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Abstract 

An overview of structural equation models is presented along with an ap­

plication to fishery data involving estimation and significance testing of the 

density dependent component of recruitment in 6 cod populations. Estimates 

and standard errors are based on normal theory and large sample properties 

of maximum likelihood estimates . The data sets analyzed involve small sam­

ple sizes so a sensitivity analysis of the effect (in terms of bias) of small 

sample sizes and other deviations in model assumptions is conducted. The 

analysis indicates that sample size is the most influential factor considered 

on the bias of parameter estimates. The reliability of indicator variables is 

also important . 

Two methods of reducing the bias in estimates are considered, they are 

the jackknife and a method based on a Taylor's series expansion of the loglike­

lihood function. The bias reduced estimators are investigated by simulating 

several confirmatory factor models. Neither the jackknife nor the Taylor's 

series biased reduced estimator works sufficiently well to warrant their appli­

cation in practise. Both estimators consistently reduce bias in the maximum 

likelihood estimates only when little bias exists . A difficulty realized in the 

investigation is that the expectations of some estimators are unbounded and 

this makes bias reduction difficult. 
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Chapter 1 

Covariance analysis of 
structural equation models 

1.1 Introduction 

The analysis of covariance with structural equations, also referred to as la­

tent variable analysis, is a relatively new area of research in statistics and is 

popular in econometrics and psychometrics . Structural equation models are 

becoming common analytical tools for studying linear relationships among 

variables. Austin and Wol:fle (1991) present a detailed bibliography of techni­

cal work related to this subjected. Bollen (1989) gives a short history on the 

development of structural equation models and also the essential information 

required to perform such an analysis . The LISREL (Joreskog 1973) formula­

tion of a structural equation model is used here but others are available (e.g. 

Bentler 1989). 

A structural equation model is usually a linear model relating measured 

traits and unmeasurable concepts or latent variables. Bollen (1989) defines 

latent variables as "representations of concepts in measurement models" . 

Common examples are socio-economic status, ambition, IQ, etc. The recruit­

ment or the reproduction of a fish stock is a less abstract measure considered 

in the following chapter. A simple structural equation model might, for ex-
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ample, relate ambition (unobservable) to the variables educational status and 

hours worked per week (observable). Estimation is in terms of the sample 

covariance matrix of the observed variables and the population covanance 

matrix generated by the structural equation model. 

The notation used is first presented before constructing modeling tech­

mques. Notation is consistent with LISREL and otherwise with Bollen's 

(1989) book where possible. Observable and unobservable (latent) scalar 

random variables arc denoted by lower case Roman and Greek letters respec­

tively. Vector and matrix equivalents of the above are in lower and upper 

case boldface. Parameters are denoted the same as latent variables; data and 

other constants have the same notation as observable random variables and 

the distinctions are made clear when confusion exists. 

1.2 Structural equation model 

Structural equation models typically deal only with the analysis of covariance 

structures. Mean effects are removed by analyzing the sample covariance 

matrix, hence, it is assumed that all data considered has been standardized 

by subtracting means (unless otherwise stated). 

A simple example is considered to help fix ideas; it is from part of a 

model of political democracy and industrialization for developing countries 

in Bollen (1989). Consider the variables: 

y1 - freedom of press, 

y 2 - freedom of group opposition, 

x 1 - gross national product per capita, and 

x2 - energy consumption per capita. 
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The x and y variables measure industrialization and political freedom and 

they are measured for many countries. A model relating political freedom 

and industrialization is to be developed. 

Variables in structural equation models are classified as either exogenous 

or endogenous variables. The cause of exogenous variables (similar to inde­

pendent variables in a regression analysis) is not considered in the structural 

equation model while the cause for endogenous variables (similar to depen­

dent variables) is. For the example, if .industrialization is thought to cause 

political freedom in the model then political freedom is an endogenous vari­

able and industrialization is an exogenous variable. Exogenous variables are 

denoted as ~ and endogenous variables are denoted as rt. 

A structural equation model consists of a measurement model and a la­

tent variable model. The measurement model is a relationship between the 

observed and latent variables. The 1neasurement model is the same as a 

confirmatory factor model (as opposed to exploratory factor models, such as 

principal components analysis, which are not considered here). The mea­

surement model for political freedom ( ry1) is: 

Yl = Ay,lTfl + EI, 

Y2 = Ay,2"71 + E2. 

The subscript for rt is not necessary but is included to facilitate generaliza­

tions. The y notation used with the ).. parameters differentiates them from 

similar notation to be developed for exogenous variables. The ).. 's measure 

the strength of the relationship between the observed and latent variable. 

