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ABSTRACT 

The objective of this study was to determine which type of repetitive muscle contractions 

induces a greater acute impainnent of elbow position sense. Eleven male subjects 

participating in the study underwent (i) a fatigue task (FT) consisting of 9 sets of 10 

voluntary isometric, concentric, or eccentric contractions randomly performed on three 

separate sessions, and (ii) pre- and post-treatment maximal voluntary isometric contraction 

(MVC). Prior to and between sets ofFT, a proprioception task (PT) consisting of matching 

the right arm to the left reference arm was performed at three different target angular 

positions (70°, 110° and 150°). Each set was immediately followed by 3 PT and 1 minute 

rest. The statistical analysis revealed that post-treatment MVCs were significantly decreased 

compared to pre-treatment MVC in all conditions with a greater drop following the 

eccentric session. Despite this greater drop, position sense was only significantly affected 

by the concentric exercise session. In addition, matching errors tended to be larger at 11 oo 

compared to the other angles. The results showed that concentric muscle contractions 
' 

impaired position sense in the midrange angle of the elbow joint and this should be taken 

into consideration when designing proprioception rehabilitation programs. 

Key words: elbow, muscle contraction, position sense, force, midrange angle, matching. 

2 



ACKNOWLEDGMENTS 

I wish to acknowledge the support of my supervisor, Dr. Fabien Basset, who provided me 

with guidance, learning opportunity and intellectual challenges throughout my master 

program. I would like to thank Lise Petrie in the Exercise Physiology laboratory for her 

kindness and assistance in data collection together with Chris Batten and Randy Thome 

from Technical Services. 

I also would like to thank: my family and friends who have supported me throughout this 

process in many ways, for being a listening ear when I needed it, and for always giving me 

the freedom to make my own choices. Lastly, I express a special thanks to my partner, Harold 

Loveless, for his support and encouragement during my graduate studies. 

3 



TABLE OF CONTENTS 

ABSTRACT ........................................................................................................................... 2 

ACKNOWLEDGMENTS .................................................................................................... 3 

TABLE OF CONTENTS ...................................................................................................... 4 

LIST OF TABLES ................................................................................................................ 7 

LIST OF FIGURES .............................................................................................................. 8 

LIST OF ABBREVIATIONS ............................................................................................. 10 

CHAPTER 1 THESIS OVERVIEW ................................................................................. 13 

1.1 OVERVIEW OF THESIS ..................................................................................... 14 

1.2 COLLABORATIONS ........................................................................................... 15 

CHAPTER 2 REVIEW OF LITERATURE ..................................................................... 16 

2.1 INTRODUCTION ........................................................................................... _ ...... 17 

2.2 MUSCLE PERFORMANCE DECREMENT ....................................................... 18 

2.2.1 Voluntary movements ....................................................................................... 18 

2. 2.1.1 Ascending tracts ........................................................................................ 21 

2.2.1.2 Descending tracts ...................................................................................... 24 

2.2.1.3 Movement initiation ................................................................................... 28 

2.2.1.4 Muscle contraction .................................................................................... 29 

2. 2.1. 5 Pathways involved in a matching task ...................................................... 30 

2.2.2 Physiological events involved in muscle perfonnance decrement. ................... 36 

2.2.2.1 Central events ............................................................................................ 39 

4 



2.2.2.2 Peripheral events ....................................................................................... 41 

2.2.2.3 Metabolite accumulation ........................................................................... 44 

2.2.2.4 Mechanisms of muscle performance decrement in regard to isometric, 

concentric, and eccentric contractions ..................................................... 48 

2.2.3 Overview ofEMG ............................................................................................. 54 

2.3 PROPRIOCEPTION ............................................................................................. 58 

2.3.1 Overview of proprioception .............................................................................. 58 

2.3.2 Experimental protocols in evaluation of proprioception ................................... 60 

2.3.3 Role of peripheral afferent signals .................................................................... 64 

2.3.3.1 Muscle spindles ......................................................................................... 65 

2.3.3.2 Golgi tendon organs .................................................................................. 67 

2. 3. 3. 3 Group III and IV muscle afferents ............................................................. 68 

2.3.4 Role of the central nervous system ................................................................... 73 

2. 3. 4. 1 Sense of effort ............................................................................................ 7 4 

2.3.5 Decrement of position sense perfonnance induced by different muscle 

contraction types ............................................................................................... 76 

2.4 SPORT REHABILITATION ................................................................................ 82 

2.4.1 Role of proprioception in rehabilitation and prevention of injury .................... 82 

2.4.2 Effect of athletic training background and bracing ........................................... 94 

2.5 FUTURE DIRECTIONS ....................................................................................... 96 

CHAPTER 3 MANUSCRIPT ............................................................................................ 98 

3.1 INTRODUCTION ............................................................................................... 100 

3.2 METHODS .......................................................................................................... 102 

5 



3.2.1 Subjects ........................................................................................................... 102 

3 .2.2 Apparatus ........................................................................................................ 102 

3.2.3 Experimental procedure .................................................................................. 105 

3.2.4 Data analysis ................................................................................................... 109 

3.2.5 

3.3 

3.4 

3.5 

3.6 

3.7 

Statistical analysis ........................................................................................... 110 

RESULTS ............................................................................................................ 111 

DISCUSSION ..................................................................................................... 117 

CONCLUSION ................................................................................................... 127 

ACKNOWLEDGMENTS ................................................................................... 128 

REFERENCES .................................................................................................... 129 

CHAPTER 4 CONCLUSION .......................................................................................... 137 

4.1 RESPONSES TO THE RESEARCH HYPOTHESIS ........................................ 138 

4.2 SUMMARY ........................................................................................................ 138 

4.3 LIMITATIONS OF THE STUDY ...................................................................... 139 

CHAPTER 5 OVERALL REFERENCES ...................................................................... 142 

6 



LIST OF TABLES 

Table 3. 1 Participants' physical characteristics ................................................................. 103 

7 



LIST OF FIGURES 

Figure 2.1 Dorsal column mediallemnicus tract (spinothalamic tract) ................................ 23 

Figure 2.2 (i) Anterior spinocerebellar tract (blue); (ii) Posterior spinocerebellar tract (red); 

(iii) Cuneocerebellar tract (green) ........................................................................................ 25 

Figure 2.3 (i) Pyramidal tract (blue); (ii) Extrapyramidal tracts (red) .................................. 27 

Figure 2.4 Steps involved in muscle contractions ................................................................. 31 

Figure 2.5 Cuneocerebellar tract ........................................................................................... 33 

Figure 2.6 Reticulospinal tract .............................................................................................. 34 

Figure 2. 7 Potential events involved in muscle perfonnance decrement .............................. 38 

Figure 3.1 Position sense apparatus .................................................................................... 104 

Figure 3.2 Design of the familiarization session and an experimental session ................... 107 

Figure 3.3 A typical set ofkinematic data .......................................................................... 108 

8 



Figure 3.4 Maximal isometric voluntary contraction for pre-exercrse, post-exercise 

isometric, post-exercise concentric, and post-exercise eccentric ........................................ 112 

Figure 3.5 Blood lactate concentration for pre- and post-exercise isometric, pre- and post-

exercise concentric, and pre- and post-exercise eccentric ................................................... 114 

Figure 3.6 Mean constant eiTor ........................................................................................... 115 

9 



LIST OF ABBREVIATIONS 

a alpha 

y gamma 

% percentage 

0 degree 

Ach acetylcholine 

ACL anterior cruciate ligament 

ADP adenosine diphosphate 

AE absolute error 

ATP adenosine triphosphate 

c celsius 

Ca2+ calcium ion 

CE constant error 

CI confidence interval 

em centimetre 

CNS central nervous system 

Cr creatine 

DOMS delayed onset muscle soreness 

E-C excitation-contraction 

EMG electromyography 

FT fatigue task 

h hour 

H+ hydrogen ion 

10 



HzPo4-

Hz 

iEMG 

iMVC 

K+ 

Kg 

KHz 

Mgz+ 

mm 

mm 

mmol•L-1 

ms 

m/s 

mV 

MVC 

N 

NH3 

NMJ 

NS 

PCL 

PCr 

PFK 

dihydrogen phosphate 

hertz 

integrated electromyography 

maximal isometric voluntary contraction 

potassium ion 

kilogram 

kilohertz 

magnesium ion 

minute 

millimetre 

millimol per litre 

millisecond 

metre per second 

millivolt 

maximal voluntary contraction 

Newton 

sodium ion 

ammoma 

neuromuscular junction 

non significant 

posterior cruciate ligament 

phosphocreatine 

phosphofructokinase 

11 



Pi inorganic phosphate 

PT proprioception task 

s second 

SE standard error 

SI primary somatosensory cortex 

SMA supplementary motor area 

SR sarcoplasmic reticulum 

TAP target angular position 

T-tubule transverse tubule 

VE variable en·or 

12 
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1.1 OVERVIEW OF THESIS 

Chapter 2 includes a review of literature conceming the debate about the origin of the 

proprioception senses and to what extent they are derived peripherally (peripheral afferent 

signals) or centrally (sense of effort). Nevertheless, the center of interest of the review is on 

the effect of repetitive muscle contractions on position sense. A substantial body of research 

demonstrated that position sense is negatively affected by isometric, concentric, and 

eccentric exercise protocols. The different possible mechanisms involved are then 

discussed. The review also covers a section on sport rehabilitation through proprioception 

training. Prevention of reinjury and effect of athletic training are also briefly discussed in 

this section. 

Chapter 3 reports the investigation of eleven active male subjects matching three different 

elbow angles after having gone through an isometric, concentric, and eccentric exercise task 

perfonned on three separate sessions. Pre- and post- maximal voluntary contractions were 
I 

also collected in each session to ensure that a decrement in muscle performance has 

occurred in the three exercise tasks. The hypothesis was that eccentric exercise would lead 

to a greater decrease in force and consequently to larger matching errors. 

In Chapter 4, the responses to the research hypothesis are answered together with a brief 

summary of the thesis. In addition, a discussion of the limitations of the methods employed 

in the study is included. 
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1.2 COLLABORATIONS 

The design and identification of my research proposal was a collaborative effort between 

Dr. Fabien Basset and I. The set-up of the equipment and fine-tuning of the protocol was a 

collaborative effort between Chris Batten, Randy Thome, Stephen Sooley, Lise Petrie, Dr. 

Basset and I. The data collection was completed with the help of Lise Petrie, a group of 

undergraduate students and I. The experiment was conducted in Dr. Behm's Exercise 

Physiology Laboratory using his laboratory equipment. The data analysis was a 

collaborative effort between Dr. Basset and I. For the review of literature and the 

manuscript included in the thesis, I prepared first drafts of both chapters. Dr. Basset 

provided the necessary feedback and corrections on both chapters, where Dr. Teasdale, Dr. 

Billaut and Dr. Behm provided indispensable comments on the manuscript. 
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2.1 INTRODUCTION 

In the absence of vision we have an accurate sense of limb position. Thus, in a dark room, 

we are uneningly able to place our index finger on the tip of our nose. It implies that human 

being knows the position of the hand at any time during a movement and has an accurate 

map of the location in space of different body parts. The sense which the body relies on to 

achieve such an accomplishment is called proprioception. It is generally divided into two 

distinct elements: static and dynamic proprioception. Static proprioception, also called joint 

position sense, is the conscious perception of the orientation of different body pmis whereas 

dynamic proprioception, defined as kinaesthesia, is the sense of limb movement. Due to the 

complexity of the subject, this review focuses primarily on static proprioception. 

The control of a movement is highly dependent on the quality of the afferent infonnation 

originating from the various somatosensory systems, such as interoceptors, involved in 

proprioception. There has been much debate about the origin of the proprioceptive. senses 
' 

and to what extent they are derived peripherally or centrally. The traditional view is that 

signals from muscle spindles provide us with our sense of limb position. However, the 

present-day view is that the sense of effort would play a more important role in joint 

position sense. Thus, the role of peripheral afferents directly or indirectly involved in 

proprioception is also illustrated in this work. 

Different factors such as injury, cognitive distraction, inactivity, and muscle fatigue have 

been demonstrated to impair proprioception. The latter is defined as a class of acute effects 

that impair perfonnance including an increase in the perceived eff01i and an eventual 
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inability to produce this force. Its effect on position sense is the center of interest for this 

review. It is legitimate to question how intense physical activity would perturb the sense of 

position knowing that repeated muscle contractions modify the peripheral proprioceptive 

system and thus the central processing of proprioception. In fact, results from independent 

studies using different protocols confinn that position sense is negatively affected following 

isometric, concentric, and eccentric type exercise protocols. Alas, none at this point has 

compared the three muscle contraction types within the same protocols and subjects. 

Proprioception has also been a topic of interest in sport rehabilitation because injuries have 

been found to have a detrimental effect on proprioception through damage of 

mechanoreceptors in ligaments. In theory, operative techniques could restore proprioception 

directly through reinnervation of damaged structures; however controversy still exits 

regarding the retum of proprioceptive function after joint reconstruction. Beneficial aspects 

of proprioception training following injury or surgery have been reported for many years. 

Accordingly, proprioceptive training has become an integral aspect of functional 

rehabilitation. Additionally, topics such as the prevention of reinjury and the effect of 

athletic training on proprioception are briefly discussed in this work. Finally, the last section 

of this review provides ideas for future studies related to the present subject, proprioception. 

2.2 MUSCLE PERFORMANCE DECREMENT 

2.2.1 Voluntarymovements 

18 



Feedback from afferent neural pathways is provided to the brain by a number of sensors 

throughout the body. Sensory infonnation includes cutaneous sensations (touch, pressure, 

vibration, and temperature), special senses (taste, smell, hearing, sight, and equilibrium), 

and proprioceptive sensations (awareness of body positions). The tem1 proprioceptive is 

used for sensations pertaining to the musculoskeletal system, that is, muscles, tendons, joint 

capsules, and ligaments. These are all low-threshold mechanoreceptors and signals from 

them are conducted centrally in thick, myelinated axons. Whether located in a muscle or in 

a joint capsule, joint movement is the natural stimulus that leads to activation of such 

receptors (Broda!, 1998). 

Descending control from higher brain centers can produce muscle contraction directly by 

acting on the alpha (a) motoneurons and indirectly by the gamma (y) motoneuron causing 

contraction of muscle fibres. Alpha motoneurons innervate extrafusal (striated) muscle 

fibres while gamma motoneurons innervate intrafusal muscle fibres, adjusting the 

sensitivity of the muscle spindle (muscle spindles are sensory receptors in the muscle) so 
' 

that it will respond appropriately during muscle contraction. 

The Ia afferents synapse with the a-motoneuron that leads to the contraction. Later on, 

infom1ation from muscle spindles anives at the cerebral cortex allowing perception of limb 

position and also passes to the cerebellum where it aids in the coordination of muscle 

contraction (Gandevia, 1996). The intrafusal fibres are i1mervated by sensory neurons called 

annulospiral and flower spray regulating the rate of length change and the change in length, 

respectively. When the muscle is stretched/shorten as the result of contractions, ammlospiral 
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afferents transmit the signal to the spinal cord. Within the spinal cord the annulospiral 

afferent fibre bifurcates. One section synapses with the a-motoneuron leading to the agonist 

muscle. The other section connects with the inhibitory intemeuron which then synapses 

with the antagonist muscle. The a-motoneuron will then leave the spinal cord and synapse 

with the extrafusal fibres of the agonist muscle. This results in the contraction of the muscle 

that is equal in force and distance to the original stretch. This is known as the myotatic 

reflex. The Ia afferents also make synaptic contact in the spinal cord with an inhibitory 

intemeuron that synapses with the a-motoneuron of the antagonist muscle. This is known as 

reciprocal inhibition and is defined as the reflex relaxation of the antagonist muscle in 

response to the contraction of the agonist. This facilitates the contraction by preventing the 

antagonist from resisting the agonist contraction. This allows a higher rate, amplitude and 

intensity of movement contraction. The Ib afferents and Golgi tendon organ also control 

contractions by providing the cerebellum with sensory information regarding tension. This 

allows the muscle adjustments so that only amount of tension needed to complete the 

movement is produced. 

Lower motoneurons (alpha and gamma) send their axons out of the brain stem to ilmervate 

the skeletal muscles of the head and body, and are the motoneurons in the ventral hom of 

the spinal cord. Local circuit neurons receive sensory inputs as well as descending 

projections from higher centers and provide much of the coordination between different 

muscles groups essential for organized movement. Each lower motoneuron i1mervates 

muscle fibres within a single muscle. The axons of all the motoneurons located in one spinal 

segment leave the spinal cord through one ventral root and continue in one spinal nerve. 
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The motoneuron pool is all the lower motoneurons that innervate a single muscle. 

Motoneuron pools are grouped together into rod-shaped clusters running down the cord for 

one or more spinal cord segments. Motoneuron pools innervating the ann are located in the 

cervical enlargement (C5-C7 innervate biceps brachii and brachialis muscles) and those that 

i1mervate the legs are located below in the lumbar enlargement (Kahle, Leonhardt, Platzer, 

& Cabral, 1979; Rossignol, Dubuc, & Gossard, 2006). Neurons that innervate the axial and 

proximal musculature are located medially in the cord, while in the lateral cord are 

motoneuron pools that innervate muscles in the lateral portion of the body (Brodal, 1998). 

The afferent pathways consist of three set of neurons: first, second, and third order. First 

order neurons carry signals from receptors to the brain stem and the spinal cord. Second 

order neurons carry signals from the spinal cord and brain stem to the thalamus; they 

decussate to the opposite side of these structures before reaching the thalamus. Third order 

neurons connect the thalamus to the somatosensory areas of the cortex where sensation is 

perceived. All of the somatosensory pathways are crossed, so that signals from one side of 
I 

the body are brought to the cerebral hemisphere of the other side. The actual crossing over 

takes place at different levels for the various pathways (Brodal, 1998). 

2.2.1.1 Ascending tracts 

The dorsal column-medial lemniscus pathway is the main pathway for transmission of 

signals from low-threshold mechanoreceptors. The dorsal columns of the spinal cord carry 

infom1ation from sensory neurons in the spinal ganglia to the brain. The ascending fibres of 

the dorsal column pathway ten11inate in the cuneate and gracilis nuclei in the medulla. 

Afferents from the legs travel in the gracile fascicle and ten11inate in the gracilis nucleus, 
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while afferents from the arms travel in the cuneate fascicle and tenninate in the cuneate 

nucleus. From the medulla, these signals travel to the ventroposterior-lateral nucleus of the 

thalamus via the medial lemniscus. The medial lemniscus crosses the midline of the body, 

so that signals from the left part of the body are received by the right ventroposterior-lateral 

nucleus (Latash, 1998). In other words, according to Broda] (1998) the dorsal column-

mediallemnicus afferent pathway would look like Figure 2.1. 

Almost all pathways conducting sensory infonnation from the receptors to the cerebral 

cortex are synaptically intenupted in the thalamus or the cerebellum, which then distribute 

peripheral infonnation to other brain structures. Eventually, a command is generated to the 

periphery on the basis of sensory information. 

All of the neocortex project to the basal ganglia structures. Inputs to the basal ganglia may 

originate in different cortical areas such as the motor cortex, the premotor cmiex, the 

supplementary motor area, the somatosensory cortex, and the superior parietal co1iex with 
' 

the exception of the primary visual and primary auditory co1iices. Signals pass from the 

motor areas of the cerebral cortex to the pons and then into the cerebellum. In tum, signals 

from the cerebellum are transmitted back to the motor cortex by way of the ventro-lateral 

nucleus of the thalamus. This circuit could allow integration between the basal ganglia 

feedback signals and the feedback signals from the cerebellum (Latash, 1998). The latter 

sends infom1ation primarily to cell groups that give origin to the motor pathways, like the 

motor cortical areas, the thalamus, and the reticular fom1ation of the brain stem. For 

instance, the cerebrocerebellum pathway would be involved in plam1ing and initiating of 

voluntary activity by providing input to co1iical motor areas while the spinocerebellum 
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Figure 2.1 Dorsal column mediallemnicus tract (spinothalamic tract) (Brodal, 1998) 
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pathway would ensure accurate timing of contractions to coordinate movement involving 

multiple joints. The cerebellum receives important sensory signals directly from the 

peripheral parts of the body, which reach the cerebellum by way of the anterior and 

posterior spinocerebellar tracts which pass ipsilaterally up to the cerebellum. These tracts 

convey information from muscle spindles, Golgi tendon organs, and cutaneous low-

threshold mechanoreceptors which provide the cerebellum with information about the 

movements produced. All this infom1ation keeps the cerebellum constantly appraised of the 

instantaneous physical status of the body (Guyton, 1981) and can probably lead the 

command to the desired result. There are three afferent pathways from the spinal cord to the 

cerebellum described in Figure 2.2. 

The spinal cord receives sensory information from its own district, processes this 

infonnation, and issues orders through motor nerves to muscles to ensure adequate 

responses. Many of the functional tasks of the spinal cord are under strict control and 

supervision from higher levels of the central nervous system (CNS). This control is 
' 

mediated by fibres from the brain stem and cerebral cortex which descend in the white 

matter of the spinal cord and tenninate in the gray matter of the spinal segments that are to 

be influenced. The information is mediated by long, ascending fibres in the white matter of 

the cord terminating in the brain stem (Brodal, 1998). 

2.2.1.2 Descending tracts 

The output of the cortical motor areas includes projections to basal ganglia, the cerebellum 

(mediated by pontine nuclei), the red nucleus, the reticular fonnation, and the spinal cord 

(corticospinal tract). Descending motor tracts take the commands to the spinal cord and to 
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Figure 2.2 (i) Anterior spinocerebellar tract (blue); (ii) Posterior spinocerebellar tract (red); 

(iii) Cuneocerebellar tract (green) (Brodal, 1998) 
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the motoneurons. These tracts originate from the motor regions of the cortex and the brain 

stem. In the brain stem, tracts originate fi·om the red nucleus, the pontine, medullary 

reticular fom1ations, and the vestibular nuclei (Guyton, 1981). Overall organizations of 

voluntary movements would look like Figure 2.3. 

