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ABSTRACT 

As the offshore industry matures on the Grand Banks, the desire to tap into more 

marginal oil and gas reserves will be realized and efficient exploitation will be required. 

A study has been undertaken to enable evaluation of wellhead protection concepts for 

subsea marginal developments located on the Grand Banks of Newfoundland. The study 

has focused mainly on concepts that maintain probability of well blowout as a result of 

freely floating and scouring icebergs below accepted levels of risk. The investigation 

provides a framework from which intelligent decisions can be made regarding the relative 

benefits and costs of different protection concepts. 

In order to represent both ends of the spectrum in terms of size and architecture, two 

subsea marginal field development scenarios, considered typical for the area, were 

selected. These include (1) single well and (2) clustered multi-well developments tied 

back to an existing production facility. 

A thorough overview of existing wellhead protection technical solutions such as Open 

Glory Holes, Cased Glory Holes, Caisson Wellhead Systems and Protective External 

Barriers were presented. Existing failsafe systems such as surface controlled-subsurface 

safety valves (SCSSV's) were also investigated in detail to determine their reliability and 

potential effectiveness for protection against uncontrolled well blowout in the case of 

catastrophic wellhead damage due to an iceberg encounter. 



A minimum risk acceptance criterion associated with wellhead protection in the region 

was established to be less than 1 x 1 o-s per annum. Utilizing existing methodologies 

developed from simple geometric models along with the appropriate iceberg data, an 

analysis was performed in order to determine the encounter and contact probabilities to 

wellhead facilities as they relate to the various protection concepts. 

To support the selection and decision making process, a cost analysis was performed. The 

methodology used in the analysis involved a full comparison of capital expenditure 

(CAPEX) incorporating the risks associated with iceberg contact. Consequences 

resulting from an iceberg contact such as lost production, environmental cleanup and 

replacement I repair costs are factored by the probability of that event occurring. 

Results of the study indicate that SCSSV's and other fail-safe systems offer an obvious 

solution for reduction in overall risk and up-front development costs. The cost analysis 

indicates the "Modified Cased Hole" protection concept to be most attractive protection 

solution from a combined cost & risk approach. A conventional "unprotected" subsea 

well installation for the Grand Banks may prove to be a feasible development scenario 

given further research. 

Additional work is recommended addressing issues such as well downhole response 

mechanisms, SCSSV reliability and refinement to the inherent conservatisms & 

limitations in well blowout probability calculations. 
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1.0 INTRODUCTION 

The Grand Banks are located off the east coast of Newfoundland, covering an area of 

approximately 270,000 km2 that is centered at 46° N latitude and 51° W longitude. 

General water depths across much of the banks range between 60 to 150m. Exploration 

ofhydrocarbons in the region has been ongoing since 1966 and major oil fields have been 

discovered on the North Eastern Grand Banks at several locations such as Hibernia, Terra 

Nova, White Rose and Hebron/Ben Nevis (see Figure 1). The Grand Banks region has 

estimated recoverable oil and gas reserves and resources equalling 2.1 billion barrels of 

oil, 5.4 trillion cubic feet of gas and 313 million barrels of natural gas liquids (C-NOPB, 

2005). 

Figure 1 Major Oil Field Discoveries on Grand Banks (Compliments of Terra 

Nova Project Website) 
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From an environmental perspective, the Grand Banks are recognized as one of the most 

hostile offshore operating environments in the world, since it is influenced by a range of 

adverse conditions. The seasonal invasion of icebergs in the area is well known as the 

most formidable environmental influence because of their size, mass and energy. The 

waters offshore Labrador and Newfoundland are often referred to as "Iceberg Alley" as 

high numbers of icebergs move through the area each year. Historically, more than 480 

icebergs cross the 48th parallel annually, but there is considerable variability around this 

mean number from year to year (liP, 2005). The icebergs are highly variable in terms of 

their size, keel depth and shape. Iceberg sizes range from a few metres to hundreds of 

metres and masses varying from hundreds to millions of tonnes. 

Icebergs that are carried southward mainly from Western Greenland by Baffin and 

Labrador currents are known to float freely at deep drafts and occasionally ground and 

disrupt the seabed. Such events create iceberg scours and pits that could potentially 

damage structures installed on or near the surface of the seabed. Studies have shown 

icebergs scour at an average depth of 0.50 m and drift at a speed of 0.34 m/s in the Grand 

Banks region (Croasdale et al., 2000; MEDS, 1997). 

Current developments of oil and gas on the Grand Banks have all incorporated some form 

of subsea infrastructure such as wellheads, trees, manifolds and flowlines. Seabed 

facilities such as these have been used more and more in other hydrocarbon producing 

areas such as the North Sea and Gulf of Mexico, and will also become an integral part of 

future developments on the Grand Banks. As the offshore industry matures on the Grand 
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Banks, the desire to tap into more marginal oil and gas reserves will be realized and play 

a key role in the regions exploitation of resources. In cases such as marginal field 

economics, subsea developments can bring significant reductions in development costs 

and tip the balance in favour of development. Such developments will most likely 

involve the use of a subsea satellite well or well cluster(s) tied back to an existing 

production facility via a subsea flowline. Existing developments such as Hibernia, Terra 

Nova and soon White Rose have all incorporated future expansion capabilities to 

accommodate tie-in of marginal fields. 

One of the most crucial components of any subsea development is the wellhead, which 

provides pressure integrity for the well against an uncontrollable discharge of downhole 

fluid. Contrary to other subsea components such as manifolds, templates and flowlines, 

any damage to a wellhead could have major environmental consequences. In the 

unfortunate event of an uncontrolled subsea well blow-out caused by an iceberg collision, 

high potential for pollution and damage to the environment resulting from a major oil 

spill could occur. 

Safe and economic utilization of subsea technologies requires that the risk of damage be 

reduced to an acceptable level. In terms of design, a key consideration relates to the risk 

of iceberg damage, and whether to protect subsea facilities from potential impacts of free 

floating and scouring icebergs. In order to ensure that the design and layout of subsea 

wellheads meets predetermined acceptable risk criteria, a requirement for some form of 

protection is necessary. Possible solutions include placing the equipment deep enough 
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below the seabed to avoid contact or by means of a protective structure. The decision can 

also be made to accept occasional damage with repairs and/or replacement where the 

systems can be designed to be failsafe to avoid environmental damage. 

To date, a number of alternative protection methods have been proposed and 

implemented on vanous offshore projects throughout the world. Such protection 

concepts include: 

• Open Glory Holes 

• Cased Glory Holes (or Submarine Silos) 

• Caisson Wellhead Systems 

• Protective External Barriers 

Thus far on the Grand Banks, two forms of wellhead protection methods have been 

successfully implemented to protect wellheads from iceberg scour damage. These 

include excavated open glory holes for both the Terra Nova and White Rose development 

projects and a total of seven caisson wellhead systems installed on exploration wells 

drilled by Mobil and Petro-Canada. 

1.1 Objectives 

The present study aims to evaluate various wellhead protection concepts for subsea 

marginal developments located on the Grand Banks. The investigation seeks to provide 
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the framework from which intelligent decisions can be made regarding the relative 

benefits and costs of different protection concepts while maintaining an acceptable level 

of risk. In order to achieve this goal, the following objectives will be addressed: 

• Provide an overview of the Grand Banks iceberg environment including scour 

density, frequencies and scour characteristics for the region; 

• Establish representative development scenarios for typical subsea marginal field 

developments on the Grand Banks; 

• Present a thorough overview of existing technical solutions for wellhead 

protection and identify potential novel concepts; 

• Establish minimum risk acceptance criteria associated with wellhead protection 

concepts for the Grand Banks region; 

• Present methodology and conduct an analysis to determine the appropriate 

encounter and contact probabilities to seabed facilities located on the Grand 

Banks; 

• Perform a cost of risk analysis in order to identify the most optimum wellhead 

protection solution for representative marginal subsea developments on the Grand 

Banks. 
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2.0 GRAND BANKS ICEBERG ENVIRONMENT 

2.1 General 

Icebergs that migrate to the Grand Banks are primarily calved off glaciers from 

Greenland and Baffin Island. The calved icebergs enter the waters of Baffin Bay and 

Davis Straight and drift south, following the powerful Labrador Current until they reach 

the Northwest Newfoundland shelf. At this point the current divides the iceberg 

population into two streams as illustrated in Figure 2. The majority of the icebergs flow 

either through the Avalon Channel along the coast of Newfoundland or through the 

Flemish Pass along the eastern edge of the Banks. A small number of icebergs also 

traverse directly across the banks (Cammaert & Muggeridge, 1988). It is estimated that it 

takes approximately three years for an iceberg to drift from its source glacier to the grand 

Banks (Kollmeyer, 1977). 
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Iceberg Paths on the Canadian East Coast (Lewis and Blasco, 1990) 
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We are fortunate in having relatively good historical data on the number and locations of 

icebergs on the Grand Banks. The main sources of data have been accumulated by the 

International Ice Patrol (liP), the oil and gas industry, and research institutes. As a part 

of the initiative of the Canadian Government through its Program on Energy Research 

and Development (PERD), a database was initiated in 1998 to assimilate all of the 

information on the annual iceberg population on the East Coast. The database is updated 

each year and improvements made to existing data. 

The data collected in the PERD Iceberg Database goes back to 1810 as presented in Hill 

(1999). Hill presents an impressive compilation of 14,270 iceberg sightings from 

historical records such as shipping journals, gazettes, log books and diaries, and more 

recently the liP between the years 1810 and 1958. Singh et al. (1998, 1999), Verbit et al. 

(2000, 2001 & 2002) and Comfort & Verbit (2003 & 2005) has added to this database to 

total 209,182 iceberg sightings on the Grand Banks between 1810 and 2004. 

Approximately 86% of the data contained in the PERD Iceberg Database has been 

collected by the liP. The database includes general sighting information such as location, 

date, the shape and size of icebergs, and specific information such as waterline length, 

width, height, draft, and mass of icebergs. Figure 3 below shows the liP iceberg 

sightings obtained during aerial surveys, which provides a good illustration of the iceberg 

extent encompassing the Grand Banks region (PERD, 2001 ). 
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Figure 3 Distribution of liP Iceberg Sightings Obtained During Aerial Surveys 

(PERD, 2001) 

The occurrence of icebergs on the Grand Banks is highly variable. Marko et al. (1991) 

concluded that sea ice extent was one of the key parameters explaining variability in the 

number of icebergs crossing south of 48~. The effectiveness of sea ice, in this respect, 
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is dependant upon its abilities to prevent iceberg grounding and subsequent melting on 

shallow continental shelves together with its capacity for reducing free-drifting iceberg 

mass losses by suppressing elevated sea surface temperatures and wave heights (Marko et 

al., 1991). The number of icebergs reaching the Grand Banks is significantly higher in 

years when sea ice off Labrador extends out over the main part of the Labrador Current. 

In addition, ocean currents, variable climatic factors and local temperatures have a large 

influence with respect to the number of icebergs that make the journey to the Grand 

Banks. 

A number of factors have been identified as effecting iceberg motion, including size, 

shape, mass, wind, water currents, waves, sea ice movement, ocean surface slope and 

coriolis force. It has been found that iceberg drift off the Grand Banks is directed 

primarily by the ocean currents (Cammaert, 1988). 

One way to describe icebergs is by their above-water shape. One of five (5) different 

shapes is commonly assigned to icebergs for reporting purposes. These are shown in 

Figure 4 below. 
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PINNACLED (P) 
Large central spire or pyramid of one or more 
spires dominating shape. 

SPHERICAL (S) 
A smooth and solid iceberg that has been 
rounded from rolling or bobbing in the water 

DRYDOCKED (DD) 
Eroded such that a large U-shaped slot is formed, 
with twin columns or pinnacles. The slot extends 
into the water line or close to it. 

WEDGED(W) 
Tilted iceberg with distinct cliff on one edge. 

TABULAR(T) 
Horizontal or flat-topped iceberg formed by 
calving from an ice shelf. 

d!!3~ 
L~~ 

Figure 4 Iceberg Shapes (CANATEC et al., 1999) 

Icebergs off the coast of Newfoundland and Labrador range in size from massive tabular 

and blocky icebergs in excess of several million tonnes to small bergs weighing 1% of 

this. Categories of iceberg sizes which are used for recording iceberg statistics range 

from very large (greater than 1 0 million tonnes and hundreds of meters long) to large, 

medium and small icebergs and on to bergy bits then growlers, which are grand piano 

size pieces. The average iceberg mass for the Grand Banks area is one to two hundred 
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thousand tonnes, which is about the size of a cubic 15 storey building. See Table 1 for 

Iceberg size definitions. 

Table 1 Iceberg Size Definitions (CANATEC et al., 1999) 

Iceberg Heights Length 
Approximate 

Iceberg Size Weight 
(m) (m) 

(tonnes) 

Growler Under 1 Under 5 1,000 

Bergy Bit 1 to 5 5 to 15 10,000 

Small 5 to 15 16 to 60 100,000 

Medium 16 to 50 61 to 120 2,000,000 

Large 51 to 75 121 to 220 10,000,000 

Very Large Over 75 Over220 Over 10,000,000 

On average, approximately 3000 icebergs drift annually into the Labrador Shelf area 

from Baffin Bay (Lever et al., 1989). The overall variation of icebergs numbers crossing 

south of 48~ latitude spans three orders of magnitude. For example, based on annual 

reports from the liP between 1900 and 2004, the number of icebergs has varied from zero 

to over 2200 per year as illustrated in Figure 5. The mean number of icebergs passing 

south of 48~ is 478 icebergs with a standard deviation of 492 (liP, 2005). 
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Figure 5 Total Number of Icebergs Crossing South of 48°N Latitude Annually 

(liP, 2005) 

Generally, high annual iceberg numbers occur in groups of 3 or 4 consecutive years, with 

local minimum counts tending to occur at intervals of 4 to 9 years (Marko et al., 1994). 

The iceberg flux is seasonal, extending from February until July, with April and May 

being the most prominent months (see Figure 6). 
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The issue of global warming and climate change and its effects on iceberg severity on the 

Grand Banks has captured increased attention from the oil and gas industry in recent 

years. Brown (1993) concluded that ice and iceberg severities were considered unlikely 

to undergo major changes in the immediate future. However, over the next 50-100 years, 

if increasing concentrations of greenhouse gases result in consistent regional warming of 

2 to 4°C, sea-ice retreat and lower Grand Banks iceberg severity are considered not 

unlikely long-term outcomes. However, the response of the east coast region to a gradual 

increase in greenhouse gas concentrations could well include short periods that favor 

higher sea-ice and iceberg severities (Brown, 1993). Further to this, Marko et al. (1994) 

concludes that no amelioration of ice and iceberg severity off eastern North America has, 

as yet, been identified in roughly a century of globally rising temperatures. Moreover, 
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because of the inferred dominant influence of sea ice, it is extremely unlikely that 

postulated future increases in iceberg calving and simultaneous sea ice retreats could 

increase iceberg numbers south of 48~ without significant changes in the regional ocean 

and atmospheric circulations. 

It is clear that future developments on the Grand Banks will be exposed to different 

iceberg populations, depending upon where they are located in the relative area. Oil and 

gas prospects that lie in deeper water areas towards the north and east sides of the Banks 

will experience more frequent and larger icebergs than in shallower central and southern 

portions. 

Iceberg frequency is generally expressed in terms of areal density. Iceberg areal density 

is defined as the average number of icebergs that would be expected in a specified region 

(typically a degree square) expected at a given point in time as determined from historical 

iceberg sightings. The most reliable source of iceberg sightings on the Grand Banks in 

terms of frequency and coverage of surveys is the liP, who regularly issue bulletins 

throughout the iceberg season showing the number of icebergs sighted per degree square 

(King et al., 2003). Areal density charts such as the one presented in Figure 7 by Jordaan 

et al. (1999) are derived from data collected over the years by the liP. 
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Figure 7 

0.91 
(1.g8) 

Areal Density of Icebergs on the Northern Grand Banks (Top Values 

Based on Data from 1960-2000 & Bottom Values Based on Data from 

1981-2000) (Jordaan et al., 1999) 
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In this example, Jordaan has analyzed iceberg sightings with waterline lengths ~ 16m and 

calculated the mean annual areal density per degree square for the Grand Banks and the 

adjacent regions based on data from the last 20 years (1981-2000) and the entire 1960-

2000 period. A difference has been noted in areal densities for each time period, which 

could be attributed to either improved detection techniques or long-term iceberg 

frequency fluctuations (King, 2002). 
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2.2 Iceberg Scour on the Grand Banks 

A fraction of the icebergs that penetrate onto the Grand Banks into water with depths less 

than their draft will make direct contact with the seabed in the form of a scour or pit. 

Iceberg scours commonly take the form of relatively long furrows and circular to 

elliptical pits in the surficial sediments. The furrows are formed by icebergs moving in 

contact with the seabed. Pits are possibly formed by the bearing capacity failure of the 

seabed for loads of icebergs at rest or catastrophically when icebergs split and roll into 

the seabed. Icebergs can oscillate vertically, repeatedly impacting the seabed while 

drifting to produce crater chains - a series of pits along their drift track (Lewis et al., 

1987). An artistic impression of an iceberg scour is presented in Figure 8 below. 

Figure 8 Artistic Impression of Iceberg Scour (Compliments of C-CORE) 
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The fact that large, deep draft icebergs may contact the seabed raises a number of 

concerns in the design of subsea facilities. Reliable information is required regarding the 

likelihood of iceberg contact, the probable depth of disturbance and the interaction forces 

generated to effectively design a safe and economical subsea installation. In order to 

estimate the probability of collision between icebergs and seabed structures, it is 

necessary to determine how frequently the icebergs scour and pit the seabed. Although 

there has been a substantial amount of work in recent years in an attempt to establish 

scour density and frequency estimates, the intent here is to a give a brief overview of 

some of those findings. 

2.2.1 Scour Density 

Iceberg scours are distributed throughout the Grand Banks. The distribution is uneven 

due to the variations in iceberg drift patterns, water depth and seabed soil type and slope. 

The Grand Banks Scour Catalogue (GBSC) represents the most up-to-date compilation of 

all ice scour data collected in the region since 1979. It was compiled by Canadian 

Seabed Research Ltd. for the Geological Survey of Canada, Atlantic between 1992 and 

1995 (Myers et al., 1996) and updated again in 1999 (Canadian Seabed Research Ltd., 

2000). The GBSC is an evolving database of information that is updated on a regular 

basis to include new scour information as it becomes available. 

As of the 1999 update, the catalog contained records of 5720 scour features including 

3887 individual scours (furrows or linear features) and 1773 iceberg created pits (craters 

or areal features). The catalog includes information on the feature type (i.e. scour or 
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crater/pit), location, and physical dimensions. The study area as shown in Figure 9 was 

selected as it includes the most active area of offshore petroleum exploration, significant 

discoveries and production licenses within the Jeanne d'Arc sub-basin in water depths 

from 80-150m. The area includes Northeast Grand Banks, Flemish Pass and western 

portion of the Flemish Cap (Crosadale et al., 2000). The study region represents an area 

of approximately 100,000 km2
• 

Figure 9 GBSC Study Area Showing Survey Lines (Croasdale et al., 2000) 

For the most part, regional mapping of iceberg scours recorded in the GBSC have been 

identified and measured from various geophysical data sets from site surveys conducted 

since the late 1970's. A variety of detection techniques were used including: sidescan 

sonars, sub-bottom profilers, single beam and more recently, multibeam echo sounders. 
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It was concluded by Croasdale et al. (2000) that interpreter variability could lead to a 

minimum of 30% variation in scour density estimates. Scour depth data suffer from 

limitations of instrument resolution, degradation and infill, which all lead to 

underestimation of shallow scours and statistics biased to deeper scours. In addition, 

longer scours are often under represented in the database as they extend beyond the 

survey area. 

The GBSC has been an important tool in assessing scour density (number of scourslkm2
) 

for the Grand Banks region despite the inherent shortfalls. Scour density values for 

individual 1 km2 grid cells range from 0- 30 scours/km2 within the study. The highest 

scour densities are those associated with most recent surveys using modem higher 

resolution equipment, suggesting scour events were either not visible on the lower 

resolution data or not interpreted on these earlier surveys (Croasdale et al., 2000). 

Mean scour density values within selected bathymetric (depth) intervals were determined 

by Croasdale et al. (2000) based on the 1999 update of the GBSC. The mean scour 

density is 0.56 scours/km2 for the total survey coverage in water depths less than 110 

meters, and 0.86 scours/km2 for the total coverage in water depths greater than 110 

meters. The highest mean density, at 1.2-1.3 scours/km2
, occurs between 100-150 meters 

water depth. Lower density in deeper water may be related to a lower number of deep ice 

keels. The progressively lower mean density values in shallower water are probably due, 

in large part, to the reworking of scoured sediments by increased levels of hydrodynamic 

activity which has led to the obliteration of some scours over time, particularly those 

20 



formed in sands. The GBSC includes relatively few scours for water depths greater than 

150m on the Northeast Grand Banks, and no scours from the Flemish Pass region 

(Croasdale et al., 2000). 

As a result of work conducted by C-CORE (2001a), further additions have been made to 

the GBSC to include more recent sidescan and multibeam seabed surveys conducted in 

the region surrounding the White Rose Development. The recent surveys in the area 

were analyzed and the data incorporated into the catalog. A total of 1455 iceberg scour 

records for the represented area (approximately 150 km2
) around White Rose were 

extracted. Scour density within the White Rose area ranged from 0 to 6 scours/0.25 km2
, 

with a mean scour density of 2.64 scours/km2
. Represented by Region 1, the study area 

used to determine scour Characteristics at White Rose is presented in Figure 10, overleaf. 
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Figure 10 White Rose Study Area (C-CORE, 2001a) 

A summary of scour density estimates from various sources is presented in Table 2, 

overleaf. 
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Table 2 Summary of Scour Density Estimates from Various Sources for the 

North-East Grand Banks 

Reference 
Water Depth Scour Density 

(m) (scourslkm2
) 

s 110 0.56 

Croasdale et al. (2000i > 110 0.86 

100-150 1.2-1.3 

C-CORE (2001ai 110-140 2.64 

Notes: 

1. Representative for GBSC overall coverage area. 

2. Specific to representative study area surrounding White Rose development location. 

Includes addition of recent survey data of the study area to the GBSC. 

2.2.2 Scour Frequency 

The issue of determining reliable scour frequencies is a major component for undertaking 

an accurate risk assessment. The scour density information described above shows 

interesting spatial trends, but is not directly applicable in establishing risk to subsea 

facilities. To assess the probability of a point, area, or linear feature on the seabed being 

contacted by a scouring iceberg, scour frequency information is necessary. Lewis et al. 

(1987) proposed four types of analyses that have been developed to determine the rates of 

scour on the Grand Banks. The following techniques were presented and explored in the 

paper: 

• Geological Inference 

• Grounding Model 

• Repetitive Mapping 

• Scour Degradation 
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2.2.2.1 Geological Inference 

Utilizing the method of geological inference, average, apparent, long-term scouring rates 

for the Grand Banks region can be obtained from the ratio of seabed scour densities 

(scours/km2
) to the inferred age of the scour population. Lewis et al. (1987) suggested 

that the relatively young, low-density iceberg scour population on the Grand Banks began 

appearing approximately 2500 years ago. They used this as a basis for calculating a 

scour rate 4.0 x 10-4/km2/year for the Hibernia site. The same approach was used by C

CORE (2001a) based on the observed scour densities from the GBSC for the White Rose 

region to arrive at a scour rate of 1.0 x 1 o-3 /km2/year. 

Croasdale et al. (2000) suggests that the probable minimum and maximum estimates of 

scour age differ by almost an order of magnitude. They attempt to quantify this 

discrepancy by calculating an upper and lower bound based on scours estimated to have 

occurred over different geological time periods. They state that the recent geological 

record for the Grand Banks region indicates that 12,000 to 15,000 years ago, the water 

depth was 11Om lower than it is today suggesting that current regions of the Grand Banks 

were above sea level. If all the scours still exist since 12,000 years ago for example, the 

lower bound frequency would correspond to 8.3 x 10-5/km2/year. On the other hand, in

filling and reworking rates for the shallow water regions (less than 11Om) suggest that on 

average, scours created in the past 2500 years are still detectable. Thus, this case 

corresponds to the upper bound scour frequency equal to 4.0 x 10-4/km2/year. 
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2.2.2.2 Grounding Model 

Lewis et al. (1987) presents a numerical grounding model as a means of calculating scour 

frequency. The model calculates the spatial distribution and mean frequency of iceberg 

groundings for 9.3 x 9.3 km cells based on input of long-term iceberg drift, iceberg draft 

distribution and the interaction of these parameters with bathymetry. Using this method, 

Lewis modeled the scour rate for the Hibernia region and calculated a scour rate of about 

3.5 X 10-3/km2/year. 

Additional propriety works in this area has been conducted to predict iceberg grounding 

rates for the Grand Banks region. Petro-Canada has developed an in-house iceberg 

collision simulation model called BERGSIM in order to determine iceberg collision risks 

relating to offshore facilities. Grounding models have also been developed and refined 

over the years by a number of sources to aid in predictions and provide useful risk 

assessments to local oil and gas companies. 

Croasdale et al. (2000) applied a simple analytical based approach to predict scour 

frequency based on input of long-term mean iceberg flux and iceberg draft distribution. 

Using the degree square containing the Hibernia field as an example, they calculated a 

scour rate of 4.0 x 10-4/km2/year. 

Perhaps the most recent and comprehensive work was performed by King et al. (2003) 

who developed a model to allow the grounding rate of iceberg keels to be estimated. The 

model uses data on iceberg frequency, draft distribution, mean drift speed, distribution of 
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drift direction, water depth, and seabed slope and orientation. King used this approach to 

conduct a sample calculation for the White Rose region and computed a grounding rate 

equal to 6.2 X 10-4/km2/year. 

2.2.2.3 Repetitive Mapping 

Repetitive mapping surveys allow the scour frequency to be calculated by identifying any 

new scours features that have occurred at a given area over a given time interval between 

surveys. A number of repetitive surveys have been conducted on the Grand Banks with 

few new scours identified. Lewis et al. (1987) presented results of a survey area 120 km 

Northwest of Hibernia that was compared using sidescan sonograms over a six year 

period with surveys taken in both 1980 and 1986. There were no new scour features 

identified. Results presented by Geonautics Ltd. (1991) show one (1) new scour feature 

in a 490 km2 area over a period of 11 years, which corresponds to a scour frequency of 

1.9 X 1 0-4/km2/year. 

Further work by Myers et al. (1996) identified two (2) new scours from resurveyed lines 

between Hibernia and White Rose, over an area of 273 km2 based on an elapsed time of 

11 years corresponding to a scour frequency of6.7 x 10-4/km2/year. 

Unlike regions such as the Beaufort Sea where scours are more prevalent, the usefulness 

of this method for estimating scour rates on the Grand Banks is limited due to the 

relatively low scour rates. In addition, the survey coverage and instrument resolution are 

all considerations when using this method. 
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2.2.2.4 Scour Degradation 

Ice scours are degraded and eroded over time. Lewis et al. (1987) describes a method to 

estimate scouring rates from information on scour degradation and infilling rates for the 

Grand Banks. The approach assumes that the present scour population reflects an 

equilibrium between the rates of scour obliteration and scour formation. Thus by 

determining the rate of obliteration, the rate of replenishment or formation can be 

predicted. Based on this approach, Lewis et al. (1987) estimate that the present scour 

conditions at the Hibernia area would equal to a scour rate of about 1.0 x 10-3
. The 

effects of water depth and soil type need to be better understood before this approach can 

be used with any degree of confidence. 

2.2.2.5 Summary 

There is a level of uncertainty associated with each of the techniques presented above that 

must be taken into consideration when determining iceberg scour frequencies. For 

example, when utilizing the method of geological inference, estimating the age of the 

accumulated scours has potential for error. Croasdale et al. (2000) computes a factor of 

about 5 between the upper and lower bound scour frequency. This approach 

demonstrates the potential level of uncertainty involved when using such methods. A 

summary of scour frequency estimates utilizing the techniques outlined above from 

various sources is presented in Table 3. 
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Table 3 Summary of Scour Frequency Estimates for the North-East Grand 

Banks from Various Sources 

Reference Method 
Frequency Estimate 

(scours/km2/year) 

King et al. (2003) Grounding Model 6.2 x w-4 

C-CORE (2001a) Geological Inference 1.0 x w-3 

Geological Inference- Upper Bound 4.0 X 10-4 

Croasdale et al. (2000) Geological Inference - Lower Bound 8.3 X 10-5 

Grounding Model 4.0 X 10-4 

Meyers et al. ( 1996) Repetitive Mapping 6.7 x w-4 

Geonautics Limited (1991) Repetitive Mapping 1.9x 10-4 

Geological Inference 4.0 X 10-4 

Lewis et al. (1987) Grounding Model 3.5 X 10-3 

Repetitive Mapping 1.0 X 10-3 

Scour Degradation 1.0 x w-3 

2.2.3 Scour Characteristics 

Scour characteristics have been determined from various geophysical data sets conducted 

on the Grand Banks using a variety of detection techniques. The GBSC has been an 

important tool in bringing this information together and determining spatial distribution 

and statistical properties of scour depth, width, length, orientation and iceberg pits. 

2.2.3.1 Scour Depth 

Sour depth distribution is often regarded as the most important issue for risk to subsea 

facilities as it is required to determine the proportion of scours that penetrate deep enough 

into the seabed to damage an installation located on or beneath the mudline. It is also one 

28 



of the most difficult to characterize because the resolution of the seabed surveys results in 

the under-sampling of shallow depths, influencing the overall depth distribution. When 

measured scour depths are below the survey resolution they are sometimes assigned a 

value equal to the resolution (McKenna et al., 2003). Scour infilling is another factor to 

consider with respect to scour depth measurement distribution, especially in non-cohesive 

sediment as some level of scour infilling occurs during, or immediately following the 

scouring process. In addition, variations in depth across the width and differences in 

elevation between the start and endpoint of the scour (rise-up) result in difficulties 

evaluating traditional survey data to determine precise scour depths. 

Croasdale et al. (2000) presents a maximum scour depth reported in the GBSC of 7m 

occurring in the I 50-170m water depth range. For the 90-11 Om water depth range, the 

maximum depth is 3m with a mean of 0.48m. Mean and standard deviations of scour 

depth reported by Terra Nova ( 1997) are in close agreement with those of Croasdale et al. 

(2000). For the reported range of water depths of 80- 120m, the mean depth was 0.6m. 

Mean scour depth calculated for the White Rose region is considerably lower at 0.34m. 

This difference is due, in part, to the analysis technique used in the study to account for 

sub-resolution scour depth measurements. In addition, pits or craters may have been 

included to derive the Terra Nova result (C-CORE, 2001a). 

2.2.3.2 Scour Width 

Scour width is required for the calculation of scour crossing frequency over subsea 

structures. Scour width is perhaps the most defined of all scour characteristics and is 
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relatively insensitive to location and water depth (Croasdale et al., 2000). Scour width is 

traditionally measured from crest to crest of the berms formed on the edges of the scour. 

The mean width of iceberg scour marks on the Grand Banks is approximately 25m. For 

the 90 -11Om water depth range, Croasdale et al. (2000) reports mean and maximum 

widths of 26m and 200m respectively. Similarly, mean scour depths reported by Terra 

Nova (1997) and C-CORE (2001a) are 25m and 24.9m for water depth ranges of 80-

120m and 110-140m, respectively. 