The E's are error terms. The measurement model for industrialization ( 6) 

lS: 

X1 = Ax,16 + 81, 

X2 = Ax,26 + 82. 
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The measurement models are generalized as follows. Let x and y be d1 x 1 

and d2 x 1 vectors of random variables. Then 

X (1.1) 

The vectors 17 and e are latent normal random vector variables with dimen­

sions < dl and d2 . Let .p be the covariance of e. The vectors 8 and E are 

d1 x 1 and d2 x 1 random error vectors in the measurment (or modeling) of x 

and y. These error vectors are assumed to be independent and from a normal 

distribution with covariances e~ and 8 8 respectively. These vectors are also 

assumed to be independent of 17 and e. The matrices A y and A x define the 

linear relationship between the latent variables and the observations. The 

latent variables are sometimes called factors and the coefficients of A y and 

A x are then called factor loadings . 

For the example ( d1 = d2 = 2) 

[ ~::: l ry, + [ :: l 
and 

The structural part of the structural equation model is 

17 = B17 + re + ( (1.2) 

and links the two equations in (1.1). B is a matrix of coefficients defining the 

relationships of the endogenous latent variables on each other. ( is a normal 

random vector of process errors with COVariance tV and is independent of e,E 
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and 8. r is the coefficient (loading) matrix of the effects of e on 'TI · For the 

example, 'T/1 = /1,16 +(I -

The population covariance matrix for y and x (E ) may be partioned as 

E = [ 
L' yy L'yx l 
L'xy L'xx . 

From (1.1 ), 

E yy AyE('TI'TI ')A~ + E> 0 and 

E xx AxPA~ + E>s. 

From (1.2), 'T/ = (I- B )-1re + ( ,so that 

E yy A y(I - B )-1 (T4>T' + w)(I - B )- 1 A~+ E>€, and 

E yx A y(I - B )- 1 TPA~ . 

For the example, if all error terms are independent, then 

I 
V AR(y1 ) COV(yb Yz) COV(yb xi) COV(yi, xz) I 

V AR(y2 ) COV(y2 , xi) COV(yz, x 2 ) 

V AR(x 1 ) COV(x 1 , xz) 
V AR(xz) 

1.3 Estimation 

Ay,I Ay,2 ( 1i,1 </>1,1 + 'I/J1,I) 
A~,2 ( li,l ¢1,1 + '1/JI ,1) + () t,2 

Ay,I Ax,I 11,1 </>1,1 
Ay,z Ax,I 11,1 </>1,1 
A;,1 </>1,1 + Bs,I 

The estimation of .E involves a scalar fit function that measures the discrep­

ancy between the observed variance-covariance matrix (S ) and .E. The fit 

function considered here is based on the maximum likelihood method and 
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is widely used although other functions, such as unweighted and generalized 

least squares (Bollen 1989), are common. The fit function that is minimized 

to produce maximum likelihood estimates when the data are from a multi­

variate normal distribution is: 

log I E I +tr(SE - 1
) -log(l S I)- p, (1.3) 

where tr is the matrix trace and p = d1 + d2 is the dimension of S. (1.3) is 

proportional to the loglikelihood (Appendix B ). If E = S then (1.3) = 0. 

The parameters that minimize (1.3) are found numerically. Lee and Jen­

nrich (1979) give a good description of some common algorithms. SAS's 

(1990) PRO C CALIS (CALIS is an acronym for C ovariance A nalysis and 

Linear S tructural equations) is used here to compute parameter estimates . 

The Quasi-Newton optimizing technique is selected to equate (1.3) to zero 

but other options are left at their default values . 

Standard errors are obtained from the inverse of the information matrix 

(see Appendix B ). The information matrix is proportional to the expected 

value of the second order derivatives of (1.3) . 

The uniqueness of parameter estimates is known as identification and is 

an important consideration in structural equation models. A parameter in 

E is identified if it can be expressed as a function of one or more elements in 

S. A simple example is the relationship var(y) = 81 + 82 . The B parameters 

are not identified; that is, no unique values of el and e2 satisfy the equation 

unless some constraint is imposed (e.g. 81 = 82 ). Let E = E (lJ ) and 8 is 

an unknown vector of free parameters to be estimated. Bollen (1989) gives 

the following definition of identification: "If an unknown parameter in (J 

can be written as a function of one or more elements in E , that parameter 

is identified. If all unknown parameters are identified then the model is 

identified" . Alternatively, let E 0 be the covariance matrix constructed from 
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a e. If a model is identified then for () and (j' 

:E8 = :E9 => e = e. 