The pyramidal tract (corticospinal tract) passes downward through the brain stem; then it 

decussates mainly to the opposite side to fonn the pyramids of the medulla. By far the 

majority of the pyramidal fibres descends in the lateral corticospinal tracts of the cord and 

terminates principally on intemeurons at the bases of the dorsal homs of the cord gray 

matter. These fibres control the motion of distal limbs on contralateral side of body. A few 

fibres, however, do not cross to the opposite side but pass ipsilaterally down the cord in the 

ventral corticospinal tracts and then mainly decussate to the opposite side further down the 

cord. The uncrossed fibres innervate mostly axial muscles (rotation of the trunk) (Guyton, 

1981; Latash, 1998). 

The extrapyramidal tracts are, collectively, all the descending tracts besides the pyramidal 

tract itself that transmit motor signals fi·om the cortex to the spinal cord. Extrapyramidal 

pathways follow a more complex route through several structures, including the motor 

cortex, basal ganglia, thalamus, cerebellum, red nuclei, reticular fom1ation, and nuclei in the 

brain stem (Guyton, 1981 ). In the spinal cord, the rubrospinal tract lies lateral and ventral to 

the lateral corticospinal tract. The rubrospinal tract controls distal hand movements on 

contralateral side of body. Stimulation of the red nucleus tends to excite flexor muscles of 

the arm and inhibit extensors (Karamyan, 1969). Based on this, one would deduce that it has 
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Figure 2.3 (i) Pyramidal tract (blue); (ii) Extrapyramidal tracts (red) (Guyton, 1981) 
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a role to play in control of reaching movements. 

2.2.1.3 Movement initiation 

Planning and realizing a movement result from an interaction between the sensory and 

motor systems. The major components of a motor program are believed to be developed not 

by the motor cmiex itself, but by three interconnected cortical regions: the supplementary 

motor area (SMA), the premotor cortex, and the posterior parietal cortices in the posterior 

portions of the parietal lobe. The planning is performed by the posterior parietal cortex 

(Krakauer and Ghez, 2000; Scherberger, Jarvis, & Andersen, 2005). Together these three 

regions specify the movement toward the item of interest and thus play a crucial role in 

generating a motor response that is appropriate to the intended goal. The premotor and 

SMA receive input from the posterior parietal areas (5 and 7) and both project to the motor 

cortex (Krakauer and Ghez, 2000). The translation of the kinematic plan into activations 

that are necessary for the muscles relies on the motor cotiex. The cerebellum makes a 

contribution to this translation by compensating for the motions that involve rotatjons in 
I 

multiple joints. However, remember that movement initiation does not take place in the 

motor cortex. The cortex rather translates the motor idea and elaborates a spatia-temporal 

diagram of the planned action. Descending pathways from areas such as the lateral premotor 

cortex and the medial premotor cortex are required for the planning, initiation, and direction 

of voluntary movement. Guyton (1981) also stated that the caudate nucleus and putamen 

seem to function together to initiate and regulate gross intentional movements of the body. 

To perform this function, they transmit impulses through two different pathways: 1) into the 

globus pallidus and substantia nigra by way of the thalamus to the cerebral cortex, and 

finally downward into the spinal cord through the cmiicospinal and extracOiiicospinal 
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pathways; and 2) downward through the globus pallidus and the substantia nigra by way of 

shmi axons into the reticular formation and finally into the spinal cord mainly through the 

reticulospinal tracts. In contrast to Guyton, Latash (1998) mentioned that an important 

feature of changes in the firing pattems of cells in the basal ganglia is that they occur rather 

late; the majority of the cells show changes in their firing after movement initiation. Note 

that many neurons of the motor cortex change their firing prior to the movement initiation. 

So it is possible to conclude that neurons of the basal ganglia do not initiate movements and 

are related more to control of movements that are already under way (DeLong, 2000). 

Broda! (1998) is in accordance with Latash stating that the basal ganglia and the cerebellum 

have their main connections with the central motor nuclei and are necessary for the proper 

execution of movements rather than for their initiation (Ghez and Krakauer, 2000). 

Moreover, Guyton ( 1981) also quoted that the reticular formation of the brain stem and 

much of the thalamus play essential roles in activating all other parts of the brain. 

Therefore, it is very likely that these areas provide at least part of the initial signals that lead 

to subsequent activity in the motor cortex, the basal ganglia, and the cerebellum at the onset 

of voluntary movement. It was also reported by Broda! (1998) that not only the cerebral 

cortex is activated before a voluntary movement, there is also increased neuronal activity in 

the cerebellum, the thalamus, and parts of the limbic structures. Thus, many parts of the 

brain cooperate in deciding and planning movements. 

2.2.1.4 Muscle contraction 

Electrical signals that arise m the CNS are propagated as action potentials to skeletal 

muscles by lower motoneurons. These somatic efferent nerves have their cell bodies either 

in the brain stem or spinal cord. The axons of motoneurons are large in diameter and 
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myelinated and are thus able to propagate action potentials to muscle fibres at high velocity. 

Each muscle fibre has one neuromuscular junction (NMJ), and yet each motoneuron 

innervates many muscle fibres within a given motor unit (Brooks, Fahey, White, & 

Baldwin, 1987). A muscle fibre contracts in response to one or more action potentials 

propagating along its sarcolemma and through its T -tubule system. Muscle action potentials 

arise at the NMJ, the synapse between a motoneuron and a skeletal muscle fibre. Because 

the cells do not physically touch, the action potential from one cell cannot jump the gap to 

directly excite the next cell. Instead, the first cell communicates with the second indirectly 

by releasing a chemical called a neurotransmitter. A nerve impulse elicits a muscle 

contraction in numerous steps illustrated in Figure 2.4. 

2.2.1.5 Pathways involved in a matching task 

During a matching task, for instance, a proprioception task consisting of a flexion-extension 

am1 movement during which the subject best match his right ann (without vision) to his left 

reference an11, the upper limb proprioceptive ascending tracts and the descending tracts of 
' 

upper limb proximal muscles are the ones to explore. In summary, the dorsal column-

medial lemniscus pathway is the main ascending pathway for transmission of signals from 

low-threshold mechanoreceptors. The ascending fibres of the dorsal column pathway 

tem1inate in the cuneate nucleus in the medulla. From the medulla, these signals travel to 

the ventroposterior-lateral nucleus of the thalamus via the medial lenmiscus of the pons. 

The medial lemniscus crosses the midline of the body, so that signals from the left part of 

the body are received by the right ventroposterior-lateral nucleus. An overall organization 

of the spinothalamic tract for the abovementioned voluntary movement would look like 

Figure 2.1. 
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Figure 2.4 Steps involved in muscle contractions 

Stimulation of the motoneuron 

Ca2
+ channels of nerve terminal open 

Influx. ofCa2+ into nerVe terminal 

Action potential is generated 

Action potential travels down the axon 

Exocytosis of vesicles containing 
acetylcholine (ACh) 

Endplate potential is generated 
.,._ ACh crosses synapse and binds to 

receptors on the endplate of sarcolemma 

Action potential is generated and travels -+ Voltage sensors bound to membrane of 
through t~tubules T-tubules are stimulated 

Efflux ofCa2+ from the SRinto the 
sarcoplasm 

Cytosolic Ca2+ concentration of 
myofiber increases 

Active site of actin is exposed 

Actin-myosin cross-bridge occurs 

Ca2+ channels open in the sarcoplasmic 
reticulum (SR) 

Ca2+ binds the troponin-C 

Conformational change of underlying 
tropomyosin occurs 

Muscle fiber contraction occurs 
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The dorsal spinocerebellar tract also receives contributions from the muscle spindle and 

Golgi tendon organ afferents. However, note that Clarke's column stmis only at the Tl 

level, which means that the dorsal spinocerebellar tract conveys infonnation only from the 

hindlimb, not from the forelimbs. The analogue of the dorsal spinocerebellar tract from the 

forelimb is known as the cuneocerebellar tract. Peripheral afferent fibres (proprioceptors in 

muscles and tendons) project on the cuneate nucleus, whose neurons send their axons to the 

cerebellum. Note that the axons do not cross the midline (Latash, 1998). An overall 

organization of the cuneocerebellar tract for the abovementioned voluntary movement 

would look like Figure 2. 5. 

The medial and lateral descending reticulospinal tracts have both excitatory and inhibitory 

connections with spinal interneurons and motoneurons. Indeed, the reticulospinal fibres act 

on both the alpha and gamma motoneurons. The reticulospinal tracts are of particular 

importance for postural mechanisms for the orientation of the head and body toward 

extemal stimuli and for voluntary movements of proximal body parts. According to Broda! 
! 

( 1998), an overall organization of the reticulospinal tracts for the abovementioned voluntary 

movement would look like Figure 2.6. 

In conclusion, sensory impulses from nearly all parts of the body are transmitted to the 

CNS, bringing infmmation about conditions in the various tissues and organs and in our 

surroundings. The receptors are fonned by the tenninal brm1ches of an axon (joints, 

muscles) and transmit the message to the CNS. The receptor translates the stimulus to the 

language spoken by the nervous system, that is, electrical impulses in the fonn of action 
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Figure 2.5 Cuneocerebellar tract (Latash, 1998) 
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Figure 2.6 Reticulospinal tract (Broda!, 1998) 
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potential. The tracts in the CNS that control the activity of the skeletal muscles compose the 

motor systems. The peripheral motoneurons and the central motor pathways are directly 

involved in mediating the commands from the motor centers to the muscles. These parts of 

the motor systems are necessary for the initiation of voluntary movements. The basal 

ganglia and the cerebellum are necessary, however, for the proper execution of movements 

rather than for their initiation. 

The voluntary movement involved in the matching task is a proprioceptive task where a 

subject has to perfonn a flexion-extension arm movement during which the subject best 

match his right ann (without vision) to his left reference ann. This task involves 

proprioceptors of the biceps brachii and the triceps brachii muscles meaning that the 

ascending pathways will follow a proprioceptive tract and the descending pathways will 

follow a proximal muscles tract. In this specific movement, the cerebellum receives 

infon11ation from peripheral sensory receptors by means of the dorsal column-medial 

lemniscus pathway. It is the main pathway for transmission of signals for low-threshold 
' 

mechanoreceptors. The dorsal columns of the spinal cord carry information from sensory 

neurons in the spinal ganglia to the brain. Descending motor tracts take commands from the 

spinal cord to motoneurons. A ventromedial pathway includes the reticulospinal tract. This 

tract projects primarily from the reticular fonnation to the spinal cord and terminates in the 

ventromedial part of the spinal cord influencing proximal muscles. The medial and lateral 

reticulospinal tracts have both excitatory and inhibitory connections with spinal 

intemeurons and motoneurons. The lateral reticulospinal tract activates flexor reflexes and 

inhibits extensor reflexes, whereas the medial reticulospinal tract activates extensor reflexes 
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and inhibits flexor reflexes of the proximal portions of the limbs. These tracts are, therefore, 

of particular importance for voluntary movements of proximal body parts. 

2.2.2 Physiological events involved in muscle perfom1ance decrement 

Muscle fatigue was recently denoted as a class of acute effects that impair perfom1ance, 

which includes both an increase in the perceived effort necessary to exert a desired force 

and an eventual inability to produce this force (Enoka and Stuart, 1992). This definition 

appears to be more appropriate than the traditional definition which does not appear to be an 

accurate description of the numerous physiological processes involved (Edwards, 1981). 

However, to avoid any confusion conceming the controversial definition of muscle fatigue, 

the term muscle perfonnance decrement will be used in this review to denote any decline in 

exercise performance. 

Despite years of investigation, a great deal of controversy smrounding the physiological 
' 

causes of muscle performance decrement remains. There does not appear to be a single 

definitive cause, but rather a spectrum of events which occur in a complex chain of central 

and peripheral events (Fitts, 1994; Westerblad, Lee, Lmmergren, & Allen, 1991). Thus, the 

origin of muscle performance impainnent could be within the central nervous system (CNS) 

down to the actin-myosin cross-bridges. Central fatigue is described as a reduction in neural 

drive or motor command to the muscle resulting in a decline in force or tension 

development (Enoka and Stuart, 1992). Classically, central fatigue depends on motivation, 

CNS commm1d transmission, or motor axons recruitment (Bigard and Guezennec, 1993). 

On the other hand, peripheral fatigue is defined as a decrease in the force generating 
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capacity of the skeletal muscle due to action potential failure, excitation-contraction (E-C) 

coupling failure, or impaim1ent of cross-bridge cycling in the presence of unchanged or 

increased neural drive (Taylor, Bronks, Smith, & Humphries, 1997; Viitasalo and Komi, 

1997). It includes mechanisms situated inside the muscle itself. 

The development of the temporary loss of force caused by exercise is a complex process 

and results from the failure of a number of processes. In practical terms, however, we 

cannot know what actually leads to a decline in function. Bigland-Ritchie (1984) classified 

the potential events involved in muscle perfonnance decrement into several sites (Figure 

2. 7): (1) excitatory drive to lower motoneurons; (2) motoneuron excitability; (3) 

neuromuscular transmission; ( 4) sarcolemma excitability; ( 5) E-C coupling; ( 6) contractile 

mechanism, and (7) metabolite accumulation. 

Considerable controversy exists regarding the role of these sites, in particular, the relative 

importance of central (sites 1-2) versus peripheral (sites 3-7) mechanisms in the etiology of 
I 

a decline in muscle performance. The relative importance of each factor will vary 

depending on the muscle contraction type (see section 2.2.4) and the intensity of the 

exercise. In fact, muscle perfom1ance diminution during tasks involving heavily loaded 

contractions such as weight lifting will differ likely from that produced during relatively 

unloaded movement (running, swimming). High-intensity exercise is frequently associated 

with a reduced neural drive and a-motoneuron activation frequency; however, rather than 

precipitate diminished performance, this change is thought to protect against its 

development (Bigland-Ritchie, Jones, & Woods, 1979; Bigland-Ritchie, Dawson, 

Johansson, & Lippold, 1986; Noakes and St Clair Gibson, 2004). 
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Figure 2. 7 Potential events involved in muscle performance decrement (top panel was 

adapted from "Anatomy & physiology," by R. R. Seeley, T. D. Stephens, and P. Tate, 2006, 

p. 287. Copyright 2006 by The McGraw-Hill Companies, Inc.; bottom panel was adapted 

from "Human physiology: the mechanisms of body function," by A. J. Vander, J. H. 

Sherman, and D. S. Luciano, 1975, p.201 Copyright 1975 by McGraw-Hill, Inc.) 
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Factors eliciting muscle perfonnance decrement during short-duration high-intensity 

exercise are clearly different from those involved during submaximal prolonged work. It 

involves a high contraction frequency and a high degree of anaerobic metabolism (Fitts, 

1992). As a consequence of the high activation frequency, disturbances in E-C coupling, 

such as a conduction block of the action potential or an inhibition in SR Ca2+ release, are 

more likely to occur. However, the high level of anaerobic metabolism will lead to an 

increase in intracellular hydrogen ion (H+) and inorganic phosphate (Pi), factors known to 

inhibit peak force (Fabiato and Fabiato, 1978; Fitts, 1992; Robergs, Ghiasvand, & Parker, 

2004; Thompson and Fitts, 1992). Thus, potential physiological sites involved in muscle 

perfonnance decrement are briefly presented in this work. 

2.2.2. I Central events 

There are several possible candidate mechanisms, working either individually or in 

combination, that could explain the decrease in central activation with exercise. They 

include: ( 1) decreased excitability of the motoneurons from supraspinal sources, (2) 
' 

decreased excitatory influence from peripheral sources, and (3) increased inhibitory 

influences on motoneurons (Gardiner, 2001). Both supraspinal and spinal excitation may be 

inhibited by peripheral afferents. The decrease in net excitation appears to be due to a 

decreased excitatory influence from muscle spindles and an increased inhibitory influence 

from muscle receptors (Gardiner, 2001). In fact, Woods, Furbush, & Bigland-Ritchie (1987) 

and Garland, Gamer, & McComas (1988) have previously found that spinal reflex arising 

from group III and IV afferents caused the decline in motoneuron firing rates. These 

afferents can be stimulated by chemicals such as metabolites and acidity (Basset and 

Boulay, 2002; Belm1, 2004; Mateika and Duffin, 1995) and can provide both inhibitory and 
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facilitatory influences on motoneurons (Gandevia, Allen, & McKenzie, 1995). 

Chemosensitive afferent inhibition of the motoneuron should ensure that the activation of 

muscle fibres is down-regulated to diminish the chances of muscle damage (Behm, 2004; 

Haouzi, Hill, Lewis, & Kaufman, 1999). Some authors reported that the reafferences from 

the exercised muscle can give information about the level of muscle exhaustion, thus 

allowing the regulation of the motoneurons firing rate (Bigland-Ritchie et al., 1986; Garland 

and McComas, 1990). Thus, compensatory mechanisms at various levels of the 

neuromuscular system may act to delay the effects of exercise, this prolonging the accuracy 

of the motor activity (Enoka and Stuart, 1992). In addition, an increase in recruitment of 

new motor units has been reported during exercise as a result of a decrease in conduction 

velocity (Rozzi, Yuktanandana, Pincivero, & Lephart, 2000). This is to compensate for a 

decreased firing rate of the already recruited units in order to maintain constant tension 

(Rozzi et al., 2000). This change to lower frequencies for the motoneuron means less action 

potential generation per unit time, thus less stimulus and less stress on the neuromuscular 

junction (NMJ) and the sarcolemma propagation mechanisms. Perhaps central drive is 
I 

limited because continued drive to the muscle would put the NMJ or more likely the 

intracellular events accompanying E-C coupling and actin-myosin interactions into a 

catastrophic status, one from which recovery would be delayed or impossible (Gandevia, 

2001 ). Further work is needed to extract those supraspinal changes that cause the changes in 

voluntary activation and cause the changes in motor cortex excitability, and to correlate 

these central changes with indices of performance in different subject groups and 

experimental tasks. 
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2.2.2.2 Peripheral events 

Neuromuscular transmission failure during muscle contractions refers to a failure of a 

nervous impulse to be translated into an impulse on the sarcolemma immediately beneath 

the motoneuron terminal. There are three main possibilities: 1) failure of propagation of the 

action potential into axon branches (branch-block failure), 2) neurotransmitter (ACh) 

depletion, and 3) post-synaptic membrane failure (Gardiner, 2001). In fact, axon branch-

block failure occurs when the action potential generated in the axon is not propagated into 

all of the branches extending to the muscle fibres and the amplitude of end-plate potentials 

decrease due to lowered number of vesicles, ACh per vesicle, or both (McComas, 1996; 

Reid, Slater, & Bewick, 1999; Wu and Betz, 1998). Moreover, Na+/K + pump located at the 

sarcolemma level is also considered as a possible cause of muscle perfom1ance impairment. 

. It is apparent from the increase in K + and Na+ that the pump capacity is insufficient to 

maintain the ionic gradients for K + and Na+ essential for the maintenance of the cell 

excitability (Lindinger and Sjogaard, 1991; Sjogaard, 1991). The pump density may not be 

high enough to fully compensate for the ionic fluxes during the action potentials. The 
' 

general theory is that K + efflux and inhibition of the Na+/K + pump (or its inability to keep 

pace with K + efflux and Na+ influx) causes cell depolarization, a reduced action potential 

amplitude, and in some cells, complete inactivation (Fitts, 1994). Altered concentrations of 

ions (decreased K +, increased Na+) may disturb the membrane potential sufficiently to 

decrease the excitability of the sarcolemma (Sjogaard, 1986). In contrast, the sarcolemma 

action potentials recorded from surface electrodes did not diminish in amplitude during 

exercise, leading Merton ( 1954) to conclude that muscle impairment was not caused by 

NMJ or sarcolemma failure, but rather by events within the muscle cell. 
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The frequency-dependent decline in force-generating capacity indicates that muscle 

performance decrement was associated with E-C coupling impairment (Saugen, Vollestad, 

Gibson, Martin, & Edwards, 1 997). Similarly, Roberts and Smith (1989) concluded that the 

early phase of muscle performance decrement was probably due to E-C coupling failure as a 

result of impaired transverse tubule (T-tubule) function with incomplete membrane 

repolarisation and possible changes in the ionic composition of the T-tubule fluid. While 

elevated T -tubular Ca2
+ might impair muscle performance by blocking conduction of the 

action potential into the axial core of the fibre, low Ca2
+ could directly reduce 

intramembranous T -tubular charge movement leading to a reduced Ca2
+ release and force 

production (Fitts, 1 994). Further, Garcia, Gonzalez-Se1Tatos, Morgan, Peneault, & Rozycka 

(1991) also concluded that the decline in muscle perfonnance was caused by either a failure 

of the tubular action potential or the conduction signal between the T-tubular system and the 

te1111inal cisternae. Additionally, the combination of a high K + concentration in the T-

tubules due to slow diffusion, and only modest electrogenic Na+/K + pumping would be 

expected to result in sustained depolarization of the tubular membrane and block off the 
' 

local action potential mechanism (Jones, 1996; Sjogaard and McComas, 1995; Westerblad 

et al., 1991). In fact, failure of inward spread ofthe action potential is suggested to diminish 

signal entering the fibre from the T -tubules and then less Ca2
+ would be released from the 

SR by the ryanodine receptors (McComas, 1996; Rios, Ma, & Gonzalez, 1991 ). On the 

other hand, Westerblad and Allen (1991) agreed that a decrease in muscle perfonnance may 

occur because of the inhibition of the release of Ca2
+ from the SR. They found a reduction 

in Ca2
+ release from the SR during exercise in single muscle fibres of mice. They also found 

that the reduction in Ca2
+ release from the SR and the depression of force were lessened by 

the addition of caffeine, which activates Ca2
+ release channels in the SR. The action of 
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caffeine suggests that the SR ci+ release channel is the site responsible for the reduction in 

Ca2
+ release seen during exercise. Likewise, Gyorke ( 1993) concluded that the reduced Ca2+ 

transient was caused by a direct inhibition of the SR Ca2+ release channel and not by a 

disturbance in T -tubular action potential. Metabolic end products such as H+, lactate, and 

2+ 7+ . Mg have been shown to reduce Ca- release from SR vesicles (Favero, Zable, Bowman, 

Thompson, & Abramson, I 995). Thus, the metabolic alterations resulting from high-

intensity exercise may have impaired SR function and contributed to the reduced exercise 

perfonnance. Swollen SR vesicles and a decrease in SR ATPase uptake of Ca2+ have also 

been observed following endurance exercise in the presence of excess H+ (Inesi and Hill, 

1983). In fact, a decreased intracellular pH is known to inhibit Ca2+ pumps and myofibrillar 

ATPase activities, leading to a reduced rate of Ca2+ uptake by the SR and detachment rate 

of the cross-bridges, consequently slowing muscle relaxation (Allen, Westerblad, & 

Lannergren, 1995; Fitts and Metzger, 1988; Westerblad, Allen, Bruton, Andrade, & 

Lannergren, 1998). However, metabolic changes alone cannot explain the decrease in force. 