2.2.3.3 Scour Length 

The mean scour length is required to calculate the frequency at which scours cross over 

subsea structures. Determining accurate scour lengths is sometimes difficult to achieve 

depending on the survey data available and methods employed. In many cases, only one 

or neither end of the scour is actually surveyed, resulting in mean scour lengths to be 

consistently underestimated. 

For the northeastern Grand Banks, mean scour lengths are between 500m and lOOOm, 

and have a coefficient of variation of about 1.5 (Croasdale et al., 2000; C-CORE, 2001a). 

For the 90 -110m water depth range, Croasdale et al. (2000) reports mean and maximum 

lengths of 650m and 9,400m respectively. Mean scour lengths reported by Terra Nova 

(1997) and C-CORE (2001a) are 565m and 588m for water depth ranges of80- 120m and 

110-140m, respectively. No significant relationship is noted between scour length and 

water depth. 
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2.2.3.4 Scour Orientation 

For the most part it is very difficult to determine the actual direction of scouring icebergs 

unless there is clear definition of a scour initiation and a terminal pit. Scour orientation 

measurements in the GBSC range from 0°-179° by convention and do not indicate the 

actual scouring direction. Croasdale et al. (2000) reported that the majority of the scours 

in both directions are orientated N-S to NE-SW, with an inferred south to southwest 

scouring direction, consistent with the flow of the Labrador current across the region. In 

addition, it was recognized that preferred iceberg scour orientation was actually 

perpendicular to the bathymetric contours. Results presented by C-CORE (2001a) had a 

similar trend but they went a little further and determined the orientation of scours 

relative to the seabed slope. The results show that there is a tendency for icebergs to 

scour in a direction about -35° relative to the down-slope direction, which corresponds to 

NNE for the study region. 

2.2.3.5 Iceberg Pits 

Pit features are not included with scours because they are best treated independently in 

risk analysis. Approximately 30% of the GBSC records are iceberg-created pits and have 

an average depth of 3.0m (Croasdale et al., 2000). In contrast, the mean depth of pits 

reported by C-CORE (2001a) for the White Rose study area is 1.1m with a mean linear 

dimension equal to 57m. Within the 1455 scours identified, there were 263 pit or crater 

events contributing only 6% to the area of disturbed seabed study area around White 

Rose. Pits as deep as 1Om have been documented on the Grand Banks. Lewis (1987) 

presents details of a pit detected by sidescan sonar in 87 m of water, 11km east-southeast 
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of Hibernia P-15 well having a depth of approximately 1Om and diameter of about 150m. 

Work by C-CORE (2001a) corroborates this evidence. 

2.2.3.6 Summary 

In general, scour depth, width and length reported by Croasdale et al. (2000), Terra Nova 

(1997) and C-CORE (2001a) are in close agreement. Mean scour depth calculated for the 

White Rose region is considerably lower, however, this is attributed to the analysis 

technique utilized to account for sub-resolution scour depth measurements. 

The work conducted by Croasdale et al. (2000) indicates that there are weak correlations 

between scour characteristics such as depth, width, water depth, sediment type and 

orientation. 

A summary of statistical properties for scour depth, width and length according to water 

depth as outlined above are presented in Table 4. 

Table 4 Comparison of Scour Characteristics from Various Sources 

Water Length Width Depth 

Reference 
Depth (m) (m) (m) 

(m) Mean Std. Mean Std. Mean Std. 

C-CORE (2001a) 110-140 588 784 24.9 14.4 0.34 0.30 

Croasdale et al. (2000) All depths 542 743 26 17 0.72 0.70 

Croasdale et al. (2000) ~110m 560 714 24 17 0.50 0.40 

Croasdale et al. (2000) >110m 523 775 28 18 0.88 0.82 

Terra Nova (1997) 80-120 565 618 25 14 0.60 0.30 
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3.0 MARGINAL SUBSEA DEVELOPMENTS 

3.1 General 

To date, four major oil fields (Hibernia, Terra Nova, White Rose and Hebron) have been 

discovered on the Grand Banks. Three of which, Hibernia, Terra Nova and White Rose 

have been brought on stream with permission from the Canada-Newfoundland Offshore 

Petroleum Board (C-NOPB) to produce on average 220,000 bopd, 150,000 bopd and 

100,000 bopd, respectively. The Hebron development is still under commercial and 

technical evaluation. In addition to the four major oil fields, more than ten smaller oil 

and gas discoveries have also been made on the Grand Banks (see Figure 11 ). 
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Figure 11 
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These mmor fields, which include discoveries such as West Ben Nevis, Mara and 

Springdale, collectively have estimated in-situ oil reserves of approximately 290 million 
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barrels and gas reserves of about 1.3 trillion cubic feet (C-NOPB, 2006). Typical oil 

reserve estimates for smaller fields are in the order of 10 to 30 million barrel range, with 

well productivities expected to be quite low. Since most of these smaller fields are the 

result of one discovery well, there is some uncertainty relating to their current oil reserve 

estimates and they could change considerably, should further delineation drilling be 

carried out. A summary of the petroleum reserves and resources for the Grand Banks as 

compiled by the C-NOPB is presented in Table 5. 

Table 5 Petroleum Reserves<•> and Resources<2> Grand Banks (C-NOPB, 2005) 

Field Name Oil Gas NGL'st-'J 
mjx 10{} million mjx 10{} billion mjx 10{} million 

bbl cu. ft. bbl 
Hibernia 197.8 1244 50.6 179 32.2 202 
TerraNova 56.3 354 1.3 45 0.5 3 
Hebron 92.4 581 - - - -
White Rose 45.0 283 76.7 2722 15.3 96 
West Ben Nevis 5.7 36 - - - -

Mara 3.6 23 - - - -

Ben Nevis 18.1 114 12.1 429 4.7 30 
North Ben 2.9 18 3.3 116 0.7 4 
Nevis 2.2 14 6.7 238 - -

Springdale 2.1 13 - - - -

Nautilus 1.6 10 - - - -

King's Cove 1.3 8 - - - -
South Tempest 1.1 7 - - - -

East Rankin 0.9 6 - - - -

Fortune 0.6 4 4.1 144 1.2 8 
South Mara 5.7 36 - - - -

West Bonne - - 13.3 472 1.8 11 
Bay - - 0.8 30 0.2 1 
North Dana 
Trave 437.3 2751 168.9 5990 56.6 355 

Sub-Total 

Notes: 

(1) "Reserves" are volumes ofhydrocarbons proven by drilling, testing and interpretation of 
geological ,geophysical and engineering data, that are considered to be recoverable using current 
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technology and under present and anticipated economic conditions. Hibernia, Terra Nova, and are 
classified as reserves. 

(2) "Resources" are volumes of hydrocarbons, expressed at 50% probability of occurrence, 
recoverable that have not been delineated and have unknown economic viability. 

(3) Natural Gas Liquids 

(4) Produced oil reserves also include a small quantity of natural gas liquids. Produced volumes 
as of December 31 2005 

Although these smaller fields do not appear to contain sufficient oil reserves to justify 

stand-alone development, they may be quite attractive as individual satellite field(s) tied 

back to an existing production facility, or in combination, when considered as candidates 

for simultaneous or sequential development (Wright et al., 1997). 

Further exploitation of small and marginal fields will be essential for development of a 

mature oil and gas industry offshore Newfoundland. Existing infrastructure in the region 

such as Hibernia and Terra Nova can be utilized to make fields economic which 

otherwise may not be profitable. Innovative development solutions for the short life span 

of small/marginal fields are required particularly in harsh environments. Stimulating 

fiscal regimes for small field development is as important as state-of-the art technology, 

which reduces development costs and reaches pockets of oil/gas reserves, which a few 

years ago would have been left in the ground as un-producible. The technology to 

produce satellite fields has developed rapidly, and is routinely being used in many mature 

oil and gas provinces to develop small field reserves (10 to 50 million barrels) that are 

present around either fixed or floating production facilities. 
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The most likely development approach for marginal field development involves the use 

of a subsea system of wells tied back to an existing production facility via a flowline, 

commonly referred to as a tieback or step-out. The stimulus for this type of development 

approach has sprung almost entirely from demand in the North Sea, where operators are 

constantly trying to find new ways of making use of processing capacity on their 

platforms. Small reservoirs that are located around producing fields have been accessed 

by subsea wells, with their oil being piped back to existing platforms over distances up to 

10 km, for processing and subsequent export to market (Wright et al., 1997). 

Although there have not been any subsea marginal developments undertaken on the 

Grand Banks to date, local oil and gas operators have already started to evaluate these 

marginal fields as means to boost their production in the region. For example, tapping 

into marginal satellite fields and linking them to the Hibernia facility has been under 

consideration for quite some time. Hibernia Management and Development Company 

(HMDC) has been undertaking exploratory opportunities such as appraisal drilling in the 

A val on portion of the Hibernia field in order to extend the life of the project and such 

development opportunities are currently being evaluated. In addition, Petro-Canada, 

Husky and Norsk Hydro have all been investigating the feasibility of tieback 

opportunities to the existing Terra Nova & White Rose FPSO's. 

At present on the Grand Banks, all produced fluids from subsea wells are transported as a 

multi-phase fluid to the host production facility. The current industry record for the 

longest subsea tieback is 99.2 km, a wellhead to host platform step-out for Shell's Mensa 
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subsea development in the Gulf of Mexico. Plans to set a new world record are already 

in progress with the development of the Statoil's Snow White (Soohvit) project in the 

Barents Sea off northern Norway, due onstream late 2007. The project involves a tieback 

distance of 160 km from the field location via a single 27 inch multiphase pipeline to 

shore (Statoil Sn0hvit Website, 2006). The maximum step-out distance for any subsea 

development is a function of a number of elements including the reservoir temperature, 

pressure, extent of natural drive available, water temperature, water depth and the 

constituents of the fluid itself. If for example, the distances over which produced fluids 

can be transported are increased, the profitability of marginal wells may become greater 

and reduce the need for large production facilities such as the Hibernia GBS and the 

Terra Nova & White Rose FPSO's. 

Flow assurance issues such as hydrate and wax management need close attention as a 

result of very cold on-bottom water temperatures in the area. Secondary flow assurance 

concerns include management of scale and sand. In comparison to the North Sea and 

Gulf of Mexico, offshore Newfoundland has the most onerous requirements for wax 

management from an insulation standpoint (Offshore Magazine, 2004). 

Recent technological advances in multi-phase pumping, metering and separation systems 

for boosting production from individual production wells to production facilities have 

made great strides in recent years. Marginal fields that were uneconomical just a few 

years ago have been brought on stream as a result. Multi-phase pumping systems boost 

dramatically the distance fluids can be transferred while flow meters provide data on well 
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performance and in some cases eliminate the need for a separate production test line. 

Separation systems offer a number advantages such as reducing the risk of hydrate 

formation, reduce backpressure and thus increase tieback length and offers re-injection 

opportunities for separated gas and water in to the reservoir to sustain or increase oil 

production. Other advanced flow assurance technologies such as advanced passive 

flowline insulation and actively-heated flowlines offer some potential solution for the 

harsh Grand Banks environment where colder sea temperatures exacerbate common 

problems. 

Even with the recent technological advances for development of subsea marginal 

developments, there will still be challenges in this area as a result of the harsh 

environmental conditions that exist on the Grand Banks. Obviously, iceberg scour is a 

key consideration for this subsea development approach, particularly as flowline tieback 

lengths increase. The costs and more marginal economics that are normally associated 

with small reserve developments will magnify the importance of the iceberg scour 

consideration for this development scenario. 

3.2 Subsea Production Systems 

One of the forces driving increased use of subsea production systems is the dramatic 

reduction in costs when compared with conventional methods. In many cases, the use of 

a subsea tieback is the only viable option to develop these resources (Devegowda & 

Scott, 2003). 
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Subsea production systems are made up of a number of components that work together as 

an integrated system to provide a means of distributing downhole fluids to a desired 

production facility. The main components of any subsea production system susceptible 

to threats from icebergs include the following: 

• Wellhead 

• Tree 

• Manifold 

• Template 

• Flowline 

• Control System 

• Control Umbilical 

Depending on the type of marginal development, single or multi-well, a number of the 

above components (i.e. manifold and template) may not be required or incorporated into 

the design. A brief description of each of these components is summarized below. 

3.2.1 Wellhead 

Most commonly located at the seafloor, the subsea wellhead provides pressure integrity 

for the well and acts as a structural foundation for a subsea drilling completion. The 

general function of a subsea wellhead system is to support and seal well casing strings, as 

well as supporting the blowout preventer (BOP) stack during drilling and control 

equipment (i.e. subsea tree) after completion. It must be designed as such to transmit 
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applied loads to the casing strings and into the surrounding soil (API RP 17 A, 2002). See 

Figure 12 for illustrations of typical subsea wellheads. 

Figure 12 Typical Subsea Wellheads (Compliments ofDril-Quip) 

3.2.2 Tree 

Connecting to the top of the wellhead, the subsea tree (or Xmas tree) is the primary well 

control device. It consists of an assembly of components whose purpose is to contain 

reservoir pressure and permit access to the reservoir for maintenance and measurement. 

Trees normally consist of an arrangement of remotely controlled valves and piping to 

control the flow of oil and gas to and from the wells (see Figure 13). 
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Figure 13 Typical Subsea Xmas Trees (Compliments of Offshore-Technology) 

Subsea trees are used to control gas and/or oil production from a well, or water or gas 

injection into a well. Once in place, routine visual inspection and minor maintenance is 

generally carried out by the use of remotely operated vehicles (ROV's). The ROV's are 

outfitted with the necessary tooling systems to interface with the tree. The interventions 

can be either mechanical such as turning valve stems or hydraulic for direct actuator 

control (i.e. hot stab). In order for the ROV's to gain clear access to the trees at all times, 

an ROV access corridor of approximately 3m to 5m (will vary depending on the ROV 

type) must be specified around outer the extremity of tree footprint. 

Subsea trees are available in a wide range of sizes and configurations. They include 

conventional versus insert or caisson trees, vertical versus horizontal and single versus 

multiple completion capacity. Plan dimensions of conventional vertical subsea trees are 

generally less than 5m x 5m and have heights above seabed level of about 5m to Sm. 
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For iceberg prone areas and in heavily traveled shipping lanes and fishing areas, trees can 

be situated below the seabed in order to provide protection. These concepts will be 

explored in more detail in Section 4.0. 

3.2.3 Manifold 

A subsea manifold is a system of piping and associated equipment used to collect 

production fluids from multiple wells or distribute injection fluids (see Figure 14 below). 

Figure 14 Typical Subsea Manifolds (Compliments of Offshore-Technology) 

Production fluids are generally directed into flowlines sent back to the production facility 

while the injection fluids (water or gas) travel in the opposite direction and are directed 

into the wellbore and reservoir. In addition, gas lift and chemical injection fluids are also 

commonly distributed through manifolds. The associated equipment may include valves, 

connectors for flowline and tree interfaces and chokes for flow control. The manifold 

system may incorporate a control system and is sometimes an integral part of a template, 

or as in most cases, installed as a separate unit on its own. As with subsea trees, clear 

43 



ROV access is required around the perimeter of the manifold structure for inspection, 

maintenance and required operations. Dimensions of manifolds vary greatly in size and 

depend on the particular application and the number of wells it has been designed to 

accommodate. 

3.2.4 Template 

Development wells can be completed as individual stand-alone satellite wells or as 

template wells. Templates are basically steel structures, incorporating a variety of 

equipment guides, designed to provide structural support for a number of wellheads, 

Xmas trees and in some cases provisions for manifolds into a single subsea component 

assembly (see Figure 15 below). 

Figure 15 Typical Subsea Templates (Compliments of FMC Kongsberg) 

After the wells have been drilled, the template serves as a mounting base and provides 

structural support for wellhead equipment and manifold. Template production trees can 

be connected directly to a production facility via flowlines and risers. As with manifolds, 
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templates require clear ROV access and vary greatly in size. Templates used on the Terra 

Nova subsea development have varying number of wells (2-5) with plan dimensions of 

approximately 12m by 14m and stand approximately 8m in height. 

3.2.5 Flowlines 

Subsea flowlines provide a means of transporting fluid throughout a subsea production 

system. Flowlines function as production lines where fluid is routed to the production 

facility and injection lines, to bring chemicals, water and gas to the well bore and 

reservoir. Flowlines required for subsea production systems can be divided into three 

different categories: 

• Inter-field flowlines: connecting the production facility to single field satellite 

well(s) or manifold I template structure(s) consisting of a number of wells; 

• Intra-field flowlines: connecting field manifold I template structures to one another; 

• Satellite well flowlines: connecting each satellite well to a field manifold I template. 

Figure 16 illustrates a typical subsea flowline layout whereby inter-field flowlines are 

utilized to tie-back a number of subsea manifolds to a central floating production system. 
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Figure 16 Typical Subsea Flowline Layout (Compliments of Offshore

Technology) 

The length and size of flowlines depend on the final field layout and subsea architecture. 

Flowlines may be buried in trenches or left on the surface depending on flow assurance, 

stability and protection requirements. The flowlines can be of either rigid steel or flexible 

construction. Breakaway connectors are sometimes provided at the connections to the trees 

and/or manifolds to minimize damage in the event of iceberg impact or fishing gear 

interaction. Depending on the subsea architecture, flowline ends are sometimes terminated 

into structures such as pipeline end terminations or manifolds commonly referred to PLET' s 

and PLEM's, respectively. For some subsea developments, enhanced subsea flowline 

systems in the form of bundles are used. Flowline bundles are generally made up of a 
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number of rigid flowlines and hydraulic control lines which are all contained inside an 

external carrier pipe. Flowline bundles often incorporate manifold systems in the form of 

towheads and have active heating systems for improved flow assurance. See Figure 17 

below which shows a typical flexible flowline and flowline bundle. 

Figure 17 Typical Flexible Flowline and Bundle (Compliments of Technip and 

Subsea 7) 

3.2.6 Control System 

The subsea control system provides a communication control link between the production 

facility and the subsea system. Currently, the preferred industry control method involves 

the use of multiplex electro-hydraulic systems. Control modules are generally mounted 

on the individual trees or manifold components and signals are fed to the modules from 

the surface. The control system includes monitoring of well pressure and temperature, 

valve positioning, voltage, electric current, hydraulic pressure and electronic system 

condition monitoring. 

47 



3.2.7 Control Umbilical 

As an integral component of the subsea control system, the subsea control umbilical 

provides the direct hard communication link between the production facility and the 

subsea system. Umbilicals can be made up of a number of services including hydraulic 

supply, chemical injection lines, electrical and power communication cables (see Figure 

18). The umbilical hoses, lines and cables are generally bundled together in a single line 

and wrapped in an armor layer type construction. Services provided by the umbilical are 

distributed to the wells and manifolds as required. Distribution to multiple satellite wells, 

for example, can be provided by means of short control umbilicals in the form of jumpers 

or flying leads originating from a subsea distribution unit (SDU) for which the main control 

umbilical is terminated. 

Figure 18 Typical Subsea Control Umbilicals (Compliments of DUCO) 
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3.3 Subsea System Layout 

The layout and architecture of any subsea production system will depend on number of 

inter-related factors including: 

• Oil and gas reserves; 

• Field development strategy; 

• Well design and construction limitations; 

• Well testing requirements; 

• Flow assurance considerations; 

• Wellhead protection philosophy; 

• Drilling, workover and offloading limitations; 

• Subsea hardware selection; 

• Seabed conditions; 

• Subsea equipment installation logistics and cost. 

Figure 19 shows a schematic of a typical subsea development system with all 

components located at seabed level. 
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Figure 19 
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Depending on the development scenario, marginal subsea developments can vary greatly 

in architecture and layout. Subsea technology in this area includes both single-well and 

multi-well completions incorporating various combinations of subsea components as 

summarized above. A marginal development can consist of one single satellite well or a 

number of wells including one or more production, lift or injector wells. Subsea layout 
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options for marginal fields are generally grouped into two categories; satellite or 

clustered developments. 

Subsea wells that are developed as isolated single satellites can be broken into two 

groups: 

• A single satellite well, tied back to an existing production facility via a flowline 

or; 

• Two or more wells that are drilled as satellites and tied back to a 

manifold/template structure located central to the wells via short flowline sections 

and in-turn tied back to an existing production facility via a flowline. 

Similarly, a cluster development also consist of two forms: 

• Two or more wells that are drilled through a template/manifold structure that is 

tied back to an existing production facility via a flowline or; 

• Two or more wells that are drilled and tied into an adjacent manifold structure via 

flowline jumpers and in-tum tied back to an existing production facility via a 

flowline. 

Functionally, both the satellite and cluster well systems work the same, however, 

components are arranged differently. A hybrid of these two arrangements can exist but 

they will not be explored as a part of this investigation. 
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Multi-well developments are typically faced with the compromise of locating wellheads 

to minimize flowine length and also to minimize drilling deviation angles. Generally, 

shortening the flowline lengths will be at the expense of higher deviation angles. In most 

cases, the minimization of flowline lengths will prevail over the minimization of 

deviation angles (CanOcean, 1990). There are a number of other reasons why clustered 

well arrangements are generally more attractive than satellites for multi-well 

developments on the Grand Banks. These include: 

1. A voids anchor interference problems from drilling vessels and thereby reduces 

risk of equipment damage. 

2. Clustering close to manifold reduces or eliminates well-to-manifold flowlines, 

thereby reducing cost and eliminating the need for pigging and thermal insulation 

between the wellhead and manifold. 

3. Eliminates any additional requirements of flowline trenching for protection 

against fishing and iceberg scour. 

4. Offers advantages during drilling operations by the ability to access several well 

locations without the need to re-moor the drill rig. 

Where well templates are not used for multi-well developments, subsea wells are 

generally spaced at a minimum of 25m away from any other permanent equipment to 

protect the wellhead from falling drilling and workover equipment. In the early days, it 

was very common that many wells would be drilled from a single subsea template, but 
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this has been largely replaced by the use of wells that are completed individually. In 

comparison with manifolds, the geographical spread of template installations is much 

smaller. Manifolds are favored in cluster developments as they allow greater flexibility 

in terms of further tie-ins and daisy-chaining of future developments. In addition, single 

well completions are generally less complex than integrated templates, and offer 

flexibility in terms drilling because the wells can be completed before installing the 

template I manifold system. 

3.4 Representative Marginal Developments 

For the purpose of this study, two representative development systems relating to a 

subsea marginal development on the Grand Banks have been identified. They have been 

selected based on feedback from local oil and gas operating companies in the area and 

represent realistic development approaches. In addition, they are based on the use of 

conventional development equipment with no significant departures from current 

technology. Accordingly, the chosen systems represent both ends of the spectrum in 

terms of size and architecture and represent a realistic development approach for a range 

of cases. They are as follows: 

Case 1: This system is representative of a small field requiring only a single well tied 

back to an existing production facility. 

Case 2: This system is representative of a larger multi-well development, which is tied 

back to an existing production facility. The six wells are laid out as a cluster 
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development with a manifold central to the wells that are grouped in two rows of 3 on 

either side of the manifold. 

Development details of both systems are presented in Table 6. 

Table 6 Representative Subsea Marginal Developments for the Grand Banks 

Description Case 1 Case2 

Recoverable Oil Reserves 20 50 

(mmbbls)1 

Step-out Distance (km) 5 10 

Water Depth (m) 80-150 80-150 

Number of Wells (total) 1 6 

- Production 1 3 

-Injector - 3 

Well Productivity (bopd) 15,000 20,000 

Peak Production (bopd) 15,000 40,000 

Field Life (years) 6 8 

Number of Flowlines 2 4 

- Production 2 2 

-Injector - 1 

- Lift - 1 

Number of Control Umbilicals 1 1 

Number of Manifolds/Templates - 1 x6 slot 

Notes: 

1. Only oil reserves have been considered as they represent the most probable 

development scenario at this time for the regions marginal fields. 
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Figures 20 and 21 below present a schematic of each of the chosen subsea marginal 

developments as detailed in Table 3.2. 
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4.0 WELLHEAD PROTECTION CONCEPTS 

4.1 General 

The threat of icebergs on the Grand Banks has led to the requirement for protection of 

wellheads and has thus become an integral part of subsea developments in the region. 

Regulatory requirements stipulate that appropriate measures in the design of subsea 

protection system components (i.e. wellheads) are taken to minimize the risk of damage 

to the environment from threats such as icebergs. Although the probability of scouring 

icebergs is relatively low on the Grand Banks, the associated risks are high, thus some 

form of protection has been generally accepted in the local Oil & Gas industry in order to 

ensure security of subsea wells. 

The selection of a particular wellhead protection system for a given field should not be a 

stand alone decision but depends on a number of inter-related factors such as field size, 

number of wells in the development, the subsea architecture and hardware, and field 

development flexibility required. In addition, aspects such as safety, environment, 

economics, operability and reliability will undoubtedly play a large role in decision

making processes. 

Various conceptual methods to protect wellheads from iceberg scour damage exist and 

have been evaluated over the years. Some of which have been successfully implemented 

in areas such as the Beaufort Sea and on the Grand Banks of Newfoundland. This section 

describes the wellhead protection options currently available. In addition, a number of 
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novel concepts have been presented, some of which are variations or hybrids/extensions 

to existing concepts. 

4.2 Existing Failsafe Systems 

Currently, failsafe systems are adopted as a part of the design on every well drilled and 

perform an important safety function, especially for offshore installations. These safety 

systems are required to prevent injury to persons, damage to equipment, and serious 

pollution. 

Subsea completions, which include integral wellhead components, should be designed to 

withstand a catastrophic failure in which the subsea tree is removed forcibly from the 

well, sometimes causing substantial damage to the upper wellbore. In the case of the 

Grand Banks region, this could occur when an anchor chain or fishing net is dragged over 

a subsea tree or from a more cataclysmic event such as an iceberg contact/scour event. 

The most common type of failsafe systems adopted for well installations is the subsurface 

safety valve (SSV). Safety valves are vitally essential in offshore wells with harsh 

environments such as on the Grand Banks. These components are installed in wells with 

the hope that they will never be needed and offer significant safety margins by 

incorporating automatic shut-off valves in the wellbore. In the event of a major incident, 

however, this critical safety devise is subject to high demands. They provide the ultimate 

protection against uncontrolled flow between a producing formation and the surface in 

case of a catastrophic damage to wellhead equipment. 
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Two types of subsurface safety valves are available: surface controlled and subsurface 

controlled. Given the difficulties in testing or confirming the efficiency of these valves, 

surface-controlled safety valves are much more common. Set in the upper wellbore 

below the mudline, a surfaced controlled-subsurface safety valve (SCSSV) is installed to 

provide emergency closure of the producing conduits in the event of an emergency such 

as a wellhead failure. The safety-valve system is designed to be fail-safe, so that the 

wellbore is isolated in the event of any system failure or damage to the surface 

production-control facilities. There are two basic operating mechanisms: valves operated 

by an increase in fluid flow and valves operated by a decrease in ambient pressure. 

Figure 22 provides a typical illustration of the valves inner workings. The valves are 

hydraulically operated and fail-safe, that is, if the control signal or power is lost the 

valves will fail in the closed position. 
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Figure 22 
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Two general failure modes can be identified in subsea completions: mechanical failure 

above and below the tubing hanger. In failure below the tubing hanger, which is the 

more serious of the two, the SCSSV's must be located at a position in the tubing that is 

below the calculated point of failure or area of influence (Nuttall, 1991). The SCSSV is 

run as an integral part of the completion string, normally positioned a minimum of 30m 

below the mudline. Recently, SCSSV's have been set at depths greater than lOOOm 

below mean seabed level in the Gulf of Mexico, setting an industry record (Schlumberger 

Website). 
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Perhaps the most regulated component of an oil and gas well, the SCSSV must satisfy 

stringent technical, quality and operational requirements. The industry has made huge 

technical advances over the past few decades with great improvements in product 

reliability and Mean Time to Failure (MTTF), which is a measure of how long a 

particular component or even the whole network is expected stay working. A significant 

improvement in SCSSV performance has resulted, from an initial MTTF of 14.2 years 

(1983) to the most recent result of36.7 years (1999). This represents a tremendous boost 

in well production availability and availability of the SCSSV as a safety barrier (Moines 

& Strand, 2000). 

The first safety devise to control subsurface flow was used in US inland waters during the 

mid 1940's. This Otis Engineering valve was dropped into the wellbore when a storm 

was imminent and acted as a check valve to shut off flow if the rate exceeded a 

predetermined value. A 1969 blowout in a well in the Santa Barbara Channel off 

California, USA, led to 197 4 regulations that required the use of subsurface safety 

systems on all offshore platforms and installations in US federal waters (Garner et al., 

2003). Many of the worlds other countries exploring for and developing oil and gas 

reserves have since followed suit. 

Regulations for requirements of these safety valves vary between oil and gas provinces 

throughout the world. For all wells drilled in Canada, there is a specific requirement for 

the inclusion of a SCSSV. As stipulated by the C-NOPB under the Newfoundland 

Offshore Area Petroleum Production and Conservation Regulations, under Section 25 (1) 

to (4), require that: 
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"(1) Subject to subsection (2), an operator shall ensure that a development well is 

equipped with a SCSSV that is installed 

(a) in the tubing at least 30m below the seafloor; and 

(b) in the annulus of the well at least 30 m below the sea floor where gas lift is 

used and where the wellhead is located above sea level. 

(2) Where a development well is located in a zone where permafrost is present in 

unconsolidated sediments, the operator shall install an SCSSV in the tubing at least 30 m 

below the base of the permafrost. 

(3) An operator shall not operate a development well unless the specifications, design, 

installation, operation and testing of each SCSSV installed on the well are in accordance 

with API Spec 14A Specification for Subsurface Safety Valve Equipment, and the API RP 

14B Recommended Practice for Design, Installation, Repair and Operation ofSubsurface 

Safety Valve Systems. 

(4) An operator shall ensure that every SCSSV installed in a development well is 

(a) pressure tested forthwith after installation; and 

(b) function tested at least once every six months after the test referred to in 

paragraph (a)." 
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In addition to the legislative requirement of SCSSV' s, operators generally specify a 

requirement for a double barrier in wells that can sustain natural flow. Additional 

downhole safety barriers such as production packers, annulus, gas-lift and inflow control I 

safety valves are sometimes installed on wells and provide extra protection to SCSSV's 

in case of an emergency. These are, however, adopted as secondary failsafe system to 

SCSSV's for well completions and are not specified for all well completion systems. As 

a part of the Terra Nova Development Plan, it was specified that each well would have 

two barriers in the wellbore. These barriers will consist of a packer and a surface-controlled 

subsurface safety valve (SCSSV) in the tubing string of all wells. In addition, each well 

would have a master and an annulus valve in the subsea or insert tree. All valves were 

specified as being of a fail-closed design. 

Prior to the development of Terra Nova, Petro Canada looked at the reliability of a single 

SCSSV during concept evaluation stages and decided to install two such valves on all 

production wells located at a depth of approximately 200m from mean seabed. Although 

the valves are highly reliable, a decision was made not to rely on these valves because in 

a situation where an iceberg makes contact with a wellhead, there would be concerns of 

the tubing being pulled/yanked and unable to maintain integrity of the well (S. O'Brien, 

personal communications, 2003). 

4.3 Open Glory Hole 

The open or uncased glory hole protection concept consists of a large depression 

excavated in the ocean floor (See Figure 23). The hole allows standard equipment such 

as wellheads and satellite Xmas trees or multi-well templates to be placed in the bottom 

63 



of the glory hole below the potential scour depth of a large iceberg. Structures in these 

open holes are only affected by scouring icebergs, since the structures would not extend 

above the mudline. For this reason, icebergs should not impact the production equipment 

and remedial work should not be required. 
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Figure 23 Open Glory Hole 

XMAS 
TREE 

EXCAVATED SEABED 
DEPRESSION 

The excavated depression is generally made large enough to allow for stable side slopes 

to insure stability of the soil. The glory hole should be sufficient to accommodate 

equipment requirements while at the same time provide adequate freeboard above the top 

of the equipment to allow for iceberg mechanisms such as scour, heave, pitch and 

rotation as it enters the hole. 

