mRNA. The Northern blotting experiments with oligonucleotides GPA-MS, 

GPA-MLl, GPA-ML2 and GPA-L (section 4.2.2.2, 4.2.2.3 and 4.2.2.4) supported the 

assumption that the three glycophorin A mRNAs differed in the length of their 3' 

untranslated regions. Recently, Rahuel el a!. (1989) reported similar results by 

investigation of eDNA clones isolated from a human fetal liver eDNA library. 

4.4.2. Proposed primary structures of three glycophorin A mRNAs 

Oligonucleotide hybridization with K562 cell RNA helped in defining the 3' 

boundary of the three glycophorin A mRNAs. Based upon these results, the primary 

structures for the three glycophorin A mRNAs are proposed (Fig. 4.7). These 



Fig.4.7. Proposed primary structures of the three glycophorin A mRNAs. 

This figure depicts the composite nucleotide sequence of the three glycophorin A 

mRNAs generated from the sequence of l-gpa6 (capital letters). The stretch of "N" 

(see text) and nucleotides presented in small letters are from Kudo and Fukuda 

(1989). The proposed boundaries of the 3" untranslated region of the two smaller 

mRNAs (1.0 and 1.7 kb) for glycophorin A are marked with arrows. The poly(A) 

addition signals (bold) are denoted by # Al to #A 7 and #An. Other sequence 

elements: instability sequence, AUUUA; and poxvirus termination signals 

UUUUUNU, marked Tl, T2 and T3 are underlined. The sequence corresponding 

to the conserved motif CA YTG is marked with double underlines. 
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5' 1 aguugucuuugguaguuuuuuugcacuaacuuCAGGAACCAGCUCAUGAUCUCAGG 

56 AUGUAUGGAAAAAUAAUCUUUGUAUUACUAUUGUCAGCAAUUGUGAGCAUAUCAGCAUCAAGUACCACUGGUGUGGCAAUGCACACUUCA 

M Y G K F V L L L S A v s S A S S T T G V A M H T S 

147 ACCUCUUCUUCAGUCACAAAGAGUUACAUCUCAUCACAGACAAAUGAUACGCACAAACGGGACACAUAUGCAGCCACUCCUAGAGCUCAU 
T S S S V T K S Y I S S Q T N D T H K R D T Y A A T P R A H 

237 GAAGUUUCAGAAAUUUCUGUUAGAACUGUUUACCCUCCAGAAGAGGAAACCGGAGAAAGGGUACAACUUGCCCAUCAUUUCUCUGAACCA 
E V S E I S V R T V Y P P E E E T G E R V Q L A H H F S E P 

327 GAGAUAACACUCAUUAUUUUUGGGGUGAUGGCUGGUGUUAUUGGAACGAUCCUCUUAAUUUCUUACGGUAUUCGCCGACUGAUAAAGAAA 
E I T L I I F G V M A G V I G T I L L I S Y G I R R L I K K 

417 AGCCCAUCUGAUGUAAAACCUCUCCCCUCACCUGACACAGACGUGCCUUUAAGUUCUGUUGAAAUAGAAAAUCCAGAGACAAGUGAUCAA 
S P S D V K P L P S P D T D V P L S S V E I E N P E T S D Q 

507 UGAGAAUCUGUUCACCAAACCAAAUGUGGAAAGAACACAAAGAAGACAUAAGACUUCAGUCAAGUGAAAAAUUAACAUGUGGACUGGACA 
END 

M1 
597 CUCCAAUAAAUUAUAUACCUGCCUAAGUUGUACAAUUUCAGAAUGCAAUUUUCAUUAUAAUGAGUUCCAGUGACUCAAUGAUGGGGAAAA 

687 AAAUCUCUGCUCAUUAAUAUUUCAAGAUAAAGAACAAAUGUUUCCUUGAAUGCUUGCUUUUGUGUGUUAGCAUAAUUUUUAGAAUUGUUU 

777 GAGAAUUCUGAUCCAAAACUUUAGUUGAAUUCAUCUACGUUUGUUUAAUAUUAACUUAACCUAUUCUAUUGUAUUAUAAUGAUGAUUCUG 
tiA2 

867 UCAAAUGAAAGGCUUGAAAUACCUAGAUGAAGUUUAGAUUUUCUUCCUAUUGUAAACUUUUGAGUCUGGUUUCAUUGUUUUAAAUAAAUU ..., ~ 

957 AAGGGGACACUAAAGUCCUAUCAUUCAUUCCUUCAUUCUGAACAGGCAAGAUAUAAUAUUACAUGAAUGAUUACUAUAUUUUGUUCACAC 
M3 

1047 UAAUAAAGCUUAUGCUCAGAAAUGCCAUACACACACACAAACACACACAUUUAUCAUUUAAUGCAUAAAUCAACACAAAAGGUUUUCCCA 

1137 UUAAUAUGAAAUAUUACAUAUAUAUAAGUGCCAUAUUUAAAAUAAUUUGUCUAACAGUAGAACUAUGUCGGAGCACU~AAGCUUCG 

1227 AUUUCC~AAAGAGUUAUUUGUUGUAAGUAGAGUUAUCCCGGAGAAGGAAAAAGAACUUACGACCUUUCUUUAUAACAGAAAGCUCA 

1317 ACUCUAAAUUCAACAAGAUGUGCAAACCGGACAUGCAGGUGAAUAUUUUAAUAGGUUACUAUAAGGUUCUCAAUUAAAUUCUUUAAUCUG 
tiM 

1407 UCCAGUCCCAGUUUCUCUUAUUAAUAAAACUUUGGAAAUUGCUUUAAACCAUUUAAAGGAAAUUUCUAGAUAUAGAAACUAAAGGACUGU 

1497 GACUAUACAGUGUCACUCAUUUGUAGUAAAACUUAAAAAGCAAAAACAAAAAACAAAAAAGACCUUCCUGUGAUACUUUAUUUCCGAACU 
tA5 T1 

1587 A~••4AUCUAUAUGACUUUUUAUUAUUGUGUGAUAACCAAGUAAAUGUUUUCUAUUUUCGAUAUUUUCAGGCAUGGUAACAGAAAUUU 
~ ~ n 

1677 ACCUUUUAAUA•~UAAAAAAUCUAAAUUUUAACCUACUUGUAUGUUCGGAGAGUGUUUUUGUACUAUAUUGACUACUUAAAAUAGAGAA 

1767 UGAGACUAAGAAGGGAACAUUUCUGUUGAUACAUGUUUUUUAAAAGUAAUUUUUAAGAGCAUUAUUAGGUUAAUUUAAUCCAAUUAAUGA 
M7 ---

1857 CCCAAAUGCCAAGGUAAUUUUAAAUUUACAUUUUUAAUAAAAGCAACAUGUUGAAACAAGAGAGGGUGAGAUUAACCUUUUUGCUAAAGU 

1947 AAUUUACAAGUCAAAGACAGGAAGAGAUCAGAGUGAAUGUGCCUUCUUAACCAGAGCUACAGAAUUUAGUGAAUAAUUAAAGUACAAACU 

2037 GCUUUGACCUCCUUGAACUUUUCCAAGCAAUUUCUCUGUACUUCUAUAUAUGAAUGUCUUAGCCAAUUUUCUGCUACUAUAACAGAAUAC 

2127 GACAGACUGCCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNuuauuuucuuccuaguucuggag 

2217 gcugggaaggcgaagggcauggcacugacaucugccuuguaacugaugagaaccuucuuacugcaugauaacaaagcagcaaggcaagca 