Indeed, a maximal torque deficit was still present after a 30-min rest period, a time during 
' 

which metabolic changes should nom1ally be restored (Jones, 1996; Miller et al., 1987; 

Westerblad et al., 1991). 

The role of Ca2+ in E-C coupling suggests several sites at which Ca2+ flux may be altered. 

The transmission of an action potential down the T -tubules results in the release of Ca2+ 

from the terminal cistemae of the SR. The increased level of cytoplasmic Ca2+ leads to 

increased binding of Ca2
+ to troponin-C and the subsequent events resulting in mechanical 

contraction (Robe1is and Smith, 1989). However, Lee, Westerblad, & Allen (1991) and 

McComas (1996) also observed another factor that would contribute to E-C uncoupling, 
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that is, a reduced sensitivity of the contractile elements (troponin-C) to Ca2+. In fact, 

competitive inhibition by H+ with Ca2+ for troponin-C binding has been demonstrated by 

Fabiato and Fabiato (1978) and Inesi and Hill (1983). Furthennore, Roberts and Smith 

(1989) concluded that muscle performance decrement was rather related to a decrease in the 

number of cross-bridges formed. The most commonly observed alterations include Z-line 

streaming, A-band lesions, and lengthened and nonunifom1 sarcomeres. Decline in muscle 

performance can also be caused by a myofibrils inability to use efficiently the available 

Ca2+ for a muscle contraction or the inability to use the calcium signal to effectuate 

mechanical work. 

2.2.2.3 Metabolite accumulation 

A decline in muscle perfom1ance can begin immediately with the start of activity. In the 

first few seconds of a muscle contraction, there are increases in a range of metabolic by-

products such as ADP, inorganic phosphate (Pi), creatine (Cr), and hydrogen ion (H+) as a 

consequence of the increases in ATP and phosphocreatine (PCr) utilization (Sahlin, 
' 

Tonkonogi, & Soderlund, 1998). One early candidate for the prominent role in muscle 

performance decrement was lactic acid. However, the consensus later on appears to be that 

an elevation of H+ concentration was more critical than lactate or the undissociated lactic 

acid (Fitts and Metzger, 1988). Although little evidence exits to explain why a drop in pH 

would reduce force, one hypothesis suggests that a decrease in pH would reverse the 

equilibrium of the ATP-hydrolysis step, thereby limiting the binding of actin and myosin 

(Stackhouse, Reisman, & Binder-Macleod, 2001). In other words, a reduction in the amount 

of hydrolyzed ATP due to acidification would reduce the number of myosin heads 

undergoing a power stroke and therefore produce a lower amount of force (McLester, 1997; 
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Pate, Bhimani, Franks-Skiba, & Cooke, 1995). A decline in pH may reduce muscle force 

by: (1) decreasing Ca2+ release from the SR, (2) decreasing the binding sensitivity of 

troponin-C to Ca2+, (3) interfering with cross-bridge cycling, (4) decreasing in the frequency 

and duration of channel openings, (5) decreasing in maximal velocity of shortening, (6) 

prolonging SR Ca2+ reuptake and relaxation time, (7) inhibiting ATPase, and (8) inhibiting 

PFK enzyme activity and thereby slowing glycolysis. All those factors may have a direct 

impact on power output production (Allen et al., 1995; Hargreaves et al., 1998). In fact, 

Stackhouse et al. (200 1) mentioned that lowering pH reduced the affinity of Ca2+ binding to 

troponin-C. They concluded that the mechanism behind this decreased sensitivity is 

unknown but evidence suggests that the increase in H+ concentration during prolonged 

high-intensity activities directly interfere with the contractile machinery of muscle by 

competing for the Ca2+ binding sites on troponin-C. A change in the ability of troponin-C to 

bind Ca2+ could therefore reduce force generation. Moreover, acidic pH has also been 

shown to depress SR Ca2+ reuptake presumably by inhibiting both the fom1ation and 

cleavage of the phosphorylated enzyme (Fitts, 1994). However, this interaction does not 
' 

appear to be a major mechanism underlying the decline in force. Additionally, the clear 

asynchronous dissociation between metabolic response and changes in force-generating 

capacity support the hypothesis that muscle perfonnance impainnent is unrelated to 

metabolite accumulation (Saugen et al., 1997). Exercise could, in spite of nearly depleted 

PCr levels, be continued without further pH changes and exhaustion was not associated with 

any sudden final changes in high-energy phosphates or pH. Hence, exhaustion was 

apparently not caused by lack of substrates for ATP resynthesis. It has also been found that, 

during the initial phase of recovery from exercise, pH either remains stable or continues to 

drop, whereas maximal voluntary contraction (MVC) steadily increases toward control 
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levels (Degroot et al., 1993). Thus, the major argument against a role for H+ in the etiology 

of muscle performance decrement is the observation that pH recovers at a different rate than 

force following exercise (Adams, Fisher, & Meyer, 1991; Degroot et al., 1993; Pate et al., 

1995; Westerblad, Bruton, & Lannergren, 1997; Wiseman, Beck, & Chase, 1996). 

Furthem1ore, Pate et al. (1995) used temperature jump techniques that allow testing of 

skinned fibres at temperatures above l5°C. They found a significant reduction (53%) of 

maximum isometric force and shortening speed by acidosis at 1 0°C temperature. In 

contrast, at 30°C temperature, they found only a minimal effect of acidosis, that is, a drop of 

only 18% in maximum tension. They concluded that at temperatures only slightly below 

physiological for mammalian skeletal muscle, pH plays a much less important role in the 

process of muscle perfom1ance decrement than has been suggested by data obtained at 

physiologically unrealistic temperatures. These experiments, therefore, demonstrate that 

when muscle is studied at temperatures that are closer to the nonnal body temperatures of 

living organisms, the effect of a decreasing pH on maximum isometric force and shortening 

speed is greatly reduce. Thus, because of the limited effect of pH when muscles are studied 
I 

at temperatures similar to those in living organisms, the role of pH as a major causative 

factor in fatigue has been questioned. 

Inorganic phosphate (Pi) is a by-product of the hydrolysis of ATP and its concentration also 

increases during intense skeletal muscle activity mainly due to breakdown of PCr 

(Westerblad, Allen, & Lannergren, 2002). There are various sites by which Pi may affect 

muscle function during exercise. Increased Pi may act directly on the myofibrils and 

decrease cross-bridges force production and myofibrillar Ca2+ sensitivity. By acting on SR 

Ca2+ handling, increased Pi may also increase tetanic ci+ concentration by stimulating the 
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SR Ca2+ release channels; inhibit the ATP-driven SR Ca2+ uptake; and reduce tetanic Ca2+ 

concentration by entering the SR precipitating with Ca2+ and thereby decreasing the Ca2+ 

available for release. Thus, on the basis of recent findings, increased Pi rather than acidosis 

appears to be the most important cause of muscle performance decrement during high-

intensity exercise (Dahlstedt, Katz, & Westerblad, 2001; Dahlstedt, Katz, Wieri:nga, & 

Westerblad, 2000; Fryer, Owen, Lamb, & Stephenson, 1995). In fact, the results from 

Degroot et al. (1993) indicated that H2P04- and Pi demonstrate closer correlations to MVC 

than H+ suggesting that H2P04- and Pi are more likely mediators of the decline in muscle 

perfonnance although this does not establish causality. 

Other metabolites such as magnesmm, ammonia, potassium, and high-energy phosphate 

have also been reported to have a possible detrimental effect on muscle perfmmance. 

However, it is still uncertain as to whether they are causative or merely coincidental. To 

sum up, among the metabolic changes that occur during exercise, only acidosis and 

increased Pi are likely to have a negative effect of the depressed cross-bridge force early 
! 

during muscle contractions. Giving that muscle perfom1ance impaim1ent is unrelated to H+ 

accumulation (Saugen et al., 1997), then by exclusion the depression would be due to 

accumulation of Pi (Westerblad et al., 1998). However, it must be remembered that 

impairment in muscle performance is a complex phenomenon that does not appear to have a 

single definitive cause and that these causes may differ according to the different types of 

muscle contraction. 
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2.2.2.4 Mechanisms of muscle performance decrement in regard to isometric, concentric, 

and eccentric contractions 

At first, it must be elucidated that the decline in muscle performance seen following all 

fonns of exercise (isometric, concentric, eccentric) can come from a disturbance in any of 

the seven sites described earlier (see Figure 2.7). The relative importance of each factor and 

the time course may vary depending on the muscle contraction type. Nevertheless, it is well 

accepted that a failure of some steps in E-C coupling are impaired with isometric 

(Vollestad, Sejersted, Bahr, Woods, & Bigland-Ritchie, 1988), concentric (Pasquet, 

Carpentier, Duchateau, & Hainaut, 2000), and eccentric (Allen, 2001) contractions and 

would explain the force loss. That, in tum, leads to an uncontrolled release of Ca2
+ into the 

sarcoplasm and development of a local injury contracture (Morgan and Allen, 1999). 

It also appears from the literature that the ongm of a decline in muscle perfom1ance 

depends on the movement angular velocity (Linnamo, Hakkinen, & Komi, 1998) and 

muscle contraction mode (Kay, St Clair Gibson, Mitchell, Lambert, & Noakes, 2000). For 
I 

example, using the twitch interpolation technique, Gandevia, Herbert, & Leeper (1998) 

argued that fatigue during a 30°/s concentric exercise might primarily be peripheral in 

ongm, whereas Pasquet et al. (2000) obtained central fatigue (EMG activity decreases) 

during faster concentric contractions. Babault, Desbrosses, Fabre, Michaut, & Pousson 

(2006) also revealed different central and peripheral profiles when performing concentric 

and isometric exercises. During concentric exercise, decline in muscle perfom1ance was 

peripheral in origin and then central. The opposite profile was obtained when perfonning 

the isometric procedure since decline in muscle perfonnance was firstly central, then 

peripherally mediated. The difference in central fatigue development observed between 
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concentric and isometric may originate from either or both spinal and supraspinal factors. 

These differences could also be partly the consequences of increased metabolite 

concentrations (de Haan, 1990). Likewise, Kay et al. (2000) reported that neuromuscular 

impainnent profiles were different for isometric, concentric and eccentric muscle activities. 

These authors mentioned that whereas eccentric activity was largely fatigue resistant, 

isometric and concentric contractions displayed different neuromuscular impaim1ent 

profiles. Moreover, isometric and concentric actions appear to be distinct regarding 

muscular mechanical properties and motor unit activation (Babault et al., 2006). In fact, in 

contrast to the findings with isometric contractions, integrated EMG output during 

concentric contractions was maintained or increased, while force output decreased. This 

indicates that neural drive to peripheral muscle was maintained during concentric but not 

during isometric contractions (Taylor et al., 1997). The implication is that, due to the 

dynamic nature of the concentric exercise, afferent infonnation may be different and thus 

their effects on motoneuron firing rate during muscle activity may also be different. 

Supraspinal phenomena, such as suboptimal cortical output (Gandevia, Allen, Butler, & 
I 

Taylor, 1996; Taylor, Butler, Allen, & Gandevia, 1996), might also account for the 

differences between isometric and concentric contractions. However, it was suggested that 

failures in motor cortex excitability may not explain the different central fatigue obtained 

during concentric and isometric, since an increase in cortical excitability has already been 

observed during isometric and concentric fatiguing contractions (Loscher and Nordlund, 

2002; Taylor et al., 1996). We shall have to see more experiments involving dynamic types 

of submaximal contractions to resolve this issue. 
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Most studies of neuromuscular activity and muscle perfom1ance decrement have evaluated 

constant-load isometric contractions for an obvious reason: intramuscular electrode stability 

during the contractions allows unequivocal identification of the same motor unit over a 

prolonged period oftime (Gardiner, 2001). Results showed that the limitation in blood flow 

appears to be specific to the isometric contraction (Humphreys and Lind, 1963 ). 

Accordingly, metabolite concentration might be higher during the isometric procedure 

compared with the concentric and eccentric and would increase the inhibitory effect of 

small-diameter chemosensitive afferents (Babault et al., 2006). Thus, due to the restriction 

of blood flow (ischemia) during isometric contraction, exhaustion from sustained activity is 

associated with the elevated intramuscular pressure or an increase concentration of 

metabolites associated with muscle activity such as H+, K +, Pi ions (Harris, Sahlin, & 

Hultman, 1977; Vollestad and Sejersted, 1988) or NH3 (Mutch and Banister, 1983) and 

possibly also with a decline in the free energy of ATP hydrolysis (Dawson, Gadian, & 

Wilkie, 1980). In contrast with the continuous isometric contraction, the intermittent nature 

of the concentric procedure (muscular actions followed by a passive movement) may .favour 
' 

blood flow during the passive phase of the movement and, therefore, the evacuation of 

metabolic by-products (Laaksonen et al., 2003 ). 

Accumulating evidence suggests that the CNS uses different control strategies for eccentric 

(lengthening) contractions and concentric (shortening) contractions (Enoka, 1996). This is 

commonly observed, indirectly, as a general inability for the CNS to fully activate the 

motoneuron pool during maximum voluntary eccentric contraction (Eloranta and Komi, 

1980; Tesch, Dudley, Duvoisin, Rather, & Harris, 1990; Westing, Cresswell, & 

Thorstensson, 1991) and would therefore involve different levels of muscle activation rather 
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than a selective activation of motor units. Moreover, compared to a concentric MVC, an 

eccentric MVC is usually associated with a lower activation level as measured by surface 

EMG. In fact, the EMG activity is significantly lower during eccentric compared to 

concentric and the differences in EMG are fmiher reflected by differences in the excitability 

of the involved spinal motoneurons (Pinniger, Nordlund, Steele, & Cresswell, 2001). Thus, 

the observation that the recruitment order of motor units is altered during eccentric 

contractions provides evidence that the neural commands for these contractions are unique 

compared to other contraction types (Enoka, 1996; Hanon, Thepaut-Mathieu, Hausswirth, & 

Le Chevalier, 1998). However, some authors have reported that under some conditions, 

activation levels during concentric and eccentric contractions are not different (Komi, 

Linnamo, Silventoinen, & Sillanpaa, 2000). 

Understanding the mechanisms of force reduction following eccentric exercise has made 

considerable progress in the last decade. It is now clear that the decline in muscle 

perfonnance in eccentric work results from mechanical damage rather than the chemical 
I 

processes of muscular contractions (Newham, McPhail, Mills, & Edwards, 1983). In fact, 

eccentric contractions have a lower metabolic cost than concentric contractions and thus the 

tension generated across the reduced number of recruited fibers is larger than for concentric 

contractions. Because of the greater force exerted by individual cross-bridges during 

eccentric contractions, the neural input required to produce a given force is much lower 

during eccentric than concentric contractions (Enoka, 1996; Westing et al., 1991). Thus, 

when a contraction changes from the shortening (concentric) of active muscle to 

lengthening (eccentric), there can be a change in the motor units that contribute to the 

muscle force. During eccentric contractions, individual sarcomeres elongate excessively 
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during the stretch but that most of these sarcomeres retum to nom1al during relaxation with 

the thick and thin filaments reinterdigitated. With repeated stretch, it is probable that these 

sarcomeres gradually become damaged and then fail to reinterdigitate (Allen, 2001). The 

precise details of the sarcomere disruption process following eccentric contractions remain 

the subject of speculation. They may involve the elastic filament titin which anchors thick 

filaments to Z discs or the structural protein desmin (Allen, 2001). However, it is difficult to 

determine whether loss of desmin is a cause or a consequence of sarcomere disruption. 

Abnormalities due to repeated eccentric contractions may also include: dilation of the T-

tubule system, distortion of myofibrillar components, fragmentation of the SR, lesions of 

the plasma membrane, cytoskeletal damage, changes in the extracellular myofiber matrix, 

swollen mitochondria, mechanical disruption of actin-myosin bonds, widening of A and I 

bands, and displacement of organelles (Friden and Lieber, 1992; Friden, Sjostrom, & 

Ekblom, 1981, 1983; McNeil and Khakee, 1992). Consequently, there are at least four 

mechanisms of force reduction involved in fibres damaged by repeated eccentric stretches: 

(1) weakened or overstretched sarcomeres cause a shift in the peak of the force-length curve 
' 

to longer lengths; (2) changes in E-C coupling lead to reduced Ca2
+ release and reduced 

force; (3) there are fibres which are clearly degenerating and would be unexcitable; and (4) 

it seems likely that there are sarcomeres which are still close to their nom1allength but give 

less force, for instance, because their thick and thin filaments do not reinterdigitate (Allen, 

2001). This is a category of damage for which there is little specific evidence. More work is 

needed to determine the generality of these observations, the mechanisms underlying the 

variability in motor unit recruitment, and the susceptibility of these mechanisms to the 

effects of muscle performance decrement. 
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To sum up, when the results from the various paradigms and protocols are considered 

together, it is apparent that the decline in force after exercise can be caused by many 

different mechanisms. Bigland-Ritchie classified in 1984 the major potential sites of muscle 

perfom1ance decrement into seven sites. A decline in muscle perfom1ance can come from a 

disturbance in any of these sites (see Figure 2.7). The relative importance of each factor and 

the time course for the onset of the decrease in muscle performance will vary depending on 

the muscle contraction type involved and the intensity of the exercise. Disturbances in E-C 

coupling could be mediated by an altered sarcolemma or T-tubular excitability, a depressed 

T-tubular charge sensor, or inhibition of the SR Ca2
+ release channel. Feedback of the 

declining peripheral perfom1ance is available via the full array of intramuscular afferent 

receptors. At a spinal level, these produce competing excitatory and inhibitory influences on 

the motoneurons pool, many of which could contribute to the decline in motor unit firing 

rate observed during MVC. Although there are undoubtedly significant peripheral sites 

involved, central sites may add substantially to the decline in muscle perfonnance, even 

under optimal experimental conditions. Some of this reflects a failure of supraspinal drive to 
' 

motoneurons that will act to protect the muscle from further decline in perfonnance from 

peripheral sites, but at the expense of tmly maximal performance. Input from small-

diameter muscle afferents, particularly the group IV muscle afferents transmitting 

nociceptive input, reduces voluntary drive through a supraspinal action. The actions of 

group III and IV muscle afferents are complex and not exerted at only one point in the 

pathways responsible for force production. 
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2.2.3 Overview ofEMG 

Electromyography (EMG) is a technique to study muscle functions through analysis of the 

electrical signals emanated during muscular contractions. EMG measures the electrical 

signal associated with the voluntary or involuntary activation of the muscle. The EMG 

activity of voluntary muscle contractions is related to tension. The functional unit of the 

muscle contraction is a motor unit, which is comprised of a single a-motoneuron and all the 

fibres it enervates. Muscle fibres contract when the action potential (impulse) of the 

motoneuron reaches a depolarization threshold. The depolarization generates an 

electromagnetic field which spreads along the membrane of the muscle. The resulted 

muscle action potential is measured as a voltage. The EMG signal is thus the algebraic 

summation of the motor unit action potentials within the pick-up area of the electrode being 

used. However, EMG data cannot tell us how strong the muscle is, if one muscle is stronger 

than another muscle, if the contraction is a concentric or eccentric contraction, or if the 

activity is under voluntary control by the individual. 

The features ofthe EMG signal depend on many factors. Some of them are not intuitive and 

vary with experimental conditions (Farina, Merletti, & Enoka, 2004). Many investigators 

assume that a crosstalk signal has a lower frequency spectrum because it originates fhrther 

away and will be subject to additional low-pass filtering due to spatial filtering (De Luca, 

1997). According to this rationale, high-pass filtering should reduce crosstalk; however, this 

is not a general finding (Farina et al., 2004). Moreover, EMG amplitude is influenced by 

such factors as electrode location, thickness of the subcutaneous tissues, distribution of 

motor unit conduction velocities, and the detection system used to obtain the recording. 
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Although some of these can be reduced by appropriate placement of the electrodes, there 

remains a mismatch between the output of the spinal cord and the EMG amplitude (Farina 

et al., 2004). Many other factors influence the relation between EMG amplitude and force. 

When muscles and subjects are compared, these factors include the thickness of 

subcutaneous tissue, the recruitment strategy, and the peak discharge rates of the different 

motor units. Because of the many factors that can influence this relation, there is no reason 

to expect that a specific EMG amplitude-force relation should have general validity (Farina 

et al., 2004). Other factors that influence surface EMG are for instance the shmiening of 

muscle fibres during a dynamic contraction, distribution of the motor unit territories in the 

muscle, skin-electrode contact (impedance, noise), interelectrode distance, and so on (Farina 

et al., 2004). These limitations could lead to erroneous interpretation of the results and 

conflicting reports in the literature. Therefore, it is of major importance to be mindful and 

taking action to minimise their effect. 

There are two main types of electrodes used for EMG: surface and fine wire. The surface 
' 

electrodes are also divided into two groups. The first is active electrodes, which have built-

in amplifiers at the electrode site to improve the impedance. The other is a passive 

electrode, which detect the EMG signal without a built-in amplifier, making important to 

reduce as much as possible all possible skin resistance. The advantages of surface electrodes 

are that there is minimal pain with application, they are easy to apply, and they are good for 

movement applications. However, they have more potential for cross talk from adjacent 

muscles since they have a large pick-up area. Surface EMG has been used for years as an 

overall index of muscle electrical activity, in as many domains as fatigue analysis, training 

assessment, muscle action in spmi movements, pattern classification, pathology 
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identification, and many other areas where surface recordings were required owing to their 

non-invasive characteristic. The form ofprocessing the EMG signal depends on the domain 

studied. The most common fonns are: 1) full-wave rectification (absolute value of the entire 

signal); 2) linear envelope (low-pass filtering of the full-wave rectified signal); 3) root mean 

square (basically square the signal, take the mean of a timed detenninant window, then take 

the square root); 4) integrated EMG (area under the rectified curve can be detem1ined for 

the entire activity or for pre-set time or amplitude values); and 5) frequency analysis 

(typically determined via Fast Fourier analysis and looking at the power density spectrum). 

