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Abstract 

The objective of this thesis is to characterise and map the benthic habitats ofNewman 

Sound, a fjord in Terra Nova National Park, eastern Newfoundland. A multibeam sonar 

system was used to collect bathymetric and acoustic backscatter data. As backscatter is a 

function of seafloor substrate, interpretations were made about the distribution of 

substrates, and these were tested by groundtruthing. Benthic sediments were collected 

using a Peterson grab and video images were collected with a tethered drop camera, 

SCUBA divers, and a remotely operated vehicle. A seismic sub-bottom profiler was also 

used. Nine substrates were identified, and each supported a distinct assemblage of 

invertebrates and algae, which were classified into eleven habitats. The distribution of 

substrates and habitats were mapped in a Geographic Information System (GIS). The 

results indicate that this methodology can effectively map fjord habitats and successfully 

identifies areas of conservation value. 
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Chapter 1: Introduction 

1.1 Introduction 
The purpose of this thesis is to classify and map benthic habitats in Newman Sound, a 

boreal fjord in northeast Newfoundland. Methods exist for habitat mapping in other 

marine environments, but these have not been used extensively in fjords. One such 

methodology is to use multibeam sonar and acoustic sub-bottom profiling, groundtruthed 

with seabed samples and images. This methodology was applied in Newman Sound, and 

is the first application of multibeam sonar for habitat mapping in a Newfoundland fjord. 

The scope ofthis study was constrained by the use of an existing multibeam sonar data 

set collected for purposes other than habitat mapping, and by limited groundtruthing 

opportunities. 

Previous benthic habitat and substrate maps were created using single beam echo 

sounders which only cover narrow survey tracks, making this method costly and time 

consuming as multiple closely spaced lines must be surveyed. The spaces between the 

survey tracks are filled by interpolation, resulting in gaps and reduced accuracy. 

Multibeam sonar technology offers a more efficient method for benthic mapping, as it 

offers complete coverage of the seafloor with fewer passes. It is therefore important at the 

present time to develop a methodology for creating benthic habitat maps from multibeam 

sonar data. Such a map has not previously been created anywhere in Newfoundland or 

Labrador. 

Knowledge of the benthic habitats found in Newfoundland fjords has been limited 

until recently. Recent studies of fjord biota suggest that Newfoundland fjords are 

potential hotspots of biodiversity (Quij6n 2004; Ramey 2001; Haedrich and Gagnon 
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1991). The potential for endemism is high in fjords, which characteristically have 

reduced water circulation and narrow connections to the sea. For example the population 

of Atlantic cod (Gadus morhua) in Gilbert Bay, Labrador remain in the bay year-round, 

and are genetically distinct from adjacent offshore cod stocks (Morris and Green 2002). 

The attributes of fjords which make them biologically diverse, namely steep 

slopes, deep depths and patchy habitats, also make them difficult environments to study. 

Consequently the physical dynamics which contribute to biodiversity in fjords are poorly 

understood, as are the likely impacts of human activities on the benthos. Newfoundland 

fjords are becoming increasingly developed, particularly as they provide sheltered 

locations for aquaculture, an activity with documented impacts on the benthos (Tlusty et 

al. 2000). Hence there is a recognised need for conservation measures in fjords in 

Newfoundland and Labrador to protect biodiversity and unique coastal habitats. 

Multibeam sonar technology and its applications to marine mapping will be 

discussed below. Newman Sound fjord is described in Chapter 2, along with the methods 

used to sample the fjord and map the results. Chapter 3 contains interpretations of the 

acoustic data sets, the results of groundtruthing, and maps of classified substrates and 

benthic habitats. Finally an assessment of the methodology used and the implications of 

this work are discussed in Chapter 4. 

1.2 Introduction to Habitat Mapping 

1.2.1 Defining Habitat 
One ofthe greatest challenges in habitat mapping is defining what is meant by 'habitat.' 

Kostylev et al. (2001) define habitats as "spatially recognisable areas where the physical, 

chemical, and biological environment is distinctly different from surrounding 
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environments." This definition was specifically designed for the purpose of habitat 

mapping. Thus it recognises the spatial nature of habitat investigation, and also that the 

physical and biological patterns which define a habitat must be continuous to the extent 

that they are recognised by the map maker. Scale therefore is of critical importance in 

defining habitats. In this study, habitat is defined at the scale of several 1 Os of metres, the 

'mesohabitat' scale of Greene et al. ( 1999). 

1.2.2 Uses of Benthic Habitat Maps 
Benthic habitat maps produced from multibeam acoustic data provide high quality 

information for decision making and marine management. Such maps are useful to 

ascertain the impacts that petroleum exploration, fishing, aquaculture and other activities 

have on the benthos. Over most of the Canadian seabed, basic information about the 

benthos is not available, so baseline information must be gathered if changes and impacts 

are to be monitored. In Canada most benthic mapping is undertaken as a collaborative 

effort by industry, government, and academia (Geological Survey of Canada (Atlantic) et 

al. 1999). 

Fisheries managers are becoming increasingly aware ofthe importance of benthic 

habitat mapping, particularly in identifying spawning and nursery grounds. Detailed maps 

of benthic communities also allow for targeted fishing effort, which reduces the financial 

costs of fishing and increases profits. Targeted fishing reduces the environmental costs 

associated with fishing techniques, such as trawling, by reducing the amount of seafloor 

that needs to be disturbed for fishermen to collect quotas (Marine Affairs Research and 

Education 2002b ). Habitat maps can also be used to define buffers around fragile and 
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vulnerable habitats, such as deep-water corals, to reduce impacts from fishing and 

industrial activity. 

1.2.3 Benthic Habitat Criteria 
At the 'mesohabitat' scale, the most influential physical variables that characterise 

benthic habitats are depth, substrate texture and hardness, and topography (Kostylev et al. 

2001; Pickrill and Todd 2003; Hargrave et al. 2004; Tyrrell2005). Depth controls other 

factors including light penetration (Tyrrell2005), temperature and salinity. Light 

penetration limits the distribution of marine plants and algae which influences the 

distribution of herbivores and organisms that use vegetated habitat for protection. Water 

depth also determines the extent to which the seabed will be influenced by wind and wave 

energy and the currents they create, which disturb benthic habitats and influence their 

physical structure and biological communities (Valentine et al2005). 

Substrate texture influences habitat complexity, and complexity has been linked to 

biodiversity (Snelgrove 1998; Kamenos et al. 2004; Tyrrell 2005). A substrate such as a 

boulder field presents a very rough surface with many microhabitats, whereas a fine-

grained sand or mud bottom generally has a lower surface roughness and complexity. 

Fine-grained substrates, and even coarse gravels, can be worked into larger bedforms, 

such as ripples, waves and dunes, which further increase the complexity of the substrate. 

Very fine-grained sediments (i.e. silts and clays) are likely to have a lower porosity than 

coarse sediments, which limits oxygen availability below the sediment surface and 

therefore the burrowing depth of infauna (Tyrrell 2005). In general habitats with a 

diversity of grain sizes will likely also support diverse biological communities (Snelgrove 

1998). 
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The distribution of flora and fauna on the seafloor reflects their preferences for 

substrate texture for ecological reasons. For many invertebrates, especially sessile forms, 

substrate affinity is based on behaviour and life history traits. Tube-building polychaete 

annelids, for example, are found associated with specific sizes of sand and gravel, which 

they cement to build tubes (Ramey 2001 ). 

The other attribute of substrate that characterises a habitat is hardness. Again, 

behaviour and life history traits play a key role in habitat selection for hardness as it is 

inconsequential to some organisms, and vital to others. Burrowing infauna, such as 

bivalves and polychaetes, will only be found in soft substrates into which they can 

successfully dig. Similarly, marine plants and algae can only exist where the substrate is 

suitable for attachment (Tyrrell 2005). If a sedentary organism settles on an unsuitable 

habitat, such as a soft, fine-grained bottom to which it cannot attach, it will die. The 

species will, therefore, only be distributed in habitats which are favourable to growth and 

survival, making sedentary taxa important habitat-specific biological indicators. 

Topography is the third key habitat component. Topography controls habitat 

complexity at a larger scale than substrate texture. Components of topography include the 

slope angle of the seabed and structures such as depressions, hummocks and steep fjord 

side walls. Seabed slope is an important variable for habitat classification in fjords such 

as Newman Sound, and in many respects differentiates the fjord from the adjacent 

continental shelf off Bonavista Bay. The advent of increasingly sophisticated acoustic 

seabed detection equipment allows precise examination of depth, substrate texture and 

topography for habitat mapping. 
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1.3 Introduction to Multibeam Echo Sounders 
Multi beam sonar systems have become the tool of choice for ocean mapping. Dartnell 

and Gardner (2004) note that multibeam echo sounders are currently being employed 

world wide by navies, marine surveyors and hydrographic services, as well as research 

scientists. The benefits of multi beam sonar to ocean mapping have been widely accepted 

by scientists, managers and policy makers. Improvements in data handling and global 

positioning systems have also made multibeam sounders more usable (Hughes Clarke et 

al. 1996). The use of multi beam sonar systems in Canada began when the Canadian 

Hydrographic Service invested in high resolution multibeam sonar for surveying the 

continental shelf in the late 1980s (Courtney and Shaw 2000). 

A multibeam echo sounder works in a similar fashion to other sonar devices by 

sending out beams of sound which contact a target, and are reflected back to a receiver. 

However, most sonar systems used for mapping only emit a single beam which contacts 

the seabed directly beneath the sounder (a single beam, normal incidence sonar). 

Multibeam echo sounders emit many beams of sound simultaneously, each ofwhich 

contacts the seabed at a slightly different grazing angle creating a cone of sound covering 

a swath of the seabed (Figure 1.1 ). For further discussion of multi beam acoustics and 

other sonar methods see Lurton (2002). 

For mapping in shallow water the multibeam system (both the transmitter and 

receiver) are mounted on the hull of a survey ship. For mapping in deep water the system 

may be mounted on a remotely-operated vehicle or other platform, which can be towed 

6 



Figure 1.1 Multibeam echo sounder insonifying the seabed 
(Kongsberg Maritime AS 2005) 
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near the seabed. As water depth increases the area of seafloor covered by the sonar swath 

increases and resolution decreases. Signal attenuation in deep water can be unpredictable, 

as different water masses with different acoustical properties may be encountered 

(Hughes Clarke et al. 1996). This is why the platform and settings of the multibeam 

system are changed for surveying in deep water. The exact number of beams and 

dimensions of the swath are determined by the capabilities and settings of the multibeam 

system being used, and may be changed depending on the users needs. 

1.3.1 Multibeam Bathymetry 
During a bathymetric survey the multi beam echo sounder uses the travel time of the 

emitted sound through the water column to the target (the seabed) and back to calculate 

the water depth below the transducer. The multibeam system records the two-way travel 

time of the signal, which is used to calculate water depth as the speed of sound through 

water is known. A sound speed profile can be calculated by measuring salinity and 

temperature through the water column at the time of the multibeam survey. An existing 

profile for surface waters in the North Atlantic shows the speed of sound through water as 

1524 m/s (Medwin and Clay 1998). 

The system also records the angle from which the return signal arrives, which 

gives the location of the beam across the survey track. This ability to locate signal returns 

in space is critical, as survey data are not useful if not georeferenced (Hughes Clarke et al. 

1996). Water depth is calculated for each beam and later combined to give a continuous 

record of water depth (Lurton 2002). When these data are mapped, topographic features 

such as depressions and cliffs can be observed due to changes in water depth, and hence 

elevation, across the seabed. 
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1.3.2 Multibeam Backscatter 
A second data set can be processed from the signal return- acoustic backscatter. By 

comparing the strengths of the returned and emitted signals the amount of sound energy 

lost can be calculated. This loss is due to the acoustic properties of the seabed, and can be 

used to predict some physical properties of seafloor substrates. An acoustically low 

reflectance seabed is one which has a low backscatter value, expressed in negative 

decibels (-dB). Low backscatter substrates are likely to be fine grained, with high 

porosity, allowing sound energy to be absorbed. Acoustically reflective (high backscatter) 

substrates tend to be denser and usually harder surfaces such as bedrock, which reflect 

most of the signal back to the receiver, in contrast to absorptive seabeds like silt. Lurton 

(2002) notes that additional scattering of the acoustic signal occurs when other sources of 

scattering are found in the sediment or on the surface of the seabed; for example, shells 

and other living organisms, minerals, plants and algae, and gas bubbles. 

The roughness of a seabed also affects the backscattered signal, as a rough seabed 

will reflect beams in all directions. This is especially true towards the edge of the 

insonified arc, as these edge beams are contacting the seabed at small grazing angles. 

Therefore smooth surfaces have higher acoustic backscatter than rough, complex ones. 

The acoustic parameters of seafloor sediments and their effect on backscatter signals are 

discussed further in Lurton (2002). 

1.4 Multibeam Sonar as a Habitat Mapping Technique 
Through the use of multi beam echo sounders it is possible to achieve 100% seafloor 

coverage at metre-scale horizontal resolution and centimetre-scale vertical resolution 

(Dartnell and Gardner 2004). This resolution provides seabed mapping opportunities 
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which have not been possible until now. Courtney and Shaw (2000) noted that the use of 

multibeam systems has changed the scale at which geological mapping is now done on 

the Canadian continental shelf from greater than 1:250 000 to around 1:1000. 

This revolution in marine geological mapping is important because an improved 

ability to map seabed geology allows us to indirectly map habitat characteristics related to 

substrate. However, as important as they are, geologic attributes alone are not sufficient to 

differentiate benthic habitats; biological groundtruthing must also be carried out (Kenny 

et al. 2003). Multibeam data must therefore be combined with additional seabed sampling 

to produce a benthic habitat classification, which in tum must be groundtruthed to ensure 

accuracy. The combination of methods employed to groundtruth multibeam data depends 

on the purpose of the habitat mapping, the target species, the size of the area to be 

covered and the level of detail required. 

Multibeam sonar and associated groundtruthing methods form the foundation of a 

number of large, international, interdisciplinary efforts to map geology and benthic 

habitats. The Geological Survey oflreland has recently completed a 7-year, €32-million 

project to map the Irish Exclusive Economic Zone. This project, the Irish National Seabed 

Survey (INSS), is the first of its kind in the world (Geological Survey oflreland 2006). 

This type of large project is currently being undertaken elsewhere, such as the 

MAREANO project in Norway which began in October 2005 (Geological Survey of 

Norway 2006) and the HERMES project in the EU (Hermes Consortium 2004). 

The Canadian Seabed Resource Mapping Program (SeaMap) led by the Canadian 

government, is the first proposed large, integrative seabed mapping project in Canada. 
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The main objective of SeaMap is to map the Canadian Exclusive Economic Zone (EEZ) 

out to the 200 nautical mile limit, so that Canada's Oceans Act ( 1997) can be 

implemented within this zone. Mapping is also proposed in waters adjacent to the EEZ, so 

that Canada can claim additional marine territory under the United Nations Convention 

on the Law of the Sea (Geological Survey of Canada (Atlantic) et al. 1999). Currently 

funding for the habitat mapping component of the SeaMap programme is still being 

sought. 

1.5 Multibeam Mapping in Atlantic Canada 
In Atlantic Canada much multibeam mapping work has been undertaken for mapping 

marine geology and geomorphology. This work has been primarily focused on the 

offshore banks, particularly those on the Scotian Shelf (Todd et al.1999; Todd 2005). 

A number of multidisciplinary projects related to benthic habitat have also been 

undertaken, again primarily in Nova Scotia. For example Kostylev et al. (2001) used 

multibeam sonar to map benthic habitats on Brown's Bank. The Geological Survey of 

Canada (Atlantic) and the Canadian Hydrographic Service collaborated with the Canadian 

Offshore Scallop Industry Mapping Group to map scallop fishing grounds on Brown's 

and German banks (Kostylev et al. 2003). In that study multibeam sonar was used in 

concert with groundtruthing to determine scallop (Placopecten magellanicus) abundance. 

Multibeam technology has also been utilised successfully for conservation 

purposes in Atlantic Canada. The Sable Island Gully was surveyed to assess habitat and 

biological communities before the area was officially designated as a federal marine 

protected area in 2004 (Hargrave et al. 2004). The sites of other proposed marine 

protected areas have also been surveyed using multibeam, including the Race Rocks in 
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British Columbia and the Musquash Estuary in New Brunswick (Marine Affairs Research 

and Education 2002a). 

1.6 Multibeam Mapping Efforts in Newfoundland 
A number of projects employing multi beam technologies have been undertaken in coastal 

Newfoundland and Labrador. A multibeam bathymetric survey was conducted in St. 

George's Bay in southwestern Newfoundland in 1995 to refine the results of previous 

Quaternary geology and coastal mapping (Shaw et al.1997; Shaw and Courtney 1997). 

A multibeam system was also used to map the Bay of Islands fjord in western 

Newfoundland in 1997 to interpret Quaternary sediments and examine seabed 

morphology (Shaw et al. 2000). Tlusty et al. (2000) used multibeam sonar to examine the 

effects ofsalmonid aquaculture on the benthos ofBay d'Espoir, a fjord on the south coast 

of Newfoundland. No literature was found on previous application of multi beam sonar 

specifically to habitat mapping in Newfoundland, making this thesis the first attempt to 

do so. Multibeam sonar has previously been applied to habitat mapping in fjordic 

environments in Alaska (Harney et al. 2006). 

In 2001 the Canadian Hydrographic Service conducted a multi beam survey in the 

Leading Tickles area ofNotre Dame Bay, which is an area of interest for a marine 

protected area under Canada's Oceans Act (1997). In 2002 a similar multibeam acoustic 

assessment was carried out in Gilbert Bay, Labrador; which has since been designated as 

a marine protected area (Morris and Power 2004). Therefore multibeam acoustics appear 

to be a recognised method of assessing marine habitats for conservation purposes in this 

province. 
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1.7 Fjords in Newfoundland 
The island ofNewfoundland has around 100 fjords of varying morphologies, more than 

any other region of Eastern Canada (Syvitski et al. 1987). Newfoundland's coast is 

considered to be a fjordic coast because its inlets are glacially carved and usually contain 

one, if not several, sills separating them into basins. 

Newfoundland fjords are primarily wave-dominated, with only a few containing 

major rivers, therefore inputs of fluvial sediment are generally low. Benthic substrates 

characteristic of wave-dominated fjords are produced by wave action along the coastline 

and turbation of glacial sediments on the seabed (Syvitski et al. 1987). Unlike other parts 

of Canada, none ofNewfoundland's fjords contain glaciers or permanent ice; however 

icebergs transported from the Arctic occasionally enter fjords and may disturb the seabed. 

Some fjords in Newfoundland have experienced economic development in recent 

years. Tourism is increasing within the province and visits to fjords in all parts of the 

island are now possible, with some acting as major recreation areas. These fjords such as 

Bonne Bay near Gros Mome National Park and Newman Sound in Terra Nova National 

Park receive numerous visitors. Fjords also provide effective locations for aquaculture 

operations. For example, Bay d'Espoir on the south coast of the island has been the site of 

year-round salmonid aquaculture for over ten years (Tlusty et al. 2000). 

1.8 Approach 
The potential for coldwater boreal fjords in Newfoundland to be biodiversity hotspots is 

accepted but documentation requires that a methodology for successfully mapping 

benthic habitats of fjords be developed. Hence the primary objective of this thesis is to 

investigate the usefulness of multi beam data collected in a fjord environment for creating 
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a benthic habitat map. Fjord bathymetry and backscatter are predicted to be more spatially 

heterogeneous and to have a greater range of values than the continental shelves where 

multibeam technology has previously been applied. Fjords also display more complex 

topography, different sedimentation rates and nutrient cycles, and are likely less disturbed 

than the previously mapped continental shelves. Thus fjords present a greater challenge 

for this mapping strategy. 

In this thesis multi beam backscatter will be interpreted with the aid of shallow 

seismic profiles, grab samples and video imagery to classify substrates within Newman 

Sound. Since backscatter responds to select substrate characteristics, this approach relies 

on the close association between substrate and benthic habitat. The bathymetric setting of 

these substrates will also be considered as bathymetrically controlled variables such as 

slope, light availability, and seabed disturbance, influence substrate and habitat 

distribution. The approach therefore also relies on close associations between water 

depth, seabed morphology and benthic habitat. 

Biological diversity was quantified by collection of flora and fauna. Physical 

variables that contribute to biodiversity within habitats will be noted, and an attempt will 

be made to delimit habitats with high biodiversity. The ways in which a benthic habitat 

map ofNewman Sound can be used to enhance existing conservation measures, or 

contribute to new ones will also be discussed. 
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Chapter 2: Study Area and Methods 

2.1 Newman Sound Study Area 

2.1.1 Introduction 
Newman Sound is a fjord in Bonavista Bay, eastern Newfoundland (Fig. 2.1). The fjord is 

34 km long and 2 to 3.5 km wide. Its shoreline is indented with numerous coves, some of 

which contain gravel beaches. The land around Newman Sound is low-lying and contains 

numerous ponds and bogs as well as isolated hills up to 228 m high. Many small islands 

are found in the outer part of the fjord, the largest of which is Swale Island 

(11 km2
). Freshwater flows into the inner part ofNewman Sound via Big Brook, Terra 

Nova Brook and Salton's Brook and there are several other small streams along the length 

of the fjord (Canadian Hydrographic Service 1997). The Big Brook estuary at the head of 

the fjord contains mudflats with salt marsh vegetation and seagrass. Big Brook cuts 

through glaciofluvial deposits, carrying fine sand into the estuary. Here the modern delta 

extends 1.5 km past the river mouth, and much of it is exposed at low tide. Terra Nova 

Brook, Salton's Brook, and Minchin Brook are also currently forming minor deltas 

(Sommerville 1997). 

2.1.2 Geologic Setting 
Terra Nova National Park is within the A val on geologic zone and thus shares geologic 

features with the Bona vista Peninsula and vicinity. The A val on zone is composed of a 

volcanic basement overlain by subaqueously deposited sedimentary rocks (Rogerson 

1983). The regional structural geologic trend in the vicinity ofTerra Nova National Park 

is along a southwest-northeast orientation which is reflected by coastal features such as 

the Eastport Peninsula, Swale Island, Clode Sound and Newman Sound (Jenness 1963). 
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Figure 2.1 The location ofNewman Sound study area (in 
nautical chart of Bonavista Bay. 

16 



2.1.2.1 Shoreline Geology 
Two geologic groups occur along the shoreline of Newman Sound; the Musgravetown 

Group and Connecting Point Group. The Connecting Point Group consists of green and 

black greywacke, cherty quartzite, and slate with some sandstone and conglomerate 

which underlie the Musgravetown Group (Jenness 1963). Musgravetown Group rocks are 

red and green, coarse grained conglomerates with subgreywackes, and interbedded 

volcanic rocks (Jenness 1963). Sommerville (1997) describes the Musgravetown group as 

terrestrial sedimentary and volcanic rocks, and the Connecting Point Group as altered 

marine clastic sedimentary rocks. 

The Musgravetown Group trends north-northeast along the western edge of inner 

Newman Sound (Fig. 2.2). At Big Brook a fault on the eastern side of the estuary 

separates the siliclastic sediments of the Musgravetown Group from the mafic and felsic 

volcanic rocks of the Connecting Point Group (Jenness 1963; Davenport et al. 1994). 

These volcanic rocks of the Connecting Point Group are found along the eastern shore of 

the inner sound as well as the northwestern shore between Salton's Brook and the 

Narrows (Fig. 2.3). The shoreline ofNewman Sound seaward of the Narrows, including 

the Eastport Peninsula and Swale Island, are recorded as turbidites (Davenport et al. 

1994) belonging to the Connecting Point Group (Jenness 1963). 

2.1.2.2 Faults 
The Clode Sound Fault is thought to cross Newman Sound perpendicular to the long axis 

of the fjord and continue north-eastward to Eastport Bay (Fig. 2.2). Jenness identifies this 

fault as "maybe one of the most important structural elements in the entire Bona vista Bay 

area" (Jenness 1963). The exact location ofthe fault on the seabed is unknown, but a 
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Figure 2.2 Bedrock geology map ofNewman Sound showing the d 
Connecting Point Group and Musgravetown Group. From Jenness 1963. 
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Figure 2.3 Shoreline geology ofNewman Sound after Davenport et 
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channel found during the bathymetric survey may be evidence of the influence of this 

fault on the seabed morphology (see section 3.2.1.2). 

2.1.3 Glacial History 
During the Late Wisconsinan ( ~ 20,000 years before present) glaciers advanced from the 

southwest into Bonavista Bay. Subglacial depositional features found near Newman 

Sound, such as drumlins and till ridges, follow a southwest-northeast orientation 

providing evidence for the direction of ice movement (Sommerville 1997). Further 

evidence is provided by the sub-rounded clasts and boulders of distinctive Terra Nova 

granite that are common on the shore ofNewman Sound. The Terra Nova granite 

intrusion is southwest of Terra Nova National Park, near the village of Terra Nova. These 

boulders therefore were moved by glacial ice in a northeasterly direction to be deposited 

in Newman Sound (Sommerville 1997). The ice retreated up Newman Sound during 

deglaciation, and reached the present coast 13,000 years before present, leaving the fjord 

valley to be flooded by the deglacial high sea level (Sommerville 1997). 

2.1.4 Holocene Sea Level History 
The elevations of raised deltas at Traytown and Eastport indicate that the marine limit for 

Terra Nova National Park was 39m above sea level (asl) during deglaciation. Dating of 

marine shells from St. Chad's indicates that this maximum sea level occurred between 

12,800 and 12,400 years before present (Sommerville 1997). During this time a number 

of deltas formed around Newman Sound which can now be seen as raised marine features 

marking the limit of Holocene sea level rise. These include the delta at Sandy Cove (30 m 

asl) and Happy Adventure (31 m asl), as well as unmeasured deltas at Buckley Cove, 

Salton's Brook and Big Brook (Jenness 1963; Sommerville 1997). 
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Isostatic rebound ofthe coast following deglaciation caused sea level to fall to a 

minimum of 17 m below present sea level prior to 8,600 years ago. Thereafter sea level 

rose again, and present sea level was reached around 2,000 years before present 

(Sommerville 1997). 

2.1.5 Tides and Currents 
The tidal range in Newman Sound is around 1 m throughout the fjord. The water 

circulation of the fjord has not been studied however, due to the shape of the fjord 

tidally-driven circulation is expected. There is also evidence of significant tidal current 

movement across the shallow sill at the Narrows. 

2.1.6 Hydrography and Oceanography 
The southward flow of the Labrador Current brings cold water to the east coast of 

Newfoundland, consequently it is colder than the west and south coasts, and provides a 

different benthic environment (Hooper et al. 2002). Conductivity, temperature and depth 

(CTD) data have been collected in Newman Sound by Fisheries and Oceans Canada since 

1983. They vary seasonally, indicating that the water column in the fjord is well mixed in 

the winter and stratified in the summer. 

2.1.6.1 Temperature 
Cote et al. (200 1) noted strong horizontal temperature stratification at their Buckley Cove 

study site in late summer and early autumn. August appears to be when the water column 

is the most stratified as the temperature range within each station is the greatest, with cold 

water near the bottom. The lowest water temperature in the data set (-1.276°C) was 

recorded in August at station 6 at 47 m water depth in the inner sound near Salton's wharf 

(Fig. 2.4). Of the 11 stations which had temperatures of0°C or less at the seabed, 8 were 
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Figure 2.4 Conductivity, Temperature and Depth (CTD) stations from Fisheries and Oceans Canada archive 
on survey area (grey) and Newman Sound chart. Original station numbers are found in Appendix D. 
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in inner Newman Sound. This suggests that cold oceanic water is entering the inner 

sound, and therefore that the sill at the Narrows is not restricting water exchange. 

2.1.6.2 Salinity 
Inputs of freshwater from Big Brook, Salton's Brook and Terra Nova Brook (Fig. 2.4) 

into the inner sound would be expected to reduce its salinity as the inner sound is an 

enclosed basin. However, the CTD stations in the inner sound did not appear to be less 

saline than those outside the sill. In fact the maximum salinity recorded in the dataset 

(32.7 %o) was in Buckley Cove, whereas the lowest (30.8 %o) was off Minchin Head. This 

also indicates that the sill across the Narrows does not restrict water circulation. A table 

of CTD data ranges for stations in Fig. 2.4 can be found in Appendix D. 

2.1.7 Conservation History 
Newman Sound is surrounded on three sides by Terra Nova National Park, which was 

established in 1957 (Fig. 2.5). No development is permitted on the coast landward ofthe 

mean low water mark under Canada's National Parks Act (1930) however, marine 

habitats below this mark are unprotected (Beardmore 1985). 

Efforts by Parks Canada to protect shorebirds and seabirds outside the park 

boundaries led to the establishment of the Terra Nova Migratory Bird Sanctuary in 1967 

(Anderson et al. 2000). The sanctuary protects birds from hunting and other harmful 

activities and includes 8.6 km2 of inner Newman Sound. 

2.1.7.1 Marine Protected Areas in Bonavista Bay and Newman Sound 
The marine habitats of Newman Sound are currently of conservation interest to a variety 

of stakeholders. In 1997 the Eastport Peninsula Lobster Protection Committee contacted 

the Department of Fisheries and Oceans to request that only traditional users be allowed 
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to harvest lobster around the Eastport Peninsula, in what became known as the Eastport 

Peninsula Lobster Management Area. They also suggested that the waters around Round 

Island in the White Islets of Newman Sound and the Duck Islands, Bonavista Bay be 

closed to all lobster fishing. As a result, the Round Island no-take zone became the first 

marine protected area in Newman Sound. 

As a result of the demonstrated success of these two small no-take areas, the 

Eastport Peninsula Lobster Protection Committee approached the Department of Fisheries 

and Oceans in 1999 to establish a marine protected area (MPA) at Eastport under 

Canada's Oceans Act (1997). The proposed MPA would protect habitat for commercially 

valuable species such as lobster, as well as endangered or threatened species such as the 

wolfish. The Eastport-Round Island Marine Protected Area was formally gazetted in June 

2005, making it illegal to remove organisms or damage habitats within 198.12 m (650ft.) 

of the low-water line around the island (Fig. 2.5). Regulations for the protected area were 

drawn up by the Eastport MP A Steering Committee and are currently enforced by the 

Department of Fisheries and Oceans (Government of Canada 2005). 

2.1.8 Previous Research in Newman Sound 

2.1.8.1 Mapping 
Acoustic mapping of the benthos ofNewman Sound has previously been carried out to 

characterise the substrate and examine fish habitat. In 1997 benthic habitats in part of 

Newman Sound were investigated by Anderson (200 1) using the QTC View seabed 

classification system to determine substrate from normal incidence acoustic data. This 

classification was groundtruthed during two submersible transects. The most common 
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substrate along these two transects was bedrock (78% of total), followed by gravel (12%) 

and cobble (9%). Sparse, moderate and dense algae were also recorded (Anderson 2001). 

Anderson et al. (2002) reported the acoustic properties of four simplified seabed 

types encountered in coastal Newfoundland. They described mud as low relief, soft and 

with smooth surfaces. Gravel had low relief, was harder and had a rougher surface. Rock 

bottoms were the hardest, with higher relief, but a relatively smooth surface. Areas of 

rock with attached macroalgae were hard with variable relief and high surface roughness. 

These observations ofNewfoundland habitats and their acoustic properties were valuable 

during interpretation of the multibeam data in this study. 

Cote et al. (2004) produced a map of benthic habitats used by juvenile Atlantic 

cod (Gadus morhua) in inner Newman Sound. This map was produced using a tethered 

video camera, lowered at points on a grid, to characterise the benthos. Benthic substrates 

were classified as sand, gravel or boulder/cobble and the presence of eelgrass and kelp 

was noted. These existing maps show benthic substrate and juvenile fish habitat; however 

no comprehensive benthic habitat map exists for Newman Sound. This thesis aims to fill 

this knowledge gap. 

2.1.8.2 Other work 
Other than mapping, most of the existing research in Newman Sound relates to juvenile 

fish, particularly Atlantic cod, and eelgrass. Newman Sound is known to be a nursery for 

juvenile cod and investigations into their ecology are ongoing (Gregory et al.l997; Cote 

et al. 2001, 2004). Small juveniles rely on eelgrass habitats in shallow water, which were 

previously mapped from the air (Forsyth and Borstad 1999). 
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2.2 Methods 

2.2.1 Acoustic Surveys 

2.2.1.1 Multibeam Sonar Survey 
The multibeam survey ofNewman Sound was conducted in July 2003 by the Canadian 

Hydrographic Service under a joint project agreement with Dr. Trevor Bell, Geography 

Department, Memorial University ofNewfoundland. A Simrad EM 1002 multibeam echo 

sounder, hull mounted on the CCGS Matthew, was used for the deep water component of 

the survey. A hydrographic launch deployed from the Matthew carried out surveys in 

selected shallow-water bays and the fjord head estuary. The launch was equipped with a 

Simrad EM 3000 system. 

The EM 1002 system has 111 beams, which cover an arc of 150°. This system is 

used for mapping in deep water and is usable to 600 m depth or more. The across-track 

coverage of the swath for the EM 1002 is advertised as 7.4 times water depth in shallow 

water, and up to 1500 min deeper water. The frequency ofthe EM 1002 is 95kHz 

(Kongsberg Simrad AS 2005). 

The EM 3000 system is designed to work in water as shallow as 1 m and provides 

good data to about 150m water depth. It has a swath capability often times water depth, 

but only up to a swath width of 200 m (Kongsberg Maritime AS 2005). Therefore to get 

100% bottom coverage in shallow water a larger number of survey lines must be run 

close together, making shallow-water surveys more time consuming. The frequency of 

this system is 300 kHz (Kongsberg Maritime AS 2005). 

Some overlap between adjacent survey lines is always necessary to account for 

beam loss at the edges of the arc. The area of seafloor insonified by each beam in a 
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multi beam system depends on the position of the beam in the arc and therefore the angle 

at which it will contact the seabed. The beams nearer to the point directly below the ship 

(nadir) will travel straight from the sonar head, through the water column to the bed, and 

back to the sonar receiver. Beams on the outer edges of the arc will travel to the seabed at 

an angle so the return echo from these beams must be corrected for ray bending (Lurton 

2002). The EM 3000 multibeam system compensates for ray bending (Maritime AS 

2005). 

Another factor that must be compensated for is vessel movement. Due to the 

centimetre-scale resolution of some multibeam systems (Dartnell and Gardner 2004) the 

vertical movement of a ship in heavy seas, a change in the tide or changes in the forward 

speed of the ship all effect the accuracy ofthe water depths obtained from a multi beam 

sounder. For further discussion of sources of error in multibeam surveys and their 

potential impacts on the data set, see Hughes Clarke et al. ( 1996). 