Open glory hole excavation requires an extensive and costly construction period prior to 

commencement of drilling operations. A variety of factors such as soil conditions, water 

depth, environmental conditions and the remoteness of the work influence the overall 

cost of such excavations. A number of methods have been proposed and used over the 
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years to excavate these holes; most of which have been developed for dredging of 

harbors, shipping channels and offshore diamond mining. 

The history of open glory holes date back to early exploratory drilling in the Beaufort Sea 

during the late 1970's. The first 3.7m diameter bit was designed built and tested by Dome 

Petroleum Ltd. in 1978 as a glory hole excavation tool but met with limited success, 

however, the basic concept proved effective for excavating glory holes (Shields, 1994). 

Prior to 1982, glory holes excavated for the purpose of protecting subsea wellhead 

facilities from ice keel scour in the Beaufort Sea were completed entirely using large 

diameter bits deployed from drill ships. Since then, glory holes have been completed 

using a variety of dredging technology such as cutter suction, trailer and hydraulic grab 

dredging techniques (Stewart & Goldby, 1984). Three such excavation methods have 

been utilized to date on the on the Grand Banks of Newfoundland in order to successfully 

excavate a total of eight glory holes for both the Terra Nova and White Rose subsea 

development projects. Using an offshore construction vessel as its platform, large 

diameter reverse circulation drilling, trailing suction hopper dredging and clamshell grab 

systems have each been employed for the excavation of these glory holes with varying 

results. 

The size of a glory hole depends on the equipment that is to be installed and this, in tum, 

depends on the number of wells that are to be completed within the glory hole. Base 

dimensions, for example, of the largest glory hole excavated for Terra Nova that consists 

of a 10 well multi-template system was 65m by 25m, roughly equivalent in size to a 
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tennis stadium while the mudline dimensions reached up to 120m (Allen, 2000). Glory 

hole dimensions must be such to allow for sufficient space to install equipment and make 

flowline connections etc. In addition, a minimum clearance of approximately 3.5m 

around all equipment is required at the operational level to allow standard subsea 

completions and accommodate ROV access for routine visual inspection, operations and 

maintenance once the equipment is in place. These minimum dimensions will vary 

slightly depending on the type of equipment, subsea layout/architecture and ROV 

specification. 

Glory hole depths depend on the height of the structure placed in the glory hole, since the 

clearance above the structure is the main consideration. The required depth of a glory 

hole for the Grand Banks region is in the order of 9m to 1Om, which is the necessary 

depth to allow minimum height of the conventional wellheads above the seabed with a 

margin of several meters to allow for iceberg scour and other iceberg movement 

mechanisms such as heave as it enters the glory hole. 

Excavation of side slopes is dependant on both practical requirements and soil stability. 

Glory holes excavated in the dense soil conditions of the Grand Banks have been 

excavated with side slopes of 3:1 (horizontal:vertical) and steeper. To facilitate the 

installation of flowlines and umbilicals, one of the four sides can be constructed with a 

more gradual slope of5:1, commonly called a "Ramp". 
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C-CORE (1997) conducted a study into the behavior of icebergs entering an open glory 

hole. A force equilibrium model of icebergs during steady state scouring of the seabed 

was combined with a model of transient motion to estimate the maximum penetrations of 

iceberg keels below the mudline for icebergs encountering deep open glory holes. The 

model results indicate that significant reductions in the probability of a scouring iceberg 

keel contacting seabed facilities can be achieved by placing those facilities in deep open 

glory holes. 

Although a variety of research has been undertaken relating to the adequacy of glory 

holes, the value of these depressions in the seabed are questionable because of the 

potential for rubble to be pushed ahead of the large ice structures as it scours the seafloor. 

Equipment is still potentially susceptible to damage by scour debris and penetration by an 

unstable iceberg, which can heave, pitch and roll into it. In addition to the uncertainties 

relating to iceberg scour, these depressions do not provide protection from anchors or 

fishing net damage. 

4.4 Cased Glory Holes (or Submarine Silo) 

Cased glory holes and submarine silos are similar in concept to open glory holes but 

allow a much reduced excavation volume by use of a reinforced casing or cylindrical 

structure (steel or concrete) around the hole perimeter (See Figure 24). 
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Cased glory holes and submarine silos integrate a casing or cylindrical structure set at a 

depth that provides protection and adequate clearance below the seafloor for the wellhead 

and Xmas tree that will be placed inside. The casing structures for some concepts extend 

slightly above the mudline, exposing it to contact from scouring, as well as freely floating 

icebergs with drafts between the water depth and the top of the structure. The upper 

section of the casing has been traditionally isolated by a weak shear joint located at a pre-

determined elevation below seabed level. In the case of iceberg impact, the casing is 

sheared at the weak joint and the upper section of the casing is sacrificed, leaving the 

lower section of the casing, wellhead and Xmas tree intact. An iceberg impact would 

break the glory hole casing at the shear point, leaving the bottom part intact and the 

production tree and wellhead undamaged. The cased glory hole or silo is expected to be 

reusable after impact. Remedial work could consist of cleaning up the debris in the cased 

glory hole, installing a new top section of glory hole casing, and reconnecting flowlines and 

umbilicals. In addition, a roof can be provided to protect the conventional trees against 

dropped objects, dragging anchors, fishing gear and natural silting. 
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The cased holes or silos are large diameter cylindrical structures, typically 6m to 1Om in 

diameter and up to 20m in depth. The purpose of the casing is to make the hole less 

vulnerable to sloughing, ravelling and sand deposition. The internal diameter of the 

cased hole will be large enough to accommodate the tree as well as provide necessary 

ROVaccess. 

Installation can be carried out from a drilling rig or other construction vessel types. The 

cased holes can be installed prior to or during drilling operations. Systems developed to 

excavate cased glory holes and submarine silos include reverse circulation drilling that 

makes use of large diameter drilling technology borrowed from the mining and tunneling 

industries. Other installation techniques such as jetting and suction anchor technology 

can be adopted for areas where the soils are relatively soft and homogeneous; however, 

these systems are not practical for general conditions encountered on the Grand Banks. 

The first commercial well drilled from a floating drilling platform using a cased glory hole 

system that was developed by Tornado Drill® and Gulf Canada. The 7.3m diameter cased 

glory hole for Gulfs Amauligak 0-86 well was drilled from the Kulluk during June of 1988 

to a depth of 13.6m and took 12.5 hours to complete (Gilbert et al., 1989). 

The silo concept for the Grand Banks was first investigated by Mobil for their use on the 

Avalon development at Hibernia to house subsea wellheads. A silo was drilled by the 

drilling contractor Sedco on one of the Hibernia appraisal wells (Ames et al., 1987). During 
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the summer of 1990 a field trial to assess the feasibility of using the Tornado Drill® 

technology on the Grand Banks demonstrated that a cased glory hole system could 

potentially be used for the Terra Nova Field development. During this campaign, two 

attempts were made to excavate a cased glory hole from the Sedco 710 semi-submersible 

drilling unit at the Terra Nova 0-90 location. The system called for installing a 7.3 m 

diameter steel casing by mounting a large-diameter drill bit in the bottom of it and drilling 

the bit and casing into the seafloor to a depth of 10 to 12m. A combination of time 

constraints, procedural and mechanical problems halted the program at a depth of 9 .4m 

before the planned drilling depth was reached and the full casing was installed (Gilbert and 

Hampton, 1990). 

Based on innovations developed for the Beaufort Sea exploratory wells, the first submarine 

silo structure in the North Sea for the protection of wellhead and Xmas tree equipment was 

successfully installed in 200m of water during the summer of 1993. The structure was 

developed by Saga Petroleum a.s for protection of one water injection well on the Tordis 

Field from heavy trawl and fishing activity in the region. The silo consists of a 9m diameter, 

7.7m high steel cylinder and it was penetrated 6.5m into the seabed. The 1.2m section 

which remained above the seabed were chamfered to make the unit overtrawlable 

(Guttormsen & Wikdal, 1994). 

NAOEA (1996) conducted a study relating to the technical design aspects of a subsea silo 

type structure for wellhead protection and the findings indicated that interaction loads of 

massive icebergs were found to be in the order of 10-30 MN with significant downward 

70 



components as well as horizontal. Another significant result of the numerical modeling is 

that the load on the keel of the iceberg may cause it to become unstable and if the berg 

were to capsize on top of a silo it is very doubtful that any practical structure could 

withstand the impact. Controlled failure schemes, such as the weak shear joint concept, 

may be effective for cased holes mounted at the seabed level under horizontal loading. 

However, this study indicates that the possible rotation of marginally stable icebergs 

would seriously damage any object with which it comes in contact. 

The cased glory hole or silo system can be adapted to any field size or configuration but 

is particularly suited to single satellite and clustered wellheads. Standard Xmas tree 

design can be used, thus making use of proven technology. The hole must also be large 

enough to accommodate a BOP during the drilling phase but small enough to be run 

through the moon pool of a designated semi-submersible drilling rig or construction vessel. 

Concepts proposed by Ames et al. (1987) and Gilbert et al. (1989) have multi-well 

drilling and completion templates that can accommodate wellhead and tree assemblies 

positioned inside large silos or cased holes ranging from 6.1m to 15m in diameter 

respectively. 

Potential refinements to existing concepts could include installing the structure such that 

the top of the casing I silo is below the maximum scour depth, which would essentially 

eliminate the shear joint and upper casing segments. To protect the equipment below from 
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scour debris for systems that have a shear joint, an inner protective shield above the tree can 

be added to reduce damage and make the task of cleanup following a scour much easier. 

4.5 Caisson Wellhead System 

The caisson wellhead system avoids the need for large-scale excavation of the seabed as 

required for the open and cased glory hole concepts. The approach places those 

components essential to the integrity of the well inside a caisson, at a depth below the 

mudline as to provide permanent protection against environmental and reservoir damage 

from icebergs. It differs from the conventional subsea production tree in that the caisson 

tree is divided into a lower and upper tree assembly. The design provides for installation of 

an insert tree containing lower master control valves installed on the critical wellhead 

components inside a larger than normal casing beneath the seafloor and below expected 

scour depth. The large casing is used to provide access for the wellhead connector and 

the lower tree valves. It uses modified drilling equipment to establish a wellhead to a 

depth of up to 20m meters below the seabed (See Figure 25). 
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Figure25 Caisson Wellhead System 

Wellhead caissons will require the remaining tree functions to be exposed at seabed level 

but this surface equipment is limited to acceptable sacrificial components such as the 

drilling guide base and upper valve block and production tree. Because the upper tree 

portion stands proud of mean seabed level, the caisson wellhead system will be 

threatened by both freely floating and scouring icebergs. The seafloor tree portion of the 

caisson completion can be protected against dropped object protection, dragging anchors, 

fishing gear and natural silting by use of protective covering. 

The caissons are designed to have a weak shear point in the well bore casing located at a 

pre-determined location below the seabed (typically equal to that of the maximum 

anticipated ice scour) to minimize damage to the insert tree. In addition, a breakaway 

flange above the master valve block can be incorporated to reduce the amount of damage 

during the shearing process. In the event of iceberg impact, the upper well bore casing 

and Xmas tree are sacrificed, while leaving intact the hydraulically operated failsafe 

lower production and annulus master valves and wellhead. If a caisson well were 

damaged from iceberg impact, remedial work would consist of removing the surface debris, 

dredging around the wellhead to gain access, and re-entry. If the well could not be re

entered, another well would have to be drilled to abandon the caisson well. 
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Installation of these systems is carried out from a conventional drilling rig as a part of the 

normal drilling program. However, special running tools and consumable caisson 

materials are required. 

Caisson wellhead systems were originally conceived to protect against fishing gear 

damage. The first 0.762m (30 in.) diameter caisson completion system was installed in 

1981 in the South China Sea. Two 0.914m (36 in.) diameter caisson drilling systems 

were also installed on the East Coast of Canada in 1983-84 (Mcintosh et al., 1987). 

Since then five applications of this concept have been adopted on the Grand Banks to 

protect wellheads from iceberg scour protection. As a part of the Terra Nova Field 

exploration program, Petro-Canada used caisson wellhead systems on five suspended 

delineation wells drilled between 1985 and 1988. The high-pressure wellheads were 

placed in 1.067m (42 in.) diameter steel caissons, 21 m below the seafloor. The five 

existing caisson wells have been drilled and tested in a manner suitable for re-use and can 

potentially be completed as production wells, complete with gas lift capability when the 

appropriate time arises or when the field is proven to be commercial. 

In companson to the mudline profile of conventional Xmas trees, which stand 

approximately 7 -8m in height, the seafloor tree portion of a Caisson completion maintains a 

low profile at 3-4m thus reducing the risk of impact with free floating icebergs. 

CFER (1988) undertook a study for Petro-Canada Resources in order to investigate the 

collapse behavior of the existing 1.067m caisson completion systems and to assess the 
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effectiveness of the system in protecting components essential to the integrity of the 

wellhead against damage that could result from various iceberg-caisson interaction 

scenarios. Using a relatively unsophisticated analytical approach, the findings indicated 

that if all of the variable parameters associated with caisson collapse strength and soil 

properties are favorable, the weak joint will act as intended and the wellhead will be 

protected in the event of collision with a translating iceberg. However, the potential 

variation in caisson strength and soil parameters is sufficient to suggest that, in some 

situations caisson collapse and subsequent wellhead damage could occur before load 

relief is achieved though weak joint separation. Load application in this study was 

restricted to an assumed maximum ice scour depth of 2.5m below the mudline. 

Exploration wells that are located in iceberg-infested waters such as the Grand Banks 

have been traditionally abandoned after testing, mainly because the wellheads have no 

protection against iceberg impact. If a caisson wellhead is used and the well is 

successful, the well will initially be suspended and later re-entered for production. This is 

one key advantage to this type of system as it allows the exploration wells to be used for 

a later development. Obviously the use of a caisson wellhead system results in an 

incremental cost associated with additional rig time and equipments that must be borne at 

the time of drilling. The cost of drilling wells on the Grand Banks and the likelihood of 

future subsea development now justify retaining certain exploration wells for further 

testing and/or completion. 
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Because the production tree is located at mudline level, there is good ROV access for 

routine visual inspection, operations and maintenance. This however is a trade-off 

between the inaccessibility of the insert tree consisting of the lower master valves, which 

give rise to many service and maintenance concerns. 

4.6 Protective External Barrier 

External barriers can be developed by use of a number of materials including rock berms 

and rigid retaining structures made of steel and/or reinforced concrete. Protective 

barriers, located at the mudline, are essentially constructed or installed around the 

wellhead and Xmas tree to shield the equipment inside by either blocking or grounding 

the freely floating or scouring icebergs (See Figure 26). 

Figure26 
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Submerged rock berms are constructed walls on the seafloor formed by the dumping of 

rock material onto the seabed. The protection philosophy simply implies that by building 

rock barriers around an installation to be protected, the free floating or scouring iceberg is 

halted in its path and unable to penetrate the berm to cause damage to the installation. 

One of the main problems with this protection concept is that scouring icebergs always 

have to start moving again and has potential to work its way through the berm and enter 

the protected area. 

Global forces developed due to the impact of very large icebergs on fixed subsea 

structures such as these are in the order of IOO's ofMN's. Whereas External Barriers are 

considered to be technically possible, the associated costs are considered prohibitive and 

are not feasible on economic grounds alone. Massive structures requiring extensive 

offshore installation campaigns are required. Further uncertainties such as the selection 

of ice load design criteria for such structures and the use of unproven technology make 

this option unattractive to local oil & gas operators. In addition, protective barriers offer 

a limited amount of protection from anchors or fishing activities and in general are 

susceptible to greater levels of risk in comparison to other protection concepts because 

they sit proud of the mudline and occupy large areas. 
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4.7 Novel Concepts 

In addition to the existing wellhead protection concepts, a number of novel concepts are 

briefly presented below. Some of the concepts are variations or hybrids/extensions to 

existing concepts while others are novel in their own right. 

4. 7.1 Suction Anchor Technology or/ Large Diameter Driven Caisson 

Using existing technology such as suction anchors or large diameter caissons could 

technically provide a practical solution for iceberg protection. The concept itself is 

essentially a deviation to the Cased Glory Hole I Silo concept (see Figure 27). However, 

due to the dense soil conditions and high presence of cobbles, boulders and hardpan, this 

concept is deemed not practical for Grand Banks region. In addition, installing this 

concept would prove to be expensive since it would require an extensive offshore 

campaign, involving a number of offshore equipment spreads (i.e. pile driving and soil 

excavation spreads). 
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Figure 27 Suction Anchor Technology or/ Large Diameter Driven Caisson 

4.7.2 Large Diameter Driven Pile Barrier 

Utilizing large diameter driven piles to protect a wellhead situated at seabed level is 

essentially a deviation to Protective External Barrier concept (see Figure 28). Although 

this concept provides a practical solution to wellhead protection, there are a number of 

technical issues relating to its ability to resist against local and global iceberg impact 

forces. Due to the highly variable soil conditions and presence of boulders, there is also a 

moderate to high risk of encountering pile refusal during installation activities. As with 
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the protective external barrier, this concept would reqmre an extensive installation 

campaign requiring a large offshore construction vessel and associated equipment spread. 

In addition, materials costs for large diameter piles are relatively high. 
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Figure 28 Large Diameter Driven Pile Barrier 

4. 7.3 Bowling Alley 
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The Bowling Alley concept is essentially a deviation from the traditional Open Glory 

Hole but allows for a minimized excavation volume by situating the manifold outside of 

the excavated hole (see Figure 29). The concept is most appropriate for multi-well 

developments and assumes that the manifold located at the mudline is sacrificial. 

Excavation of the seabed depression is ideally suited to trailer hopper suction dredging 

technology already proven in the area. One big drawback of this concept relates to the 

possibility of the trench becoming a routing guide for a scouring iceberg. Thus, in the 
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case of a scouring iceberg there is an overall increase in risk of contact to multiple wells 

for any single iceberg event. 

"BOWLING ALLEY" 
EXCAVATED SEABED DEPRESSION 

Figure 29 Bowling Alley 

4. 7.4 Bathymetric Shielding 

The simplest of all novel concepts, bathymetric shielding eliminates any requirements for 

conventional wellhead protection as illustrated in Figure 30. This concept utilizes 

existing depressions I undulations in the seabed for protection against icebergs and takes 

into account predominate drift direction for icebergs in the general development region. 

Although this concept offers huge development cost savings, it is site specific and 

depends entirely on the seabed condition at the proposed development area. Decision-
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making relating to this concept relies heavily on iceberg data such as iceberg drift 

direction, drift speed and scour depth collected for the proposed region. 
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Considered as an alternative excavation method for the open glory hole, the use of 

explosives could potentially offer cost savings during the installation phase by allowing 

the hole to be created in a very short period of time (see Figure 31). However, the hole 

formed after detonation will require extensive remedial work to condition bottom of hole 

suitable for placement of subsea equipment such as manifolds and Xmas trees. Although 

considered as a technically feasible solution, this concept will however struggle to meet 

local environmental regulations and is thus considered not a viable alternative. 
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Figure 31 Explosives 

4.7.6 Conventional Xmas Tree With Downhole Weak Shear Joint 

This concept is a modification to conventional Xmas tree installed at seabed level 

whereby a downhole weak shear joint is incorporated into the well conductor pipe (see 

Figure 32). The incorporation of a weak shear joint essentially minimizes the downhole 

structural response in event of iceberg contact to Xmas tree/wellhead and thus increases 

the probability of proper SCSSV functionality. The concept eliminates the need for 

onerous wellhead protection requirements and assumes that the Xmas tree located at the 

mudline is sacrificial. Although there are some additional costs associated with installing 

a conductor with a weak shear joint, there are huge development cost savings when 

compared with other concepts. In addition, conductor weak shear joints have been 

successfully installed on appraisal wells previously drilled on the Grand Banks. 
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Figure 32 Conventional Xmas Tree With Downhole Weak Shear Joint 

4.7.7 Modified Cased Hole 

As presented in Figure 33, the modified cased hole incorporates features in order to 

improve the functionality of the overall concept. The modified concept eliminates the 

existing casing shear plane and upper casing segments by incorporating sloped excavated 

sidewalls for the upper portion of the casing under threat from iceberg scour. Depending on 

the soil conditions, soil reinforcement fabric may be required to stabilize the upper side 

slopes. The addition of an inner protective shield above the tree can also be incorporated to 

reduce damage in the event of a scour and make the task of cleanup following a scour event 

much easier. Installation and material costs for this modified version would be only slightly 

greater than the original design. 
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5.0 RISK ACCEPTANCE CRITERIA 

5.1 General 

Due to the fact that Grand Banks is situated in an area prone to icebergs, there is 

significant concern relating to interaction of icebergs with subsea equipment. In order to 

evaluate whether the inherent risks for various subsea wellhead protection concepts are 

tolerable, acceptance criteria must be established to serve as a baseline. Establishing 

acceptance criteria relating to levels of risk is not a straightforward process. 

Consideration must be given to both frequency and consequence of an event occurring. 

In the case of subsea wellhead protection, the greatest concern lies with high potential for 

pollution and damage to the environment rather than loss of life. Major environmental 

consequences can result if a subsea blowout occurs, however, subsea wellhead failure 

does not usually lead to serious consequences with regard to human life. 

Risk acceptance criteria (RAC) is generally used to express a risk level that is considered 

tolerable for a given activity. The RAC constitute a reference for the evaluation of the 

need for risk reducing measures and should be available prior to commencing any risk 

analysis (NORSOK, 2001). Before establishing an acceptable level of risk relating to 

wellhead protection for the Grand Banks region, some general background is necessary 

and an overview of the following relevant areas has been undertaken: 

• General Levels of Risk 

• Regulatory Requirements 
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• Existing Risk Criteria for the Grand Banks 

• Codes and Standards 

5.2 General Levels of Risk 

Risk is composed of two elements, frequency and consequence and can be defined as the 

product of the frequency with which an event is anticipated to occur and the consequence 

of the event's outcome. Risk to personnel is often defined in terms of the annual 

probabilities of injury and fatality for an individual. In our everyday life we face many 

risks that are impossible to avoid and are a result of our everyday activities. As a 

common example, the individual risk (IR) of a personal causality while driving 10,000 

miles per annum is in the order of 1 in 10,000 (1 x 1 o-4
) in any given year. This type of 

risk is applicable to the general public where the risks are "involuntary" and exist as a 

part of our society. 

For a person working at a work site, a higher risk level is generally tolerable because they 

gain from being employed at the site -this is "voluntary risk". The risk to individual 

workers may easily be as high as 1 x 1 o-3 per year or more. Recent publications such as 

Wells (1996) as presented in Table 7, provide a summary of target risks that serve as a 

good guideline for the level of risk to the individual acceptable in a working 

environment. 
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Table 7 Risk Values Recommended by Wells (1996) 

Description 
Target Values of Maximum Risk Not to 

be Exceeded 

Employee Individual Risk 

All Process Causes 1 0"4 per year 

Specific Process Causes 1 0"5 per year 

Public Individual Risk 

All Process Causes 1 o·' per year 

Specific Process Causes 1 o·b per year 

Risk of Major Incidents (societal risk) 

Near Miss from All Process Causes 1 0"4 per year 

Accident from All Process Causes 1 0"5 per year 

Catastrophic Accident from All Process Causes 1 o-() per year 

Accident from Specific Process Causes 1 o·b per year 

Catastrophic Accident, Specific Process Causes 10-7 per year 

In the case of an offshore system, the total risk may include causes such as fire, ship 

collision, capsize, and wave loads in addition to ice loads. Statistics that relate to the 

offshore oil and gas industry provide a general indication as to the level of risk associated 

within that industry. Until recently, there have been no offshore production operations 

off the East Coast of Canada, so there is no track record that can be used to determine a 

suitable criterion for IR. However, other industries in Canada and North America, and 

offshore industry in other parts of the world have been examined to assist in setting 

realistic targets. Historical average IR's for the offshore industry based on data from the 

Norwegian and UK sectors of the North Sea (excluding the Piper Alpha data) are 

summarized in Table 8. It must be noted that the Piper Alpha disaster statistics has a 

significant affect on the historical IR levels. It has been neglected by industry because it 

88 



is believed that this was a "once off event" and would lead to higher levels of risk for 

establishing risk criteria. 

Table 8 Historical Average Individual Risk Data (Husky, 2000) 

Occupation 
AverageiR 

(Excluding Piper Alpha) 

Construction 1.05 X 10-3 

Drilling 8.76 X 10-4 

Production 8.76 X 10-4 

Maintenance 1.93 X 10-3 

Diving 2.19 X 10-3 

Cranes 2.72 X 10-.; 

Domestic 1.75 X 10-4 

Average 1.4 X 10-J 

Source: Norwegian Petroleum Directorate (NPD) and the UK Department of Energy's annual 

Brown Book 

Similarly, upon review of the data presented by the Worldwide Offshore Accident 

Database (WOAD, 1998), risk levels to the individual are in the order of 10-3 per year. 

This data includes information on both mobile and fixed offshore units such as jackups, 

semi submersibles, jacket structures and tension leg platforms. Many of the 

accidents/incidents are associated with drilling operations, and greater than half of the 

fatalities were associated with this activity in the years 1980-1997. 

In making design decisions relating to risk, it is important to consider both the 

probabilities and consequences of the events of importance. In the context of this thesis, 

major consequences can result if a subsea blowout occurs, which is of main concern 
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when it comes to subsea wellhead protection. This type of risk is commonly termed 

environmental risk (ER) and can be measured in terms of the amount of oil spillage 

associated with various accident scenarios along with the likelihood of these scenarios. 

Frequency data for accidental spill/release statistics for all units worldwide published by 

WOAD (1998) indicate that rates for large oil spills (1,000 to 10,000 tonnes) is less than 

of 1 o-3
. Spill frequency is best expressed in terms of a risk exposure factor based on the 

number of oil wells drilled or billion of barrels of oil produced. If a major spill is defined 

as 150,000 barrels or larger, five such spills have occurred in the history of worldwide 

offshore drilling. This represents a frequency of oil well blowout spills greater than 

150,000 barrels of9.4 x 10-5 per well drilled, or 1 such spill for every 10,600 wells drilled 

(Petro-Canada, 1998). 

5.3 Regulatory Requirements 

As a result of the accident on Piper Alpha on the 6th of July 1988 when 165 people died, a 

public enquiry was held under the chairmanship of Lord Cullen. The recommendations 

from the Cullen Report lead the UK offshore oil and gas industry into adopting a 'Safety 

Case' regime characterized by an acceptance that the direct responsibility for the ongoing 

management of safety is the responsibility of the operator and not the regulator. This 

risk-based approach stipulates that the operators be required to demonstrate to the 

regulator (make a 'case') that they are controlling their risks properly and doing 

everything 'reasonably practicable' for safe operation. 
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One of the objectives of a 'Safety Case' is to demonstrate that risk from potential major 

accident events has been reduced to a level "as low as reasonably practicable" (ALARP). 

ALARP expresses that the risk level is reduced (through a documented and systematic 

process) so far that no further cost effective measure is identified. The requirement to 

establish a cost effective solution implies that risk reduction is implemented until the cost 

of further risk reduction is grossly disproportional to the risk reducing effect (NORSOK, 

2001). The ALARP principle (see Figure 34) used for risk acceptance is applicable to 

risk to personnel, environment and assets alike. 

Figure 34 

Unacceptable risk 

(Upper tolerance limit) 

ALARP region 

Acceptable risk 
(Lower tolerability limit) 

The ALARP Principle (NORSOK, 2001) 

Like the UK offshore, regulatory bodies in Canada have adopted a similar approach. For 

oil and gas developments off the Grand Banks, all operators must fulfill the requirements 

as stipulated by the Canada-Newfoundland Offshore Petroleum Board (C-NOPB) under 
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the Newfoundland Offshore Petroleum Installations Regulations. The Installation 

Regulations, under Section 43 (3) and (4), require that: 

"(3) Target levels of safety for the risk to life and the risk of damage to the 

environment associated with all activities within each phase of the life of the 

production installation shall be defined and shall be submitted to the Chief at the 

time the operator applies for a development plan approval. 

(4) The target levels of safety referred to in subsection (3) shall be based on 

assessments that are 

(a) quantitative, where it can be demonstrated that input data are available in the 

quantity and of the quality necessary to demonstrate the reliability of the results; 

and 

(b) qualitative, where quantitative assessment methods are inappropriate or not 

suitable. " 

In addition, the C-NOPB proposes guidelines that provide an outline as to what should be 

contained in a Safety Plan. A Safety Plan has to be submitted to the C-NOPB by the 

operator as a prerequisite to obtaining an authorization to conduct petroleum related work 

or activities in the Newfoundland Offshore Area. The Operators Safety Plan Guideline 

under Section 2.1, states that: 

"One of the goals of the Safety Plan should be a demonstration that the "Target 

Levels of Safety" submitted as part of the Development Plan have been met and 

92 



that risks have been reduced to a level that is as low as reasonably practicable. 

However, as the targets referred to above apply to major hazards identified at the 

development concept phase, additional information should be included to 

demonstrate that all significant risks have been considered and are as low as 

reasonably practicable. " 

5.4 Existing Risk Acceptance Criteria for The Grand Banks 

Petro-Canada's Target Levels of Safety for the Terra Nova project (Petro-Canada, 1998) 

describes the acceptable risk levels for incidents related to Terra Nova on an annual basis. 

Within the Target Levels of Safety requirements, Petro-Canada has essentially adopted 

the ALARP framework. This framework prescribes 1 o-4 as a minimum tolerability for 

safety level events with the goal that annual frequencies meet or exceed 10"5 annually. 

Risk for the Terra Nova project should therefore be mitigated at levels above 10"5 where 

practicable, and justification provided where not possible to do so. Table 9 illustrates the 

upper and lower bounds for risk within this ALARP framework. 

Table 9 ALARP Requirements for Terra Nova (Petro-Canada, 1998) 

For any single incident For all incidents 

Intolerable Greater than 1 X 1 0"4 per year Greater than 1 X 1 o-~ per year 

ALARP Region From 1 X 10"4 to 1 X w-) per year From 1 X 1 o-j to 1 X 1 0"4 per year 

Lower band of tolerability Less than 1 x 10"5 per year Less than 1 X 1 0"4 per year 
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Further to this risk base criteria, the relevant risk levels associated with this investigation 

relate to temporary ecological damage. Temporary Ecological Damage criteria are 

considered paramount in the analysis of iceberg impact risks described in this report 

because of the potential for hydrocarbon loss and blowout, should impact occur. Major 

hazard environmental risk is expressed in terms of the 'frequency of oil spills in excess of 

50 barrels'. Petro-Canada's target levels of safety state that the frequency of release 

causing temporary damage to the ecological system in the exposed areas, shall be 1 x 104 

per year for an individual incident and 1 X 10-3 for all incidents. 

Similar to Terra Nova, Husky Oil has adopted the ALARP framework for its White Rose 

project but has imposed more stringent requirements. Target levels of safety for 

individual risk used for the White Rose project are summarized in Table 10. 