Between-subject comparisons can be made after nonnalizing the EMG activity, because the 

reference activity for a given subject is compared with the relative amount of activity for 

that subject and is therefore dependent on each individual's own proportion of maximal 

activity. Comparing a specific EMG muscle activity with a reference EMG value and 

expressing the activity of the muscle as a percentage of this reference value can establish its 

relative muscle activity (Hunter, St Clair Gibson, Lambert, & Noakes, 2002). Probably the 

nonnalization method the most widely used is to standardize to the maximum voluntary 
! 

isometric contraction (iMVC) for the specific muscle being used. However, it is debatable if 

one can really ever obtain a true iMVC. Furthennore, EMG nonnalization also allows for 

slight changes in variables such as electrode placement and skin impedance (Mirka, 1991). 

There is a relationship of EMG to many biomechanical variables. With respect to isometric 

contractions, there is a positive relationship in the increase of tension within the muscle with 

regards to the amplitude of the EMG signal recorded. One must be careful when trying to 

estimate force production from the EMG signal, as there is questionable validity of the 

relationship of force to amplitude when many muscles are crossing the same joint (De Luca, 
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1997). Moreover, it tends to have a relationship between EMG and velocity of the 

movement. In fact, there is an inverse relationship of strength production with concentric 

contractions and the speed of movement, while there is a positive relationship of strength 

production with eccentric contractions and the speed ofmovement. 

Integrated EMG (iEMG) is probably one of the oldest fonns of surface EMG activity 

tracking. It has been computed in several ways depending on the calculating procedure, 

analog or digital. This first step is always a signal rectification and the second an integration 

process (Duchene and Goubel, 1993). The iEMG analysis allows for determination of motor 

unit recruitment (muscle excitation), while EMG signal frequency spectrum analysis is 

generally a reliable indicator of signal conduction velocity (Enoka and Stuart, 1992; 

Sadoyama, Masuda, & Miyano, 1983). Both are considered as indicators of neuromuscular 

fatigue. When a subject is asked to generate a submaximal contraction until exhaustion, 

muscle EMG increases gradually to maintain the force through a combination of additional 

motor units recruited and increases in firing rates (Beck et al., 2006; Garland, Enoka, 
I 

Senano, & Robinson, 1994; Pincivero, Gandhi, Timmons, & Coelho, 2006). However, there 

is a loss of the high-frequency component of the signal with repeated muscle contractions 

which can be seen by a decrease in the median frequency of the muscle signal (Garland et 

al., 1994 ), suggesting changes in the muscle fibre conduction velocity and therefore possible 

derecruitment of some of the fast units (Komi et al., 2000). In the initial portions of a 

contraction, increased firing frequencies can be used to increase or maintain force, whereas 

in the later portion the decreased firing frequency can serve as an energy saving (Belm1, 

2004). It must be remembered that, in a voluntary situation, there is always some variation 

in the forces due to, for instance, motivation. Therefore, some changes in EMG are to be 

57 



expected for this reason. It has also been suggested that the EMG is reproducible in static 

situations as well as dynamic. In dynamic actions, it is possible that the electrodes may 

change its location in relation to the innervation zone, which may affect EMG power 

spectrum (DeLuca, 1997; Roy, DeLuca, & Schneider, 1986). However, the possible effects 

caused by electrodes movement should be similar among experiment sessions. Moreover, it 

has been reported that the average EMG was lower during the eccentric than the concentric 

in the middle part of the motion (Eloranta and Komi, 1980; Pincivero et al., 2006; Tesch et 

al., 1990; Westing et al., 1991). This reduced EMG suggests an incomplete activation of the 

motoneurons that innervate the muscle. This might take the fom1 of a lower level of 

activation, distributed across the entire population of motoneurons, or the activation only of 

a subset of the entire population (Enoka, 1996). Because of the technical limitations of 

conventional electrophysiological methods, it has not been possible to distinguish between 

these possibilities. 

2.3 PROPRIOCEPTION 

2.3 .1 Overview of proprioception 

When we close our eyes, we are able to touch the tip of our nose with remarkable accuracy. 

The sense which we rely on to achieve such an accomplishment is called proprioception. 

Scaliger used the tenn "motion sense" for the first time in 1557. In 1880, Bastian ( 1880) 

prefened using the tem1 kinaesthesia, because he felt that perception was based on muscles, 

tendons, extremities and skin. Proprioception was originally defined by Sherrington ( 1906) 

as, "the position of joint and body movement as well as position of the body, or body 
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segments, in space". Later, Paillard and Brouchon ( 1974) defined proprioception as the 

conscious experience infonning us about the position and motion of our limbs, pennitting 

us to reproduce positions and movements. 

Proprioception is one of the somatic senses. Somatic senses are functions of the nervous 

system that collect sensory information from the body, to the exclusion of the special senses 

(sight, hearing, taste, touch, smell, and vestibular). In the literature, three somatic senses are 

described: pain sense, thermoreceptive sense, and mechanoreceptive sense, the latter of 

which includes position sense. Hence, proprioception could also be defined as the 

cumulative neural input to the central nervous system (CNS) from specialized nerve endings 

call mechanoreceptors. 

Proprioception IS generally divided into two distinct elements: static and dynamic 

proprioception. Static proprioception, usually defined as the joint position sense, is the 

conscious perception of the orientation of different parts of the body with respect to another 

whereas dynamic proprioception, defined as kinaesthesia, is the sense of limb movement. 

There are evidences that static and dynamic proprioception are mediated by separate line of 

infonnation. 

Proprioception is crucial for coordinated movement. When there is a deficit in 

proprioception, controlled movements are impossible without continuous visual guidance 

(Ghez, Gordon, & Ghilardi, 1995), maintenance of force or position is severely impaired, 

and a tremor develops (Marsden, Rothwell, & Day, 1984 ). Different factors such as injury, 

cognitive distraction, muscle exercise, and inactivity have been demonstrated to impair 
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proprioception. Goodwin, McCloskey, & Matthews (1972) commented that proprioception 

may also be altered if subjects are not voluntarily in control oftheir limb, that is, iftheir arm 

is moved by the experimenter without the need for subjects to direct themselves to the target 

angle. Therefore, attention must be paid when choosing a protocol to test proprioception. A 

summary of the most common protocols is described next. 

2.3.2 Experimental protocols in evaluation of proprioception 

There are different ways in which to evaluate proprioceptive capabilities: histological, 

neurophysiological and clinical. In the clinical setup, most authors apply the threshold to 

detection of passive motion to evaluating kinaesthesia and the angle reproduction capability 

for measuring joint position sense. Other clinical protocols include the reproduction of 

target torques or velocities. All these tests are conventionally performed while limiting 

extemal stimuli such as visual cues and most of these test both limbs to compare bilateral 

ability. 

Joint kinaesthesia is detem1ined clinically by establishing the tlu·eshold to detection of 

passive motion, that is, an assessment of the ability to detect relatively slow passive joint 

motion. h1 order to minimize the contribution of musculotendinous mechanoreceptors in 

providing the CNS with information regarding limb position and movement, the threshold 

to detection of passive movement is conducted at slow angular velocities (0.5° to 2° per 

second). Without warning of initiation, the experimenter moves the joint in a randomized 

sequence of velocities. Subjects indicate when they first detect motion of the joint and at 

that point the motion is stopped. Most studies use a mechanical switch or verbal cue by the 
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subject to identify the initiation of passive motion. Another method used to measure 

kinaesthetic acuity is to impose limb movements and ask subjects to report the direction of 

movement. This method examines kinaesthesia when the muscles acting on the target limb 

are relaxed. 

Protocols for measurement of joint position sense greatly vary among studies: (1) passive 

positioning with unsupported reference limb, (2) passive positioning with supported 

reference limb, and (3) active positioning of the reference limb. Passive means the 

experimenter moves the subjects' limb while active means that the limb is voluntary placed 

at the target position by the subjects. 

Two methods of passive positioning with unsupported limb are commonly used: active 

reproduction of passive positioning and co-contraction positioning. The active reproduction 

of passive positioning required the subject to remain relaxed while the experimenter moves 

their reference limb at one of the test positions. The blindfolded subjects are then asked to 
' 

hold it, unsupp01ied, and match its position by voluntary placement of their contralateral 

limb. Subjects indicate verbally when they think both limbs are matched. The co-

contraction condition is similar but it also requires subjects to maintain a 15% of maximal 

voluntary contraction (MVC) co-contraction of the agonist and antagonist muscles while it 

is being positioned, and then continue the co-contraction throughout the duration of the 

trial. Other investigators preferred testing the unilateral ability to passive positioning (Marks 

and Quinney, 1993; Sterner, Pincivero, & Lephart, 1998). It requires subjects to relax as the 

experimenter slowly moves their limb to the test angle. Subjects are then given 10 s to 

concentrate on the test angle before their limb is passively returned to the initial position. 
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With visual cues eliminated, subjects are instructed to actively attempt to reproduce the test 

angle. 

The second method of testing joint position sense through passive positioning is used to test 

whether the peripheral afferents are involved in proprioception by supporting the reference 

limb. In this protocol, the experimenter positions the reference limb at a set angle where it is 

maintained by means of a support. Subjects therefore do not need to generate any effort to 

maintain the position of the reference limb. Once it has been placed on the support, subjects 

are instructed to relax and match the reference limb position by voluntary placement of their 

contralateral limb. A similar protocol was used by Walsh, Allen, Gandevia, & Proske 

(2006) but this time with both elbows on supports in the horizontal plane where there is no 

gravitational cue. In this case, the horizontal movement is almost frictionless and requires 

no effort to maintain a given elbow angle. Again in this protocol, the experimenter slowly 

positions the reference arm to the test angle and subjects are instructed to actively attempt to 

reproduce the test angle with their indicator am1. 

The active reproduction of active positioning of the reference limb is evaluated similarly to 

the previously described protocols, but in this case subjects actively orientate themselves to 

the test angle. From the starting position, subjects actively move their reference limb until a 

command to stop is given. They are then asked to match it by similar placement of their 

indicator limb. After each match, both limbs are retumed to the starting position. For the 

studies using the unilateral active positioning, a rig is locked after subjects have actively 

reached the target angle and the limb remains at this target position for 5 s. Then they 
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actively retum to the starting position. Finally, they actively move the same limb in an 

attempt to match the target position. 

Force-matching task is another frequently used protocol to test proprioception. In these 

experiments, subjects are asked to generate, under visual control, a given target force with 

their reference limb. Once they have satisfactorily achieved the reference force for more 

than 2 s, they are asked to match it with the contralateral limb, the indicator, whose force 

output is not displayed. In some studies, pain is induced in the indicator am1 by injection 

into the muscle of small amounts of hypertonic (5%) saline (Bennell, Wee, Crossley, 

Stillman, & Hodges, 2005; Proske et al., 2004; Proske et al., 2003; Weerakkody, Percival, 

Canny, Morgan, & Proske, 2003b). Once the muscle is sore, the force-matching task is 

repeated. However, many subjects find it difficult to align isometric tensions, so a more 

familiar fonn of contraction has been used in many otherwise similar tests. In these tests, 

subjects are asked to lift a weight by contracting a particular muscle group on the reference 

side and to match it by selecting a weight on the indicator side such that both feel the same. 
I 

Detection of specific speeds of motion is also a method used to measure proprioception. For 

the movement-matching task, a range of movements is selected which includes speeds 

nonnally used by subjects in a simple pointing task. The experimenter moves the reference 

limb from a flexed into an extension position at one of the angular velocities and asks the 

blindfolded subjects to track the movement as accurately as possible with their indicator 

limb. One study has added a vibration task during the movement-matching task (Allen and 

Proske, 2006). Generally, in vibration experiments the movement-matching task is carried 

out while the limb's muscles are vibrated, using 80 Hz vibration. Vibration starts 0.5 s 
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before the beginning of each movement and is turned off once the indicator limb has 

reached full extension. The velocities between limbs are then compared. 

2.3.3 Role of peripheral afferent signals 

The control of a movement is highly dependent on the quality of the afferent information 

originating from the various somatosensory systems involved in proprioception. Receptors 

can sense infom1ation that is generated from within the organism (interoception) or sense 

infom1ation that arises from extemal stimulation ( exteroception). Proprioception, in the 

classic sense, refers to position sense and movement sense arising from interoceptors 

(Hiemstra, Lo, & Fowler, 2001 ). Afferent nerves, also referred to as mechanoreceptors, are 

located within the skin, in the musculotendinous unit and within the bone, joint ligaments, 

and joint capsule. Over the years, many different views have been put forward on the origin 

of proprioception. The dominant view in the 19th century was that our kinaesthetic sense 

was a consequence of the effort we make to move and arises within the CNS. Subsequently, 

during much of the 20th century, it was believed that proprioception was dependent on 

peripheral afferent signals, but they were thought to be largely of nonmuscular origin, 

arising in the joints (Skoglund, 1973). However, because miicular cmiilage contains no 

neural elements, it was less likely that the actual joint surfaces played a major role in 

proprioceptive sense. It was the experiments of Goodwin et al. ( 1972) that provided the first 

direct evidence that signals from muscle spindles generated sensations of limb position a11d 

movement. More recently, Nicol and Komi (2003) reported that a potential reflex inhibition 

could be involved in proprioception via the sensitization of group III and IV receptors by 

the mechanical, thermal and chemical changes associated to the inflammatory phase of the 
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muscle regeneration process. The present-day view on peripheral afferents is that muscle 

spindles are responsible for the sense of position and movement, Golgi tendon organs 

provide the sense of tension, and that the sense of effort is generated within the CNS, as 

reviewed by Gandevia (1996). 

2.3.3.1 Muscle spindles 

Muscle spindle receptors are an encapsulated group of fine specialized intrafusal muscle 

fibres. The muscle spindles are 4-7 mm long and 80-200 microns wide. Their locations are 

in deep muscle tissue and they are arranged in parallel with the muscle fibres. The location 

and attachment of the muscle spindles make them sensitive to changes in length of the 

muscle. There are two types of intrafusal muscle fibres: nuclear bag and nuclear chain. The 

nuclear bag fibres are longer and thicker and they have multiple nuclei arranged centrally. 

The nuclear chain fibres are sho1ier and thinner and they have fewer nuclei. The nuclear bag 

fibres are involved in slow contraction and the chain fibres in fast contraction. The 

intrafusal fibres receive innervation from fusimotor axons (y-motoneurons). The afferent 

tenninals consist of primary (group Ia) and secondary (group II) endings. Since the muscle 

spindle is connected in parallel to the surrounding skeletal muscle mass, stretch of the 

muscle as a whole will excite the spindle sensory endings and afferents (group Ia, II). The 

primary endings are sensitive both to the length of the muscle and to the rate of stretch of 

the spindles while the secondary endings are mainly sensitive to the length of the muscle 

(Willis and Coggeshall, 1991). 

The importance of muscle receptors in proprioception has been demonstrated by experiment 

in which vibration of a muscle produces illusions of position and movement of a joint. As 
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mentioned earlier, it was the experiments of Goodwin et al. (1972) on the sensory effects of 

muscle vibration that provided the evidence for a role of muscle spindles in conscious 

sensation. They believed that the vibration of the biceps tendon would produce a rapid 

altemating stretch and release of that tendon and in turn elicit distorted signals from the 

muscle spindles located in the vibrating biceps muscle. If the muscle spindle input is 

important in limb proprioception, then the distorted muscle spindle signals should result in 

impaired proprioception, which did occur in their investigation. Other studies recorded 

similar findings supporting the notion that muscle spindles may be the prime detem1inant in 

the perception of limb position (Bullen and Brunt, 1986; Capaday and Cooke, 1981). In the 

simplest view, muscle spindles are able to provide a position signal because they are stretch 

receptors. As the muscle lengthens, the spindle discharge increases, in direct proportion to 

the length of the muscle. The monotonic relationship between maintained spindle firing rate 

and muscle length could be used by the CNS to derive infom1ation about the length of the 

muscle and therefore the position of the limb. However, this brings with it the complication 

that spindle firing rates can be altered without changing muscle length, by means of 
I 

fusimotor activity. In spite of that, it is generally accepted that muscle spindle afferents are 

mainly responsible for the sense of position (Gandevia, 1996; Matthews, 1988; McCloskey, 

1978; Proske, Wise, & Gregory, 2000) and kinaesthesia, the perception of limb movement 

(Allen and Proske, 2006; Proske, Wise, & Gregory, 1999). The primary endings of muscle 

spindle would be concemed with signalling position and movement, while the secondary 

endings of muscle spindles are largely signalling position. 

Many studies have looked at the effect of eccentric contractions on position sense 

perfonnance (see section 3.5). It was speculated that if ordinary muscle fibres were 
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damaged by eccentric exerc1se, it was conceivable that the intrafusal fibres of muscle 

spindles, too, could become damaged. This would lead to a disturbance of spindle function 

and consequently errors in position sense. However, recent animal observations have shown 

that there is no evidence of a change in spindle responsiveness to stretch and to fusimotor 

stimulation after the damage from a severe eccentric exercise (Gregory, Morgan, & Proske, 

2004 ). It was then argued that the class of muscle receptors to which the kinaesthetic sense 

is currently assigned, the muscle spindles is not well suited to signalling positional 

infonnation. Other difficulties with muscle spindles as position sensors that need to be kept 

in mind are that the response of the passive spindle is dependent on the muscle's previous 

history of contraction and length changes (Gregory, Morgan, & Proske, 1988; Proske, 

Morgan, & Gregory, 1993) and that position sense becomes much more precise if active 

placement is used compared to when the target is achieved by placement of the passive limb 

(Allen and Proske, 2006; Goodwin et al., 1972). However, it is not intended to imply that 

muscle receptors are not involved in proprioception. Obviously, muscle spindles contribute 

to proprioception based on the illusions evoked by muscle vibration. Moreover,. in the 
' 

absence of an effmi cue, muscle spindles provide a position signal, but not a very accurate 

one (Allen and Proske, 2006 ). The current working hypothesis of active researchers is that 

we receive positional cues both from signals of central origin (effort) and peripheral origin 

(muscle spindles). 

2.3.3.2 Golgi tendon organs 

The Golgi tendon organs are a slender capsule approximately 1 mm long and 0.1 mm in 

diameter located in tendons and aponeuroses. They are large fusifonn-shaped receptors 

enclosed in a fine connective tissue capsule. These receptors are high-threshold, slowly 
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adapting mechanoreceptors that are stimulated only at extreme angles of joint displacement 

(Gandevia, 1996). Activation of the Golgi tendon organs requires an active or passive force 

by any of the attached muscle fibres to the receptor (Fukami, 1981). Binder (1981) has 

shown that the Golgi tendon organs can respond to forces < 0.2 N. They are sensitive to 

muscle stretch and contraction and are innervated by group Ib axons (Willis and 

Coggeshall, 1991). Contraction of muscle fibres stretches the tendon strands and that, in 

tum, stretches the nerve endings (Fukami and Wilkinson, 1977). So Golgi tendon organs, 

like muscle spindles, are stretch receptors. Stretch threshold for Golgi tendon organs is 

much higher than for muscle spindles and tendon organs typically do not exhibit 

background activity. They are presently regarded as sensitive detectors of muscle tension in 

a localized portion of a muscle (Fukami, 1981; Gregory, Brockett, Morgan, Whitehead, & 

Proske, 2002). However, if human Golgi tendon organs are similar to those in the cat in 

showing little change in their responses after eccentric exercise, the implication of these 

results for proprioception is the view that Golgi tendon organs do not play a dominant role 

in the perception of muscle tension. If Golgi tendon organs would continue to signal muscle 
I 

force accurately, it seems unlikely that they would make a large contribution to force 

perception in circumstances where perturbations of force sense are seen. 

2.3.3.3 Group III and IV muscle afferents 

The afferents fibres are classified as large myelinated (group I), small myelinated (group II), 

smaller myelinated (group III), and unmyelinated (group IV). Group Ia fibres are associated 

with muscle spindles and are large and fast conducting. Group Ib fibres are associated with 

the Golgi tendon organs and are little smaller and slower conducting than the group las. 
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Group II fibres are associated with muscle spindles but are slower conducting and smaller 

that the group las and group Ibs. The muscle is also innervated by group lll and group IV 

muscle afferent fibres. Group III fibres are smaller than group Is and group lis and are only 

lightly myelinated and relatively slow conducting. Such fibres are associated with cooling 

and first pain and can be activated by mechanical stimulation of the muscle. These afferent 

fibres have different types of receptors. Some respond to the pressure applied at the junction 

between the muscle and the tendon; others are activated when the pressure is on the belly of 

the muscle; some are activated to muscle stretch, and others respond to manipulation of the 

space between muscles. Group IV afferents fibres are umnyelinated and have a role in 

muscle pain during ischemia because they respond to noxious chemical stimulation 

(Adreani and Kaufman, 1998; Mateika and Duffin, 1995; Willis and Coggeshall, 1991). 

Group III afferents are responsive mainly to mechanical stimuli, while group IV afferent are 

primarily nociceptors but also include mechanoreceptors (Hayward, Wesselmann, & 

Rymer, 1991). Group III and IV afferents exert strong inhibitory effects on y-motoneurons 

innervating the muscle of origin of the afferents and their synergists by chemical changes 
I 

(Nicol and Komi, 2003) and could provide infmn1ation about the disposition of the limbs. 

An altemative classification related to the sizes of axons is A and C fibres. A fibres (group 

III) convey sensory infonnation for proprioception and touch while C fibres (group IV) 

represent umnyelinated fibres that primarily convey dull aching pain. C fibres are the most 

common element in peripheral nerves and almost all C fibres are nociceptors (Torebjork, 

1974). Fine muscle afferents in group III and IV ranges also appear to serve as nociceptors. 