The survey data were processed by the Geological Survey of Canada (Atlantic) at 

the Bedford Institute of Oceanography in Bedford, Nova Scotia. The raw bathymetric 

data were manually cleaned in HIPS (Hydrographic Information Processing System) 

software to remove erroneous depth values. The cleaned bathymetric data, (in HDCS 

format) were imported into a GRASS (Geographic Resources Analysis Support System) 

GIS system and gridded at a 10 m resolution. In GRASS the bathymetric data were colour 

shaded by depth and artificially illuminated to produce a bathymetric image. The raw 

backscatter data were imported into a backscatter routine run in the GRASS GIS. The 

data were again gridded into 10 m cells and normalised to 45 degrees using a 200 ping 

running average. 
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For this thesis, text files containing multibeam bathymetry and backscatter values, 

provided by the Geological Survey of Canada (Atlantic), were projected in Global 

Mapper as separate raster layers. The multibeam data sets were overlain on a 

commercially available digital nautical chart ofNewman Sound and projected in UTM 

zone 21 using the NAD 83 datum. 

2.2.1.2 Shallow Seismic Survey 
Sub-bottom profilers were suggested by Kenny et al. (2003) as an appropriate method for 

measuring sediment thickness - and potentially infauna - in order to construct habitat 

maps. Sub-bottom profilers were also used by Kostylev et al. (2001) in construction of 

benthic habitat maps for Brown's Bank on the Scotian Shelf. 

The shallow seismic survey ofNewman Sound was conducted November 17-18 

2003 aboard the Memorial University Marine Institute vessel Louis M Lauzier. Sub-

bottom profiles were collected using an IKB Seistec sub-bottom profiler operated by IKB 

Technologies Limited. The results were printed by an EPC grey scale recorder (Simpkin 

2003). The Seistec system employs a seismic boomer and a line-in-cone receiver as 

described by Simpkin and Davis (1993). The boomer was towed on a catamaran sled 

equipped with a Trimble GPS unit. The catamaran was maintained at a speed between 4.2 

and 4.5 knots during the Newman Sound survey. The Seistec boomer provided high 

resolution coverage of the seabed, but did not allow deep penetration of the sediment 

package; however, this was sufficient for benthic habitat mapping. 

The inbound leg ofthe seismic survey followed the long axis of the fjord from 

Bonavista Bay to the head of the inner basin. The outbound survey crossed the fjord from 

side to side and proceeded from the head of the inner sound to the mouth of the fjord (Fig. 
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2.6). The survey lines from both legs covered 64.5 km. Water depths covered by the 

seismic survey ranged from over 300 metres to about 10 metres. Because of this range 

and the fact that depth changes occurred sharply in the fjord, the acoustic delay and the 

sweep were changed frequently during the survey to provide the best quality output 

(Simpkin 2003). The thickness of each sediment layer identified from the seismic record 

was calculated based on the sweep rate. Time markers on the seismic record sheet were 

plotted in Global Mapper using the positions recorded by the Seistec at the time of the 

survey. These points were overlain on the multibeam sonar data and depth (m) and 

backscatter (-dB) were determined to aid in interpretation of the surface units. 

2.2.2 Groundtruthing 
Directly sampling the seafloor allows verification of the interpretation of the acoustic and 

geophysical data collected. Direct sampling also provides both qualitative and 

quantitative information regarding the seafloor substrate and associated biotic 

community. In this project two types of groundtruth samples were collected; benthic 

grabs and video. Each of these groundtruthing methods had its own strengths and 

weaknesses, so distribution of sampling effort was designed with this in mind. 

Grab sampling is a widely used method for collecting both benthic sediments 

(Larsen 1997; Todd et al. 1999; Kostylev et al. 2001) and invertebrate fauna (Larsen 

1997; Holte and Gulliksen 1998; Sejr et al. 2000; Oug 2000). Grab sampling was also 

mentioned in the literature as a useful method for groundtruthing multibeam sonar (Todd 

et al. 1999; Kostylev et al. 2001; Kenny et al. 2003). The advantage of grab sampling is 

that a physical sample is recovered which allows detailed description, grain size analysis, 

chemical and organic content analysis. Grab sampling also recovers any invertebrates 
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Figure 2.6 Survey track for inbound (white) and outbound (black) legs of the shallow seismic survey overlain on multibeam 
bathymetry data and Newman Sound chart. 
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present so that they can be counted and identified using a microscope where necessary. 

Grab samplers penetrate the upper surface of the sediment (the depth depends on the 

sampler) so subsurface sediments and shallow burrowing fauna can be sampled. 

The main drawback to using grab sampling to examine the benthos is that it 

provides a very detailed look at a very small area and cannot show biota or substrates in 

context. For example, topographic features and species associations with them cannot be 

seen in a grab. Similarly species associations with other biota are not often seen as the 

contents of the grab are mixed together. Also, grab samplers are unlikely to sample 

mobile fauna or large species, and cannot sample large substrates like boulders. 

Video provides a broader view of the underwater landscape than grab sampling 

by capturing the types of substrates and bedforms present. Hard substrates, steep slopes 

and large material that would be missed by a grab can be seen by video. Video is also 

capable of sampling large, mobile organisms and the associations of species with each 

other and with the substrate. Most importantly it does so without disturbing the substrate 

or biota. The drawback of using video is that only the surface of the substrate is sampled, 

giving little or no indication of the in fauna. Also organisms are more difficult to identify 

and count on a screen than from specimens, and most small or cryptic species would be 

missed entirely. Detailed grain size descriptions are also impossible from video samples. 

Video was an asset to this project as it provided data over a larger area than grab 

sampling. 
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2.2.2.1 Benthic Grab Samples 
In order to effectively groundtruth the multibeam data set, grab sample locations were 

chosen to cover as wide a range of water depths and backscatter intensity values as 

possible. For this project a Peterson grab sampler was used. This type of sampler is 

deployed open and closes under its own weight when it contacts the bottom and tension 

on the cable is released. The valves of the grab were weighted to improve bottom 

penetration. 

Grab sampling was carried out in November 2003, July and September 2004 and 

May 2005 at 78 sampling locations in Newman Sound. During this time 89 attempts were 

made to collect benthic grabs and gravity cores, of which 67 were successful. Ofthe 67 

collected samples, 4 were collected by gravity coring. As only a small amount of surface 

material was collected in the cores (with one exception), they were processed in the same 

manner as grab samples. 

In November 2003, grabs and cores were collected in water depths ranging from 4 

to 315 m in both the inner and outer sound aboard the MUN Marine Institute vessel Louis 

M Lauzier. All subsequent grab sampling trips were conducted aboard Lucky I, a boat 

owned by Fisheries and Oceans Canada. On these trips sampling was limited to less than 

100 m water depth and samples were only collected west of the White Islets. Samples 

collected on the later trips ranged from 7 to 95 m water depth. 

The grab samples taken in 2003 were collected before data from the multibeam 

survey had been mapped. Therefore 9 ofthe 78 grab sampling stations are in shallow 

water not included in the multibeam coverage. These samples were still useful and are 

included with the other grab data, but their backscatter values are missing. 

33 



Backscatter values successfully sampled by grabs ranged from -58.5 dB to -2 dB 

however, grab sampling success was limited on substrates with backscatter higher than 

-10 dB. At 19 stations the grab sampler was recovered closed, but contained no sample. 

Each time no recovery was made, a second attempt was made at the same location, and at 

5 of the 19 stations a recovery was made on the second attempt. No second attempt was 

made at station 108 due to mechanical failure of the winch used to deploy the sampler. A 

second attempt at 13 other stations provided no sample. In these cases the substrate was 

assumed to be too hard, too large or too compacted for the sampler to collect. 

Grab sampling targeted features of interest that were seen from the shallow 

seismic survey and the multi beam sonar survey. Therefore clusters of grabs were 

collected in the Narrows, at the White Islets, at the head of the inner basin and near 

Heffems Cove (Figs. 2.7 to 2.11). 

When a grab sample was recovered a sub-sample of the sediment was collected in 

a numbered plastic bag. An attempt was made to not disturb the sample so the fine 

sediment matrix would not be lost. The sediment bags were frozen within a few hours of 

collection. The bulk of the sample was sieved in seawater through a I mm mesh to wash 

out the remaining matrix so that biota could be located. Invertebrates and algae were 

collected with forceps and placed in numbered jars containing 95% ethanol mixed with 

seawater. Fragile organisms such as small polychaetes were placed in separate jars to 

avoid damaging them. In most cases all the organisms were kept, but when a species was 

very abundant only a few individuals were taken and abundance was noted. The 

biological samples in ethanol were kept in a cooler until they could be refrigerated. 
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Figure 2.7 Location of inner basin grab samples on multibeam backscatter image 
and Newman Sound chart. 

35 



- 1.0 dB 

Om 

Figure 2.8 Location of grab samples in the Narrows and immediate 
area on multibeam backscatter image and Newman Sound chart. 
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Figure 2.9 Location of grab samples in the middle basin on multibeam backscatter image 
and Newman Sound chart. 
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Figure 2.10 Locations of grab samples near the White Islets on multi beam backscatter 
image and Newman Sound chart 
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Figure 2.11 Locations of grab samples collected in the outer sound on multibeam backscatter 
and Newman Sound chart 
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2.2.2.2 SCUBA Diver Video Transects 
Parts ofNewman Sound that were covered by the multibeam survey were also shallow 

enough to be sampled by SCUBA divers. All dives were planned at depths shallower than 

20m (65ft) in accordance with Memorial University ofNewfoundland regulations for 

science divers in training. As much of the shallow water had not been covered by the 

multibeam, only 13 sites were chosen for diving (Fig 2.12). Dive sites were selected at 

Buckley Cove (n = 3), the eastern side of Buckley Point (n = 3), Mt. Stamford Cove (n = 

3), southeast of the Narrows (n = 4) and one practice dive west ofthe island in the 

Narrows. Due to time constraints only 8 of the 13 sites were sampled using SCUBA. 

Dives were completed in water ranging from 6.6 to 12.8 m deep, on substrates with 

backscatter values between -7.68 and -58.71 dB. 

Each transect was 50 m in length and chosen to be representative of backscatter 

values found in shallow water. Dives were planned by selecting a target start point and 

determining a compass direction to be followed by the divers. All transects were aligned 

to follow depth contours on the bathymetric chart so that a relatively constant depth was 

maintained during the dive. 

The SCUBA video transect surveys were carried out by two divers; one operated 

the video camera while the second rolled out a 50 m long measuring tape. All video was 

collected using a Sony digital video camera in an Amphibico housing. A Garrnin 12 GPS 

was used to record the start and end points of each transect. Diving surveys were 

completed between July 16th and 19th 2004 from a Fisheries and Oceans Canada boat. 
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Figure 2.12 Locations of completed SCUBA on 
multibeam backscatter image and Newman Sound chart. 

41 



2.2.2.3 Drop Video Camera 
A drop camera is a surface tethered video camera deployed from a stationary vessel. This 

method of video collection was employed because the camera can be deployed easily and 

quickly so many points can be sampled in a short time. This method was used previously 

in Newman Sound by Cote et al. (2004). Drop camera stations were chosen from the 

multibeam data to cover a range of depth and backscatter values. Particular attention was 

paid to locations with high backscatter and sites where grab sampling had failed. Drop 

camera stations were only planned in less than 100 m water depth due to the capabilities 

ofthe equipment. 

A total of 30 drop camera stations had been planned but due to inclement weather 

only 19 were sampled from the inner basin, the Narrows and the north side of the mid-

fjord as far east as South Broad Cove (Fig. 2.13). The camera used was a SeaView BW-

150 owned by Parks Canada and deployed from a Parks Canada boat on November 30th 

2004. The camera recorded black and white video imagery on VHS cassettes via a 

TV /VCR. A position was recorded with a GPS at the start of every station and at the end 

of most stations as drifting occurred; therefore 34 geo-referenced data points were 

collected. In some cases the substrate types at the start and end of a station were different, 

so the points were each treated as individual samples. Locations sampled with the video 

drop camera ranged in depth from 8 to 81 m. Backscatter values ranged from -7.4 to 

-56.6 dB. As one of the aims in planning drop camera stations was to cover places which 

had been unsuccessfully sampled with the grab, a larger proportion of high backscatter 

locations were sampled. 
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Figure 2.13 Locations of successfully sampled drop camera stations on multibeam backscatter 
and Newman Sound chart. 
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2.2.2.4 Remotely Operated Vehicle (ROV) Video 
A VideoRay Remotely Operated Vehicle (ROY) owned by Fisheries and Oceans Canada 

was used to survey sites in Newman Sound. The ROY was deployed from the CCGS 

Shamook on December 2nd 2004. The vehicle was tethered to the surface and was piloted 

from aboard ship. The ROY provided real-time, colour video images of the seabed (with 

use of a light source) which were recorded on a Sony digital recorder. 

Sampling with the ROY was planned for 8 sites in Newman Sound (Fig. 2.14). 

These locations were intended to represent distinctly different habitats, based on previous 

knowledge from grab sampling results as well as from the multibeam backscatter and 

bathymetry data, and sub-bottom profiles. Use of the Shamook allowed stations in 

exposed locations, such as the mouth of the fjord to be sampled. The tether on the ROY 

was 100m long, so all stations were planned above 75 m depth. Stations A, B, D and E 

were successfully sampled, while attempts at G and H were unsuccessful (Fig. 2.14). 

Throughout the day the weather deteriorated so sampling at stations C and F were 

abandoned. 

When target locations were reached the ships anchor was set to maintain position 

on the station. The ROY was deployed by hand from the port rail. Various combinations 

of neutrally buoyant cable and weights were used depending on the currents at each 

station. The video recorder was started when the bottom was reached, and written 

observations were taken of substrate and biota at regular intervals. The positions of 

observations were recorded from a computer screen slaved to the bridge computer, and 

depth readings were taken from the ROY. The navigation files from the bridge computer 

were downloaded into Global Mapper. 
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Figure 2.14 Locations ofplanned ROV stations on multibeam backscatter and Newman Sound chart. 
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2.2.3 Sam pie Processing 

2.2.3.1 Grain Size Analysis 
Grain size analysis was conducted to define each substrate type recovered from the grab 

samples. Grain size is important to some invertebrates and will control their use of 

habitat. This analysis also gave a quantitative label to each sediment type using the phi 

scale and related grain size descriptions on the Wentworth scale (Wentworth 1922). The 

units used are as follows: 

Table 2.1 Wentworth Grain Size Definitions 
Phi unit Wentworth Grain Size Grain Size (mm) 

(e) Description 
>-2 cobble 63 to 256 
>-2 pebble 4 to 63 
-1 granule 2 to 4 
0 very coarse sand 1 to 2 
1 coarse sand 0.5 to 1 
2 medium sand 0.25 to 0.5 
3 fine sand 0.125 to 0.25 
4 very fine sand 0.0625 to 0.125 
5 coarse silt 0.031 to 0.0625 
6 medium silt 0.0156 to 0.031 
7 fine silt 0.0078 to 0.0156 
8 very fine silt 0.0039 to 0.0078 

9 to >11 clay <0.0039 

2.2.3.1.1 Sieving 
A sub-sample was collected from the grab samples that contained pebble to clay sized 

material. As most samples were rich in silt and clay, they were wet sieved on a 40 (0.0625 

mm) sieve to remove as much of the mud fraction as possible, as this is the most 

appropriate way to remove silt and clay (Larsen 1997; Sheppard 2000; Holte 2001 ). The 

silt and clay which passed through the sieve was reserved for sedigraph analysis. 
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The rest of the sub-sample was dried at 100°C for 24 hours. The dried sample was 

weighed and ground with a mortar and pestle and put through a stack of seven sieves. The 

sieves used for this analysis were -20, -10, 00, 10, 20, 30 and 40 which were chosen to 

represent the boundaries between grain sizes on the Wentworth scale (Table 2.1). The 

sieves were shaken on an electric shaker for 30 minutes. After being shaken, each sieve 

was weighed, and the weight of its contents calculated by subtracting the weight of the 

empty sieve. Any silt or clay which had passed the 40 sieve was collected in a pan, and 

added to the wet sieved silt and clay for sedigraph analysis. 

2.2.3.1.2 Sedigraph Analysis 
The silt and clay fraction (>40) of the sieved sample was placed in a beaker with 15% 

hydrogen peroxide and 0.05% Calgon (Sodium hexametaphosphate) solution to dissolve 

the organic material. The beakers were stirred frequently to accelerate the reaction. Once 

the reaction slowed, each beaker was heated to boil off the remaining peroxide solution. 

The silt and clay fraction was then dried in an oven overnight. The dry silt and clay were 

weighed then re-suspended in 0.05% Calgon solution. After the sediment had settled 

(about 48 hours) the Calgon was decanted. A 40 ml sub-sample was taken from the silt 

and clay solution for analysis in a Sedigraph 5100 Particle Size Analyser. 

The Sedigraph uses Stokes Law to calculate the diameter of the silt and clay 

grains based on their settling velocities in a liquid with known physical properties (in this 

case Calgon). The Sedigraph passes X-rays through a solution ofthe silt and clay, and the 

rays are refracted by the sediment particles (Micrometries Instrument Corp. 2005). The 

amount of energy refraction at each point in time is compared to a baseline of clear 

Calgon solution which is collected at the beginning of the analysis. The machine then 
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calculates the grain size of the particles still in suspension and the percentage ofthe total 

sample that has settled out. When all the particles have settled there will be no refraction 

and the baseline value should be recorded. 

The Sedigraph produced a measurement of the cumulative distribution of mass 

between 4.00 and > ll0. The mass of sediment from the sample which fell into each silt 

and clay phi class could then be calculated using the known weight of the whole silt and 

clay fraction with the percentage mass distribution. These data are combined with the 

masses of the coarse fraction found through sieving to give the percentage (by weight) of 

each phi size class, between -2 0 and > 110, in the sediment. 

2.2.3.2 Organic Content by Loss on Ignition 
The amount of organic material available to invertebrates within the sediment may 

determine which species occur there and the number of individuals a habitat can sustain. 

For example, it is predicted that deposit-feeding organisms would be abundant in 

substrates with easily ingested grain sizes (such as silt), and in sediments with large 

amounts of available organic matter (Holte 200 I). The organic content of the sampled 

sediments was therefore determined to explore the links between this variable and the 

sampled biota. 

The loss on ignition (LOI) method was used to determine the organic content of 

the fine sediments collected by grab sampling and coring. As the sediments from 

Newman Sound did not contain significant amounts of carbonate, ignition was the most 

appropriate method of determining the organic content (Luczak et al. 1997; Ramey and 

Snelgrove 2003). Sediments from 50 ofthe grab samples were analysed by loss on 
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ignition to determine the organic content of the sediment. A further 12 duplicate samples 

were also processed, for a total of 62. 

To begin loss on ignition analysis a sub-sample of the sediment matrix was dried 

in a drying oven overnight at 200°C. Six numbered ceramic crucibles with lids were 

heated in the muffle furnace for one hour at 550°C. The empty crucibles were removed 

from the furnace, cooled in a desiccator and weighed to determine the starting weight of 

the crucible. The sediment samples were removed from the drying oven one at a time and 

ground into a fine powder using a mortar and pestle. The ground sample was put into one 

of the previously weighed crucibles, then the crucible and its contents were weighed. This 

allowed the weight ofthe dry sample in the crucible to be determined by subtracting the 

weight of the empty crucible. 

A lid was placed on the crucible to prevent any of the sediment from being lost 

while in the furnace. The crucibles were placed into the muffle furnace six at a time, and 

were heated at 550°C for 2 hours. After 2 hours the crucibles were removed and cooled in 

a desiccator. The cooled crucibles were weighed and the weight of the crucible and ash 

were recorded. By subtracting the weight of the empty crucible, the ash weight was 

found. The loss on ignition could then be calculated by subtracting the weight of the ash 

from the weight ofthe dry sample then dividing by the weight of the dry sample. 

Organic content was then calculated by the following method: 

1. Dry weight (g) -Ash weight (g) = Loss on Ignition in grams 
Dry weight (g) 

2. Loss on Ignition (g) X 100 = Organic Content % 
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2.2.3.3 Biological Sam pie Analysis 
Biological samples were collected using a Peterson grab sampler. Sampled invertebrates 

and algae were examined under a dissecting microscope and were identified to family 

level, and when possible genus and species, using a variety of keys (Bousfield 1960; 

Smith 1964; Gosner 1971; Gosner 1979; Harvey-Clark 1997; Sears 2002). In several 

cases the keys contained differing scientific names for the same species. In such cases the 

scientific name that was deemed the most commonly used or most recently adjusted was 

used. 

Individuals that could not be identified were photographed using a Nikon Cool-

pix 900 digital camera mounted on the dissecting microscope. Representative individuals 

of frequently occurring species were also photographed. Notes were recorded about each 

organism such as feeding method, if known, associations with other biota in the sample 

and the condition of the specimen. Individuals of each species were counted to give an 

idea of abundance, but all individuals were not kept for every grab, so abundance was not 

included in analysis. 

In some of the literature that was reviewed, specific taxa were systematically 

excluded from analysis. For example Larsen (1997) left out all colonial organisms such as 

Bryozoa, Foraminifera and colonial cnidarians. All such organisms were included in this 

study, however less effort was expended on identification of Bryozoa, Porifera, and 

Foraminifera as they are more significant as a group than individual species, and are 

difficult to identify. 
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2.2.3.4 Video Sample Processing 
The video data collected from SCUBA surveys, the remotely operated vehicle video 

camera and the stationary drop video camera were processed in a similar fashion. The 

videos were viewed 5 times. During the first viewing all species of flora and fauna were 

identified to the lowest possible taxonomic level. During the second viewing notes on 

substrate were recorded, such as the presence of mud, sand, pebbles, cobbles, boulders, 

bedrock and rhodoliths. The video was then reviewed again to confirm the presence of 

each substrate type and estimates of the percentage of the seafloor covered by each type 

were recorded. During the fourth viewing of the video particular attention was paid to the 

substrate preferences of identified species, and small scale distributions of biota and their 

preferred substrates within each site. On the final viewing ofthe video final notes were 

made on the occurrence of shell hash, organic material, and wood at each site, as well as 

obvious water movement, light penetration and anything else of interest, also all previous 

notes were verified. Still photos were captured from the digital video data (ROV and 

SCUBA diver videos) from representative points in the video for reference. 

2.2.4 Statistical Analysis 

2.2.4.1 Cluster Analysis 
Cluster analysis was used to group grab sampled sediments with similar characteristics. 

Samples were assigned to clusters using the percent of the total sample weight in the phi 

classes described from sieve and sedigraph analysis. Clusters measuring similarity as 

Euclidean distance were formed using the Wards linkage method in MiniTab 14 software. 

Clustering was carried out at 50% similarity, with the results displayed as a dendrogram. 
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2.2.4.2 Non-metric Multi-dimensional Scaling (NMDS) 
Non-metric multi-dimensional scaling was used to test the inter-relationships of grab 

sampled biota (Sejr et al. 2000; Lindegarth et al. 2000). It does not assume linearity in the 

data, like Principle Components Analysis and other scaling methods (McGarigal et al. 

2000; Quinn and Keough 2002). NMOS was performed in PRIMER software on a Bray-

Curtis similarity matrix created from the species presence/ absence data for all grab and 

video samples. The resulting three-dimensional configurations gave the best 

representation of the similarity in the overall dataset, with a stress value of 0.11 for grabs 

and 0.07 for video. 

The eigenvalues from the three-dimensional configuration were used to plot each 

grab or video sample in three-dimensional space. The resulting plots (Figs. 3.24 and 3.25) 

show the relationship between each sample and every other sample, based on their 

distance from each other on the plot, with similar samples being closer together. The 

factor "substrate class" was then used to colour code the points based on which substrate 

class it was assigned to however, substrate was not used in the analysis to determine 

where points would lie. 

2.2.4.3 Analysis of Similarity (ANOSIM) 
Analysis of Similarity was used to test for significant differences in the biological species 

assemblage between the substrate classes defined. Each substrate class was tested against 

every other substrate to produce an R value. R values can range between + 1 and -1. If R 

is greater than 0, there is more dissimilarity between the two tested groups than within 

each group. lfthe resulting R value is negative, then there is more dissimilarity within the 
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group than between the groups being tested. ANOSIM was carried out on a Bray-Curtis 

similarity matrix of the original species presence and absence data in PRIMER. 

2.2.4.4 Similarity Percentage Analysis (SIMPER) 
Similarity percentage analysis (SIMPER) was used to compare the similarity ofbiota 

sampled within a substrate class. The presence and absence of all identified invertebrates 

and algae were tested in PRIMER. 

Characteristic taxa were determined for each substrate class by determining which 

taxa contributed most to the similarity of samples within a substrate class. Also pair-wise 

comparisons of substrate classes were carried out to determine which taxa contributed the 

most to dissimilarity between substrates. These characteristic biota were used as 

descriptors in defining the biotic assemblage of each substrate class and ultimately 

habitats. 

2.2.5 Mapping 
The maps of multibeam bathymetry and backscatter which were used to plan 

groundtruthing were created in Global Mapper (v. 6.0 and 7.2). The classified substrate 

and habitat maps were created in Maplnfo using the Vertical Mapper extension. Maplnfo 

utilises user-defined mathematical expressions to classify pixels within a raster grid, in 

this case the 10m grid of the multibeam bathymetry and backscatter. An additional grid 

with slope values was created in Maplnfo and overlain with the bathymetry and 

backscatter grids. Expressions were created for each substrate class, which included 

depth, backscatter and slope values or ranges. Binary grids were produced for each 

substrate class, showing the distribution of pixels which met all three criteria. The habitat 
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map was created by renaming the grids used to produce the final substrate map, based on 

observed biological trends. 

54 



Chapter 3: Results 

3.1 Introduction 
The overall goal of this thesis is to demonstrate the usefulness of multi beam data, 

groundtruthed with grab samples and video, to the production of classified seafloor 

substrate and habitat maps in a fjord environment. The results of the multibeam survey 

are presented as a description of the spatial patterns in the bathymetry and backscatter 

data. This is followed by descriptions of the groundtruth samples collected and a 

classification of these results into substrate classes. Biotic assemblages were statistically 

derived for each substrate from the grab and video samples and are reported in detail. The 

maps created from these results are then discussed with reference to the spatial 

distribution of classified substrates and habitats. 

3.2 Multibeam Sonar Survey 
The sub-tidal portion ofNewman Sound, not including Swale Tickle, out to the 250 m 

bathymetric contour in Bonavista Bay, is 82 km2
• The multibeam sonar survey covered 62 

km2 of this area, achieving 100% seafloor coverage of the deep water portions ofthe fjord 

(Fig. 3.1). Due to ship time limitations and the time intensive nature of shallow water 

mapping, multibeam coverage was not complete for the shallowest parts of the fjord near 

the coastline, around islands and in most coves. 

3.2.1 Bathymetry 
A bathymetric profile along the long axis ofNewman Sound from the head of the fjord to 

the mouth reveals four areas of distinct bathymetry, each of which is described separately 

and form the basis for further data analysis (Figs. 3.2a and b). 
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Figure 3.1 Multibeam bathymetry overlain on the nautical chart of Newman Sound and sun illuminated from the northeast. 
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Figure 3.2a Multibeam bathymetry with the profile shown in 3.2b indicated. 
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Figure 3.2b Profile along the long axis ofNewman Sound from head to mouth, showing four bathymetrically 
defined zones. Vertical exaggeration is 35x. 
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3.2.1.1 Inner Basin 
The inner basin is 7.3 km2 and contains more shallow water than either ofthe other two 

basins. The bottom of the inner basin slopes gently away from the head of the sound 

towards the northeast (Fig. 3.2b). The deepest point (63 m) was recorded at the 

northeastern end, just inside the sill (Fig. 3.3). The inner basin has moderately steep (6 to 

20°) side walls. The basin floor is flat, with over 90% having a slope angle of 1 to 2°. 

A significant part ( 42%) of the inner basin is less than 20 m deep, but only half of 

this area was surveyed. The remainder comprises the basin floor, between 20 and 50 m 

deep (52%), and a small portion below 50m depth. 

A submerged delta at the head of the inner basin has a characteristic flat top ( <2°) 

in less than 10 m water depth and steep front (20 to 35°). The sill separating the inner and 

middle basins is located at the Narrows and has slope angles between 20 and 47°. A small 

cliff scarp running along the eastern side of the inner basin, just north of Cannings Cove, 

has a slope angle of 65°. 

3.2.1.2 Middle Basin 
The sill at the Narrows creates a shallow channel between 10 and 17 m deep and 350 m 

wide offBuckley Point (Fig. 3.4). It is steeper on the inner basin side (15°) than the 

seaward side (5°). The top of the sill and much of the surrounding area are flat (<5° slope 

angle) and shallow. 

Seaward of the sill, there is a region of complex seafloor topography that stretches 

from the Narrows to the western end of Swale Island, a distance of 7. 7 km. This part of 

the fjord is about 2.5 km wide, except for where it narrows to 1.5 km at Minchin Head. 

The basin deepens seaward, with about one half shallower than 50 m, and one quarter 
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0.5 km 

Figure 3.3 Multi beam bathymetry of the inner basin sun illuminated from the southwest 
and depth shaded to the maximum of this basin. 
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deeper than 100m. About three quarters of this basin was surveyed with multibeam (Fig. 

3.4). 

Immediately outside the Narrows the north side of the fjord is shallow (<40 m 

deep) and relatively flat (<5° slope). The south side, offHeffems Cove, although not 

surveyed appears to have similar bathymetry according to the nautical chart. In contrast, 

the centre of the fjord beyond the Narrows is deeper (>50 m) and has a hummocky 

seabed with moderate relief. Hummocks are separated by enclosed basins up to 90 m 

deep. The sides of the hummocks have slope angles between 15 and 25°. Similar 

undulating terrain is found in the middle of the fjord between Minchin Head and South 

Broad Cove, but here the hummocks are broader and rounder and spaced farther apart. 

East of South Broad Cove the hummocky topography gives way to a gently 

sloping (<5°) bottom more than 100 m deep. The sidewalls become steeper too, between 

20 and 60°. A 120m-wide, 230m-deep channel runs between the middle and outer 

basins, north of the White Islets. The strikingly straight appearance of the south side of 

this channel may indicate the submarine extension of the Clode Sound fault. 

3.2.1.3 Outer Basin 
The outer basin is the largest and deepest of the three basins in Newman Sound. It is 15 

km long and on average less than 2.5 km wide. In cross-section, the basin has a typical 

"U" shaped profile with moderately to extremely steep sidewalls and a flat bottom 

(Fig.3.5). It is bounded to the north by the shoreline of the Eastport Peninsula and to the 

south by shallow seabed, shoals and islands. 
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·350m 
Figure 3.5 Multibeam bathymetry of the outer basin sun illuminated from the west, showing steep side walls and deep 
basin floor. 
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Although most of the outer basin has moderately sloping sidewalls between 20 and 35°, 

some parts are much steeper, between 45 and 65°, usually in water depths greater than 

100 m. The steepest slopes are found off Swale Island between Ratchet Cove and East 

Point, offDungeon Cove and below Holbrook Head (Fig. 3.5). Such steep walls are 

typical of a glacially carved valley, and provide habitats unique to fjords (Syvitski et al. 

1987). The bathymetric data also show that the sidewalls of the outer basin are indented 

by numerous small channels. 

The outer basin floor is 14 km2
, and mostly below 300m water depth (Fig. 3.5). 

The deepest point of Newman Sound is at 332 m near Ratchet Cove, off Swale Island. 

The basin floor is mainly flat, with a slope angle of 5° or less. Like the inner basin, the 

outer basin is aligned northeast- southwest, parallel to the structural geologic trend in the 

region (Jenness 1963). 

3.2.1.4 Fjord Mouth Sill 
The deep outer basin ofNewman Sound is connected to Bonavista Bay through a 1.2 km 

wide channel over 240m-deep. On either side of the channel the seabed rises abruptly to 

form a shallow sill at the fjord mouth (Fig. 3.6). Only the northern part of the sill was 

mapped by multibeam sonar. These data reveal an asymmetrical onshore-offshore profile 

with a steeper seaward flank. The surface of the sill is covered by small knobs and incised 

with northwest - southeast trending channels. The sides of some of these small knobs are 

steeper than 25°, but in general the top of the ridge has a slope angle of less than 10°. 

3.2.2 Multibeam Backscatter 
The acoustic backscatter intensity values recorded from Newman Sound ranged from -1 

to -61 decibels (dB). Backscatter values were low on the floor of the inner and outer 
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Figure 3.6 Multibeam bathymetry of the fjord mouth sill sun illuminated from the east. 
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basins and in bathymetric depressions. The lowest values were found in the inner basin, 

the Narrows and in depressions in the hummocky seabed near Hefferns Cove. Low 

backscatter(< -25 dB) was relatively rare east ofthe White Islets. 

The outer sound walls and fjord mouth returned moderate to high backscatter 

values, with consistently high values along the bottom of the sidewalls, especially on the 

south side of the fjord. The most extensive area of very high backscatter(> -5 dB) 

occurred across the mouth of the fjord (Fig.3.7). 

3.2.2.1 Inner Basin 
The head ofthe fjord has a mottled pattern ofhigh (-15 dB) and low (-37 dB) reflectance 

(Fig.3.8a). The flat floor of the inner basin (~2.5 km2
) produced low backscatter values 

between -25 and -35 dB. The northeastern and southwestern edges ofthe basin 

contained patches of lower backscatter between -35 and -46 dB. On the basin floor, 

between Cannings Cove and Salton's Wharf, several rings of slightly higher backscatter 

(between -16 to -20 dB) were observed. The diameters ofthe rings are about 250m. The 

margins of the inner basin reflected backscatter values ranging from -10 to -15 dB. 

Small areas of very high backscatter (> -5dB) were recorded in Buckley Cove and 

between Cannings Cove and the Narrows, corresponding with slopes over 20°. The low 

backscatter basin floor and moderate backscatter margins are represented by the bimodal 

distribution ofbackscatter in the inner basin (Fig. 3.8b). 