2307 aaagcguaagaugaagagagaggaaaugaagccaaacacauccuuucaucagaagcccauucccucuauaaggcguuacuac~uga 

2397 gaauggaguccucaugaccuaaucgugaccuuaaaggccccucccaacacuguuacaauggcaauuaaauuucaacaaagguuccagagg 
T3 

2487 ugacauucgaaucagcaaugaaauuuucauaguuaaauuugguauucgugggggaagaaaugaccauuucccuuguauuuuuauaauuaa 
#An 

25 77 aucagcaaaauauuguaauaaagaaaucuuucc (A) n 3 1 
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proposed structures incorporate the oligonucleotide hybridization results as well as 

the eDNA sequences reported in the present work and by others (Siebert and 

Fukuda, 1986a, b; Rahuel et al., 1988; Tate and Tanner, 1988) as well as genomic 

DNA sequences presented by others (Kudo and Fukuda, 1989; Vignal et a/., 1990). 

The evidence for these structures will be discussed individually for each of the three 

glycophorin A mRNAs in the following sections. 

4.4.2.1. Small (1.0 kb) mRNA 

Only oligonucleotide GPA-N2 hybridized to the smallest (1.0 kb) glycophorin 

A mRNA (Fig. 4.2-4.6). This was not surprising since GP A-N2 recognized nucleotides 

168 to 201 in the coding region of glycophorin A whereas the other oligonucleotides 

recognized different parts of the 3" untranslated region of the glycophorin A eDNA 

(Fig. 3.10, and section 3.1). Furthermore, an mRNA of size 1.0 kb would not be 

expected to contain sequences complementary to nucleotides 1623 to 1647 (GPA-MS) 

and beyond (complementary to oHgonucleotides GPA-ML1, GPA-ML2 and GPA-L) 

unless the three glycophorin A mRNAs were generated by alternative splicing. 

However, alternative splicing was ruled out as a mechanism for the generation of the 

three glycophorin mRNAs, based upon the organization of the glycophorin A gene 

(Kudo and Fukuda, 1989; Vignal et a/., 1990) and the absence of internal differences 

in the three glycophorin A mRNAs (section 4.4.1). 

Hybridization of the 0.8 kbp fragment of J..-gpa6 with all three glycophorin A 
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mRNAs suggested all three contained sequences similar to the 0.8 kbp fragment of 

i..-gpa6 [i.e. from nucleotide 1 to nucleotide 747 in Fig. 3. 10 (C), the 3' boundary of 

the 0.8 kbp fragment of i..-gpa6]. The idea that all three glycophorin A mRNAs 

contained similar sequences up to nucleotide 747, about 200 nucleotides downstream 

beyond the poly(A) addition signal # 1 [at nucleotides 569 to 574, Fig. 3.10 (C)] was 

consistent with the experimental results reported by Rahuel et al. (1988) who used 

an oligonucleotide complementary to nucleotides 901 to 931 [Fig. 3.10 (C)], 17 bases 

upstream from the poly( A) addition signal # 2 [at nucleotides 917 to 922, Fig. 3.10 

(C)] to probe a Northern blot containing erythroblast RNA and found that the 

oligonucleotide hybridized efficiently with all three glycophorin A mRNAs and hence 

provided evidence that the sequences up to nucleotide 931 were present in all three 

glycophorin A mRNAs. 

The boundary of the 3' untranslated region of the small mRNA can be 

deduced from eDNA sequences reported by other investigators (Rahuel et al., 1988; · 

Tate and Tanner, 1988). Rahuel et al. (1988) published a partial glycophorin A eDNA 

sequence comprising 854 nucleotides with a 70 nucleotide long poly( A) tail attached. 

This eDNA sequence lacked the 5' untranslated region and the nucleotides encoding 

the three NH2-terminal amino acids of glycophorin A. Tate and Tanner (1988) 

reported a eDNA sequence comprising 983 nucleotides also containing a poly( A) tail 

of 16 nucleotides. The 3' end of both of these clones corresponded to nucleotide 935 

in Fig. 3.10. (C), 13 nucleotides beyond the end of the poly(A) addition signal # 2. 
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The similarity in size of these clones to that of the smallest glycophorin mRNA and 

the presence of a poly(A) tail suggested that they represented the complete 

nucleotide sequence of the small glycophorin A mRNA (1.0 kb ). Therefore, it is 

concluded that the 3" boundary of the smallest glycophorin A mRNA corresponds 

to nucleotide 935, in the sequence of l-gpa6 [Fig. 3.10. (C)] which is equivalent to 

nucleotide 967 in Fig. 4.7 (marked by arrow). 

4.4.2.2. Medium (1. 7 kb) mRNA 

Hybridization of the medium-sized (1.7 kb) glycophorin A mRNA with the 

oligonucleotide GPA-MS provided evidence that these mRNAs contained sequences 

corresponding to nucleotides 1623 to 1647 [GPA-MS sequence, Fig. 3.10 (C)]. The 

lack of hybridization of oligonucleotides GPA-ML1, GPA-ML2 and GPA-L with the 

major fraction of the 1. 7 kb mRNA species indicated that it did not contain the 

sequences complementary to nucleotides 1814 to 1838 (GPA-ML2) and beyond 

[GPA-ML1, GPA-L, Fig. 3.10 (C)]. Therefore, the bulk of medium size glycophorin 

A mRNA contains sequences up to and including the region covered by GPA-MS 

[nucleotide 1647, Fig. 3.10 (C)], close to poly(A) addition signal #6. The exact 

location of the 3" boundary of the medium-sized glycophorin A mRNA species could 

not be predicted accurately. The reason is that so far no poly(A)-containing eDNA 

that falls into the size range of medium-sized glycophorin A mRNA has been isolated 

thus making it difficult to define the exact 3" boundary of this mRNA. However, as 

discussed before (section 3.6.2 and 4.2.1), two of the cDNAs, l-gpa3 and l-gpa5 
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ended exactly at nucleotide 1667, 10 nucleotides downstream from poly(A) addition 

signal # 6 [Fig. 3.10 (C)]. Therefore, it is tentatively proposed that nucleotide 1667 

corresponding to nucleotide 1700 in Fig. 4.7 (arrow), or a few nucleotides 

downstream from this defines the 3 ~ boundary of the bulk of medium-sized mRNA. 

The conclusion that the medium size mRNA does not contain a significant number 

of nucleotides beyond poly( A) addition signal #6 was also supported by the findings 

of Rahuel et al. (1989) who concluded that poly( A) addition signal# 6 was used for 

3 ~ end processing to produce the medium-sized giycophorin A mRNA, based also on 

oligonucleotide hybridization with Northern blots of human spleen erythroblast RNA. 