Histologically, the nociceptors are free nerve endings with conduction velocities less than 

30 m/s and their typical location in the skeletal muscle is the wall of arterioles and the 
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surrounding connective tissue. Considerable evidence has been collected about the roles of 

A and C nociceptors in pain perception. Myelinated A axons have lower thresholds for 

electrical stimulation and are stimulated at lower stimulus levels than are C fibres. When 

peripheral nerves are stimulated in this way in humans, excitation of A fibres alone 

produces a tingling sensation (Collins, Nulsen, & Randt, 1960). When the stimulus is 

increased to also excite C fibres, a persistent buming sensation is produced. 

It has been shown that afferent neuromuscular pathways are modulated v1a reflexes 

originating from small-diameter muscle group III and IV afferents (Bigland-Ritchie et al., 

1986; Gandevia, 1998). There is a possibility that excitability of motor cortex is reduced as 

a result of the group III and IV input during muscle contractions (Taylor, Petersen, Butler, 

& Gandevia, 2000). These reflexes originating from the muscle and generated in response 

to metabolic changes that accompany muscle exercise could modify the central processing 

of proprioception by an inhibitory influence via group III and IV muscle afferents (Bigland

Ritchie et al., 1986; Nicol, Komi, Horita, Kyrolainen, & Takala, 1996). A further detailing 

of the mechanism may reside in the accumulation of metabolites within the muscle during 

activity to exhaustion (Basset and Boulay, 2002). Receptors of group IV afferents increase 

their firing rates in the presence of a number of substances that might increase in an 

exercised muscle, including bradykinin, potassium chloride, lactic acid, serotonin, and 

arachidonic acid (Djupsjobacka, Johansson, Bergenheim, & Wenngren, 1995; Nicol and 

Komi, 2003; Sinoway, Hill, Pickar, & Kau:fi11an, 1993). In fact, metabolites have previously 

been shown to elicit increased muscle spindle static and/or dynamic sensitivity via reflex

mediated pathways from chemosensitive group III and IV afferents onto y-motoneurons 

(Johansson, Djupsjobacka, & Sjolander, 1993; Pedersen, Sjolander, Wenngren, & 
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Johansson, 1997). Another hypothesis refers to a potential reflex inhibition via the group III 

and IV receptors by chemical changes associated to the inflammatory phase of the muscle 

regeneration process (Nicol and Komi, 2003). It is believed that the tissue-breakdown 

products associated with the inflammation sensitizes muscle nociceptors and elicits an 

increase in muscle spindle sensitivity (Smith, 1991 ). Therefore, in the acute phase following 

eccentric exercise, the observed changes in performance is suggested to be related to 

metabolic changes via group III and IV muscle afferents. This mechanism, however, does 

not explain the persistence of the matching errors over several days, at a time when all 

metabolites would have been removed. The delayed recovery, therefore, is suggested to be 

related to problems in the proprioceptive feedback caused by muscle damage and 

inflammation (Bottas, Linnamo, Nicol, & Komi, 2005). 

The sense of muscle pain is believed to be mediated by group III and IV muscle afferents 

(Mense, 1996) becoming active during a contraction. Hypertonic saline is the commonly 

used model of muscle pain and it is known to excite a majority of A and C fibre afferents in 
' 

the muscle (Kumazawa and Mizumura, 1977; Mense, 1996). Previous studies suggest the 

hypothesis that pain at the time of position sense testing may interfere with the perception 

of the position of the painful limb. There is evidence that stimulation of nociceptors may 

interfere with proprioception at the point of convergence of afferent inputs in the dorsal 

hom (Capra and Ro, 2000). One suggested mechanism is that a large proportion of free 

nerve endings are sensitised by peripheral release of pain modulating substances produced 

during the pain response. Neuroplastic changes in the integration of inputs from group III 

and IV afferents in the spinal cord may lead to abnonnal drive of muscle spindles in the 

affected region and therefore abnonnal sense of joint position (Hellstrom et al., 2000; 
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Johansson et al., 1993; Schaible and Grubb, 1993). Recently, a significant relationship 

between force-matching errors and pain levels was found (Proske et al., 2004; Proske et al., 

2003). Matching torque levels with a sore muscle led to a pattem of enors similar to that 

seen after exercise; as soon as pain had set in, matching enors increased dramatically. When 

the indicator biceps was sore, the matching torques was significantly below the reference 

level and when the reference biceps was sore, the indicator arm matched with higher torque 

levels than given by the reference. There was a correlation between the size of the matching 

errors and the level of pain (Weerakkody et al., 2003b). It could be argued that the presence 

of pain simply distracted subjects from their matching task, leading to larger than normal 

errors. Perhaps subjects were simply favouring their sore muscles. However, factors such as 

distraction and unintentional sparing of the muscle during contraction would not have been 

expected to lead to such a close conelation between the size of the enors and the level of 

perceived pain. It was then concluded that muscle soreness can interfere with a subjects' 

ability to match forces, perhaps as a result of a reduced excitability of motor cmiex (Proske 

et al., 2003). Likewise, it was found that heating the skin did interfere with matching 
I 

perfom1ance in a manner similar to that seen following the saline injections (Proske et al., 

2003; Weerakkody et al., 2003b). On the other hand, Bennell et al. (2005; 2003) revealed no 

association between proprioception and pain. Other studies also indicated that simple 

nociceptive stimulation does not induce a deficit in proprioception (Baker, Bem1ell, 

Stillman, Cowan, & Crossley, 2002; Sharma, Pai, Holtkamp, & Rymer, 1997). Matre, 

Arendt-Neilsen, & Knardahl (2002) found that pain did not affect ankle joint position sense 

but did affect ankle movement detection threshold. Yet, the relationship between pain/heat 

and proprioception is complex with human studies failing to find a clear link between the 

two. 
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2.3.4 Role ofthe central nervous system 

The central nervous system (CNS) receives input from three mam subsystems: the 

somatosensory system; the vestibular system; and the visual system (Tyldesley and Grieve, 

1989). The somatosensory system provides infonnation to three distinct levels of motor 

control: the spine, the brain stem, and the higher centers (basal ganglia and motor cortex) 

(Burgess, Wei, Clark, & Simon, 1982; Griffin et al., 2000; Lephart and Fu, 1995; Lephart 

and Henry, 1995; "Principles of Neural Science," 2000). The sensory receptors for 

proprioception are found in the skin, muscles, and joints as well as in ligaments and tendons 

and they all provide input to the CNS regarding tissue defonnation. They also provide the 

CNS with knowledge of the shape, size and mass of body segments and allow the CNS to 

detennine the orientation, position and velocity of our body and limbs during movement as 

well as muscle tension (Gandevia, 1996; Kerr and Marshall, 1995; McCloskey, 1978). It has 

been shown in animal (monkey) experiments that the primary somatosensory cortex (SI) is 

one of the co1iical targets of the afferent inputs signalling limb movements. Neurons in area 

3a (Huerta and Pons, 1990) and area 2 (Costanzo and Gardner, 1981) in nonhuman primates 

respond to passive or active limb movements by receiving the afferent inputs. Our 

understanding on how proprioception is used by the CNS is yet far from complete. 

Nevertheless, recent evidences are provided in support of the centrally generated sense of 

effmi having the main contributory role, rather than muscle receptors, to limb position 

sense. 
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2.3.4.1 Sense of effort 

There has been much debate about the origin of the proprioceptive senses and to what 

extent they are derived peripherally or centrally. The traditional view is that signals from 

muscle spindles provide us with our sense of limb position (Gandevia, 1996; McCloskey, 

1978). However, the present-day view is that the sense of effort plays a major role in joint 

position sense (Allen and Proske, 2006; Walsh et al., 2006; Walsh, Hesse, Morgan, & 

Proske, 2004; Winter, Allen, & Proske, 2005) and is generated centrally as a result of 

interactions between sensory and motor cortex (Gandevia, 2001). The sense of effort has 

been referred to as deriving from a corollary discharge or efference copy of the motor 

command (Matthews, 1988; McCloskey, 1981). Whenever we carry out a voluntary 

contraction, it is postulated that a copy of the motor command reaching the motor cortex is 

sent to sensory areas to generate the effort sensation. For a review of this subject see 

McCloskey, Gandevia, Potter, & Colebatch (1983). When subjects hold their reference ann 

at the test angle, this would be signalled in part by the effort sensation accompanying the 

force generated in elbow flexors to support the weight of the ann against gravity. Thus, the 
' 

effort required to maintain position of the am1 against the force of gravity provides us with 

information about its location in space. Furthennore, in studies using force-matching tasks, 

it was suggested that subjects were using their sense of effort to match forces, not a 

peripherally derived sense of tension (Carson, Rielc, & Shahbazpour, 2002; Weerakkody, 

Percival, Morgan, Gregory, & Proske, 2003a). A peripheral signal would have indicated the 

true level of tension and, therefore, would not have led to matching e1rors. Given that the 

sense of effort contribute to the position sense and sense of torque, a recent study by Allen 

and Proske (2006) has explored the possibility that the sense of effort could also contribute 

to movement sensation. It was found that exercising elbow flexors led to significant position 
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matching errors but subjects were still able to accurately carry out a movement tracking 

task. It was then concluded that the sense of effort did not contribute to movement sensation 

and that this sense was generated entirely by signals from muscle spindles. It is presumable 

that whenever we carry out movements against the force of gravity, we are provided with 

effort cues. This proposition would help account for the proprioceptive disturbances known 

to occur in high-gravity (Lackner and Graybiel, 1981) or in low-gravity environments hence 

the difficulties encountered by astronauts in outer space carrying out motor tasks in the 

absence of vision (Young et al., 1993 ). Up to this point, because most of the studies had 

involved forearm position matching in the vertical plane, it was assumed that effort only 

played a role in position sense under circumstances where the gravity vector was acting 

(Walsh et al., 2004). However, the experiment of Walsh et al. (2006) has explored the 

possibility that a sense of effort may also contribute to position sense when the force of 

gravity is not able to provide positional cues. In summary, it is suggested that muscle 

spindles contribute, in part, to position sense and an additional cue is provided by the 

amount of effort required to maintain the position. The current working hypothesis is that as 
I 

soon as spindles are activated through the fusimotor system, they no longer contribute to 

position sense. At the same time, the effort signal generated by the motor command 

provides additional positional infonnation (Winter et al., 2005). It will be a challenge for 

the future to define more precisely the central site of origin of the effmi sensation and how 

it combines with afferent infonnation from the periphery to give us our proprioception 

sense. 

75 



2.3.5 Decrement of position sense perfonnance induced by different muscle contraction 

types 

A restricted number of studies have used an isometric type exercise protocol to measure its 

effect on proprioception. Nevertheless, the results are in favour with a deterioration of the 

sense of velocity (Jaric, Radovanovic, Milanovic, Ljubisavljevic, & Anastasijevic, 1997) 

and position sense (Forestier, Teasdale, & Nougier, 2002a; J aric et al., 1999; Winter et al., 

2005) due to an increase in fusimotor activity with muscle exercise. In general, results 

demonstrate that the indicator limb undershoots the target position (Forestier et al., 2002a; 

Jaric et al., 1999). However, other findings reported that progressive isometric exercise does 

not systematically alter the joint position sense (McCloskey, 1973; Sharpe and Miles, 

1993). 

Although only few investigations have used a concentric protocol to test position sense at 

the elbow after exercise (Allen and Proske, 2006; Brockett, Warren, Gregory, Morgan, & 
I 

Proske, 1997; Walsh et al., 2004 ), these have been of a major importance in changing the 

traditionally view of the origin of proprioception, the muscle spindles. Originally, it was 

speculated that if ordinary muscle fibres were damaged by eccentric exercise, it was 

conceivable that the intrafusal fibres of muscle spindle, too, could become damaged. This 

would lead to a disturbance of spindle function and consequently eiTors in position sense. 

Such observations would not normally be expected by other types of muscle contraction 

since muscle damage is only induced after eccentric contractions. However, it has recently 

been shown that a drop in maximum voluntary force after a concentric exercise was also 

accompanied by a significant position-matching error (Allen and Proske, 2006). Likewise, 
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Walsh et al. (2004) reported a correlation between matching error and MVC decline with 

concentric exercise. Given that eccentric and concentric exercises produced matching 

errors, it implied that the muscle damage associated with eccentric exercise was not a 

contributing factor to proprioception, other than by its effect on muscle force. Therefore, 

what is responsible for the position-matching errors after exercise? It was then argued that 

in a situation where a muscle is exercised while being required to maintain a certain level of 

force, centrally driven activation rates of motoneurons increase to maintain the level of 

force, and in doing so lead to a perceived increase in effort. It was therefore suggested that 

the effort required to maintain the am1 against the force of gravity provides a positional cue 

(Allen and Proske, 2006; Semmler and Miles, 2006; Walsh et al., 2004). Many studies 

revealed that the errors were in the direction predicted by the effoti:position matching 

hypothesis, that is, when the exercised ann was the reference, the indicator adopted a more 

extended position immediately after the concentric exercise. The explanation is that the 

reference effort signal was larger than nom1al, because, as a result of exercise, the tension 

generated by a given effort was less. Because of the larger reference effort, the unexercised 
' 

matching am1 adopted a position where more effort would be required to maintain its 

position. When the unexercised ann was the reference, the indicator adopted a more flexed 

position. Again, the interpretation is that the exercise had disturbed the relationship between 

force and effort so that more effort was now required to maintain position of the arm at a 

given foreann angle. On the other hand, the results from Sterner et al. (1998) did not 

demonstrate a detrimental effect of muscle exercise on the ability to passively reproduce a 

target angle. The difference in exercise protocol may have accounted for this opposing 

finding. Furthennore, contrary to the sense of position, the sense of movement does not 

seem to be affected by concentric exercise (Allen and Proske, 2006). The data supports the 
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view that muscle spindles would be responsible for the sense of movement, and that this 

sense would not be prone to the disturbance from exercise. 

It is a common experience to feel clumsy and awkward after a period of intense exercise 

and to have difficulty in performing finely skilled movements. Such anecdotal observations 

have led to the suggestion that exercise, particularly eccentric exercise, can disturb 

proprioception. Given that the sense of position is believed to be provided by afferent 

signals coming from muscle spindles, investigators considered the possibility that eccentric 

exercise not only damaged the ordinary muscle fibres, but also disturbed the function of 

muscle receptors explaining the disturbance to human proprioception (Proske and Allen, 

2005). However, it has recently been shown that eccentric contractions, which lead to clear 

evidence of muscle damage, do not appear to have any effect on spindles (Gregory et al., 

2004). The same seems to apply also to tendon organs (Gregory et al., 2002). Nevertheless, 

many studies demonstrated clearly that position sense acuity at the elbow joint is decreased 

after a period of eccentric exercise (Brockett et al., 1997; McCloskey, Cross, Bonner, & 
I 

Potter, 1983; Saxton et al., 1995; Walsh et al., 2006; Walsh et al., 2004). A similar decline 

in position sense acuity is usually observed for both males and females, although females 

generally displayed an overall poorer acuity than males (Pederson, Lonn, Hellstrom, 

Djupsjobacka, & Johansson, 1999). The sizes ofthe matching errors coiTelated with the fall 

in force, suggesting that the drop in MVC was responsible for matching eiTors. However, 

other studies for the knee (Marks and Qui1mey, 1993 ), elbow (Sharpe and Miles, 199 3) and 

shoulder joint (Sterner et al., 1998) revealed no such effects using other types of muscle 

contractions. The effect of exercise on position sense can differ as a function of which 

muscle is exercised. For example, Jaric et al. (1999) showed that exercising the agonist 
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muscles is associated with final error position, while exercising the antagonist muscles has 

no effect. In addition, studies demonstrated that eccentric exercise impairs joint position 

sensibility while having no apparent effect on kinaesthesia (Skinner, Wyatt, Hodgdon, 

Conard, & Barrack, 1986). Similarly, vibration at low frequency can induce errors of 

position without inducing illusions of movement (McCloskey, 1973 ). It therefore suggests 

that position sense and sense of movement have separate lines of infonnation. In the joint 

position-matching test perfom1ed without vision, the exercised indicator ann was either 

flexed more (Saxton et al., 1995) or less (Brockett et al., 1997) as compared to the non-

exercised reference am1. These authors explained the matching e!Tors by the exercise-

induced changes in muscle afferent discharge. Recent studies at the elbow joint have found 

the same results, which are, when the exercised ann was the indicator, it tended to adopt a 

more flexed position than the unexercised reference and if elbow flexors in the reference 

ann were exercised, the indicator ann adopted a more extended position to match it 

(Gregory et al., 2004; Walsh et al., 2006; Walsh et al., 2004). The currently accepted 

interpretation of the observed disturbance in proprioception after eccentric exercise is not 
' 

the result of dysfunction of muscle sense organs. Rather, the observations lead to conclude 

that, in the unsupported ann position-matching task, the sense of effort plays a major role 

(Walsh et al., 2006; Walsh et al., 2004). During active placement of our limbs, we use, as a 

positional cue, the sense of eff011 required to maintain limb position against the force of 

gravity. To hold the am1 at a set angle against the force of gravity requires a certain amount 

of effort. The perceived effort increases significantly if ann muscles are damaged from 

eccentric exercise. If subjects match efforts to align their arms they will place the exercised 

ann more nearly vertically where less force is required to support it leading to position 

matching eiTors. Adoption of a more ve1iical position requires less effort, for two reasons. 
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First, the moment of the force of gravity on the arm is less. Second, a more vertical position 

is closer to the elbow flexors' optimum length for active tension. Thus, in matching efforts, 

subjects placed the exercised arm in a position where the force generated by its elbow 

flexors was sufficient to bear its weight. Another consistent trend was the finding that at 

small foreann angles, that is, with the foreann more nearly horizontal, errors tended to be 

larger than when the ann was closer to the vertical. For example, position errors at a test 

angle of 30° from the horizontal tended to be larger than at 60° of flexion (Walsh et al., 

2004). Here again it was speculated that, as the mm was placed more nearly hmizontally, a 

larger vector of the force of gravity would be acting on it. Therefore, we can conclude that a 

period of eccentric exercise leads to a change in the effort:force relationship and this 

produces the position matching errors in the vertical plane, where gravity cue is available. It 

has been observed that when subjects can·y out a foream1 position matching task in the 

horizontal plane or by mean of a suppmi, they become more erratic in their perfonnance 

(Walsh et al., 2006; Walsh et al., 2004). It was proposed that these effects are due to 

withdrawal of a positional cue nmmally available to subjects when matching the 

unsupported arms in the ve1iical plane, the force of gravity, and that position sense with this 

posture arises primarily from muscle spindles. The current working hypothesis is that, 

during development, we leam to routinely associate effo1i sensations with movements as 

signalled by proprioceptive feedback from the moving muscles. Eventually we begin to use 

the sense of effort as a proprioceptive signal in its own right. 

Similarly to position sense, there are large force-matching errors after a series of eccentric 

contractions (Brockett et al., 1997; Proske et al., 2004; Proske et al., 2003; Saxton et al., 

1995; Weerakkody et al., 2003a). These can be due to three possible causes. One, the 
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greater effort required to achieve a given force, as a result of exercise and muscle damage. 

Secondly, there is an increase in central neural drive, presumably accompanied by an . 

increase in eff01i, which lasts for up to 48h. Finally, there is the influence of delayed-onset 

muscle soreness (DOMS) which does not begin to exert a significant effect until 24h after 

the exercise and which lasts for at least four days suggesting that here short-tenn effects, 

such as accumulation of metabolites, is unlikely to be responsible. Another hypothesis 

considered for these findings is that contractures in the muscle fibres damaged by the 

eccentric contractions are responsible for the reduced elbow angle and could activate some 

tendon organs. If the tendon organs output of the muscle rises because of the higher resting 

tension, this may lead to the perception of a higher level of force in the muscle than was 

actually generated and that would produce the observed tension mismatch (Brockett et al., 

1997). However, Proske (2005) mentioned in his review that force matching errors after 

eccentric exercise were not the result of a disturbance of function in tendon organs. The 

explanation that best fits is that subjects were matching forces not by matching the torque 

level but by matching the amount of eff01i required to achieve a given level of force 
' 

(Carson et al., 2002; Proske et al., 2004; Proske et al., 2003; Weerakkody et al., 2003a), not 

a peripherally derived sense of tension. Proske et al. (2004) suggested that sense of effort is 

the dominant sense in a force matching task. Thus, for example, if the contracting muscles 

on the reference side are weakened by the exercise, the target tension is achieved only by an 

unusually large motor command and effort. When this is perceived, it influences the 

matching process as indicated by a larger-than-nonnal matching contraction made with the 

unaffected indicator muscles on the opposite side (McCloskey, Ebeling, & Goodwin, 197 4 ). 
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In summary, the most important evidence in support of a sense of effort contributing to 

position sense is that after exercise, subjects make position matching errors. A role for 

muscle spindles in kinaesthesia still remains undisputed. But, because of the fusimotor 

innervation of spindles, there are difficulties in assigning to them a major role in static 

position sense. Recent studies have shown that since the damaged muscle produced less 

force, it required more effort to maintain a given ann position against the force of gravity 

leading to propose that subjects were matching their efforts to align their anns. So the 

weaker elbow flexors of the exercised ann would match the effort required to hold the 

unexercised am1 by adopting a more vertical position where the force of gravity was less. 

That, in tum, would produce the matching errors. An important consequence of this 

assertion is that all forms of exercise that produced a decrease in muscle perfonnance 

should lead to position-matching eiTors, no just eccentric exercise. The current working 

hypothesis is that when the am1 is moved into position, the movement information comes 

largely from muscle spindles, with additional contributions from skin and joint receptors. 

Once the an11 is in position, the effort required to keep it there provides detailed positional 
! 

infon11ation (Walsh et al., 2004). 