3.2.2.2 Middle Basin 
The multibeam survey covered 13.5 km2 of the 21.5 km2 between the Narrows and 

western Swale Island. Within this area the full range of acoustic backscatter values 

recorded in the multibeam survey are found (Fig. 3.9b). 
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Figure 3.7 Multibeam backscatter map ofNewman Sound and histogram of occurrence of each backscatter value 
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Figure 3.8a Multibeam backscatter map of the inner basin, showing low reflectance 
basin floor and moderate backscatter rings. 
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Figure 3.8b Histogram of backscatter value frequency of occurrence in the inner 
basin showing bimodal distribution. 
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Figure 3.9a Multibeam backscatter of the sill at the Narrows and Middle Basin. The lowest 
backscatter values in Newman Sound are found here (circled). 
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Figure 3.9b Histogram of backscatter value frequency of occurrence in the middle basin. 
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Immediately south of the Narrows is a 500 m2 patch of seafloor reflecting backscatter 

values less than -40 dB (Fig. 3.9a). This location is the only extensive area of very low 

reflectance in the fjord and also contains the lowest backscatter value recorded in the 

multi beam survey, -61 dB. In contrast, the surrounding seafloor reflected moderate 

backscatter values around -15 dB. The flat north side of the Middle Basin generally 

had backscatter values greater than -15 dB. The hummocky centre of the fjord had a 

more complicated backscatter pattern; low backscatter (-25 to -35 dB) was confined to 

depressions whereas higher backscatter ( -17 to -10 dB) coincided with hummocks. The 

channel linking the middle and outer basins has values as low as -23 dB on its floor and 

up to -2 dB along its walls. 

3.2.2.3 Outer Basin 
The distribution of backscatter values in the outer sound follows the orientation of the 

basin, like the inner sound. The centre of the outer basin reflected the lowest backscatter 

values (to -24 dB) whereas higher backscatter, around -15 dB, was observed along the 

edge ofthe basin (Fig. 3.10a). 

The extensive fjord walls of the outer basin had higher backscatter values than 

those of the inner basin. The bottom of the side walls reflected particularly high 

backscatter values, especially on the south side of the fjord. For example, the bottom of 

the fjord wall near Swale Island had backscatter values of -5 dB or higher. Values higher 

than -5 dB were commonly reflected by sloping surfaces with angles greater than 60°. 

The remainder ofthe fjord wall (~90%) reflected values between -6 and -15 dB 

(Fig.3.1 Ob ). 
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Figure 3.1 Oa Multibeam backscatter from the outer basin showing low backscatter basin floor 
with high backscatter fjord walls and dredge spoil at Happy Adventure (circled). 
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Figure 3.1 Ob Histogram of backscatter value frequency of occurrence 
in the outer basin 
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Circular patterns of high backscatter (-3 to -7 dB) with diameters of about 50 m 

were observed on the floor of the outer basin near Happy Adventure (Fig. 3.1 0). This 

pattern resembled the sand and gravel dredge spoil on a mud bottom identified in St. 

George's Bay by Shaw et al. (1997). 

3.2.2.4 Fjord Mouth Sill 
The largest expanse of very reflective seabed in Newman Sound is at the mouth of the 

fjord (Fig. 3.11 b). Here, 51% of the 12 km2 area produced backscatter intensity values 

higher than -10 dB, of which 8% were over -5 dB. Most ofthese high values came from 

the channel floor southeast ofthe fjord mouth sill. Small pockets of moderately reflective 

(between -10 and -15 dB) seabed occurred on the surface ofthe sill, especially in the 

shallow water near Richards Island. At the edge of the multibeam coverage in Bonavista 

Bay, two areas of backscatter with lower values between -15 and -21 dB occurred in 

deep water. 

3.3 Shallow Seismic Survey 
Three acoustic units were identified from the seismic survey ofNewman Sound. Unit A, 

the lowermost unit, has an acoustically reflective surface and minimal acoustic 

penetration. It occurs in all parts of the fjord, forming positive and negative relief 

features, with both smooth and rough surfaces. Unit B is acoustically stratified with 

horizontal internal reflectors, which indicate the presence of layers with different acoustic 

properties within the unit. Unit C, the uppermost unit, is acoustically transparent, 

indicating low reflectance sediments. This unit appears homogeneous, containing few 

changes in reflectance. Units B and C commonly occurred together as thick deposits 
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Figure 3.11a Multibeam backscatter map of the fjord mouth. 
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Figure 3.11 b Histogram of backscatter value frequency of occurrence 
at the fjord mouth 
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infilling the bottom of both basins. Units A, Band Care shown in their typical 

configuration in Fig. 3.16. 

The stratigraphic relationship between these three units and their distribution in 

the fjord are discussed below. Seismic points are referred to in this section for location 

purposes; they are times recorded by the Seistec boomer during the survey and were used 

to geo-reference the results. 

3.3.1 Inner Basin 
Unit A 
The sides of the inner basin appeared as reflective surfaces with no internal stratification 

or structure; these were interpreted as bedrock. The surface of the bedrock walls appear 

smooth and reflected multi beam backscatter intensities between -10 and -15 dB. 

Bedrock was most common in the northeastern part of the inner basin, near the sill and 

the mouth of Buckley Cove. At Buckley Cove the seismic survey passed over the very 

high (> -5 dB) backscatter area mapped by the multibeam. Here point reflectors were 

recorded on the surface of the bedrock unit, and interpreted as boulders. 

UnitB 
The horizontal reflectors in this deposit are arranged parallel to the sediment surface. 

Undulations in the surface of this unit are mirrored by strata below and infilled by Unit C 

above. Unit B is 6.5 to 14 m deep. The acoustic basement was not detected by the 

boomer, so the exact depth of this deposit remains unknown. 

The acoustically transparent upper layer (Unit C) pinches out abruptly near 

seismic point 21 :40 off Salton's Wharf, exposing the underlying stratified material at the 

surface (Fig. 3.12). Groundtruthing at this location revealed mixed lithology gravel and 
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Figure 3.12 Sub-bottom profile from point 21:40 showing acoustically Location ofFig. 3.12 on backscatter image 
transparent material (C) giving way to stratified material (B) in the inner basin. 
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sand, which was interpreted as being of glaciomarine origin. The reason for the abrupt 

discontinuation of Unit Cis possibly erosion by currents moving over the sill into the 

inner basin. 

Unite 
Unit C ranges from 3.5 m thick near the centre of the inner basin to 0.8 m thick near the 

sill. It thickens gradually away from the delta at the head of the fjord, reaching maximum 

thickness in the centre of the basin, and then thins rapidly towards the sill at the 

northeastern end of the basin. This deposit also thins towards the sides of the basin. 

Samples collected at the surface of Unit C contained silty mud. 

UnitD 
Seismic sub-bottom profiles of the submerged delta at the head of the inner basin revealed 

a steeply sloping unit of acoustically stratified material. The internal reflectors on top of 

the delta are horizontally arranged, while those on the delta front slope downward. This 

arrangement was interpreted as topset and foreset beds (Fig. 3.13). 

The surface of the delta is rough, with numerous point reflectors apparent on the 

surface, interspersed with patches of acoustically transparent material. This is consistent 

with the multibeam backscatter which shows small patches of high and low values here. 

The point reflectors recorded on the sediment surface were interpreted as boulders, as the 

nearby shoreline is strewn with boulders. 

3.3.2 The Narrows Sill 
Unit A 
The sill across the Narrows is composed of homogenous material with no internal 

reflectors, which produced a strongly reflected multiple of the seabed surface (Fig.3.14) 
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Figure 3.14 Sub-bottom profile across the sill at the Narrows, showing reflective 
bedrock (A) and boulders. 
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indicating a hard substrate. This material was interpreted as bedrock since its appearance 

was similar to confirmed bedrock from elsewhere in the fjord. The surface of the sill was 

very rough, producing many point reflectors. Fewer of these hard returns were recorded at 

the eastern end of the Narrows than in the west (Fig. 3.14). Video sampling confirmed 

that boulders are present in the Narrows, and they are more numerous towards the west. 

The multibeam backscatter intensity map shows low backscatter for parts of the Narrows, 

which is unexpected given the presence of these boulders. 

The multiple reflection of the seabed at the Narrows implies reverberation of the 

signal from the seismic boomer, which is also inconsistent with low multibeam 

backscatter (Stoker et al. 1997). Groundtruthing in the Narrows later indicated that the 

discrepancy was related to biota (see 3.4). 

3.3.3 Middle Basin 
Unit A 
In the middle basin Unit A forms numerous positive relief features, such as the 

hummocks noted in the bathymetric survey. Unit A also forms bathymetric depressions in 

the hummocky terrain which are infilled by other units (Fig. 3.15). Several grab samples 

were attempted off Minchin Head on this substrate and all were unsuccessful, further 

supporting the interpretation of Unit A as bedrock. 

Unite 
Small pockets of Unit C were observed in the middle basin infilling depressions in Unit 

A. An example is shown in Fig. 3.15. Here the smaller deposit is 1.2 m thick and 

corresponds to a multibeam backscatter of-34 to -3 7 dB. The deeper deposit (2. 79 m 

thick) corresponds to low multibeam backscatter (-35 to -37 dB). A grab sample 
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Figure 3.15 Sub-bottom profile between points 21:17 and 21:22 acoustically 
transparent sediment (C) and bedrock (A). 
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collected from the deeper deposit confirmed Unit C was mud. Elsewhere in the middle 

basin depressions in the bedrock do not show obvious drapes of sediment; however a grab 

sample retrieved from one contained compacted sand. 

3.3.4 Outer Sound Basin 
Unit A 
Unit A was observed along the margins of the outer basin, coinciding with bedrock 

sampled on the fjord wall. It is likely that bedrock underlies the sediments through out the 

entire outer basin, but at a depth below the penetration ability of the seismic boomer. On 

the basin floor the underlying bedrock was only observed where Units B and C thinned 

towards the basin margin (Fig.3.16). 

The outbound leg ofthe seismic survey extensively covered the very high 

backscatter(> -5 dB) region along the seaward margin of the outer basin. The seabed 

surface was smooth and reflected a hard return with no internal reflectors, which was 

interpreted as bedrock. 

UnitB 
The seismic survey did not cross any locations in the outer basin where Unit B was 

exposed at the surface, therefore it was not sampled. However its acoustic characteristics 

are similar to the gravel sampled from Unit B in the inner basin, so it is believed to be 

glaciomarine gravel. 

Unite 
The flat floor of the outer basin contained an acoustically transparent unit similar to that 

seen in the inner basin. As in the inner basin, sampling confirmed it was silty mud. In the 

outer basin Unit Cis thicker (max. 22m) than the inner basin (max. 3.5 m). 
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Figure 3.16 Sub-bottom profile of the western margin ofthe 
outer basin showing acoustically transparent material (C) 
over a stratified deposit (B), draped on the fjord wall (A). 
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The multibeam backscatter values for the surface of Unit C in the outer basin are higher 

and more variable than in the inner basin. The seismic data indicate that there is no direct 

relationship between the thickness of Unit C and the multibeam backscatter. However this 

mud unit was deepest in the middle of the outer basin and the lowest backscatter occurred 

there. 

Scours 
On the north side of the outer basin near seismic point 01:55 the survey track passed over 

one of the deep depressions identified from the multibeam bathymetry. This feature is 

formed by the surface Unit C sloping very suddenly downwards to a point where it 

contacts the bedrock fjord wall, forming a V shaped depression (Fig. 3.17). The stratified 

deposit (B) below remains unchanged. This was interpreted as a scour where the upper 

unit had been eroded, probably by currents moving along the bottom of the fjord wall. 

The scour is found in a place where the fjord wall is more reflective than the surrounding 

substrate(~ -5 dB) and juts out slightly into the basin which would affect local current 

flow. A similar shaped depression was observed on the multibeam bathymetry map on 

the south side of the fjord near Ratchet Cove on Swale Island. The deepest water depth in 

Newman Sound, 332m, was recorded at the bottom of the Ratchet Cove depression. 

3.3.5 Fjord Mouth Sill 
Unit A 
The outbound leg of the seismic survey passed over the rise on the south side of the fjord 

mouth. Here the seabed returned a strong, homogenous reflection similar to those seen 

elsewhere in the fjord. This is consistent with the multibeam backscatter map which 

shows values of- 5.5 to -13 dB at this location. 
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Figure 3.17 Sub-bottom profile showing acoustically transparent 
sediment (C) overlying stratified deposit (B) eroding away 
from bedrock (A) at Dungeon Cove. 
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On the north side the survey track passed over the fjord mouth sill. The surface of 

the sill was very rough, unlike other areas surveyed in the fjord (Fig. 3.18). Video 

imagery collected near seismic point 03:36 revealed that the substrate was bedrock and 

the surface of the bedrock formed hills with an amplitude of about 1 m. 

The deep water at the mouth of the fjord, seaward of the sill was also surveyed, to 

the edge of the multi beam coverage. Highly reflective material with a rough upper surface 

was recorded here. It is also possible that at the fjord mouth Unit A is winnowed till, as 

the surface is not smooth like bedrock sampled elsewhere in the fjord. Gravel was 

collected in two grabs from the fjord mouth sill which would support this interpretation. 

Unite 
The multi beam backscatter map for the fjord mouth sill shows some small patches of low 

(< -25 dB) to moderate (-15 to -25 dB) backscatter which are likely pockets of 

sediment. One thin pocket of acoustically transparent material was observed during the 

seismic survey infilling a depression in Unit A. Seaward of the sill the seismic survey 

crossed a 4 m thick unit of acoustically transparent material with a rough upper surface. A 

grab sample here confirmed the unit was mud. 

3.4 Groundtruthing 
The collection of ground truth samples confirmed a number of the substrate interpretations 

made from the multibeam bathymetry and backscatter, as well as the shallow seismic 

survey. In addition details emerged that were not apparent from the acoustics, such as a 

spectrum of gravelly substrates. All of the main regions of the fjord - the inner basin, sills, 

middle and outer basins - were groundtruthed. Eight substrate classes were resolved by 
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groundtruthing; six from directly sampling with the benthic grab and two more from 

video imagery. The physical characteristics of these substrate classes, their distribution 

within Newman Sound and their appearance in the acoustic surveys are discussed below. 

Biological information collected during groundtruthing confirmed that the 

benthos of Newman Sound supports a variety of invertebrates and algae, with diverse life 

forms and feeding habits. These biota act as structural components, as well as occupiers 

of, the habitats discussed below. 

3.4.1. Benthic Grab Results 
Substrate samples collected with the benthic grab were processed to define the grain size 

distribution and form a classification system for Newman Sound substrates. As grain size 

has a demonstrated effect on multibeam backscatter intensity (Lurton 2002), a backscatter 

range for classified each substrate was also found. The organic content of sampled 

sediments was also examined, as this will influence the attractiveness of a substrate to 

invertebrates, and possibly affect the backscatter values reflected by the substrate. 

Descriptions of all grab samples and the sediment class to which they were assigned can 

be found in Appendix A. 

3.4.1.1 Grain Size Analysis 
Grain size analysis of collected sediments was undertaken by sieving and sedigraph. The 

results of the grain size analysis for each sample were plotted as cumulative mass curves 

(Fig. 3.19). These curves show the percentage of the sieved sample coarser than a given 

grain size diameter, measured in phi units. A spectrum of grain size distributions can be 

seen from these curves, and some groups of samples can be detected. 
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Figure 3.19 The cumulative mass curves for grab sampled sediments determined from sieving and sedigraph analysis. 
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3.4.1.2 Cluster Analysis 
Cluster analysis was performed on the grain size distribution percentages to better define 

groups of samples and build a sediment classification. The cumulative mass curves were 

then coloured to represent the cluster to which each grab sample belonged, and used to 

interpret clusters. The resulting 9 clusters of grab samples were named based on the grain 

sizes from the Wentworth scale that defined the cluster (Table 2.1 in Chapter 2). 

The five samples in Cluster 1 (Figs. 3.20 and 3.21), are composed primarily of 

fine (30) and very fine (40) sand, with at least some silt but no gravel. Therefore these 

samples were named silty fine sand. Cluster 7 was closely related to Cluster 1. The seven 

samples in this cluster were composed primarily of fine sand with substantial amounts of 

coarse sand. For example sample 126 contained 17% coarse sand (10) and 6% very 

coarse sand (00). This cluster was labelled fine sand with coarse sand. 

Cluster 8 contained two samples composed mostly of coarse (l0) to fine (30) 

sand. Neither sample had significant amounts of gravel or material finer than 30. This 

cluster is very similar to Cluster 7, but made of slightly coarser sand (Fig. 3.21). Grabs in 

this group were labelled coarse sand with fine sand. The branch of the dendrogram 

containing these three clusters was labelled sand, as the majority of the weight in these 

clusters came from grains between 0 and 40. 

The second branch on the dendrogram (Fig.3.20) was labelled mud as most of the 

weight of these grabs was sediment smaller than 40 (63).lm). Cluster 3 contained seven 

grab samples, all but one of which was devoid of gravel. These samples were composed 

primarily of silt (4.25 to 80). Sample 112 was the finest sample, with about one quarter of 

its weight composed of clay. Grab 131 would be more typical of the cluster, having 52% 
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Figure 3.20 Dendrogram showing the similarity between grab sampled sediments based on cluster analysis of their 
grain size distribution. 
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of its weight between medium (60) and very fine (80) silt. Thus cluster 3 was labelled 

silty mud. The two samples that differed the most from the others- 112 and 38- were the 

only members of this cluster not collected in the inner basin. Cluster 9 contained only 

one grab sample, which was collected from the inner basin, and contained 94% clay (9 

to100). There was no coarse fraction; therefore this cluster was labelled clay. Cluster 5 

contained five grab samples composed of fine sand and silt with some coarse sand and 

clay. For example, sample 24 was composed of 54% grains finer than very fine sand ( 40). 

The grabs in this cluster were labelled sandy mud. 

The third branch of the dendrogram was labelled gravel. This branch contained 

more samples (n = 22) than the sand and mud branches, which had 14 and 13 samples 

respectively. The first cluster on the gravel branch, Cluster 2, contained eight samples, all 

containing over 50% gravel by weight. The gravel content(> -20) of this cluster ranged 

from 55 to 90 %. This cluster was defined by high gravel content alone, as the matrix 

material varied. Three of the samples had a muddy sand matrix, whereas the other 4 had a 

sandy matrix. The two grab samples collected at Happy Adventure contained organic 

poor gravel and some pieces of plastic and paint chips, which confirmed the earlier 

interpretation of dredge spoil. Cluster 2 was labelled sandy gravel. 

Cluster 4 contained five samples composed of gravel and fine sand with silt. 

These sediments ranged from 29 to 33% gravel. Cluster 4 was formed based on the gravel 

and clay percentages and was labelled gravelly muddy sand. 

Cluster 6 contained nine samples composed of coarse sand and gravel. These 

samples ranged from 13 to 34% gravel. Sample 107 is very sandy (95% coarser than 10), 

while sample 27 is muddy with 13% silt and clay. The other seven samples in this cluster 
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all have grain size distributions with almost even percentages of weight in the gravel and 

coarse sand phi classes. Grabs in this Cluster 6 were labelled gravelly sand. A summary 

of all named clusters from Fig. 3.20 can be found in Table 3.1. 

T bl 3 1 R It f I t I . f a e esu so c us er anatysts o gram size d" t "b f IS n U lOll 0 f grab samples 
Cluster Number Cluster Name No. of Grabs 

1 silty fine sand 5 

2 sandy gravel 8 

3 silty mud 7 

4 gravelly muddy sand 5 

5 sandy mud 5 

6 gravelly sand 9 

7 fine sand with coarse sand 7 

8 coarse sand with fine sand 2 

9 clay 1 

3.4.1.3 Definition of Substrate Classes 
In order to create a complete substrate map using all groundtruth samples, the substrate 

classification developed for Newman Sound had to be equally applicable to both video 

and grab samples. Therefore named clusters from grain size analysis could not be used 

directly as the substrate classification. Clusters which were determined to be 

indistinguishable from each other on a video were grouped together producing five 

sediment types that are recognisable in all groundtruth samples. 

Cluster 2 (sandy gravel) was retained because statistically it was the most 

dissimilar from any other cluster, and the defining characteristic of sediments in this 

cluster was that they contained over 50% gravel of pebble size or larger, which could be 

estimated from a video image. Therefore pebble/cobble gravel was the first substrate class 
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created. The dredge spoil samples were removed from the class, which increased the 

range of pebble content in the group to 61 to 90%. 

Cluster 4, gravelly muddy sand, was retained as a sediment class even though it is 

characterised by its mud fraction which would be hard to see on a video. This sediment 

class is also characterised by a high amount of fine and very fine sand, so the presence of 

a large amount of fine sediment with pebbly gravel was used in applying this class to 

video imagery. 

Similarly, Cluster 6 (gravelly sand) was used as a sediment class. Samples were 

placed in this class if they i) had less than 50% gravel and therefore were not classed as 

pebble/cobble gravel and ii) did not have a large amount of fine material and therefore 

were not classed as gravelly muddy sand. 

Clusters 3, 5 and 9 were simplified into a single class of mud as the different 

combinations of fine sand, silt and clay that define them cannot be seen from video data. 

Cluster 7 (fine sand with coarse sand) and Cluster 8 (coarse sand with fine sand) 

are closest to each other statistically. When cluster analysis was performed at 25% 

similarity, these two clusters became one. Also Cluster 8 contained only 2 samples. 

Therefore Clusters 7 and 8 were joined into a class of sediment and labelled sand. The 

third cluster on the sand branch- Cluster 1 (silty sand)- was initially recorded as sand in 

the field notes. Therefore it is possible to recognise this type of sediment as fine sand 

without sieving it, and the silt content is low enough that it is not visually apparent. Hence 

this type of sediment was included in the 'sand' substrate class with Clusters 7 and 8. In 

summary, the five sediment classes defined by grain size analysis that can be visually 
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determined are: mud, sand, pebble/cobble gravel, gravelly sand, and gravelly muddy 

sand. 

Coarse gravel samples with no matrix were not sieved and therefore were 

described visually using the Wentworth scale (Table 2.1). The largest clasts were 

measured and if they were less than 256 mm the sample was placed in the pebble/cobble 

gravel class. Material larger than 256 mm is a boulder on the Wentworth scale, so any 

samples containing these large clasts were placed in a separate class (see below). None of 

the grab samples contained boulders so all were classified as pebble/cobble gravel. 

The 61
h substrate class identified was rhodolith. Rhodolith substrate could be 

reliably identified from video observation and was successfully collected by grab 

sampling. Rhodoliths are formed when coralline red algae encrust loose gravel, shells or 

the calcium carbonate skeletons of other coralline algae. The algae grow on top of the 

core material, usually in areas of moderate current which helps keep them from being 

smothered by sediment (Bosence 1983). The current also rolls the rhodoliths over 

periodically, enabling algae to grow on all surfaces of the core material. Rhodoliths are 

therefore commonly spherical, but may be ellipsoidal or discoidal in shape (Bosence 

1983). Rhodoliths collected in Newman Sound displayed all three shapes. 

Rhodoliths were the only biogenic substrate sampled in Newman Sound. 

Although the formation of rhodoliths relies on the presence of core material for algal 

growth, the surface of the substrate that is actively used as habitat is the live coralline 

algae or its calcium carbonate skeleton. In most cases it was possible to speculate on the 

identity of the core material based on the weight of a rhodolith, but most could not be 

positively identified so all cobble and pebble gravel with greater than 50% of its surface 
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covered by dense branches of coralline algae were classified as rhodolith. The branching 

of the coralline algae is the key characteristic that distinguished rhodoliths from encrusted 

gravel. The grain sizes found were similar to pebble/cobble gravel, with the largest 

rhodolith reaching llcm in diameter, but most were around 5 em. Rhodolith was used as 

a separate substrate class from pebble/cobble gravel because the dynamics of a habitat on 

this substrate would be unique, as the rhodoliths are frequently moved. Also the structural 

complexity of this substrate is much higher than gravel due to the dense branching of the 

rhodolith-forming algae. 

3.4.1.4 Organic Content 
Samples processed for organic content came from five sediment classes; mud (n = 13), 

sand (n = 14), gravelly muddy sand (n = 5), gravelly sand (n = 10), and pebble/cobble 

gravel (n = 6). The two samples of dredge spoil from Happy Adventure were also tested. 

Grabs containing rhodoliths or 100% pebble/cobble gravel had no matrix material to 

analyze. The organic content ofNewman Sound sediments ranged from 0.5 to 35.6%, 

with a mean of 8.2% and most samples, (38 of 62) having less than 5%. These results are 

high compared to those of Ramey (200 1) who reported organic carbon values between 1 

and 8% (C.mg-1
) for muddy sediments in Placentia Bay. 

In general the sediments from the inner basin had higher organic content than 

samples from elsewhere in the fjord, with five ofthe seven stations having values 

between 24 and 35% (Fig. 3.22). Four of these samples were collected from the inner 

basin floor, and one from the delta top. The other two samples, both of which were 

collected near the delta front, had organic content values of 9%. 
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Figure 3.22 Scatterplot of organic content of grab sampled sediments vs. water depth. 
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Mud samples from other parts ofNewman Sound also had relatively high organic 

content. The only sample from the floor of the outer basin contained 16% organic 

material. This suggests that like the inner basin, the muddy floor of the outer basin is 

organic rich, but more samples would be needed to confirm this. Mud sampled in 

locations other than the basin floors had an average organic content of9.3%. 

The lowest organic content values were found in shallow-water sand and gravelly 

sand collected at the White Islets, Minchin Head and Buckley Cove. These samples (n = 

7) had organic content values ranging from 0.40 to 0.98% and occurred in a range of 

water depths from 5 to 42 m. 

Sediments rich in organic material tended to have a larger mud fraction, whereas 

coarse sand generally contained less organic material. Mud is typically found in 

bathymetric settings that promote accumulation of both fine sediments and of organic 

material. For example, organic-rich samples of mud from the deepest part of the inner 

basin contained dead eelgrass and other material from surrounding shallow water 

environments. 

The depth of the samples also influenced the organic content. Terrestrial plant 

debris was found in shallow-water samples from the inner basin, including aspen leaves 

and spruce cones. Inner basin sediments would also have been enriched with terrestrial 

plant debris from logging and associated human activities that occurred historically on the 

shores of inner Newman Sound. The impact of this logging on the benthic habitats of the 

sound are unknown, but the presence of a significant amount of woody debris was noted 

in inner basin grab samples. Woodchips were also encountered by Anderson et al. (2002) 

who made this a separate class in their benthic classification. 
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3.4.2 Video Results 
Video methods were used to groundtruth additional sites, as well as several where grab 

sampling had failed. Video sample locations were assigned to established substrate 

classes (modified from cluster analysis of grab samples) based on the percentage of 

visible seabed that each class occupied in screen shots. Two new substrate classes were 

created to incorporate substrates found in videos that had not been found by grab 

sampling; boulder gravel and bedrock. 

3.4.2.1 SCUBA Transects 
The two substrates most commonly encountered during the SCUBA video transects were 

pebbly sand with macroalgae and rounded boulders in pebbly sand. The dives revealed 

that cobble and boulder slopes, and pebble to boulder gravel on sand are the most 

common substrates near Buckley Point, the Narrows and Mt. Stamford Cove. In some 

cases, these coarse substrates represent the submarine extension of talus slopes on the 

fjord walls, whereas in others, they may represent submerged gravel beaches formed 

during Holocene low stands of sea level (T.Bell, personal communication 2006). 

The most important result from the SCUBA transects was the documentation of 

broadleafkelp (genus Laminaria). Dive sites 3 and 4 were chosen to investigate the patch 

of extremely low backscatter located 200m east of the island in the Narrows. The dives 

were aligned so that the transects crossed the transition from very low to moderate 

backscatter (Fig. 2.12, Chapter 2). The very low backscatter values at the start of both 

dives, -55 and -59 dB, coincide with seabed that was very densely covered by Laminaria 

kelp. It was thus concluded that the acoustic signal was being scattered by the kelp, 

creating this anomalous patch oflow backscatter (white area on Fig. 2.12). 
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Dives 5 and 6 just to the west of dives 3 and 4 had moderate backscatter between 

-II and -13 dB. Here the flat seabed was covered by sand with angular pebbles and 

bivalve shells. Notably, algae cover was sparse, with 10 to 25% of the seabed covered by 

fine green algae, and only sparse patches of Laminaria kelp (<5% cover). Similarly, 

gravelly sand with 25% Laminaria cover was observed in Buckley Cove, where 

backscatter values were -11 to -14 dB. It was therefore concluded that although 

Laminaria kelp occurs elsewhere in shallow water, 75% or more of the surface must be 

covered to affect the multibeam backscatter signal in the way seen near the Narrows. 

3.4.2.2 Tethered Drop Video Camera 
The drop camera was deployed at 7 stations around the Narrows to determine the extent 

of the rhodolith bed sampled there and to investigate the low multibeam backscatter 

pattern. Video images revealed pebble-cobble sized rhodoliths with dense branches and 

leafy red algae (Ptilota serrata) which covering about 75% of the bottom. In contrast, 

where backscatter was higher, coralline encrusted pebbles with a few rhodoliths and 

sparse kelp cover were observed along with scattered boulders. 

The drop camera also successfully characterised locations where grab sampling 

had failed. For example at grab station 109, the sampler had been recovered open with the 

cable wrapped under the arm of the grab, suggesting it had tipped over on the bottom. The 

camera indicated that the sandy seafloor at this location was ~50% covered by large 

boulders, which likely tipped the grab. 

3.4.2.3 Remotely Operated Vehicle Video (ROV) 
Station A was selected to include low and high backscatter areas on the shallow sill at the 

Narrows. The ROY images confirmed both contained rhodoliths. Station B represented 
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the high backscatter seabed which had been unsuccessfully grab sampled about I km 

north-west of Minchin Head in 55 to 60 m water depth. The ROV video revealed that 

cobbles thinly covered by mud occurred adjacent to a field of biogenic mounds in fine 

sand. The mounds where cone shaped with circular holes in the apex and there was 

evidence of bioturbation on the sides of the mounds and surrounding seabed. 

The most important aspect of the ROV survey was the opportunity to investigate 

bedrock substrate and the biological communities associated with exposed bedrock. Also, 

the ROV surveyed the outer basin which had not been accessible with other video 

methods. 

The fjord wall on the southern side of the outer basin was sampled at East Point, 

on the eastern end of Swale Island (station D). Here a bedrock cliff drops abruptly from 

the intertidal zone to the basin floor over 300m below. Bedrock habitat was also 

surveyed at station E, located 1 km from Little Harbour Head on Richards Island. Here 

the bedrock formed round-topped parallel ridges 1 to 2 m high on a moderate slope, 

which contrasted with the relatively smooth cliff face at station D. The origins ofthese 

mounds are unknown. 

3.4.2.4 Classification of Video Samples 
All video samples collected by SCUBA divers, tethered drop camera and the ROV were 

assigned a substrate class. The six classes described from grain size analysis of the grabs 

were used, and two new classes were added. In some cases video samples were collected 

at the same site as grab samples, and consequently the video was assigned to the same 

class as the grab sample. In all other cases, the six substrate classes derived from the grab 
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samples were applied to video images based on the estimated percentage of gravel and 

fine sediments observed. 

Videos with less than 50% of the surface covered by pebbles and cobbles were 

assigned to one of two classes based on the composition of the sediment matrix. If a large 

proportion of fine-grained sediment was present the sample was classified as gravelly 

muddy sand. If the matrix appeared coarser the sample was classified as gravelly sand. 

When 50% or more of the seabed was covered by pebble or cobble size clasts, the video 

sample was placed in the pebble/cobble gravel class. Videos where 100% ofthe seabed 

was covered by fine sediment were classified as mud or sand. 

One substrate class generated solely from the video data is boulder gravel with or 

without sand. The term 'boulder gravel' is used because the dominant feature ofthe 

seabed was boulders, although cobbles and pebbles were also present. Large boulders 

approximately 2 m in diameter were observed in some videos. Boulders were often well 

rounded and exposed on the sediment surface. It is possible that grab samples containing 

pebble/cobble gravel, gravelly sand or sand may have been sampled from between the 

boulders on this type of substrate, but it is impossible to tell if boulders are present using 

a grab sampler. 

The other substrate class identified by video sampling was bedrock. This class 

was easily identified from video imagery, but could only be sampled with the ROY as it 

occurred primarily in the outer sound, which could not be reached by the vessels used to 

conduct other video sampling. 
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3.4.3 Summary of Substrate Classes 
The total groundtruthing effort using videos and the benthic grab resulted in 146 samples 

classified into eight substrate classes. They are: mud, sand, gravelly muddy sand, gravelly 

sand, pebble/cobble gravel, rhodolith, boulder gravel and bedrock. The distribution of 

sampling effort among the eight substrate classes is shown in Table 3.2. The attributes of 

each classified point can be found in Appendix A. 

Table 3.2 Number of grab and video samples containing biota and total number of 
I . h bt t I sam pies m eac su s ra e c ass 

#of #of grabs #of #of videos 
Total 

Substrate Class samples in 
Grabs with biota videos with biota 

class 
Mud 13 10 7 6 20 
Sand 13 7 11 1 24 

Gravelly muddy 
5 3 0 0 5 

sand 
Gravelly sand 11 10 9 9 20 

Pebble/cobble gravel 17 16 1 1 18 
Rhodolith 5 5 9 9 14 

Boulder gravel (with 
* 0 18 18 18 

or without sand) 
Bedrock n/a 0 5 5 5 

No recovery 22 0 n/a 0 22 
Total 86 51 60 59 146 

* No grab samples in this class, however grab samples classified as pebble/cobble gravel 
or gravelly sand may have come from boulder gravel substrates. 
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3.5 Groundtruthing: Biological Data 
Biological samples were collected to gain an understanding of substrate-specific habitat 

use by benthic macroinvertebrates and algae in Newman Sound. Biological samples were 

collected from 53 of the 67 grab samples. Biota were also observed in all but one of the 

videos (Table 3.2). In total 93 taxa were recorded from 12 phyla. This includes 84 

invertebrate and 9 algal taxa. Tables of species identified can be found in Appendices B 

and C. 

Newman Sound has a primarily boreal faunal assemblage, with some arctic 

species also present. Overall the shallow-water parts of the fjord contained the most biota, 

both in terms of number of individuals and species richness. Samples collected in deep 

water, particularly in the outer basin, contained sparse biota. Biological data from video 

and the benthic grabs showed some significant differences in both the number and type of 

organisms captured; the reasons for these differences and the importance to the overall 

biological data set are discussed below. 

3.5.1 Grab-Sampled Invertebrates 
The segmented worms (Phylum Annelida: Class Polychaeta) were the most frequently 

observed and most species rich invertebrate group in the grabs, with 24 taxa identified. 

Tube-dwelling polychaetes were the most numerous group, and were found attached to 

hard substrates and in sediment. Free living, non-tube building (errant) polychaetes were 

less common and more difficult to identify as these specimens were easily damaged. 

Polychaete worms spanned all possible feeding guilds including filter feeders, scavengers, 

predators, detritivores and deposit feeders. 
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Molluscs from the class Bivalvia were the second most common invertebrate 

group, with individuals identified from 14 taxa. Again, a range of forms were represented 

with burrowing infaunal species, boring clams, surface-dwelling bivalves and attached 

species observed. Most of the identified bivalves were filter feeders, but some notable 

taxa of detritivores were also found (see below). A number of juvenile bivalves were 

found attached to algae and rhodoliths. 