Table 10 ALARP Requirements for White Rose (Husky, 2000) 

Level Individual Risk Description 

Intolerable IR> 10-3 Unacceptable, risk control measures must be taken 

It must be demonstmted that all practical means of risk 

ALARP 10-3 > IR > 10-6 reductions have been employed to ensure that the risk is as 

low as reasonably practicable 

No need to consider further safety measures 

Negligible IR < 10-6 
(For example an IR ofl0-6 means thatthere is a 0.000001 

probability of fatality per year for an individual on the 

installation) 

For design purposes, a "trigger" value of 50 barrels has been defined by both Petro-

Canada and Husky. For an ecological event(s) resulting in hydrocarbon loss to the 

94 



environment in excess of this criterion, the scenario must be designed out. As for Terra 

Nova, scenarios for White Rose (of spills> 50 barrels) that cannot be designed against 

should be demonstrated to have an aggregate frequency of< 1 X 1 0-J per year. 

It should be noted that for ER, specific risk criteria cannot generally be quantitatively 

defined because of the very nature of possible routes to environmental impairment that 

are difficult to assess using subjectively generated probabilities (Husky, 2000). Where 

quantitative predictive methods allow, the expected oil spill frequency for actual 

operations, for example, iceberg scour collision damage to a subsea wellhead, can be 

compared with historical experience to determine whether the risk of oil spill is 

significantly different. These risks can be managed and reduced using practicable 

methods such as incorporating wellhead protection techniques into the design and 

adopting iceberg management systems. 

5.5 Codes and Standards 

Structures are generally designed to meet specified standards as set out in national codes. 

These codes are developed to insure adequate levels of safety to personnel and to the 

environment, and are developed in consensus by industry, government, and other interest 

groups. 

As outlined above, the C-NOPB defines regulatory requirements for the Grand Banks. 

Their rules refer to Canadian and international offshore standards extensively. 

Unfortunately, there are no codes, standards or regulations that specifically deal with ice 
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effects on sea floor facilities such as wellheads. Allyn (2000) undertook an extensive 

study relating the use of codes for ice loads and structures on the Grand Banks and 

concluded that the Canadian Standards Association (CSA) offshore codes provide the 

best design guidance relating to the Grand Banks ice issues. 

The standard produced by CSA titled: 8471-04 General Requirements, Design Criteria, 

the Environment, and Loads, was reviewed in detail. The standard sets forth 

requirements and guidance on design principles, safety levels, and loads to be used in 

connection with the design, construction, transportation, installation, and 

decommissioning of fixed offshore structures. Clause 4.13 states that: 

"When scour, including ice scour, is expected to occur, the depth and lateral 

extent of scouring shall be evaluated on a site-specific basis and accounted for in 

the design ". 

There is no further references to ice scour, but there is substantial guidance on safety 

issues. The standard states in clause 4.5.1 that one of the main objectives of the design 

shall be to ensure that: 

"(a) the structure and foundation can sustain, during their life, all anticipated 

loads and deformations with an acceptable level of safety (see clause 4.5.2)." 
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The standard then introduces an important aspect in clause 4.5.2 relating to risk levels in 

the form of two "Safety Classes". It defines two safety classes for the verification of the 

safety of the structure or any of its structural elements: 

"Safety Class 1 -failure would result in great risk to life or a high potential for 

environmental damage, for the loading condition under consideration; 

Safety Class 2 -failure would result in small risk to life and a low potential for 

environmental damage, for the loading condition under consideration. " 

Further guidance is provided in the notes provided at the end of the clause: 

"(1) If loading hazards can be predicted sufficiently ahead of time to carry out a 

predefined emergency response plan that ensures personnel safety and 

environmental protection, then, for that particular loading condition, the 

structure may be Safety Class 2. 

(2) A safety class may be assigned to the structure as a whole or to its individual 

structural elements. For example, a structure designated Safety Class 1 as a 

whole may have certain of its structural elements designated Safety Class 2. 

(3) See Appendix A (of the Standard) for further information on the application of 

safety classes and on the associated reliability levels assumed in this Standard. " 
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As a part of formulating the CSA standard, exceedance probabilities and associated load 

factors were chosen in combination with factored resistances to result in a reliability level 

consistent with the target values for the appropriate safety classes. In the case of iceberg 

loads, which are rare events on the Grand Banks, it is recommended that the design loads 

be chosen based on an annual probability of exceedance between 10-3 and 10-4 (see Table 

11). 

Table 11 Annual Exceedence Probabilities For Specified Loads- CSA 8471-04, 

Table A2 (CSA, 2004) 

Safety Class 1 Safety Class 2 

Annual Annual 

Exceedence Load Factor Exceedence Load Factor 

Probability, PE Probability,pE 

Specified loads, E1, 
Based on frequent 10-2 1.35 10-2 0.9 

environmental 
processes 

Specified loads, E, 
based on rare 104 to 10-3 1.0 10-2 1.0 
environmental 

events 
Specified 

accidental load, A 10-4 to 10-3 1.0 N/A N/A 

Note: Rare environmental events have an annual probability of occurrence of less than 0.5. 

Values of target reliability levels given in the standard were determined from calibrations 

made to existing design rules for offshore structures and basic considerations of safety of 
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life and environment. For the calibration exercise, a range of conditions were considered 

with values of probability of failure falling in the range of 1 o-4 to 1 o-6 per annum for most 

conditions. The main reliability target of 1 o-s per annum was chosen for Safety Class 1 

and is illustrated in Figure 35. 

Figure 35 

Target \lalue 

lntolerable 

Illustration of Targets in the CSA Code for Safety Class 1 (Allyn, 

2000) 

Similarly, target safety levels for Safety Class 2 and for serviceability (Impaired function) 

were given as 10-3 and 10-1 per annum, respectively as summarized in Table 12. 
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Table 12 Safety Classes and Reliability Levels- CSA S471-04, Table Al (CSA, 

2004) 

Target Annual 

Consequences of Failure Reliability Level 

Safety Class 1 Great risk to life or high potential for 1-1 o-5 

environmental pollution or damage 

Safety Class 2 Small risk to life and low potential for 1-1 o-3 

environmental pollution or damage 

Serviceability Impaired function 1-10-1 

In addition to the CSA standards, a review of equivalent international codes has been 

undertaken with focus on information pertaining to risk and reliability levels, 

specification of distinct safety classes and guidance related to iceberg scour. In general, 

there was not a large amount of detail given to iceberg scour, however, ISO 19902, 

Petroleum and Natural Gas Industries - Fixed Steel Offshore Structures (Draft 

International Standards 2003) presents a strategy whereby "life safety classes" 

(representing manned and unmanned installations) and "consequence categories" (low, 

med & high) are used (ISO, 2003). The required reliability or annual probabilities of 

exceedance associated with design loads or actions depend on each of these. 

ISO 19902 takes an approach whereby structures can be categorized by various levels of 

exposure to determine criteria that are appropriate for the intended service of the 

structure. This applies to the design of new structures and to the assessment of existing 

structures. 
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The life-safety category addresses personnel on the platform and the likelihood of 

successful evacuation before a design environmental event occurs. Clause 6.6.2 states 

that: 

The category for life-safety shall be determined from: 

a) Sl Manned non-evacuated 

b) S2 Manned evacuated 

c) S3 Unmanned 

The consequence category considers the potential risk to life of personnel brought in to 

react to any incident, the potential risk of environmental damage and the potential risk of 

economic losses. Clause 6.6.3 states that: 

Factors that should be considered in determining the consequence category include: 

• Life-safety of personnel on, or near to, the platform brought in to react to any 

consequence of failure, but not personnel that are part of the normal complement 

of the platform; 

• Damage to the environment; 

• Anticipated losses to the owner, to other installation owners, to industry and/or to 

other third parties as well as to society in general. 

The consequence category shall be determined from: 

a) Cl High consequence category 

b) C2 Medium consequence category 
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c) C3 Low consequence category 

It is recognized that consequence category definitions include a degree ofjudgment. The 

category that applies to a structure shall be determined by the owner of the structure 

prior to the design of a new structure and shall be agreed by the regulator where 

applicable. 

The 3 categories for each of life-safety and consequence can be combined into 9 exposure 

limits as presented below in Table 13. 

Table 13 Determination of Exposure Level- ISO 19902, Table 6.6-1 (ISO, 

2003) 

Consequence Category 

Life-safety Category Cl High C2Medium ClLow 

Consequence Consequence Consequence 

Sl Manned Non-evacuated Ll Ll Ll 

S2 Manned Evacuated Ll L2 L2 

S3 Unmanned Ll L2 L3 

In 1999, the Canadian Standards Association (CSA) embarked on an initiative to revise 

the existing Offshore Standards including CSA S471. This revised CSA code has set the 

basis for harmonization with the ISO Offshore Structures Code (Frederking et al., 2004). 
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5.6 Application to Wellhead Protection 

With all wellhead installations, there is potential threat to the environment by means of 

pollution. In order to minimize this risk, these systems are generally provided with 

barriers in the well bore, including a surface-controlled subsurface safety valve (SCSSV) 

and a fail-closed master valve in the subsea or insert tree. For wellheads that are 

susceptible to potential damage from scouring icebergs these threats are even greater. 

Under these conditions alternative protection techniques as discussed in Chapter 4 must 

be strongly considered along with employing iceberg management programs. 

Major environmental consequences can result if a subsea blowout occurs as a result of 

iceberg impact, and is thus the main concern when considering wellheads. A subsea 

release of well fluid from oil producers would result in a pool forming on the sea surface. 

The location of the subsea wells would be such that they would be considerable distance 

from the main installation and risks to personnel are considered remote. In addition to 

the environmental ramifications, the business consequences of significant damage to an 

asset could also be very high, particularly if a wellhead was lost because of iceberg scour. 

Securing a well that has been damaged could conceivably take months and cost tO's of 

millions of dollars. Well productivities for typical producer wells on the Grand Banks 

reach as high as 30,000 bbl ( 4800 m3
) per day. If such of an event were to occur, it 

would potentially be catastrophic to the environment and oil and gas community alike. 

With regard to the two levels of safety as presented in CSA S471-04, Safety Class 1 

would result in great risk to life or a high potential for environmental damage. For the 
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case of a subsea blowout, extreme consequences would result if a release of thousands of 

m3 per day for several or more days occurred. This would correspond to the case where a 

wellhead that was damaged as a result of an extremely deep scour or damage to the 

valves causing loss of integrity to the well. In this case, blowout of a well on iceberg 

contact presumes that the downhole SCSSV fails to function correctly. Subsea system 

components such as wellheads and Xmas trees fall into Safety Class 1 because they offer 

high potential for environmental damage if impacted directly by an iceberg. 

Safety Class 2, which would result in small risk to life and low potential for 

environmental damage, would only apply in this case if the reliability of the emergency 

response measures and/or backup control systems was clearly demonstrated to be 

adequate for any eventuality. Obviously, systems offering this level of reliability would 

be difficult to achieve for events such a subsea well blowouts that normally take days to 

even months to bring under control. Subsea system components such as flowlines, 

umbilicals and manifolds fall into Safety Class 2 because they offer small risk to human 

life and low potential for environmental damage if impacted directly by an iceberg. These 

subsea components are generally located at or above seabed level and are essentially 

considered sacrificial parts of the overall subsea system. Subsea facilities, such as these 

are designed with failsafe systems to minimize any adverse environmental effects in the 

event of failure or damage. Having the flowlines and manifolds on the seafloor will 

provide access for inspection, testing, repair, replacement or removal. In order to minimize 

spills caused by possible ice scour, the affected subsea facilities will be shut in and flushed 
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with injection water. Emergency shutdown valves and weak links are installed to 

minimize environmental harm from accidental damage. 

For the purpose of this study, it will be assumed that any contact between an iceberg and 

an Xmas tree or wellhead could result in a blowout, resulting in an uncontrolled oil flow 

from the well releasing large quantities of hydrocarbons into the environment. This is 

clearly a Safety Class 1 event. Other installations, such as flow lines, where the potential 

damage to the environment is small, should be treated using Safety Class 2 guidelines. 

5. 7 Recommendations 

Allyn (2000) states that the safety class targets that are specified in the CSA fixed 

structure design code can be used to gauge the consistency in reliability targets for 

seafloor facilities such as wellheads. However, large uncertainties relating to the nature 

and risk of iceberg scour on the Grand Banks, along with the unknowns about the 

effectiveness of various protection schemes, make this type of assessment approach quite 

challenging. 

In the absence of more specific methodology and guidelines to deal with protection of 

subsea facilities, it is recommended that the CSA target safety levels and design strategies 

be followed as summarized previously in Table 12. In terms of Safety Class, wellheads 

should be considered as Class 1, since failure or damage could lead to significant 

hydrocarbon release resulting in adverse environmental damage. For this case, the CSA 

standard recommends an annual target safety level of 1 o-s. When considering the two 
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cases proposed m this investigation, this would apply to the following facility 

arrangements: 

• Case 1 - One isolated single well, or 

• Case 2 - Several wells clustered around a single manifold. 

The annual target level for a single well or a multi-well cluster installation incorporating 

each proposed protection concept is therefore 1 o-5
• 

For particular developments systems such as Case 2 that consist of multi-wells, each well 

will have an associated probability of failure. Obviously the consequence of failure 

increases with the number of wells and it is advisable to increase the reliability level of 

the individual wells so as to maintain the probability of a serious (Safety Class 1) 

consequence at an acceptable level. Since more than one well may be contacted by a 

single iceberg, it may be prudent to design each well in the cluster for a target of less than 

10-5 per year. This can be achieved, for example, by increasing the depth of the shear 

plane for caisson completion systems or increasing the burial depth of trees for cased and 

open glory holes. Reducing the overall footprint of a multi-well installation will also 

reduce the overall risk and increase the total reliability of the system. In addition, iceberg 

management programs will also serve to reduce overall risk to these subsea installations. 
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6.0 PROBABILITY OF ICEBERG CONTACT TO WELLHEAD FACILITIES 

6.1 General 

A considerable amount of work has been undertaken over the last two decades in an 

attempt to estimate the risks to subsea facilities from encroaching icebergs on the Grand 

Banks. One of the earliest studies to determine such risk to offshore platforms on the 

Grand Banks was carried out by Blenkarn & Knapp (1969). They estimated the number 

of icebergs passing through a one-half degree rectangle based on International Ice Patrol 

sightings from 1948 to 1956. Reddy et al. (1980) elaborated on this approach and 

showed how to use Monte Carlo simulation to determine confidence limits on the impact 

probabilities estimated using the method of Blenkarn and Knapp with empirical Bayesian 

techniques. 

During the extensive oil exploration in the Arctic during the early 1980's, geometric 

solutions for determining the probabilities of impacts by ice floes onto fixed platforms 

were developed by the oil and gas industry. Around the same time, Petro-Canada (1984) 

undertook an extensive study to quantify the probability of damage to subsea installations 

due to iceberg collision or scouring on the eastern Grand Banks. The study investigated 

the probability of damage to individual subsea installations, such as satellite wells, 

manifolds, templates, and flowlines, as well as the overall probability of damage to the 

entire subsea system. The iceberg collision risk simulator BERGSIM was subsequently 

developed by Petro-Canada in 1984 as a part of the study to estimate the probabilities of 

icebergs on the Grand Banks colliding with fixed structures. During the last two decades, 

further work in this area has been undertaken by local oil and gas operators plus a variety 
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of local and national institutes, universities, government bodies and engmeermg 

consultants (Reddy et al., 1980; Sanderson, 1988; Fuglem et al., 1996; C-CORE, 1998; 

Croasdale et al., 2000; King et al., 2003). As a result, a number of variations to these 

early approaches have been developed and published in a number of sources to estimate 

probability of iceberg contact. 

Two basic kinds of data are generally adopted to express the density of icebergs for use in 

calculations for iceberg contact probability; iceberg flux and areal density. Iceberg flux 

analysis uses data relating to flux across a line (e.g. 48° latitude) in a time interval, at a 

given point in time. The use of flux data is rather difficult as the motion of icebergs 

includes a large random component, combined with a net directional component, and thus 

requires the estimation of meander coefficients. 

In comparison, the use of areal density data as discussed in Chapter 2.1 corresponds to a 

"snapshot" of the area under consideration. The theory for this approach was first 

presented by Sanderson (1988), who developed an approach to determine the frequency 

of multi-year floe impacts (or iceberg impacts) with structures such as Molikpaq in the 

Beaufort Sea. The area used for this approach could be any area but generally a degree 

square is the unit used. A degree square varies in size with latitude but is a convenient 

measure in view of the liP data collection practices. The areal density would be simply 

the number of icebergs in a degree square at a given point in time, and values would be 

available for the entire iceberg season, at various points in time. 
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Simulation methods such as BERGSIM can be based on both areal density as well as flux 

data; however, these methods are more complicated and are not necessary if collision 

probabilities are all that is needed in the calculation. For risk analysis calculations, the 

most reliable method of calculation is made using areal density data because they are 

simpler and less prone to measurement errors than methods requiring estimates of iceberg 

flux (Jordaan et al., 1999). For this reason, areal density data will be used in the analysis 

to determine probability of iceberg contact, presented herein. 

Evaluating risk to wellhead and tree facilities essentially involves two separate issues -

iceberg collision with wellhead facilities and the damage caused as a result. Calculating 

the probability of collision is relatively easy to determine by means of simple geometric 

models given the appropriate iceberg data. Assessing the level of damage, however, 

requires an assessment of structural response mechanisms, iceberg strength, and iceberg 

behavior following first contact (Croasdale et al., 2000). The later issue is outside of the 

scope of the present study and will not be addressed. 

As outlined in Section 3 .2, subsea production systems include components such as 

wellheads, trees, manifolds, templates and flowlines. For the purpose of this 

investigation, the emphasis will be focused primarily on subsea wellhead and tree 

components as they represent the most critical elements when considering protection 

from iceberg collision. 
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Subsea facilities located above seabed level and those located below are at risk from 

icebergs. Since scouring is relatively an infrequent occurrence, the probability of contact 

to structures located below seabed level is significantly lower than for structures 

projecting above the mudline. The intent of this chapter is to present a methodology in 

order to determine the appropriate interaction probabilities to wellhead facilities as they 

relate to the various protection scenarios (as outlined in Section 4.0). Figure 36 is a 

flowchart that illustrates the general approach used for determining annual iceberg 

contact probabilities for facilities located both above and below seabed level. 

Iceberg Waterline Length 

Iceberg Draft I I Water Depth 

ANNUAL CONTACT 
PROBABILITY 
- Freely Floating Icebergs 
- Scouring Icebergs 

STRUCTURE DIMENSIONS 
- Above Seabed Level 
- Below Seabed Level 

ICEBERG 
-Drift Speed 
- Areal Density 
-Keel Shape 
- Scour Frequency 

Figure 36 Flowchart Showing General Approach used to Determine Annual 

Contact Probabilities 
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The effect of iceberg management and its ability to reduce risk levels will also be 

discussed. 

The estimates presented herein are determined for the general area of focus that 

encompasses the northeast Grand Banks, as it represents a region of significant oil and 

gas development opportunity. This area is defined by degree square 46° to 47°N and 48° 

to 49° W. In addition, a water depth of 1OOm will be used throughout this study as it is 

representative of water depths encountered on the northeast Grand Banks. 

6.2 Facilities Above Seabed Level 

Subsea facilities that are positioned completely or partially above the seabed level are at 

risk from freely floating and scouring icebergs. The total probability of iceberg contact 

can be given by the following expression: 

(6.1) 

Where 17 is the total annual probability of iceberg contact, 1Jd is the annual probability of 

contact with freely floating icebergs and 17 sis the annual probability of contact with 

scouring icebergs. The methodology for estimating the probability of contact for both 

freely floating and scouring icebergs for subsea facilities above mudline is described in 

subsequent Sections 6.2.1 & 6.2.2. 
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6.2.1 Contact Frequency with Freely Floating Icebergs 

Iceberg collisions from freely floating icebergs to subsea facilities may occur from 

icebergs with drafts between the water depth and the depth of the top of the structure. 

The annual contact probability from freely floating icebergs can be estimated from the 

average iceberg population (per unit area), average drift speed, and the sum of iceberg 

keel and structure widths at the point of contact. C-CORE (2001b) presented the 

following relationship in order to calculate the annual frequency of contact for freely 

floating icebergs with a subsea structure: 

(6.2) 

Where 17d is the annual contact frequency of freely floating icebergs with a structure 

extending a distance 'h' above the mud line; pd is the areal density of icebergs with 

drafts between dw (the water depth) and dw-h (the water depth less the height of the 

structure); Ld is the effective width of iceberg keels in the dw to dw-h depth range; Dd is 

the effective diameter of the structure; and v is the mean iceberg drift speed. If the areal 

density is given as an annual average number per degree square, and dimensions are in 

meters and speed is in m/s, a conversion factor K ( 3.7 x 10-3 m-2 s) is required to obtain 

1ld· 
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6.2.1.1 Iceberg Areal Density 

As discussed in Section 2.2, areal density ( p) refers to the average number of icebergs 

that would be expected to be seen in a particular region (typically a degree square) in a 

particular time frame (typically a year). Jordaan et al. (1999) have analyzed iceberg 

sightings from liP data and calculated the mean annual areal density per degree square 

for the Grand Banks and adjacent regions, which are shown in Figure 7. Based on the 

more conservative areal density values calculated from data collected over last 20 years 

(1981-2000), a mean annual areal density of0.77 icebergs I year I degree square has been 

selected, representing the area defined by degree square 46° to 47°N and 48° to 49° W. 

The areal density of icebergs with drafts deep enough to make contact with a subsea 

structure is calculated from the total iceberg areal density ( p ) and the proportion (p) of 

the iceberg population with drafts deep enough to strike the subsea structure. The 

product of these two parameters yields pd as given below: 

(6.3) 

6.2.1.2 Iceberg Draft Distribution 

To determine the proportion of icebergs with sufficient draft to impact a wellhead 

structure, the distribution of iceberg drafts must be determined. The general approach 

most readily used in the industry is to define iceberg size in terms of waterline length and 

generate other iceberg parameters using relationships based on waterline length. Iceberg 
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waterline length distribution is fairly well documented, thus, by utilizing the appropriate 

iceberg length/draft relationship, it is possible to generate the iceberg draft distribution 

(King, 2002). 

The iceberg waterline length distribution on the northeast Grand Banks have been 

determined to have an exponential distribution with a mean of 59m (Jordaan et al., 1995). 

King (2002) analyzed 211 known iceberg draft measurements obtained off the coast of 

Newfoundland and determined that the mean iceberg waterline length for this data set 

was 115m with a mean draft of 80m. King presented the following relationship between 

iceberg waterline length (L) and draft (D): 

D = 3.23£0
'
68 (6.4) 

Where the standard deviation of the residuals is 0.25. Since the mean waterline length 

for icebergs with measured drafts is 115 m, it is obvious that this dataset is biased 

towards larger icebergs and cannot be used directly to generate a draft distribution. Thus, 

to generate a sample of iceberg drafts, a large sample of waterline lengths, exponentially 

distributed with a mean of 59 m was generated and the corresponding drafts were 

calculated using the following equation derived by (King, 2002): 

D; = exp(ln(3.23) + 0.68ln(L;) + N(0,0.25)) (6.5) 
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Where N (0, 0. 2 5) is a random variable with a mean of 0 and a standard deviation of 0.25. 

Only icebergs with waterline lengths ~ 16m were considered because the areal density 

value does not include icebergs smaller than this value. 

Based on the above approach, the exceedence probability distribution of iceberg drafts is 

presented in Figure 37. Although this distribution can be modified to account for icebergs 

with drafts greater that the water depth in the study region that will ground and be filtered 

out of the keel population, King (2002) showed that the influence of bathymetric filtering 

was minimal for a water depth of 1OOm. 
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6.2.1.3 Effective Keel Width 

The width of an iceberg keel at the level of a subsea structure also affects iceberg 

probability of contact, since a wider keel has a higher probability of impact. Field 

measurements of icebergs on the Grand Banks were documented in the Mobil Hibernia 
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Development Studies (Dobrocky, 1984). The data were obtained usmg sonar 

measurements of each iceberg at various positions around the iceberg's circumference 

and at various depths. Mean values of iceberg width were computed at each sonar depth 

for each iceberg in the data set. These widths were plotted against distance above the 

iceberg keel and then normalized with respect to iceberg draft allowing the profiles to be 

used to generate iceberg keel widths for a variety of iceberg drafts and elevations. 

Croasdale et al. (2000) derived a second-order least squares fit of normalized iceberg 

width (w*) as a function of normalized height above the keel (z*) for the bottom 30% of 

the iceberg data. This relationship was given as: 

w* = -9.31z*2 + 5.3z* + 0.26 (6.6) 

Where z * = z I D;; w* = wID; ; z is the distance measure upward from the keel tip (m); 

w is the iceberg width (m) at a given z ; and Dis the iceberg draft (m). 

To ensure correspondence between iceberg shape and scour geometry, the data was 

scaled to fit the mean scour width and mean scour depth measurements for the study area, 

which correspond to 24m and 0.5m respectively (taken from Table 4). This assumes that 

the mean scour width was measured at the mudline. The scaling is illustrated in Figure 

38, whereby the original quadratic fit was shifted downward by a constant value to 

maintain the original shape of the curve. 
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When calculating the effective keel width, the assumed iceberg draft and point of contact 

between the iceberg keel and the structure is important. For water depths in the range of 

1OOm, it is reasonable to assume that the iceberg keel width increases monotonically with 

elevation above the bottom of the keel so unless the structure is strangely shaped the 

point of contact will be at the top. 
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A sensitivity analysis for effective keel width was carried out for a number of keel I 

structure interaction scenarios based on Equation (6.6). Results revealed that for freely 

floating icebergs, the most conservative approach was to assume that the iceberg draft is 

equal or slightly less than the water depth and has an effective keel width at a level equal 

to the top of the structure. However, freely floating icebergs capable of striking a 

structure above the seabed will have keels that extend from the top of the structure, dw-h, 

down to a point just above the seabed, dw (at which point you're dealing with scouring 

icebergs). Thus, the average keel will extend halfway down the structure with the contact 

point at the top of the structure as illustrated in Figure 39. 

h 

Figure 39 

Iceberg Keel 

Structure 

I~ 

Iceberg Keel and Structure Interaction Arrangement for Freely 

Floating Icebergs 

6.2.1.4 Iceberg Drift Speed 

Iceberg drift velocities can be determined from iceberg sightings obtained during drilling 

operations on the Grand Banks. Iceberg velocities representative for the area defined by 

degree square 46° to 4 7° N and 48° to 49° W have been determined using iceberg 
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sightings from the Marine Environmental Data Service Canadian Offshore Oil and Gas 

Environmental Data (MEDS, 1997) database, as well as recent sightings obtained during 

iceberg management operations. 

Based on findings from a number of recent studies (C-CORE, 2001d; C-CORE, 2002; 

King, 2002; King et al., 2003) using the MEDS (1997) data and recent iceberg sighting 

data, average iceberg drift velocities were calculated for areas in the vicinity of Terra 

Nova, White Rose and Hibernia. The mean iceberg drift speeds for these areas ranged 

from 0.33 to 0.36 m/s, with an average of 0.34 m/s. Icebergs identified as towed or 

grounded were excluded from all sample analysis. As each of the study areas above fall 

within the area defined by degree square 46° to 4 7° N and 48° to 49° W, a representative 

mean drift speed of 0.34 m/s will be used throughout this report. 

Although drift vectors can be used to generate the drift direction distributions in order to 

show that the iceberg drift regime varies locally (King et al., 2003), directional drift data 

has not been analyzed for the purpose of this study. By assuming a mean drift speed that 

is independent of direction and a uniform distribution of drift direction, a non-directional 

approach will be taken which assumes that the probability of contact with a subsea 

facility is equal from all compass directions. 

6.2.2 Contact Frequency with Scouring Icebergs 

In addition to freely floating icebergs, collisions from scouring icebergs may also occur 

to subsea facilities when contact is made with the structure above the mudline. The 

annual contact probability from scouring icebergs can be estimated from the annual scour 
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frequency (per unit area), mean scour length, and the sum of iceberg keel and structure 

widths at the point of contact. C-CORE (2001b) presented the following relationship in 

order to calculate the annual frequency of contact for scouring icebergs with a subsea 

structure: 

(6.7) 

Where 1J s is the annual contact frequency of scouring icebergs with a structure extending 

a distance 'h' above the mud line; fs is the annual scour frequency per unit area; Ld is the 

effective width of iceberg keels in the dw to dw-h depth range; Dd is the effective 

diameter of the structure; and Ls is the mean scour length. 

6.2.2.1 Annual Scour Frequency 

As presented in Section 2.3.2, scour frequency can be estimated using a number of 

approaches (i.e. geological inference, grounding model, repetitive mapping and scour 

degradation). Scour rates presented in Table 3 for the northeast Grand Banks region 

range from 8.3 x 10-5 scours/km2/year using lower bound geological inference (Croasdale 

et al., 2000) to 3.5 x 1 o-3 scours/km2/year using a grounding model derived by Lewis et 

al. (1987). Recent grounding model work completed by King (2003) computes 

grounding rates that lie approximately half way in between scour rates as presented in 

Table 3. Using directional iceberg drift data for Hibernia and White Rose, King (2002) 

calculated scour frequencies of 7.8 x 10-4 and 7.3 x 10-4 scours/km2/year, respectively. 

121 



This compares to 1.2 x 10-3 and 8.4 x 10-4 scours/km2/year using a non-directional 

approach of the same grounding model. 

For the purpose of this investigation, an annual scour frequency of 1 x 1 o-3 

scours/km2/year (or 1 x 10-9 scours/m2/year) has been selected, which is representative 

for the study region. This is an average of the Hibernia and White Rose scour rates from 

the King (2002) grounding model assuming non-directional drift data. 

6.2.2.2 Effective Keel Width 

Taking a similar approach as for freely floating icebergs, the effective keel width for 

scouring icebergs can be calculated by assuming a mean scour depth for the study region. 

The mean scour depth in water depths less than 110m on the Grand Banks is 0.5m 

(Croasdale et al., 2000) as presented in Table 4. Using the same relationship presented in 

Equation (6.6), the effective keel width can be calculated based on the iceberg keel and 

structure interaction arrangement as presented in Figure 40. 
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0.5m (mean scour depth) 

Iceberg Keel and Structure Interaction Arrangement for Scouring 

Icebergs 

6.2.2.3 Mean Scour Length 

The mean scour length in water depths less than 11Om on the Grand Banks is 560m 

(Croasdale et al., 2000) as presented in Table 4. This value is considered to be an under 

estimate of the scour length since many of the scours were truncated by the survey (i.e. 

the scours extended outside the sidescan swath). C-CORE (2001d) assessed the effect of 

truncation on the mean scour length in order to determine a corrected mean scour length 

for a range of swath widths. By means of trial and error, an approximate breakdown 

according to swath width was used in order to determine the actual scour length 

distribution. Results from a two-parameter Gamma distribution and a scaled cumulative 

distribution function from the measured data were averaged to come up with a correction 

factor equal to 1.11. Applying this gives a corrected mean scour length of 1.11 x 560m = 

622m. 
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6.3 Facilities Located Below Seabed Level 

For structures located below seabed level the probability of contact from scourmg 

icebergs decreases with increasing burial depth. In order to properly determine this 

probability of contact, Croasdale et al. (2000) made the distinction between small and 

large holes. The distinction has been made since scouring icebergs may penetrate (drop 

or dip) as they enter large open holes. As presented in Table 4, the mean scour width on 

the northeast Grand Banks for water depths ::::; 11Om is 24m. Drilled holes such as cased 

glory holes and caisson completion systems have diameters that are generally 

significantly smaller than 24m in comparison to open glory holes that can have based 

dimensions greater than 1OOm. Thus, for the purpose of this investigation, any holes 

greater than 24m are to be considered as large open holes or glory holes, while all others 

will fall into the small diameter hole or structure category. 