2.4 SPORT REHABILITATION 

2.4.1 Role of proprioception in rehabilitation and prevention of injury 

Conscious proprioception is essential for proper joint function in sp01is and occupational 

tasks. Unfortunately, injuries are very common in sport and have been found to have a 

detrimental effect on proprioception through the damage of mechanoreceptors in ligaments. 
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Statistically, ankle sprams are the most frequent type of sports injuries, damaging 

predominantly (85-90%) the lateral ankle ligaments and corresponding structures. As a 

result, chronic functional instability may develop (Hertel, 2000; Karlsson, Bergsten, 

Lansinger, & Peterson, 1988; Peters, Trevino, & Renstrom, 1991) leading to a loss of 

proprioception that may have a profound effect on neuromuscular control and activities of 

daily living. The proper management of athletic-related injuries and orthopaedic lesions can 

be complex in the sports medicine setting. One of the most challenging aspects to the 

clinician is to understand the role of proprioceptively mediated neuromuscular control after 

joint injury and its restoration through rehabilitation. This understanding, coupled with a 

base of knowledge regarding the current research on proprioception, is necessary for sports 

medicine practitioners to optimize treatment programs for athletes. Previous studies have 

shown that women participating in jumping and cutting sports have a fourfold to sixfold 

higher incidence of knee injury than males (Arendt and Dick, 1995; Hewett, Stroupe, 

Nance, & Noyes, 1996; Zelisko, Noble, & Porter, 1982). One possibility for these 

differences with respect to knee injuries may be attributable to deficits in proprio<;eption 
' 

and neuromuscular control in female athletes (Hewett, Patemo, & Noyes, 1999). These 

observations have to be interpreted with caution, but if generalized they might imply that 

women are more prone to spo1i injuries than men. Interestingly, some studies lend some 

support to such speculations, as they suggest that women are more susceptible to sport 

injuries than men (Arendt and Dick, 1995; de Loes, 1995; Gray et al., 1985; Jones, Bovee, 

Harris, & Cowan, 1993 ). Therefore, rehabilitation and preventive programs are crucial in 

both genders but especially in women. 
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Glencross and Thomton (1981) were the first group to quantify ankle proprioception by 

using a standard goniometer. They found greater errors in active repositioning of plantar 

flexion in the injured ankle, as compared with the uninjured ankle. Freeman, Dean, & 

Hanham (1965) postulated that during an ankle sprain, the nerve fibres of the 

mechanoreceptors located at the tom ligament could also be damaged. As a result, 

proprioceptive inputs from the ankle joint could be reduced. These authors further 

suggested that a reduction in the ankle sprain could be a predisposing factor for postural 

instability. Later studies indeed demonstrated that both joint position and movement· sense 

were found to be reduced in players with sprained ankles when compared with healthy 

players (Forkin, Koczur, Battle, & Newton, 1996; Gam and Newton, 1988; Konradsen, 

Olesen, & Hansen, 1998; Lentell et al., 1995). Similarly, it was reported that proprioception 

was significantly worse in the injured joint than in the noninjured shoulder (Smith and 

Brunolli, 1989). Decreased position sense and kinaesthesia have also been demonstrated in 

the ACL-deficient knee (Barrack, Skitmer, & Buckley, 1989; Barrett, 1991; Beard, Dodd, 

Trundle, & Simpson, 1994a; Beard, Kyberd, Fergusson, & Dodd, 1993; Beard, Kyberd, 
' 

O'Connor, Fergusson, & Dodd, 1994b; Beynnon et al., 1999; Borsa, Lephart, Irrgang, 

Safran, & Fu, 1997; Corrigan, Cashman, & Brady, 1992; Fischer-Rasmussen and Jensen, 

2000; Fremerey et al., 2000; Friden, Roberts, Zatterstrom, Lindstrand, & Moritz, 1996, 

1999; Friden, Zatterstrom, Lindstrand, & Moritz, 1989; Lattanzio and Petrella, 1998; 

Lephart, Kocher, Fu, Borsa, & Harner, 1992; MacDonald, Hedden, Pacin, & Sutherland, 

1996; Mizuta, Shiraishi, Kubota, Kai, & Takagi, 1992; Ochi, Iwasa, Uchio, Adachi, & 

Sumen, 1999; Pap, Machner, Nebelung, & Awiszus, 1999; Roberts, Friden, Stomberg, 

Lindstrand, & Moritz, 2000), the ACL-reconstructed knee (Barrett, 1991; Co, Skinner, & 

Cmmon, 1993; Friden, Roberts, Zatterstrom, Lindstrand, & Moritz, 1997; Ochi et al., 1999), 
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and the PCL-deficient knee (Clark, MacDonald, & Sutherland, 1996; Proprioception and 

neuromuscular control in joint stability, 2000; Safran et al., 1999). In the fibres of the ACL, 

the presence of specific proprioceptive mechanoreceptors has been shown (Friden et al., 

1989; Johansson, Sjolander, & Sojka, 1991; Schultz, Miller, Kerr, & Micheli, 1984; 

Schutte, Dabezies, Zimny, & Happel, 1987). It was hypothesized that ACL disruption and 

meniscal injury damage articular structures containing mechanoreceptors and, therefore, 

result in deficits of kinaesthesia and joint position sense (Lephart, Pincivero, & Rozzi, 

1998). However, when both sense of movement and joint position sense were measured in 

the same subjects, there was no relationship between the sensations. Sense of movement 

was impaired in ACL deficient knees compared with the healthy control (Friden et al., 

1997) while joint position sense was unaffected even in the presence of instability (Roberts, 

Friden, Zatterstrom, Lindstrand, & Moritz, 1999). Thus, in the ACL deficient knee, there 

appears to have a deficit in sense of movement but not joint position sense. These findings 

support McCloskey's hypothesis that signals are processed differently for position sense 

and sense of movement. Moreover, other authors have failed to find a significant difference 
' 

when comparing patients to external controls or the uninjured limb (Friden, Roberts, Movin, 

& Wredmark, 1998; Pap eta!., 1999). Proprioceptive deficits also have been documented in 

the non-involved limb (Corrigan eta!., 1992; Reider et al., 2003). The results ofHewett et 

al. ( 1999) are consistent with this finding and raised an interesting question regarding the 

use of the contralateral limb as a control during proprioceptive testing. These results 

indicated that clinicians should not use the contralateral limb as a control when assessing 

proprioceptive parameters, because deficits similar to the involved limb are seen on the non-

involved side. 
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Theoretically, operative techniques can restore proprioception directly through 

reinnervation of damaged structures or indirectly through restoration of appropriate tension 

in capsuloligamentous structures. Indeed, the return to preinjury value of proprioceptive 

function after ACL reconstruction has been reported (Barrack et al., 1989; Barrett, 1991; Co 

et al., 1993; HmTison, Duenkel, Dunlop, & Russell, 1994; Swm1ik, Lephart, & Rubash, 

2004). However, several studies have shown that proprioceptive deficits that exist in ACL-

deficient knees can only be partially restored by surgical reconstruction (Barrack et al., 

1989; Barrett, 1991; Beard, Dodd, & Simpson, 1996; Co, Skinner, & Cmmon, 1991; 

Lephart, Warner, Borsa, & Fu, 1994) and the improved scores following total knee 

reconstruction could be attributed to the reduction in pain, swelling and deformity (Swanik 

et al., 2004). Ban·ack, Skinner, Cook, & Haddad (1983) and Barrett, Cobb, & Bentley 

(1991) also investigated the effect of total knee replacement on knee proprioception. The 

inse11ion of a total knee replacement resulted in the removal of most joint receptors located 

in the knee. They found in both studies that there was no significant difference in knee 

proprioception between the operated and non-operated knee. Similarly, no significant 
! 

decrease in joint proprioception was observed after joint replacement surgery in the hip 

(Grigg, Finern1an, & Riley, 1973). A study by MacDonald et al. (1996) using threshold to 

perception of passive motion, also found no improvement in proprioceptive function after 

the joint reconstruction. It was reported that after ACL reconstruction, patients continue to 

have deficits in proprioception and neuromuscular joint control at least 6 months to 1 year 

postoperatively and in some cases beyond 1 year when compared with a control group 

(Hewett, Patemo, & Myer, 2002). In addition, Lephart et al. (1992) found significantly 

worse joint kinaesthesia than in the contralateral healthy joint after ACL reconstruction. 
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Therefore, controversy exits regarding the return of proprioceptive function of the joint 

reconstruction and further research on this topic is required. 

Although evidence regarding the effects of rehabilitation on proprioception in regaining 

neuromuscular control has yet to be verified, it is suggested that proprioceptive exercises 

may have a beneficial role on the sensory afferent and efferent motor responses (Lephart et 

al., 1998). Regaining neuromuscular control after injury or surgery is a necessary 

prerequisite for athletes wishing to retum to competition. Rehabilitation of athletics injuries 

requires the prescription of sport-specific exercise and activities that challenge the 

recovering tendons, ligaments, bones, and muscle fibres without overstressing them. The 

goal of rehabilitation is to retum an athlete to the same or higher level of competition as 

before the injury. Methods to improve proprioception after injury or surgery could improve 

function and decrease the risk of reinjury. As mentioned earlier, afferent input is altered 

after joint injury and may remain altered after joint reconstruction. Proprioceptive 

rehabilitation, however, may allow the patient to retrain altered afferent pathways resulting 
' 

in enhanced sensation of joint movement. Therefore, proprioceptive training has become an 

integral aspect of functional rehabilitation (Lephart and Borsa, 1993 ). A theoretical 

rationale exists that proprioceptive and balance training may improve the nervous system's 

ability to synchronize muscular activity around a joint improving dynamic joint stability, 

thereby improving proprioception in people following injury or surgery (Cooper, Taylor, & 

Feller, 2005). Proprioceptive training and rehabilitation techniques are used extensively to 

prevent injury and also to provide optimal functional restoration during rehabilitation. 

Caraffa, Cerulli, Projetti, Aisa, & Rizzo ( 1996) reported that the frequency of injuries in the 

proprioceptively trained group showed a sevenfold reduction over the control group. These 
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results indicate that a program of proprioceptive training can reduce the number of ACL 

injuries in soccer. However, some authors reported limited improvements in joint position 

sense, muscle strength, and hop testing following proprioceptive and balance exercise when 

compared with traditional strengthening exercises in ACL-deficient populations (Ageberg, 

Zatterstrom, Moritz, & Friden, 2001; Beard et al., 1994a; Fitzgerald, Axe, & Snyder-

Mackler, 2000; Zatterstrom, Friden, Lindstrand, & Moritz, 2000). In summary, there are 

numerous studies supporting the positive effect of the proprioceptive training on balance 

(Bemier and Perrin, 1998; Gauffin, Tropp, & Odenrick, 1988; Hoffman and Payne, 1995; 

Kynsburg, Halasi, Tallay, & Berkes, 2006; Lephart, Pincivero, Giraldo, & Fu, 1997; 

Matsusaka, Yokoyama, Tsurusaki, Inokuchi, & Okita, 2001; Patemo, Myer, Ford, & 

Hewett, 2004; Rozzi, Lephart, Stemer, & Kuligowski, 1999; Tropp, Askling, & Gillquist, 

1985a; Tropp, Ekstrand, & Gillquist, 1984a, 1984b; Tropp, Odenrick, & Gillquist, 1985b), 

but little is known about its effect on joint position sense. 

Rehabilitation programs should be designed to include a proprioceptive component that 
' 

addresses the following three level of motor control: spinal reflexes, cognitive 

programming, and brainstem activity. Such a program is highly recommended to promote 

dynamic joint and functional stability. Proprioceptive and balance exercises appear to be a 

safe form of rehabilitation, with no study reporting increased passive joint laxity or decrease 

in strength when compared with standard rehabilitation programs. As a result, it has been 

suggested that proprioceptive training should become standard in preseason training as well 

as during the actual playing season. Functional rehabilitation is an integral part of any 

rehabilitation program. It incorporates not only the traditional elements of physical therapy, 

such as strength and flexibility, but also activities to enhance agility, proprioception, and 
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neuromuscular control. Agility and proprioceptive training are incorporated to restore 

neuromuscular mechanism responsible for joint kinematics, enabling the individual to 

retum to preinjury levels of activity while also reducing the risk of reinjury (Lephart and 

Borsa, 1993; Markey, 1991 ). Once proprioceptive deficiencies have been identified, 

subsequent to either an acute or chronic musculoskeletal injury, a rehabilitation programme 

should be developed and implemented. Initially, patients concentrate on the rehabilitation 

task being perfonned in order to facilitate and maximise sensory input. As the patient 

progresses, the activities incorporate cognitive or psychomotor aspects, which ultimately aid 

in converting conscious joint stabilization and control to unconscious motor programming 

(Lephart and Fu, 1995; Voight and Cook, 1996). To maximally restore proprioception and 

neuromuscular control, it is recommended that the following progression of activities be 

conducted to allow the return of an athlete to functional levels: 1) joint position sense and 

kinaesthesia, 2) dynamic joint stabilization, 3) reactive neuromuscular control, and 4) 

functionally specific activities. Such a progression allows the rehabilitation program to 

address the integration of spinal reflex, cognitive, and brainstem pathways to focus on joint 
' 

stabilization (Lephart and Henry, 1996). However, it is important to remember that in the 

acute phase, the focus should be on controlling inflammation, re-establishing full range of 

motion and weight bearing strength. Once pain-free range of motion and weight bearing 

have been established, balance-training exercises can be incorporated to normalize 

neuromuscular control. Once the athlete has reached the functional stage of rehabilitation, 

the objectives of proprioception training are to refine joint position awareness which 

initiates muscle reflex stabilization to prevent reinjury. Moreover, there is evidence that 

additional improvement in quadriceps and hamstring muscle strength can be obtained using 

proprioceptive and balance training for both ACL-deficient (Zatterstrom et al., 2000) and 
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ACL-reconstructed individuals when compared with a standard rehabilitation program (Liu-

Ambrose, Taunton, Macintyre, McConkey, & Khan, 2003). This is a contrary finding since, 

according to the guidelines of the American College of Sports Medicine (2002), 

proprioceptive and balance training would not be expected to provide sufficient stimulus to 

increase muscle strength. It could be speculated that proprioceptive and balanced training 

might enhance neuromotor recruitment, this enhancing muscle strength. 

A rehabilitation program to address proprioceptive deficits should integrate all subsystems 

of proprioception in addition to the 3 levels of motor control. To enhance motor function at 

the brainstem level, balance and postural maintenance activities should be employed. These 

equilibrium-promoting activities should be performed both with and without visual system 

input, be implemented following a standardised progression, and be specific to the type of 

activities and skills the patient will require. Once implemented, these activities should 

follow the progression from static balance activities to dynamic skill activities. For static 

balance activities, patients should progress from bilateral to unilateral activities, from 
I 

activities with eyes open to those with eyes closed and those perfom1ed on a stable surface 

to those perfom1ed on an unstable surface (Guskiewicz and Perrin, 1996; Lephart and Fu, 

1995; Lephart et al., 1997; Nyland, Brosky, Cun·ier, Nitz, & Cabom, 1994; Voight and 

Cook, 1996). To stimulate reflex joint stabilization, which emanates from the spinal cord 

and improves the neuromuscular mechanism, activities should focus on sudden alterations 

in joint positioning that necessitate reflex muscular stabilization. In the first week of phase I 

of rehabilitation, simple weight shifting can initiate this process. Progression to weight 

bearing can be taught with the aid of a bathroom scale. The proprioceptive exercises 

concentrate on balance and dynamic joint stabilization that will permit the athlete to 
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progress to directional changes in the next phase of the rehabilitation program (Lephart and 

Henry, 1995). Proprioception training continues in phase II of the program with the 

initiation ofbalance board (Heckmann, Noyes, & Barber-Westin, 2000). The proprioceptive 

activities in this phase involve more dynamic movements and encourage changing 

directions rapidly, landing, and perfom1ing balancing manoeuvres while involved in sports-

specific activities. As the patient achieves full weight bearing without pain, proprioceptive 

training is initiated for the recovery ofbalance and postural control. The simplest device for 

proprioceptive training is the wobble board, a small discoid platform attached to a 

hemispheric base (Hintermann, 1999). The exercise can be progressed by having the patient 

use different-sized hemispheres and by varying visual input. Moreover, proprioception 

challenge can be improved by uneven surfaces (wobble board, foam cushions), crossing the 

an11s, closing the eyes, and extemal forces (therapist, resistance tubing). All exercises 

should be perfom1ed at various positions throughout the full range of motion because of the 

difference in the afferent response that has been observed at different joint positions 

(Lephart et al., 1997). Proprioception training begins with such simple tasks as balance 
I 

training and joint repositioning and becomes increasingly more difficult as the patient 

progresses. A common mistake when performing proprioception and balance exercises is 

the lack of variability in speed and intensity. 

The principle of specificity must be incorporated into the functional rehabilitation program. 

The specificity of the training principle involves matching the neuromuscular and 

physiologic demands during rehabilitation with those that the athlete will be retuming to. 

Specificity during functional rehabilitation restores reflex muscle activity (Lephart and 

Henry, 1995) and help to fine tune the afferent-efferent arcs. Exercises should include 
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consciously mediated movement sequences, sudden alterations of joint position to initiate 

reflex subconscious muscle contraction (Hewett et al., 1996; Hoffman and Payne, 1995), 

and specific drills that are similar to movement patterns used in the sport. Closed kinetic 

chain exercises are more effective for challenging the dynamic and reflexive aspects of 

proprioception for the lower extremities. The lower extremities are used in a closed chain 

manner during spo1is and daily life activities, and training and testing in this fashion 

facilitates the proper neuromuscular engrams (Laskowski, Newcomer-Aney, & Smith, 

2000). Plyometric exercises also fit nicely into the specificity of training principle. These 

exercises should be implemented into the advanced phase II of the functional rehabilitation 

program to begin development of explosive contractile strength (Lephart and Borsa, 1993; 

Markey, 1991). Swanik et al. (2002) suggested that plyometric activities facilitate neural 

adaptations that enhance proprioception and kinaesthesia. In fact, the plyometric group 

improved significantly more than the control group in the position-matching and in the 

detection of passive motion tests. These differences suggest that peripheral and central 

neural adaptations were induced by plyometric training, resulting in improved joint position 
' 

sense and detection of joint motion. Rehabilitation is said to be incomplete unless 

manoeuvres specific to the sport and the athlete's position can be performed maximally and 

without pain or loss of function. Testing of these skills before return to competition should 

always be perfonned. 

Proprioceptive deficits may predispose an athlete to reinjury through decrements in the 

neuromuscular pathways as a result of a decrease in sensory input from joint receptors. This 

would then lead to abnormal body positioning and diminished postural reflex responses 

(Gross, 1987). Tropp et al. ( 1985) were the first to examine the effects of an ankle disk 
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training program in 65 male soccer players with previous ankle sprains. Results from their 

study indicated an 80% decrease in the frequency of repeat sprains over a 6-month period in 

the exercise group when compared with the non-exercise group. They concluded that 

completion of the progressive neuromuscular control rehabilitation program minimizes the 

risk of reinjury and promotes a greater change of successful retum to competition (Lephart 

et al., 1997). Moreover, proprioception has been shown to play an imp01iant role not only in 

rehabilitation, but also in the prevention of injuries (Zatterstrom, Friden, Lindstrand, & 

Moritz, 1992). Once the final stage of rehabilitation is reached, regaining joint sense 

awareness to initiate muscular reflex stabilization to prevent reinjury should be the primary 

objective (Lephart et al., 1997). According to recent studies, proper proprioceptive 

sensorimotor control is the key to the prevention of injuries and chronic functional 

instability (Konradsen, Beynnon, & Renstrom, 2000a, 2000b ). Caraffa et al. (1996) showed 

in a prospective controlled study that preventive neuromuscular training of high level male 

soccer players significantly decreased the incidence of ACL injury. After a progressive five-

phase training program on balance board, injury incidence decreased more than sevenfold in 
' 

these male athletes. Likewise, Hewett et al. (2002) reported that female athletes trained with 

the prevention program were three to four times less likely to suffer from serious knee 

injuries. The results observed with this program justify the alteration of cuiTent protocols for 

preparing females for participation in high-risk sp01is. Such training, if effectively 

implemented on a widespread basis, could help to significantly decrease the number of 

athletes injured each year. Therefore, noninjured athletes can benefit from incorporation of 

proprioceptive exercises into their training program and the effectiveness of the 

rehabilitation/prevention program is crucial since it often detennines the success of future 

function and athletic performance. 
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2.4.2 Effect of athletic training background and bracing 

Although a restricted number of studies exist on the topic, results have demonstrated that 

extensive athletic training influences knee proprioception (Barrack, Skinner, Brunet, & 

Cook, 1983a, 1984a; Skinner et al., 1986). Knee kinaesthesia has been shown to be 

significantly better in trained collegiate gymnasts compared to age-matched controls, 

suggesting that extensive training has a positive effect on some measures of proprioception 

(Lephart, Conners, Fu, Irrgang, & Borsa, 1991; Lephart, Giraldo, Borsa, & Fu, 1996). 

Enhanced kinaesthesia was also found in trained dancers (Barrack et al., 1984a) and in the 

dominant radiocarpal joint of elite table tennis players (Jerosch and Prymka, 1996b). 

According to these findings, highly trained athletes seem to possess enhanced neurosensory 

pathways. Such pathways appear to improve proprioception through enhanced central and 

peripheral neural mechanisms and may be developed as a result of long-tenn athletic 

training. However, another possible explanation is that athletes may have genetically 

detem1ined superior kinaesthetic responses. Ban·ack et al. (1983) studied highly conditioned 
' 

professional ballet dancers to detennine the effect of training on their proprioception. 

Paradoxically, they found that these dancers performed significantly better in their threshold 

to their detection of movement and significantly worse in their ability to reproduce a joint 

position than an age-matched control group. The authors believed that athletic training can 

affect joint proprioception and that possibly these two tests for proprioception depend on 

different neural mechanisms (Barrack et al., 1984a; BmTack, Skinner, & Cook, 1984b; 

Carpenter, Blasier, & Pellizzon, 1998). They also believed that the hypermobility of joints 

of ballet dancers is due to their training, which results in stretched joint capsules a11d 

ligaments and therefore impair their proprioception. Likewise, other investigators have 
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shown that subjects with increased laxity have poorer proprioception (Barrack et al., 1983a; 

Barrack et al., 1984b; Rozzi, Lephart, Gear, & Fu, 1999). Nevertheless, it is still unknown 

whether athletic training can actually change a person's proprioception sensitivity or change 

the way position sense is affected by muscle fatigue effects. The effects of training on 

proprioception need to be further studied in controlled trials. 