Echinoderms from four classes were sampled with the benthic grab. The most 

diverse class was Ophiuroidea; the brittle stars. Larger echinoderms, such as sandollars 

(Echinarachnius parma) and sea urchins (Strongylocentrotus droebachiensis) were only 

collected in a few grabs, usually as juveniles. Other Phyla represented include Porifera, 

Arthropoda, Bryozoa, Rhizopoda and Cnidaria. 

The most commonly occurring flora was encrusting coralline red algae from the 

genus Lithothamnion. It was tentatively identified as L. glaciale based on descriptions by 

Morgan ( 1998) from Bonne Bay and Portugal Cove, Newfoundland. 

3.5.2 Biota from Videos 
Much of the biota recorded by video methods was the same as those identified from grab 

samples. Additional taxa identified from video only are: two species of crab (Arthropoda: 

Crustacea); and organisms typical of hard substrates including an attached anemone 

species, a sea squirt (Chordata: Ascidiacea), an encrusting sponge and hydroids (Cnidaria: 

Hydrozoa). 

Along with the invertebrate species, six species of fish were recorded from the 

videos. The fish did appear to be substrate specific, with cod associated with vegetated 

boulder gravel and sand, and flounder with sand or gravelly sand. The fish species are 
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listed with the invertebrates in Appendix C but they were not included in any of the 

analyses or the resulting maps. 

Broad leaf kelp from the genus Laminaria was recorded at 10 video sites. This was 

the only algal taxon sampled by video which was not collected in the grab samples. This 

type of kelp is large and secured to hard substrates by a hold fast, so it is unlikely to be 

collected by the benthic grab. 

3.6 Biotic Assemblage and Substrate Associations 
Habitat characterisation and mapping require that the biological data from groundtruth 

samples are examined in the context of the substrates from which they were collected. 

The associations between groups of organisms must also be considered. Statistical 

analysis was performed on the two biological datasets to explore the relationship between 

classified substrates and their biotic assemblages. 

3.6.1 Species Richness 
In general species richness appears to be well correlated with surface complexity; with 

complex, harder substrates showing high species richness whereas the muddy substrates 

exhibited low species richness. It is likely that the sampling methods used played a role in 

this distribution. As bedrock was only sampled by video, a larger surface area was viewed 

per sample compared with unconsolidated substrates, such as gravelly muddy sand, which 

was only sampled by grabs. There are, however, real ecological gradients evident in the 

relationship between species richness and substrate class (Fig. 3.23). 

The rhodolith bed demonstrated the highest species richness with an average of 

7.4 identified species per video sample and 21.6 per grab. Most species were small fauna 

hidden in rhodolith branches, which explains the discrepancy between sampling methods. 
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classes. Error bars represent 95% confidence limits. 
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This habitat also had the highest diversity with 31 species identified from 9 phyla. 

Overall, the rhodolith bed was the most bio-diverse habitat sampled and one of the most 

structurally complex. 

The two substrates with the lowest structural complexity - mud and gravelly 

muddy sand - had the lowest species richness. Muddy substrates primarily supported 

infaunal species which would be undetectable on video and may be missed by a 

shallow penetrating grab. However grab samples, particularly from mud in the inner 

basin, contained a high number of individuals, but species diversity was low. Therefore 

the low structural complexity of this substrate, and thus few available microhabitats, is 

the likely cause of its low richness. 

3.6.2 Non-metric Multi-dimensional Scaling 
The fact that benthic organisms display substrate preference, and are not arranged 

randomly on the seabed, is key to habitat mapping. Non-metric multi-dimensional scaling 

(NMDS) was used to visualise patterns in the biological data as an initial step towards 

determining if the sampled biota were indeed showing preference for particular 

substrates. 

3.6.2.1 Non-metric Multi-dimensional Scaling of Grab Samples 
Ordination of the grab sampled biota showed a general separation ofhard and soft bottom 

taxa. Samples from hard-bottom substrate classes (rhodolith and pebble/cobble gravel) 

appear towards the left of the plot, sand and gravelly sand generally occur near the middle 

and soft-bottom mud and gravelly muddy sand are on the right (Fig. 3.24). 

Samples that are geographically close together, such as mud samples 135, 134 and 

131, had eigenvalues which placed them close together on the ordination diagram. 
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Figure 3.24 Three-dimensional NMDS plot of biota presence/absence data 
from grab samples with points coloured to represent substrate classes. 
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Interestingly, samples from the same part of the inner basin but from other substrate 

classes, such as grabs 16 and 133, also plotted close to this group. These two samples are 

muddy gravel and gravelly muddy sand, but they share polychaete and bivalve species 

with the mud samples, indicating that the muddy matrix is the cause for similarity. 

The mud samples from other parts of the fjord are dispersed around the plot and do not 

form an associated group. 

The scattered distribution of the gravelly sand and gravelly muddy sand samples 

on the NMDS ordination diagram indicates that these substrate classes do not share as 

many species as the other classes for which samples appear close together (Fig. 3.24). 

This is understandable given the range in water depths and geographic locations of the 

gravelly sand and gravelly muddy sand samples. Gravelly sand samples which contained 

more gravel, such as grab 102, appeared near the rhodolith and pebble/cobble gravel 

group due to their high diversity of encrusting and epilithic fauna. Pebble/cobble gravel 

samples from grabs 3, 5, 105, 40, 39 and 35 formed a group at the right side of Fig. 3.24. 

These contain very high percentages of pebble and cobble, and share epilithic taxa such 

as limpets, bryozoans and forams. 

The rhodolith grab samples appear close to the pebble/cobble gravel group, as 

these substrates share a number of in faunal and small epifaunal species. Notably, grabs 

119 and 33 are plotted very close to the rhodolith group. These grabs were taken very 

close to the Narrows and contained large cobbles, which were heavily encrusted with 

coralline algae and share many other species with the rhodolith class. 
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3.6.2.2 Non-metric Multi-dimensional Scaling of Videos 
Non-metric multi-dimensional scaling of biota sampled by video demonstrated that there 

is some distinction between the biota sampled on hard substrates, such as bedrock, 

boulder or rhodolith, and those found in mud. In general the harder substrates appear near 

the top of the ordination diagram, whereas the muddy substrates are on one side and the 

gravelly sand samples are near the bottom of the plot (Fig. 3.25). 

Some of the boulder samples, such as the dives in Mt. Stamford Cove and 

Buckley Point 1 and 2, were on sand and contained more sand-associated biota. These 

plotted lower than the other boulder samples, close to the gravelly sand from dives 5, 6 

and Buckley Point 3, as well as sand from drop camera stations 126 and 7 and dive 3. 

Most of these samples are close to each other geographically. 

As in the grab samples, videos in the rhodolith class formed a fairly cohesive 

group, which was closely associated with other hard substrates such as bedrock and 

boulders. Only one video was classified as pebble/cobble gravel, and this sample did not 

appear near rhodolith or boulder gravel samples. Instead it appeared close to the mud 

samples as this video, ROV station B, contained cobbles coated in mud and largely lacked 

epifauna. 

3.6.3 Analysis of Similarity 
Analysis of similarity (ANOSIM) was used to test if each substrate class had a different 

species assemblage. In the grab sample dataset ANOSIM revealed that within class 

similarity was lower than similarity between the pebble/cobble gravel and rhodolith 

classes. The R value for this test pair was -0.123 (Table 3.3). A number of test pairs had 

low R values and high significance, indicating they had very similar biotic assemblages. 
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Table 3.3 Analysis of Similarities (ANOSIM) pair-wise tests of classified substrates 
b d b. ta tl b I ase on 10 rom gra samples 

Test Pairs R Statistic Si2nificance Level % 
pebble to cobble 

sand gravel 0.104 8.6 

sand mud 0.345 0.2 

sand gravely muddy sand 0.594 1.2 

sand rhodolith 0.534 0.4 

sand gravely sand 0.094 12.9 
pebble to cobble 
gravel mud 0.325 0.1 
pebble to cobble 
gravel gravely muddy sand 0.441 1.0 
pebble to cobble 
gravel rhodolith -0.123 83.1 
pebble to cobble 
gravel gravely sand 0.143 5.2 

mud gravely muddy sand 0.305 8.2 

mud rhodolith 0.81 0.1 

mud gravely sand 0.204 0.6 

gravely muddy sand rhodolith 0.851 1.8 

gravely muddy sand gravely sand 0.03 35 

rhodolith gravely sand 0.209 5.8 
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In general, soft sediments such as mud and gravelly muddy sand appear to share similar 

taxa. The coarser substrate classes- namely sand, gravelly sand, rhodolith and 

pebble/cobble gravel- also shared a similar species assemblage. 

Analysis of similarity for the videos produced only positive R values, indicating 

that for all test pairs, within class biotic similarity is greater than similarity between 

samples in different substrate classes (Table 3.4). Again, hard-bottom substrate classes, 

such as pebble/cobble gravel, boulder gravel, rhodolith and bedrock appear to have a 

similar biotic assemblage, as shown by the low R values and high significance. The sand, 

gravelly sand and pebble/cobble gravel classes also appear to have similar species. 

Table 3.4 Analysis of Similarities (ANOSIM) pair-wise tests of biota from video s 
Test Pairs R Statistic Significance Level % 

gravelly sand boulder gravel 0.151 1.4 
gravelly sand sand 0.231 7.2 
gravelly sand rhodolith 0.51 0.1 
gravelly sand mud 0.927 0.1 
gravelly sand bedrock 0.613 0.1 
gravelly sand pebble/cobble gravel 0.903 7.1 
boulder gravel sand 0.348 2.6 
boulder gravel rhodolith 0.059 19.8 
boulder gravel mud 0.972 0.1 

boulder gravel bedrock 0.137 13.5 

boulder gravel pebble/cobble gravel 0.95 5.0 

sand rhodolith 0.722 0.2 

sand mud 0.781 0.2 

sand bedrock 0.616 0.8 

sand pebble/cobble gravel 0.36 33.3 

rhodolith mud 1.0 0.1 

rhodolith bedrock 0.767 0.2 

rhodolith pebble/cobble gravel 1.0 10.0 

mud bedrock 1.0 0.2 

mud pebble/cobble gravel 0.911 14.3 

bedrock pebble/cobble gravel 1.0 16.7 
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3.6.4 SIMPER- Similarity Percentages 
As ANOSIM had indicated some similarity between the assemblage of species present in 

hard and soft substrates, SIMPER was used to explore which taxa contributed to 

similarity of samples within each substrate class. Thus a better understanding was gained 

of which individual species were characteristic ofhard and soft substrates, and which 

substrate classes, if any, hosted unique biota. Similarity analysis also demonstrated which 

substrate classes, as determined by grain size analysis, represented the most biologically 

similar groups of samples (Table 3.5). 

T bl 3 5 SIMPER a e . ·1 . fb" I d . h" b average simi anty o Iota sample wit m su strate groups 
Substrate Average Similarity in Average Similarity in 

Videos Grab Samples 
mud 76.44 18.82 
sand 36.33 19.24 
gravelly muddy sand * 11.76 
gravelly sand 51.99 14.11 
_pebble to cobble gravel ** 11.99 
boulder gravel 47.66 * 
bedrock 66.55 * 
rhodolith 69.86 27.61 
*no samples were collected in these substrate classes 
**as there is only one video classified as pebble/cobble gravel no SIMPER was 
conducted. 

3.6.4.1 Bedrock Biotic Assemblage 
High similarity between biological samples was found in the bedrock substrate class 

(Table 3.5). As this class contained the smallest number of samples (n = 5 from 3 

locations) it is logical that there would be significant agreement. SIMPER showed that the 

frilled anemone (Metridium senile), the green sea urchin (Strongylocentrotus 

droebachiensis), and an encrusting coralline red alga (Lithothamnion glaciale) each 

contributed 20% of the similarity in the bedrock biotic assemblage (Table 3.6). The rest 
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of the assemblage was composed of attached anemones and echinoderms, including the 

northern red anemone (Teallafelina) and purple sunstar (So/aster endeca). The bedrock 

assemblage had the highest number of taxa unique to this substrate class, including 

Cnidaria, which were abundant. Other unique species include the breadcrumb sponge 

(Halichondria panacea), the sea peach tunicate (Halocynthia pyriformis), and hydroids. 

These three taxa together with the anemones Teallafelina and Metridium senile are 

characteristic of bedrock substrate. 

T bl 3 6 C t ·b t t 90% · ·1 ·t · th b d k semblage a e on n u ors o o s1m1 amy m e e roc as 
Taxon Video(%) 

Lithothamnion ~laciale 19.96 
Metridium senile 19.96 

Stronf{)llocentrotus droebachiensis 19.96 
Teallafelina 11.33 

Asterias vul~aris 6.77 
Ophiuroidea sp. 5.68 

purple urchin 5.43 
So/aster endeca 5.43 

3.6.4.2 Boulder Gravel Biotic Assemblage 
SIMPER results revealed that there was high similarity (48%) between biota sampled 

from boulder substrate (Table 3.5). As there were no grab samples in this group the biotic 

assemblage was dominated by large fauna and algae. The coralline red alga 

Lithothamnion glaciale, green algae and Agarum cribrosum kelp were significant 

contributors to similarity in this class (Table 3.7). Echinoderms were the most significant 

faunal group, with the northern sea star (Asterias vulgaris) contributing the most to 

similarity within the assemblage, followed by the green sea urchin (Strongylocentrotus 

droebachiensis) and the purple sunstar (So/aster endeca). The frilled anemone 

(Metridium senile) was the third highest contributor to similarity. 
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Pair-wise SIMPER tests determined that the boulder and bedrock species 

assemblages had the lowest dissimilarity. Algal species found on boulders but absent 

from bedrock contributed to this dissimilarity, especially green algae and Agarum 

cribrosum. Therefore the characteristic assemblage for the boulder class is green algae, 

colander kelp (Agarum cribrosum ), anemones (Metridium senile), sea stars (Asterias 

vulgaris) and green sea urchins (Strongylocentrotus droebachiensis). 

T bl 3 7 C t "b t t 90«Y< · ·1 "t · th b ld blage a e on rt u ors o o stmi aruy m e ou er assem 
Taxon Video(%) 

Asterias vul!{aris 29.33 
Strongylocentrotus droebachiensis 25.42 

Metridium senile 16.62 
Lithothamnion !{laciale 6.79 

green algae 6.72 
So/aster endeca 4.63 

A!{arum cribrosum 4.01 

3.6.4.3 Rhodolith Bed Biotic Assemblage 
The rhodolith samples had the second highest percentage of similarity in video samples 

and the highest similarity in grab samples (Table 3.5). The encrusting coralline red alga 

(Lithothamnion glaciale) constituted the primary component of the rhodoliths, and was 

therefore not surprisingly a high contributor to similarity in the rhodolith biotic 

assemblage. 

SIMPER analysis of grab sampled biota showed seven species contributing 8.98% 

to group similarity (Table 3.8). Five of these were small fauna that were collected from 

among the branches of the rhodoliths and therefore had not been recognised by video 

analysis. Of these, the ophiuroids Ophiura robusta and Ophiopholis aculeata were 

particularly abundant in rhodolith grabs. 
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SIMPER analysis of the videos showed the high contributions to similarity from 

large echinoderms, such as sea stars (Asterias vulgaris) and green sea urchins 

(Strongylocentrotus droebachiensis). Colander kelp (Agarum cribrosum) contributed 

15.18% ofthe similarity of videos in this assemblage, the highest result for this species in 

any substrate. 

Biota sampled in rhodoliths had a high diversity of feeding methods. Suspension

feeding sessile benthos like bryozoans, sponges, bivalves and polychaetes were important 

members of the assemblage. Grazers were also significant, particularly chitons, limpets, 

grazing snails and sea urchins. The rhodolith bed was one of the few habitats where 

predatory or scavenging polychaetes, such as Lepidonotus squamatus, were significant 

members ofthe assemblage. The abundance of predatory species in this assemblage is 

indicative ofthe abundance and diversity of biota in other trophic groups. 

Characteristic taxa of the rhodolith assemblage are branching Lithothamnion 

glaciale algae, the arctic rock borer (Hiatella arctica), the red chiton (Tonicella rubra), 

ophiuroids, the 12 scaled worm (Lepidonotus squamatus) and colander kelp (Agarum 

cribrosum). 

117 



T bl 3 8 C t "b t t 90'Y< . ·1 "t . th h d rth bl a e on n u ors o o simi anty m e r o o I assem age 
Taxon Video(%) Grab Only(%) 

Lithothamnion ~laciale 19.97 8.98 
Asterias vul~aris 19.97 

Strongylocentrotus droebachiensis 19.97 8.98 
A~arum cribrosum 15.18 1.23 
Metridium senile 7.89 
Spirorbis borealis 7.17 
Hiatella arctica 8.98 
Tonicella rubra 8.98 

Ophiopholis aculeata 8.98 
Ophiura robusta 8.98 

Lepidonotus squamatus 8.98 
Puncturella noachina 5.45 
encrusting bryozoans 5.45 
Asteroidea juvenile 4.68 
Tonicella marmorea 2.99 

Anomia simplex 2.34 
Porifera 2.28 

lichen bryozoan 2.18 
white crust bryozoan 0.90 

3.6.4.4 Mud Biotic Assemblage 
SIMPER analysis showed that video samples in the mud class had the highest biotic 

similarity of all substrate classes, while muddy grab samples had the third highest 

similarity (Table 3.5). Both video and grab samples collected from muddy bottoms were 

dominated by deposit feeding taxa, especially tube-dwelling polychaetes. 

The most important contributor to similarity in the mud assemblage was the 

deposit feeding bamboo worm, Maldane sarsi (Table 3.9). This species, which was 

particularly numerous in grabs from the inner basin, constructs a tube of fine-grained 

sediment particles. A number of unidentified tubes where recorded in video protruding 

from muddy sediments, and contributed significantly to group similarity. These are 

thought to also be M sarsi but it was impossible to confirm this. The deposit feeding, 
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chalky macoma (Macoma calcarea) was also abundant in mud grab samples. As it is an 

infaunal bivalve, M calcarea was likely under represented in the videos. A number of 

siphon pits were observed in videos which are likely this species. A second tube-dwelling 

polychaete, Pectinaria granulata, was also a significant contributor to similarity in the 

mud class. This species builds tubes of slightly coarser material than M sarsi, and feeds 

by filtering particles from water pumped through its tube. Echinoderms were sparse in the 

mud-bottom fauna, with the only significant species being the orange-footed sea 

cucumber (Cucumaria.frondosa). 

T bl 3 9 C a e 'b ontn utors to 90'Y< . '1 . h o stmt anty m t e mu d assem bl age 
Taxon Video(%) Grab(%) 

polychaete tubes 48.26 9.24 
Maldane sarsi 48.26 7.60 

Pectinaria wanulata 42.10 
Macoma calcarea 14.63 

amp hi pod 13.76 
Cucumariafrondosa 2.95 

3.6.4.5 Sand Biotic Assemblage 
The most significant members of the sand assemblage were the purple san dollar 

(Echinarachnius parma) and tube-dwelling polychaete Pectinaria granulata (Table 3.1 0). 

Algae contributed significantly towards similarity within the sand class, notably green 

algae which were prolific in shallow water. Kelp from the genus Laminaria were also 

observed in a number of videos. A strong association was seen between sourweed 

(Desmarestia aculeata), amphipods, lichen bryozoans (Lichenopora spp.) and the smooth 

top snail (Margarites helicinus). These three taxa were found attached to sourweed in 

grab samples from sand. Therefore the presence of macroalgae as a host for epifauna is an 
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important biotic component of the sand habitat. This would obviously only apply to sand 

found within the photic zone. 

Analysis of grab samples showed that suspension feeders are important within the 

sand assemblage, particularly suspension feeding polychaetes and Bryozoa. Infaunal 

suspension feeding bivalves were also important components ofthis assemblage, such as 

members of the genus Astarte. The characteristic species of the sand assemblage are the 

purple sandollar (Echinarachnius parma), the trumpet worm (Pectinaria granulata), 

green algae, sourweed (Desmarestia aculeata), and amphipods, especially the genus 

Gammarus. 

T bl 3 10 C a e "b ontn utors to 90o/c . "I . h o simi anty m t e san d assem bl age 
Taxon Video(%) Grab(%) 

Echinarachnius parma 30.28 17.7 
Pectinaria granulata 28.64 

green algae 4.59 9.87 
Gammarus sp. 9.62 

unknown polychaete tubes 7.37 
unknown polychaete 3.63 
Desmerestia aculeata 14.68 2.82 
Marf{arites helicinus 2.82 

Caprella sp. 2.82 
lichen bryozoan 2.82 

Astarte sp. 2.54 
Asterias vulgaris 30.28 
Spirorbis borealis 5.50 

Laminaria sp. 5.50 

3.6.4.6 Pebble/Cobble Gravel Biotic Assemblage 
There was only one video in the pebble/cobble gravel class, therefore SIMPER was only 

possible for grabs in this class. Thus the resulting assemblage was dominated by small 

epifauna. Encrusting epifauna, such as foraminiferans, bryozoans and calcareous tube 

worms (Spirorbis borealis) were the most significant contributors to similarity of 
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pebble/cobble gravel samples (Table 3.11). All are filter feeders and were commonly 

found as epifauna on pebble to cobble sized gravel when it was exposed at the sediment 

surface. Small grazers, such as the red chiton (Tonicella rubra) and the limpet 

(Puncturella noachina) were also found in gravel grabs in shallow water. The only algal 

taxon that appeared in the SIMPER results was the encrusting coralline red alga 

Lithothamnion glaciale. Perhaps for this reason the pebble/cobble gravel biota was most 

similar to rhodolith biota in grab sample analysis (79.2% dissimilarity). The characteristic 

taxa of pebble/cobble gravel substrate were foraminiferans, chitons, limpets, filter feeding 

tube-dwelling polychaetes and encrusting bryozoans. 

T bl 3 11 C a e "b ontn utors to 90% . "1 . h pebble/cobble gravel assemblage o simi anty m t e 
Taxon Grab Onlv (%) 

calcareous forams 14.57 
encrusting bryozoans 14.09 

polychaete tubes 14.06 
Lithothamnion glaciale 13.01 

Tonicella rubra 13.01 
Puncturella noachina 5.02 

Spirorbis borealis 4.11 
Pectinaria granulata 3.18 
unknown polychaete 2.96 
white crust bryozoan 2.8 

Porifera 1.8 
other foraminiferan 1.31 

Maldanid polychaete 1.11 

3.6.4.7 Gravelly Muddy Sand Biotic Assemblage 
Gravelly muddy sand biota was only sampled by three grab samples and no videos. In 

general the biota from this substrate class was characterised by deposit feeding infaunal 

bivalves and ophiuroids. The only species which contributed to similarity in the SIMPER 

results was the ophiuroid Ophiura robusta, which occurred in all samples (Table 3 .12). 

Bivalves, such as Macoma calcarea, Mya arenaria and Clinocardium ciliatum were also 
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found in this substrate and contributed to dissimilarity between gravelly muddy sand grab 

samples and related substrates such as gravelly sand. 

Table 3.12 Contributors to 90% similarit in the gravelly muddy sand assemblage 
Taxon 

3.6.4.8 Gravelly Sand Biotic Assemblage 
The biotic assemblage sampled from gravelly sand substrate contained a variety of large 

echinoderms such as sea stars (Asterias vulgaris), green sea urchins (Strongylocentrotus 

droebachiensis) and purple sandollars (Echinarachnius parma). These species are large 

surface dwellers and occurred frequently in video samples, with E. parma also being an 

important contributor to similarity in grab sampled gravelly sand (Table 3.13). 

Infaunal bivalves where important contributors to similarity within this 

assemblage, notably Macoma calcarea and Astarte sp. Tube-dwelling polychaetes were 

also common in gravelly sand grab samples, with Onuphis conchylega and Pectinaria 

granulata contributing to similarity in this assemblage. Onuphis conchylega and Astarte 

sp. are of particular note, as they were also high contributors to dissimilarity between 

gravelly sand and grabs from sand, which had the most similar biota. 

Filamentous green algae were very abundant in videos of shallow-water gravelly 

sand and were the highest contributors to video similarity (Table 3.13). Broadleaf kelp 

from the genus Laminaria also contributed to similarity in this assemblage. These algae, 

along with Macoma calcarea, sandollars (Echinarachnius parma), sea stars (Asterias 

vulgaris), Onuphis conchylega and Astarte sp. are the characteristic biota of gravelly sand 

in Newman Sound. 
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T bl 3 13 C a e . b ontn utors to 90o/c . .1 . h ll o simi anty m t e grave Iy san d assem bl e ag 
Taxon Video(%) Grab(%) 

Echinarachnius parma 19.92 17.39 
Macoma calcarea 25.72 

Astarte sp. 11.07 
polychaete tubes 10.05 

Onuphis conchyle~a 6.89 
calcareous forams 5.81 

unidentified polychaete 3.95 
Pectinaria wanulata 3.95 
Acmaea testudinalis 2.92 

red algae 2.91 
green algae 23.84 

Asterias vulgaris 21.10 
Laminaria sp. 15.72 

Strongylocentrotus 9.73 
droebachiensis 

3.7 Mapping 

3.7.1 Mapping Substrate Classes from Groundtruthed Acoustic Data 
The primary objective of this thesis is to create classified substrate and habitat maps of 

Newman Sound from groundtruthed multibeam acoustic data. In order to create the 

substrate map, the ranges of backscatter intensity, water depth and slope angle for each 

substrate class were determined from the samples collected (Table 3.14). 

The ranges ofbackscatter found in Table 3.14 are comparable to those in the 

published literature. For example Shaw et al. (1997) reported that in St. George's Bay on 

the west coast of Newfoundland fine-grained sand reflected backscatter values between 

-40 and -60 dB. Similarly, Kostylev et al. (2001) recorded fine-grained sand with low 

backscatter between -30 dB and -60 dB on Brown's Bank on the Scotian Shelf. 

Gravelly substrates at both St. Georges Bay and Brown's Bank reflected backscatter 

between -10 and- 30 dB (Shaw et al. 1997; Kostylev et al. 2001). 
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Table 3.14 Ranges of 3 acoustically recorded physical attributes for the 8 substrate 
1 d L . . k 1 d b d tl b d "d 1 c asses an amman a elp-covere sea e rom gra an VI eo samples. 

Substrate Class Depth Range (m) Backscatter Range Slope Range (0
) 

(dB) 
Mud 5.8-315 -15.5--43.5 9.7- <1 
Sand 4- 81 -9.5--41.5 16.6- 1 

Gravelly Muddy Sand 37- 51 -17--30.5 9-1 
Gravelly Sand 5- 212.5 -2--23.7 22.5- 1 

Gravel 8.5- 132 -7.4--14.8 33.6- 1 
Rhodolith 10.6- 32.8 -10--31.8 8.2-2 

Boulder Gravel 6.8-42.5 -7.43--17 20.6-2 
Bedrock 14.5-47.4 -10.4- -14.8 64.4-20 

Laminaria Kelp- 9.9- 15.2 -54.98--58.71 6.9-2 
covered Seabed 

Backsc<tter (·dB) 
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Figure 3.26 Scatterplot of water depth against multibeam backscatter intensity for all 
samples classified by substrate 
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These three physical attributes were, however, not equally important in defining 

each substrate. The attribute that best defined each class was found by plotting the depth 

of each sample against its backscatter intensity (Fig. 3.26). The mud, rhodolith and sand 

classes, all have a horizontal distribution indicating they had a larger backscatter range 

than depth range, and therefore are depth controlled classes that can not be easily 

interpreted from backscatter. Classes such as pebble/cobble gravel, and to some extent 

gravelly sand, had a vertical distribution on the scatterplot, indicating they are better 

defined by backscatter. Substrate classes such as bedrock and boulder were clustered, 

indicating small backscatter and depth distributions. 

Sampling in deep water was limited by the equipment and methodologies used, so 

depth is not considered as a physical constraint on substrate types, except in a few cases 

discussed below. The absence of data below 100m depth can be seen on Fig. 3.26. Also, 

a small gap in the data set can be seen in the high backscatter range, as samples generally 

could not be collected above -5 dB. Part of the reason for this is that the grab sampler 

could not sample high backscatter substrate. In addition, very high backscatter was more 

common near the mouth of the fjord where there were few sampling opportunities. 

3.7.2 Failed Grab Sampling Attempts 
The average depth of failed recovery was shallow, 38.7 m, therefore depth is probably not 

the main contributor to failed sampling attempts. The hardness of the seabed was a more 

likely cause, as many of the failed attempts were on sites with backscatter values of less 

than -10 dB; these sites are expected to have hard or bou1dery substrate. 
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3.7.3 Definition of Laminaria Kelp Covered Seabed 
A group of five samples with very low backscatter values emerged when depth was 

plotted against backscatter (Fig. 3.26). These points were in water less than 20m deep 

with a backscatter range from -55 to -59 dB. An explanation for this anomalous group 

was discovered by examining the biological data from these sites. Three of the samples 

had significant kelp cover, with two having greater than 75% coverage of Laminaria sp. 

The two other grab samples were found to have backscatter values less than -50 dB, but 

no kelp was recorded at these sites. Laminaria is suspected at these sites however, as the 

samples are located very close to the sampled kelp, although none was retrieved with the 

grab sampler. Also, no video was recorded at these locations. Therefore these samples, 

125.2 and 126, were removed as outliers in their respective substrate classes, whereas 

drop camera station 126, the start of dive 3 and the start of dive 4 were classified as 

Laminaria kelp-covered seabed. Due to its unique acoustic backscatter signature the patch 

of Laminaria covered seabed was included on the final habitat map, however this unit 

does not represent a true habitat as it is ephemeral (see section 4.5). 

3.7.4 Expressions for Mapping Substrates 
Mathematical expressions for each substrate class were constructed using ranges of 

bathymetry, slope and backscatter. These were used for mapping substrates following the 

method described in section 2.2.5. By adjusting the mathematical expressions used to 

select pixels, the distribution pattern of substrates can be changed. In this way, a substrate 

map can be iteratively produced that best reflects the interpreted acoustic and groundtruth 

sample data. 
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The first map of substrate distribution was created using depth, backscatter and 

slope ranges derived from the classified groundtruth samples (Table 3.14). As a result of 

generating mapping expressions from the sample data alone, most of the outer basin 

remained unclassified as it was not groundtruthed. 

In order to expand the amount of the fjord that could be classified, points from the 

shallow seismic survey were added to the mapping process. Only seismic points which 

had been interpreted as bedrock (Unit A) or mud (Unit C) were used, as these two 

substrates are the only ones which could be interpreted with confidence from the seismic 

record as it had not been extensively groundtruthed (see Appendix E). The addition of the 

seismic points increased the depth and backscatter ranges of both the bedrock and mud 

classes (Fig. 3.27). Therefore the second map successfully classified more of the deep 

outer basin and fjord mouth. 

A third map was made by relaxing the selection criteria to account for gaps in the 

groundtruthing. Depth limits were removed from all substrates except rhodolith, which is 

limited to the photic zone. The literature indicated that rhodoliths moved to below their 

normal depth range became buried by sediment, while those place in shallower water 

were rapidly dispersed by water movement (Steller and Foster 1995). Therefore both the 

upper and lower depth limits for this substrate, as determined by groundtruthing, were 

retained. 

For all other substrate classes the depth variable was removed in creating the final 

substrate distribution to remove any influence of sampling methodology on the results. 

For example, observations from other Newfoundland fjords indicate that bouldery rubble 

occurs at the base of fjord walls (Haedrich and Gagnon 1991 ). In Newman Sound, 
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Figure 3.27 Scatterplot of water depth against multibeam backscatter intensity for 
classified substrate samples and points from shallow seismic profiling. 
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Figure 3.28 The depth and backscatter ranges used to create the final substrate map, 
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boulder gravel substrate was sampled by SCUBA diving and tethered drop camera, both 

of which are depth limited sampling methods, so it seems appropriate to assume that this 

substrate occurs outside the recorded depth range. Relaxing the classification criteria 

achieved the objective of classifying more of the fjord, but also meant that there was more 

overlap between the substrate classes (Figs. 3.28- 3.30). Due to the greater overlap, more 

pixels were assigned to multiple substrate classes, therefore increasing the relative 

uncertainty associated with each pixel classification (see section 4.4).The backscatter, 

depth and slope values used to map each substrate class are shown in Table 3.15. 

T bl 3 15 C .t . U d t M S b t t Cl a e n ena se 0 ap u s rae asses an dL . K 1 C ammarza eip overe d s b d ea e 
Class depth backscatter slope extents in UTM 

range (m) range (dB) range 

e> 
Mud any value <=-15 <= 10 unlimited 

>=-44 
Sand any value <=-9 <=17 unlimited 

>=-42 
Gravelly Muddy any value <=-17 <=9 unlimited 

Sand >=-31 
Gravelly Sand any value <=-2 <=23 unlimited 

>=-24 
Gravel any value <=-7 <=34 unlimited 

>=-15 
Rhodolith <=-10 <=-10 <=9 min. x = 727604.4329 

>=-33 >=-32 max. x = 728630.0016 
min. y = 5384130.8057 
max. y = 5386198.5249 

Boulder Gravel any value <=-7 <=21 unlimited 
>=-17 

Bedrock any value <=-3 <=67 unlimited 
>=-20 >=3 

Laminaria Kelp >=-30 <=-37 <=7 unlimited 
Covered Seabed 
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The final substrate map (Fig. 3.31) was created by overlaying classified pixel grids for 

each substrate class in each of the fjord basins (Figs. 3.32- 3.36). The grids were overlain 

to reflect the most likely distribution of substrates based on interpretation of the acoustic 

surveys and the classified groundtruthing samples. For example, longitude and latitude 

were used to constrain rhodolith to the Narrows sill top. 

The groundtruthed samples and seismic points were plotted on the substrate map, 

and the order of the layers was adjusted to reflect the distribution of substrates shown by 

the classified samples. Maps were created for each basin separately, as the arrangement of 

overlain substrate grids was not the same throughout the fjord. The order in which the 

layers were arranged for each basin can be found in Appendix F. 

Patches of unclassified pixels remained at the fjord mouth (Table 3.16). The 

backscatter values of these pixels are higher than -3 dB but the slope in this location is 

very low and falls outside the characteristic range for bedrock. Although bedrock is 

suspected, the area was left unclassified. On the final map only 1.08% of the study area 

remained unclassified (see section 4.4). 