For scouring icebergs with installations below seabed, the effective keel width Ld will be 

assumed to be equal to the 24m. This value corresponds to the mean scour width in water 

depths ::::; 11Om on the Grand Banks (Croasdale et al., 2000). By using the distribution of 

scour widths for the region, this is somewhat of a conservative approach as it assumes a 

mean scour width at seabed level rather than at a distance below mudline. This approach 

is necessary due to the lack of adequate information relating to iceberg keel widths 

collected to date in the region. 
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6.3.1 Small Diameter Hole or Structure 

For a small diameter structure (~ 24m) such as a downhole caisson wellhead, the 

probability of contact to a specific depth below the mudline can be determined using a 

modified version of Equation (6.7) (Croasdale et al. 2000). The probability of 

exceedance for iceberg scour depth, P(z )8 , determined from a fit of scour data from 

the1999 update of the GBSC can be applied, yielding the following relationship: 

(6.8) 

where P(z )8 = e -z 
1 

P ; z is the depth below the mudline and; Jl is the mean scour depth 

(0.5m as per Table 4). 

It is interesting to note from the exponential distribution presented in Figure 41, the 

probability of scours occurring with depths greater than 3m is quite low. 
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Figure 41 Probability ofExceedance for Iceberg Scour Depth (Water Depths::::; 

110m) 

6.3.2 Large Open Hole or Glory Hole 

The likelihood of an iceberg coming into contact with a facility located in a large open 

hole depends first of all, on the likelihood of an iceberg scouring directly over the hole as 

presented in Section 6.2.2. Given this scenario, transient and wave induced motions of 

scouring icebergs can result in penetrations below seabed (C-CORE, 1997). 

For large diameter holes, the probability of contact to a specific depth below seabed level 

is again determined using a modified version of Equation (6.7) (Croasdale et al. 2000). 

In this case P(z )L is the probability of exceedance for the iceberg keel penetrating a depth 

z into the hole. The relationship thus becomes: 
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(6.9) 

Calculating this is complex and involves determining the keel offset from the center of 

mass and the heave and pitch dynamics of the iceberg as it enters the hole. The 

probability of exceedance P(z )L has been estimated using a number of approaches. 

C-CORE (1997) conducted a study for the Terra Nova region and used a force 

equilibrium model to determine the heave and pitch of icebergs during steady state 

scouring of the seabed. The output of this model was used as input into a model of 

transient motions and predicted wave induced motions to estimate the maximum 

penetration of iceberg keels below mudline for a scouring iceberg encountering deep 

open holes. Probabilities of exceedance P(z )L were plotted against maximum penetration 

as illustrated on Figure 42 below. 
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Figure 42 Exceedance Plot for Iceberg Keel Penetration Into a Glory Hole Due 

to Transient Motions, and Wave-induced Motions (C-CORE, 1997) 

In contrast, C-CORE (200 1 e) estimated P(z )L from the distribution of excess drafts for 

scouring icebergs in the White Rose region based on information from the Grand Banks 

scour database (see Figure 43). The change in water depth between endpoints for 

measured scour marks (also called rise-up) were used as the basis for estimating the 

increase in draft of scouring icebergs upon reaching a large open hole. The excess draft 

results from a combination of heave and pitch motions of the iceberg were estimated 

based on seabed records from the GBSC. As it is equally likely that an iceberg may scour 
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into a glory hole anywhere along the length of the scour, the expected excess draft of an 

iceberg on entry to a glory hole was assumed to be half the rise-up assuming the 

relationship between rise-up and scour length is linear. 

2 3 4 6 
Rise-up [m] 

8 10 

Figure 43 Measured Scour Rise-up Distribution for White Rose Region (C-

CORE, 200le) 

12 

Upon comparison of the probability of exceedance P(z )L results for each of these two 

approaches, it is observed that they are of a similar magnitude, with C-CORE (2001e) 

having a slightly higher range for excess drafts between lm and 3m (see Figure 42 & 43). 

Because completely different and independent models were used in each case, it does 

suggest that discrepancies are expected. Due to the fact that rise-up values are actual 

measured data, they are deemed more appropriate in this case. Thus, the upper bound of 

the values plotted for the more conservative C-CORE (2001e) approach will be used for 
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the analysis performed herein. These upper bound values are represented by the red line 

presented in Figure 43. 

6.4 Sample Calculation of Total Contact Frequency 

A sample calculation for the total contact frequency of a subsea facility located both 

above and below seabed level is outlined below. 

6.4.1 Facility Above Seabed Level 

For the structure situated above seabed level, it is assumed that the structure has a height 

of 5.5m and an effective diameter of 5m as illustrated in Figure 44. 

Figure 44 

Iceberg 

Freely 
Floating 

Scouring 

Schematic of Seabed Facility Located Above Seabed Level 

The relevant input values are given in Table 14 overleaf. 
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Table 14 Input Parameters for Total Contact Probability of a Subsea Facility 

Located Above Seabed Level 

Parameter Symbol Value Source I Reference 

Structure Height h 5.5m 
Representative of 

Xmas tree installation 

Structure Diameter (or effective 
Dd 5m 

Representative of 
diameter) Xmas tree installation 

Water Depth dw lOOm 
Assumed 

representative of area 

Areal Density p 0.77 I degree 
Jordaan et al. (1999) 

square 

Conversion Factor K 3.7 x 10-3 m-2 s C-CORE (2001d) 

Mean Iceberg Waterline Length L 59m Jordaan et al. (1995) 

The Proportion of Icebergs with 
King (2002) 

Drafts Between dw and dw-h p 0.0215 
(1OOm and 94.5m) 

C-CORE (2002) 

Effective Keel Width (freely 
Ld 39.1 m 

Dobrocky (1984) 
floating icebergs) Croasdale et al. (2000) 

Mean Iceberg Drift Speed v 0.34 m/s MEDS (1997) 

Annual Scour frequency Is 
1 X 10-3 

King (2002) 
scours/km2 /year 

Mean Scour Depth - 0.5m Croasdale et al. (2000) 

Scour length Correction Factor - 1.11 C-CORE (2001e) 

Effective Keel Width (scouring 
Ld 54.6m 

Dobrocky (1984) 
icebergs) Croasdale et al. (2000) 

Mean Scour Length Ls 622m Croasdale et al. (2000) 
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The areal density of floating icebergs with sufficient draft to strike a subsea installation 

with a height of 5 .5m in 1OOm of water can be calculated as: 

pd = 0.77 X 0.0215 = 1.65 X 10-2 

Assuming Ld = 39.1m (mean iceberg keel width), Dd = 5m (structure diameter), and 

v =0.34 m/s (mean iceberg drift speed), the encounter frequency with free-drifting 

icebergs can be calculated as: 

1Jd = 3.7x10-3 xl.65x10-2 x(39.1+5)x0.34 = 9.18x10-4 

The annual probability of contact for scouring icebergs can be calculated as: 

1ls = 1 X 10-9 
X (54.6 + 5)x 622 = 3.7 X 10-5 

Thus, the total contact frequencies for freely floating and scouring icebergs for the entire 

structure is calculated to be: 

17 = 9.18x10-4 +3.7x1o-s = 9.55x10-4 

Based on the results presented above, it is evident the contribution to overall contact 

probability from scouring icebergs is minor in comparison to free floating icebergs. 
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The annual probability for contacts above seabed level from freely floating icebergs is 

presented in Figure 45. In this graph the annual contact probability is plotted against 

structure diameter for a range of different structure heights (1, 2, 5 & 10 m). The plots 

show that the probability of contact increases with structure diameter and with structure 

height above seabed. 
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Figure 45 Annual Contact Probabilities Calculated for Freely Floating Icebergs 

and Structures Above Seabed Level 

The annual probability for contacts above seabed level from scouring icebergs is 

presented in Figure 46, overleaf. In this graph the annual contact probability is again 

plotted against structure diameter for a variety of different structure heights (1, 2, 5 & 10 

m). The probability of contact increases with structure diameter and structure height. 
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Figure 46 Annual Contact Probabilities Calculated for Scouring Icebergs and 

Structures Above Seabed Level 

As can be concluded by comparing Figures 45 & 46, the annual contact probability for 

scouring icebergs is at least an order of magnitude lower than for those which are freely 

floating. 

6.4.2 Facility Located Below Seabed Level 

For the structure situated below level, it is assumed that the structure is situated in a large 

open hole (i.e. glory hole) with mudline footprint dimensions equal to lOOm x 75m. The 

structure is 7m high and centrally located in a 1Om deep hole, giving a clearance between 

top of structure to mean seabed of 3m. This arrangement is illustrated in Figure 47. 
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Figure 47 

Scouring 

100 m x 75 m hole 

3m 

Structure h =7 m 

Schematic of Seabed Facility Located Below Seabed Level in a Large 

Open Hole 

The relevant input values are given in Table 15, overleaf. 
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Table 15 Input Parameters for Total Contact Probability of a Subsea Facility 

Located Below Seabed Level 

Parameter Symbol Value Source I Reference 

Structure Height h 
7m Representative of 

Xmas tree installation 

Representative of 
Hole Effective Diameter Dd 111m typical glory hole 

excavation 

Water Depth dw 
100m Assumed 

representative of area 

Probability of Exceedance for 
P(z)L C-CORE (200 1 e), the Iceberg Keel Penetrating a 0.028 

depth 3m into the hole 

Annual Scour frequency Is 
1 x w-3 

King (2002) 
scours/krn2/year 

Mean Scour Depth - 0.5 m Croasdale et al. (2000) 

Scour length Correction Factor - 1.11 C-CORE (2001e) 

Effective Keel Width (equal to 
Ld 24m Croasdale et al. (2000) 

mean scour width) 

Mean Scour Length Ls 622m Croasdale et al. (2000) 

The effective hole diameter can be calculated as: 

Dd = (2ht)(hole length+ hole width)= (2ht)(100 + 75) =111m 

Assuming P(z )L = 0.028 (probability of exceedance for the iceberg keel penetrating a 

depth 3m into the hole); fs = 1 x 10-9 scours/m2/year (annual scour frequency); Ld =24m 
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(mean iceberg keel width), Da = 111m (effective hole diameter), and Ls = 622 rn (mean 

scour length), the total contact frequency for a structure located in a large open hole can 

be calculated as: 

lls = 0.028xlx10-9 x{24+111)x622 = 2.4x10-6 

Contact probabilities resulting from the model analysis of small diameter holes or 

structures located below the rnudline are presented in Figure 48. The annual contact 

probability is plotted against depth below seabed level. As one would expect, the 

probability of contact decreases with increasing depth below seabed. Figure 48 indicates 

that there is very little sensitivity to the results with varying hole sizes. 
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Figure 48 Annual Contact Probabilities Calculated for Scouring Icebergs with 

Hole Diameters ~ 24m Below Seabed Level 
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Total contact probabilities resulting from the model analysis of facilities located in large 

diameter holes are presented in Figure 49. As given in the relationship for Equation (6.8) 

the annual probability that an iceberg will penetrate to a given depth in the hole is 

calculated by combining the excess draft of icebergs entering a large open hole (Figure 

43) with the probability that an iceberg reaches the hole (Section 6.2.2). Considering a 

range of hole sizes, a corresponding range for the probability of iceberg penetration to 

various depths is obtained. It should be noted that the actual footprint of the installation 

inside the hole is much smaller than the chosen mudline dimensions of the hole due to the 

sloping sides required for stability. While it is possible that an iceberg enters the hole 

without damaging the wellhead, this possibility has not been considered explicitly. For 

the calculations an effective diameter of (2/n)(hole length + hole width) was used to 

represent the width of the hole by assuming equally likely scour orientations. Figure 49 

overleaf indicates that there is very little sensitivity to the results with varying hole sizes 

more than mean scour width. 
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Figure 49 Annual Contact Probabilities Calculated for Scouring Icebergs with 

Hole Diameters > 24m Below Seabed Level 

6.5 Iceberg Management 

A key element to being able to work in the Grand Banks environment is active ice 

management. When the oil industry first began to explore for oil and gas off Canada's 

East coast in the late 1960's, iceberg management was almost unheard of. However, the 

need to protect drilling vessels from iceberg damage while at the same time, minimizing 

drilling downtime, quickly lead to the development of various iceberg management 

techniques (Crocker et al., 1998). During the past 30 years of exploration and delineation 

drilling on the Grand Banks, ice management techniques for managing ice and working 

safely in the environment have been developed and refined. The majority of the current 

iceberg management activities conducted on the Grand Banks are limited to iceberg 
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deflection techniques. These being synthetic line towing, dual vessel towing for medium 

to large icebergs, and prop wash and water canon deflection for smaller ice masses. 

Physical management systems usmg supply vessels and comprehensive detection 

techniques have been developed by oil and gas operators in the region to help reduce the 

risk of iceberg damage to offshore installations. Terra Nova for example, has a 

comprehensive ice management strategy based on detection, monitoring and deflection, 

to prevent iceberg encroachment into the vicinity of the field. The program employs 

boats, aircraft and the platform's own S-Band marine radar system to detect nearby 

icebergs and track their movement. However, the application of such an ice management 

strategy does not guarantee that the encroachment of icebergs into the area will be 

completely avoided. In the long term, it is envisioned that proper implementation of an 

iceberg management system could potentially result in an order of magnitude decrease in 

the annual iceberg contact probability of subsea facilities. 

In practice, the potential for iceberg contacts can be reduced significantly by effective 

detection and physical iceberg management techniques. For subsea facilities, only 

relatively large icebergs with drafts equal or greater than the water depth will present a 

threat. Of these encroaching deep draft icebergs, only those remaining undetected, and 

unsuccessfully managed pose a threat to a subsea facility. This is illustrated in Figure 50 

overleaf, in which the subsea installation is at risk from an "Impact". 
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Figure 50 

Icebergs Potentially Impacting a Subsea Installation 

Can't Detect 

Impact 

OK Impact 

Decision Tree Illustrating the Influence of Iceberg Detection and 

Management on the Probability of an Iceberg Impacting a Subsea 

Installation 

Mckenna et al. (2003) developed the following relationship to calculate the proportion of 

icebergs drifting directly toward a fixed installation that actually reach it is: 

~mpact = (1 - pdet) + pdet (1 - ~ow) (6.10) 

where P det is the probability of detection success and P1ow is the probability of success for 

physical management operations. 

While iceberg detection and physical management success depend on a number of 

parameters; the most important are sea state and iceberg size. Due to the prevalence of 

fog on the Grand Banks, the primary means of iceberg detection is marine radar with 
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detection success primarily dependent on range. Physical management success is based 

on data from past practice and depends on the time and resources available for the 

operation. Towing success is defined as the probability that an iceberg directed at a 

facility is deflected successfully. Typically, icebergs that cannot be managed are small 

ones in higher sea states and those that are unstable. 

Notwithstanding Equation (6.10), overall tow success probability is approximately 85% 

based on historical data associated with drilling operations off Canada's east coast (e.g. 

Bishop, 1989; PERD, 2002a). Detection probabilities are typically much higher and 

approach 100% for short ranges from an installation. Failure to detect icebergs is most 

likely during storms (PERD, 2002b). If, for example, detection success is 98% and tow 

success is 85%, the proportion of icebergs reaching the installation is calculated from 

Equation (6.10) to be ~mpact = 16.7%. For 100% detection success, the proportion of 

icebergs potentially reaching the installation that actually reach it would be 

~mpact = (1- P,ow) = 15%. 

While these iceberg features are easy to detect, and may be less likely to roll or slip tow 

lines, the tow forces required to cause deflection are extremely large. For even medium 

size free floating icebergs (i.e. up to 2 million tones) and icebergs that are scouring the 

seabed, overall tow success is believed to be very low. In addition, the layout of subsea 

facilities such as satellite developments with long flowline routes may make reliable 

avoidance by deflection difficult. However, protection of seabed facilities for extended 

reach satellite wells and pipelines could be achieved through adequate towing resources 

142 



and proper utilization of these resources. Although unproven, another management 

technique that could prove very valuable for reducing risk to subsea facilities is draft 

reduction, whereby the draft of an iceberg is reduced such that the resulting iceberg keel 

is above the top of any structure. Draft reduction methods using cutting tools are 

currently under research with plans for a full-scale field program in the near future. 

Prototype tests conducted near shore by C-CORE have offered some promising results 

for this technology (Ralph, 2004). 

Implementation of iceberg management systems alone is unlikely to justify the safe 

operation of unprotected satellite wells. It will, however, mitigate economic 

consequences and provide assurance that a particular seabed installation meets target 

safety levels in spite of uncertainties associated with iceberg contact probabilities. 

For calculations of overall contact probability to the various wellhead protection systems 

presented in Chapter 7, provisions for effective ice management activities will also be 

evaluated. 

143 



7.0 WELLHEAD PROTECTION SYSTEM LAYOUT & ASSOCIATED 

ENCOUNTER PROBABILITIES 

7.1 General 

As presented in Section 3.4, two representative development systems relating to a subsea 

marginal development on the Grand Banks have been identified. For each of these two 

Cases (1 & 2), a number of wellhead systems have been defined and will be evaluated 

based on the probability of an iceberg encounter and required target level of safety. 

The single wellhead systems defined for Case 1 include: 

Case 1: Single Satellite Well Development 

1a) Conventional Xmas tree installed at seabed level (Base Case); 

1 b) Conventional Xmas tree installed at seabed level with downhole weak shear joint; 

1 c) Conventional Xmas tree installed in an open glory hole; 

1d) Conventional Xmas tree installed in a cased glory hole; 

1 e) Conventional Xmas tree installed in a modified cased glory hole; 

1 f) Caisson wellhead completion system with sacrificial Xmas tree. 
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The multiple wellhead systems defined for Case 2 include: 

Case 2: Clustered Mulit-well Development 

2a) Six conventional Xmas trees placed at seabed level, in two rows of three and tied into 

a common manifold; 

2b) Six conventional Xmas trees with downhole weak shear joint placed at seabed level, 

in two rows of three and tied into a common manifold; 

2c) Six conventional Xmas trees in two rows of three and a common manifold placed in a 

large open glory hole; 

2d) Six conventional Xmas trees placed in cased holes, in two rows of three and tied into 

a common manifold; 

2e) Six conventional Xmas trees placed in modified cased holes, in two rows of three and 

tied into a common manifold; 

2f) Six caisson wellhead completion systems with sacrificial Xmas tree, in two rows of 

three and tied into a common manifold. 

The specifications on which these systems are based are described in the subsequent 

sections. 

Due to the inherent high capital cost and increased overall risk associated with external 

protective barriers, they have been ruled out as being a viable protection solution and will 

not be considered further in this investigation. Furthermore, of the seven novel 

145 



protection concepts presented in Section 4.7, only the Xmas tree with downhole weak 

shear plane and the modified cased glory hole options will be evaluated further as these 

concepts offer the most favorable features from a commercial, technical, and 

environmental standpoint. 

The intent of this Chapter is to calculate encounter and contact probabilities for each of 

the single and clustered multi-well systems identified. In addition, each system will be 

evaluated and defined further based on the probability of iceberg contact and required 

target levels of safety. Summary results for all cases presented are included in Tables 16 

& 17, Section 7.4. 

For the initial layout of the well systems, it will be assumed that any direct iceberg 

contact with an Xmas tree or wellhead component will be considered to result in a 

blowout. In the case of a unprotected well with a downhole weak shear joint or caisson 

wellhead completion system, blowout is only considered to occur if the scour depth 

exceeds the depth of the weak shear joint I plane. 

In order to account for sub-scour soil deformation effects, a sub-scour deformation 

allowance of one scour depth beneath the scouring iceberg keel will be assumed when 

specifying the location of weak shear planes I joints below the seabed level for particular 

installations. Thus, the shear planes and joints for installations such as cased holes and 

caissons will be placed at a depth twice that of the scour feature with the appropriate 

exceedance probability. 
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Relatively low iceberg collision probabilities indicate that there is little justification from 

an economic or environmental perspective for locating manifolds and other non-critical 

wellhead equipment below the influence of scouring icebergs for clustered multi-well 

developments. Although existing subsea developments such as Terra Nova and White 

Rose have located their manifolds inside open glory holes, other non-critical subsea 

equipment such as flowlines and risers do not have the same protection and are 

essentially sacrificial. For the purpose of this work, with exception to Case 2c, where 

the manifold is placed in a large open glory hole, all manifolds are assumed to be located 

above seabed level. 

It must also be emphasized that the layout options presented in this Section are not fully 

optimized but are considered representative and adequately defined for the purpose of 

this high-level evaluation. 

Conservatisms and limitations related to the iceberg calculations for well blowout will 

also be addressed in Section 7.5, followed by a detailed discussion in Section 7.6. 

7.2 Single Satellite Well Development 

7.2.1 Unprotected Well (Case la) 

A conventional well with an unprotected Xmas tree located at seabed level is considered 

as the base case for this investigation. Specifications for this concept are as follows: 
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• 3.5 m x 4.5 m plan dimensions of the Xmas tree; 

• An Xmas tree height of 5.5m above seabed level. 

Details of Case la) are illustrated in Figure 51. 

CASE 1a) 

1 

~ 3.5m .. 

1 

PLAN VIEW 

PROFILE VIEW 
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Figure 51 Case la- Conventional Xmas Tree Installed at Seabed Level (Base 

Case) 

The conventional Xmas tree installed at seabed level has an effective structure diameter 

of 5.1 m, assuming equally likely incoming iceberg directions. For this arrangement, the 

Xmas tree may be impacted from both freely floating and scouring icebergs. The annual 

probability of contact from freely floating and scouring icebergs is 9.2 x 10-4 and 3.7 x 

10-5
, respectively, for a total probability of contact of 9.6 x 104 (based on Figures 45 & 

46). 

Assuming that iceberg contact with the Xmas tree results in a blowout (i.e. SCSSV fails 

to perform), it is clear that unprotected wells located at seabed level do not alone provide 

adequate protection from iceberg contact assuming a target level of safety equal to 1 o-s 

per annum. 

7.2.2 Unprotected Well with Downhole Weak Shear Joint (Case lb) 

Similar to the base case, a conventional well with an unprotected Xmas tree is installed at 

seabed level but has an added feature located downhole in the form of a weak shear joint 

located in the well conductor pipe. Specifications for this concept are as follows: 

• 3.5 m x 4.5 m plan dimensions of Xmas tree; 

• An Xmas tree height 5.5m above seabed level; 
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• Downhole weak shear joint located in the well conductor pipe located at a 

specified minimum depth beneath seabed level. 

Details of Case 1 b) are illustrated in Figure 52. 

Figure 52 

CASE 1 b) 
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WEAK SHEAR JOINT 

-----WELL CONDUCTOR PIPE 

Case lb - Conventional Xmas Tree Installed at Seabed Level With 

Downhole Weak Shear Joint 
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As for Case 1a, the a total probability of contact to the conventional Xmas tree from both 

from freely floating and scouring icebergs is 9.6 x 10"4
• In order to satisfy the required 

target level of 1 o·5 per annum, the weak shear joint must be located at a minimum depth 

of 0.6m below the mudline, allowing for 0.3 m scour depth (based on Figure 48) and an 

equivalent clearance between the bottom of the scour and the shear joint to allow for sub

scour soil deformation. For this particular condition, it is assumed that the Xmas tree and 

wellhead facilities located at seabed level are sacrificial, while the integrity of the well 

downhole relies on proper performance of the weak shear joint. 

7.2.3 Open Glory Hole (Case lc) 

For this protection concept, the Xmas tree is installed below the mudline in a large 

diameter open glory hole. The top of the tree is sufficiently deep to minimize the risk 

from scouring icebergs. Specifications for this concept are as follows: 

• 7 m deep hole; 

• Mudline glory hole dimensions of 52m x 52m; 

• 10 m by 10 m glory hole base dimensions (allows adequate ROV clearance 

around tree at operational level); 

• Slope for sides of glory hole - 3H: 1 V; 

• 3.5 m x 4.5 m plan dimensions of Xmas tree; 

• Xmas tree height 5.5m above base ofhole; 

• Top of Xmas tree 1.5 m below mudline. 
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Details of Case 1 c) are illustrated in Figure 53. 
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Figure 53 Case lc - Conventional Xmas Tree Installed in an Open Glory Hole 
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The open glory hole with mudline plan dimensions of 52 m by 52 m has an effective 

diameter of 66.2 m, assuming equally likely incoming iceberg directions. The open glory 

hole concept can only be affected by scouring icebergs. The annual probability of a 

scouring iceberg entering the open glory hole is 5.6 x 10-5
• In order to satisfy the 

required target level of 1 o-s per annum, the minimum depth of the top of the Xmas tree 

below the mudline is 1.45 m (based on Figure 49). 

7.2.4 Cased Glory Hole (Case ld) 

In this installation, the Xmas tree is installed below the mudline in a drilled and cased 

glory hole. The top of the tree is sufficiently deep to reduce the risk from scouring 

icebergs. The casing has a weak shear plane above the top of the tree. Specifications for 

this concept are as follows: 

• 10m deep hole; 

• 7.3 m outside diameter casing; 

• Casing extends 1 m above mudline; 

• Casing weak shear plane located at a minimum depth beneath seabed level; 

• 3.5 m x 4.5 m plan dimensions of Xmas tree; 

• Xmas tree height 5.5m above base ofhole. 

Details of Case 1d) are illustrated in Figure 54. 
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Figure 54 

CASE 1 d) 
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Case ld - Conventional Xmas Tree Installed in a Cased Glory Hole 

The cased hole, with a diameter of 7 .3m and a height of 1 m above the mudline may be 

impacted from both freely floating and scouring icebergs. The annual encounter 

probability from freely floating and SCOUring icebergs is 1.7 X 10-4 and 2.6 X 10-5
, 

respectively, for a total probability of 2 x 1 o-4 (based on Figures 45 & 46). In order to 
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satisfy the required target level of 1 o·5 per annum, the weak shear plane is located at a 

minimum depth of 0.8 m below the mudline, allowing for 0.4 m scour depth (based on 

Figure 48) and an equivalent clearance between the bottom of the scour and the shear 

joint to allow for sub-scour soil deformation. 

7.2.5 Modified Cased Glory Hole (Case le) 

Similar to the cased glory hole, the Xmas tree is installed below the mudline in a 

modified cased glory hole. The top of the tree is sufficiently deep to reduce the risk from 

scouring icebergs. The vertical casing for this concept only extends to 1.0 m above the 

Xmas tree, thereby eliminating any requirements for a shear plane. Specifications for this 

concept are as follows: 

• 1 0 m deep hole; 

• 7 .3m outside diameter casing; 

• Hole plan dimensions of 16 m dia. at mudline and 7.3 m dia. at base; 

• Vertical casing up to 6.5 m from the base of the hole; 

• Side slopes equal to 40 degrees will be assumed for the top 3.5 m portion of 

the hole; 

• Soil reinforcement fabric installed on upper side slopes (if required); 

• Inner protective shield installed 1m above the Xmas tree; 

• 3.5 m x 4.5 m plan dimensions of Xmas tree; 

• An Xmas tree height of 5.5m above base of hole; 

• Top of Xmas tree located at 4.5m beneath seabed level. 
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Details of Case le) are illustrated in Figure 55. 
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Figure 55 Case le - Conventional Xmas Tree Installed in a Modified Cased 

Glory Hole 
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The modified cased hole, with a diameter of 16 m can only be affected from scouring 

icebergs. The annual probability of a scouring iceberg entering the cased glory hole is 2.5 

X 1 o-5
. In order to satisfy the required target level of 1 o-5 per annum, the minimum depth 

of the top of the Xmas tree below mudline is 0.5 m (based on Figure 48). 

7.2.6 Caisson Wellhead System (Case lt) 

The shearable caisson system with the sacrificial tree has a conventional tree installed at 

the mudline with a caisson that extends approximately 5 m below the mudline. The 

caisson has a weak shear joint located at sufficient depth to minimize the probability of 

iceberg damage to the wellhead below it. Specifications for this concept are as follows: 

• 1.5 m outside diameter caisson; 

• Weak shear joint located at a minimum depth below the mudline; 

• Top of the wellhead is located 4.5 m below seabed level; 

• Top of Xmas tree 5.5 m above mudline; 

• 3.5 m x 4.5 m plan dimensions of Xmas tree. 

Details of Case If) are illustrated in Figure 56. 

157 



Figure 56 
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Case 1f- Caisson Wellhead Completion System With Sacrificial Xmas 

Tree 

The caisson completion system Xmas tree, with 3.5 m by 4.5 m plan dimensions, has an 

effective structure diameter of 5.1 m, assuming equally likely incoming iceberg 

directions. The 5 .5m high Xmas tree may be impacted from both freely floating and 
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scouring icebergs. The annual probability of contact from freely floating and scouring 

icebergs is 9.2 x 104 and 3.7 x 10-5
, respectively, for a total probability of contact of9.6 x 

1 o-4 (based on Figures 45 & 46). In order to satisfy the required target level of 1 o-5 per 

annum, the weak shear joint in the caisson must be located a minimum depth of 0.6 m 

below the mudline, allowing for 0.3m scour depth (based on Figure 48) and an equivalent 

clearance between the bottom of the scour and the shear joint to allow for sub-scour soil 

deformation. For this condition, it is assumed that the Xmas tree and wellhead facilities 

located at seabed level are sacrificial and the integrity of the well relies on proper 

performance of the weak shear joint. 

7.3 Clustered Multi-well Development 

7.3.1 Unprotected Wells (Case 2a) 

Six conventional wells with unprotected Xmas trees at the mudline represent the base 

case for the clustered multi-well development. The six conventional wells and Xmas 

trees are placed in two rows of three around a common manifold at seabed level. 

Specifications for this concept are as follows: 

• 6 wells in total (2 rows of 3); 

• Each well system as per Case 1 a; 

• Manifold plan dimensions equal to 10 m x 5 m; 

• Manifold located at seabed level central to well cluster; 

• A minimum distance of 25 m between Xmas trees and all other permanent 

equipment. 
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Details of Case 2a) are illustrated in Figure 57. 

CASE 2a) 

62m 

I TYPICAL 6 LOC'S 

~ 

Figure 57 Case 2a- Clustered Wells with Unprotected Xmas Trees Placed at 

Seabed Level (Base Case) 

The total plan layout area for the cluster of six unprotected wells is 63.5 m by 62 m. 

Assuming equally likely incoming iceberg directions, this equates to an effective 

diameter of 80 m. The unprotected wells may be impacted from both freely floating and 

scouring icebergs. The annual probability of encountering the well cluster and making 

contact with one or more wells from freely floating and scouring icebergs is 2.5 x 1 o-3 
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and 8.4 X 10"5
, respectively, for a total probability of 2.6 X 10"3 (based on Figures 45 & 

46). 

Assuming that iceberg contact with the Xmas tree results in a blowout (i.e. SCSSV fails 

to perform), it is clear that an unprotected multi-well cluster located at seabed level do 

not alone provide adequate protection from iceberg contact assuming a target level of 

safety equal to 1 o-s per annum. 

7.3.2 Unprotected Wells With Downhole Weak Shear Joint (Case 2b) 

Similar to the base case multi-well concept (Case 2a), six conventional wells with 

unprotected Xmas trees are installed at seabed level but a weak shear plane located 

downhole in the well conductor pipe is incorporated. The six conventional wells and 

Xmas trees are placed in two rows of three around a common manifold. Specifications 

for this concept are as follows: 

• 6 wells in total (2 rows of3); 

• Each well system as per Case 1 b; 

• Downhole weak shear joint in each well conductor pipe located at a minimum 

depth beneath seabed level; 

• Manifold plan dimensions equal to 10 m x 5 m; 

• Manifold located at seabed level central to well cluster; 

• A minimum distance of 25 m between Xmas trees and all other permanent 

equipment. 