Adjunctive use of bracing or taping during the rehabilitation process is common and in 

some cases may offer additional protection for the athlete. Some studies reported that knee 

angle reproduction was improved with elastic bandage in normal individuals, ACL 

deficient, and after posttraumatic pattela dislocations (J erosch and Prymka, 1996a; 

Lattanzio, Petrella, Sproule, & Fowler, 1997). Pari of this beneficial effect is thought to be 

mediated by improved proprioception from the injured area, favourably influencing 

protective neuromuscular arcs. The effect of elastic bandages on knee proprioception 

demonstrated significant improvements immediately after bandage application and after one 

hour of bandage wear (Barrett, 1991; Lephart et al., 1992). Loss ofbenefit was documented 
I 

after removal of the bandage (Perlau, Frank, & Fick, 1995). In the ankle joint, different 

studies have also proved the positive effect of bracing on the proprioceptive ability (Baier 

and Hopf, 1998; Jerosch, Hoffstetter, Bork, & Bischof, 1995; Konradsen, Ravn, & 

Sorensen, 1993; Laskowski et al., 2000; Lephart and Fu, 1995; Lephart eta!., 1997). On the 

other hand, there ar·e studies which demonstrated no positive influence in the ACL-

reconstructed knee (Jerosch and Prymka, 1996a) or in patients suffering from a medial 

lesion of the meniscus (Jerosch, Prymka, & Castro, 1996). Still, the use of taping and 

bracing causes minimal to no perfonnance decrements and seems to have proprioceptive, 

mechanical, and injury-protection benefits (Bocchinfuso, Sitler, & Kimura, 1994; 
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Macpherson, Sitler, Kimura, & Horodyski, 1995; Pienkowski, McMorrow, Shapiro, 

Cabom, & Stayton, 1995). 

2.5 FUTURE DIRECTIONS 

Although many years of research working on the origin and mechanisms of proprioceptive 

afferents have been completed, the role of muscle and joint receptors are still unclear. Given 

that the sense of effort is gaining popularity as a factor involved in position sense, 

mechanisms are still vague and indefinite. It would be appealing to develop testing 

protocols where subjects are not influenced by the sense of gravity, such as in the water or 

space environments. A lot of work still needs to be done on that topic. First and foremost, it 

is primordial to agree on the major physiological mechanisms involved in position sense to 

facilitate testing, rehabilitation and training of proprioception. Afterwards, it would be 

interesting to conceive a portable instrument to assess, diagnose, or pre-screen for 

functional instability in patients and athletes. Moreover, more studies should be done to 
' 

clarify why females appear to have a poorer perfom1ance than males when tested for 

positional acuity. Is there a physiological, hormonal, or psychological aspect that could 

explain such a difference? 

It seems clear that proprioceptive deficits exist after an injury. Nevertheless, further 

research to elucidate how these deficits can be remediated or compensated for to improve 

function, prevent reinjury, and restore proprioception by surgical procedure, is needed. 

Moreover, does the incidence of sport related injuries correlate with decreased 

proprioception, or does injury lead to a generalized decrease in proprioception? It is also 
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apparent from the literature that a large number of studies have focused on favourable 

aspects of proprioceptive treatment in rehabilitation after injuries and joint reconstruction. 

However, little is known about the effectiveness of proprioceptive training as a preventive 

tool for injuries. Can a preventive proprioception program really help to avoid injuries in 

athletic setting? This question is still unanswerable at the moment and should be of an 

interest for future studies. 

Another fascinating area for future research would be to measure proprioception in the 

athletic setting to determine whether proprioception impainnent is related to sport 

perfonnance and whether proprioception is enhanced with years of athletic training. Only 

few and unconvincing studies have been done on the latter. Similarly, it would be 

fascinating to verify whether proprioception is improved with intense weight training, as it 

is the case with bodybuilders. In addition, the literature is still not persuasive whether 

proprioception is trainable or it is a gift from life. Can everyone benefit from a 

proprioceptive training program or only those who are naturally underprivileged? Also, how 
' 

traditional weight training programs can be changed to incorporate a proprioception training 

knowing that it is negatively affected by dynamic muscle contractions during exercise? 

Although researchers are starting to understand what proprioception is, a lot of unanswered 

questions still remain and accordingly future studies are indispensable. 
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3.1 INTRODUCTION 

A complex combination of many different signal sources, such as those from the tendon 

organs, muscle spindles, joint receptors, and cutaneous receptors, result in very sensitive 

and unambiguous sensations about our movement and limb B0sition in space (McCloskey, 

1978). In fact, in the absence of visual input, we have an accurate sense of position 

implying that we lmow the position of our limbs at any time during a movement. Attaining 

the aimed final position of either a limb or a particular end-point of the locomotor apparatus 

is an important motor task of our everyday behaviour; it can be crucial for success in 

various professional or spmiing activities. Indeed, it has been suggested that muscle fatigue 

could predispose a joint to injury and thus an eventual decrease in athletic perfonnance 

(Skinner et al., 1986). Proprioception has also been a topic of interest in spmi rehabilitation 

because injuries have been found to have a detrimental effect on proprioception through the 

damage ofmechanoreceptors in ligaments. 

Fatigue studies have demonstrated that changes induced by muscle fatigue may well be 

influenced by whether the contraction is static (Bigland-Ritchie, Johansson, Lippold, & 

Woods, 1983) or dynamic (Colliander, Dudley, & Tesch, 1988). Likewise, it is also well 

known that strenuous eccentric exercise induces greater acute damage to muscle fibres than 

concentric and isometric exercises (Komi and Rusko, 1974). The main difference between 

the three muscle contractions is that in an isometric contraction the muscle length remains 

constant while the contracting muscle is forcibly lengthened during an eccentric contraction 

and shortens during a concentric contraction. Therefore, comparing the three types of 
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muscle contractions on a matching task becomes appealing to find out whether the type of 

contraction could have an effect on proprioception. 

As a matter of fact, it has been recently shown that proprioception is weakened following 

repetitive muscle contractions. The size of the matching errors was correlated with the drop 

in force (Saxton et al., 1995; Walsh et al., 2006). It was then concluded that the fall in force 

led to an increase in the effort required to maintain position of the limb against the force of 

gravity and that this increase in eff01i led to the matching errors (Walsh et al., 2004). 

Moreover, the direction of the matching errors suggested that we make use of signals of 

both peripheral and central origin in detem1ining the position of our limbs in space by 

reliance, in part, on the amount of effort required to maintain limb position against gravity 

(Walsh et al., 2006). 

Muscle fatigue and proprioception has been the focus of many studies in which the majority 

of them have sought the effect of either isometric, concentric, or eccentric exercise on 
! 

position sense (Allen and Proske, 2006; Forestier, Teasdale, & Nougier, 2002b; Walsh et 

al., 2006; Winter et al., 2005). Other authors have compared the effect of concentric versus 

eccentric exercise on position sense (Brockett et al., 1997; Walsh et al., 2004). However, 

little is known about which type of muscle contractions would affect proprioception to the 

utmost level. Therefore, the aim of the study was to detennine which type of repetitive 

muscle contraction would express the greater acute impainnent of elbow position sense. 

Knowing that eccentric exercise exhibits a large acute drop in force in the exercised 

muscles, the purpose of the present study was to test the hypothesis that eccentric 
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contractions would lead to the greater decrease of force and would therefore 1mpmr 

proprioception to a greater degree than concentric and isometric contractions. 

3.2METHODS 

3.2.1 Subjects 

This study was conducted on 11 right handed male subjects (mean age 28.9 ± 10.6 years; 

mean height 173.8 ± 6.2 em; mean weight 80.4 ± 11 kg), without any previous history of 

upper limb musculoskeletal problems (Table 3.1). They were all aerobically active at least 

three times a week and 7 subjects also included weight training in their fitness program. All 

subjects gave their written infonn consent in compliance with Memorial University of 

Newfoundland Human Investigation Committee regulations, were all instructed regarding 

the procedure of the experiment, and filled in a Physical Activity Readiness Questionnaire 

(PAR-Q) (Canadian Society for Exercise Physiology, 2003 ). 

3.2.2 Apparatus 

As displayed in Figure 3.1, a supporting frame with two handles fully adjustable in the 

horizontal and vertical planes was instrumented with linear potentiometers (Model K/RV 4, 

Precision Electronic Components Ltd, Weston, Ont.) and a strain gauge (Omega 

Engineering Inc. LCCA-250, Laval, Qc). The signals from potentiometers and strain gauge 

were a111plified and san1pled (Biopac Systems Inc., Santa Barbara, CA) along with surface 

electromyographic (EMG) signals at a rate of 1 kHz (12-bit A/D). The EMG activity was 

sampled at 2000 Hz, with a Blackman -61 dB band-pass filter between 10-500 Hz, 

amplified (bi-polar differential amplifier, input impedance = 2M, common mode rejection 
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Table 3. 1 Participants' physical characteristics 

Subjects 
Age Height Body Mass 
(yrs) (em) (kg) 

23 172 80 

2 49 175 99 

3 43 163 71 

4 43 163 67 

5 24 173 67 

6 25 171 86 

7 23 185 82 

8 21 175 76 

9 22 175 84 

10 20 180 74 

11 25 180 98 

Mean(±SD) 29(±10) 174 (±7) 80.4 (±11.0) 
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Figure 3.1 Position sense apparatus consisting of a supporting frame with two handles fully 

adjustable in the horizontal and vertical planes instrumented with linear potentiometers. The 

axis of rotation ofthe subject's elbow was aligned with the axis ofrotation of the handle 

where the potentiometer was positioned. Shoulders and waist were tightly strapped with 

safety belts 
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ratio~ 110 dB min (50/60Hz), gain x 2000, noise~ 5 11 V). A voltage pulse (0-5 Volts) was 

also collected to mark temporally the matching between the reference and indicator am1s. 

Accuracy of angular displacements and force output were .s;0.05% (0-5 Volts) and .s;0.03% 

with a full scale ranged from 0° to 314 oand from 0 to 1000 N, respectively. The axis of 

rotation of the subject's elbow (lateral epicondyle) was aligned with the axis of rotation of 

the handle where the potentiometer was positioned. Shoulders and waist were tightly 

strapped with safety belts to limit trunk motion. The subjects' anns were kept next to the 

body with their hands holding the handles at different angles. For the exercise tasks, the 

resistance was attached to the right handle by a strain gauge. 

3.2.3 Experimental procedure 

Subjects first attended a familiarization sessiOn in which anthropometric measurements 

were obtained to fit the subjects to the manipulandum. They also produced 3 maximal 

voluntary isometric contractions (MVC) with their right dominant ann with a 5 min rest 

interval between MVCs. The maximum value was used to determine the exercise resistance 
' 

for the subsequent sessions. All subjects then participated to 3 different sessions separated 

by a minimum interval of 7 days. For each session, testing was conducted at the same time 

of day to nullify possible differences attributed to diumal rhythms. The three experimental 

sessions (randomly presented) were differentiated by the nature of the exercise tasks which 

consisted of isometric contractions, concentric contractions - concentric phase only, or 

eccentric contractions - eccentric phase only. Each session included three tasks: an exercise 

task (isometric, concentric or eccentric), a proprioception task (PT), and a MVC. They all 

started by collecting the resting blood lactate level (Accutrend® Lactate Analyzer, 
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Mannheim, Gem1any) followed by 3 pre-exercise PT at each target angular position (TAP) 

(see Figure 3.2). The PT consisted of matching angular position of the right indicator ann to 

that of the left reference arm. Target angular positions were set at 70°, 110° and 150° of 

elbow flexion. During the PT the subjects voluntarily positioned their reference ann at the 

TAP using visual feedback provided through the computer screen. They were asked to 

maintain, unsupported, this reference position, to close their eyes, and then, to match with 

their indicator ann. No feedback was given about their perfonnance. When the subject 

indicated that both anns matched, a voltage pulse was triggered by the experimenter to 

identify the matching (Figure 3.3). Before each TAP, subjects retumed both arms to 90° 

using visual feedback. Thereafter, subjects performed the first of nine sets of the exercise 

task. Each set consisted of 10 voluntary contractions of 4 seconds each with a 2 seconds rest 

between contractions. For the isometric condition, the elbow was flexed at 90 degrees and 

the torque output was provided on the computer screen. For the concentric condition, 

subjects were asked to extend their elbow starting from an elbow angle of 180° and to flex 

the ann until the arm was fully flexed, keeping their shoulder stable. At this point, they 
' 

were asked to relax their am1 (indicator am1) while the experimenter returned the weight to 

its initial position. Subjects were required to lift 75% of their maximal concentric 

contraction (isometric MVC minus 20%). The resistance for concentric and eccentric 

contractions was applied by means of weight plates attached to the right handle of the 

supporting frame. Similar procedures were adopted for the eccentric condition; subjects 

were asked to do series of lifts from full flexion to full extension at 75% of their maximal 

eccentric voluntary contraction (isometric MVC plus 20%). Each set of 10 contractions was 

separated by approximately 2 minutes (about 1-min to complete the 3 PT and 1-min of 

complete rest). This procedure was completed 9 times with 3 PT at the same TAP and 
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Figure 3.2 Design of the familiarization session and an experimental session 
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Figure 3.3 A typical set of kinematic data. The solid line represents the angular 

displacement of the reference arm and the dash line represents angular displacement of the 

indicator arm. The starting position of both arms was always at 90° of elbow flexion and 

when both arms were matched, a voltage pulse was triggered and is represented by the 

dotted vertical line in this figure 
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1-min rest between each set. The TAP differed from set to set. Once subjects could no 

longer maintain the required exercise task for two consecutive contractions, the ongoing set 

was stopped and immediately followed by a post-exercise MVC and blood lactate level 

collection. Surface EMG recording electrodes (MediTrace, Tyco Healthcare Group, 

Mansfield, MA) were placed over the belly of the biceps brachii and triceps brachii 

muscles in a bipolar fashion and approximately 3 em apart. Electrodes were placed along 

the estimated direction of the muscle fibres. The ground electrode was placed on the 

clavical shaft. Skin preparation for all electrodes included removal of body hair with a razor 

and cleaning dead epithelial cells using an isopropyl alcohol swab. 

3.2.4 Data analysis 

All kinetic and kinematic parameters were analyzed usmg custom made software 

(MATLAB, Math Works Inc., Natick, MA). From these parameters, the following variables 

were determined: (a) maximal voluntary contraction (MVC) force: the force curve was 

filtered (second-order low-pass Butterworth filter with a 7 Hz cutoff frequency) q.nd the 
I 

MVC was detennined by the maximal torque output of the curve; (b) position matching 

errors: angular position signals were smoothed with a moving window average (101-ms 

window) and position matching error was calculated as: 

angle (reference arm)- angle (indicator ann), 

where 90° = horizontal foreann and 180° = vertical foreann. For each trial, matching 

accuracy was detem1ined using the constant (CE), absolute (AE), and variable (VE) errors. 

Constant error is the mathematical operation difference between the position of the right 
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ann and the position of the left ann. By convention, a negative value refers to a more 

extended indicator arm whereas a positive value refers to a more flexed indicator arm. 

Absolute error is the absolute deviation between the position of the indicator arm and the 

reference position and represents the overall accuracy in perfonnance. Finally, variable 

error represents the amount in variability in the response regardless of the target; (c) total 

matching time: defined as the time between the first movement of the right arm from the 

starting position and the onset of the voltage pulse; (d) movement time: defined as the time 

between the start and the end of a contraction perfonned during the exercise task. The start 

and the end of a contraction was determined by using the right potentiometer for the 

concentric and eccentric conditions while using the force output for the isometric condition; 

and (e) integrated EMG: the EMG signals from the biceps brachii were full-wave rectified 

and integrated. The EMG activity was integrated between the stmi and the end of a 

contraction and normalized by the time. The integrated EMG (iEMG) values for 

submaximal contractions during the exercise task were normalized relative to pre-exercise 

iEMG value obtained from the MVC. 

3.2.5 Statistical analysis 

All variables m·e presented as mean (±SE) and 95% confidence intervals unless otherwise 

mentioned. Repeated measures analysis of variance followed by post hoc Bonferroni test 

was used for statistical comparisons of means. Levene tests for equality of variances were 

perfonned and, if significant, square root adjustments were made. First, a one-way analysis 

of variance with repeated measures on the factor condition (Pre-exercise, Isometric, 

Concentric, and Eccentric) was perfom1ed on the MVC parmneters. Second, a two-way 

analysis of variance [2 data acquisition time (Pre - Post) x 3 exercise tasks (Isometric, 
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Concentric, and Eccentric)] with repeated measures on both factors was computed on blood 

lactate values. Third, a one-way analysis of variance with repeated measure (Isometric, 

Concentric, and Eccentric) was performed on iEMG data and movement time, and finally a 

two-way analysis of variance [ 4 exercise tasks (Pre-exercise, Isometric, Concentric, and 

Eccentric) x 3 PT (70°, 110°, and 150°)] with repeated measures was computed onCE, AE, 

and VE. The level of significance was set at a p-value of 0.05. For all statistical tests, SPSS 

14.0 for Windows was used (SPSS inc., Chicago, IL). 

3.3 RESULTS 

The pre-exercise mean value (±SE) for MVC was 244 (±10) N [95% CI= 221-268]. The 

values recorded at the end of the post-exercise (i.e., approximately 1 min after completing 

the last set of the exercise task) for isometric, concentric, and eccentric conditions were 226 

(±14) N [95% CI= 195-258], 205 (±14) N [95% CI= 172-238], and 184 (±15) N [95% CI= 

150-218], respectively (Figure 3.4). Bonferroni post hoc analysis showed that post-exercise 

MVCs decreased significantly (p < 0.05) compared to the pre-exercise with a greater drop 

in force for the eccentric contractions. Nevertheless, the post-exercise isometric and post

exercise concentric MVCs were not significantly different from each other. The pre

exercise mean values (±SE) of blood lactate concentration for isometric, concentric, and 

eccentric conditions were 1.8 (±0.2) mmol·L-1 [95% CI= 1.4-2.2], 1.8 (±0.1) mmol·L-1 

[95% CI= 1.5-2.2], and 1.8 (±0.3) mmol·L-1 [95% CI= 1.2-2.5], respectively. Blood lactate 

concentrations recorded at the end of the isometric, concentric, and eccentric exercises were 

3.6 (±0.3) mmol·L-1 [95% CI= 2.8-4.2], 3.7 (±0.2) mmol·L-1 [95% CI= 3.2--4.3], and 
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Figure 3.4 Mean (n=ll) maximal isometric voluntary contraction (MVC) for pre-exercise, 

post-exercise isometric, post-exercise concentric, and post-exercise eccentric (NS, Non 

Significant; Error bars +SE) 
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3.6 (±0.5) mmol·L-1 [95% CI= 2.5-4.8], respectively (Figure 3.5). For all three exercises, 

post-exercise blood lactate concentrations increased significantly (p < 0.05). However, the 

pre- and post-exercise values did not differ among conditions and the analysis revealed no 

interaction. In the same way, results from a pilot study revealed that blood lactate 

concentrations did not significantly differ at 5-min as compared to immediately after the 

end of the exercise. 

The mean value (±SE) ofiEMG during the isometric condition was 0.197 (±0.023) mV·s-1 

[95% CI= 0.145-0.249], 0.228 (±0.049) mV·s- 1 [95% CI= 0.115-0.340] during the 

concentric condition, and 0.166 (±0.013) mV·s-1 [95% CI= 0.137-0.196] during the 

eccentric condition. The analysis reveals that the iEMG was not significantly different (p < 

0.05) between conditions. 

Figure 3.6 shows that subjects were accurate before the exercise with a mean CE of -0.1 o 

(±1.1) [95% CI= -2.4-2.4] at 70°, -1.6° (±0.9) [95% CI= -3.6-0.3] at 110°, and 0.1 o (:J;:l.2) 

[95% CI= -2.7-2.8] at 150°. After the isometric exercise, the indicator am1 matched the 

reference ann with aCE of0.6° (±1.5) [95% CI= -2.9-4.0] at 70°,-3.3° (±1.1) [95% CI=-

5.9--0.8] at 110°, and 0.2° (±1.1) [95% CI= -2.2-2.6] at 150°. With the concentric exercise, 

the CE was -0.8° (±1.1) [95% CI= -3.3-1.7] at 70°, -4.9° (±1.4) [95% CI= -8.1--1.7] at 

110°, and -2.2° (±1.2) [95% CI= -5.0-0.5] at 150°. Finally, the eccentric exercise led to a 

CE of0.4° (±1.2) [95% CI= -2.4-3.0] at 70°, -3.6° (±1.7) [95% CI= -7.5-0.3] at 110°, and-

2.2° (±1.1) [95% CI= -4.8-0.4] at 150°. Negative values correspond to a more extended 

indicator arm position. Results show that the CE was only decreased after the concentric 
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Figure 3.5 Mean (n=ll) blood lactate concentration for pre- and post-exercise isometric, 

pre- and post-exercise concentric, and pre- and post-exercise eccentric (* p < 0.05; Error 

bars +SE) 
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Figure 3.6 Subjects (n=ll) mean constant error, that is the sign difference between the 

reference arm and the indicator arm, for the pre-exercise matching, the isometric condition, 

the concentric condition, and the eccentric condition at different target angle positions 

(* p < 0.05; Error bars +SE) 
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exercise as compared to pre-exercise (p < 0.05) with no interaction. The statistical analysis 

also reveals that CE tended to be larger at 110° than at 70° and 150° of elbow flexion (p < 

0.09). Despite this non significant p-value, analysis of confidence intervals most likely 

reveals a real angle effect. In fact, 74% and 64% of the range of the true value at 110° did 

not overlap the ones at 70° and at 150°, respectively. Note that 110° displayed a wider range 

oftrue value as a consequence of a lesser matching accuracy [95% CI= -5.8--0.9] compared 

to 70° [95% CI= -2.3-2.4] and 150° [95% CI= -2.8-0.7]. The AE, which has been square 

root adjusted because of non-nonnal distribution, did not reach the significant difference. 

The VE was 1.2 (±0.2) [95% CI= 0.8-1.7] in pre-exercise as compared to 0.8 (±0.1) [95% 

CI= 0.6-1.0] after isometric, 0.8 (±0.1) [95% CI= 0.5-1.0] after concentric, and 0.9 (±0.1) 

[95% CI= 0. 7-1.1] after eccentric exercises. The analysis reveals that VE was significantly 

higher in pre-exercise as compared to the isometric condition. However, this result was 

mainly due to the inconsistent responses from two subjects, their values (3.6 and 4.3) being 

substantially outside the 95% confidence intervals for this variable [95% CI= 0.8-1. 7]. It is, 

therefore, almost impossible to interpret this parameter owing to the violation of the normal 

distribution. 