T bl 3 16Th a e . e percentage o f h eac map area c asst te h 8 b mto t e su strate c asses. 
Inner Middle Narrows Outer Fjord Total 
Basin Basin Basin Mouth Fjord 

Mud 64.07 26.91 1.10 25.45 2.14 24.06 
Sand 93.12 81.68 85.88 58.53 44.06 62.94 

Gravelly 62.66 26.77 17.89 25.49 2.15 24.10 
Muddy Sand 

Gravelly Sand 50.35 83.62 82.31 75.73 85.43 76.97 
Pebble/Cobble 22.75 44.22 60.82 44.37 54.11 44.61 

Gravel 
Boulder 24.82 48.95 65.65 36.64 51.14 41.04 
Gravel 

Bedrock 23.32 65.05 42.40 66.06 71.88 63.13 
Rhodolith 0.37 0 28.31 0 0 0.60 
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Figure 3.31 Benthic substrate map ofNewman Sound showing the 8 classified substrates 
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Figure 3.32 Substrate map of the inner basin ofNewman Sound 
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Figure 3.33 Substrate map of the sill at the Narrows 
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Figure 3.34 Substrate map of the middle basin from outside the Narrows to the White Islets 
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Figure 3.35 Substrate map of the outer basin ofNewman Sound showing extensive bedrock fjord wall and basin floor mud 
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3.7.5 Mapping Habitats from Substrate Maps 
For habitat mapping, substrates in deep water or on steep slopes were separated from 

shallow ones based on their potential to host vegetation. Of the floral taxa collected 

during groundtruthing, Agarum cribrosum kelp and Ptilota serrata had the deepest 

occurrences at 34 m and 51 m respectively. Sears (2002) reports that Agarum cribrosum 

has adapted to lower light than other macroalgae, allowing it to grow to depths around 50 

m. Also, Anderson (200 1) only reported macroalgae below 50 m depth once during 

benthic observations in Newman Sound. Therefore all substrates shallower than 50 m 

could potentially host vegetation and herbivores, while those deeper than 50 m likely 

would not. Thus the 50 m depth contour was included on the habitat map as an indication 

of whether algae could be expected or not. The 30 m depth contour was also added to 

indicate areas shallow enough for Laminaria kelp to occur (see section 3.7.5.2). Habitat 

names were constructed using the substrate underlying each habitat combined with 

commonly identified members ofthe biotic assemblage. In total 10 habitats were 

identified (Fig. 3.37). 

3. 7 .5.1 Inner Basin Habitat Map 
Both pebble/cobble gravel and boulder gravel in sand were mapped around the margins of 

the inner basin (Fig. 3.38). The distributions of these substrates were very similar and 

overlapped each other. The biota expected in gravel and boulders include attached 

anemones on boulders and small epifauna such as limpets, chitons, foraminiferans and 

bryozoans on both boulders and smaller gravel. The distribution of this habitat is similar 

to the distribution of boulders shown in the previously drawn map of the inner basin 

(Cote et al. 2004). Boulder and pebble/cobble gravel habitat mapped along the delta-front 
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Figure 3.37 Benthic habitat map ofNewman Sound showing the 10 classified substrates 
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coincide with a kelp unit on the previously drawn map (Cote et al. 2004). Groundtruthing 

showed that both Laminaria sp. and Agarum cribrosum kelps occur on bouldery sand and 

pebble/cobble gravel, so it is likely that kelp on a gravel substrate is found here. 

Overlapping boulder and pebble/cobble gravel substrates were found in water 

deeper than 50 mat the northeastern end of the inner basin. This patch of gravel near the 

sill was the only location that was classified as gravel by Cote et al. (2004). Gravelly sand 

was also mapped on the floor of the inner basin as well as on the delta top interspersed 

with mud and gravelly muddy sand. Gravelly sand in shallow water in the inner basin 

contained sandollars, sea urchins and macroalgae, while in deeper water it contained more 

polychaetes and bivalves. 

The most unique habitat in the inner basin is organic-rich mud and gravelly 

muddy fine sand found on the basin floor. This deposit feeder habitat is dominated by the 

polychaete Maldane sarsi and bivalve Macoma calcarea. It overlaps with the sand unit on 

the previously drawn map (Cote et al. 2004). 

3. 7 .5.2 Narrows Habitat Map 
The rhodolith bed was dominated by Lithothamnion glaciate which was the most 

abundant species and also the primary substrate. A second red algae, the red sea fern 

(Ptilota serrata), was also a key inhabitant of this habitat. Sessile species such as small 

sponges, bryozoans and spirorbid polychaetes were attached to Ptilota serrata and 

Lithothamnion glaciale, as well as gravel present in this habitat. Errant polychaetes, 

numerous ophiuroids, juvenile sea stars, limpets, chi tons, boring clams and juvenile 

Iceland scallops (Chlamys islandicus) were also found attached to red algae and in the 

branches ofthe rhodoliths. 
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The criteria used to map Laminaria kelp covered seabed were very specific and 

only a small area east of the island in the Narrows met the criteria (Fig. 3.39). The 

primary criterion was the extremely low backscatter produced by dense Laminaria kelp, 

which set it apart from all other habitats. The backscatter range included all sample 

points where this kelp was sampled. The deepest reported occurrence of a Laminaria 

species that would likely occur in Newman Sound was 30 m (Sears 2002). This was used 

as the lower depth limit for this habitat. The resulting distribution covered most of the 

area south of the Narrows where Laminaria was found and a few pixels on the delta-top 

where shallow-water eelgrass (Zostera marina) had been previously mapped (Forsyth and 

Borstad 1999). 

Laminaria was present both as an inhabitant of benthic substrate and as a 

structural part of the habitat upon which other species lived. Fauna found associated with 

Laminaria kelp include sea stars (Asterias vulgaris) and sea urchins (Strongylocentrotus 

droebachiensis). The expressions used to map the observed distribution of Laminaria 

kelp-covered seabed are found in Table 3.15. 

Around the Narrows most of the water less than 30m deep contained boulder 

gravel with sand habitat (Fig. 3.39). At Buckley Point large boulders on sand covered by 

green algae, anemones (Metridium senile), and Laminaria kelp were recorded. On the 

south side of the Narrows, toward Mt. Stamford Cove, smaller boulders and pebble gravel 

in sand are found. This habitat supports Lithothamnion glaciale, sandollars, sea stars and 

macroalgae. In the Narrows boulder gravel occurs with less sand, and a cover of Agarum 

cribrosum kelp and Metridium senile anemones. The remainder of the Narrows map area 
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Narrows Sill Habitats 
lit Mud with errant and tube-dwelling 

polychaetes & infaunal bivalves 
D Shallow-water sand with echinoderms 

and algae 
• Gravelly muddy sand with ophiuroids, 

infaunal bivalves & polychaetes 
• Gravelly sand with 

bivalves and echinoderms 

• Pebble and cobble gravel with forams, 
bryozoans & grazing epifauna 

• Boulder gravel with or without sand 
with anemones & echinoderms 

• Bedrock with sponges, 
anemones & echinoderms 

• Laminaria kelp covered seabed 
• Rhodollth Bed 
D Unclassified 
- 30m depth contour 
c::::=J 50 m depth contour 0 m 250m 

Figure 3.39 Habitat map of the sill at the Narrows 
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is composed of sparsely vegetated gravelly muddy sand with abundant polychaetes and 

gravelly coarse sand with echinoderm tests and bivalve fragments. 

3. 7 .5.3 Middle Basin 
Most of the shallow parts of the middle basin are covered by boulder gravel with sand, or 

gravelly sand (Fig. 3.40). Both of these habitats can support macroalgae, such as kelp and 

leafy red and green algae. In shallow water gravelly sand is inhabited by sandollars, as 

well as many species of bivalves. The boulder habitat contains both infaunal and surface 

dwelling bivalves and echinoderms, as well as large anemones attached to boulders. 

The majority of the middle basin that is deeper than 50 m contains bedrock and 

muddy habitats. Vegetation is unlikely here; however coralline algae may occur on 

bedrock at this depth. Gravelly muddy sand and mud, found in the deeper parts of the 

middle basin, support a community of infaunal bivalves, ophiuroids and polychaetes, 

particularly tube-dwelling species. Patches of mud with no gravel were surveyed just west 

of Minchin Head (Fig. 3.40). Samples from this mud habitat contained no live fauna and 

the mud was dark and smelled anoxic. 

3. 7 .5.4 Outer Basin 
Most of the floor ofthe outer basin is deep-water mud and gravelly muddy fine sand 

below 200m water depth (Fig. 3.41). The sample from the mud habitat had 16% organic 

content, indicating that there is organic material available in the sediment. However the 

deep water mud generally had scarce invertebrate fauna compared to shallower mud 

habitat. The remainder of the outer basin floor contained either boulders or pebble/cobble 

gravel. The distribution of gravel on the margins of the basin floor may indicate either 

erosion of the postglacial mud or rock falling from the fjord wall. Shallow water bedrock 
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Middle Basin Habitats 

g Mud with errant and tube-dwelling 
polychaetes & infaunal bivalves 

D Deep water sand 

D Unclassified 
=30m depth contour 
- 50 m depth contour 

• Gravelly muddy sand with ophiuroids, r,r--r---~~~;1) 
infaunal bivalves & polychaetes 

• Gravelly sand with 
bivalves and echinoderms 

• Pebble and cobble gravel with forams, 
bryozoans & grazing epifauna 

• Boulder gravel with or without sand 
with anemones & echinoderms 

• Bedrock with sponges, 
anemones & echinoderms 
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B Mud with errant and tube-dwelling 
polychaetes & infaunal bivalves 

D Deep water sand 

• Pebble and cobble gravel with forams, 
bryozoans & grazing epifauna 

~~.::.:::::~.:::: .... ~ •. Boulder gravel with or_ without sand 
·· 16.s ~ ~ with anemones & echinoderms 

Figure 3.41 Habitat map of the outer basin ofNewman Sound 
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sampled on the margins of the outer basin was heavily encrusted with biota, including 

attached anemones, sponges, sea urchins, sea stars and hydro ids. The biota of deep-water 

bedrock is unknown. 

3.7.5.5 Fjord Mouth Sill 
Shallow water bedrock habitat, videotaped on the fjord mouth sill, was heavily encrusted 

with un-branched coralline red algae, along with sea stars and sea urchins. 

Also the anemone Metridium senile was noticeably more abundant here than in other 

sampled habitats. 

Mixed lithology pebble/cobble gravel and gravelly sand, possibly winnowed till, 

were sampled on the fjord mouth sill and in deep water to the southeast of the sill (Fig. 

3.42). This gravel is inhabited by a surprisingly rich biotic assemblage, including 

polychaetes, foraminiferans, ophiuroids, bryozoans, infaunal bivalves and limpets. The 

deep water mud sampled from the fjord mouth had 7% organic content. Mud stars 

(Ctenodiscus crispatus) and Macoma calcarea were sampled here, demonstrating that 

deposit feeders are utilising this habitat. 

In total ten benthic habitats were mapped in Newman Sound. Shallow water (<50 

m) habitats displayed the most habitat heterogeneity as well as the most biological 

diversity. 
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tube-dwelling polychates 
& infaunal bivalves 

• Gravelly sand with 
bivalves and echinoderms 

• Pebble and cobble gravel with 
forams, bryozoans & grazing 
epifauna 

Figure 3.42 Habitat map ofthe fjord mouth 
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Chapter 4: Discussion 

4.1 Introduction 
The main objectives ofthis thesis were I) to demonstrate the usefulness ofmultibeam 

sonar, groundtruthed with shallow seismic surveys, grab samples and videos, for benthic 

habitat mapping in a fjord, 2) to identify bio-diverse areas in the fjord and 3) to create 

complete benthic substrate and habitat maps for Newman Sound. These objectives were 

developed to fill existing gaps in the literature, as multibeam habitat mapping had not 

previously been attempted in a Newfoundland fjord environment and no complete benthic 

habitat map existed for the Newman Sound. 

Groundtruthed multibeam data were used successfully in the fjord, and an 

assessment of this methodology appears below. The thesis results also show that it is 

possible to gather enough biological information using this methodology to successfully 

identify biologically diverse habitats with conservation value. Lastly, preliminary benthic 

substrate and habitat maps were created for Newman Sound. 

4.2 Assessment of Methodology 
The multi beam sonar component of this methodology was highly effective in the fjord, 

and was crucial in delimiting substrate and habitat units within the study area. As 

expected, the bathymetry and backscatter patterns described from Newman Sound were 

more heterogeneous over a small spatial scale than previously studied continental shelves. 

The use of multibeam data, particularly backscatter, was helpful in planning 

locations for benthic sampling and can be used in future for choosing appropriate 

sampling methods. For example, coring and grab sampling can be concentrated on 

moderate to low backscatter substrates were the likelihood of sampling success is higher. 
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The multibeam bathymetry was also useful in identifying features such as sills and the 

fjord-head delta where sampling and seismic surveys were targeted. Using multibeam 

data to direct sampling is especially relevant where previous documentation of the 

benthos is limited, which is the case in much of coastal Newfoundland and Labrador. 

The presence of biological structures, especially vegetation, is known to disrupt 

the pattern of geological substrates revealed by backscatter (Lurton 2002). An example 

was seen in the Narrows ofNewman Sound where low backscatter (about -30 dB) was 

produced by the rough surface and low density of the carbonate rhodoliths. Thus ranges 

of depth-backscatter-slope values for each substrate and habitat are not directly 

transferable from one location to another; however they may be used for reference when 

interpreting multi beam data from new locations. Extensive groundtruthing of new areas is 

still required and samples of the local biota must be taken to produce a habitat map. 

The biotic assemblage of a habitat is often more informative about the 

environmental conditions ofthe seabed than substrate. Kostylev et al. (2001) noted that 

interpreted multibeam sonar cannot be used to identify habitats covered by a very thin 

layer of silt. Instead, on the Scotian Shelf, these habitats were identified through the 

dominance of deposit-feeding species in their biotic assemblages. Such is the case with 

the gravelly muddy sand class in Newman Sound. The backscatter range, and distribution 

of coarse-grained sediments are similar to the gravelly sand class, and these samples were 

clustered on the same dendrogram branch as gravelly sand samples. The key difference in 

the two groups of samples was the larger mud fraction, and statistically more frequent 

occurrence of mud-associated biota in the gravelly muddy sand samples. 
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4.3 Considerations for Future Work 
Several recommendations for future acoustic mapping in fjords resulted from the 

assessment of the strengths and weaknesses of the methodology employed in this thesis. 

Deploying a tethered camera at grab sampling sites before each grab is made would be 

helpful, as this approach would allow notes on topography and large, mobile fauna to be 

made before they were disturbed by the grab sampler. Deploying the camera first would 

also allow assessment of the ability of the grab sampler to effectively sample the 

substrate, thus saving time and effort. Collecting both grabs and video together would 

also eliminate some of the error from the resulting classification, for example boulder 

gravel on sand would not be classified as gravelly sand. Some generalisation was done on 

the substrates identified by cluster analysis that could not be identified on a video. 

Simultaneous grab and video collection would eliminate the need to generalise substrates. 

The placement of SCUBA video transects across the boundary between very low 

and moderate backscatter values allowed the identification of dense Laminaria kelp as the 

cause of the acoustic signal loss. Therefore this approach to transect placement is 

recommended. 

In this thesis it was only possible to sample depth, organic content and slope as 

physical variables contributing to habitat definition. Some existing temperature and 

salinity data were available opportunistically, but were not used in final habitat 

determination. Further information that would contribute to refining habitat classes 

include current speed and direction, year round bottom temperature and salinity, light 

penetration and a more detailed study of the seabed geology. 
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Water currents were noted by Kostylev et al. (200 1) as playing a major role in 

sediment grain size distribution and benthic biota. Currents have not been studied in 

Newman Sound, although some evidence of scouring was seen in the seismic survey. 

The effect of currents and resulting seabed disturbance on benthic biota was seen in the 

rhodolith bed on the sill in the Narrows. Investigation of the current regime within the 

fjord and the effects on substrate stability and particle mobility would be beneficial. 

More intense sampling is needed to improve the habitat divisions in the outer 

basin of Newman Sound. Most of the fjord lies below 100 m which was the limit of our 

sampling capability on all but one trip. In future benthic mapping initiatives in fjord 

environments, particular attention should be paid to sampling these water depths. 

4.4 Accuracy Assessment 
The substrate and habitat maps produced from this thesis were created based on 

supervised classification of groundtruthed acoustic data; the final map units have not been 

tested. Consequently, the occurrence of mis-classification could not be assessed. 

Accuracy assessment should be undertaken as part of any future mapping endeavour. This 

assessment should test both the positional accuracy of the map units produced (the user's 

accuracy) and the ability ofthe habitat classes to accurately reflect all habitat types likely 

to be encountered in the study area (the producer's accuracy). 

The producer's accuracy of the methodology used in Newman Sound can be 

improved by i) pairing grabs and videos at each station, ii) repetitive grabbing at each 

station, and iii) making sure that all parts of the study area are sampled in a representative 

manner. 

152 



The user's accuracy of a created habitat or substrate map can be tested by 

randomly excluding a number of groundtruth samples from consideration when 

generating classification criteria. The excluded points can then be used to test the 

resulting substrate and habitat polygons. This type of assessment was not possible in 

Newman Sound due to the small number of data points collected and limited time of the 

project. A preferable method is to collect an independent set of samples for accuracy 

assessment. Ideally, a first field season would be spent groundtruthing the acoustic data 

set, creating substrate classes, identifying habitats and creating preliminary maps. Further 

sampling would then be carried out using the mapped habitat units as a guide to test their 

accuracy and make adjustments. Examples ofthis type of user accuracy assessment for 

maps created from acoustic data exist in the literature (White et al. 2003; Cochran

Marquez 2005). The additional points can be used to create an error matrix with the total 

number of pixels correctly classified in each benthic class versus the total number of 

pixels (Cochran-Marquez 2005). 

It was possible to generate an idea of the uncertainty associated with supervised 

classification of pixels into substrates based on the backscatter-depth-slope ranges 

presented in table 3.15 (Fig. 4.1; Table 4.1). The results show that other approaches to 

accuracy assessment are need, as pixels which fell into only one substrate class may still 

have been wrongly classified. There was agreement between the existing benthic 

substrate map of the inner basin (Cote et al. 2004) and the map shown in Fig. 3.32, which 

gives some confidence in the results. The collection of additional samples to refine the 

criteria for supervised classification, particularly in the outer basin and fjord mouth, are 

needed as well as independent sample points for accuracy assessment. 
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Table 4.1 Percentage of each basin with pixels meeting classification criteria for multiple 
substrates 

Inner Narrows Middle Outer Fjord Total 
Basin Basin Basin Mouth Fjord 

I substrate class 0.82 3.60 5.09 12.03 10.48 8.81 
2 substrate classes 9.01 2.96 9.94 17.73 26.47 16.10 
3 substrate classes 42.77 13.37 68.39 10.21 3.79 20.63 
4 substrate classes 24.70 29.31 30.18 36.19 20.08 28.74 
5 substrate classes 19.04 28.84 38.20 21.49 31.06 24.54 
6 substrate classes 0 10.36 0 0 0 0.09 

unclassified 0.02 7.68* 0.43 0.85 2.75 1.08 
* This percentage includes the area later determined to be kelp-covered seabed 

Legend 

• 1 substrate class 

• 2 substrate classes 

• 3 substrate classes 

• 4 substrate classes 

• 5 substrate classes 

• 6 substrate classes 
0 Unclassified 

Figure 4.1 Map of Newman Sound showing the number of substrate classes into which 
each pixel was classified. 
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4.5 The Effect of Kelp on Signal Return 
The effect of Laminaria kelp on the multibeam signal was demonstrated in this study. If 

kelp or other significant vegetation are known to occur in the survey area, it would be 

helpful to plan multibeam surveys and other acoustic work in the spring when vegetation 

cover should be at its lowest. Of equal importance, groundtruthing should be carried out 

as soon as possible after the acoustic survey is carried out. 

The multibeam survey ofNewman Sound on which the kelp signal was identified 

was carried out in July of2003. Dives were conducted on the site in July of2004 and 

significant kelp cover was recorded. Subsequent groundtruthing with the drop video 

camera was done in December 2004 at which time sparse kelp was recorded. Grab 

samples were collected in the area of the multi beam survey thought to represent the kelp 

habitat in May of2005, at which time no kelp was collected. 

It is likely that the Laminaria was free floating, as it was observed over pebbly 

sand substrate and it was impossible to establish from the videos if the kelp were attached 

to the seabed. Unattached masses of Laminaria longicruris have been reported over soft 

bottoms in sheltered Newfoundland estuaries (South 1983). The reduction ofkelp in the 

winter and spring samples could be due to the kelp shedding fronds as some dead kelp 

was observed in one of the videos. Also an intense storm that occurred in the fall of 2004 

may have disturbed the seabed and destroyed the kelp bed. The identification of kelp-

covered seabed from the multibeam backscatter data is still an important result of this 

work, and therefore Laminaria kelp- covered seabed was included in the final habitat map 

even though it is an ephemeral feature. 
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4.6 Conservation Applications of Maps Generated from Multi beam Data 
The ability to achieve 100% seabed mapping coverage with multi beam sonar in the 

coastal zone is an important advance for marine conservation and coastal zone 

management in Canada. Three of the most recent five marine protected areas designated 

by Fisheries and Oceans Canada have been in the coastal zone. Two ofthese new 

protected areas are in this province; Gilbert Bay in Labrador and Eastport in Bonavista 

Bay. Of the five areas of interest currently under consideration for MP A status, three are 

in shallow coastal waters, and one is in coastal Newfoundland. Therefore the ability to 

generate complete coverage benthic habitat maps for coastal waters, and coastal 

Newfoundland in particular, is critical. Multibeam sonar technology allows this critical 

need to be met in a timely and cost effective manner. 

Marine conservation strategies, such as marine protected areas, often aim to 

protect areas that are representative of local habitats. By creating a habitat map the 

location of benthic habitats, their extents and relationships to other habitats are recorded. 

Consequently representative examples of local habitats can be identified, together with 

locally unique habitats or those that are sensitive to disturbance. 

Rhodolith beds have been reported from the sills of fjords in Scotland and 

Norway (Hall-Spencer 1998) and are likely present on the sills of other Newfoundland 

fjords, so the investigation of fjord sills as biodiversity hotspots would be beneficial. 

The literature on rhodolith beds shows that they contain high biodiversity (Hall-Spencer 

1998; Morgan 1998; Kamenos et al. 2004), and also provide greater substrate 

heterogeneity than surrounding sand and gravel habitats (Steller and Foster 1995; 

Kamenos et al. 2004). This is certainly the case in Newman Sound. Rhodolith-forming 
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coralline algae do not produce toxins to prevent grazing like other algae, which probably 

contributes to high invertebrate biodiversity (Hinojosa-Arango and Riosmena-Rodriguez 

2004). The preference of juvenile gadoid fish for this habitat type is attributed to this high 

invertebrate biomass and diversity (Kamenos et al. 2004). Juvenile Atlantic cod and 

juvenile and adult Icelandic scallops were observed in the rhodolith bed ofNewman 

Sound. Therefore the value of this habitat as a nursery for two commercially important 

species should be investigated. Due to its high biodiversity and vulnerability to 

anthropogenic damage (Hall-Spencer 1998) rhodolith bed habitat should be a 

conservation priority. 

Juvenile Atlantic cod (Gadus morhua) in Newman Sound associate with seagrass 

habitat in shallow water, and cobble substrate in deeper water (Anderson 2001). 

Protection from predators and the availability of food are the main habitat requirements of 

age 0 cod (Cote et al. 2001). Juvenile cod were observed in video samples associating 

with coarse gravel substrate and dense algae cover. Dense Agarum cribrosum kelp on 

boulders and rhodoliths in the Narrows, and dense Laminaria kelp on gravely sand 

appeared especially attractive to young cod. Delineation of substrate areas with which 

young cod and other juvenile fish are known to associate would allow for better 

monitoring of the juveniles as indicators of stock growth potential, as well as locating 

areas for protection if necessary. 

The sill at the Narrows and adjacent areas of the inner and middle basins are 

highly heterogeneous, allowing a small marine protected area here to represent all 

described shallow water habitats. A circle with a diameter of 1.5 km, drawn from the 

centre of the Narrows, encloses patches of9 habitats (Fig. 4.2). The entire rhodolith bed 
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is contained within the circle, as are the area of kelp-covered seabed and substantial 

amounts of shallow water boulder and gravelly sand habitat. Small amounts of gravelly 

muddy sand and organic-rich mud also occur here. Shallow water pebble/cobble gravel, 

sand and bedrock are represented, but only occur in small patches in this part of the fjord. 

In this way benthic habitat maps, drawn from groundtruthed multibeam sonar data, can be 

used to select the best placement of a protected area so that it encompasses as many 

habitats as possible or targets bio-diverse habitats. 
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Figure 4.2 A circle with a diameter of 1.5 km drawn around the Narrows encompasses 9 
described habitats, making it a good candidate location for a protected area. The bio
diverse and locally unique rhodolith bed falls completely within this circle. 
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4. 7 Conclusions 

1. The results of this thesis have demonstrated that substrates and biota present in a 

Newfoundland fjord can be characterised by grab sampling and video methods. 

2. It was possible to map the likely distribution of characterised benthic substrates 

and habitats by supervised classification of multi beam bathymetry and backscatter 

data in a Geographic Information System (GIS). The resulting benthic habitat 

maps generated for Newman Sound provide continuous coverage of the seafloor 

at a scale that had not been possible before. 

3. It was possible to identify biologically diverse and locally unique habitats in 

Newman Sound by mapping groundtruthed multibeam data. This mapping 

approach, therefore, has potential as a tool for marine conservation. 
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d" Appen 1xA: Ph f f 1ysical Attnbutes o Classi ied Samples 

Back Organic 
Sample Latitude Longitude Depth scatter Slope content Substrate 
Name (NAD 83) (NAD 83) (m) (-dB) (o) (%) Class Habitat 

sandy <30m 
potentially 

grab 1 48.585453 53.812028 18.0 n/a n/a 0.78 sand v~etated 
sandy <30m 
potentially 

grab 2 48.586215 53.812913 20.0 n/a n/a 0.83 sand vegetated 
gravel with 
small 

grab 3 48.587162 53.814942 30.0 -10.5 33.6 - gravel epifauna 
no 

grab 4 48.587447 53.814157 44.0 -7.8 33.0 - recovery -
gravel with 
small 

grab 5 48.58683 53.815295 32.0 -12.0 28.0 - gravel epifauna 
gravel with 
small 

grab 6 48.587972 53.816355 121.0 -14.0 26.9 2.76 gravel epifauna 
gravel with 
small 

grab 7 48.567545 53.88961 22.0 n/a n/a - gravel ej>ifauna 
gravel with 
small 

grab 8 48.567248 53.889015 26.0 n/a n/a 1.87 gravel e~fauna 
sandy <30m 
potentially 

grab 9 48.566278 53.890505 4.0 n/a n/a - sand vegetated 
gravel with 
small 

grab 10 48.5667417 53.88938 11.0 n/a n/a 1.73 gravel epifauna 
mud with 

grab 11 48.569385 53.888718 50.0 n/a n/a 3.16 mud sparse fauna 
gravelly 
muddy sand 

gravelly with brittle 
muddy stars and 

grab 12 48.5725 53.888 45.0 -22.0 9.0 1.58 sand bivalves 
mud with 
polychaetes 
and infaunal 

grab 13 48.575055 53.889074 80.7 -25.6 9.7 10.26 mud bivalves 
mud with 
polychaetes 
and infaunal 

grab 14 48.574872 53.906117 34.4 -29.4 4.0 3.45 mud bivalves 
grab 15 48.580987 53.911483 16.2 -31.8 2.0 rhodolith rhodolith bed 

gravel with 
small 

grab 16 48.579525 53.923847 53.0 -13.1 1.0 13.73 gravel epifauna 
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organic rich 
inner basin 
mud with 
deposit 
feeding 

inner polychaetes 
grab 17 48.562145 53.95273 38.0 -30.5 1.0 9.31 basin mud and bivalves 

gravelly gravelly sand 
core 18 48.579597 53.923008 52.4 -16.0 1.0 4.55 sand with 

gravelly 
muddy sand 

gravelly with brittle 
muddy stars and 

core 20 48.561428 53.95346 37.5 -30.5 2.0 5.98 sand bivalves 
organic rich 
inner basin 
mud with 
deposit 
feeding 

inner polychaetes 
grab 21 48.5617139 53.953338 38.0 -31.0 2.0 9.17 basin mud and bivalves 

sandy <30m 
potentially 

core 23 48.5574566 53.9564725 6.5 -21.8 1.0 17.97 sand veQetated 
organic rich 
inner basin 
mud with 
deposit 
feeding 

inner polychaetes 
core 24 48.556925 53.9580767 5.8 -26.6 1.0 24.26 basin mud and bivalves 

organic rich 
inner basin 
mud with 
deposit 
feeding 

core inner polychaetes 
24cc 48.556925 53.9580767 5.8 -26.6 1.0 9.60 basin mud and bivalves 

sandy <30m 
potentially 

grab 25 48.557119 53.958087 6.3 -27.0 1.0 24.80 sand vegetated 
gravel with 
small 

grab 26 48.558764 53.956088 8.5 -10.7 2.0 2.27 _gravel epifauna 
gravelly 
sand, shell 

gravelly hash and 
grab 27 48.576815 53.928672 51.5 -23.7 2.0 21.76 sand echinoderms 

gravelly 
muddy sand 

gravelly with brittle 
muddy stars and 

grab 28 48.570858 53.92624 44.6 -17.0 3.0 26.20 sand bivalves 
gravelly 
sand, shell 

gravelly hash and 
grab 29 48.5705833 53.92529 39.3 -15.2 4.0 1.69 sand echinoderms 
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gravelly 
sand, shell 

gravelly hash and 
grab 30 48.569345 53.925506 8.0 n/a n/a 1.50 sand echinoderms 

gravelly 
sand, shell 

gravelly hash and 
grab 31 48.5828917 53.9249167 5.0 n/a n/a 0.90 sand echinoderms 

gravelly 
sand, shell 

gravelly hash and 
grab 32 48.581753 53.920675 46.0 -14.7 9.5 1.34 sand echinoderms 

gravel with 
small 

grab 33 48.575323 53.905995 30.0 -13.6 8.0 gravel epifauna 
gravel with 
small 

grab 35 48.5890417 53.829108 132.0 -10.4 4.0 2.77 _gravel epifauna 

dredge 
grab 36 48.621967 53.748267 312.0 -11.4 1.0 15.16 spoil -

dredge 
grab 37 48.624804 53.747328 283.0 -10.2 17.0 4.75 spoil -

mud with 
polychaetes 
and infaunal 

grab 38 48.629452 53.700868 315.0 -18.0 5.0 15.77 mud bivalves 
gravel with 
small 

grab 39 48.6528717 53.602145 98.0 -10.9 6.6 gravel epifauna 
gravel with 
small 

grab 40 48.655306 53.608542 72.0 -14.8 8.0 gravel epifauna 
mud with 
polychaetes 
and infaunal 

Qrab 41 48.647958 53.576424 273.0 -20.5 6.6 7.18 mud bivalves 
gravelly 
sand, shell 

gravelly hash and 
grab 42 48.64336 53.583457 212.5 -2.0 22.0 2.32 sand echinoderms 

grab no 
100.1 48.58429 53.82707 95.0 -4.1 47.0 - recovery -
grab no 
100.2 48.584 53.82747 65.0 -4.7 40.9 - recovery -
grab no 
101.1 48.58107 53.82874 58.0 -25.0 10.6 - recovery -
grab no 
101.2 48.58058 53.82945 52.0 -25.5 6.2 - recovery -

gravelly 
sand, shell 

gravelly hash and 
grab 102 48.58237 53.85122 66.0 -16.0 11.0 1.17 sand echinoderms 

sandollars in 
sand, 

grab 103 48.58563 53.85315 77.0 -27.1 11.7 1.94 sand possibly 
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vegetated 

sandollars in 
sand, 
possibly 

grab 104 48.57747 53.85967 53.0 -16.0 2.0 0.76 sand vegetated 

grab no 
105.1 48.57983 53.86669 64.0 -14.3 6.3 - recovery -

gravel with 
grab small 
105.2 48.57957 53.86695 63.0 -10.2 5.8 gravel epifauna 

grab no 
106.1 48.58329 53.86582 19.0 -16.0 10.0 - recovery -
grab no 
106.2 48.5832 53.86583 19.0 -16.0 14.2 - recovery -
grab no 
107.1 48.57792 53.87216 76.0 -10.4 19.3 - recovery -

gravelly 
sand, shell 

grab gravelly hash and 
107.2 48.57792 53.87213 76.6 -10.6 19.4 1.04 sand echinoderms 

no 
grab 108 48.57969 53.87958 53.0 -8.8 13.2 - recovery -

no 
grab 109 48.58108 53.88086 38.0 -15.2 3.0 - recovery -

sandollars in 
sand, 
possibly 

grab 110 48.58171 53.86998 39.5 -20.4 3.7 0.83 sand vegetated 
sandollars in 
sand, 
possibly 

grab 111 48.57654 53.88836 51.2 -18.0 15.3 1.55 sand vegetated 
mud with 
polychaetes 
and infaunal 

grab 112 48.57568 53.89869 66.0 -36.6 3.9 15.65 mud bivalves 
sandollars in 
sand, 
possibly 

grab 113 48.57801 53.89083 49.3 -14.9 13.1 1.48 sand vegetated 
sandollars in 
sand, 
possibly 

grab 114 48.5810845 53.8987464 36.0 -41.3 2.0 2.83 sand vegetated 

grab no 
115.1 48.58281 53.90222 36.0 -25.9 2.0 - recovery -

gravelly 
muddy sand 

gravelly with brittle 
grab muddy stars and 
115.2 48.58285 53.90217 37.0 -25.6 2.3 2.18 sand bivalves 

grab no 
116.1 48.58414 53.9011 23.0 -8.0 11.1 - recovery -
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grab no 
116.2 48.58405 53.90127 24.0 -9.0 10.0 - recovery -
grab no 
117.1 48.58443 53.90377 7.0 -12.5 2.3 - recovery -
grab no 
117.2 48.5845 53.90367 7.3 -13.0 2.0 - recovery -