161 



Details of Case 2b) are illustrated in Figure 58. 

CASE 2b) 

62m 

~-~- 55m ·'l /;: ~~ ""'\ 
---------- ~ -- ----: -~ ll ~c ~ ~~ \ 
~ ~ ! 

1

. 25m : I I : 25m •

1 

! ! E \ 

I PRORLE I ._ _ -~ _
1 

, \ ~~~VIEW I 
II MANIFOLD ~ II \ I I 

\ z: f--

\~~ I 
\ / 

""' / I 

ij1 
TYPICAL 6 LOG'S 

Figure 58 Case 2b- Clustered Wells with Xmas Trees Unprotected Placed at 

Seabed Level 

As for Case 2a, the a total probability of encountering the well cluster and making contact 

to one or more conventional Xmas trees from both from freely floating and scouring 

icebergs is 2.6 X 1 0"3
. In order to satisfy the required target level of 1 0"5 per annum for 

the well cluster, the weak shear joints in the conductor pipes must be located at a 

minimum depth of 3.2 m below the mudline, allowing for 1.6 m scour depth and an 

162 



equivalent clearance between the bottom of the scour and the shear joint to allow for sub

scour soil deformation. 

7.3.3 Open Glory Hole (Case 2c) 

For this protection concept, six Xmas trees are installed below the mudline in a large 

diameter open glory hole. The six conventional wells and Xmas trees are placed in two 

rows of three around a common manifold. The top of the trees is sufficiently deep 

enough to minimize the risk from scouring icebergs. Specifications for this concept are 

as follows: 

• Clustered multi-well system as per Case 2a positioned in an 8 m deep glory hole; 

• Mudline glory hole dimensions of 122m x 120m; 

• 74 m by 72 m glory hole base dimensions (allows adequate ROV clearance 

around tree at operational level); 

• Slope for sides of glory hole - 3H: 1 V; 

• Top of Xmas tree 2.5 m below mudline; 

• Manifold plan dimensions equal to 1 0 m x 5 m; 

• Manifold located in open glory hole central to well cluster; 

• A minimum distance of 25 m between Xmas trees and all other permanent 

equipment. 

Details of Case 2c) are illustrated in Figure 59. 
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Figure 59 Case 2c- Clustered Wells with Xmas Placed in a Large Open Glory 

Hole 

The open glory hole has mudline dimensions of 122m by 120m, equating to an effective 

structure diameter of 154 m, assuming equally likely incoming iceberg directions. The 

open glory hole concept can only be affected by scouring icebergs. The annual 

probability of a scouring iceberg entering the open glory hole is 1.1 x 10-4. In order to 

satisfy the required target level of 1 o-s per annum, the minimum depth of the top of the 

Xmas tree below the mudline is 2 m (based on Figure 49). 
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7.3.4 Cased Glory Holes (Case 2d) 

Six conventional wells are placed in cased glory holes for this protection concept. The 

six cased holes are placed in two rows of three and tied into a common manifold. Each 

well and Xmas tree arrangement is identical to the Case 1 c system. Specifications for 

this concept are as follows: 

• 6 wells in total (2 rows of 3); 

• Each well system as per Case 1 d; 

• Casing weak shear plane located at a minimum depth beneath seabed level; 

• Manifold plan dimensions equal to 1 0 m x 5 m; 

• Manifold located at seabed level central to well cluster; 

• A minimum distance of 25 m between holes and all other permanent equipment. 

Details of Case 2d) are illustrated in Figure 60. 
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Figure 60 Case 2d- Clustered Wells with Xmas Trees Placed in Cased Glory 

Holes 

The cluster of six 7.3 m diameter cased glory holes occupies a plan area measuring 72 m 

by 70 m, for an effective diameter of 90 m assuming equally likely incoming iceberg 

directions. The cased holes may be impacted from both freely floating and scouring 

icebergs. The annual probability of encountering the well cluster and making contact 

with one or more wells from freely floating and scouring icebergs is 5.7 x 10-4 and 7.7 x 

w-5
, respectively, for a total probability of 6.5 X 10-4 (based on Figures 45 & 46). To 

achieve the annual target level of safety of 1 o-5 for one or more wells, the shear plane of 
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the casing must be a minimum of 3.4 m below the mudline. This includes equal 

provisions for scour and sub-scour deformations. 

7.3.5 Modified Cased Glory Holes (Case 2e) 

Similar to the cased glory holes, the six Xmas trees are installed below the mudline in 

modified cased glory holes. The six cased holes are placed in two rows of three and tied 

into a common manifold. Each well and Xmas tree arrangement is identical to the Case 

1d system. Specifications for this concept are as follows: 

• 6 wells in total (2 rows of 3); 

• Each well system as per Case 1 e; 

• Top of Xmas tree located at 4.5m beneath seabed level; 

• Manifold plan dimensions equal to 10 m x 5 m; 

• Manifold located at seabed level central to well cluster; 

• A minimum distance of 25 m between holes and all other permanent 

equipment. 

Details of Case 2e) are illustrated in Figure 61. 
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Case 2e - Clustered Wells with Xmas Trees Placed in Modified Cased 

Glory Holes 

The cluster of six modified cased holes, with a diameter of 16 m occupies a plan area 

measuring 87 m by 98 m, for an effective diameter of 118 m assuming equally likely 

incoming iceberg directions. The modified cased holes may be impacted from scouring 

icebergs only. The annual probability of encountering the well cluster and entering one 

or more wells is 8.8 x 10-5
. To achieve the annual target level of safety of 10-5 for one or 

more wells, the top of the Xmas trees must be a minimum of 1.8 m below the mudline. 
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7.3.6 Caisson Wellhead Systems (Case 2f) 

This installation consists of six shearable caisson systems in two rows of three tied into a 

common manifold. Each of the caisson completion systems are identical to the one 

described for Case 1 f. Specifications for this concept are as follows: 

• 6 wells in total (2 rows of 3); 

• Each well system as per Case lf; 

• Weak shear plane located at a minimum depth below mudline; 

• Manifold plan dimensions equal to 1 0 m x 5 m; 

• Manifold located at seabed level central to well cluster; 

• A minimum distance of 25 m between Xmas trees and all other permanent 

equipment. 

Details of Case 2t) are illustrated in Figure 62. 
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Figure 62 Case 2f- Clustered Wells with Caisson Wellhead Completion Systems 

The cluster of six caisson completion systems occupies an area measuring 62 m by 63.5 

m, for an effective diameter of 80 m assuming equally likely incoming iceberg directions. 

The caisson systems may be impacted from both freely floating and scouring icebergs. 

The annual probability of encountering the well cluster and making contact with one or 

more caissons from freely floating and scouring icebergs is 2.5 x 10-3 and 8.4 x 10-5
, 

respectively, for a total probability of 2.6 x 10-3 (based on Figures 45 & 46). To achieve 

the annual target level of safety of 1 o-5 for one or more wells, the shear plane of the 

caisson must be a minimum of 3.2 m below the mudline. This includes equal provisions 

for scour and sub-scour deformations. 
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7.4 Summary of Iceberg Encounter Results 

The approach taken in this Chapter with respect to probability of iceberg encounter 

accounts for the expected range of iceberg and environmental conditions for the study 

area (defined by degree square 46° to 4 7° N and 48° to 49° W) and the physical features 

of the installations. As outlined in Chapter 5, an annual target level of safety of 1 o-s 

against blowout was established for both the single well and clustered multi-well 

developments. A summary of the iceberg encounter results for the single and multi-well 

systems as evaluated in Sections 7.2 & 7.3 are presented below in Tables 16 & 17, 

respectively. 

The effectiveness of iceberg management for reducing the likelihood of iceberg 

encounter has also been considered in the results presented in Tables 16 & 17 by 

applying an overall success rate of 85%. Iceberg management essentially reduces the 

probability of iceberg contact by an amount proportional to the probability of success. 

For this investigation, calculations of contact probability with iceberg management has 

assumed that physical management would only be effective for floating icebergs as it is 

unlikely that a scouring iceberg would respond to existing iceberg deflection techniques. 

The scouring component in the calculation for overall annual encounter probability is 

therefore not reduced. 
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Table 16 Summary of Iceberg Encounter Results- Single Satellite Well 

Developments 

Iceberg Annual Required Depth:l to 
Case Description Management Encounter1 Satisfy TLS Against 

Effectiveness Probability Blowoue 
0% 9.6 X 10-4 -

1a Unprotected Well 
85% 1.8 X 10-4 -

Unprotected Well w/ 
0% 9.6 X 10-4 

1b 0.6m 
Weak Shear Joint 85% 1.8 X 10-4 

0% 5.6 X 10-' 
1c Open Glory Hole4 1.45 m 

85% 5.6 X 10-5 

0% 2 X 10-4 

1d Cased Glory Hole 0.8m 
85% 5.2 X 10-' 

0% 2.5 X 10-5 

1e Modified Cased Hole4 0.5 m 
85% 2.5 X 10-:> 

Caisson Wellhead 
0% 9.6 X 104 

1f 0.6m 
System 85% 1.8 X 10-4 

Notes: 

1. "Encounter" occurs when a scouring iceberg enters an open glory hole or modified cased hole, or 
when a floating or scouring iceberg contacts a cased glory hole or the Xmas tree of a caisson system, 
or unprotected tree. 

2. The "Required Depth" is the minimum depth required to the top of the Xmas tree, shear plane or 
shear joint in order to satisfy the annual target level of safety (TLS) of 1 o-5

• 

3. "Blowout" occurs when a scouring iceberg penetrates deep enough into an open or glory hole or 
modified cased hole to contact the protected Xmas tree, scours deep enough to impact below the 
shear joint/plane in the unprotected well with downhole shear joint, caisson system or cased glory 
hole, or contacts an unprotected Xmas tree. 

4. Open glory hole and modified cased hole installations are only affected by scouring icebergs. 
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Table 17 Summary of Iceberg Encounter Results - Clustered Mulit-well 

Developments 

Iceberg Mgnt Annual Required Depth:L to 
Case Description Encounter1 Satisfy TLS Against Effectiveness 

Probability Blowoue 
0% 2.6 x w-j -

2a Unprotected Wells 
85% 4.6 x 10·4 -

Unprotected Wells w/ 
0% 2.6 x w-j 

2b 3.2m 
Weak Shear Joint 85% 4.6 X 10"4 

0% 1.1 x 10·4 

2c Open Glory Hole 4 2.0m 
85% 1.1 x 10·4 

0% 6.5x 10-4 

2d Cased Glory Holes 3.4m 
85% 1.6 x w-4 

Modified Cased 
0% 8.8 X 10"' 

2e 1.8 m 
Holes4 

85% 8.8 X 10"' 

Caisson Wellhead 
0% 2.6 X 10"3 

2f 3.2m 
Systems 85% 4.6 X 10"4 

Notes: 

1. "Encounter" occurs when a scouring iceberg enters an open glory hole or modified cased hole, or 
when a floating or scouring iceberg contacts a cased glory hole or the Xmas tree of a caisson system, 
or unprotected tree. 

2. The "Required Depth" is the minimum depth required to the top of the Xmas tree, shear plane or 
shear joint in order to satisfy the annual target level of safety (TLS) of 1 o-5

• 

3. "Blowout" occurs when a scouring iceberg penetrates deep enough into an open or glory hole or 
modified cased hole to contact the protected Xmas tree, scours deep enough to impact below the 
shear joint/plane in the unprotected well with downhole shear joint, caisson system or cased glory 
hole, or contacts an unprotected Xmas tree. 

4. Open glory hole and modified cased hole installations are only affected by scouring icebergs. 
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In contrast to single well developments, it is possible for more than one well to be 

contacted by an iceberg that encroaches into the area occupied by a multi-well 

development. Determining an average number of hits is difficult and depends on a 

number of factors including: 

• Layout ofthe multi-well cluster; 

• Dimensions ofXmas tree; 

• Iceberg varying keel width; 

• Iceberg travel condition (i.e. free floating or scouring); 

• Orientation of iceberg motion with respect to the cluster; 

• Mass of the iceberg; and 

• Iceberg Response when contact is made with one or more wells. 

Although the probability is quite low, it is possible that all six wells of a clustered multi

well development could be hit during one iceberg event. Based on the layouts presented 

in Section 7.3 and iceberg keel characteristics as presented in Section 6.2.1.3, it is 

physically possible for an encroaching iceberg to sweep through the area and contact all 

six wells. For example, the area occupied by the well clusters in Section 7.3 consists of 

two rows of three wells, separated by a dimension equal to 55 m. A scouring iceberg 

with the base of its keel 0.5 m beneath seabed has an effective keel width of 55 mat a 

position 5.5 m above seabed level (height of Xmas tree), making this scenario possible. 
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7.5 Conservatisms and Limitations in Well Blowout Calculations 

For all well systems considered, it was assumed that any iceberg contact with an Xmas 

tree was to result in a blowout. For unprotected wells with a downhole shear joint, 

caisson completion systems and cased glory holes, contact or influence of the iceberg 

below the shear joint/plane was also assumed to result in a blowout. This is quite 

conservative considering that any substantial damage caused by iceberg contact with an 

Xmas tree or well will result in the activation of reliable failsafe systems such as 

SCSSV's. As a result, a significant amount of conservatism was introduced into the 

results presented in Tables 16 and 17 by assuming blowout upon iceberg contact and by 

not considering the effectiveness of SCSSV's. This is possibly the greatest source of 

conservatism in the iceberg encounter calculations. 

No provisions have been made in the calculations to account for the mechanical strength 

of the installations or the possibility of ice failure upon contact. For all systems, there is 

a probability of an iceberg "glancing" upon contact causing only minimal damage to the 

facilities and no loss of hydrocarbons. Direct impacts may only result in damage to 

secondary components, leaving key components such as the wellhead or master valves 

structurally unaffected. If this effect were to be included in the calculations, a reduced 

probability of blowout could be achieved. 

For the systems with weak shear planes and joints located below the mudline, they have 

been assumed to work perfectly for iceberg contacts above the shear plane/joint 

(assuming some allowance of sub-scour deformations). While this is a realistic 
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assumption, perfect operation of these weak planes/joints cannot be guaranteed. On the 

other hand, iceberg incursion below the shear plane will most likely result in loss of 

pressure and activation of the SCSSV and/or the master valve. The net effect of these 

factors is expected to result in a substantially reduced blowout probability than stated in 

Tables 16 and 17. 

The influence of both bathymetric filtering and bathymetric shielding has not been taken 

into consideration in the probability of encounter calculations. A conservative approach 

has been taken by not modifying the distribution of iceberg drafts to account for icebergs 

with drafts greater that the water depth that will ground and be filtered out of the keel 

population. In addition, installations are assumed to be exposed to incoming icebergs 

right down to the mudline. In practice, there will be bathymetric shielding at some 

locations that will reduce the overall probability of iceberg contact. 

Values of iceberg areal density ranging from 0.6 to 0.77 icebergs I year I degree square 

have been documented based on data collected over different time periods (1960-2000 vs. 

1981-2000). The more conservative value of 0.77 for areal density has been used in the 

calculations for the purpose of this investigation. 

Iceberg drift directionality has not been considered. A non-directional approach has been 

taken with respect to iceberg drift data, which assumes that the probability of contact 

with a subsea facility is equal from all compass directions. By considering the 
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distribution of iceberg drift directions, the probability of contact can be potentially be 

reduced. 

For scouring icebergs with installations below seabed, the effective keel width Ld has 

been assumed to be equal to 24m. This value corresponds to the mean scour width in 

water depths ~ 11Om on the Grand Banks (Croasdale et al., 2000). This is a somewhat 

conservative approach because it corresponds to the width of a scouring iceberg at seabed 

level. The width of an iceberg at any point below the mudline could be less, especially at 

the very base of an iceberg keel, which would result in an overall lower probability of 

contact for scouring icebergs. 

In calculating encounter and contact probabilities for open glory holes, the actual 

footprint of the wellhead installation at the base of the hole is much smaller than the 

mudline dimensions. While it is possible that an iceberg enters the hole without damaging 

the wellhead, this possibility has not been taken into consideration. Similarly, when 

calculating the depth of a shear planes or shear joints for multi-well clusters, the total 

occupied plan area of the installation is assumed. While it is possible that an iceberg 

enters the occupied area of the multi-well installation without making contact with any 

one or more wells, this possibility has also not been considered. Both of these 

assumptions increase calculated impact probabilities. 

The effect of iceberg management has been factored into the iceberg encounter 

calculations summarized in Tables 16 and 17. Although successful iceberg management 
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systems are currently in place on the Grand Banks, the achievable success rates for 

satellite type developments may be somewhat lower due to the larger coverage areas and 

additional amount of required resources. Although iceberg management will have an 

effect to reduce overall risk, success rates less than 85% could be expected for satellite 

type developments. 

As more data is collected relating to iceberg drift and scour on the Grand Banks, the trend 

seems to be pointing towards an overall reduction in interaction probabilities. This is due 

to a number of factors including access to a larger sample of data over a longer period of 

time and refinement of existing conservatisms through additional research in key areas, 

both resulting in the refinement of existing prediction methods to determine risk to 

subsea facilities. 

As a result of the issues discussed above, it is apparent that there is a high degree of 

conservatism inherent in the iceberg encounter and subsequent well blowout estimates 

calculated for the systems presented in this Chapter. 

7.6 Discussion 

As summarized in Section 7.5, there is a large amount of conservatism built into the 

calculations performed for the various well systems presented. Making such allowances 

may not always be practical, especially from a commercial, economic and project 

development standpoint. Although the environmental and economic consequences of an 

uncontrolled blowout, for example, are extreme, the risk estimates of such an event 
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occurring must be realistic, even while taking a conservative approach and "erring on the 

side of caution". 

The intent of this discussion is to investigate two key issues presented in Section 7.5 that 

offer a high level of conservatism, in an attempt to further understand and illustrate the 

level of conservatism built-in current probability estimates associated with subsea 

installations in general. 

7.6.1 Effectiveness of SCSSV's 

The effectiveness of SCSSV's and other existing fail-safe systems should not be ignored 

when assessing the overall probability of blowout to a well from iceberg contact. As 

presented in Section 4.2, under normal operating conditions SCSSV's are quite reliable 

with a MTTF of 36.7 years, which corresponds to an overall reliability of 0.973. 

However, during events such as an iceberg contact with a well, the reliability of these 

safety devices comes into question due to the potential for load transfer to components 

downhole such as the conductor, casings and production tubing. 

C-CORE (2001b) conducted an investigation in order to determine the potential damage 

effects to a well in the case of iceberg contact with a conventional Xmas tree and 

wellhead located above seabed. Annual contact frequencies from free floating and 

scouring icebergs were calculated and combined with structural response calculations to 

yield annual frequencies for events likely to result in permanent damage to the well outer 
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36" conductor and 20" casings downhole. A schematic of the well installation considered 

for this study is presented below in Figure 63. 

4m 

1-= :.1 
t Top ofWellhead 

5.5m 

36" Conductor 

300m 

20" Casing 

5 Yz" Tubing 

Figure 63 Schematic of Well Installation (C-CORE, 200lb) 

Although a number of conservative assumptions were made, the annual frequencies 

associated with iceberg events that caused permanent damage to the outer well 

conductors (damage events) ranged between 5 x 10-5 and 2 x 10-4
• It was concluded that 

corresponding strains to this inner 5 Yz" production tubing would be quite small and 

would not likely be compromised under these conditions. Furthermore, even large 

deformations of the outer casing are not likely to damage the SCSSV, positioned some 

180 



300 m below. The only situation of concern is if the tubing string is pulled out of the 

hole a significant amount. Further work concluded that by considering the stiffening 

effect of the guide base at the mudline and the beneficial effect of an additional 48" 

conductor extended to a depth of 20m, the likelihood of plastic deformation of the 

constructor string reduced significantly. Resulting annual frequencies of damage events 

ranged from 1.5 x 10-5 to 2.9 x 10-5 per well installation, assuming an ice management 

effectiveness of 86% (C-CORE, 2001c). 

Applying the results of the C-CORE (200 1 c) study to a conventional unprotected well 

reveals some interesting trends. Assuming a level of ice management of 86%, the annual 

contact frequency for C-CORE (200 1 b) was approximately 3 x 104 per well installation. 

By dividing the annual frequency of a damage event occurring by this value, the 

probability of permanent damage given that contact has occurred can be calculated. 

Using this approach, the probability of permanent damage given that contact has occurred 

ranges between 5 x 10-2 and 9.7 x 10-2 per annum. For a conventional unprotected well 

located on the Grand Banks in 100 m of water as presented in Section 7 .2.1, the 

necessary maximum probability of downhole damage in order to satisfy an annual target 

level of safety of 10-5 is roughly 1.1 x 10-2 per annum (assuming an annual probability of 

contact of 9.6 x 10-4 per well as calculated in Section 7.2.1 and an SCSSV reliability of 

0.973). If one were to assume that permanent damage to the upper wellbore causes 

failure to the SCSSV, which in practice is unlikely to be the case, the annual target level 

of safety against blowout is nearly achieved in this case without relying on any form of 

wellhead protection or considering the conservatisms presented in Section 7.5. 
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7.6.2 Refinement of Safety Class Designation 

As presented in Chapter 5, the target level of safety of 1 o-5 was established based on a 

Safety Class 1 designation as outlined in the CSA S4 71-04 standard. For Safety Class 1, 

the consequence of failure would result in great risk to life or a high potential for 

environmental damage. In this case, great risk of human life is not a concern, however, 

high potential of environmental damage is. The standard also states, "If loading hazards 

can be predicted sufficiently ahead of time to carry out a predefined emergency response 

plan that ensures personnel safety and environmental protection, then, for that particular 

loading condition, the structure may be Safety Class 2." Furthermore, " ... a structure 

designated Safety Class 1 as a whole may have certain of its structural elements 

designated Safety Class 2." 

In terms of predicting an iceberg contact (or encroachment) sufficiently ahead of time, 

this could be achieved to a certain degree through iceberg detection and management 

techniques that currently exist in the region. However, although iceberg detection and 

management does provide a level of protection against iceberg risk, there is insufficient 

justification to re-classify a subsea installation as Safety Class 2 based solely on the 

current effectiveness of iceberg management and further uncertainties associated with 

undeveloped satellite type developments in the region. 

As for the designation of safety classes for subsea installations such as a conventional 

unprotected well, all exposed elements of the Xmas tree and wellhead up to now have 

been classified as Safety Class 1. Plan and profile dimensions have been selected for 
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probability estimates performed in section 7.2 & 7.3, which make no distinction between 

critical and secondary components of the installation. This approach however, is 

considered conservative as the outer perimeter of typical subsea Xmas trees generally 

consists of primary components I members that if damaged or destroyed, will not have a 

significant impact on the integrity of the well causing an uncontrolled blowout. 

Figure 64 proposes a more refined breakdown of Safety Class for an unprotected Xmas 

tree installation, which assumes a decrease of 1.0 m for the overall length, width and 

height dimensions for the Safety Class 1 area. 

Plan 
View 

Profile 
View 

2.5m 

Safety Class 1 (TLS = 1 o-5
) 

Safety Class 2 (TLS = 1 o-3) 

Figure 64 Breakdown of Xmas Tree into Safety Classes 

The overall dimensions of the installation stays the same but the outer 0.5 m perimeter 

falls into the Safety Class 2 category. Based on this approach, a reduction in overall 

contact probability from freely floating and scouring icebergs equal to 17% is achieved 

for the safety Class 1 designated area. Similarly, if plan and profile overall dimensions 
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are reduced by 2.0 m for the Safety Class 1 area, a decrease in overall contact probability 

of 35% is achieved. 

7.6.3 Subsea Equipment Layout 

As presented in 7.3, layouts for the proposed clustered multi-well developments were 

established based on a minimum subsea well spacing of 25m from any other permanent 

equipment. Although this distance has been established to ensure that wellheads are 

protected from falling drilling and workover equipment, in many cases wells are located 

in much closer proximity to other permanent equipment. 

The decision to locate wells in close proximity is largely driven by overall cost savings 

relating to subsea equipment, construction and drilling operations. For multi-well 

installations incorporating an open glory hole protection scheme, reducing the wellhead 

spacing would have a considerable impact on the glory hole based dimensions. This in 

turn would reduce the overall volume to be excavated, thus resulting in significant overall 

cost savings. 

In addition, the effect of optimizing the layout for multi-well clusters will ultimately 

reduce the overall risk from free floating and scouring icebergs. By reducing the spacing, 

aspect ratio and effective diameter of the installation, the overall probability of a well 

blowout can be reduced. For example, if a minimum well spacing of 1Om were assumed 

for each of the multi-well development layouts as presented in Section 7.3, the reduction 

in overall probability of contact to each installation is presented in Table 18. 
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Table 18 Reduction in Contact Probability for 10m Well Spacing 

Original Revised 
Reduction in 

Overall 
Installation Installation 

Contact 
Case Description Effective Effective 

Probability to 
Diameter Diameter 

(m) (m) 
Installation 

(%) 
2a Unprotected Wells 80 42 47 

2b 
Unprotected Wells w/ 

Weak Shear Joint 
80 42 47 

2c Open Glory Hole 154 116 21 

2d Cased Glory Holes 95.5 52 32 

2e Modified Cased Holes 118 80 26 

Caisson Wellhead 
2f 80 42 47 

Systems 

Based on results of Table 18, it can be seen that the greatest risk reduction is associated 

with unprotected wells whereby the overall probability of blowout is reduced by almost 

50%. This information is quite valuable when deciding upon the layout and well spacing 

for clustered multi-well developments. 

7.6.4 Results 

By considering the results of Sections 7.6.1 & 7.6.2, the reduction in overall probability 

of iceberg contact to a conventional unprotected well and subsequent blowout is 

considerable. This is demonstrated below in Table 19. 
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Table 19 Refinement to the Probability of Blowout for a Conventional 

Unprotected Well Located Above Seabed Level 

Description Unit Probability Comments 
Original Probability of per well-year 9.6 x w-4 As calculated in 
Blowout Section 7 .2.1 

A reduction in overall 

Reduction in Contact contact probability of 

Probability Due to per tree 17% from freely 

Refinement of Safety Class 0.83 floating and scouring 

Designation icebergs assuming a 1m 
reduction in Xmas tree 
overall dimensions 

Probability of Permanent 
Damage to SCSSV Given per contact 

0.097 
Reference C-CORE 

Iceberg Contact has (2001b & 2001c) 
Occurred 

SCSSV Probability of per SCSSV 
SCSSV Reliability = 

Failure 0.027 0.973, Reference 
Moines (2000) 
Assumes that downhole 

Revised Probability of 
permanent damage is 

per well-year 9.7 X 10-S required in order to 
Blowout 

affect the operation of 
the SCSSV 

In this case, a reduction in the annual probability against blowout by a full order of 

magnitude is achieved. This is without considering any effectiveness relating to iceberg 

management and neglecting all the other conservatisms in the calculations as presented in 

Section 7.5. Although aspects of this evaluation require further investigation and 

research, by considering realistic allowances for existing failsafe systems and refining the 

safety class designation, a significant effect on the overall risk to subsea installations 

against blowout can be achieved. 
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By incorporating additional well safety features such as positioning the SCSSV at great 

depths ( ~ 1 OOOm), employing dual SCSSV' s on production wells and implementing a 

weak shear joint in the conductor pipe located downhole as for Case 1&2b, the likelihood 

of blowout can be further reduced. It is envisioned that a reduction in the overall 

probability against blowout by a full order of magnitude can be comfortably achieved 

over the current estimates. 

It shall be noted that the probabilities of blowout calculated only relate to iceberg impact 

events, while the safety classes presented in CSA S471-04 pertain to all causes of 

installation failure. Thus, for any given subsea installation, the probability of well 

blowout as a result of iceberg events shall be added to all other installation failure causes 

to ensure the overall TLS of 1 x 1 o-5 is achieved. 
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8.0 CONSEQUENCE SCENARIOS 

There are numerous consequences resulting from an iceberg encounter or contact with 

subsea facilities ranging from minor damage requiring repairs to major damage leading to 

blowout of one or more wells. Damage to critical well components such as Xmas trees, 

wellheads and master value assemblies could potentially arise from such an event, which 

could require repair, re-entry and/or re-drilling of a well and environmental clean-up. 

Estimating the damage extent from a particular incident is difficult to quantify and will 

not be addressed as part of this investigation. 

The purpose of this Chapter is to identify the potential consequences of an iceberg 

encounter or contact as it relates to each of the wellhead systems evaluated in Chapter 

7.0. The subsequent cost evaluation and comparison of each concept, given the various 

consequence scenarios as presented in this Chapter, will be addressed in Chapter 9.0. 

Flowcharts associated with the different scenarios are presented in Figures 65 through 70. 

In addition, a summary of the consequence scenarios resulting from an iceberg encounter 

or contact for both single satellite well developments and clustered mulit-well 

developments are presented in Tables 20 and 21, respectively. Unlike the risk 

calculations performed in Section 7.2 & 7.3, consideration will be given in each scenario 

to the performance ofSCSSV's. 
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8.1 Unprotected Well (s) 

For the conventional unprotected Xmas tree installed at seabed level, two contact 

scenarios have been identified. The first scenario assumes that upon iceberg contact with 

the Xmas tree, the tree and well are damaged beyond repair; however, the SCSSV 

performs properly and shuts the well in. In the second scenario, the iceberg contacts the 

tree resulting in destruction of the tree; however, the SCSSV does not perform, resulting 

in a blowout. 

For a multi-well development, a single iceberg has the potential to contact between one 

and six wells during the same event. The manifold is assumed to be sacrificial for this 

and all similar well arrangements where the manifold is located at the mudline. 

A flowchart illustrating the consequences of iceberg contact is presented in Figure 65. 

8.2 Unprotected Well (s) With Downhole Weak Shear Joint 

For the conventional unprotected Xmas with downhole weak shear joint, three contact 

scenarios have been identified. The first scenario assumes that upon iceberg contact with 

the Xmas tree, the tree is damaged beyond repair; however, the weak shear joint separates 

correctly and ensures the SCSSV performs properly and shuts the well in. For this case, 

it is assumed that when a conductor shears successfully, the SCSSV will perform and 

shut the well in. For the second scenario, the weak shear joint does not separate 

correctly, however, the SCSSV does perform and shuts the well in. In the third scenario, 
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the iceberg contacts the Xmas tree resulting in destruction of the tree, but failure of both 

the weak shear joint and the SCSSV to operate correctly results in a blowout. 

For a multi-well development, a single iceberg has the potential to contact between one 

and six wells during the same event. 

A flowchart illustrating the consequences of iceberg contact is presented in Figure 66. 

8.3 Open Glory Hole 

For the Xmas tree installed m a large diameter open glory hole, three potential 

consequences of iceberg impact have been identified. The first assumes that the iceberg 

enters the hole, but does not penetrate deep enough to hit the top of the Xmas tree. In this 

instance, soil will be pushed into the hole with no damage to the Xmas tree. Only clean

up costs to clear the hole of debris are incurred. For the second, the iceberg contacts the 

Xmas tree resulting in destruction of the tree, however, the SCSSV performs and the well 

is shut-in. In the third scenario, the iceberg contacts the Xmas tree resulting in 

destruction of the tree, but failure of the SCSSV results in a blowout. 

For a multi-well development, a single iceberg has the potential to contact between one 

and six wells during the same event. The manifold in this case is assumed to be 

sacrificial as it is situated at the base of the glory hole. 

A flowchart illustrating the consequences of iceberg contact is presented in Figure 67. 
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8.4 Cased Glory Hole(s) 

For the Xmas tree installed in a cased glory hole, three scenarios have been identified. 