The model is unidentified if these definitions do not hold. 

A parameter is overidentified if it can be written as several functions of 

only known sample covariances. If all parameters in a model are identified 

and at least one parameter is overidentified then the model is overidentified, 

otherwise it is exactly identified . A parameter is underidentified if it can not 

be expressed only as a function of some elements in S . If a model has one 

underidentified parameter then no unique solution for the unknown param­

eters exists and the model is unidentified. Bollen (1989) presents necessary 

and/or sufficient conditions for identification. 

In the example, the model is unidentified because there are 11 parameters 

to estimate and only 10 sample covariances. This remains the case no matter 

what the sample size is . Determining model identification does not just 

involve counting parameters; for example, it is possible that one parameter 

is underidentified and others overidentified such that there are more sample 

covariances than unknown parameters; however, the model is unidentified 

because one parameter is underidentified. 

Estimation involves finding values for parameters that best explain the 

data for overidentified models. If a model is just identified then all esti­

mating techniques should give the same results because a unique solution to 

E = S exists . Underidentified models are usually reparameterized or their 

parameters are constrained such that the model is identified. 

1.4 Inference 

Statistical inference, for the most part, involves testing the overall model fit 

(goodness-of-fit) and the fit of model parameters and equations. Virtually 
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all overall fit measures involve functions of S and E C denotes a maximum 

likelihood estimate). These tests gauge the closeness of S and .iJ and have 

the advantage of being able to indicate inadequacies not revealed by ana­

lyzing parameter estimates. Many measures of model fit are purposed in 

the literature (Mulaik et al. 1989 give a review); for example, SAS's (1990) 

PROC CALIS routinely computes: 

1. Fit criterion, 

2. Goodness of Fit Index (GFI), 

3. GFI Adjusted for Degrees of Freedmn (AGFI), 

4. Root Mean Square Residual (RMR), 

5. Chi-square, 

6. Chi-square p-value, 

7. Null Model Chi-square, 

8. Bentler's Comparative Fit Index, 

9. Normal Theory Reweighted LS Chi-square, 

10 . Akaike's Information Criterion, 

11. Consistent Information Criterion, 

12. Schwarz's Bayesian Criterion, 

13. McDonald's (1989) Centrality, 

14. Bentler & Bonett's (1980) Non-normed Index, 

15. Bentler & Bonett's (1980) Normed Index2, 
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16. James, Mulaik, & Brett (1982) Parsimonious Index, 

17. Z-Test of Wilson & Hilferty (1931), 

18. Bollen (1986) Normed Index Rho1, 

19. Bollen (1988) Non-normed Index Delta2, and 

20 . Hoelter's (1983) Critical N. 

Several papers about model fit are presented in Bollen and Long (1993). 

The chi-square statistic is the only measure of fit that can be used for a 

statistical test of significance however, and it is used in the data analysis in 

the next chapter. The distribution of the statistic under the null hypothesis 

E = i; is asymptotically x2 with degrees of freedom = p(p + 1) /2 - t 

and t is the number of free parameters estimated. The chi-square statistic 

is N-1 times (1.3). It can be used to test the null hypothesis verses the 

alternative that E is a symmetrix matrix with p(p + 1) /2 free parameters. 

Wheaton (1987) recommends the chi-square statistic even when used only 

in a descriptive sense, although not uniformly. The adjusted goodness-of-fit 

index (AGFI) for maximum likelihood estimates (Bollen 1989) is also used 

in the next chapter for comparative purposes . 

The AGFI is computed as follows . Let 
A -1 

1 
_ tr[( E S - 1)2

] 

A -1 ) 
tr[( E S)2] 

GFI = then 

AGFI = 1- [p(p + l)][1- GFI]. 
2df 

The AGFI measures the relative amount of variances and covariances in S 

that are predicted by E, adjusted by the degrees of freedom of the model 

relative to the number of variables considered, and is a better index for com­

paring different models . AGFI and GFI have maximums of one obtained 

when i; = S. 
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The Z test with linearized asymptotic standard errors and the likelihood 

ratio procedure are used to test hypotheses about model parameters . Other 

procedures have been developed, such as a Langrangian Multiplier and Wald 

test (Bollen 1989), that are computationally easier than the likelihood ratio 

test. 