_grab 118 48.57986 53.90502 32.8 -12.5 8.2 rhodolith rhodolith bed 
gravel with 
small 

grab 119 48.57929 53.90731 22.0 -14.7 4.0 gravel epifauna 
grab 120 48.58048 53.90975 17.0 -24.7 2.0 rhodolith rhodolith bed 

grab no 
121.1 48.57995 53.90964 16.0 -13.1 3.4 - recovery -
grab no 
121.2 48.57995 53.90971 18.0 -13.1 3.0 - recovery -
grab 122 48.57938 53.91001 14.0 -20.1 2.0 - rhodolith rhodolith bed 
grab 123 48.57912 53.91148 10.5 -10.0 2.6 - rhodolith rhodolith bed 

grab no 
124.1 48.57829 53.9085 17.8 -35.6 15.0 - recovery -
grab no 
124.2 48.5782 53.9084 23.3 -32.9 15.3 - recovery -
grab no 
125.1 48.57638 53.90871 18.1 -57.3 8.0 - recovery -

gravel with 
grab small 
125.2 48.5763 53.90851 19.4 -56.3 8.0 - gravel epifauna 

sandy <30m 
potentially 

grab 126 48.57632 53.90977 12.3 -58.5 5.6 0.98 sand vegetated 
sandy <30m 
potentially 

grab 127 48.57406 53.90922 13.0 -12.0 8.8 1.40 sand vegetated 
sandy <30m 
potentially 

grab 128 48.570814 53.909278 7.6 -12.5 3.9 1.34 sand vegetated 
gravel with 

grab small 
129.1 48.58349 53.91396 31.0 -9.0 14.0 - gravel epifauna 

gravel with 
grab small 
129.2 48.5835 53.91371 28.0 -8.8 13.2 - gravel epifauna 

gravelly 
sand, shell 

gravelly hash and 
grab 130 48.58367 53.91607 42.0 -12.6 5.0 0.48 sand echinoderms 

organic rich 
inner basin 
mud with 
deposit 
feeding 

inner polychaetes 
grab 131 48.57751 53.92476 51.0 -31.5 2.0 34.28 basin mud and bivalves 
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organic rich 
inner basin 
mud with 
deposit 
feeding 

inner polychaetes 
grab 132 48.57622 53.92396 49.3 -26.6 1.9 30.81 basin mud and bivalves 

gravelly 
muddy sand 

gravelly with brittle 
muddy stars and 

grab 133 48.57741 53.92875 51.0 -17.1 1.0 23.42 sand bivalves 
organic rich 
inner basin 
mud with 
deposit 
feeding 

inner polychaetes 
_grab 134 48.57712 53.92968 51.0 -24.5 1.0 26.28 basin mud and bivalves 

organic rich 
inner basin 
mud with 
deposit 
feeding 

inner polychaetes 
grab 135 48.56819 53.93727 43.7 -28.0 2.0 30.82 basin mud and bivalves 

gravelly 
sand, shell 

gravelly hash and 
015 start 48.58201 53.90545 30.8 -14.0 4.9 - sand echinoderms 

boulder 
gravel with or 
without sand, 

boulder with attached 
020 48.58218 53.89248 34.0 -11.2 2.0 - gravel anemones 

mud with 
polychaetes 
and infaunal 

021 48.57992 53.88595 45.0 -29.3 5.0 - mud bivalves 
boulder 
gravel with or 
without sand, 

boulder with attached 
022 start 48.58139 53.88072 38.3 -16.0 3.0 - gravel anemones 

boulder 
gravel with or 
without sand, 

boulder with attached 
022 end 48.58071 53.88056 41.0 -16.0 4.9 - gravel anemones 

boulder 
gravel with or 
without sand, 

boulder with attached 
025 start 48.58351 53.87318 42.5 -13.4 5.8 - gravel anemones 

boulder 
boulder gravel with or 

025 end 48.58361 53.87265 41.7 -12.0 5.0 - gravel without sand, 
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with attached 
anemones 

boulder 
gravel with or 
without sand, 

boulder with attached 
026 start 48.58323 53.86527 14.5 -17.0 2.2 - _gravel anemones 

boulder 
gravel with or 
without sand, 

boulder with attached 
026 end 48.58311 53.86462 15.5 -16.5 2.5 - gravel anemones 

deepwater 
030 48.58563 53.85290 81.0 -27.8 9.5 - sand sand 
0126 Lamina ria 
start 48.57628 53.90926 15.2 -56.6 6.9 - sand kelp bed 

sandy <30m 
0126 potentially 
end 48.57541 53.90871 22.0 -35.7 9.3 - sand vegetated 

gravelly 
sand, shell 

gravelly hash and 
013 start 48.57801 53.90968 11.2 -10.7 3.9 - sand echinoderms 

boulder 
gravel with or 
without sand, 

boulder with attached 
013 end 48.57776 53.90933 12.5 -10.1 6.4 - gravel anemones 
012 start 48.58010 53.91198 13.5 -20.0 3.1 - rhodolith rhodolith bed 
012 end 48.57936 53.91036 13.5 -22.0 6.1 - rhodolith rhodolith bed 
011 start 48.58096 53.91156 16.2 -29.0 2.0 - rhodolith rhodolith bed 

change 
to red 48.58028 53.90901 18.0 -21.6 2.2 - rhodolith rhodolith bed 
011 end 48.57978 53.90744 20.0 -15.5 5.3 - rhodolith rhodolith bed 

boulder 
gravel with or 
without sand, 

boulder with attached 
010start 48.58150 53.91080 14.0 -10.0 5.0 - gravel anemones 
010 end 48.58030 53.90958 17.5 -25.5 2.0 - rhodolith rhodolith bed 

boulder 
gravel with or 
without sand, 

boulder with attached 
09 start 48.58186 53.91345 21.0 -16.0 20.6 - gravel anemones 
09end 48.58118 53.91291 16.3 -12.2 2.0 - rhodolith rhodolith bed 

gravelly 
sand, shell 

gravelly hash and 
08 start 48.58349 53.91410 34.5 -8.1 14.0 - sand echinoderms 

boulder 
gravel with or 

boulder without sand, 
08 end 48.58280 53.91304 23.0 -7.4 15.8 - gravel with attached 

174 



anemones 

sandy <30m 
potentially 

07 start 48.58581 53.91320 8.0 -11.5 3.6 - sand vegetated 
sandy <30m 
potentially 

07 end 48.58458 53.91215 7.5 -13.4 1.1 - sand vegetated 
organic rich 
inner basin 
mud with 
deposit 
feeding 

inner polychaetes 
06 start 48.57932 53.92322 52.5 -15.6 2.0 - basin mud and bivalves 

organic rich 
inner basin 
mud with 
deposit 
feeding 

inner polychaetes 
06 end 48.57928 53.92336 52.4 -16.3 1.3 - basin mud and bivalves 

organic rich 
inner basin 
mud with 
deposit 
feeding 

inner polychaetes 
05 start 48.57817 53.92274 51.5 -43.2 2.0 - basin mud and bivalves 

organic rich 
inner basin 
mud with 
deposit 
feeding 

inner polychaetes 
05 end 48.57814 53.92230 51.0 -41.5 2.0 - basin mud and bivalves 

organic rich 
inner basin 
mud with 
deposit 
feeding 

inner polychaetes 
04 start 48.57746 53.92918 50.5 -22.0 1.0 - basin mud and bivalves 

organic rich 
inner basin 
mud with 
deposit 
feeding 

inner polychaetes 
04 end 48.57772 53.92943 50.5 -24.8 1.0 - basin mud and bivalves 

bedrock with 
encrusting 
sponges, 
attached 
anemones & 

cliff 48.57725 53.91677 14.5 -14.0 38.2 - bedrock echinoderms 
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gravelly 
sand, shell 

Practice gravelly hash and 
dive start 48.577 53.9163 10.6 -7.7 10.0 - sand echinoderms 

boulder 
gravel with or 
without sand, 

Practice boulder with attached 
dive end 48.5774 53.91565 10.5 -14.2 17.0 - gravel anemones 

boulder 
gravel with or 

Buckley without sand, 
Pt dive 1 boulder with attached 
start 48.58398 53.90428 12.8 -10.1 16.0 - gravel anemones 

boulder 
gravel with or 

Buckley without sand, 
Pt dive 1 boulder with attached 
end 48.58441 53.90362 7.4 -12.6 3.2 - gravel anemones 

boulder 
gravel with or 

Buckley without sand, 
Pt dive 2 boulder with attached 
start 48.58447 53.90319 7.4 -12.0 2.9 - a ravel anemones 

boulder 
gravel with or 

Buckley without sand, 
Pt dive 2 boulder with attached 
end 48.58452 53.90241 8.5 -12.0 7.6 - gravel anemones 

Buckley sandy <30m 
Pt dive 3 potentially 
start 48.58491 53.90355 6.8 -18.6 2.0 - sand ve_getated 

Buckley sandy <30m 
Pt dive 3 potentially 
end 48.58496 53.90277 7.2 -14.3 1.0 - sand vegetated 
Mt. boulder 
Stamford gravel with or 
Cove without sand, 
dive 1 boulder with attached 
start 48.570394 53.909591 6.8 -18.5 2.0 - gravel anemones 
Mt. boulder 
Stamford gravel with or 
Cove without sand, 
dive 1 boulder with attached 
end 48.57113 53.90922 6.8 -15.4 3.1 - gravel anemones 

gravelly 
sand, shell 

dive6 gravelly hash and 
start 48.57591 53.91343 7.3 -12.5 2.0 - sand echinoderms 

gravelly 
sand, shell 

diveS gravelly hash and 
end 48.57629 53.91371 6.7 -13.0 4.0 - sand echinoderms 

gravelly 
diveS gravelly sand, shell 
start 48.57638 53.91371 6.6 -13.0 3.9 - sand hash and 
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echinoderms 

boulder 
gravel with or 
without sand, 

dive 5 boulder with attached 
end 48.57676 53.91343 7.1 -11.3 2.3 - gravel anemones 
dive4 Lamina ria 
start 48.57648 53.90975 11.7 -58.7 4.7 - sand kelp bed 

sandy <30m 
dive4 potentially 
end 48.5769 53.90995 10.3 -16.0 2.0 - sand vegetated 

dive 3 Lamina ria 
start 48.57669 53.91032 9.9 -55.0 2.0 - sand kelp bed 

sandy <30m 
dive 3 potentially 
end 48.57704 53.91073 9.3 -13.8 2.0 - sand vegetated 

ROVA 
start 48.579806 53.908438 17.5 -12.0 4.5 - rhodolith rhodolith bed 

ROVA 
end 48.580548 53.908451 18.4 -26.0 2.1 - rhodolith rhodolith bed 

ROVB deepwater 
start 48.579457 53.879461 56.8 -9.5 16.6 - sand sand 

gravel with 
ROVB small 
end 48.579537 53.8793 56.6 -7.4 11.1 - gravel epifauna 

bedrock with 
encrusting 
sponges, 
attached 

ROVD anemones & 
start 48.6202517 53.6974917 41.2 -10.4 64.4 - bedrock echinoderms 

bedrock with 
encrusting 
sponges, 
attached 

ROVD anemones & 
end 48.6205133 53.69663 47.4 -12.0 60.9 - bedrock echinoderms 

bedrock with 
encrusting 
sponges, 
attached 

ROVE anemones & 
start 48.662719 53.594093 32.9 -14.8 20.0 - bedrock echinoderms 

bedrock with 
encrusting 
sponges, 
attached 

ROVE anemones & 
end 48.662617 53.593925 31.8 -14.0 21.0 - bedrock echinoderms 
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A dix B: B" s le bv Benthic Grab 
ID 
# Phylum Class Genus Species Quantity Feeding Mode Comments Refs. 

Gosner 1979, 
p.195; 

1 Annelida Polychaeta Spirorbis borealis many suspension on sourweed Bousfield p.44 
Harvey-Clark, 

predator on p.45; Gosner 
1 Arthropoda Malacostraca Caprella spp. 3 inverts skeleton shrimp 1971, p.507 

Gosner 1979, 
1 Bryozoa Gymnolaemata Lichenopora spp. 1 suspension on algae stipe p.115 
1 Bryozoa Gymnolaemata - - few suspension branching -

Smith, p.189; 
Gosner 1979, 

1 Echinodermata Ophiuroidea Ophiura robusta 1 carnivore .p.264 
Bousfield28, 53. 

Northern dwarf Gosner 1979, 
1 Mollusca Bivalvia Cerastoderma pinnulatum 1 filter cockle p.151 

Bousfield35,57; 
Gosner 

1 Mollusca Bivalvia Hiatella arctica 2 suspension Arctic rock borer 1979,p.158 
Gosner 1979, 

grazer/ p.136; 
1 Mollusca Gastropoda Marga rites helicinus many detritivore Bousfield p.15 

Gosner 1979, 
1 Chlorophyta Enteromorpha intestinalis frag - green year round p.27 

Harvey-
Clark,p.14; 

1 Phaeophyta Desmarestia aculeata - sourweed Sears,p.75 
-----·- ·-

2 Bryozoa Gymnolaemata - - few suspension branching -
Gosner 1979, 

2 Bryozoa Gymnolaemata Lichenopora spp. 1 suspension on algae stipe p.115 
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Gosner 1979, 
p.258; Harvey-

2 Echinodermata Echinoidea Echinarachnius parma 1 deposit purple sandollar Clark, p.40 
Gosner 1979, 

grazer/ p.136; 
2 Mollusca Gastropoda Marga rites helicinus many detritivore Bousfield p. 15 

Gosner 1979, 
2 Chlorophyta Enteromorpha intestinal is trag - green year round p.27 

Harvey-
Clark,p.14; 

2 Phaeophyta Desmarestia aculeata - sourweed Sears,p.75 
·-

Gosner 1979, 
p.195; 

3 Annelida Polychaeta Spirorbis borealis several suspension Bousfield p.44 
white chambered 

3 Rhizopoda Granuloreticulosea - - several suspension foram -
3 Rhizopoda Granuloreticulosea 1 suspension high spiral shell -

shell with 
3 Rhizopoda Granuloreticulosea 2 suspension perforations - ---

5 Bryozoa Gymnolaemata - - 1 suspension brownish, branching -
Gosner 1979, 

5 Bryozoa Gymnolaemata - - patch suspension pink, lacy crust p115 

Smith147; 
5 Mollusca Bivalvia Chlamys islandicus 1 filter spat Bousfield, p. 29 

Bousfield, p. 38; 
omnivorous also lschnochiton Gosner 1979, 

5 Mollusca Polyplacophora Tonicella rubra 1 grazer ruber p.123 

like snail with 
5 Rhizopoda ~ - - 1 perforations -
5 Rhizopoda Granuloreticulosea few -

Harvey-Clark, 
5 Rhodophyta Lithothamnion spp. patch - p.13; Sears, 

--
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I I I I I I I I I p.105 I 
Gasner 1979, 

scavenger/ p.169; 
6 Annelida Polychaeta Lepidonotus squamatus 1 predator Smith,p.75 

6 Annelida Polychaeta - - several - sandy tubes -
Gasner 1979 
p.191, Harvey-

6 Annelida Polychaeta Pectin aria granulata 1 filter with setae Clark p28 

6 Annelida Polychaeta - - several - muddy tubes -
dark jaw, rounded 

6 Annelida Polychaeta Maldanid 1 deposit posterior - Maldanid 
Gasner 1979, 

6 Arthropoda Crustacea - - 1 scavenger amphipod plate 51 

erect bryozoan, Gasner 1979, 
6 Bryozoa Tricellaria ternata 2 suspension ... ''antler like" p.117,j:>late15 

Gasner 1979, 
8 Annelida Polychaeta Paranaitis speciosa 3 carnivore? very small fragile p.167 

fragments, tentative Gasner 1979, 
8 Annelida Polychaeta Pherusa plumosa 2 deposit identififcation p.194 

8 Annelida Polychaeta - - 1 - fragment -
Gasner 1979, 

8 Annelida Polychaeta Harmothoe extenuata 1 carnivore p.170 
Gasner 1979 
p.191, Harvey-

8 Annelida Polychaeta Pectin aria granulata 1 filter with setae empty tube Clark p28 

fine sand tubes, all 
8 Annelida Polychaeta - - 5 - with worms -

Smith, p.188, 
omnivorous Harvey-

8 Echinodermata Echinoidea Strongylocentroyus droebachiensis 1 grazer 1 em diameter Clark,p.40 
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Smithpp189; 
filter with Gasner 1979 

8 Echinodermata Holothuroidea Cucumaria frondosa 1 tentacles 1.5-2cm long p.254 

3mm bowl shape, 
8 Mollusca Bivalvia - - 1 filter was live -

5 live, 2 dead. Bousfield, p. 
Largest 0.9cm, 30; Gasner 

8 Mollusca Bivalvia Astarte spp. 7 suspension smallest 0.3cm. 1979, p.150 
Bousfield28, 53. 
Gasner 1979, 

8 Mollusca Bivalvia Cerastoderma pjnnulatum 2 su~ension dwarf cockles _Q. 151 
8 Mollusca Gastropoda - - 1 - live, id? -

omnivorous Gasner 1979, 
8 Mollusca Polyplacophora lschnochiton albus 1 grazer 0.8cm p.123 

Gasner 1979, 
8 Rhodophyta Phyllophora? membranifolia 1 - attached to pebble p.42 

Gasner 1979, 
p.96; Harvey-

9 Cnidaria Anthozoa Tealla felina 4 predator Clark, p.20 

mud covered soft 
11 Annelida Polychaeta - - 1 - tube, not mucous? -

Gasner 1979 
p.191, Harvey-

11 Annelida Polychaeta Pectinaria granulata 1 filter with setae empty tube Clark p28 
Gasner 1979, 

11 Annelida Polychaeta Capitella spp. 3 detritivore p.184 
Gasner 1979, 
p.258; Harvey-

11 Echinodermata Echinoidea Echinarachnius parma 1 deposit small Clark, p.40 
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cracked clams, dead, Bousfield,p.37; 
suspensivore/ both shells still has Gasner 1979, 

11 Mollusca Bivalvia Macoma calcarea 2 detritivore two valves p.158 

11 Mollusca Bivalvia Gemma gemma 1 suspension Bousfield, p.56 
--

pink worm in sandy 
12 Annelida Polychaeta - - 1 - tube on rock -

Smith, p.189; 
Gasner 1979, 

12 Echinodermata Ophiuroidea Ophiuria robusta carnivore p.264 
Gasner 
1979,p.263; 
Harvey-Clark 

12 Echinodermata Ophiuroidea Ophiopholis aculeata filter with arms daisy brittle star Q-42 
Bousfield,p.53; 
Harvey-

12 Mollusca Bivalvia Clinocardium ciliatum 1 suspension large shell, was live Clark,p.32 
Bousfield, p. 
30; Gasner 

12 Mollusca Bivalvia Astarte spp. 1 suspension 1979, p.150 

predator I Gasner 1979, 
12 Mollusca Bivalvia Cuspidaria spp. 1 scavenger live p.160 

Gasner 1979, 
p.136; 

12 Mollusca Gastropoda Marga rites costal is 1 grazer Bousfield p_._15 

Gasner 1979 
p.191, Harvey-

13 Annelida Polychaeta Pectinaria granulata 1 filter with setae large empty tube Clark p28 
13 Annelida Polychaeta - - 1 - fragment small white -

Gasner 1979, I 

14 Annelida Polychaeta §_pirorbis _ 
---

spirillum 
-

_l!lany_ filter 
-

attached to algae p.195 I 
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Gosner 1979, 
p.195; 

14 Annelida Polychaeta Spirorbis borealis lots filter Bousfield p.44 
Gosner 1979 
p.191, Harvey-

14 Annelida Polychaeta Pectin aria granulata 3 filter with setae all empty tubes Clark p28 
14 Arthropoda Crustacea - - scaveng_er? am_Q_hipod -

mussels. 2 open, 1 
14 Mollusca Bivalvia Mytilus edulis 3 suspension closed prob live. Bousfield26, 53. 

branching red alage, 
14 Rhodophyta - - - 1 - looks black 

4 eyes, tentacles, 
heartshaped 

15 Annelida Polychaeta - - 1 - head??? -
Gosner 1979 
p.191, Harvey-

15 Annelida Polychaeta Pectin aria granulata 2 filter with setae emp1Y tubes Clark p28 
Gosner 1979, 

scavenger/ p.169; 
15 Annelida Polychaeta Lepidonotus squamatus 9 carnivore Smith,p.75 

Gosner 1979, 
15 Annelida Polychaeta Paranaitis speciosa 1 carnivore? _f). 167 

Gosner 1979, 
15 Annelida Polychaeta Euchone rubrocincta 2 suspensivore p.194 

15 Annelida Polychaeta - - 1 - v. small -
Harvey-

1 with everted Clark,p.26; 
proboscis Gosner 1979, 

15 Annelida Polychaeta Harmothoe imbricata 4 __Qredator {im bricata ?h-cj>_2Ell_ p.170 
Rogickpp175, 
Gosner 1979, 

15 Bryozoa Gymnolaemata Tubulipora spp. suspension pan pipe p114 
1!_ Bryozoa Gymnolaemata Lichenopora spp. few suspension on algae Gosner 1979 
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p115 

15 Bryozoa Gymnolaemata many suspension white encrusting -
Smith, p.189; 
Harvey-Clark, 

15 Echinodermata Asteroidea Asterias vulgaris 2 predator small, red eye spot p.40 
Smith, p.188, 

omnivorous Harvey-
15 Echinodermata Echinoidea Strongylocentroyus droebachiensis 2 grazer green, 1 very small Clark,p.40 

Gasner 1979, 
15 Echinodermata Ophiuroidea Ophiothrix angulata 3 tiny p.263 

suspension/ too small to tell 
15 Echinodermata Ophiuroidea - - 3 predator species -

Gasner 
1979,p.263; 
Harvey-Clark 

15 Echinodermata O_Qhiuroidea Ophiopholis aculeata 53 filter with arms some large p.42 
Smith, p.189; 
Gasner 1979, 

15 Echinodermata Ophiuroidea Ophiura sp 15 carnivore? p.264 
Smith, p.189; 
Gasner 1979, 

15 Echinodermata Ophiuroidea Ophiura robusta 51 carnivore boreal species p.264 

15 Mollusca Bivalvia Chlamys islandicus 1 filter iceland scallop Smithpp147 
Gasner 1979, 

15 Mollusca Bivalvia Anomia simplex 2 filter jingle shell p.149 
Bousfield35,57; 
Gasner 

15 Mollusca Bivalvia Hiatella arctica 9 suspension live 1979,p.158 
Harvey-Clark, 
p.33; Gasner 

15 Mollusca Gastropoda Acmaea testudinalis 3 grazer tortoise shell limpet 1979, p.125 

limpets.all live, 
15 Mollusca Gastropoda Puncturella noachina 5 grazer largest 6mm across Bousfield, p.12 
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Bousfield, p.58; 
omnivorous aka lschnochiton Gesner 1979, 

15 Mollusca Polyplacophora Tonicella rubra 12 grazer ruber p.123 
Gesner 1971, 

omnivorous p.255; Gesner 
15 Polyplacophora Polyplacophora Tonicella marmorea 5 grazer 1979, p.123 

Harvey-Clark 
15 Porifera Calcarea Scypha ciliata 6 filter 18, Smith 6 

Harvey-Clark, 
p.13; Sears, 

15 Rhodophyta Rhodophyceae Lithothamnion spp. - rhodoliths p.105 

some large pieces in Gesner 1979, 
rhodoliths, attached p.45; Sears 

15 Rhodophyta Ptilota serrata pieces - and not attached 2002, p.114 
Gesner 1979, 

15 Rhodophyta Phyllophora? membranifolia - p.160 

16 Annelida Polychaeta Saba co elongatus 1 deposit bamboo worm Ramey, 2001 
"deep subsurface Smith,p.69; 
head down feeding" Gesner 

16 Annelida Polychaeta Maldane sarsi 1 deposit p73 1971,p.356 

fragments, same 
16 Annelida Polychaeta - - 2 - worm? -

Gesner 1979, 
16 Arthropoda Crustacea Gammarus sp.1 4 scavenger very small, damaged plate 51 

Smith, p.189; 
Gesner 1979, 

16 Echinodermata Ophiuroidea Ophuira robusta 3 carnivore small p.264 
Bousfield,p.37; 
Gesner 1979, 

16 Mollusca Bivalvia My a arenaria 1 suspension only one valve p.158 
Bousfield,p.37; 

suspensivore/ Gesner 1979, 
16 Mollusca Bivalvia Macoma calcarea 1 detritivore 1 valve p.158 
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17 Annelida Polychaeta Pectin aria granulata 1 

17 Annelida Polychaeta Maldane sarsi 2 

17 Annelida Polychaeta Harmothoe imbricata 1 

17 Arthropoda Crustacea - - 1 

17 Echinodermata Holothuroidea Cucumaria frondosa 2 

17 Mollusca Bivalvia Macoma calcarea 2 

Annelida crassa 

26 Annelida Polychaeta Pectin aria granulata 2 
26 Annelida Polychaeta - - 1 

27 Echinodermata Holothuroidea Cucumaria frondosa 

27 Echinodermata _QQhiuroidea Ophiopholis aculeata 1 
-

186 

filter with setae large tube and worm 

bamboo worms in 
deposit muddy tubes 

carnivore orange scale'worm 

scavenger amphipod 
"in areas of current 
on rock and 

filter with sand/mud 
tentacles bottoms"hc39 

suspensivore/ 
detritivore 

--·-
live, open 

one empty tube, one 
filter with setae with worm 

-
"in areas of current 
on rock and 

filter with sand/mud 
tentacles bottoms"hc39 

filter with arms 

Gasner 1979 
p.191, Harvey-
Clark p28 
Smith,p.69; 
Gasner 
1971 ,p.356 
Harvey-
Clark,p.26; 
Gasner 1979, 
p.170 
Gasner 1979, 
plate 51 

Smithpp189; 
Gasner 1979 
p.254 
Bousfield, p. 37; 
Gasner 1979, 

_p,J58 

Gasner 1979, 
.185 

Gasner 1979 
p.191, Harvey-
Clark p28 

-
Smithpp189; 
Gasner 1979 
p.254 

Gasner 
1979,p.263; --

I 
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Harvey-Clark 
p.42 

Bousfield,p.37; 
suspensivore/ Gosner 1979, 

27 Mollusca Bivalvia Macoma calcarea 1 detritivore large, white, dead p.158 
Bousfield, p. 

27 Mollusca Bivalvia Musculus discors 1 filter 27; 
Bousfield35,57; 
Gosner 

27 Mollusca Bivalvia Hiatella arctica 2 suspension 1979,p.158 

large, live with Bousfield, p. 
28 Mollusca Bivalvia Musculus discors 1 filter bysuss 27; 

Bousfield,p.37; 
live, deep burrower Gosner 1979, 

28 Mollusca Bivalvia Mva arena ria 1 suspension (Harvey-Ciark31) p.158 
Bousfield,p.37; 

suspensivore/ Gosner 1979, 
28 Mollusca Bivalvia Macoma calcarea 3 detritivore live p.158 

Bousfield,p.37; 
suspensivore/ Gosner 1979, 

29 Mollusca Bivalvia Macoma calcarea 3 detritivore 2 live, 1 old p.158 

29 Mollusca Bivalvia Astarte borealis 1 suspensivore Bousfield30,54. 

29 Mollusca Gastropoda - - 1 - old shell, snail sp? -
Gosner 1979, 

30 Arthropoda Crustacea Gammarus sp. 2 1 scavenger plate 51 
Harvey- Gosner 1979, 
Clark,p.40"sand p.258; Harvey-

30 Echinodermata Echinoidea Echinarachnius parma 1 deposit dweller" Clark, p.40 

Echinodermata I Echinoidea Echinarachnius arm a 
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I I -- I -- -- I -- - I -- -~ - J -- ---- [ - ---- JCiarl(,P.40-j 

Gasner 1979, 
32 Annelida Polychaeta Pherusa plumosa 3 deposit p.194 

fragment of 
cemented sand grain 

32 Annelida Polychaeta - - 1 - tube, round. 
Smith, p.68; 

1 0/11 chevrons, Gasner 1979, 
32 Annelida Polychaeta Goniada maculata 1 predator Photo at 4 p.172 

Gasner 1979 
1 live, 2 small empty, p.191, Harvey-

32 Annelida Polychaeta Pectinaria granulata 4 filter 1 lai"Qe' empty Clark p28 

1 live, empty tubes, Smith, p.71; 
one turned black- Gasner 

32 Annelida Polychaeta Onuphis conchylega 5 predator dead a long time? 1979,p.179 

pebble with sandy 
tube, spiral, empty 
round opening 

32 Annelida Polychaeta - - - 2.5mm across. -
32 Annelida Polychaeta - - 4 - damaged -

Gasner 1979, 
p.258; Harvey-

32 Echinodermata Echinoidea Echinarachnius parma 1 deposit sandollar was live Clark,_Q.40 
Bousfield, p. 
30; Gasner 

32 Mollusca Bivalvia Astarte borealis 3 suspensivore 1979, p.150 
Bousfield, p. 
30; Gasner I 

32 Mollusca Bivalvia Astarte undata 5 suspensivore fragments 1979, p.150 
Bousfield,p.37; 

suspensivore/ Gasner 1979, I 

32 Mollusca Bivalvia Macoma calcarea 1 detritivore fragment p.158 

188 



sandy, orange worm 
I 33 Annelida Polychaeta - - several - tubes -

Gasner 1979, 
I 33 Arthropoda Gammarus spp. 1 scavenger Amphipod, red eyes. plate 51 

small, white with red 
I 33 Echinodermata Asteroidea - - 1 predator eye spots -

Gesner 

i 

1979,p.263; 
Harvey-Clark 

33 Echinodermata Ophiuroidea Ophiopholis aculeata 6 filter with arms p.42 
Bousfield35,57; I 

Gasner 
33 Mollusca Bivalvia Hiatella arctica 5 suspension 1979,p.158 I 

33 Mollusca GastroQ_oda Puncturella noachina 1 grazer Bousfield, p.12 I 

Gasner 1979, I 
grazer/ p.136; J 

33 Mollusca Gastropoda Marga rites helicinus 1 detritivore Bousfield _p.15 

Bousfield,p.38; i 
omnivorous Gesner 1979, 

33 Mollusca Polyplacophora Tonicella rubra 46 grazer p.123 
Gosner 1971, 
p.255; Gasner 

33 Mollusca Polyplaco_phora Tonicella maromea 7 grazer 1979, p.123 

33 Porifera - - - several filter - J 
Harvey-Clark, 

I p.13; Sears, 
33 Rhodophyta Rhodophyceae Lithothamnion spp. - rhodoliths p.105 I 

round, fat, sand tube 
I 35 Annelida Polychaeta - - 1 - empty -

Smith, p.71; 

i 
Gasner 

35 Annelida Polychaeta Onuphis conchylega 1 predator tube frag 1979,p.179 
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35 Annelida Polychaeta - -

35 Mollusca Bivalvia Macoma calcarea 

35 Mollusca Gastropoda Acmaea testudinalis 

35 Mollusca Gastropoda Aporrhais occidentalis 
35 Rhizopoda Granuloreticulosea - -

36 Mollusca Bivalvia Cuspidaria sp. 

37 Annelida Polychaeta Pectin aria granulata 

37 Annelida Polychaeta Goniada maculata 
37 Annelida Polychaeta AmmotryQ_ane aulogaster 

37_ Mollusca Bivalvia Pandora gouldiana 
-----

Mollusca Bivalvia Pandora ouldiana 

39 Annelida Polychaeta - -
39 Bryozoa G_ymnolaemata Scrupocellaria scabra 

39 Mollusca Gastropoda Puncturella noachina 
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few -
suspensivore/ 

1 detritivore 

3 grazer 

1 detritivore 
few -

predator I 
1 scavenger 

1 filter with setae 

1 predator 
1 

1 

1 -
patch filter 
1 grazer 

thin, orange, sand 
tubes 

dead valves 

2 large, 1old 

old shell 

dipper shell 

still in fine grained 
tube. 

orange sandy worm 
tube 

branching shield 
bryozoan 

-
Bousfield,p.37; 
Gasner 1979, 
p_.158 
Harvey-Clark, 
p.33; Gasner 
1979, p.125 
Bousfield18, 
50. 

-
Gasner 1979, 
160 

Gasner 1979 
p.191, Harvey-
Clark_Q_28 
Smith, p.68; 
Gasner 1979, 
p.172 
Smith, p. 77 
Harvey-Clark, 
p.32 

Harvey-Clark, 
.32 

-
Gasner 1979, 
p.117 
Bousfield, p.12 



Granuloreticulosea 
Granuloreticulosea 

40 Annelida Polychaeta - - several - orange worm tubes -
Gosner 1979, 
p.195; 

40 Annelida Polychaeta Spirorbis borealis several filter Bousfield p.44 
Gosner 1979, 

40 Bryozoa Gymnolaemata - - several suspensivore white, lacy p.115 
Gosner 1979, 

40 Bryozoa Gymnolaemata 1 suspensivore beaked p.115 
Harvey-Clark, 

1 valve old, 1 small p.32; Bousfield, 
40 Mollusca Bivalvia Clinocardium ciliatum 2 suspensivore? live p.53 
40 Mollusca Gastropoda Puncturella noachina 3 grazer Bousfield, p.12 
40 Rhizopoda Granuloreticulosea several chambered, purplish 

41 Annelida Polychaeta - - 3 - errant 
41 Annelida Polychaeta - - 2 - errant 

1 with 4 arms, 1 with Gosner 1979, 
41 Echinodermata Asteroidea Ctenodiscus crispatus 2 deposit 5 p.260 

Bousfield,p.37; 
suspensivore/ Gosner 1979, 

41 Mollusca Bivalvia Macoma calcarea 1 detritivore live p.158 
old shell with bore 

41 Mollusca Gastropoda - - 1 grazer hole -
holes in granite, one 
with shadow 4mm 

42 - - - - few - across 
42 Annelida Polychaeta - - 2 - fragment -
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fury worm with 
rounded posteriro 
and orange anterior 

42 Annelida Polychaeta - - 1 - fringe -
42 Annelida Polychaeta - - 2 - conical heads -

Gosner 1979, 
42 Annelida Polychaeta Spirorbis borealis several filter in pebble bag p. 195 

branching chitonous 
42 Annelida Polychaeta - - 3 - tube, empty -
42 Annelida Polychaeta - - 2 - in sandy tubes -

Gosner 1979, 
42 Arthropoda 1 scavenger 2.5cm long plate 51 

on pebbles, lacy Gonser 1979, 
42 Bryozoa G_ymnolaemata - - patches suspensivore white crust p.115 

Gosner 1979, 
42 Bryozoa Gymnolaemata Lichenopora spp. patches suspensivore lichen bryzoan p.115 

oval branching along Gosner 1979, 
42 Bryozoa Gymnolaemata patches suspensivore surface p.119 

round hole with Gosner 1979, 
42 Bryozoa Gymnolaemata several suspensivore horns j::>.115 

Smith, p.189; 
ophuria with weakly Gosner 1979, 

42 Echinodermata Ophiuroidea Ophiura robusta 2 predator dev't combs p.264 
Bousfield, p. 

several old shells, 30; Gosner 
42 Mollusca Bivalvia Astarte spp. 4 suspensivore one live 1979, p.150 

Bousfield,p.37; 
suspensivore/ dead, one with bore Gosner 1979, 

42 Mollusca Bivalvia Macoma calcarea 4 detritivore hole p.158 
Gosner 1979, 
p.136; 

42 Mollusca Gastropoda Marga rites costal is 1 grazer old, dead Bousfield p.15 

one dead, hole in Harvey-Clark, I 

42 Mollusca Monoplacophora Acmaea testudinalis 3 grazer apex; other live p.33; Gosner I 
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1979, p.125 

calc forams on 
42 Rhizopoda Granuloreticulosea many pebbles 
42 Rhizopoda Granuloreticulosea several aglutinating forams 

high releif snail 
42 Rhizopoda Granuloreticulosea 4 foram? 