The first assumes that the casing is contacted by a scouring iceberg above the shear point 

resulting in proper separation of the casing weak shear plane. In this event, the casing 

requires substantial repairs while the Xmas tree and wellhead suffer no damage. In the 

second scenario, the casing shears improperly as a result of a deep scouring iceberg and 

the Xmas tree is damaged beyond repair; however, the SCSSV performs properly and 

shuts the well in. The third scenario is similar to the second; however, the SCSSV fails 

to operate properly, resulting in destruction to Xmas tree and a well blowout. 

For a multi-well development, a single iceberg has the potential to contact between one 

and six casings in a single event. 

A flowchart illustrating the consequences of iceberg contact is presented in Figure 68. 

8.5 Modified Cased Glory Hole(s) 

For the Xmas tree installed in a modified cased glory hole, three scenarios have been 

identified. The first assumes that a scouring iceberg enters the hole above the casing and 

inner protection shield. In this instance, soil will be pushed into the hole with no damage 

to the Xmas tree. Only clean-up costs to clear the hole of debris are incurred. In the 

second scenario, the casing is contacted as a result of a deep scouring iceberg and the 

Xmas tree is damaged beyond repair; however, the SCSSV performs properly and shuts 
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the well in. The third scenario is similar to the second; however, the SCSSV fails to 

operate properly, resulting in destruction to the Xmas tree and a well blowout. 

For a multi-well development, a single iceberg has the potential to contact between one 

and six modified cased holes in a single event. 

A flowchart illustrating the consequences of iceberg contact is presented in Figure 69. 

8.6 Caisson Wellhead System(s) 

For the caisson wellhead system, three scenarios have been developed. In the first 

scenario, the iceberg impacts the mudline tree resulting in a proper shearing of the 

sacrificial section of the caisson assembly. The first scenario assumes that upon iceberg 

contact with the Xmas tree, the tree is damaged beyond repair; however, the weak shear 

joint separates correctly and ensures the SCSSV performs properly and shuts the well in. 

In the event of this type of failure, the well can be tied back in once the caisson is 

repaired and the lost sacrificial tree has been replaced before restarting the well. In the 

second scenario, a deep scouring iceberg impacts the caisson in such a manner as to fail 

the caisson in a mode other than shear. In this instance, the impact results in loss or 

extensive damage to the Xmas tree, however, proper performance of the SCSSV shuts the 

well in. The third scenario is similar to the second, however, failure of the downhole 

master valve and SCSSV results in a blowout of the well. 
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For a multi-well development, a single iceberg has the potential to contact between one 

and six caisson wellhead systems during the same event. 

A flowchart illustrating the consequences of iceberg contact is presented in Figure 70. 
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8.7 Summary of Consequence Scenarios 

A summary of the consequence scenarios resulting from iceberg contact for both single 

satellite well developments and clustered mulit-well developments are presented below in 

Tables 20 and 21. Consequences indicate only if the well incurs a blowout. 

Table 20 Single Satellite Well Consequence Scenario Summary 

System Case Scenario Consequence 

Unprotected Iceberg Contacts Xmas Tree - SCSSV Performs No Blowout 
la 

Well Iceberg Contacts Xmas Tree - SCSSV Doesn't Perform Blowout 

Iceberg Contacts Xmas Tree - Conductor Shears 
No Blowout 

Properly 
Unprotected 

Iceberg Contacts Xmas Tree - Conductor Doesn't Shear 
Well w/ Shear lb No Blowout 

Joint 
- SCSSV Performs 

Iceberg Contacts Xmas Tree- Conductor Doesn't Shear 
Blowout 

- SCSSV Doesn't Perform 

Iceberg Enters Glory Hole No Blowout 
Open Glory 

Hole 
lc Iceberg Contacts Xmas Tree - SCSSV Performs No Blowout 

Iceberg Contacts Xmas Tree- SCSSV Does't Perform Blowout 

Iceberg Contacts Casing Above Shear Plane - Casing 
No Blowout 

Shears Successfully 

Cased Glory 
ld 

Hole 

Iceberg Contacts Casing Below Shear Plane & Shears 
No Blowout 

into Xmas Tree - SCSSV Performs 

Iceberg Contacts Casing Below Shear Plane & Shears 
Blowout 

into Xmas Tree - SCSSV Doesn't Perform 

Iceberg Contacts Above Casing No Blowout 
Modified Iceberg Contacts Below Top of Casing & Shears into 

Cased le Xmas Tree - SCSSV Performs 
No Blowout 

Glory Hole Iceberg Contacts Below Top of Casing & Shears into 
Blowout 

Xmas Tree - SCSSV Doesn't Perform 

Iceberg Contacts Xmas Tree - Caisson Shears Properly No Blowout 

Caisson Iceberg Contacts Caisson Below Shear Joint & Caisson 
Wellhead 1f Fails- SCSSV Performs 

No Blowout 

System Iceberg Contacts Caisson Below Shear Joint & Caisson 
Blowout 

Fails- SCSSV Doesn't Perform 
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Table 21 Clustered Multi-well Consequence Scenario Summary 

System Case Scenario Consequence 

Iceberg Contacts One or More Xmas Trees- SCSSV's No Blowout 
Unprotected Perform 

2a Iceberg Contacts One or More Xmas Trees- SCSSV's Wells Blowout 
Doesn't Perform 

Iceberg Contacts One or More Xmas Trees - Conductor 
No Blowout 

Unprotected 
Shears Properly 

Iceberg Contacts One or More Xmas Trees - Conductors 
Wellsw/ 2b No Blowout 

Shear Joint 
Doesn't Shear - SCSSV's Perform 

Iceberg Contacts One or More Xmas Trees - Conductors 
Blowout 

Don't Shear - SCSSV's Doesn't Perform 

Iceberg Enters Glory Hole No Blowout 

Open Glory 
Iceberg Contacts One or More Xmas Trees- SCSSV's 

No Blowout 2c Perform Hole 
Iceberg Contacts One or More Xmas Trees- SCSSV's 

Blowout 
Doesn't Perform 

Iceberg Contacts One or More Casings Above Shear 
No Blowout 

Plane- Casing Shears Successfully 

Cased Glory 
2d 

Iceberg Contacts One or More Casings Below Shear Plane 
No Blowout 

Holes & Shears into Xmas Tree- SCSSV's Perform 

Iceberg Contacts One or More Casings Below Shear Plane 
Blowout 

& Shears into Xmas Tree- SCSSV's Doesn't Perform 

Iceberg Contacts One or More Installation Above Casing No Blowout 

Modified 
Iceberg Contacts One or More Installation Below top of 

No Blowout 
Cased 2e Casing & Shears into Xmas Tree- SCSSV's Perform 

Glory Holes Iceberg Contacts One or More Installation Below top of 

Casing& Shears into Xmas Tree- SCSSV's Doesn't Blowout 

Perform 

Iceberg Contacts One or More Xmas Tree - Caisson 
No Blowout 

Caisson 
Shears Properly 

Wellhead 2f 
Iceberg Contacts One or More Caisson Below Shear Plane 

No Blowout 

Systems 
& Caisson Fails- SCSSV's Perform 

Iceberg Contacts One or More Caisson Below Shear Plane 
Blowout 

& Caisson Fails- SCSSV's Doesn't Perform 
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9.0 COST ANALYSIS 

9.1 General 

The cost of doing business on the Grand Banks is considerably higher than in many other 

offshore areas of the world, largely due to the presence of icebergs and pack ice. The 

economic and risk trade-offs that are associated with protecting wellheads from the threat 

of icebergs make it a key issue for oil and gas development in this region. The aim of 

this section is to undertake a cost analysis in order to support the selection and decision 

making process when considering wellhead protection concepts for subsea marginal 

developments on the Grand Banks. 

The methodology used in this analysis for the selection of a wellhead protection concept 

involves a full comparison of capital expenditure (CAPEX) including those costs 

associated with equipment installation. More uniquely, the selection process incorporates 

the risks associated with iceberg contact. Consequences resulting from an iceberg 

contact such as lost production, environmental cleanup and replacement I repair costs are 

factored by the probability of that event occurring. This approach is further detailed 

under Section 9.2. Life of field operation expenditure (OPEX) and major 

repair/maintenance costs for the various protection concepts have not been taken into 

consideration in this cost analysis. 

All costs presented herein are in money of the day based on 2nd quarter, 2006. Because 

the amount of detailed cost data available in the public domain is limited, notional rates 

and norms acquired from local oil and gas companies and other reliable sources have 
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been used. Where cost information is available but is dated, the costs are inflated to 

arrive at a present value (PV) by assuming an annual inflation rate of 5%. It must also be 

noted that all costs relating to this evaluation are assessed in 2006 Canadian dollars. 

The input parameters associated with the various protection concepts are outlined in 

Section 9.3 with a summary of results presented in Section 9.4 & 9.5. In addition, the 

sensitivity of the cost comparisons to various parameters is explored in Section 9.6. 

9.2 Analysis Methodology 

The basis of comparison for the various wellhead protection options is the incremental 

costs over and above those of a conventional unprotected well system (i.e. Base Case). 

For a single well, an unprotected system consists of a conventional Xmas placed at the 

mudline. For multiple wells, the unprotected system consists of an arrangement of 

conventional Xmas trees distributed around a single manifold at seabed level. 

The net cost of a particular system can be calculated from the following expression: 

(9.1) 

Where N is the net incremental system cost, C is the incremental CAP EX (or upfront 

development cost) and CR is the cost of risk resulting from iceberg events. The cost of 

risk can be expressed as: 

203 



(9.2) 

Where p 1 is the annual probability of the iceberg event, R is the equipment repair I 

replacement cost, E is the environmental and equipment cleanup cost, LPis the cost of 

lost production and Tis the life of the field. 

As presented in Chapter 8.0, there are a number of possible iceberg event consequence 

scenarios associated with each wellhead protection concept. Consequences range from 

contact causing minor damage to a complete well blowout event requiring killing of a 

well andre-drilling and spill clean- as summarized in Tables 20 & 21. For example, the 

entry of an iceberg into an open glory hole would induce only minor damage, while 

contact with an Xmas tree could result in activation of the downhole SCSSV or even 

worst, a well blowout. Each consequence scenario associated with an iceberg event 

varies in annual probability of occurrence and comes with different repair I replacement, 

clean-up and lost production costs. The overall cost of risk is the sum of the annual 

probability of the iceberg event times the associated repair/replacement, cleanup and lost 

production costs, all multiplied by the life of field. Thus, the relationship for cost of risk 

becomes: 

CR = I[Pfi(R; +E; +LPJ+ ... + pfn(Rn +En +LPJ].r (9.3) 
i=l 
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The analysis presented herein has also incorporated provisions for iceberg management, 

assuming an overall success rate of 85% as presented in Section 6.5. Calculations of risk 

with iceberg management has assumed that iceberg management would only be effective 

for floating icebergs as it is unlikely that a scouring iceberg would respond to iceberg 

management. The scouring risk component in the calculation for overall annual 

probability of contact is therefore not reduced. 

9.3 Input Parameters 

In order to undertake the cost analysis a variety of key input parameters are required. 

These include: 

• Annual Probability of an Iceberg Event 

• Capital Expenditure (CAPEX) 

• Repair I Replacement Costs 

• Cleanup Costs 

• Lost Production Costs 

9.3.1 Annual Probability of an Iceberg Event 

As presented in Chapter 8.0, there are a number of possible iceberg consequence 

scenarios associated with each wellhead protection concept. The consequence scenarios 

can be broken down into three distinct iceberg events, each having its own annual 

probability of occurrence. These include: 
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A: Iceberg Encounter: occurs when a scouring iceberg enters an open glory hole 

or modified cased hole, or that a floating or scouring iceberg contacts the Xmas 

tree of a caisson system, cased glory hole or unprotected Xmas tree. 

B: Contact (SCSSV Performs): occurs when a scouring iceberg penetrates deep 

enough into an open or glory hole or modified cased hole to impact the protected 

Xmas tree, scours deep enough to impact below the shear joint/plane in the 

unprotected well w/ downhole shear joint, caisson system or cased glory hole, or 

contacts an unprotected Xmas tree. For this iceberg event, the SCSSV performs 

properly and shuts the well in. 

C: Contact (SCSSV Don't Perform- "Blowout"): occurs when a scouring iceberg 

penetrates deep enough into an open or glory hole or modified cased hole to 

impact the protected Xmas tree, scours deep enough to impact below the shear 

joint/plane in the unprotected well w/ downhole shear joint, caisson system or 

cased glory hole, or contacts an unprotected Xmas tree. For this iceberg event, 

the SCSSV does not perform, resulting in a well blowout. 

Refer to Appendix A (Tables Al & A2) for a summary of the annual probabilities 

associated with each iceberg event as identified above. Provisions for iceberg 

management, assuming an overall success rate of 85% are also included. The basis 

behind the calculation for iceberg annual contact probability is also presented in 

Appendix A (Tables A3 & A4). 
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9.3.2 CAPEX 

CAPEX includes those costs associated with equipment and installation and, in general, 

make up the majority of the overall net system cost. The incremental CAPEX associated 

with the various well development options for both single and multi-well developments 

are summarized below in Tables 22 & 23. Additional details that include a breakdown of 

rates and norms associated with equipment requirements and subsea construction 

activities associated with the various wellhead protection concepts can be found in 

Appendix B (Table B 1 ). In addition, duration estimates for various offshore operations 

are also presented. 

Table 22 Incremental CAPEX- Single Well Developments 

Case Description 
Incremental CAPEX 

[$MMCDN] 

la Unprotected Well 0 

lb Unprotected Well w/ Weak Shear Joint 1.3 

lc Open Glory Hole 8.5 

ld Cased Glory Hole 2.0 

le Modified Cased Hole 2.0 

1f Caisson Wellhead System 3.0 
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Table 23 Incremental CAPEX - Clustered Multi-well Developments 

Case Description 
Incremental CAPEX 

r$MMCDNl 

2a Unprotected Wells 0 

2b Unprotected Wells w/ Weak Shear Joint 7.5 

2c Open Glory Hole 24.1 

2d Cased Glory Holes 12.0 

2e Modified Cased Holes 12.0 

2f Caisson Wellhead Systems 18.0 

Note: For each of the clustered multi-well developments, protection for all six wells (3 x 

production & 3 x water injection) has been assumed. 

For the Grand Banks region, there is likely to be more uncertainty with the costs 

associated with cased hole concepts compared to those of open glory hole and caisson 

wellhead systems. This is because open glory hole and caisson wellhead completions 

have been successfully implemented on the Grand Banks previously and these costs have 

been documented. Based on previous experience in the region uncertainties relating to 

soil conditions add to the cost uncertainties for excavated systems such as open and cased 

glory holes and shall be taken into consideration for evaluating such systems. 

Consideration must also be given to the fact that while standard drilling tools can be used 

for the caisson completion systems, specialized dredging equipment is required for 

excavation of the cased and open glory hole concepts. 

Subsea equipment installation and construction works make up a significant portion of 

the overall capital cost for typical subsea development projects. Costs associated with 
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installation generally range anywhere from 20 - 50% of the overall capital cost of the 

subsea development. 

Currently, the East coast of Canada does not have the required infrastructure in place to 

support the local availability of large specialized offshore construction-type vessels that 

are required for development of subsea marginal fields for the region. Vessels that are 

hired for subsea installation and construction works will likely require mobilization from 

the North Sea, Gulf of Mexico or other regions around the world. Considering the high 

day-rate of these vessels, and the lengthy transit durations, mobilization/demobilization 

costs are accordingly very high. 

Semi-submersible drilling vessels will most likely be active in the region during the 

anticipated development and operating life of the field. Thus, there is potential for these 

drilling vessels to be used for initial wellhead protection system construction or even 

equipment installation, thereby offering considerable cost savings in terms of 

mobilization/demobilization. 

Costs associated with sacrificial subsea equipment such as flowlines, control umbilicals 

and control systems have not been included because they are common to each system 

proposed. 

9.3.3 Repair I Replacement Costs 

Costs associated with repair I replacement include those associated with such activities as 

drilling a new production well, replacement of the well protection system, re-entering a 
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well and performing repairs. The rates and norms such as unit costs and activity 

durations associated with repair I replacement of single and multi-well developments are 

presented in Appendix B (Table B 1 ). It should be noted that Costs associated with repair 

I replacement include those associated with mobilization of vessel, equipment, and 

manpower required to complete the works. 

In order to undertake the cost analysis, a number of assumptions have been made in 

relation to damage and subsequent repair I replacement of both single and multi-well 

subsea installations. These assumptions include: 

1) Any contact between an iceberg and Xmas tree results in damage of the Xmas tree 

hardware beyond repair and must be replaced. 

2) The weak shear joint of a caisson always shears properly except in the case of 

deeply scouring icebergs. 

3) When a blowout occurs, a relief well must be drilled to stop the flow of oil, the 

original well is then killed, and the original and relief wells are capped before a 

new production well is drilled. 

4) The weak shear plane of a cased glory hole will shear properly without damaging 

the wellhead except in the case of deeply scouring icebergs. 

5) When a Xmas tree or system is hit, the flowline connected to it breaks away 

without damage at a weak link connection to the Xmas tree. Tie-in costs reflect 

the costs incurred in reconnecting a flowline to the tree and/or manifold. Cost of 

the flowline(s) or manifold(s), iflost, are not accounted for. 
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6) Any backfill of an open or cased hole with debris does not damage the Xmas tree. 

The hole requires only removal of debris and subsequent cleanup. 

9.3.4 Cleanup Costs 

Costs associated with cleanup include those relating to equipment, debris and the 

environment. The rates and norms such as unit costs and activity durations associated 

with cleanup of single and multi-well developments are presented in Appendix B (Table 

Bl). 

Cleanup associated with equipment, debris and the environment is required for a number 

of scenarios. These include: 

• Iceberg contact with an Xmas tree and/or any other equipment making up the 

subsea installation whereby damage is incurred; 

• Iceberg scouring results in a hole being partially filled with debris; 

• Any contact between an iceberg and an installation, which results in a well 

blowout and subsequent oil spill. 

Blowout consequence costs are mainly a function of oil spill volume and spill location. 

Spill volume can be estimated as spill rate (see Table 24 below) times duration of the 

spill. It can take several weeks to locate and mobilize a mobile offshore drilling unit 

(MODU) to drill a relief well. A relief well kill operation would take at least two or three 

months and could require up to a year, which means the spill volume could be several 

million barrels (Goldsmith, 2005). 
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9.3.5 Lost Production Costs 

The cost of lost production as a result of an iceberg event has also been considered in this 

analysis. Lost production is expressed as a function of the consequence scenario assumed 

and factored by the time required to restore production. In order to calculate the 

financial loss due to lost production a netback per barrel of $1 0 CDN has been assumed 

which is multiplied by both the peak daily production rate and the number of days of lost 

production. 

In the case of a blowout, the well blowout rate has been taken as five times the peak daily 

well production rate. Table 24 presents production data for both single and multi-well 

developments (Case 1 & 2). 

Table 24 Production Data 

Description Case 1 Case2 

Peak Daily Well Production Rate (bopd) 15,000 40,000 

Spill/Blowout Rate (bopd) 75,000 200,000 

Netback per Barrel ($ CDN per barrel) 10 10 

Notes: 

Blowout rate for the multi-well development assumes that three wells result in a blowout 

condition for a single iceberg encounter. 

Durations for activities associated with a well blowout, environmental cleanup and 

subsequent lost production are presented in Appendix B (Table B 1 ). 
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9.4 Consequence Scenario Costs 

Based on the list of assumptions presented above and unit costs, activity durations and 

production data presented in Appendix B, costs associated with the various consequence 

scenarios were computed for both single and multi-well developments. These results for 

the various wellhead protection systems chosen are presented in Appendix C (Tables C 1 

through C6). A summary of these results are presented below in Tables 25 and 26. 
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Table 25 Summary of Consequence Scenario Costs - Single Well Development 

Consequence Scenario Cost 

($MMCDN) 

Case Description A: Iceberg B: Contact C: Contact 

Encounter (SCSSV (SCSSV Don't 

Performs) Perform) 

1a Unprotected Well 99.0 99.0 

1b 
Unprotected Well w/ Weak 

Shear Joint 
76.5 99.0 

lc Open Glory Hole 11.6 115.1 
302.0 

ld Cased Glory Hole 19.0 115.6 

1e Modified Cased Hole 15.5 112.1 

If Caisson Wellhead System 36.3 85.2 

Table 26 Summary of Consequence Scenario Costs -Multi-well Development 

Consequence Scenario Cost 

($MMCDN) 

Case Description A: Iceberg B: Contact C: Contact 

Encounter (SCSSV (SCSSV Don't 

Performs) Perform) 

2a Unprotected Wells 349.5 349.5 

2b 
Unprotected Wells w/ 

Weak Shear Joint 
282.0 349.5 

2c Open Glory Hole 21.1 369.1 
975.6 

2d Cased Glory Holes 74.5 406.9 

2e Modified Cased Holes 58.8 401.7 

2f Caisson Wellhead Systems 135.0 276.6 

214 



9.5 Summary of Results & Cost Comparison 

As discussed in Section 9.2, evaluation of the different wellhead protection systems is 

based on the incremental CAPEX incurred over and above the cost for the base case 

installation plus the cost of repair I replacement, cleanup and lost production costs which 

are all factored by the probability of an iceberg event and the life of the field. 

A detailed summary of the net incremental system cost results for the proposed single and 

multi-well protection concepts are presented in Appendix C, Tables C7 & C8. 

9.5.1 Single Well Development 

A summary of the net system costs for single well developments are presented in Table 

27. 

Table 27 Summary of Net System Costs- Single well Development 

Net System Cost 

Case Description Net System Cost 85% Iceberg Mgnt 

($MMCDN) ($MMCDN) 

la Unprotected Well1 
2.28 1.24 

lb Unprotected Well w/ Weak Shear Joine 3.40 2.47 

lc Open Glory Hole 9.55 9.55 

ld Cased Glory Hole 3.19 3.05 

le Modified Cased Hole 3.02 3.02 

lf Caisson Wellhead System 4.85 4.16 

Notes: 

1. Does not meet established TLS = 10"5 
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Although Cases 1 a has the lowest net system cost at $2.28 MM, it is unacceptable in 

terms of probability of iceberg contact as established in Chapter 5.0. With a net system 

cost of$3.02 MM, the modified cased hole is the most cost effective solution using a cost 

of risk approach when compared to all other solutions. The open glory hole with a net 

system cost of $9.55 MM does not appear to be feasible option for a single well 

development. 

As expected, the Net System Costs reduced in magnitude when assuming an iceberg 

management overall success rate of 85%. However, the overall cost benefits of providing 

iceberg management for a single well development is relatively low and may not be 

economically desirable. Cases 1c and 1e remained unchanged because they consist only 

of a scouring iceberg component and do benefit from the effectiveness of iceberg 

management. 

In order to further understand the contribution of each component to the net incremental 

system cost, a graph presenting unit normalized values of both the incremental CAPEX 

and cost of risk components have been presented in Figure 71. 
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Figure 71 
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As can be concluded, the modified cased hole concept offers the optimum solution for a 

single satellite well development in terms of normalized CAPEX and cost of risk 

components. Although the unprotected well has the lowest CAPEX, its cost of risk 

however is substantially higher than all other alternatives. In comparison, the open glory 

hole concept has the highest CAP EX but its cost of risk is relatively low compared with 

all other concepts. 
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9.5.2 Multi-well Development 

The net system costs for clustered multi-well well developments are presented in Table 

28. For all multiple well options excluding the open glory hole, the CAPEX is essentially 

6 times the costs for that of a single well. In addition, although quite unlikely it is 

assumed that all six wells of a clustered multi-well development are contacted during one 

iceberg event (as discussed in Section 7.4). 

Table 28 Summary of Net System Costs- Multi-well Development 

Net System Cost 

Case Description Net System Cost 85% Iceberg Mgnt 

($MMCDN) ($MMCDN) 

2a Unprotected Wells1 
17.12 3.85 

2b Unprotected Wells w/ Weak Shear Joine 23.22 10.10 

2c Open Glory Hole 25.55 25.55 

2d Cased Glory Holes 15.86 13.71 

2e Modified Cased Holes 13.37 13.37 

2f Caisson Wellhead Systems 29.33 20.83 

Notes: 

1. Does not meet established TLS = 1 o·5 

A similar trend for the multi-well developments was observed using the same approach. 

This is primarily due to the large influence of CAPEX on the sensitivity of the overall 

results. With a net system cost of $13.37 MM, the modified cased hole development is 

once again the most optimum solution from a cost of risk basis assuming the unprotected 

wells (Cases 2a & 2b) are unacceptable in terms of probability of iceberg contact. 
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It can be concluded from Table 28 that the influence of iceberg management on multi-

well developments has a greater influence on reducing the overall Net System Cost in 

comparison to single wells. Thus, iceberg management becomes more important from an 

economic standpoint for developments with a large number wells. 

A graph presenting the unit normalized values of both cost components for the multi-well 

development options are presented in Figure 72. 

Figure 72 
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As concluded for single well developments, the modified cased hole concept also offers 

the most optimum solution for multi-well developments in terms of normalized CAPEX 
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and cost of risk components. The open glory hole has the highest CAP EX but its cost of 

risk is equal to that of the modified cased hole. 

9.6 Cost Sensitivity 

As presented in Section 9.5, the net system cost of the various protection systems is 

driven primarily by the incremental CAPEX. This is because the repair/replacement, 

cleanup and lost production costs are all factored by very low probability of iceberg 

contact and subsequent damage. 

Based on the results utilizing the cost of risk approach, it is clear that much effort should 

be spent defining assumptions and estimates relating to CAPEX as it is the key driver 

when determining the net system cost. 

9.7 Discussion 

Although the analysis presented in this section focuses on costs associated with 

somewhat defined repair and clean-up operations in the event of a major incident such as 

a blowout, the real cost to an operator is very difficult to quantify and can potentially be 

significant. Disasters such as the Exxon Valdez and more recently the fire at BP's Texas 

refinery fire bare classic examples of this. The damage to reputation in itself can be even 

more significant from a financial perspective than those associated with repair, clean-up 

and loss production costs. Repercussions from an uncontrolled well blowout on the 

Grand Banks could also result in the following: 

• Consumer rejection of products; 
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• Loss of share value; 

• Penalties; 

• Payouts to affected stakeholders (i.e. the fishing industry); 

• Investor loss of confidence for future prospects; 

• Higher standards (and therefore costs) for future developments; 

• Longer and more difficult approval process for future projects; 

• Requirements for retrofits/modifications to existing infrastructure; 

• Requirements for more stringent (and costly) operating procedures; 

• Shut down of adjacent facilities until containment and cleanup are complete; 

• Reduced tourism to the Province. 

Although implications such as these are readily identifiable, the associated costs are very 

difficult to quantify and have thus not been incorporated into the cost analysis. It is also 

worth noting that such repercussions apply equally across all concepts presented and will 

not have a significant impact on concept comparisons. 

While much of the emphasis of this investigation was focused on physical solutions for 

wellhead protection, one option for subsea developments in the region is to adopt a 

"unprotected" well installation approach, wherein the small probability of contact from 

freely floating and scouring icebergs to subsea facilities (i.e. wellheads, trees, manifolds 

etc.) is accepted. In addition, reliance on existing failsafe systems such as SCSSV's (as 

analyzed in Section 7 .6) and the implementation of downhole weak shear joints to reduce 

downhole structural responses shall be considered when evaluating such systems. In 

doing so, large reductions in development CAPEX can be realized, thus improving the 
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overall development economics, especially when considering marginal subsea fields. 

This approach obviously has its drawbacks when considering the potential repercussions 

that could unfold if something were to go seriously wrong. As a minimum, these include: 

• Overall business/financial consequence (i.e. Lost production, damage repair and 

replacement costs); 

• Adverse environmental consequences due to potential well blowout; 

• Negative public perception, media exposure and tarnished public image of local 

oil and gas industry. 

In deciding to implement an "unprotected" well installation on the Grand Banks, potential 

oil and gas developers need to be reminded of the basic equation developed by Peter 

Sandman, a pre-eminent risk communication consultant: 

Risk = Hazard + Outrage 

"Hazard" refers to the technical risk engineers are trained to assess. "Outrage" is the 

public's perception of risk. "Outrage" is made up of factors such as trust, responsiveness, 

control, etc. Clearly, with the difficulties experienced by the developers of some projects 

in obtaining local approval, a successful approach must balance technical and economic 

feasibility with political realities specific to each location. In the case of a subsea well 

installation, the "Outrage" factor of the risk equation must be managed as effectively as 

the "Hazard" factor (Rankin & Mick, 2005). A blowout or loss of life impacts everyone 

and tarnishes the image of the whole industry. The cost to cleanup an oil spill and 
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outrage costs associated with the lost sales and a tarnished public image can vary from a 

few hundred dollars per barrel to tens of thousands (Goldsmith, 2005). 

Even though a number of issues require further research and evaluation in order justify 

implementing an "unprotected" well installation, the topic definitely deserves serious 

consideration by operators and regulatory authorities alike. The questions must be asked, 

"Are we too conservative in our technical requirements for existing subsea systems?" and 

"As a developing oil and gas province, how much risk are we willing to take in our 

pursuit for exploitation of the vast reserves located on the Grand Banks?". 

Although not addressed as part of this work, an overall life cycle cost associated with 

each of the protection concepts should also be addressed and incorporated into the 

decision making process. This would involve taking into account OPEX, well workover 

costs and Abandonment Expenditure (ABEX) for each of the options. Each of these 

costs will be phased over the life of the field or occur at a later date and shall be 

discounted to arrive at a Net Present Value (NPV). In addition, drilling expenditure 

(DRILLEX) and well costs for multi-well developments may be phased over the life of 

the field to maintain plateau rather than drilled all at once shall also be considered. 
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10.0 CONCLUSIONS 

Based on the work performed as part of this study, a number of conclusions have been 

reached. They are as follows: 

• Reliance on SCSSV's & other fail-safe systems offers an obvious solution for 

reduction in overall risk & up-front development costs for subsea well 

installations. 

• Effective ice management has potential to reduce overall risk levels by approx 

one order of magnitude but is alone unlikely to justify the safe operation of 

unprotected satellite wells. 

• Refinements to areas such as safety class designation & well spacing's within 

clustered developments offer reductions to overall iceberg contact probability. 

• The cost analysis performed indicates that the "Modified Cased Hole" protection 

concept to be the most attractive protection solution from a combined cost & risk 

approach for both single and multi-well developments. 

• The influence of iceberg management has a greater effect on reducing the overall 

Net System Cost for multi-well developments in comparison to single wells. This 

is important from an economic standpoint for developments with a large number 

wells. 

• Using a cost of risk approach, Net incremental system costs for both single and 

clustered satellite well developments are primarily driven by CAPEX. 

• A conventional "unprotected" subsea well installation for the Grand Banks may 

prove to be a feasible development scenario given further research and analysis. 
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• The economic and risk trade-offs that are associated with protecting subsea 

wellheads from the threat of icebergs is important to understand in order to 

support design and the decision making process. 
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11.0 RECOMMENDATIONS 

The recommendations that have been drawn from this work have been broken down into 

a number of key areas as presented below. 

11.1 Analysis, Testing and Research 

In order to fully understand well downhole structural response mechanisms given iceberg 

contact with a conventional Xmas tree and/or wellhead system, it is recommended that a 

finite element analysis model be undertaken for a typical well installation. As a 

minimum, the following parameters associated with a conventional well installation 

installed on the Grand Banks shall be considered and incorporated into the model: 

• Typical Xmas tree and wellhead design configurations (i.e. main components, 

dimensions, layout etc.); 

• Well design (i.e. foundation, conductors, casings and tubing etc.); 

• Bond strength between conductor and grout; 

• Strength of Xmas tree and connection to wellhead (i.e. force, moment, shear 

torsion); 

• Soil properties. 