1.5 Practical issues 

Much of the theory developed for structural equation models is based on 

large sample sizes; however, an understanding of the minimum small sample 

required for inferences to remain valid is useful. A rule of thumb presented 

by Bentler and Chow (1987) is that the minimum ratio of sample size to 

number of free parameters should be 5:1 under normal theory. Geweke and 

Singleton (1980) studied one and two factor confirmatory factor models and 

found that the chi-square statistic behaved well for sample sizes of 10 and 

30 respectively. Boomsma (1985) suggests not to do a LISREL type analysis 

with sample sizes less than 100 because maximum likelihood solutions break 

down. Gerbing and Anderson (1985) tested the validity of the chi-square 

statistic and also the bias in estimates of parameters and their standard errors 

and found that procedures worked well for sample sizes as small as 50 except 

for a confirmatory factor model with two factors and two indicators per 

factor. La Du and Tanaka (1989) found that the values of several goodness 

of fit measures depended on sample size and estimation method but they 

did not make any recommendations about "minimum" sample sizes. Myers 

and Cadigan (1993b) found that the maximum likelihood estimate of one 

parameter was, in some cases, very biased in a confirmatory factor model 

with two factors and two indicators per factor. The standard Z test for this 

parameter was conservative and had low power for sample sizes of 10 and 20. 

The sensitivity of a LISREL analysis to categorical data has been stud-
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ied by Homer and O'Brien (1988) and Ethington (1986). Joreskog (1990) 

has adapted the LISREL program for crude categorical data. Browne and 

Shapiro (1988) give analytic results on the robustness of normal theory meth­

ods and find that the chi-square test is reasonable to use as long as kurtosis 

is not excessive. A review of robustness is presented by Satorra (1990). Sim­

ulations conducted by Myers and Cadigan (1993a) which are presented in 

the next chapter show that maximum likelihood estimates are more sensitive 

to sample size than moderate deviations in some model assumptions. 

In practise, the user of structural equation models should be familiar 

with other issues as well. The scale of variables used in structural equation 

models can cause difficulties and it may be more appropriate to analyze the 

correlation matrix than the covariance matrix. Negative variance estimates 

are possible when the estimation procedure does not constrain the additive 

variance components to be positive. Negative estimates of variance compo­

nents are common (Searle et al. 1992) and are linked with small sample 

sizes by Boomsma (1985), Gerbing and Anderson (1987) and also in Chapter 

3 and must be interpreted with care; for example, the analysis of identifi­

cation assumes variance components are positive. A rule of thumb is that 

the negative estimate is due to sampling error if its 95% confidence interval 

contains zero (Gerbing and Anderson 1987). Missing values are a problem 

(see Muthen et al. (1987) for an analysis). Model building can be difficult 

so modification indices have been developed (Bollen 1989) as an aid. Bentler 

and Chou (1987) deal with these issues very thoroughly. 

11 



Chapter 2 

Recruitment in cod 

2.1 Introduction 

Density dependent juvenile mortality in marine demersal fish was investi­

gated by Myers and Cadigan (1993a,b ), known hereafter as MCa and MCb, 

for 6 species and from 1 to 8 stocks per species . Density dependent juvenile 

mortality, as assumed here (the Ricker model), means that the mortality rate 

of eggs and juvenile fish is proportional to initial population size (Hilborn 

and Walters 1992). A single factor confirmatory factor model was developed 

in Mea but the results were not presented because they were very similar 

to portions of a more complicated model whose results were presented. This 

analysis for cod stocks is presented here along with a discussion of the results. 

The purpose of the analysis is to determine if density dependent mortality 

in the juvenile stage of marine demersal fish is significant. Density dependent 

mortality is measured as an association between mortality and population 

abundance. In previous studies (e.g. Beverton and Iles 1991a,b and Sundby 

et al. 1989) it has been difficult to determine if the estimated association 

between mortality and abundance is a statistical artifact (Veer 1986) because 

measures of mortality and abundance are typically correlated through their 

method of construction. This problem was addressed in MCa and MCb by 
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using measurement error Inodels for multiple annual surveys of a stock. 

A major problem with the surveys is their length; all surveys occurred over 

periods less than 25 years. The smallest sample size reported for which the 

estimates of confirmatory factor models are unbiased ( Gerbing and Anderson 

1985) is 50. Simulations were conducted to assess the bias and many stocks 

were analyzed to increase the reliability of the results. 

2.2 Data 

The data sets analyzed are presented in Tables 2.1-2.6 in Appendix A . The 

data in Tables 2.1 and 2.2 are extracted from ICES (1992a) and (1992b) 

respectively. The data in Tables 2.3 and 2.4 are presented in Anon. (1991). 