4.4.2.3. Large (2.8 kb) mRNA 

As predicted on the basis of the nucleotide sequence of A-gpa6, 

oligonucleotides GPA-MS, GPA-ML1, GPA-ML2 and GPA-L hybridized with the 

large-sized (2.8 kb) glycophorin A mRNA. This showed that the large mRNA 

contained sequences up to nucleotides 2056 to 2081 recognized by GPA-L, [Fig. 3.10 

(C)] and beyond. It is obvious that the complete nucleotide sequence of a 2.8 kb 

mRNA was not represented in any of the cDNAs, the largest, A-gpa6, being of about 

2.1 kb. Therefore, the large-sized (2.8 kb) glycophorin A mRNA must extend in the 

3/ direction beyond the region covered by any of the cDNAs reported so far 

including the present work. 

The gene for glycophorin A was reported to be organized in seven exons 
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(Kudo and Fukuda, 1989; Vignal et al., 1990), the first six exons include the 5' 

untranslated region, the signal peptide and all of the coding region except for about 

four amino acids near the COOH-terminus. Nucleotides for these remaining four 

amino acids and for all of the 3' untranslated region are found in a single exon of 

about 2.1 kb (termed 3' UT, Kudo and Fukuda, 1989). Therefore, this exon contains 

sufficient nucleotides to generate the large (2.8 kb) glycophorin A mRNA when 

spliced with the first six exons. A partial sequence of this exon was deposited in the 

EMBL data bank(# M24133) by Kudo and Fukuda(1989). The sequence contained 

416 nucleotides at the 3' end of the 3' UT exon but did not contain all of the 5' 

end. My sequence for i..-gpa6 contained the 5' end of the 3 UT exon but none of the 

sequence I determined overlapped with that reported by Kudo and Fukuda (1989). 

However, in the partial sequence of the 3' UT exon of Kudo and Fukuda (1989), I 

noted a poly(A) addition signal (termed # An, Fig. 4.7). Further, the study on 

glycophorin A gene organization also reported the 3' boundary of the glycophorin 

A gene (Kudo and Fukuda, 1989; Vigna} et al., 1990). 

Therefore, based upon the information on the 3' end of the glycophorin A 

genes in these two reports and the presence of a single exon of about 2.1 kb for all 

of the 3' untranslated region (Kudo and Fukuda, 1989; Vigna} et al., 1990), I predict 

that the 3' end of the large mRNA would be in close proximity to polyadenylation 

signal, #An. Combining the 1628 nucleotides in the 3' untranslated region in i..-gpa6 

with the 416 nucleotides for 3' UT present in the EMBL data bank (# M24133) 
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gives a length of 2044 nucleotides out of the 2100 reported to be present in the 3" 

UT exon (Kudo and Fukuda, 1989; Vignal et al., 1990). This leaves a gap of about 

66 nucleotides in the middle of the 3" untranslated region of the large glycophorin 

A mRNA whose sequence has not been reported; this sequence is represented as a 

stretch of "N"s (Fig. 4. 7). The actual number of these nucleotides would depend on 

the total number of nucleotides in the 3" UT exon. I have included 66 N residues to 

make the 3" UT exon 2.1 kb in size as reported (Kudo and Fukuda, 1989; Vignal et 

al., 1990). Therefore, based upon the structure presented here (Fig. 4. 7), the largest 

glycophorin A mRNA would contain about 2600 nucleotides, together with a poly( A) 

tail of about 200 to 250 nucleotides it would be close to the size of large glycophorin 

A mRNA of size 2.8 kb. 

In summary, the three glycophorin A mRNAs have similar 5" untranslated 

regions and coding sequences. However, the three mRNAs differ in the length of 

their 3" untranslated regions as depicted in Fig. 4.7. The smallest mRNA (1.0 kb) 

includes sequences about 13 nucleotides downstream from poly(A) addition signal# 

2. The medium size mRNA (1.7 kb) has sequences up to a few nucleotides 3" beyond 

poly( A) addition signal # 6. The largest glycophorin A mRNA (2.8 kb) contains all 

the nucleotides represented by J..-gpa6 reported here plus the remaining part of the 

3" UT exon which, however, is not represented in any of the eDNA clones. 

The above discussion on the primary structure of glycophorin A mRNAs 
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revealed two important features of these mRNAs. First, these investigations revealed 

the presence of long 3" untranslated regions of more than 458, about 1200 and 2100 

nucleotides in the small, medium and large size mRNA, respectively. The length of 

the 3" untranslated region in the largest glycophorin A mRNA was more than 4.5 

times the combined length of the 5" untranslated region and coding region of 

glycophorin A. The significance of the 3" untranslated region is discussed in the 

following section ( 4.4.3). 

The second important finding was that the three glycophorin A mRNAs 

contained multiple poly(A) addition signals. Since no differences were found in any 

region of the three mRNAs except in the 3" untranslated regions, it was natural to 

assume that these multiple poly(A) addition signals may have a significant role in the 

production of multiple glycophorin A mRNAs. A close examination of these poly( A) 

addition signals revealed that they were conveniently located so as to produce 

mRNAs which varied in the length of their 3' untranslated region as discussed in 

section 4.4.5. 

4.4.3. Functions of 3' untranslated region 

The presence of 3' untranslated regions is a common feature of eucaryotic 

mRNAs. Many genes such as the rabbit and human .B-globin genes produce mRNAs 

with a very short 3' untranslated region, containing only 95 and 135 nucleotides of 

3' untranslated region, respectively (Littauer and Soreq, 1982). Other genes produce 
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mRNAs with very long 3' untranslated regions. For example, the mRNA for human 

estrogen receptor (Keaveney et al., 1989) and for rat liver Golgi mannosidase II 

contain more than 4000 nucleotides of 3' untranslated sequence. The 3' untranslated 

region of mRNAs is believed to serve one or more important roles. Evidence 

accumulated in recent years implicates this region in post-transcriptional regulatory 

mechanisms, such as the control of mRNA half life, and in translation. These possible 

roles will be discussed in the following sections. 

4.4.3.1. Regulation of mRNA half life 

Many eucaryotic mRNAs contain sequences in their 3' untranslated region 

that are involved in controlling their half lives. Human {3- and 6 -globin have very 

different half lives, the latter turns over four to six times faster than the former (Ross, 

1988). Comparison of the nucleotide sequences of these mRNAs revealed that they 

differed by more than 50% in their 3' untranslated region but by only about 8% in 

other regions. It was shown that these differences in the 3' untranslated region 

sequences accounted for their different half lives (Ross, 1988). 