To complement this analysis work, it is also recommended that a physical model test be 

undertaken in order to cross-reference and refine the results obtained from the finite 

analysis work. Ideally, full scaled modeling of the well installation that was fully 

instrumented could be performed. 
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The reliability of SCSSV's have improved dramatically over the past decade, however, 

further study and research is required in order to determine the limit states that affect the 

operability and reliability of these units that are located 1 00' s or even 1000's of meters 

beneath the seabed. Innovative technology such as electrically operated SCSSV's are 

currently being developed and may offer some added advantages to the existing 

hydraulically operated units which also warrants research. In addition, it is recommended 

that the use of dual SCSSV's situated downhole be studied in order to determine the 

effect to the overall reliability of the system given this redundancy. 

Identification and better understanding of the inherent conservatisms & limitations 

related to well blowout probability calculations should be given considerable attention. 

This understanding could have a significant impact on the probability estimates for 

iceberg contact with well installations and subsequent risk of well blowout. 

Ongoing monitoring of icebergs using aerial surveys, satellite or radar is recommended in 

order to add to the current database associated with iceberg frequency, drift speeds, 

iceberg size distributions etc. The ongoing collection of data such as high quality seabed 

survey data is also very important for building a more comprehensive data set associated 

with iceberg sour depth distribution and other important scour characteristics such as 

length and width. 
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An overall life cycle cost estimate incorporating additional cost components such as 

OPEX, ABEX and DRILLEX shall also be undertaken for each of the protection 

concepts and incorporated into the overall decision making process. For multi-well 

developments, the analysis should take into account that the development may be phased 

over the field life and costs discounted to arrive at a NPV to enable comparison of 

options. 

11.2 Establishment of Criteria 

Acceptable levels of risk specifically dealing with ice effects on sea floor facilities such 

as wellheads need specific attention as it is not covered explicitly by any of the existing 

national/international codes and standards or by the local regulatory authority. It is thus 

recommended that fully defined risk acceptance criteria be established by local oil & gas 

operators and regulatory bodies for subsea installations specific to the iceberg infested 

waters of the Grand Banks. 
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Appendix A 

Iceberg Annual Probability Summary 
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Table A 1: Summary of Iceberg Event Annual Probabilities - Single Satellite Well Developments 

Annual Annual Contacf 
Annual Contacf 

Encounter1 Probability 
Probability (A) - 85% Iceberg (B) - 85% Iceberg (C) - 85% Iceberg 

Case Description 
Probability 

(SCSSV 
(Blowout) Mgnt Mgnt Mgnt 

Performs) 
(A) 

(B) 
(C) 

1a Unprotected Well 9.60E-04 8.43E-04 1.17E-04 1.80E-04 1.58E-04 2.18E-05 
1b Unprotected Well w/ Weak Shear Joint 9.60E-04 8.43E-04 1.17E-04 1.80E-04 1.58E-04 2.18E-05 
1c Open Glory Hole 5.60E-05 4.92E-05 6.80E-06 5.60E-05 4.92E-05 6.80E-06 
1d Cased Glory Hole 2.00E-04 1.76E-04 2.43E-05 5.20E-05 4.57E-05 6.31E-06 
1e Modified Cased Hole 2.50E-05 2.20E-05 3.03E-06 2.50E-05 2.20E-05 3.03E-06 
1f Caisson Wellhead System 9.60E-04 8.43E-04 1.17E-04 1.80E-04 1.58E-04 2.18E-05 

~--

Table A2: Summary of Iceberg Event Annual Probabilities - Clustered Multi-well Developments 

Annual Annual Contacf 
Annual Contacf 

Encounter1 Probability 
Probability (A) - 85% Iceberg (B) - 85% Iceberg (C) - 85% Iceberg 

Case Description 
Probability 

(SCSSV 
(Blowout) Mgnt Mgnt Mgnt i 

Performs) 
(A) 

(B) 
(C) 

1a Unprotected Well 2.60E-03 2.28E-03 3.16E-04 4.60E-04 4.04E-04 5.58E-05 
1b Unprotected Well w/ Weak Shear Joint 2.60E-03 2.28E-03 3.16E-04 4.60E-04 4.04E-04 5.58E-05 
1c Open Glory Hole 1.10E-04 9.66E-05 1.34E-05 1.10E-04 9.66E-05 1.34E-05 
1d Cased Glory Hole 6.50E-04 5.71E-04 7.89E-05 1.60E-04 1.41E-04 1.94E-05 
1e Modified Cased Hole 8.80E-05 7.73E-05 1.07E-05 8.80E-05 7.73E-05 1.07E-05 
1f Caisson Wellhead System 2.60E-03 2.28E-03 3.16E-04 4.60E-04 4.04E-04 5.58E-05 

Notes: 
1. "Encounter'' occurs when a scouring iceberg enters an open glory hole or modified cased hole, or when a floating or scouring iceberg contacts a cased glory hole 
or the Xmas tree of a caisson system, or unprotected tree. 

I 

i 

I 

2. "Contact" occurs when a scouring iceberg penetrates deep enough into an open or glory hole or modified cased hole to impact the protected Xmas tree, scours deep enough 
to impact below the shear joint/plane in the unprotected well w/ downhole shear joint, caisson system or cased glory hole, or contacts an unprotected Xmas tree. 
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Table A3: Basis for Calculation for Iceberg Risk -Single Satellite Well Developments 

Description Annual Probability Comments 
1a 1b 1c 1d 1e 1f 

I tAl- Oriainal Risk of Iceberg Encounter 9.60E-04 9.60E-04 5.60E-05 2.00E-04 2.50E-05 9.60E-04 As perTable16 

(A)- 85% Iceberg Mgnt Effectiveness for Original Risk of Blowout 1.80E-04 1.80E-04 5.60E-05 5.20E-05 2.50E-05 1.80E-04 
Assumes iceberg management overall success rate 
equal to 85% 

Risk of Permanent Damage Given That Iceberg Contact with a 
9.70E-02 9.70E-02 9.70E-02 9.70E-02 9.70E-02 9.70E-02 Reference C-CORE (2001 b & 2001 c) 

Unprotected Well Installation has Occurred 
SCSSV Reliability 9.73E-01 9.73E-01 9.73E-01 9.73E-01 9.73E-01 9.73E-01 SCSSV Reliability= 0.973, Reference Moines {2000) 
(B)- Revised Risk- Iceberg Contact, No Blowout (SCSSV 

8.43E-04 8.43E-04 4.92E-05 1.76E-04 2.20E-05 8.43E-04 
Assumes that downhole permanent damage is required 

Performs) in order to affect the operation of the SCSSV 
(C) - Revised Risk - Iceberg Contact, Blowout (SCSSV Don't 

1.17E-04 1.17E-04 6.80E-06 2.43E-05 3.03E-06 1.17E-04 
Assumes that downhole permanent damage is required 

Perform) in order to affect the operation of the SCSSV 

(B) - 85% Iceberg Management Effectiveness 1.58E-04 1.58E-04 4.92E-05 4.57E-05 2.20E-05 1.58E-04 
Assumes iceberg management overall success rate 
eaual to 85% 

(C) - 85% Iceberg Management Effectiveness 2.18E-05 2.18E-05 6.80E-06 6.31E-06 3.03E-06 2.18E-05 
Assumes iceberg management overall success rate 
eaual to 85% 

Table A4: Basis for Calculation for Iceberg Risk- Clustered Multi-well Developments 

Description Annual Probabilitv Comments 
2a 2b 2c 2d 2e 2f 

A) - Oriainal Risk of lcebera Encounter 2.60E-03 2.60E-03 1.10E-04 6.50E-04 8.80E-05 2.60E-03 As per Table 17 

(A)- 85% Iceberg Mgnt Effectiveness for Original Risk of Blowout 4.60E-04 4.60E-04 1.10E-04 1.60E-04 8.80E-05 4.60E-04 
Assumes iceberg management overall success rate 
eaual to 85% 

Risk of Permanent Damage Given That Iceberg Contact with 
9.70E-02 9.70E-02 9.70E-02 9.70E-02 9.70E-02 9.70E-02 Reference C-CORE (2001 b & 2001 c) 

Unprotected Well Installations has Occurred 
SCSSV Reliability 9.73E-01 9.73E-01 9.73E-01 9.73E-01 9.73E-01 9.73E-01 SCSSV Reliabilitv = 0.973, Reference Moines (2000) 
(B)- Revised Risk - Iceberg Contact, No Blowout (SCSSV 2.28E-03 2.28E-03 9.66E-05 5.71E-04 7.73E-05 2.28E-03 

Assumes that downhole permanent damage is required 
Performs) in order to affect the operation of the SCSSV 
(C) - Revised Risk - Iceberg Contact, Blowout (SCSSV Don't 3.16E-04 3.16E-04 1.34E-05 7.89E-05 1.07E-05 3.16E-04 

Assumes that downhole permanent damage is required 
Perform) in order to affect the operation of the SCSSV 

(B) - 85% Iceberg Management Effectiveness 4.04E-04 4.04E-04 9.66E-05 1.41E-04 7.73E-05 4.04E-04 
Assumes iceberg management overall success rate 
equal to 85% 

(C) - 85% Iceberg Management Effectiveness 5.58E-05 5.58E-05 1.34E-05 1.94E-05 1.07E-05 5.58E-05 
Assumes iceberg management overall success rate 
equal to 85% 
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Appendix B 

Rates & Norms 
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Table 81: Rates and Norms 

Item Description 
Cost ($CON) I 

Unit Comments 
Rate 

Equipment Costs 
1 Replacement of Conventbnal Xmas tree $13,500,000 per tree included in cost of new well (base case). includes installation and hardware costs 
2 Replacement of Caisson Sacrificial $8,000,000 per well includes installation and hardware costs 
3 Construction Vessel clw WROV $350,000 per day repa~ casing 
4 Dredge Vessel clw WROV $340,000 per day excavate dredged open hole and cleanup of dredged open hole 
5 Dive Support Vessel (DSV) clw WROV $315,000 per day includes diving spread 
6 Drill Rig clw ROV $1,000,000 I per day used for installing caisson and cased systems 

Constnlction Costs 
7 Caisson Tree Hole Prep $3,000,00( per hole incremental costs over base case; includes incremental rig time, tree costs, drilling components & downhole weak 

shear plane 
8 Cased Glory Hole Prep $2,000,00( per hole incremental costs over base case- assumes holes drilled using 7.3m b~ 

9 Modified Cased Glory Hole Prep $2,000,00( per hole incremental costs over base case- assumes holes drilled using 7.3m b~ 

10 Downhole Weak Shear Joint Prep $1,250,00( per well includes 1 day extra drill rig time and $CON 250,000 in extra equipment costs 
11 Open Glory Hole Excavation (single weD) $8,500,00( per hole includes constuction vessel and mob I demob costs 
12 Open Glory Hole Excavation (multi-well) $24,140,00( per hole includes constuction vessel and mob I demob costs 
13 Drill a Production Well $82,000,000 per well includes all costs incurred in drilling and completing new production well. The Xmas tree cost is included. Hole 

preparation costs are added incrementaUy as indicated above 
14 Drill a Relief Well $50,000,000 per well includes all costs associated w~ drilling and completing a relief well 
15 Re-enter Well & Repair $50,000,000 per well includes all costs associated with re-entering a weD and performing repairs 
16 Re-enter Well & Repair Conductor $27,500,000 per well includes all costs associated with re-entering a weD and performing repairs to upper portion of conductor 
17 Repair Casing $2,450,00( Each includes casing - assumes construction vessel will be used 
18 Tie-In Costfor a Well in a Cased Hole $1145 00( erwell includes DSV and tie-in materials for 3 davs 

Services 
19 Spill Clean Up Rate (single well) $1 ,500,~~:~ day assume spill does not reach land 
20 Spill Clean Up Rate (mu~iple wells) $3 000 00 r day assume spill does not reach land 

Activity Duration Times 
21 Vessel Mob I De-mob 2C days assumes 10 day transit each way from e~her North Sea I Gulf of Mexico 
22 Drill a Relief Well : days costs covered under construction cos1s for drill relief well 
23 Drill a New Production Well days costs covered under construction cos1s for production well 
24 Kill a Well 4! days account for rig time only 
25 Re-enter Well & Repair 4! days costs covered under construction cos1s for re-enter well and repair 
26 Install a New Tree 1C days accounts for rig time only 
27 Tie-in a well 3days account for DSV clw WROV, services and equipment only 
28 Clean Out a Dredged Open Glory Hole 1 days assume dredge vessel clw WROV 
29 Clean Out a Cased Glory Hole 1C days assume DSV clw WROV 
30 Clean Out a Caisson Hole ! days assume drill rig clw WROV 
31 Repair /Install a New Caisson Sacrificial ! days upper caisson, upper HP riser, surface Xmas tree 
32 Excavate Open Glory Hole (single weD) ! days dredge vessel clw WROV assuming an average excavation rate of 1500 m3/d for a theroetical volume of 7756 m3 

33 Excavate Open Glory Hole (multi-well) 51 days dredge vessel clw WROV assuming an average excavation rate of 1500 m3/d for a theroetical volume of 76800 m3 

34 Repair Casing ?days construction Vessel clw WROV 
35 Spill Cleanup 6C days assuming a weD blowout cond~ion 
36 Cleanup Damaged Tree 1 days assumes tree is contacted but blowout does not occur & drill rig is used to perform cleanup 

Production Data 
Case 1 -Single Wei/Installation: 

37 Peak Daily Well Production Rate 15,00( bbVday used to cabulate loss production costs 
38 Spill/Blowout Rate 75,00( bbVday used to account for production lost to spill 
39 Netback per Barrel $1( perbbl used to cabulate loss production costs 

Case 2- Multi-wei/Installation: 
49 Peak Daily Well Production Rate $40,00( bbVday usad to cabulate loss production costs 
41 Spill/Blowout Rate $200,00( bbVday used to account for production lost to spill 
42 Netback per Barrel $1( perbbl used to cabulate loss production costs 
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Appendix C 

Cost Summary 
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Table C1: Consequence Scenario Costs: Case 1&2a- Unprotected Well(s) 

Item 

Iceberg Encounter 
8: Contact- SCSSV Performs (No 'Biowout7 
C: Contact- SCSSV Don't Perform ('Biowout7 

Tie flowline back into tree loacted at mudline. 

$12.0 $36.0 
$50.0 $150.0 
$23.5 $70.5 
$3.0 $9.0 I Tie flowline back into tree loacted at mudline. 

SCSSV does not perform, resulting in a blowout. 
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Table C2: Consequence Scenario Costs: Case 1&2b- Unprotected Well(s) w/ Weak Shear Joint 

flowline back into tree loacted at rrudline. 

not separate correctly, however, the SCSSV does 

flowline back into tree loacted at rrudline. 

Contact- SCSSVDon't Perform ('Blowout' 
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Table C3: Consequence Scenario Costs: Case 1&2c- Open Glory Hole 

Iceberg Encot.nter 
Contact- SCSSV Performs (No 'Biowout7 

C: Contact- SCSSV Don f Perform ('Biowout7 

flowline back into tree loacted inside glory hole .. 

the iceberg contacts the Xmas tree resulting i1 destruction of the tree, but 
of the SCSSV results in a blowout. 
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Table C4: Consequence Scenario Costs: Case 1&2d- Cased Glory Hole(s) 

lilcrementatrDeve~t~ost::~ \'iff~~ 0S · ·.•. ···. Case 1.~~ ·· ' \ CaSe 21:; :~ i • .if;J:+js<iii) 'r~·~ •. ~ii·ii, :;~ •·•iii {.!$ fi.ri,~+r'! +~. '''· ~JiiY ~ '" "i¥ii~~.~,~~~~~i~ ~ 

Item Cost Cost Comments 
($MM CON) ($MM CON) 

Cased glory hole excavation $2.0 $12.0 Incremental cost to excavate cased olorv hole. 
CoriS'iQue~ Scemtrio:'(r;. ';:; •:~:: ~;iii·<lf' ii~ ..• •>¥ 'i!A •.if'£ ;. ~,,, , ,, '~"' ·'~"''~:s:;$0~'2~• .. s···.·';l¢.¥ti·~tHUt~·~·· ; :1 .11:1" I I 

A: Iceberg Encounter Assumes that the casing is contacted by a scouring iceberg above the shear point 
resulting in proper separation of the casing weak shear plane. The casing requires 
substantial repairs while the Xmas tree and wellhead suffer no damage. 

Mob I De-mob DSV c/w WROV $6.3 $6.3 Assumes 10 day transit each way from either North Sea I Gulf of Mexico. 
Clean-up $3.2 $9.5 Clean out of glory hole after iceberg event. 
Repair casing $2.5 $7.4 
Tie-in well $1.1 $3.4 Tie flowline back into tree loacted in cased hole. 
Lost Production $6.00 $48.00 
B: Contact- SCSSV Performs (No 'Blowout') Assumes the casing shears improperly as a result of a deep scouring iceberg and the 

Xmas tree is damaged beyond repair; however, the SCSSV performs properly and shuts 
the well in. 

Cleanup $29.0 $87.0 
Re-enter Well & Repair $50.0 $150.0 
Install New Tree $23.5 $70.5 
Tie-in $1.1 $3.4 Tie flowline back into tree loacted in cased hole. 
Lost Production $12.0 $96.0 
C: Contact- SCSSV Don't Perform ('Blowout') Assumes the casing shears improperly as a result of a deep scouring iceberg and the 

Xmas tree is damaged beyond repair. The SCSSV fails to operate properly, resulting in 
destruction to Xmas tree and a well blowout. 

Environmantal spill cleanup $90.0 $180.0 
Drill Relief Well & Kill $95.0 $285.0 
Drill New Production Well & Tie-in $85.0 $255.0 
Lost Production $32.0 $255.6 
'IOtlls: ... i 'I .1. 

.' •': ... , )i.l?+'f ·• £"; I i: I it 'I ., ·•·- 4 +t~£4~~~·~~~~ •. ~~jdL~'t; ~~.l'~:_,.,:.t;: 

A: Iceberg Encounter $19.0 $74.5 
B: Contact- SCSSV Performs (No 'Biowout7 $115.6 $406.9 
C: Contact- SCSSV Don't Perform ('Biowout7 $302.0 $975.6 
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Table C5: Consequence Scenario Costs: Case 1&2e- Modified Cased Glorv Hole(s) 

Mob I De-mob DSV c/w WROV $6.3 $6.3 Assumes 10 day transit each way from either North Sea I Gulf of Mexico. 
Cleanup hole $3.2 $9.5 Clean out of cased glory hole after iceberg event. 
Tie-in well $1.1 $3.4 Tie flowline back into tree loacted in modified cased hole. 
Lost Production $4.95 $39.60 
8: Contact- SCSSV Performs (No '8/owout'l Assumes the casing is contacted as a result of a deep scouring iceberg and the Xmas 

tree is damaged beyond repair; however, the SCSSV performs properly and shuts the 
well in. 

Cleanup $22.0 $66.0 
Repair casing $2.5 $7.4 
Re-enter Well & Repair $50.0 $150.0 
Install New Tree $23.5 $70.5 
Tie-in $1.1 $3.4 Tie flowline back into tree loacted in modified cased hole. 
Lost Production $13.1 $104.4 
C: Contact- SCSSV Don't Perform ('8/owout'l Assumes the casing is contacted as a result of a deep scouring iceberg and the Xmas 

tree is damaged beyond repair. The SCSSV fails to operate properly, resulting in 
destruction to the Xmas tree and a well blowout. 

$180.0 
$285.0 
$255.0 
$255.6 

A: Iceberg Encounter $58.8 
8: Contact- SCSSV Performs (No 'Biowout1 $401.7 
C: Contact- SCSSV Don't Perform ('Biowout1 $302.0 $975.6 
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Table C6: Consequence Scenario Costs: Case 1&2f- Caisson Wellhead System(s) 

tnc:tementaiPev:elopment ~·· ..... . ''r r+; f.• l"·i~ if· 7:0ase1 Case2 .. ; ;;,~li.J:t:i!7~~~ ,;; . • ~ .•••. :· ... · ~31:2'5:·· .~ '; '. ?:'• ~ .• ; ; ' ; 

Item Cost Cost Comments 
($MM CON) ($MM CON) 

Caisson wellhead system installation $3.0 $18.0 Incremental cost to install a caisson wellhead system. 

OOiseauenee Scenario: •· 
. .. ;; '•·:·:· . i.L ~: ~·~;·~ ~: . : " ·~ .~ 1:·1 ~ '¥'.~{ ~~·~.:~ 'f · · • r ;~. ·~l'•'ftl·~i.~~ . ·~ ~·~·~ 11 ,,~ · ·~fi~~ir:,~ t·Ull f.• f 

A: Iceberg Encounter Assumes that upon iceberg contact with the Xmas tree, the tree is damaged beyond 
repair; however, the weak shear joint seperates correctly and ensures the SCSSV 
performs properly and shuts the well in. 

Cleanup $5.0 $15.0 
Repair caisson $5.0 $15.0 
Install new sacrifical tree $18.0 $54.0 
Tie-in well $3.0 $9.0 Tie flowline back into sacrificial tree loacted at mud line. 
Lost Production $5.25 $42.00 
B: Contact- SCSSV Performs (No 'Blowout') Assumes a deep scouring iceberg impacts the caisson in such a manner as to fail the 

caisson in a mode other than shear, however, proper performance of the SCSSV shuts 
the well in. 

Cleanup $5.0 $15.0 
Re-enter Well & Repair $50.0 $150.0 
Repair caisson $5.0 $15.0 
Install new sacrifical tree $18.0 $54.0 
Tie-in well $3.0 $9.0 Tie flowline back into sacrificial tree loacted at mudline. 

I Lost Production $4.20 $33.60 
C: Contact- SCSSV Don't Perform ('Blowout'! Assumes a deep scouring iceberg impacts the caisson in such a manner as to fail the I 

caisson in a mode other than shearfailure of the downhole master valve and SCSSV 
results in a blowout of the well. 

Environmantal spill cleanup $90.0 $180.0 
Drill Relief Well & Kill $95.0 $285.0 
Drill New Production Well & Tie-in $85.0 $255.0 
Lost Production $32.0 $255.6 i 

tetals:A ·~ ~ f .. ' ;; ; ·. ; \;.!. ; ~ "' ·~ t . ·~ ; f ~5 ;!::: ...• ' ·~.~· ¥.;:;~.~ t 
A: Iceberg Encounter $36.3 $135.0 
B: Contact- SCSSV Performs (No 'Blowout) $85.2 $276.6 
C: Contact- SCSSV Don't Perform ('Blowout' $302.0_,,, $975.6 
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Table C7: Comparison of Net Costs for Single Well Developments 

Case Description Incremental Annual Consequence Field Life Cost of Risk Net System 
CAP EX Probability o Cost (T) (Cr) Cost 

(C) Iceberg (R+E+ Lp) [Years] [$MM CON] (N= C + Cr) 
[$MM CON] Event [$MM CON] [$MM CON] 

(Pf) 

A: 9.60E-04 99.0 
1a Unprotected Well 1.0 8: 8.43E-04 99.0 6 1.282 2.282 

C: 1.17E-04 302.0 
A: 9.60E-04 76.5 

1b Unprotected Well w/ Weak Shear Joint 2.3 8: 8.43E-04 99.0 6 1.153 3.403 
C: 1.17E-04 302.0 
A: 5.60E-05 11.6 

1c Open Glory Hole 9.5 8: 4.92E-05 115.1 6 0.050 9.550 
C: 6.80E-06 302.0 
A: 2.00E-04 19.0 

1d Cased Glory Hole 3.0 8: 1.76E-04 115.6 6 0.189 3.189 
C: 2.43E-05 302.0 
A: 2.50E-05 15.5 

1e Modified Cased Hole 3.0 8: 2.20E-05 112.1 6 0.023 3.023 
C: 3.03E-06 302.0 
A: 9.60E-04 36.3 

1f Caisson Wellhead System 4.0 8: 8.43E-04 85.2 6 0.851 4.851 
C: 1.17E-04 302.0 

Notes: 
1. Annual Probability of Iceberg Event: A: Iceberg Encounter, B: Contact (SCSSV Performs), C: Contact (SCSSV Don't Perform -"Blowout''). 
2.A 6-year and 8-year life of field has been assumed for both the single well and multi-well development, respectively. 

Unit Unit 
Normalized C Normalized 

Cr 

0.105 1.000 

0.237 0.899 

1.000 0.039 

0.316 0.147 

0.316 0.018 

0.421 0.664 

~-

3. The "Cost of Risk" is the sum of the annual probability of iceberg events times the total repair/replacement, cleanup and lost production costs, all multiplied by the life of field. 
4. In order to undertake a unit normalized comparison of options, a value of $1.0 MM has been added to incremental CAPEX for each option 
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Table CS: Comparison of Net Costs for Multi-well Developments 

Case Description Incremental Annual Consequence Field Life Cost of Risk 
CAP EX Probability o Cost (T) (Cr) 

(C) Iceberg (R+E+ Lp) [Years] [$MM CON] 
[$MM CON] Event [$MM CON] 

(Pf) 
A: 2.60E-03 349.5 

2a Unprotected Wells 1.0 B: 2.28E-03 349.5 8 16.120 
C: 3.16E-04 975.6 
A: 2.60E-03 282.0 

2b Unprotected Wells w/ Weak Shear Joint 8.5 B: 2.28E-03 349.5 8 14.716 
C: 3.16E-04 975.6 
A: 1.10E-04 21.1 

2c Open Glory Hole 25.1 B: 9.66E-05 369.1 8 0.408 
C: 1.34E-05 975.6 
A: 6.50E-04 74.5 

2d Cased Glory Holes 13.0 B: 5.71E-04 406.9 8 2.863 
C: 7.89E-05 975.6 
A: 8.80E-05 58.8 

2e Modified Cased Holes 13.0 B: 7.73E-05 401.7 8 0.373 
C: 1.07E-05 975.6 
A: 2.60E-03 135.0 

2f Caisson Wellhead Systems 19.0 B: 2.28E-03 276.6 8 10.326 
C: 3.16E-04 975.6 

Notes: 
1. Annual Probability of Iceberg Event: A: Iceberg Encounter, B: Contact (SCSSV Performs), C: Contact (SCSSV Don't Perform - "Blowout"). 
2.A 6-year and 8-year life of field has been assumed for both the single well and multi-well development, respectively. 

Net System Unit Unit 
Cost Normalized C Normalized 

(N= C+ Cr) Cr 
[$MM CON] 

17.120 0.040 1.000 

23.216 0.338 0.913 

25.548 1.000 0.025 

15.863 0.517 0.178 

13.373 0.517 0.023 

29.326 0.756 0.641 

3. The "Cost of Risk" is the sum of the annual probability of iceberg events times the total repair/replacement, cleanup and lost production costs, all multiplied by the life of field. 
4. In order to undertake a unit normalized comparison of options, a value of $1.0 MM has been added to incremental CAPEX for each option 
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Table C9: Comparison of Net Costs for Single Well Developments (85% Ice berg Mgnt Effectiveness) 

Case Description Incremental Annual Consequence Field Life Cost of Net System 
CAP EX Probability of Cost (T) Risk Cost 

(C) Iceberg (R+E+Lp) [Years] (Cr) (N=C+Cr) 
[$MM CON] Event [$MM CON] [$MM CON] [$MM CON] 

(Pf) 
A: 1.80E-04 99.0 

1a Unprotected Well 1.0 B: 1.58E-04 99.0 6 0.240 1.240 
C: 2.18E-05 302.0 
A: 1.80E-04 76.5 

1b Unprotected Well w/ Weak Shear Joint 2.3 B: 1.58E-04 99.0 6 0.216 2.466 
C: 2.18E-05 302.0 
A: 5.60E-05 11.6 

1c Open Glory Hole 9.5 8: 4.92E-05 115.1 6 0.050 9.550 
C: 6.80E-06 302.0 
A: 5.20E-05 19.0 

1d Cased Glory Hole 3.0 B: 4.57E-05 115.6 6 0.049 3.049 
C: 6.31E-06 302.0 
A: 2.50E-05 15.5 

1e Modified Cased Hole 3.0 B: 2.20E-05 112.1 6 0.023 3.023 
C: 3.03E-06 302.0 
A: 1.80E-04 36.3 

1f Caisson Wellhead System 4.0 B: 1.58E-04 85.2 6 0.160 4.160 
C: 2.18E-05 302.0 

Notes: 
1. Annual Probability of Iceberg Event: A: Iceberg Encounter, B: Contact (SCSSV Performs), C: Contact (SCSSV Don't Perform- "Biowouf'). 
2.A 6-year and 8-year life of field has been assumed for both the single well and multi-well development, respectively. 

Unit Unit 
Normalized C Normalized 

Cr 

0.105 1.000 

0.237 0.899 

1.000 0.209 

0.316 0.204 

0.316 0.094 

0.421 0.664 

-------

3. The "Cost of Risk" is the sum of the annual probability of iceberg events times the total repair/replacement, cleanup and lost production costs, all multiplied by the life of field. 
4. In order to undertake a unit normalized comparison of options, a value of $1.0 MM has been added to incremental CAPEX for each option 
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Table C10: Comparison of Net Costs for Multi-well Developments (85% Iceberg Mqnt Effectiveness) 

Case Description Incremental Annual Consequence Field Life Cost of Net System Unit 
CAP EX Probability of Cost {T) Risk Cost Normalized C 

{C) Iceberg {R+ E+ Lp) [Years] (Cr) (N=C+ Cr) 
[$MM CON] Event [$MM CON] [$MM CON] [$MM CON] 

(Pf) 
A: 4.60E-04 349.5 

2a Unprotected Wells 1.0 B: 4.04E-04 349.5 8 2.852 3.852 
C: 5.58E-05 975.6 
A: 4.60E-04 282.0 

2b Unprotected Wells w/ Weak Shear Joint 8.5 B: 4.04E-04 349.5 8 2.604 11.104 
C: 5.58E-05 975.6 
A: 1.10E-04 21.1 

2c Open Glory Hole 25.1 B: 9.66E-05 369.1 8 0.408 25.548 
C: 1.34E-05 975.6 
A: 1.60E-04 74.5 

2d Cased Glory Holes 13.0 B: 1.41E-04 406.9 8 0.705 13.705 
C: 1.94E-05 975.6 
A: 8.80E-05 58.8 

2e Modified Cased Holes 13.0 B: 7.73E-05 401.7 8 0.373 13.373 
C: 1.07E-05 975.6 
A: 4.60E-04 135.0 

2f Caisson Wellhead Systems 19.0 B: 4.04E-04 276.6 8 1.827 20.827 
C: 5.58E-05 975.6 

Notes: 
1. Annual Probability of Iceberg Event: A: Iceberg Encounter, B: Contact (SCSSV Performs), C: Contact (SCSSV Don't Perform- "Blowout"). 
2.A 6-year and 8-year life of field has been assumed for both the single well and multi-well development, respectively. 

0.040 

0.338 

1.000 

0.517 

0.517 

0.756 

Unit 
Normalized 

Cr 

1.000 

0.913 

0.143 

0.247 

0.131 

0.641 

3. The "Cost of Risk" is the sum of the annual probability of iceberg events times the total repair/replacement, cleanup and lost production costs, all multiplied by the life of field. 
4. In order to undertake a unit normalized comparison of options, a value of $1.0 MM has been added to incremental CAP EX for each option 
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