The movement time was 3.65 (±0.03) s [95%CI= 3.59-3.70] for isometric, 3.71 (±0.03) s 

[95%CI= 3.66-3.78] for concentric, and 4.00 (±0.04) s [95%CI= 3.93-4.07] for eccentric 

contractions. The analysis reveals that the movement time was significantly higher for the 

eccentric contractions as compared to the isometric and concentric contractions. Despite the 

statistical significance, 0.350 s difference in movement times between the eccentric and 
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isometric contractions is not believed to have considerably affected the aforementioned 

results. Hence, the parameter will not be further discussed. 

3.4 DISCUSSION 

The objective of this study was to detetmine which type of muscle contractions would 

impair position sense to the greatest degree. Our results partly confinned our hypothesis by 

revealing that eccentric exercise induced a greater force loss compared to isometric and 

concentric exercises. Nevertheless, the new insight from this study was that, despite the 

larger drop in force output seen with eccentric contractions, proprioception was only 

significantly affected with the concentric exercise task. Matching errors always resulted in 

the indicator am1 adopting a more extended position as compared to the reference ann, 

independent of the matching angles. We are confident that these outcomes could be 

generalized to the population at large because our subjects represented a wide age spectrum 

of the general population (Table 3.1 ). 

The results of the present study showed that post-exercise MVCs were significantly reduced 

in all conditions suggesting that fatigue occurred with all types of muscle contraction. There 

was an 8%, 16%, and 25% decline in isometric, concentric, and eccentric elbow force 

capacity, respectively (Figure 3.4). Similar force reductions were previously observed by 

Marks and Quim1ey (1993 ). The greater loss of force seen after eccentric muscle 

contractions of the elbow flexors was also observed by Komi and Rusko (1974) and 

Newham et al. (1983). Indeed, development of fatigue may be specific to activity, duration, 

and type of contraction suggesting that possible causes of the muscle performance decline 
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may be different according to the type of contraction. The reduction in force output seen in 

this study during isometric contractions could result from ischemia due to elevated 

intramuscular pressure, increasing concentrations of metabolites, and/or limitations in blood 

flow (Babault et al., 2006; Humphreys and Lind, 1963). Compared with the continuous 

isometric contraction, the intennittent nature of the concentric procedure (muscular actions 

followed by a passive movement) may have increased blood flow and therefore the 

evacuation of metabolic by-products (Laaksonen et al., 2003). The force loss induced by 

concentric contractions would then be explained by the intracellular excitation-contraction 

coupling processes as proposed by Pasquet et al. (2000). It is also known that when a 

muscle lengthens (eccentric) during activation the energy requirement and mechanical 

response differ from those of shortening (concentric) contractions (Clarkson and Newham, 

1995; Enoka, 1996). In fact, Enoka (1996) reported that eccentric contractions require 

unique activation and control strategies by the nervous system compared to other types of 

contraction. Given that the actin-myosin bonds should mainly be disrupted mechanically in 

eccentric contractions, the crossbridge cycling interaction can occur with les$ ATP 
I 

hydrolysis than in concentric contractions. Eccentric contractions used in the present study 

are thus associated with a lower energy cost, but with a higher tension output that may well 

be the cause of damage to the muscle-tendon system (Clarkson and Newham, 1995; Friden 

and Lieber, 1992; Lieber, Thomell, & Friden, 1996) which would lead to a greater force 

loss with eccentric compared to isometric and concentric contractions. 

Understanding of the mechanisms of force reduction following eccentric exercise has made 

considerable progress in the last decade. In eccentric exercise, much evidence exists that the 

initial local damage results from mechanical rather than metabolic mechanisms (Brooks, 
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Zerba, & Faulkner, 1995; Lieber and Friden, 1993; Warren, Hayes, Lowe, & Armstrong, 

1993). It is clear that some individual sarcomeres elongate excessively during the stretch but 

that most of these sarcomeres retum to nom1al during relaxation with the thick and thin 

filaments reinterdigitated. With repeated stretch used during our eccentric exercise task, it is 

probable that these sarcomeres gradually become damaged and then fail to reinterdigitate 

(Allen, 2001). Histological studies have reported direct evidence of extensive 

disorganization and even disruption of the myofibrillar structures and intennediate 

filaments, leading to the classically observed Z-line streaming (Friden, Kjorell, & Thomell, 

1984; Friden eta!., 1981). Indices of sarcolemmal disruption, swelling and disruption of the 

sarcotubular system (Armstrong, 1990; Friden and Lieber, 1996), swollen mitochondria 

(Stauber, 1989; Warhol, Siegel, Evans, & Silvennan, 1985) as well as extracellular matrix 

injury (Han et a!., 1999; Koskinen et a!., 2001; Myllyla, Salminen, Peltonen, Takala, & 

Vihko, 1986) also could explain the drop in force with eccentric exercise. The precise 

details of the sarcomere disruption process following eccentric contractions remain the 

subject of speculation. They may also involve the elastic filament titin, which anchors thick 

filaments to Z disks, or the structural protein desmin, which links adjacent Z discs (Allen, 

2001). In addition, inactivation of some sarcomeres from damage to T-tubules may play a 

part. Whatever the precise details, there is evidence of overextended sarcomeres in muscle 

which has undergone eccentric contractions which could be responsible for the marked 

decline in force after exercise as seen in the current study. However, it must be remembered 

that different eccentric protocols and different muscles can exhibit different pattems of 

eccentric damage. 
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In addition to the force output, blood lactate was also collected pre- and post-exercise. It has 

been reported in the literature that the blood lactate production from exercising skeletal 

muscle is an indicator of the metabolic rate (Brooks, 1986). More specifically, lactate 

production reflects the metabolic demand and is an indicator of glycolysis efficiency during 

exercise particularly in high intensity bouts as used in the current study. In the present 

experiment, the blood lactate was increased after each condition but was not different 

between them suggesting that the fatigue protocol used in this study induced the same 

metabolic stress in all conditions (Figure 3.5). Consequently, the different results observed 

between the types of contraction were not due to different metabolic stress induced by the 

exercise task. 

Proprioception is crucial for coordinated movement. When there is a deficit in 

proprioception, controlled movements are impossible without continuous visual guidance 

(Ghez et al., 1995). Moreover, when the state of the muscular system is modified by 

muscular contractions, matching experiments have yielded various and somewhat 

conflicting results (Allen and Proske, 2006; Brockett et al., 1997; Forestier and 

Bom1etblanc, 2006; Marks and Quim1ey, 1993; Pederson et al., 1999; Saxton et al., 1995; 

Ski1mer et al., 1986; Sterner et al., 1998; Walsh et al., 2006; Walsh et al., 2004; Winter et 

al., 2005). Neve1iheless, it is generally accepted that fatigue negatively affects joint 

proprioception mainly through the alteration in either muscle afferents or sense of effort. 

Results of the present study revealed that subjects were variable but quite accurate in 

position matching task before the exercise. Immediately after the concentric exercise, 

subjects made systematic position matching eiTors (-2.6 degrees) by adopting a more 

extended position with the indicator ann compared to the reference one (Figure 3.6). Recent 
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investigations found that the exercised elbow flexors adopted a more flexed position in 

matching the position of the unexercised reference arm (Allen and Proske, 2006; Saxton et 

al., 1995; Walsh et al., 2004); in other words, the opposite of our finding. In some cases, the 

size of the matching errors con-elated with the decrement in force suggesting that the drop 

in MVC was responsible for matching errors. Again, this is contrary to our results since the 

greater drop in MVC was observed after the eccentric exercise and significant matching 

errors were made after the concentric exercise. However, others authors suggested that 

agonist muscle fatigue was associated with a more extended final ann position due to a 

diminution of the contractile capacity of the muscles (Winter et al., 2005). Such 

contradictory findings might come from dissimilarity in procedure. An important aspect of 

our design was to reproduce the same metabolic fatigue in all conditions for further 

comparisons. Indeed, the weight lifted by subjects was express as a percentage of the torque 

recorded during an isometric MVC. The maximal torque produced in the eccentric and 

concentric contractions was equivalent to 120% and 80% of the isometric MVC, 

respectively (see Methods). A similar design was used by Pasquet et al. (2000). In addition, 
I 

the exercise task was designed to reflect as closely as possible a typical weight training 

session. It was also impOiiant for the matching task to replicate a nonnal/athletic situation, 

that is, where subjects are standing up with both anns unsupported on both sides. Moreover, 

because the same matching angles were used in all conditions, a direct comparison between 

these three types of muscle contractions was possible. Our design was thus different from 

other studies which have examined the same muscles. Therefore, comparison of the present 

results with those of earlier reports cannot be applied directly. However, in the following 

section we shall highlight mechanisms responsible for the discrepancy between our results 

and the aforementioned studies. 
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It is generally accepted that sense of limb position is provided by signals from skin, joint 

and most importantly muscle receptors (Brockett et al., 1997; Gandevia, Proske, & Stuart, 

2002). The cun-ent view is that the level of resting activity from muscle spindles signals the 

length of the muscle and, accordingly, the position of the elbow. Indeed, the experiments on 

muscle vibration have implicated muscle spindles in the sense of position (Goodwin et al., 

1972). The subject whose muscle is vibrated experiences an illusion of movement at the 

joint about which the vibrated muscle operates and this illusory movement occurs in the 

direction that nom1ally would stretch the vibrated muscle. Consequently, it was concluded 

that it was not the physical stretch of the muscles but rather the excitation of the afferents 

that was most important for the brain to perceive limb movements (Naito, 2004). One 

explanation is that muscle vibration would cause spindle firing to increase from its pre

existing level to some constant level (McCloskey, 1981). It has also been hypothesized that, 

with continuous muscular work, an accumulation of metabolic by-products in the muscles 

could alter group III and IV muscle afferents that could in tum activate y-motoneurons thus 

leading to subsequent rises in muscle spindle sensitivity (Nicol and Komi, 2003). Certainly, 

spindle discharge rates in actively contracting muscles are likely to be higher and more 

in-egular than in the passive muscle, as a result of co-activated static fusimotor activity. An 

increase in spindle afferent activity in the elbow flexors at a given limb position would give 

the illusion that the indicator ann is more extended than it really is. One would then expect 

the subject to place the exercised limb consistently into a more flexed position when it is 

being used to match the position of the unexercised limb. Therefore, the hypothesis of 

increased spindle discharge rate in fatigue condition cannot elucidate the present results. 
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In contrast, some studies perfonned on humans have indicated that the activity of muscle 

spindle activity declines during sustained voluntary contractions (Macefield, Hagbarth, 

Gonnan, Gandevia, & Burke, 1991; Vallbo, 1970). The mechanism for the reduction in 

spindle discharge has been proposed to involve a reflex inhibition of fusimotor neurons by 

small muscle afferents excited by the metabolic products of the exercise (Bigland-Ritchie et 

al., 1986; Brockett et al., 1997; Garland, 1991; Jeannerod, Michel, & Prablanc, 1984). 

Bongiovanni, Hagbarth, & Stjemberg (1990) presented indirect evidence that the fusimotor 

mediated spindle discharge progressively declines during MVC, and this decline was 

attributed to muscle spindle 'fatigue', that is, a progressive withdrawal of spindle-mediated 

fusimotor support to a-motoneurons. It has also been stated that the spindle afferents' role is 

different with concentric contractions because fusimotor drive may be insufficient to 

overcome muscle shortening and spindle afferents in the contracting muscle may fall silent 

(Hayward et al., 1991). Therefore, this reduced stretch sensibility of spindles after a 

voluntary contraction represents one explanation for the increase in the threshold for muscle 

spindle discharge. This would be matched by the indicator ann adopting a more ex:tended 
I 

position, where the muscle and its spindles were subjected to a greater degree of stretch, and 

thus leading to a decline in position sense after voluntary contractions. Indeed, the present 

results suggest that the signal from muscle spindles had decreased as a result of the exercise. 

To match the level of proprioceptive signal (i.e., spindle discharge rates), the exercised 

muscle had to be stretched more than the control muscle. Therefore, it could be argued that 

the pattern of positional errors observed in this study is the result of exercise-related 

changes in the response of muscle spindles. 
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There has always been some reluctance to accept the concept of muscle spindles as 

proprioceptors. In fact, the results from Marks and Quinney (1993) did not affinn the 

impmiance often attributed to muscle spindles in mediating sense of position. It was then 

suggested that other sources of afferent or efferent activity operating at other levels of the 

nervous system might by involved in mediating position sense. Results from Walsh et al. 

(2004), Winter et al. (2005), and Allen and Proske (2006) have been interpreted as evidence 

in opposition to muscle spindles as proprioceptors and in favour of an effort-based signal 

contributing to position sense during limb placement. They proposed that the effort required 

to maintain position of the arm against the force of gravity provides us with information 

about its location in space. To hold the ann at a set angle against the force of gravity, 

unsupported, requires a certain amount of effort. During exercise, as muscle force declines, 

the central nervous system compensates by increasing activation of motoneurons, leading to 

a progressive increase in the perceived effort (Proske, 2005). If subjects match efforts to 

align their anns they will place the fatigued ann more nearly ve1iically where less force is 

required to support it and where the same effort would be required to maintain its position. 

Adoption of a more vertical position requires less effmi for two reasons. First, the moment 

of the force of gravity on the ann is less. Second, a more vertical position is closer to the 

elbow flexors' optimum length for active tension (Walsh et al., 2004). Indeed, all conditions 

combined, our subjects adopted a more flexed arm position with the angle 70° and a more 

extended arm position with the angles 110° and 150° because of the smaller moment of the 

force of gravity acting on the latter. It was also repmied that when subjects carry out a 

foream1 position matching task, they become more erratic in their performance if the task 

was carried out in the horizontal plane, using a counterweight (Gooey, Bradfield, Talbot, 

Morgan, & Proske, 2000) or by supporting the arm (Paillard and Brouchon, 1968). It was 
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then proposed that these effects are due to withdrawal of a positional cue normally available 

to subjects when matching the unsupported anns in the vertical plane where the gravity 

plays a major role. These observations suggested that if muscle spindles contributed to 

position sense, an additional cue was provided by the amount of effort required to maintain 

the position. Hence, the most recent hypothesis in the literature is that accurate placement of 

foreanns is achieved by a combination of effort-related signals and muscle spindle signals 

(Allen and Proske, 2006). How these two sources of kinaesthetic information combine to 

give us our nom1al positional acuity need further investigations. 

It could also be argued that the present results may be explained by muscle thixotropy. The 

latter depends on the preceding muscle conditioning and the length at which the muscle is 

held immediately after conditioning. It was suggested that with a human foreann position 

sense experiment, the position adopted by the indicator arm was always dependent on the 

fonn of conditioning that preceded it (Gregory et al., 1990; Gregory et al., 1988; Proske et 

al., 1993; Winter et al., 2005; Wise, Gregory, & Proske, 1996). Muscle thixotropy acts, in 
' 

large part, by altering the mechanical state of the intrafusal fibres of muscle spindles 

(Gregory, Wise, Wood, Prochazka, & Proske, 1998). If the contraction is carried out at a 

long muscle length, once the muscle has relaxed, the intrafusal fibres at rest remain long. If 

the muscle is kept still immediately after the contraction, new cross bridges may form at 

that particular length. Once new stable cross bridges have formed, if the muscle remains 

passive and undisturbed, they remain intact at that length for a long period. If the passive 

muscle is then shortened (flexed), such long intrafusal fibres fall slack. Alternatively, if the 

voluntary contraction is carried out at a short muscle length, intrafusal length will be short 

and no slack will be present. However, an important requirement for the generation of 
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muscle conditioning changes in spindle resting activity is that the spindles remain passive 

since cross bridges can be detached by stretch or by a contraction that can eliminate slack 

fibres and make all actual fibres of equal length (Proske et al., 1993). Therefore, the effects 

of muscle thixotropy on the steady state of muscle receptors and their stretch sensitivity 

would not be expected in the present experiment since active positioning of the subject's 

forearm in the starting position should have effectively removed the after-effects of 

previous events. Thus, muscle thixotropy cannot explain the diverse results observed in this 

experiment with different types of contraction. 

Still, it remains difficult to explain the trend for having greater matching errors with the 

110° compared to the two other angles (Figure 3.6). Despite having not reached a statistical 

significant p-value, in reality there is a good chance that the treatment did have a real effect 

on subjects' response. In fact, the analysis of confidence intervals, which represent the 

likely range of the true effect of treatment on the average subject, revealed a real angle 

effect (see Results). This statistical approach would then be one of the simplest and the best 
' 

way to interpret this outcome (Hopkins, 2000). It has been claimed that in many joints, 

proprioceptive activity was most intense at the near-tem1inal range of motion of the flexion-

extension range (Ferrell, 1980; Lephart et al., 1992; McCloskey, 1978; Skoglund, 1973). A 

true position sense would then be heightened towards the full flexion or full extension when 

more joint, cutaneous, and muscle afferents discharge. In fact, Jerosch and Prymka (1996) 

declared that angle reproduction tests in nom1al subjects showed significantly worse angle 

reproduction capability in the midrange. Therefore, the inability to reproduce a passively 

positioned angle at the midrange of motion, that is 11 0° in the present experiment, was due 

to a desensitization of the peripheral afferents. Accordingly, we interpret the smaller 
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matching errors seen with the 70° and 150° angles as due to the more precise infonnation 

subjects received about the position of their forearm over this range. 

3.5 CONCLUSION 

The hypothesis of this experiment was that eccentric exercise would lead to a bigger 

decrease in force and consequently would lead to a greater impainnent of position sense. 

Only the first part of this hypothesis was confirmed by the present study. Actually, it was 

the concentric rather than eccentric exercise that impaired position sense to a greater level. 

An important consequence of all of this from a practical point of view is that fatigue from 

concentric exercise is expected to be accompanied by a disturbance in proprioception. That 

conclusion has implications for the competing athletes predisposing to an eventual decrease 

in athletic perfonnance and to sport injuries. In fact, attaining the aimed final position of a 

limb is an important motor task of our everyday behaviour and can be also cmcial for 

success in various professional or sporting activities. Moreover, knowing that 
' 

proprioceptive training has beneficial aspects in rehabilitation following injury or surgery, 

rehabilitation program should be redesigned to include a proprioceptive component while 

excluding the concentric phase in proprioceptive exercises. 
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4.1 RESPONSES TO THE RESEARCH HYPOTHESIS 

The research hypothesis stated that eccentric contraction would lead to the greater decrease 

of force and would therefore impair proprioception at a higher level than concentric and 

isometric contractions. The first half of this hypothesis was accepted since post-exercise 

MVC reached lowest value after the eccentric exercise task compared to those for isometric 

and concentric exercises. However, the second half was not confinned since matching 

errors were larger in the concentric exercise session. 

4.2 SUMMARY 

The literature supports that muscle performance is reduced after repetitive muscle 

contractions as shown by a decrease in post-exercise maximal voluntary contraction as 

compared to pre-exercise. This reduction is more apparent with an eccentric exercise 

protocol. It is also generally accepted in the literature that position sense is impaired in the 
I 

acute phase by isometric, concentric, and eccentric repetitive muscle contractions. However, 

no study at this point has compared proprioception following the three types of muscle 

contraction. The aim of this thesis was therefore to compare the three types of muscle 

contraction on position sense using the same protocol and the same subjects. 

The study included in the thesis showed that the eccentric exercise task lead to a greater 

decline in force as compared to isometric and concentric exercise. Results from this study 

also revealed that, although there was a greater drop in force output seen with the eccentric 

exercise task, position sense was significantly affected only by the concentric exercise task. 
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In addition, matching errors were always consistent with the indicator adopting a more 

extended ann position than the reference ann. Without disallowing the sense of effort as a 

possible mechanism involved in position sense, our results suggested that a decrease in 

muscle spindle discharge rate owing to repetitive muscle contractions would more likely be 

responsible for the matching errors observed following the concentric exercise. 

From a practical point of view, fatigue from concentric exercise is thus expected to be 

accompanied by a disturbance to proprioception. This could in tum have implications for 

the perfonnance of competing athletes and for sport injuries. In fact, proprioceptive training 

has become an important aspect of sport rehabilitation after injury or surgery and also in 

prevention ofreinjury. It would then be a good idea in the future to consider the results from 

this study to modify, if necessary, proprioceptive training program in rehabilitation. 

4.3 LIMITATIONS OF THE STUDY 

(i) Subjects' profile 

As displayed in table 3.1, the group of subjects participating m the study was not 

homogeneous as a result of the age difference. One could argue that results of the study 

could have been falsified owing to the age effect. For that reason, we ran a statistical 

analysis with only subjects (n= 8) between 20 and 29 years of age. No difference was 

observed in this outcome as compared to the analysis with all subjects (n= 11). 
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(ii) Statistical variance 

As mentioned earlier, subjects were quite accurate but variable during the proprioception 

task. This variance could certainly have affected the final results of the study. In fact, by 

looking at the Figure 3.6, it seems evident that the angle 110° was negatively affected to a 

greater degree than the two other angles. Likewise, it could also be argued from this figure 

that position sense was also affected by the eccentric exercise task. It is, therefore, plausible 

that the eccentric condition did not reach the significant level as a result of the large 

variance among subjects. 

(iii) Measurements 

The degree of muscle fatigue was assessed by two different indicators, the post-exercise 

MVC along with the blood lactate concentration. One could argue that both are indirect 

measurements and thus do not give a precise indication of the real fatigue induced by the 

exercise tasks. Notwithstanding, these two indirect indicators of muscle fatigue are 

generally accepted in the literature. 

The discussion section of the thesis mentioned that the results could be explained by the 

force of gravity (sense of effort), by the length-tension relationship of the muscle, and by 

the muscle spindle discharge rate. Unfortunately, none of these variables were directly 

measured in the study. The discussion is then based on conceivable assumptions from the 

literature on related subjects. 
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(iv) Experimental design 

The proprioception task used in the study was perfon11ed in the vertical plane where gravity 

may have had a direct influence on the outcome. It would have been interesting to add to the 

experimental design a condition where subjects would have been in a microgravity 

environment. Proprioception tasks perfon11ed in the horizontal plane or in the water or by 

using a counterweight are only few ideas that could have been used. 
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