The mRNAs for proto-oncogenes, c-myc, c-fos, some growth factors and 

cytokines have very short half lives. In contrast, as mentioned above, the {3-globin 

gene produces a very stable mRNA. Transfection with chimeric genes containing 

sequences from stable and unstable mRNAs demonstrated experimentally the 

importance of 3' untranslated regions in the regulation of mRNA stability. A 
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chimeric mRNA with 5/ c-fos sequences linked to 3/ .B-globin sequences was stable 

but unstable when 5/ .B-globin sequences were linked to the 3/ untranslated region 

of c-fos mRNA. This observation indicated that the 3/ untranslated region of c-fos 

contained sequences responsible for its instability (Triesman, 1985). A 75 nucleotide 

long AU-rich element was identified in the 3/ untranslated region of c-fos mRNA, 

that was responsible for conferring instability to normally very stable .B-globin mRNA 

(Shyu et a!., 1989). 

Caput et al. (1986) had first detected the presence of a consensus sequence 

(TTATTAT) present in 3/ untranslated regions of genes for human and mouse 

tumour necrosis factors, human lymphotoxin and colony stimulating factor, human 

and mouse interleukin 1, human and rat fibronectin and most of the human and 

mouse interferons (reviewed in Reeves and Magnuson, 1990). A conserved AU-rich 

sequence that conferred instability on transcribed mRNAs has been identified and 

experimentally verified in mRNAs of many transiently expressed genes (Reeves eta!., 

1985; Buetler et al., 1986; Shaw and Kamen, 1986). This highly conserved stretch of 

DNA frequently consisted of tandem repeats of the tetranucleotide, T A TT 

[i.e.(TA TT)
0

] transcribed as the cognate (UAUU)n sequence in the 3/ untranslated 

regions of mRNAs of most of the known cytokine genes, for example, interferons and 

interleukins; colony stimulating factors, for example, granulocyte-macrophage colony 

stimulating factor; and the proto-oncogenes, c-fos and c-myc (Reeves and Magnuson, 

1990). The AT-rich motifs in 3/ untranslated regions of some of these genes were 
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more highly conserved than the protein coding regions. This tendency of the 

conservation of 3' untranslated regions over the protein coding regions of 

homologous genes emphasizes the importance of this region (Caput et al., 1986; 

Reeves and Magnuson, 1990). Further investigations with various chimeric constructs 

containing instability sequences from the aforementioned genes and various other 

genes demonstrated that the poly (UAUU) sequence but not an AU-rich sequence 

with a different base order, (UUAU)
0

, confers instability on mRNAs (Reeves and 

Magnuson, 1990). In many of the unstable mRNAs, the instability sequence 

(UUAU)n was present in multiple copies, resulting in formation of the AUUUA 

motif (i.e. UUAUUUAU--, Shyu et al., 1991). 

Further studies on the mechanism responsible for conferring instability by AU

rich sequences revealed that for degradation of c-fos proto-oncogene mRNA, 

continuing translation was also required (Wilson and Treisman, 1990). It was shown 

that soon after mRNA synthesis, the poly(A) tail was removed leading to eventual 

degradation of the transcribed sequences of the mRNA. Therefore, it was concluded 

that the AU-rich sequences acted to destabilize the mRNA by directing rapid 

removal of the mRNA poly(A) tail (Wilson and Treisman, 1990). Another study on 

the role of the AU-rich sequence in destabilization of c-fos mRNA showed that the 

AU-rich sequence controlled two steps: removal of the poly(A) tail which did not 

require an intact pentanucleotide, AUUUA within the AU-rich sequence; and 



264 

subsequent degradation of the mRNA that seemed to be dependent on AUUUA 

(Shyu et al., 1991). 

Like c-fos, c-myc mRNA is very unstable and its instability determinant was 

also localized to a region of about 140 nucleotides in its 3/ untranslated region (Jones 

and Cole, 1987). The region consisted of two AU-rich elements containing AUUUA 

sequences (Laird-Offringa et al., 1991). Studies on intermediates of the degradative 

pathway of this mRNA showed that the AU-rich sequences were directly involved in 

the degradation of c-myc mRNA (Brewer and Ross, 1988). It was suggested that for 

degradation of this mRNA, the poly(A) binding protein migrated from the poly(A) 

possibly to AU-rich sequences making the naked poJy(A) tail vulnerable to nuclease 

attack (Brewer and Ross, 1988). The observation that the degradation of the c-myc 

mRNA was initiated with poly(A) shortening which generated a pool of 

oligoadenylated mRNAs [i.e mRNAs with larger variation in length of poly(A) tail 

than is observed when the mRNA is newly synthesized] supported the suggestion that 

poly(A) binding protein migrated from the poly(A). The poly(A) shortening was 

followed by degradation of the oligoadenylated mRNA pool generating decay 

products with 3/ termini located within the AU-rich sequences of the 3' untranslated 

region; this was claimed to provide evidence that the AU-rich sequences were directly 

involved in mRNA degradation (Brewer and Ross, 1988). The direct involvement of 

AU-rich sequences in the degradation of c-myc mRNA was further supported by the 

observation that an endonuclease, endoribonuclease V digested various cytokine 
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transcripts at AUUUA sequences (Jochum et al., 1990). 

Although the mechanism responsible for the AUUUA-dependent instability 

of mRNAs containing AUUUA sequence is not fully understood, the recent isolation 

of specific factors that bind stably to the AUUUA elements in cytokines and proto

oncogenes may provide some clues to this phenomenon (Malter, 1989; Bohjanen et 

al., 1991; Brewer, 1991; Vakalopoulou et al., 1991). Malter (1989) isolated an 

AUUUA-specific mRNA-binding protein from the cytoplasm of a lymphocyte cell 

line, Jurkat cells. Stable binding of the protein factor to mRNAs required four 

reiterated AUUUA elements (Malter, 1989). In contrast, a 32 kilodalton factor 

isolated from HeLa cells required only one AUUUA sequence in an AU-rich context 

for efficient binding to the 3 ~ untranslated region of granulocyte-macrophage colony 

stimulating factor, c-fos and c-myc mRNAs as well as to a similar domain downstream 

of the poly( A) addition site of adenovirus IVa2 mRNA (Vakalopoulou et al., 1991). 

Binding of the 32 kilodalton factor to AUUUA-containing mRNAs reduced their 

accumulation suggesting that binding of the factor marked the mRNAs for 

degradation (Vakalopoulou et al., 1991). It is possible that there is some sort of 

interaction between the poly(A) binding protein and the AUUUA-binding factor, 

resulting in the degradation of mRNAs containing the instability sequence, AUUUA. 

As mentioned above, the poly(A) binding protein migrates to the c-fos AU-rich 

element and this in turn results in the degradation of that mRNA. 
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The 3 ~ untranslated regions in the three glycophorin A mRNAs are AU-rich 

and contain eight AUUUA elements at various locations in the sequence of l..-gpa6 

and two more in the 3 ~ UT exon deposited in the EMBL data bank (# M24133, 

Kudo and Fukuda, 1989, underlined in Fig. 4.7). Most probably the AUUUA 

sequence is not functional in the regulation of glycophorin A mRNA levels, because 

this sequence is present in the two larger glycophorin A mRNAs (i.e. of 1.7 and 2.8 

kb) and not in the smaller mRNA (i.e. of 1.0 kb) yet the 1.7 kb mRNA is the most 

abundant of the three glycophorin A mRNAs. 