Smith, p.71; 
aka Nothria Gasner 

102 Annelida Poly chaeta Onuphis conchylega 7 carnivorous conchylega 1979,p.179 

round mud and sand 
102 Annelida Polychaeta - - 1 - tube frag. -

Gasner 1979 
p.191, Harvey-

102 Annelida Polychaeta Pectin aria granulata 3 filter with setae 1with worm, 2 empty Clark p28 

leathery sand 
102 Annelida Polychaeta - - 3 - covered tube 

small leathery sand 
tube with neck-

102 Annelida Polychaeta - - 1 - chordate? 
Gasner 1979, 

102 Bryozoa Gymnolaemata several suspensivore white lacy crust p.115 
Gasner 1979, 

102 Bryozoa Gymnolaemata Lichenopora spp. several suspensivore lichen bryozan p.115 

Gasner 1979, 
102 Echinodermata Ophiuroidea Ophiothrix angulata 2 predator/particles p.263 

Bousfteld, p. 
dead valves, all 30; Gasner 

102 Mollusca Bivalvia Astarte borealis 6 suspensivore sizes, eroded 1979, p.150 
Bousfield, p. 
30; Gasner 

102 Mollusca Bivalvia Astarte undata 3 suspensivore live 1979, p.150 
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Bousfield,p.35; 
large trag with bore Gasner 1979, 

102 Mollusca Bivalvia Hiatella arctica 2 suspensivore holes p.158 

no inside features, 
102 Mollusca Gastropoda Puncturella noachina 1 grazer worn apex Bousfield, p.12 
102 Rhizopoda Granuloreticulosea several suspensivore calcareous forams 

Gosner 1979, 
105 Annelida Polychaeta Spirorbis spirillum few filter p.195 

Gosner 1979, 
105 Bryozoa G_ymnolaemata - - suspensivore white, ovals in line p.119 

Gasner 1979, 
105 Bryozoa Gymnolaemata Lichenopora spp. suspensivore lichen bryzoa p.115 

large Gasner 1979, 
105 Bryozoa Gymnolaemata Electra crustulenta patch suspensivore p.115 

small Gasner 1979, 
105 Bryozoa Gymnolaemata - - patches suspensivore other white lacy crust p.119 

Gasner 1979, 
105 Bryozoa Gymnolaemata - - patch suspensivore tuby, not pan pipe p.115 

Gasner 1979, 
105 Bryozoa Gymnolaemata - - patches suspensivore beaked crust p.115 

Gasner 1979, 
105 Bryozoa Gymnolaemata - - patches suspensivore encrusting sp? p.115 

Harvey-Clark, 
p.33; Gasner 

105 Mollusca Gastropoda Acmaea testudinalis 2 grazer 1979, p.125 

filtering 
suspension Gasner 1979, 

105 Mollusca Gastropoda Crepidula fornicata 1 feeder v small with shelf p.128 
Bousfield,p.38; 

omnivorous Gosner 1979, 
105 Mollusca Polyplacophora Tonicella rubra 1 grazer p.123 

105 Porifera - - - filter not vase -
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105 Rhizopoda Granuloreticulosea few calcareous forams 

105 Rhizopoda Granuloreticulosea several 
Harvey-Clark, 

small p.13; Sears, 
105 Rhodophyta Rhodophyceae Lithothamnion sp_Q. _Q_atches - Q-105 

scavenges plant Harvey-Clark, 
106 Arthropoda lsopoda ldotea baltica 2 and animal in algae p.45 

Gasner 1979, 
106 Mollusca Po!yplaco_phora lschnochiton alb us 1 _grazer _Q. 123 

Bousfield,p.38; 
Gasner 1979, 

106 Mollusca Polyplacophora Tonicella marmorea 2 grazer p.123 
Harvey-Clark, 

on encrusted large p.13; Sears, 
106 Rhodophyta Rhodophyceae Lithothamnion spp. crust - shell frag in lumps p.105 

Gasner 1979, 
p.45; Sears 

106 Rhod()phyta_ Ptilota serrata _!!la_t ___ - 2002, p.114 
-- - -- ---- -- L___ ______ ------

Gasner 1979, 
110 Annelida Polychaeta Capitella sp. 1 detritivore p.184 

110 Annelida Polychaeta Sabella microphthalina 2 filter Smith, p"60 
Gasner 1979, 

110 Annelida Polychaeta Flabelligera affinis 2 deposit p.194 

small empty sand 
110 Annelida Polychaeta Sabellaria vulgaris 3 filter tubes Smith,_Q.60 

Gasner 1979 
p.191, Harvey-

110 Annelida Polychaeta Pectinaria granulata 3 filter with setae Clark p28 
Gasner 1979, 

juvenile, diameter p.258; Harvey-
110 Echinodermata Echinoidea Echinarachnius parma 1 deposit 2cm Clark, p.40 
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Smith, p.189; 
Gasner 1979, 

110 Echinodermata Ophiuroidea Ophiura robusta carnivore p.264 
Bousfield,p.37; 
Gasner 1979, 

110 Mollusca Bivalvia My a arenaria 1 suspensivore old valve p.158 

110 Mollusca Bivalvia Gemma .gemma 1 filter Bousfield31 
Gasner 1979, 

ridged or rosy top, p.136; 
110 Mollusca Gastropoda Marga rites costal is 1 grazer formerly cinereus Bousfield p.15 
110_ ~hizopoda Granuloreticulosea 1 aglutinating foram 

Smith, p.71; 
Gasner 

111 Annelida Poly chaeta Onuphis conchylega 4 predator mobile, carries tube 1979,p.179 

111 Annelida Polychaeta - - 2 - mud tubes -
Gasner 1979 
p.191 , Harvey-

111 Annelida Polychaeta Pectin aria granulata 1 filter with setae Clark p28 
Gasner 1979 

111 Arthropoda Amphipoda Gammarus sp. 1 scavenger white scud p227 
Gasner 1979, 

111 Arthropoda Amphipoda - - 2 scavenger plate 52 
Gasner 1979, 
p.258; Harvey-

111 Echinodermata Echinoidea Echinarachnius parma 1 deposit not kept, juvenile Clark, p.40 
Smith, p.189; 
Gasner 1979, 

111 Echinodermata Ophiuroidea Ophiura sp. 1 carnivore? p.264 
Bousfield, p. 

I 

30; Gasner 
111 Mollusca Bivalvia Astarte undata 1 suspensivore 1979, p.150 

Bousfield,p.37; .I 
Gasner 1979, 

111 Mollusca Bivalvia My a arenaria 1 suspensivore juvenile, v. small (:>.158 ··-
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I f11 [MollUsca }Gastropoda -I=- - - ~ -- -- =rJ- I I 1- I 

Gosner 1979, 
p.136; 

112 Mollusca Gastropoda Marga rites costal is 1 grazer old, shell crushed Bousfield_Q.j§ _ 

Gasner 1979 
p.191 , Harvey-

113 Annelida Polychaeta Pectin aria granulata 2 filter with setae Clark p28 

high energy sandy, 
deep head down may make orange Gasner 1979, 

113 Annelida Polychaeta Clymenella torquata 1 deposit sandy tubes? p186 
Smith,p.69; 

deep head down Gasner 
113 Annelida Polychaeta Maldane sarsi 3 deposit 1971,p.356 

orange sandy tubes 
on cobble, thin white 

113 Annelida Polychaeta - - several - worm 
Gasner 1979, 

113 Bryozoa G_ymnolaemata - - patch suspensivore white crust, lacy p. 115 I 

113 Mollusca Bivalvia Gemma gemma 1 filter live Bousfield31 
Bousfield, p. I 

30; Gasner 
113 Mollusca Bivalvia Astarte undata 1 suspensivore small live 1979, p.150 I 

Harvey-Clark, 
p.33; Gasner 

I 113 Mollusca Gastropoda Acmaea testudinalis 1 grazer live on cobble 1979, p.125 
snail forams on 

I 113 Rhizopoda Granuloreticulosea several cobble 
Harvey-Clark, 

I 

p.13; Sears, 
113 Rhodophyta Rhodophyceae Lithothamnion spp. j)atch - p.105 
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Harvey-
Clark,p.26; 
Gosner 1979, 

118 Annelida Polychaeta Harmothoe imbricata 1 carnivore large scale worm, p.170 
Gosner 1979, 

predator I p.169; 
118 Annelida Polychaeta Lepidonotus squamatus 4 scavenger 12 scaled worm Smith,p.75 

Gosner 1979, 
118 Annelida Polychaeta Sabella spp. several filter p.194 

Gosner 1979, 
118 Annelida Polvchaeta Spirorbis spirillum few filter in P.serrata p.195 

Gosner 1979, 
118 Arthropoda Crustacea - - several scavenger amphipod plate 51 

Gosner 1979, 
118 Bryozoa Gymnolaemata several suspensivore encrusting sp? p. 115 

encrusting with Gosner 1979, 
118 Bryozoa Gymnolaemata few suspensivore spikes p. 115 

Gosner 1979, 
118 Bryozoa Gymnolaemata Lichenopora spp. several suspensivore lichen bryzoan p.115 
118 Bryozoa Gymnolaemata lots sus!)ensivore brown pipes -

Smith, p.189, 
predator, Gosner 1979, 

118 Echinodermata Asteroidea Henricia sanguinolenta 1 particles p.271 
Smith, p.189; 
Harvey-Clark, 

118 Echinodermata Asteroidea Asterias vulgaris 1 Predator adult p.40 

118 Echinodermata Asteroidea - - 4 predator small white, red eyes -
Smith, p.188, 

omnivorous Harvey-
118 Echinodermata Echinoidea Strongylocentrotus droebachiensis 1 grazer Clark,p.40 

Gosner 
1979,p.263; 
Harvey-Clark 

118 Echinodermata Ophiuroidea Ophiopholis aculeata 54 filters with arms p.42 
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Smith, p.189; 
Gosner 1979, 

118 Echinodermata Ophiuroidea Ophiura robusta 72 predator p.264 
Bousfield35, 57; 

old valve, and other Gosner 
118 Mollusca Bivalvia Hiatella arctica 13 suspension old clam, sp? 1979,p.158 

horse mussel, 3 shell 
valves encrusted by Harvey-Clark, 

118 Mollusca Bivalvia Modiolus modiolus - filter coralline p.29 

iceland scallop spat 
118 Mollusca Bivalvia Chlamys islandicus 2 filter in P.serrata Smith, p.147 

Bousfield, p. 
30; Gosner 

118 Mollusca Bivalvia Astarte undata 1 suspensivore old 1979, p.150 
Gosner 1979, 

118 Mollusca Bivalvia Anomia simplex 3 filter p.149 
Harvey-Clark, 
p.33; Gosner 

118 Mollusca Gastropoda Acmaea testudinalis 1 grazer tortoise shell limpet 1979, p.125 
Gosner 1979, 

in shallow water on p.136; 
118 Mollusca Gastropoda Marga rites costal is 1 grazer cold coasts Bousfield p.15 

Gosner 1979, 
p.136; 

118 Mollusca Gastropoda Marga rites helenicus 2 grazer/detritivore Bousfield p.15 

no inside features, 
118 Mollusca Gastropoda Puncturella noachina 6 grazer worn apex Bousfield, p.12 

Gosner 1979, 
118 Mollusca Polyplacophora lschnochiton albus 1 grazer p.123 

Bousfield,p.38; 
omnivorous Gosner 1979, 

118 Mollusca Polyplacophora Tonicella rubra 2 grazer p.123 
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in rhodoliths, 
encrusting greyish 

118 Porifera - - spp. lots filter white -
often attached to Harvey-Clark, 

118 Porifera Calcarea Scypha ciliata 15-20 filter P.serrata p.18; Smith,p.6 
118 Rhizopoda Granuloreticulosea many calc forams 
118 Rhizopoda Granuloreticulosea few coiled snail 

annual, matures late Gosner 1979 
118 Phaeophyta Phaeophyceae Chorda filum 1 strand - summer p33, 

Harvey-Clark, 
p.13; Sears, 

118 Rhodophyta Rhodophyceae Lithothamnion spp. rhodoliths - p.105 
attached to Gosner 1979, 
rhodoliths, some p.45; Sears 

118 Rhodophyta Ptilota serrata lots - 15cm long__ 2002, p.114 
---

Gosner 1979, 
predator I p.169; 

119 Annelida Polychaeta Lepidonotus squamatus 2 scavenQer Smith,p.75 
Gosner 1979, 

119 Brvozoa Gvmnolaemata - - 3 suspension pink crust p. 115 
119 Echinodermata Asteroidea - - 1 predator iuvenile, white -

Smith, p.189; 
Harvey-Clark, 

119 Echinodermata Asteroidea Asterias vulgaris 1 Predator vellow madrop. p.40 
Gosner 
1979,p.263; 
Harvey-Clark 

119 Echinodermata Ophiuroidea Ophiopholis aculeata 6 filters with arms p.42 
Smith, p.189; 
Gosner 1979, 

119 Echinodermata Ophiuroidea Ophiura robusta 4 predator p.264 

Bousfield35,57; 
119 Mollusca Bivalvia Hiatella arctica 6 suspension Gosner 

---- ---
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1979,p.158 

119 Mollusca Gastropoda Puncturella noachina 4 grazer Bousfield, p.12 
Gosner 1979, 

119 Mollusca Monoplacophora lschnochiton albus 1 grazer _Q. 123 
Bousfield, p. 38; 

omnivorous Gosner 1979, 
119 Mollusca Monoplacophora? Tonicella rubra 2 grazer p.123 
119 Porifera ~ - - 1 filter grey -
119 Rhizopoda Granuloreticulosea few calcareous forams 

Harvey-Clark, 
p.13; Sears, 

119 Rhodophyta Rhodophyceae Lithothamnion spp. encrust - p.105 

Gosner 1979, 
120 Annelida Polychaeta Nereis spp. 2 _Qredator p_.176 

Gosner 1979 
p.191, Harvey-

120 Annelida Polychaeta Pectinaria granulata 1 filter with setae Clark p28 
Gosner 1979, 

predator I p.169; 
120 Annelida Polychaeta Lepidonotus squamatus 5 scavenger Smith,p.75 

Harvey-
Clark,p.26; 
Gasner 1979, 

120 Annelida Polychaeta Harmothoe imbricata 2 predator other scale worms p.170 
120 Annelida Polychaeta - - 3 - -

Gasner 1979, 
p.195; 

120 Annelida Polychaeta Spirorbis borealis lots filter in red fern mat Bousfield p.44 
Gasner 1979, 

120 Bryozoa Gymnolaemata - - patches suspension beaked crust p.115 
Gasner 1979, 

120 Bryozoa Gymnolaemata Lichenopora spp. 3 suspension lichen bryozoans p.115 
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Smith, p.189; 
v small white, 2 in Harvey-Clark, 

120 Echinodermata Asteroidea Asterias vulg_aris 3 predator fern ~40 
Smith, p.188, 

omnivorous Harvey-
120 Echinodermata Echinoidea Strongylocentroyus droebachiensis 3 grazer Clark,p.40 

Gasner 
1979,p.263; 
Harvey-Clark 

120 Echinodermata Ophiuroidea Ophiopholis aculeata 77 filter with arms _2.42 
Smith, p.189; 
Gasner 1979, 

120 Echinodermata Ophiuroidea Ophiura robusta 11 predator p.264 
120 Echinodermata Ophiuroidea - - several juveniles -

Bousfield35,57; 
3 live, 3 dead from Gasner 

120 Mollusca Bivalvia Hiatella arctica 7 suspension underside of cobble 1979,p.158 

120 Mollusca Bivalvia - - several juveniles -
120 Mollusca Gastropoda - - 1 - white snail -
120 Mollusca Gastropoda - - 1 - white limpet in hole -
120 Mollusca Gastropoda Puncturella noachina 5 grazer Bousfield, p.12 

Harvey-Clark, 
p.33; Gasner 

120 Mollusca Gastro_Q_oda Acmaea testudinalis 3 grazer red and white limpet 1979, p.125 
Gasner 1979, 
p.136; 

120 Mollusca Gastropoda Mar-ga rites costal is 4 g_razer live Bousfield p.15 
Gasner 1979, 
p.136; 

120 Mollusca Gastropoda Marga rites helicinus 1 grazer/detritivore live Bousfield p.15 
Bousfield,p.38; 

omnivorous Gasner 1979, 
12_Q_ Mollusca Polyplacophora Tonicella rubra 4 grazer p.123 

--·--
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Gasner 1971, 
p.255; Gasner 

120 Mollusca Polyplacophora Tonicella marmorea 10 grazer 1979,_1:).123 
120 Porifera - - - 1 suspension yellow sponge -
120 Rhodophyta Rhodophyceae Lithothamnion spp. rhod 

Gasner 1979, 
p.45; Sears 

120_ Rh~doph~ Ptilota serrata mat - 2002, p.114 

Gasner 1979, 
121 Bryozoa Gymnolaemata - - 1 suspension white crust p.115 
121 Echinodermata Q_Qhiuroidea - - 1 luvenile -

Bousfield35,57; 
Gasner 

121 Mollusca Bivalvia Hiatella arctica 1 suspension 1979,p.158 
Gasner 1979, 

121 Mollusca Bivalvia Anomia simplex 1 filter _Q.149 
Bousfield,p.38; 

omnivorous Gasner 1979, 
121 Mollusca Polyplacophora Tonicella rubra 1 grazer p.123 
121 Rhodophyta Rhodophyceae Lithothamnion spp. frag 

Gasner 1979, 
predator I p.169; 

122 Annelida Polychaeta LeQidonotus sq_uamatus 4 scaveng_er Smith,Q.75 I 

Gasner 1979, 
122 Bryozoan Gymnolaemata - - patches suspension encrusting p. 115 

Smith, p.188, I 

omnivorous Harvey-
122 Echinodermata Echinoidea StrongyJocentro_y_us droebachiensis 1 _grazer Clark,Q.40 

Smith, p.189; I 

Gasner 1979, 
122 Echinodermata Ophiuroidea Ophiura robusta lots predator p.264 I 
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Gosner 
1979,p.263; 
Harvey-Clark 

122 Echinodermata Ophiuroidea Ophiopholis aculeata lots filters with arms p.42 
Bousfield,p.35; 
Gosner 1979, 

122 Mollusca Bivalvia Hiatella arctica 5 suspension j). 158 
122 Mollusca Gastropoda Puncturella noachina 2 grazer Bousfield, p.12 

Bousfield,p.38; 
omnivorous Gosner 1979, 

122 Mollusca Polyplacophora Tonicella rubra 6 grazer p.123 
Gosner 1971, 
p.255; Gesner 

122 Mollusca Polyplacophora Tonicella marmorea 2 grazer 1979, p.123 
Gosner 1979, 

122 Phaeophyta Agarum cribrosum 1 - perennial p.34 
Harvey-Clark, 
p.13; Sears, 

12~ Rhodoph~ Rhodophyceae Lithothamnion spp. - p.105 
L____. ____ --

Gosner 1979, 
predator I p.169; 

123 Annelida Polychaeta Lepidonotus squamatus 3 scavenger Smith,p.75 
Gosner 1979, 
p.195; 

123 Annelida Polychaeta Spirorbis borealis few filter Bousfield p.44 
Gosner 1979, 

123 Arthropoda amphipoda - - 1 scavenger plate 52 
Gosner 1979, 

123 Bryozoa Gymnolaemata - - patches suspension white encrusting p. 115 
123 Bryozoa Gymnolaemata - - patches suspension encrusting -

Smith, p.189; 
Harvey-Clark, 

123 Echinodermata Asteroidea Asterias vulgaris 1 predator p.40 
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Smith, p.188, 
omnivorous Harvey-

123 Echinodermata Echinoidea Strongylocentroyus droebachiensis 1 grazer Clark,p.40 
Gasner 
1979,p.263; 
Harvey-Clark 

123 Echinodermata Ophiuroidea Ophiopholis aculeata 21 filters with arms p.42 
Bousfield,p.35; 
Gasner 1979, 

123 Mollusca Bivalvia Hiatella arctica 17 suspension p.158 
Gasner 1979, 

123 Mollusca Bivalvia Anomia simplex 2 filter p.149 
123 Mollusca Gastropoda Puncturella noachina 2 grazer Bousfield, p.12 
123 Mollusca Gastropoda - - 1 -

Bousfield,p.38; 
omnivorous Gesner 1979, 

123 Mollusca Polyplacophora Tonicella rubra 11 grazer p.123 

123 Porifera ~ - - 2 filter grey -
123 Rhizopoda Granuloreticulosea -
123 Rhodophyta Rhodophyceae Lithothamnion spp. rhod -

Gasner 1979, 
123 Phaeophyta Agarum cribrosum 1 - p.34 

----·--

Smith, p.189; 
Harvey-Clark, 

124 Echinodermata Asteroidea Asterias vulgaris 1 predator juvenile p.40 
Smith, p.188, 

omnivorous Harvey-
124 Echinodermata Echinoidea Strongylocentroyus droebachiensis 1 grazer large, not kept Clark,p.40 

Bousfield,p.38; 
omnivorous Gasner 1979, 

124 Mollusca Polyplacophora Tonicella rubra 2 grazer p.123 
Gasner 1979, 

I 124 Phaeophyta Agarum cribrosum 2 - p.34 
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Harvey-Clark, 
p.13; Sears, 

124 Rhodophyta Rhodophyceae Lithothamnion spp. - p.105 

Smith, p.188, 
omnivorous Harvey-

125 Echinodermata Echinoidea Strongylocentroyus droebachiensis 1 grazer larQe, not kept Clark,p.40 
Gosner 1971, 
p.255; Gosner 

125 Mollusca Polyplacophora Tonicella marmorea 2 grazer 1979, p.123 
125 Rhodophyta - - - frag - leafy red -

Gosner 1979 
p.191, Harvey-

126 Annelida Polychaeta Pectinaria granulata 1 filter with setae Clark p28 

unidentified white 
126 Annelida Polychaeta - - 1 - polychaete -

large unidentified 
126 Annelida Polychaeta - - 1 - worm, no head -

Gosner 1979, 
126 Arthropoda Crustacea - - 1 scavenger white amphipod plate 51, 52 

Cumacean, found in Gosner 1979, 
126 Arthropoda Crustacea Diastylis quadrispinosa 2 detritivore sandy areas p.219 

Gosner 1979, 
126 Arthropoda Crustacea Gammarus sp.3 1 scavenger plate 51 

Gosner 1979, 
p.258; Harvey-

126 Echinodermata Echinoidea Echinarachnius parma 4 deposit not kept Clark, p.40 
Harvey-Clark, 
p.32; Bousfield, 

126 Mollusca Bivalvia Clinocardium ciliatum 1 suspension v. small valve p.53 

stringy red and green 
126 Rhodophyta - - - few - algae --- ----
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Gasner 1979 
p.191, Harvey-

127 Annelida Polvchaeta Pectin aria granulata 3 filter with setae v. small Clark p28 
Gasner 1979, 

127 Arthropoda Crustacea Ampelisca? sp. 2 scavenger amphipod plate 51 
Gasner 1979, 
p.258; Harvey-

127 Echinodermata Echinoidea Echinarachnius parma 3 deposit not kept Clark, p.40 
Harvey-Clark, 

127 Mollusca Bivalvia En sis directus frag p.31 

127 Phaeophyta Phaeophyceae Fucus sp. frag - -
algae fragments, 

127 Rhodophyta - - - frag - stringy red -
Gasner 1979 
p.191, Harvey-

128 Annelida Polychaeta Pectin aria granulata 4 filter with setae Clark p28 

128 Annelida Polychaeta - - 2 - v thin -
128 Annelida Polychaeta Phyllodoce sp. 1 -

white, small Gasner 1979, 
128 Arthrpoda Crustacea Gammarus sp. 2 scavenger amphipod plate 51 

Smith, p.188, 
omnivorous very tiny, just post Harvey-

128 Echinodermata Echinoidea Strongylocentroyus droebachiensis 1 grazer larval? Clark,p.40 

128 Chlorophyta - - - blades - fil green algae -
128 Phaeophyta - - - blades - fil brown algae -

Smith, p.71; 
Gasner 

130 Annelida Polychaeta Onuphis conchylega 10 carnivorous live 1979,p.179 
Gasner 1979, 

predator I scale worm with jawa p.169; 
130 Annelida Polychaeta Lepidonotus squamatus 1 scavenger like in 118 Smith,p.75 
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coarse sand tube 
with crushed worm 

130 Annelida Polychaeta - - 2 - and other empty -
sand tube, round, 

130 Annelida Polychaeta - - 3 - leathery -
130 Annelida Polychaeta - - 1 - v. thin fine grain tube -

Gasner 
1979,p.263; 
Harvey-Clark 

130 Echinodermata O_Qhiuroidea O_Q_hiop_holis aculeata 1 filter with arms small _Q.42 
Bousfield, p. 

small closed, 5mm at 30; Gosner 
130 Mollusca Bivalvia Astarte undata 2 suspensivore widest 1979, p.150 

Gosner 1979, 
p.136; 

130 Mollusca Gastropoda Marga rites costal is 1 grazer Bousfield p.15 
Harvey-Clark, 
p.33; Gosner 

130 Mollusca Gastropoda Acmaea testudinalis 1 grazer tortoise shell lim_Q_et 1979, p.125 
130 Rhizopoda Granuloreticulosea - - few calcareous forams 

Gosner 1979, 
p.45; Sears 

130 Rhodopyta Ptilota serrata trag - with holdfast 2002, p.114 
130 Rhodophyta Rhodoj>_hyceae Lithothamnion S_QQ. _Qatch - small patch on peb. 

recently dead Gosner 1979, 
130 Spermatophyta Zostrea marina 1 - fragment p.52 

noted as mud Gosner 1979, 
131 Annelida Polychaeta Flabelligera affinis 1 deposit dwellers p.194 

large bamboo worms Smith,p.69; 
in mud tubes, lots not Gosner 

131 Annelida Polychaeta Maldane sarsi 7 deposit kept 1971,p.356 
131 Annelida Polychaeta __ - - c.1 - Family Phyllodocidae -- - -- -- ----- - - - - -- - - -
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Gosner 1979, 
131 Arthropoda Crustacea - - 1 scavenger pink amphipod _Qiate 52 

Smith, p.189; 
Gosner 1979, 

131 Echinodermata Ophiuroidea Ophiura robusta 13 carnivore p.264 
Gosner 
1979,p.263; 
Harvey-Clark 

131 Echinodermata Ophiuroidea Ophiopholis aculeata 11 filters with arms p.42 
Bousfield,p.37; 

suspensivore/ Gosner 1979, 
131 Mollusca Bivalvia Macoma calcarea 8 detritivore p.158 

Gosner 1979, 
p.45; Sears 

131 Rhodophyta Florideophyceae Ptilota serrata mat - 2002, p.114 

Bousfield, p. 37; 
suspensivore/ Gosner 1979, 

132 Mollusca Bivalvia Macoma calcarea 4 detritivore p.158 

large bamboo worms Smith,p.69; 
in mud tubes, lots not Gosner 

132 Annelida Polychaeta Maldane sarsi 5 deposit kept 1971,Q.356 
"in areas of current 
on rock and Smithpp189; 

filter with sand/mud Gosner 1979 
132 Echinodermata Holothuroidea Cucumaria frondosa 1 tentacles bottoms"hc39 p.254 

Bousfield,p.37; 
suspensivore/ Gosner 1979, 

133 Mollusca Bivalvia Macoma calcarea 5 detritivore not all kept p.158 
Smith,p.69; 
Gosner 

133 Annelida Polychaeta Maldane sarsi 5 deposit not all kept 1971,p.356 

209 



Smith, p.189; 
Gasner 1979, 

133 Echinodermata Ophiuroidea Ophiura robusta 3 carnivore p.264 

Smith,p.69; 
11-25.5cms, not all in Gasner 

134 Annelida Polychaeta Maldane sarsi 5 deposit grab kept 1971,p.356 
v.large, Scm tube, Gasner 1979 
curved, in good p.191 , Harvey-

134 Annelida Polychaeta Pectin aria granulata 1 filter with setae sha_pe Clarkj>_28 

surface feeding 
134 Annelida Polychaeta Chaetozone setosa 1 detritivore Smith,J>. 70 

Smith, p.189; 
Gasner 1979, 

134 Echinodermata Ophiuroidea Ophiura spp. 1 carnivore? arm combs p.264 
Bousfield,p.35; 
Gasner 1979, 

134 Mollusca Bivalvia Hiatella arctica 3 suspension live p.158 

1 frag. Radially 
134 Mollusca Bivalvia - - 1 ribbed clam, white -

Bousfield,p.37; 
suspensivore/ Gasner 1979, 

134 Mollusca Bivalvia Macoma calcarea 5 detritivore p.158 

Smith,p.69; 
Gasner 

135 Annelida Polychaeta Maldane sarsi many deposit not all collected 1971,p.356 
Gasner 1979 
p.191, Harvey-

135 Annelida Polychaeta Pectinaria _granulata 2 filter with setae Clark p28 

135 Annelida Polychaeta - - 2 - white polychaetes -
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"in areas of current 
I 

on rock and Smithpp189; 
filter with sand/mud Gosner1979 

135 Echinodermata Holothuroidea Cucumaria frondosa 5 tentacles bottoms"hc39 p.254 
Bousfield,p.37; 

suspensivore/ Gasner 1979, 
135 Mollusca Bivalvia Macoma calcarea 3 detritivore very big p.158 

Bousfield,p.35; 
Gasner 1979, 

135 Mollusca Bivalvia Hiatella arctica 1 sus_pension p.158 
large thin shelled 

135 Mollusca Bivalvia - - 1 - clam -

A -. -·· dix C: BiotaS ---- led bv Vid --
Feeding 

Sam_ple # Ph_}llum Class Genus S~»_ecies Mode Comments ID Refs. 
Gasner 1979, 
p.195; Bousfield 

ROVA Annelida Polychaeta Spirorbis borealis filter few on algae p.44 

Gosner, 1979; 
predator p.245; Harvey-

ROVA Arthropoda Crustacea Hyas coarctatus /scavenger 1 on colander kelp Clark,p.47 

piscivore/ 
ROVA Chordata Actinopterygii Gadus sp. invertevore Harvey-Clark, _Q.56 

predator eats worms, crabs, 
ROVA Chordata Actin~e_ryg_ii M_y_oxocej>halus SCOrQiUS /scavenger fish Harvey-Ciark,p.55 
ROVA Cnidaria Anthozoa Metridium senile Predator frilled anemone Harvey-Ciark,p.19 

Smith, p.189; 
ROVA Echinodermata Asteroidea Asterias vulgaris Predator Harvey-Clark, p.40 
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Predator/ 
ROVA Echinodermata Asteroidea Henricia sanguinolenta particles blood star Gasner 1979, P~261 

noted as an active 
predator in rocky Harvey-Clark, p.41 ; 

ROVA Echinodermata Asteroidea So laster endeca predator habitats Gasner 1979, p.260 
Gasner 1979, 
p.258; Harvey-

ROVA Echinodermata Echinoidea Echinarachnius parma deposit Clark, p.40 

omnivorous Smith, p.188, 
ROVA Echinodermata Echinoidea Strongylocentroyus droebachiensis grazer Harvey-Ciark,p.40 

ROVA Echinodermata Ophiuroidea - - - -
Bousfield ,p.35; 

ROVA Mollusca Bivalvia Hiatella arctica suspension live Gasner 1979, p.158 

ROVA Mollusca Bivalvia Chlamvs islandicus filter Smith, p.147 

sea colander, 
ROVA Phaeophyta Phaeophyceae Agarum cribrosum - perennial Gosner 1979, p.34 

Harvey-Clark, p.13; 
ROVA Rhodophyta Florideophyceae Lithothamnion sp. - rhodoliths Sears, p.1 05 

Gasner 1979, p.45; 
ROVA Rhodophyt_a Florideophyceae Ptilota serrata - perennial Sears 2002, p.114 

ROVA Rhodophyta Florideophyceae - - - red algae -
filter with Gasner 1979 p.191, 

ROVB Annelida Polvchaeta Pectinaria granulata setae tube on vidoe on mud Harvey-Clark p28 

1 , "antler like" on a 
ROVB Bryozoa Gymnolaemata ldmonea atlantica suspensivore cobble Gasner 1979, p.114 

predator I longhorn sculpin, has 
ROVB Chordata Actinopterygii Myoxocephalus octodecemspinosus scavenger bars Harvey-Clark, p.56 

Harvey-Clark, p.20; 
ROVB Cnidaria Anthozoa? Ceria nth us borealis Predator Gasner 1979, p.98 

purple urchin, short 
ROVB Echinodermata Echinoidea - - - spins -
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ROVB Echinodermata 

ROVB Mollusca 

piscivore/ 
ROVD Chordata Actinopterygii Gadus sp. invertevore 14 Harvey-Clark, p.56 

1 under ledge. eats 
amphipods, fish, small 

ROVD Chordata Actinopterygii Sebastes fasciatus predator inverts. Harvey-Clark, p.58 

ROVD Cnidaria Anthozoa Metridium senile Predator Harvey-Ciark,p.19 

eats small fish and Harvey-Clark, p.20; 
ROVD Cnidaria Anthozoa Tealla felia predator invertebrates Gosner 1979, p.96 

ROVD Cnidaria Hydrozoa - - - hydroids -
Harvey-Clark, p.41; 

ROVD Echinodermata Asteroidea So laster endeca predator Gosner 1979, p.260 

omnivorous Smith, p.188, 
ROVD Echinodermata Echinoidea Strongvlocentrovus droebachiensis grazer Harvev-Ciark,p.40 

ROVD Echinodermata Echinoidea Purple urchin grazer -
ROVD Echinodermata Ophiuroidea - - - -

Harvey-clark, p.16; 
ROVD Porifera Halichondria panicea filter encrusting rock Gosner 1979, p.67 

Harvey-Clark, p.13; 
ROVD Rhodophyta Florideophyceae Lithothamnion sp. - Sears, p.1 05 

ascidian sea squirt, Harvey-Clark, p.49; 
ROVE Chordata Ascidiacea Halocvnthia pyriformis filter "sea peach" Gosner 1979, p.271 

Harvey-Clark, p.20; 
ROVE Cnidaria Anthozoa Tealla felia predator may live 20 years Gosner 1979, p.96 

ROVE Cnidaria Anthozoa Metridium senile predator Harvey-Clark, p.19 

Smith, p.189; 
ROVE Echinodermata Asteroidea Asterias vulgaris predator Harvey-Clark, p.40 

Harvey-Clark, p.41; 
ROVE Echinodermata Asteroidea So laster endeca predator Gosner 1979, p.260 
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omnivorous Smith, p.188, 
ROVE Echinodermata Echinoidea Strongylocentrovus droebachiensis grazer Harvev-Ciark,p.40 

Harvey-Clark, p. 13; 
ROVE Rhodophyta Rhodophyceae Lithothamnion sp. - Sears, p.1 05 

Gosner, 1979; 
Predator I p.245; Harvey-

Practice Arthropoda Crustacea Hyas coarctatus scavenger Clark,p.47 

Practice Cnidaria Anthozoa Metridium senile predator Harvey-Ciark,p.19 

Smith, p.189; 
Practice Echinodermata Asteroidea Asterias vulaaris predator Harvey-Clark, p.40 

Harvey-Clark, p.41; 
Practice Echinodermata Asteroidea So laster endeca predator Gosner 1979, p.260 

omnivorous Smith, p.188, 
Practice Echinodermata Echinoidea Strongylocentroyus droebachiensis grazer Harvey-Ciark,p.40 

Practice Chlorophyta - - - - green alaae -
Practice Phaeophyta Phaeo_Q_hyceae A_g_arum cribrosum - Gosner 1979, p.34 

Harvey-Clark, p.13; 
Practice Rhodophyta Rhodophyceae Lithothamnion sp. - Sears, p.1 05 

winter flounder - eats 
MtStamford worms, molluscs and 
1 Chordata Pseudopleuronectes american us Qredator crustaceans Harvey-Clark, p.54 

Mt.Stamford 
1 Cnidaria Anthozoa Metridium senile predator Harvey-Ciark,p.19 

Mt.Stamford Smith, p.189; 
1 Echinodermata Asteroidea Asterias vulgaris predator Harvey-Clark, p.40 

Gosner 1979, 
Mt.Stamford p.258; Harvey-
1 Echinodermata Echinoidea Echinarachnius parma deposit Clark,_j).40 

MtStamford 
1 Mollusca Bivalvia Ens is directus - fragments Harvey-Ciark,p.31 
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Mt.Stamford 
1 Chlorophyta - - - - green algae -
Mt.Stamford Harvey-Clark, p.14; 
1 Phaeophyta Phaeophyceae Desmerestia spp. - Gosner 1979, p.31 

Dive4 Chordata Pseudopleuronectes americanus predator Harvey-Clark, p.54 

Smith, p.189; 
Dive4 Echinodermata Asteroidea Asterias vulgaris predator Harvey-Clark, p.40 

Gosner 1979, 
p.258; Harvey-

Dive4 Echinodermata Echinoidea Echinarachnius parma deposit Clark, p.40 

Dive4 Mollusca Bivalvia Ensis directus - fragments Harvey-Ciark,p.31 

Dive4 Chlorophyta - - - - Green algae 

Harvey-Clark, p.12; 
Dive4 Phaeophyta Phaeophyceae Laminaria spp. - Gosner 1979, p.34 

Dive 3 Chordata Pseudopleuronectes american us predator Harvey-Clark, p.54 
Gosner 1979, 
p.258; Harvey-

Dive3 Echinodermata Echinoidea Echinarachnius parma deposit Clark, p.40 

omnivorous just tests and Smith, p.188, 
Dive3 Echinodermata Echinoidea Stron~:wlocentroyus droebachiensis grazer fragments Harvev-Ciark,p.40 

Dive3 Mollusca Bivalvia - - - clam fragments -
Dive3 Chlorophyta - - - green algae -

Harvey-Clark, p.12; 
Dive 3 PhaeophY!_a Phaeo_phy_ceae Lamina ria sp_. - _Q_erennial Gosner 1979, p.34 

Dive6 Cnidaria Anthozoa Metridium senile predator Harvey-Ciark,p.19 

Smith, p.189; 
Dive6 Echinodermata Asteroidea Asterias vulgaris predator Harvey-Clark, p.40 

omnivorous Smith, p.188, 
Dive 6 Echinodermata Echinoidea Strongylocentroyus droebachiensis grazer Harvey-Ciark,p.40 
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DiveS Mollusca Bivalvia Ensis directus - fragments Harve_y-Ciark.Q-31 

DiveS Chlorophyta - - - green algae -
Harvey-Clark, p.12; 

DiveS Phaeophyta Phaeophyceae Lamina ria spp. - Gosner 1979, p.34 

Harvey-Clark, p.13; 
DiveS Phaeophyta Phaeophyceae Chorda filum - summer annual Gosner 1979, p.33 

DiveS Chordata Actinopterygii Tautoglabrus adspersus Harvey-Clark, p.55 

DiveS Chordata PseudoQieuronectes american us predator Harvey-Clark, p.54 

DiveS Cnidaria Anthozoa Metridium senile predator Harvey-Ciark,p_. 19 

Smith, p.189; 
DiveS Echinodermata Asteroidea Asterias vulgaris predator Harvey-Clark, p.40 

Gosner 1979, 
p.258; Harvey-

DiveS Echinodermata Echinoidea Echinarachnius _Q_arma dE!!>_OSit Clark,_Q-40 

omnivorous Smith, p.188, 
DiveS Echinodermata Echinoidea Strongylocentroyus droebachiensis grazer Harvey-Ciark,p.40 

Dives Mollusca Bivalvia En sis directus fragments Harvey-Clark, p.31 

DiveS Chlorophyta - - - - green alg_ae -
Harvey-Clark, p.12; 

DiveS Phaeophyta Phaeophyceae Laminaria sp. - Gosner 1979, p.34 

Harvey-Clark, p.13; 
DiveS Phaeophyta Phaeophyceae Chorda filum - Gosner 1979, p.33 

Buckley 
Point 1 Chordata Actinopterygii Tautoglabrus adspersus 

Buckley 
Point 1 Chordata Pseudopleuronectes american us predator Harvey-Clark, p.54 

Buckley predator 
Point 1 Chordata Myoxocephalus scorpius /scavenger Harvey-Ciark,p.55 

Buckley 
Point 1 

--
Cnidaria ___ ~thozoa __ Metridium senile predator 

--L__ ---- ---
Harvey-Ciark,p.19 

-----
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Buckley Smith, p.189; 
Point 1 Echinodermata Asteroidea Asterias vulgaris predator Harvey-Clark, p.40 

Gosner 1979, 
Buckley p.258; Harvey-
Point 1 Echinodermata Echinoidea Echinarachnius parma de_posit Clark,j>.40 

Buckley omnivorous Smith, p.188, 
Point 1 Echinodermata Echinoidea Strongylocentroyus droebachiensis grazer Harvey-Ciark,p.40 

Buckley 
Point 1 Chlorophyta - - - green algae -
Buckley Harvey-Clark, p.12; 
Point 1 Phaeophyta Phaeophyceae Laminaria sp. - Gosner 1979, p.34 

Buckley Harvey-Clark, p.13; 
Point 1 Rhodophyta Rhodo_phyceae Lithothamnion _glaciale Sears, p.1 05 

Buckley 
Point 2 Chordata Actinopterygii Tautoglabrus adspersus 

Buckley predator 
Point 2 Chordata Actino_pte_rygii M_y_oxocej>_halus scorpius /scavenger Harvey-Ciark,p.55 

Buckley 
Point 2 Chordata Pseudopleuronectes american us predator Harve~Ciark, p.54 

Buckley 
Point 2 Cnidaria Anthozoa Metridium senile predator Harvey-Ciark,p.19 

Buckley omnivorous Smith, p.188, 
Point2 Echinodermata Echinoidea Strongylocentroyus droebachiensis grazer Harvey-Ciark,p.40 

Buckley 
Point2 Mollusca 

Buckley 
Point 2 Chlorophyta - - - green algae -
Buckley Harvey-Clark, p.12; 
Point2 Phaeophyta Phaeophyceae Laminaria sp. - Gosner 1979, p.34 

Buckley 4 shoots of live 
Point2 Spermatophyta Zostera marina eelgrass 
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Buckley 
Point 3 Chordata Pseudopleuronectes american us predator Harvey-Clark, p.54 

Buckley 
Point 3 Cnidaria Anthozoa Metridium senile predator Harvey-Clark, p.19 

Buckley Smith, p.189; 
Point 3 Echinodermata Asteroidea Asterias vulgaris predator Harvey-Clark, p.40 

Gosner 1979, 
Buckley p.258; Harvey-
Point 3 Echinodermata Echinoidea Echinarachnius parma deposit Clark,p_.40 

Buckley 
Point 3 Chlorophyta - - - green algae -
Buckley Harvey-Clark, p.12; 
Point 3 Phaeophyta Phaeophyceae Lamina ria sp. - Gosner 1979, p.34 

Buckley Harvey-Clark, p.13; 
Point 3 Phaeophyta Chorda filum - smooth cord weed Gosner 1979, p.33 

Smith, p.189; 
Drop 15 Echinodermata Asteroidea Asterias vulgaris predator Harvey-Clark, p.40 

Harvey-Clark, p.41; 
Drop 15 Echinodermata Asteroidea Sol aster endeca predator Gosner 1979, p.260 

omnivorous Smith, p.188, 
Drop 15 Echinodermata Echinoidea Stron~vlocentrovus droebachiensis grazer live and dead tests Harvev-Ciark,p.40 

Shell fragments-
Drop 15 Mollusca Bivalvia - - - clam, scallop -
Drop 15 Mollusca Chlamys islandicus filter Smith, p.147 

Drop_15 Phaeophyta Phaeophyceae Agarum cribrosum - Gosner 1979, p.34 

Harvey-Clark, p.13; 
Drop 15 Rhodophyta Florideophyceae Lithothamnion glaciale - Sears, p.1 05 

Echinodermata I Asteroidea Asterias redator 
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Harvey-Clark, p.41; 
Drop 20 Echinodermata Asteroidea So laster endeca predator Gosner 1979, p.260 

omnivorous Smith, p.188, 
Drop 20 Echinodermata Echinoidea Strongylocentroyus droebachiensis grazer Harvey-Ciark,p.40 
Drop 20 Mollusca Bivalvia Chlamys islandicus filter Smith, p.147 

Harvey-Clark, p.14; 
Drop 20 Phaeophyta Phaeophyceae Desmerestia spp. - Gosner 1979, p.31 
Drop 20 Phaeophyta Phaeophyceae Agarum cribrosum Gosner 1979, p.34 

Harvey-Clark, p.13; 
Drop 20 Rhodophyta Florideophyceae Lithothamnion glaciale Sears, p.1 05 

Drop 22 Arthropoda Crustacea Cancer irroratus 

piscivore/ 
Drop 22 Chordata Actinopterygii Gadus sp. invertevore Harvey-Clark, p.56 
Drop 22 Cnidaria Anthozoa Metridium senile predator Harvey-Ciark,p.19 

Smith, p.189; 
Drop 22 Echinodermata Asteroidea Asterias vulgaris predator Harvey-Clark, p.40 

omnivorous Smith, p.188, 
Drop 22 Echinodermata Echinoidea Strongylocentroyus droebachiensis grazer Harvev-Ciark,p.40 
Drop 22 Echinodermata Ophiuroidea - - - -
Drop 22 Mollusca Bivalvia Chlamys islandicus filter Smith, p.147 

Shell fragmensts -
Drop 22 Mollusca Bivalvia - - - clam -

surface Pelican's foot - sandy 
Drop 22 Mollusca Gastropoda Aporrhais occidentalis detritivore burrower Harvey_-Ciark, p.35 

Harvey-Clark, p.13; 
Drop 22 Rhodophyta Florideophyceae Lithothamnion sp. - Sears, p.1 05 

- ---

piscivore/ 
Drop 25 Chordata Actinopterygii Gadus sp. invertevore Harvev-Ciark, p.56 
Droo 25 Chordata Pseudopleuronectes american us predator Harvey-Clark, p.54 
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Smith, p.189; 
Drop 25 Echinodermata Asteroidea Asterias vulgaris predator Harv~Ciark, p.40 

Harvey-Clark, p.41; 
Drop 25 Echinodermata Asteroidea So laster endeca Qredator Gasner 1979, p.260 

omnivorous Smith, p.188, 
Drop 25 Echinodermata Echinoidea Strongylocentroyus droebachiensis grazer Harvey-Ciark,p.40 

Harvey-Clark, p.32; 
Drop 25 Mollusca Bivalvia Clinocardium ciliatum suspensivore? Bousfield, p.53 

fragments - possibly 
Drop 25 Mollusca Bivalvia - - - quahog? -

omnivore I 
Drop 25 Mollusca 

--
Gastropoda Col us 

----
stimpsoni scavenger Harvey-Clark, p.35 

piscivore/ 
Drop 26 Chordata Actinopterygii Gadus sp. invertevore Harvey-Clark, p.56 

Drop 26 Cnidaria Anthozoa Metridium senile predator Harvey-Clark, p.19 

Smith, p.189; 
Drop 26 Echinodermata Asteroidea Asterias vulgaris predator Harvey-Clark, p.40 

Harvey-Clark, p.41; 
Drop 26 Echinodermata Asteroidea So laster endeca predator Gasner 1979, p.260 

omnivorous Smith, p.188, 
Drop 26 Echinodermata Echinoidea Strongylocentroyus droebachiensis grazer Harvey-Ciark,p.40 

Drop 26 Mollusca Bivalvia Mytilus edulis filter 

Drop 26 Phaeophyta Phaeophyceae Agarum cribrosum - Gasner 1979, p.34 

Harvey-Clark, p.13; 
Drop26_ Rhodop~ Florideophyceae Lithothamnion sp. - Sears, p.1 05 

piscivore/ 
Drop 126 Chordata Actinopterygii Gadus sp. invertevore Harvey-Clark, p.56 

predator 
Drop 126 Chordata Actinopterygii Myoxocephalus scorpius /scavenger Harvey-Ciark,p.55 

Drop 126 Cnidaria Anthozoa Metridium 
-

senile 
-

predator 
--- -

Harvey-Clark, p.19 
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Drop 126 Echinodermata Asteroidea Asterias vulgaris predator 
Smith, p.189; I 

Harvey-Clark, p.40 
Gosner 1979, 
p.258; Harvey-

Drop 126 Echinodermata Echinoidea Echinarachnius parma deposit Clark, p.40 

shell fragments on 
Drop 126 Mollusca Bivalvia En sis directus - sand Harvey-Ciark,p.31 

Harvey-Clark, p.14; 
Drop 126 Phaeophyta Phaeophyceae Desmerestia spp. - Gosner 1979, p.31 

Drop 126 Phaeophyta Phaeophyceae Agarum cribrosum - Gosner 1979, p.34 

Harvey-Clark, p. 12; 
Drop 126 Phaeophyta Phaeophyceae Laminaria sp. - Gosner 1979,_Q.34 

dead blades and 
Dro~126 Sj>ermatojl_hyta Zostera marina - fragments Gosner 1979, p.52 

Gosner 1979, 
p.195; Bousfield 

Drop_13 Annelida Polvchaeta S_Qirorbis borealis filter few p.44 

piscivore/ 
Drop 13 Chordata Actinopterygii Gadus morhua? invertevore Harvey-Clark, p.56 

Drop 13 Cnidaria Anthozoa Metridium senile predator Harvey-CiarkJ>. 19 

Smith, p.189; 
Oro~>_ 13 Echinodermata Asteroidea Asterias vulgaris _predator Harvey-Clark, p.40 

Harvey-Clark, p.41; 
Drop 13 Echinodermata Asteroidea So laster endeca predator Gosner 1979, p.260 

Gosner 1979, 
p.258; Harvey-

Drop 13 Echinodermata Echinoidea Echinarachnius parma deposit Clark,_Q.40 

omnivorous Smith, p.188, 
Dro~13 Echinodermata Echinoidea Strongylocentrovus droebachiensis grazer Harve_y-Ciark,p.40 

Large shell fragments 
-razor clam, clams, 

Drop~ _M_ollusca __ Bivalvia - - - tests 
- -- -- --- --
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Harvey-Clark, p.14; 
Drop 13 PhaeoQ_hyta Phaeophyceae Desmerestia spp. - Gosner 1979, p.31 
Drop 13 Phaeophyta Phaeophyceae Agarum cribrosum - Gosner 1979, p.34 

Harvey-Clark, p.12; 
Drop 13 Phaeophyta Phaeophyceae Lamina ria sp. - Gosner 1979, p.34 

Gosner 1979, 
p.195; Bousfield 

Drop 12 Annelida Polychaeta Spirorbis borealis filter few p.44 

piscivore/ 
Drop 12 Chordata Actinopterygii Gadus sp. invertevore Harvey-Clark, p.56 

Drop 12 Cnidaria Anthozoa Metridium senile predator Harvey-Ciark,p.19 

Smith, p.189; 
Drop 12 Echinodermata Asteroidea Asterias vulgaris predator Harvey-Clark, p.40 

Predator/ 
Drop 12 Echinodermata Asteroidea Henricia sanguinolenta particles Gosner 1979, p.261 

omnivorous Smith, p.188, 
Drop 12 Echinodermata Echinoidea Strongylocentroyus droebachiensis grazer Harvey-Ciark,p.40 

Drop 12 Phaeophyta Phaeoph~ceae Agarum cribrosum - Gosner 1979, p.34 

Harvey-Clark, p.13; 
Drop 12 Rhodophyta Florideophyceae Lithothamnion sp. - Sears, p.1 05 

Gosner 1979, 
p.195; Bousfield 

Drop 11 Annelida Polychaeta Spirorbis borealis filter few p.44 

Gosner, 1979; 
Predator I p.245; Harvey-

Drop 11 Arthropoda Crustacea Hyas coarctatus scavenger Clark,p.47 

piscivore/ 
Drop 11 Chordata Actinopterygii Gadus sp. invertevore Harvey-Clark, p.56 

Drop 11 Cnidaria Anthozoa Metridium senile predator Harvey-Clark, p. 19 

222 



Smith, p.189; 
Drop 11 Echinodermata Asteroidea Asterias vulgaris predator Harvey-Clark, p.40 

Predator/ 
Drop 11 Echinodermata Asteroidea Henricia sanguinolenta particles Gosner 1979, p.261 

Gosner 1979, 
p.258; Harvey-

Oro~ 11 Echinodermata Echinoidea Echinarachnius parma deposit Clark, p.40 

omnivorous Smith, p.188, 
Drop 11 Echinodermata Echinoidea Strongylocentrovus droebachiensis _grazer Harvey_-Ciark,p.40 

Drop 11 Mollusca Bivavlia Mytilus edulis filter Harvey-Clark, p.29 

Drop 11 Mollusca Bivavlia Chlamvs islandicus filter Smith, p.147 

Drop 11 Phaeophyta Phaeophyceae Agarum cribrosum - Gosner 1979, p.34 

Harvey-Clark, p.13; 
Drop 11 Rhodophyta Florideophyceae Lithothamnion sp. - Sears, p.1 05 

Gosner 1979, p.45; 
Drop 11 Rhodophyta Florideophyceae Ptilota serrata - Sears 2002, p.114 

predator 
Drop 10 Chordata Actinopterygii Myoxocephalus scorpius /scavenger Harvey-Clark, p.55 

Drop 10 Cnidaria Anthozoa Metridium senile predator Harvey-Clark, p.19 

Smith, p.189; 
Drop_10 Echinodermata Asteroidea Asterias vuiQaris predator Harvey-Clark, p.40 

Predator/ 
Drop 10 Echinodermata Asteroidea Henricia sanguinolenta _particles Gosner 1979, p.261 

omnivorous Smith, p.188, 
Drop 10 Echinodermata Echinoidea Strongylocentroyus droebachiensis grazer Harvey-Ciark,p.40 

Drop 10 Mollusca Bivalvia Mytilus edulis filter Harvey-Ctark,p.29 

Drop 10 Mollusca Bivalvia - - - fragments -
Drop 10 Phaeophyta Phaeophyceae Agarum cribrosum - Gosner 1979, p.34 

Harvey-Clark, p.13; 
Drop 10 Rhodophyta F lorideophyceae Lithothamnion sp. - Sears, p.1 05 
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piscivore/ 
Drop 9 Chordata Actinopterygii Gadus sp. invertevore Harve}'-Ciark, p.56 
Drop 9 Cnidaria Anthozoa Metridium senile _predator Harvey-Ciark,p.19 

Smith, p.189; 
Drop 9 Echinodermata Asteroidea Asterias vulgaris predator Harvey-Clark, p.40 

Harvey-Clark, p.41 ; 
Drop 9 Echinodermata Asteroidea Solaster endeca predator Gosner 1979, p.260 

omnivorous Smith, p.188, 
Drop 9 Echinodermata Echinoidea Strongylocentroyus droebachiensis grazer Harvey-Ciark,p.40 
Drop 9 Mollusca Bivalvia - - - fragments -
Drop 9 Phaeophyta Phaeophyceae Agarum cribrosum - Gosner 1979, p.34 

Harvey-Clark, p.13; 
Drop 9 Rhodophyta Florideophyceae Lithothamnion sp. - Sears, p.105 

Gosner 1979, p.45; 
Drop 9 Rhodophyta Florideophyceae Ptilota serrata - Sears 2002, p.114 _ 

piscivore/ 
Drop 8 Chordata Actinopterygii Gadus sp. invertevore Harvey-Clark, p.56 

Harvey-Clark, p.20; 
Drop 8 Cnidaria Anthozoa Ceria nth us borealis predator Gosner 1979, p.98 

Smith, p.189; 
Drop 8 Echinodermata Asteroidea Asterias vulgaris _predator Harvey-Clark, p.40 

omnivorous Smith, p.188, 
Drop 8 Echinodermata Echinoidea StroQgylocentro_yus droebachiensis grazer Harvey-Ciark,p.40 

Drop 8 Echinodermata Ophiuroidea - - - -
Gosner 1979, p.45; 

Drop 8 Rhodophyta Florideophyceae Ptilota serrata - Sears_£00~.1 Y _ 
---~----

Gosner 1979, 
p.195; Bousfield 

Drop 7 Annelida Polychaeta Spirorbis borealis 
-- '-filter ~- _ - - - - - p~4 - - -
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piscivore/ 
Drop 7 Chordata Actinopterygii Gadus sp. invertevore Harvey-Clark, p.56 

Smith, p.189; 
Drop 7 Echinodermata Asteroidea Asterias vulgaris Predator Harvey-Clark, p.40 

Predator/ 
Drop7 Echinodermata Asteroidea Henricia sanguinolenta particles Gasner 1979, p.261 

Gasner 1979, 
p.258; Harvey-

Drop 7 Echinodermata Echinoidea Echinarachnius parma deposit Clark, p.40 

Harvey-Clark, p.14; 
Drop 7 Phaeophyta Phaeophyceae Desmerestia spp. - Gasner 1979, p.31 

Harvey-Clark, p. 12; 
Drop 7 Phaeophyta Phaeophyceae Laminaria sp. - Gasner 1979, p.34 

Drop 6 Annelida Polychaeta? - - - branched tubes -
Smith,p.69; Gasner 

Drop 6 Annelida Polychaeta Maldane sarsi deposit 1971 ,p.356 

Drop 5 Annelida Polychaeta? - - - branched tubes -
Smith,p.69; Gasner 

Drop 5 Annelida Polychaeta Maldane sarsi deposit 
--

1971J)_.356 
~---

filter with Gasner 1979 p.191, 
Drop 4 Annelida Polychaeta Pectinaria granulata setae 2 Harvey-Clark p28 

Smith,p.69; Gasner 
Drop 4 Annelida Polychaeta Maldane sarsi deposit several 1971 ,p.356 

Round opening burrow 
Drop 4 Annelida? Polvchaeta? - - - /tube -
Drop 4 Echinodermata Ophiuroidea - - - -

Bivalve shell 
Drop4 Mollusca Bivalvia - - - fragments -
Drop4 Mollusca Gastropoda - - - Whorled snail shell -
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Gosner, 1979; 
Predator I p.245; Harvey-

Cliff Arthropoda Crustacea Hyas coarctatus scaveng_er 1 Clark£.4 7 

Cliff Cnidaria Anthozoa Metridium senile _predator Harv~Ciark,Q. 19 

Smith, p.189; 
Cliff Echinodermata Asteroidea Asterias vulgaris predator Harvey-Clark, p.40 

omnivorous Smith, p.188, 
Cliff Echinodermata Echinoidea Strongylocentroyus droebachiensis grazer Harvey-Ciark,p.40 

Cliff Echinodermata OQ_hiuroidea - - - few -
Harvey-Clark, p.13; 

Cliff Rhodophyta Rhodophyceae Lithothamnion sp. - Sears, p.1 05 
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A endix D: Conductivi , Tem erature and De th Ran es for Newman Sound 
Original iDepth ; ' 

Station :station Date Range Temperature :Salinity Range ! 
Number i Number (d/m/y) · (m) :Range (0Q , {%a) 

1 ;Q??~BQQ?_ [19§.19.7 :q ~_26 __ . !-0.498 -_6J~! l~J ,.2~~:: ?~A1ey_ : 
2 ---~~ggqo1 2117196 ..... :9-49_ L1::4~Q-~._349 }L~23_-_:g_2!)~_. 
3 15003003 1718/92 0- 32 ,-00257- 10019 :300996- 32..442 
4 :l5Qg3oos __ 1718/92 :Q -:4-2 ·_;-Us9 ~-1o,_1§5 l~L9It ~)ts_2~-" 
5 150030()~ 1718/92 '0 ~-4_1 . : -1J)~ : 1 ()}~ - _)9-.~~1 - _3_2_0§9.~- ' 
6 o]~QQ3()11 __ _17~~~--- :0-.!L :-Lll!i-_1_QA!.6 __ )() 0 9~4.-:~2-"~L ... 
7 1_5()()301 ~ 1! 18~2_ ___ :Q- 3L_ ;-lo?2:4 -_1 Q,7_47_ __ j_~Oo_~~ ~- 32,6_64 . 
8 15003017 1718/92 '0- 67 i-00561 - 100134 i310018- 32.456 . 
9 )_S~Q3()1~ ~E18/92_ 00 -}2. Hl.$Qt:~o~i .. ·;~!f~$8 __ -}~ 0-4_~_1: 0 
10 :15003021 1718/92 o- 74 :.o.555- 100365 :300950- 320402 ; 
11 -__ - _ol$~i:l1?o2\ 

0

2o.i9~~
0 

•• _:()_=~3a·· i11~6oso-'1i959°-I3.o~572°~-3o.'724 ° 

12 i03248002 26/9/95 0 - 56 :-00924 - 7 0169 !300371 - 320295 : 
14 ° ~a3272oo2 10/10/97 ·o- 3o '1o:s3f ~ io)33 T3a0°s91°-'3ooa36 ; 
15 'o326ooo2 1111ol96 :o-:s1 2.m6--foo181 j()~143 --32::213 ° 
1s ·· o326ooo1 1111o!96- o- 48 :3°0482- foo12f t3oo271-3ioss· : 
11 - o324so03 · ·26/H)/95 oo ~41 :.aoa66- 7: 1oo !3oo5o4 :

0

3i327 ° 
18 · 

00 

• - ~if32~8oo1' ·:2slj(ji9~ .o = 4~ jfo8i~-?o}o1 )Q~4~Q-)~)Jf : 
19 :03284003 11/11/98 0- 45 :40584- 60429 i300823- 310696 
20 o3284oo4 ,9if1198. ·o- 14 :5:880~ 6.396 f3o~79s--3f152 · 
21 . ;()3284005 '1()111/98 0-17 '6of31-6:396 [3Qo946-3f174 i 

22 _ 0 (j3_261i)Q~.o ,?~!F/9§~ ·_ :Q :4~- •3°~.?~=4)_67 -~~- _ . . . _ •·-
23 03389007 28/11101 0 - 49 :40212 - 4046 :~1 :~5Q_~ ~1-0~7<5 .. 
24 ·o33s9oo6 2a11110f - ·a -'3i :3~958~ 4~5if !310177 - 310522 • 
25 ·"'a350so2i ·111'2!03--- :o~Y1 · ·ao'isi-'4~355- ·l3f1s5·:.--32.3i2. 

0 

2s ···- -,tt~4~s~?i ,211~/02= - .!9 j~•- :i4?~~3~o~~ J~I21.2::~~09~5 • 
27 .03296029 5/12/99 0- 48 :0.577-3.235 !30.480- 320228 
28 :1ofs4o87 · .15/1/95 :o = 77 · r~o.755-~ oo-643 · ···· f31 :sao : .. 32-.-,ai 
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21:40 -53.92719 :48.57789 51.4 
21 :45 ···· '-53.93456 "48.574o5 ·4s.2 

> > -- < - ••• , ·---~--.' ~ ----- • --

21:50 -53.94184 48.57019 45.6 
21 :55 ~53:94773 .48.56549 42' . -- ___ _, -··---

22:30 -53.95155 48.56035 35.3 
22:52 -53.94254 48.5705 46.2 
23:01 -53.93041 .4Ef5i53 ·4a.s ___ , ___ - -----~ - ---

23:05 ·-53.92215 48.57584 49 
-- -- -

01:10:30 -53.758 48.61362 308.2 - --- - .. - -- -- ... 
01:15 ·-53.75656 48.61888 307.9 
19:05 ·-~~-653~- . 4~. S.~s9i 3o8~ 
19:10:15 -53.67143 48.63696 306.2 
19:15:30 -53.70456 48.62491 303.7 

•-. . -- - ···----· 

19:30:20 :-53.70456 48.62491 314.3 
- ·-- -- '- ----- -

20:00 -53.76089 48.61479 307.8 
_2Q~) ~ . :-5?:7-zs~3 :~~:~9~~§ )o1:·.3 . 
20:17 -53.79141 48.60611 ;289.5 
20:20 -53.79683 !48.66464 '286 . 
00:56 -53.77448 !48.60681 295.5 
01 :00 -53.76708 '48.6659.4 199 
01:05 -53.76007 -48~0071.4 151 

- • _,_ > • - , - --~ •••• --- ··- " • -- ,.~ ., • .-

01:44 ·-53.71109 _48.61595 66 
01:55 ,-53.70833 '48.62787 296.3 
02:06 '-53: 70053 4s.633i9 49.8 
- - -- - ·-------· - - . --
02:29:00 -53.6625 48.62584 114.8 .. ------- ---

02:35:15 -53.65902 48.63291 219.2 
------· ~- -- - ---- ·---- ------- ----
02:50 -53.65144 48.65055 82.2 

------- ·••»•• ·-- ·- ·-·· 

02:55 -53.64601 48.64804 256.5 
03:06 -53.62822 _4~-~~~~7.::3 J73 
03:10 -53.62146 48.63695 ,49.7 ---- - ---·---------·------
03:15 -53.6165 48.64108 :186.5 
03:22 :-53.61017 _48.§~79~ .f~6 
03:28 -53.60461 48.65346 109.5 
03:36 -53.597as· ~~~s.G,§}~t As 
03:44 -53.58941 48.65766 102 
19:00 -53.6536 ~48.Ef4b92 :2ii 
20:23 -53.80191 48.60287 .236 
21 :o5 -53.87151 A~:si~H ~~~-_1 
23:40 -53.87367 48.57938 57.3 
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Backscatter :Substrate 
-dB inter retation 

-24.3 • inner basin mud 
··- ------ ·----- --- ~--

·22.7 inner basin mud .. - ---.-- - -·-- ... ----·. 

'-25.1 inner basin mud ---.------ ... ----

·31.9 ·inner basin mud . ----------------- --

-36 . inner basin mud 
-25 ·i-nner lia.sin-mud · 

·- ---- -----------

·19.6 inner basin mud 
:-25 inner basin mud 
-21.4 'mud 
-17.19 mud 
·-15.8 mud 
-15.4 mud 
.-21.3 mud 
-15.8 mud 

--· --------

-21 
-21.7 
-20 
-18.9 
-19.2 
-3.6 
-6.1 
-14.4 
-12.5 
-11.7 
-10.9 
-13.7 
-12.4 
-8 
·-7 
-15.2 
-8 
-10.2 
;-11.2 
·-11 
-5.9 
-8.9 
-6 
'-11.1 
-14.2 

mud 
mud 
mud 
mud 
·bedrock 
bedrock 
bedrock 
·bedrock 
'bedrock 
•bedrock 
•bedrock 
bedrock 
'bedrock 
bedrock 
:~-~~r()ck .. 
·bedrock 
•bedrock 
·--- -~-

·bedrock 
-------- ·- ----

:bedrock 
''bedrock·-
·bedrock 
bedrock 
bedrock 
bedrock 

. bedrock 



Appendix F: Order for overlaying substrate grids to create the substrate map
from top layer (drawn last) to bottom layer (drawn first). 

Fjord mouth map 
1. mud 
2. bedrock 
3. pebble/cobble gravel 
4. boulder gravel 
5. gravelly muddy sand 
6. gravelly sand 
7. sand 

Outer basin map 
1. bedrock 
2. mud 
3. gravelly muddy sand 
4. pebble/cobble gravel 
5. boulder gravel 
6. gravelly sand 
7. sand 

Middle basin map 
1. boulder gravel 
2. pebble/cobble gravel 
3. gravelly sand 
4. gravelly muddy sand 
5. mud 
6. bedrock 
7. sand 

Narrows map 
1. rhodolith 
2. boulder gravel 
3. pebble/cobble gravel 
4. gravelly sand 
5. gravelly muddy sand 
6. sand 
7. mud 
8. bedrock 

Inner basin map 
1. boulder gravel 
2. pebble/cobble gravel 
3. gravelly sand 
4. gravelly muddy sand 
5. mud 
6. sand 
7. bedrock 
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Appendix G: Order for overlaying grids to create the habitat map- from top 
layer (drawn last) to bottom layer (drawn first). 

Fjord mouth map 
1. mud 
2. bedrock 
3. pebble/cobble gravel 
4. boulder gravel 
5. gravelly muddy sand 
6. gravelly sand 
7. deep water sand 

Outer basin map 
1. bedrock 
2. mud 
3. gravelly muddy sand 
4. pebble/cobble gravel 
5. boulder gravel 
6. gravelly sand 
7. deep water sand 

Middle basin map 
1. boulder gravel 
2. pebble/cobble gravel 
3. gravelly sand 
4. gravelly muddy sand 
5. mud 
6. bedrock 
7. deep water sand 

Narrows map 
1. rhodolith 
2. Laminaria kelp covered seabed 
3. boulder gravel 
4. pebble/cobble gravel 
5. gravelly sand 
6. gravelly muddy sand 
7. shallow water sand 
8. mud 
9. bedrock 

Inner basin map 
1. boulder gravel 
2. pebble/cobble gravel 
3. gravelly sand 
4. gravelly muddy sand 
5. mud 
6. shallow water sand 
7. bedrock 

230 