Secondary structure in the 3 ~ untranslated region of mRNAs also play an 

important role in regulation of the expression of some genes, particularly at the level 

of mRNA stability. For example, the regulation of transferrin receptor by iron (Owen 

and Kuhn, 1987) and the cell cycle-dependent histone gene expression (Schumperli, 

1988) both involve secondary structures in the 3 ~ untranslated regions of their 

respective mRNAs. Transferrin receptor level is increased by treatment of cells with 

iron and decreased when the cells expressing transferrin receptor are treated with 

iron chelators. The control of expression of transferrin receptor gene was found to 

be post-transcriptional. The regulatory region was localized in a 2.3 kb segment within 

the 3 ~ untranslated region of transferrin receptor mRNA (Owen and Kuhn, 1987). 

Further investigations revealed the existence of two distinct domains in the 3 ~ 

untranslated region both of which were essential for regulation of the transferrin 

receptor level in mouse L cells. One of the two regulatory domains consisted of a 
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stem and loop structure of about 60 nucleotides and the other contained five repeats 

of a palindromic sequence (Mulner and Kuhn, 1988). A specific protein factor was 

found to bind to the stem and loop structure in the 3' untranslated region and was 

involved in the regulation of transferrin receptor mRNA levels (Mulner, 1989). 

A different secondary structure is found in the cell cycle-dependent histone 

mRNAs. These mRNAs are very unstable and are not polyadenylated (Schumperli, 

1988) but end in a stem-loop structure. The half lives of histone mRNAs inS-phase 

is about one hour which decreases to about 10 to 15 minutes at the end of S-phase 

(Sittman et al., 1983). The instability determinant of the histone H4 mRNA was 

localized within the 3' untranslated region, was composed of a stem and loop 

structure and was a target of a 3" to 5' exonuclease activity (Ross et al., 1986). There 

is no evidence in the literature suggesting that the secondary structures in transferrin 

receptor and histone mRNAs have any similarities. However, both sequence motifs 

achieve the same end result i.e. regulate their respective levels post-transcriptionally 

by decreasing their half lives. 

4.4.3.2. Regulation of mRNA translation 

The 3" untranslated region of mRNA in addition to providing the translation

enhancing affects of poly( A) tails (section 1.14.6.1.3) also has been implicated in the 

regulation of translation through transcribed sequences [i.e. sequences other than 

poly(A), reviewed in Jackson and Standart, 1990; Munroe and Jacobson, 1990]. 
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Littauer and Soreq (1982) studied translation in Xenopus oocytes of human 

fibroblast 131 and 132 interferon mRNAs lacking a substantial portion of the 3 ... 

untranslated region and poly(A) tails. They concluded that the poly(A) tail and the 

3... untranslated region did not affect translational efficiency or stability of these 

mRNAs in Xenopus oocytes (Littauer and Soreq, 1982). However, they found that 

unfractionated mRNAs lacking a substantial portion of the 3 ... untranslated region and 

poly(A) tails also from human fibroblasts showed decreased translational efficiency 

and stability in vitro. Therefore, it was concluded that the discrepancy of results came 

from using two different translation systems (i.e. in Xenopus oocytes and in vitro). 

Recently, Kruys et al. (1989) showed that the AU-rich sequence (section 

4.4.3.1) in addition to destabilizing some mRNAs such as interferon, granulocyte

macrophage colony stimulating factor and c-fos mRNAs also decreased their 

translation. It was demonstrated that a 62 nucleotide-long segment in the 13-interferon 

mRNA 3... untranslated region, that was 85% AU-rich and contained several 

UUAUUUAU sequences was responsible for the decrease in its translational 

efficiency. It was further shown by studies in Xenopus oocytes, that the decrease in 

the translational efficiency was unrelated to the role of AU-rich sequences in 

decreasing the stability of the 13-interferon mRNA. Only a single UUAUUUAU 

element was needed to decrease the translational efficiency (Kruys et al., 1989). 

Translational regulation by the 3, untranslated region also plays an important 
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role in the control of the expression of many genes during spermatogenesis, including 

mouse phosphoglycerate kinase-2 gene, mouse and trout protamine genes and rat 

nuclear transition protein 1 gene (Braun et al., 1989). Mouse protamine 1 gene is 

transcribed exclusively in haploid round spermatids (Hecht et al., 1986) and the 

resulting protamine 1 mRNA is stored for about one week before it is translated in 

elongating spermatids (Balhorn el al., 1984; K.leene el al., 1984). Braun el al. (1989) 

demonstrated that 156 nucleotides of the 3 ~ untranslated region of mouse protamine 

1 mRNA were sufficient to confer mouse protamine 1-like translational regulation to 

human growth hormone gene in a chimeric transgene containing the promoter and 

transcriptional regulatory elements of the mouse protamine 1 gene, the human 

growth hormone structural gene and the mouse protamine 1 3 / untranslated region. 

Conservation of the 3 ~ untranslated region of creatine kinase-B gene across 

many species also suggested its importance which was shown to be in translational 

control (Ch'ng et al., 1990). However, in this case the mechanism seems to be 

different from that observed in developmentally regulated genes discussed above 

(Ch'ng et al., 1990). A cell line, U937 had undetectable creatine kinase-B activity yet 

had the creatine kinase-B mRNA associated with polysomes, suggesting that most of 

the creatine kinase-B mRNA was blocked in this cell line at a step subsequent to the 

ribosome binding. It was further shown that binding of a protein factor to the 3 ~ 

untranslated region of creatine kinase-B mRNA was responsible for the repression 

of translation (Ch 'ng et al. , 1990). 
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Biosynthesis of ferritin, the iron storage protein, provides another example of 

translational control. When the iron supply is low, the ferritin mRNA is stored in cells 

and is translated at a very low rate (Dickey et al., 1988). When the cellular iron levels 

increase, the ferritin mRNA moves from the nonpolyribosomal RNA fraction to the 

polyribosomal RNA fraction and its rate of translation increases 40 to 50 fold. The 

translational repression of ferritin mRNA required a 70 nucleotides long fragment in 

the 3"' untranslated region (Dickey et al., 1988). Comparison of nucleotide sequences 

of eight ferritin mRNAs from humans, rats, chicken and frogs revealed that the 3"' 

untranslated region was conserved among these species and each mRNA had 

sequences that were involved in base pairing to form secondary structures (Dickey 

et al., 1988). 

Recently Jackson and Standart (1990) reviewing the roles of poly( A) tails and 

3"' untranslated regions of various mRNAs suggested that they influence translation 

to different extents and perhaps serve as modulators of translational efficiency rather 

than as indispensable elements. It was further suggested that events at the 3"' end of 

the mRNA, such as the polyadenylation state or protein-3"' untranslated region 

interaction, could influence upstream events such as translation (re )initiation. This 

interaction between the two ends of mRNA could take place in the form of a 

rearrangement between alternative secondary structural forms affecting whole 

mRNA. Alternatively, there might be a direct interaction simply between 5 "' -proximal 

and 3 "'-proximal sequences (Jackson and Standart, 1990). 
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4.4.4. Polyadenylation site choice and 3" end formation 

Many genes produce multiple forms of proteins as a result of alternative 

polyadenylation in combination with alternative splicing and (or) different initiation 

site usage. Examples of such genes include immunoglobulin heavy chain, adenovirus 

late transcription unit (reviewed in Moore and Sharp, 1984), human fibrinogen and 

interleukin-2 receptor, rat calcitonin and prolactin, chicken myosin light chain, and 

Drosophila myosin alkali light chain and glycinamide ribotide transformylase (reviewed 

in Leff et al., 1986). There are examples of genes that use alternate polyadenylation 

sites to produce multiple mRNAs which differ in the length of their 3' untranslated 

region without affecting the final product. Examples of this type of gene include 

human insulin receptor (Goldstein and Kahn, 1989) and N-ras (Hall and Brown, 

1985), rat insulin-like growth factor-! (Hepler et al., 1990), a2~-L-globulin (Unterman 

et al., 1985) and malic enzyme (Morioka et al., 1989), mouse proto-oncogene, c-rel, 

(Grumont and Gerondakis, 1990), chicken vimentin (Capetanaki et al., 1983), and X 

gene (Heilig et al., 1980), mouse a amylase and dihydro folate reductase (Moore and 

Sharp, 1984) and yeast Cox 6 (Wright et al., 1989). Evidence presented in the present 

work and by others suggested that glycophorin A gene also falls in this category. 

In addition to the regulation at the transcription level, differential processing 

can provide further control for the maintenance of a particular level of a protein 

product. There is evidence that the selection of a poly(A) addition site can be a 

regulated event controlling gene expression. In many ceiJs, differential processing of 
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pre-mRNA is related to the developmental stage, for example, the selection of 

adenovirus late poly(A) addition sites and the immunoglobulin J.L and 6 poly(A) 

addition sites. Differentially processed mRNAs can also be expressed in different cell 

types, for example, the calcitonin and calcitonin gene-related peptide (Darnell et al., 

1990). 

It has been suggested that either the presence of tissue specific factors (in the 

case of calcitonin/calcitonin gene-related peptide) or factors appearing during a 

developmental pathway (adenovirus and immunoglobulin) are responsible for 

selective poly(A) addition site usage (Hart et a/., 1985). Calcitonin and calcitonin 

gene-related peptide are formed preferentially in thyroid and brain, respectively (Leff 

et al., 1987). Complete primary transcripts are produced in both cell types; formation 

of final mRNA is cell-specific and involves poly( A) addition site choice and splice site 

choice. However, in this case it is directed more by splice site commitment than by 

poly(A) addition site choice (Leff et al., 1987). 

Rat insulin like growth factor-I gene produces two mRNAs (7.0-7.5 kb and 0.9-

1.2 kb) differing in the length of their 3" untranslated region (Hepler et al., 1990). 

These two mRNAs were found to be very AU-rich in their 3" untranslated regions. 

The longer transcript had a shorter half-life suggesting that the two mRNAs produced 

from a single insulin-like growth factor-! gene of rat were regulated differentially. 

Yeast Cox 6 produces three classes of mRNAs which vary in the length of their 3" 
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untranslated region, all three were shown to be functionally active as demonstrated 

by their presence in the polysomal fraction (Wright et al., 1989). It was further shown 

by glucose repression/derepression that the largest Cox6 mRNA and the two smaller 

RNAs were regulated differentially (Wright et al., 1989). 

In switching between mRNAs encoding the membrane-bound (m) and 

secreted ( s) forms of IgM heavy chain (J..£ ), the developmentally regulated production 

of J..l.m and J..I.S mRNAs is dependent on the relative efficiency of utilization of a 

poly(A) addition site and splice site. From mutation studies of J..I.S and J..l.m poly(A) 

addition sites, Peterson and Perry (1989) concluded that the splice site choice was the 

major determining factor in the selection of the J..I.S and J..l.m poly(A) addition sites. 

In adenovirus, a temporal switch in processing affects the mRNA population 

(Akusjarvi and Persson, 1980; Shaw and Ziff, 1980; Nevins and Wilson, 1981). The 

early transcription unit 3 (E3) from adenovirus 2 produces a series of mRNAs which 

are transcribed from a unique initiation site but which differ in polyadenylation and 

splice sites. The 5' region of E3 contains a polyadenylation site which is very rarely 

used in producing early mRNA transcripts. However, this same polyadenylation site 

is utilized efficiently to produce late mRNA transcripts. The switching of early to late 

transcription was shown to be accomplished by cleavage in the 3' region of E3 

transcription unit inactivating a splice site. This allowed the less active 

polyadenylation site to be utilized efficiently for the production of late mRNAs and 
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hence induced early to late mRNA switching (Gillinaro et al., 1988). 

The late transcription unit of adenovirus contains five mRNA families 

distinguished by the polyadenylation elements (L1 to L5). All of the polyadenylation 

signals (L1 to L5) are used in late viral infection. Falck-Pedersen and Logan (1989) 

characterized the regulation of polyadenylation site choice using the reconstituted 

E1A gene as a site for insertion of major late transcription unit poly( A) addition sites 

(L1 and L3) and reported that different poly(A) addition sites present in a single 

mRNA precursor were used preferentially on the first come first served rule basis 

early in infection. It was suggested in mRNAs with many functional polyadenylation 

elements regardless of their numbers, the first poly(A) addition site (i.e. 5' proximal) 

was selected; this restriction to the use of the first poly(A) addition site was not due 

to a transcription termination or to a sequence-specific factor binding, rather it was 

mediated by cis interaction (Falck-Pedersen and Logan, 1989). 

Iwasaki and Temin (1990) showed that the efficiency of RNA 3' end 

formation in spleen necrosis virus which contains two different poly(A) addition sites 

was dependent upon the distance between the cap site and the poly(A) addition site. 

When this distance was shorter than 500 nucleotides, only 3 to 9% of the RNA was 

polyadenylated at the second, 3' poly( A) addition site. However, when the distance 

between the cap site and the poly(A) addition site was 1400 nucleotides or more, 

70% of total RNA was polyadenylated at the 3' poly( A) addition site. In comparison 
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to spleen necrosis virus, the poly(A) addition signals of thymidine kinase and simian 

virus 40 late genes functioned at high efficiency, even when the distance between the 

cap site and the poly( A) addition site was small enough to inactivate the 3' poly( A) 

addition site of the spleen necrosis virus (Iwasaki and Temin, 1990). The differences 

in the efficiency of utilization of the poly( A) addition sites in these different mRNAs 

indicated that many alternative mechanisms are responsible for poly(A) addition site 

selection. 

To investigate the mechanism involved in the selection of poly( A) addition site 

in transcription units containing multiple poly(A) addition signals, Denome and Cole 

(1988) constructed a series of plasmids containing multiple poly(A) addition signals 

downstream from the herpes simplex type 1 thymidine kinase coding region. The 

poly(A) addition signals used for construction of these plasmids were from simian 

virus 40 late region and the herpes simplex virus thymidine kinase gene in addition 

to a very poor signal from the simian virus 40 early region. These plasmids were 

transfected in Cos-1 cells and assays on the cytoplasmic RNA showed that: a) all 

poly( A) addition signals were used in all constructs; b) increasing the distance 

between two signals caused an increase in the use of the 5 ... signal and a decrease in 

the use of the 3 ... signal. Four possible models were described: i) The polyadenylation 

signal is recognized by a soluble factor associating randomly with pre-mRNA; ii) the 

polyadenylation site is recognized by some factor associated with RNA polymerase 

II; iii) the polyadenylation site is recognized by a factor scanning 5 ' to 3' along the 
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RNA precursor independent of the RNA polymerase II, and iv) polyadenylation sites 

are recognized by a factor scanning 3" to 5" along the nascent transcript (Denome 

and Cole, 1988). 

The previous discussion illustrates the complexities of mechanisms involved in 

differential use of poly(A) addition sites to generate multiple mRNAs. It can be a 

simple first-come first-served choice as observed in the case of adenovirus late 

transcription unit (Falck-Pedersen and Logan, 1989), or could also involve the 

complexity of splice site choice as well as poly( A) addition site choice as observed in 

the case of calcitonin/calcitonin gene related peptide (Leff et al., 1987). 

4.4.5. The mechanism of generation of three glycophorin A mRNAs 

The data presented in this report show that the three glycophorin A mRNAs 

differ in the length of their 3" untranslated regions (section 4.4.1, Fig. 4. 7). In this 

section I will discuss the possible mechanism of production of these three glycophorin 

A mRNAs transcribed from a single gene. Additionally, I will also discuss possible 

mechanisms responsible for differential abundance of the three glycophorin A 

mRNAs. 

The presence of a single exon for all of the 3" untranslated region (section 

4.4.2.3) and the presence of an identical sequence in the three glycophorin A mRNAs 

(section 4.4.2) ruled out the possibility of alternative splicing which would generate 
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multiple mRNAs having internal differences. Furthermore, the nucleotide sequence 

of the cDNAs in the present work and that by others revealed multiple poly(A) 

addition signals. Multiple mRNAs that differ in the length of their 3' untranslated 

region, without any internal sequence difference can be produced from a single gene 

utilizing multiple poly(A) addition signals or by alternate termination. I propose that 

the three glycophorin A mRNAs are produced by differential utilization of these 

poly( A) addition signals during the processing of the 3' end of glycophorin A pre

mRNA. 

The mechanism proposed for the generation of three glycophorin A mRNAs 

is depicted in Fig. 4.8. According to the mechanism, a single primary transcript is 

produced by initiation of transcription of the glycophorin A gene at a unique site 

followed by termination at the end of the glycophorin A gene at an appropriate site. 

The primary transcript of the glycophorin A gene in addition to intron sequences 

must contain the complete sequence of the seven glycophorin A exons. The primary 

transcript of the glycophorin A gene can undergo differential processing at the 3' end 

to generate the three glycophorin A mRNAs which differ only in the length of their 

3' untranslated region. For instance, if poly( A) addition signals 2, 6 and An are 

selected for 3' end processing of the primary transcript, the small- ( 1.0 kb ), medium

(1.7 kb) and large-sized (2.8 kb) glycophorin A mRNAs, respectively, would be 

produced (Fig. 4.8). 



Fig. 4.8. Proposed mechanism of production of three mRNAs from a single 

glycophorin A gene. 

The hatched boxes labelled E1-E6 represent the 6 glycophorin A exons encoding the 

5 " untranslated region, the signal peptide and protein sequence; the open box with 

the bold vertical bars represents the exon containing the last three amino acids of 

glycophorin A sequence, the termination signal and the complete 3" untranslated 

region (Kudo and Fukuda, 1989). The bold vertical bars indicate the positions of 

polyadenylation signals numbered A1 to A 7 which were identified in the present 

investigation and the polyadenylation signal "An" present in the sequence reported 

by Kudo and Fukuda (1989). Lines between the exon boxes represents the introns. 
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It is conceivable that three different sized primary transcripts are synthesized 

rather than one. The poly(A) addition signal choice could still be involved in the 

production of the three glycophorin A mRNAs. In this case, one can envision 

termination of the primary transcript synthesis close to the appropriate poly(A) 

addition signal rather than differential cleavage by the endonuclease to form 3" ends 

of the three glycophorin A mRNAs. 

Despite the general belief that 3" ends of mRNAs are produced post

transcriptionally by endonucleolytic cleavage and that transcription termination has 

little, if any role in the 3" end formation, investigations of a variety of genes are 

beginning to uncover distinct termination sites (see section 1. J 4.5). In poxviruses, a 

sequence element Ill I I NT has been detected and shown to be involved in 

transcription termination (Earl et al., 1990, section 1.14.5). This sequence is also 

present in close proximity to the 3' end of a number of genes including the human 

immunodeficiency virus type 1 envelope gene (Earl et at. , 1990). l have detected 

equivalent sequences occurring three times in the glycophorin A sequence. One of 

these termination sequences is located 132 nucleotides downstream from poly(A) 

addition signal #5 (T1 in Fig. 4.7) and another 43 nucleotide downstream from 

poly( A) addition signal #6 (T2 in Fig. 4. 7). Yet another poxvirus termination element 

(T3 in Fig. 4.7) is present in the 3 ' UT exon sequence deposited in the EMBL data 

bank(# M24133) by Kudo and Fukuda (1989), about 22 nucleotide upstream from 

the last poly(A) addition signal, # An. It is possible that these poxvirus termination 
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signals may also be involved in the generation of multiple mRNAs from a single 

glycophorin A gene. The presence of two such signals in the vicinity of poly(A) 

addition signals that would produce medium sized mRNA rather than large RNA 

might also explain the abundance of the medium-sized glycophorin A mRNA. Hence, 

termination in the vicinity of termination signal 1 and (or) 2 (Tl and T2 in Fig. 4.7) 

would eliminate the production of large mRNA and only relatively few transcripts 

that somehow escape termination and processing at these earlier sites (T1 and T2) 

would be able to give rise to large-sized mRNA which would perhaps be produced 

due to termination at T3 (Fig. 4. 7). 

To produce the small glycophorin A mRNA a sequence other than poxvirus 

termination sequence in close proximity to the poly(A) addition signal #2 might be 

responsible for termination. For instance, the presence of a sequence equivalent to 

CA YTG consensus sequence in close proximity to poly( A) addition signal # 2 (Fig. 

4.7, section 1.14.6.2.2.) only, might suggest that the sequence has a role in 3 / end 

processing of the precursor RNA to produce the sma11 mRNA (1.0 kb ). Alternatively, 

termination at poly(A) addition signals 1, 2 or 3 followed by differential 

polyadenylation of the precursor RNA may also generate the small mRNA (1.0 kb). 

4.4.6. Selection of poly(A) addition site and the glycophorin A mRNA abundance 

As mentioned before there are multiple poly(A) addition signals in the 

glycophorin A gene and work reported in the present study, as weJJ by others, has 
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shown that at least three of the eight poly(A) addition signals detected so far are 

used preferentially. Resolution of the features of pre-mRNA encoding glycophorin 

A responsible for the selection of these signals over the others is not apparent from 

these studies. There is considerable evidence in the literature that sequences located 

downstream from poly( A) addition signals are important for the 3 ~ end processing 

of mRNAs. One such sequence is a GU cluster reported to be present in the region 

about 30 bases downstream of many poly(A) addition signals (Birnstiel et al., 1985, 

also section 1.14.6.2.2). A computer as well a manual search for GU-rich sequences 

in the regions as far as 50 nucleotides downstream from the various poly( A) addition 

signals producing the three glycophorin A mRNAs did not uncover any particularly 

GU-rich regions except following poly( A) addition signal #6. The absence of the GU

rich sequences in the vicinity of various poly(A) addition signals suggested that 

perhaps the GU-rich sequences in glycophorin A mRNAs do not account for 

preferential use of poly( A) addition signals 2, 6 and An in the 3 ~ end processing of 

the glycophorin A mRNA precursor. 

The absence of a well defined GU cluster may also account for the apparent 

heterogeneity of the medium-sized glycophorin A mRNA (sections 4.3.2.3 to 4.3.2.4). 

Due to lack of a defined GU cluster or any other sequence motif important in the 

3 ~ end processing in close proximity of various poly( A) addition signals, perhaps 

more than one poly(A) addition site is used for the generation of small- and 
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medium-sized glycophorin A mRNAs, i.e. perhaps the small- and medium-sized 

glycophorin A mRNAs are heterogeneous. 

It is also possible that perhaps all poly(A) addition signals are used in 

glycophorin A pre-mRNA processing. If poly( A) addition signal #s 1, 2, 3, 4, 5, 6, 7, 

and An were used for 3" end processing, mRNAs of sizes about 900, 1200, 1400, 

1700, 1900, 2200 and 2800 nucleotides, respectively, would be produced. These 

mRNAs would still fall in the range of 1.0 to 2.8 kb, the mRNA length range 

observed experimentally in the present work (section 4.3.2.1). This would also be 

consistent with the notion that at least the small- and medium-sized glycophorin A 

mRNAs are heterogeneous (section 4.3.2.1 to 4.3.2.5). Assuming there are no more 

poly( A) addition signals in the yet unknown sequence of the large mRNA (i.e. in the 

stretch of "N" in Fig. 4.7), the 2.8 kb mRNA could not be heterogeneous as there are 

no other poly(A) addition signals for a distance of about 700 nucleotides upstream 

from the poly(A) addition signal# An [up to poly(A) addition signal #7]. Therefore, 

the poly( A) addition signal #An must be used for 3" end processing producing the 

production of the large (2.8 kb) glycophorin A mRNA (Fig. 4. 7) with a distinct 3" 

end (i.e. non-heterogeneous). 

Like glycophorin A, the human dopamine ,8-hydroxylase gene produces 

multiple mRNAs having different 3" terminal regions generated by the utilization of 

different poly( A) addition sites (Kobayashi et al., 1989). The dopamine ,8-hydroxylase 
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gene consists of 12 exons, the last one encoding the entire 3' untranslated region, 

again a situation similar to that found in the glycophorin A gene. However, unlike 

glycophorin A, the most abundant mRNA of the dopamine J3-hydroxylase gene is the 

longer of the two transcripts (Kobayashi et al., 1989). The other difference is that in 

case of the dopamine J3-hydroxylase gene, the less abundant transcript is presumably 

produced by processing at the 3' end utilizing a variant of the AAUAAA 

(AGUAAA). The presence of a variant of AAUAAA in the pre-mRNA of dopamine 

J3-hydroxylase gene could explain its rarity (Kobayashi et al., 1989). In contrast, both 

glycophorin A mRNAs (large and medium) are apparently produced by utilization 

of the normal poly( A) addition signals, (AAUAAA), for the 3' end processing. 

The distance between the cap site and the poly(A) addition site may also 

regulate selection of a particular poly(A) addition site over other site present in the 

same gene (section 4.4.4). In the case of glycophorin A mRNAs, the 1.7 kb-sized 

mRNA produced apparently utilizing the poly(A) addition signal # 6 [nucleotides 

1652 to 1657, Fig. 3.10 (C)] with a distance of at least 1652 nucleotides between the 

cap and poly(A) addition site was the most abundant (about 70%, section 4.3.2.1), 

while the poly( A) addition signal #1 [nucleotides 569 to 574, Fig. 3.10 (C)] apparently 

did not seem to be used perhaps consistent with the observation made in the spleen 

necrosis virus poly(A) addition sites (section 4.4.4, Iwasaki and Temin, 1990). The 

assumption that more nucleotides between the cap site and poly(A) addition sites a 

mRNA has the more abundant this mRNA would be, seems to hold if the level (30%, 
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section 4.3.2.1) of small mRNA (1.0 kb) produced using poly(A) addition signal #2 

is compared with that of the medium-sized glycophorin A mRNAs (70%, section 

4.3.2.1) which is produced using the poly(A) addition signal # 6. However, for the 

largest mRNA (2.8 kb) which is the least abundant of the three glycophorin A 

mRNA the same mechanism does not seem to apply since according to the cap

poly(A) addition site distance model the large glycophorin A mRNA should be the 

most abundant, which it is not. Possibly, besides a minimum length between cap and 

poly(A) addition site, the maximum allowed distance also governs the efficient 

utilization of a poly(A) addition signal/site or some other mechanism is involved in 

the selection of poly(A) addition signal # An. Alternatively it is just a coincidence 

that the small- and medium-sized glycophorin A mRNAs seem to follow the cap

poly(A) addition site distance model as observed in spleen necrosis virus and this 

mechanism is not involved in the selection of a poly(A) addition site in the 

glycophorin A pre-mRNA. 

The paucity of the 2.8 kb mRNA could also be explained in terms of the 

model presented by Den om and Cole ( 1988) that involves 5' to 3' scanning by a 

factor (section 4.4.4). A consequence of this scanning model is that if there is an 

efficient poly(A) addition site upstream, there would be very little unprocessed 

transcript leftover. The abundance of the medium-sized mRNA compared with that 

of the large (2.8 kb) mRNA is consistent with this postulate. If the poly( A) addition 

site following poly(A) addition signal # 6 is efficiently recognized by the factor 
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compared with poly A site following poly( A) addition signal# 2, it would explain the 

greater abundance of medium (1.7 kb) mRNA over small (1.0 kb) mRNA. 

The identification of the features in glycophorin A pre-mRNA responsible for 

the selection of one poly( A) addition site over the others is not resolved. As discussed 

above and in section 1.14.6.2, various sequence motifs have been proposed to be 

involved in the selection of poly( A) addition sites in different eucaryotic systems. It 

would be interesting to investigate this aspect of glycophorin A mRNA production, 

for example, by linking a reporter gene sequences and the downstream sequences 

from the various poly( A) addition signals of glycophorin A pre-mRNA and assessing 

the efficiency with which each signal is used in an in vitro processing reaction in HeLa 

nuclear extracts for instance. 
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