The Canadian survey data in Table 2.5 is extracted from Baird et al. (1992) 

and the Russian data is extracted from Kuzmin (1992) . The data in Table 

2.6 is extracted from ICES (1992c). A more detailed account of the data is 

given in MCa. 

The s notation In Tables 2.1-2.6 needs explanation. The surveys are 

relative estimates of recruitment, which is the number of newborn fish in a 

year. Denote years as y and cohorts (fish born in the same year) as t. Let vy,a 

be the number of fish of age a surveyed in year y . vy,o provides an estimate of 

recruitment for cohort t = y, while vy,I provides an estimate of recruitment 

for cohort t = y- 1, vy,2 for cohort t = y- 2, etc. Four surveys (s1 , . .. ,s4 ) 

for cohort t are formed from possibly different surveys of numbers at age a 

in year y, where y = t +a. Hence, the data in Tables 2.1-2.6 are in terms of 

cohorts with the surveys (s's) ordered by length of time since recruitment. 

For example, in Table 2.1, the recruitment estimate of 20 in the MARCH 

1 year old's survey for 1975 actually came from a survey of 1 year old's in 

March of 1976 and the estimate of 4 in the June 1 year old's survey came 

from a survey of 1 year old's in June of 1976. These MARCH and JUNE 
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surveys are denoted as s 2 and s3 because the JUNE survey of the cohort is 

at a longer time since recruitment than the MARCH survey. 

2.3 Population dynamics 

The population dynamics during the juvenile stage is described by: 

-O'a 
Vt,a = Vt,oe , 

where Vt,a is the number of fish of age a in cohort t. The parameter aa 

represents mortality to age a, and a 0 = 0. The density dependent component 

of mortality is assumed to be proportional to log abundance and results in 

MCa for North Sea cod suggest this is reasonable. Let (1 - Aa) log Vt,o be 

the density dependent mortality where .\0 = 1. The model with density 

dependent mortality is: 

V = V e - Cl'a -(1->.a)logvt,O 
t,a t,O · 

The natural logarithm transform gives 

where ~t,a = log Vt,a· 

Let Xt,a,i be the log survey of cohort t based on age a fish from survey 

z. If {a,i is the log catchability coefficient ( catchability is the proportion of 

the population caught in the survey) of survey i on age a, Aa,i is the density 

dependent survival coefficient, and Dt,a,i is the observational error of survey i 

on age a of cohort t, then the observed log transformed abundance from age 

a and survey i is modeled as 

Xt,a,i la,i + ~t,a + Dt,a,i, 

'"" · - a + A .t 0 + 8 · 1a,t a a,tS.t, t,a,t· 

14 



The parameters {a,i - aa are removed by standardizing each Xt,a, i (sub­

tracting the sample mean, Jv 1:~1 Xt,a, i , where N is the number of years). 

Hence Xt,a,i, ~t,o and ~t- 1 ,0 are all in terms of deviations from their means . 

The units of the surveys are generally in terms of numbers per unit of fishing 

but are irrelevant if the surveys are proportional to true recruitment because 

the surveys are log transformed and have their means removed. 

Denote Xt,a ,i as Xi = log( Si), Aa,i as A i , and ~t,o as ~ . The population 

dynamics model can be written as: 

~ represents the yearly deviation in recruitment so that the E(O = 0, but 

~ varies from year to year. 1 - Ai represents density dependent mortality 

and it is expected that the .A/s will decrease with i because the surveys are 

arranged in time since recruitment . The errors (b's) and~ are assumed to be 

independent and normally distributed; consequently, the model is equivalent 

to (1.1) (a confirmatory factor model) . A path diagram of the model is 

presented in Figure 3.2 in Chapter 3. 

A necessary, but not sufficient condition, for identification is met (the t 

rule) in Bollen's (1989) Table 7.3 because df = 2. A sufficient condition is 

the Three-indicator rule: A x in (1.1) has 1 nonzero element in each row, 3 

or more x's per factor, and eb = cov(66' ) is diagonal. This rule is met so 

the model is identified. 

2.4 Model estimation 

The estimation procedures described in the last chapter are used here with a 

few modifications . Zero's in Tables 2.1-2.6 are replaced by 
1
1
0 

the minimum 

(over all years) of the nonzero catches for the respective survey because of the 

log transformations . The procedure was applied replacing 
1
1
0 

with ~ and the 
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parameter estimates did not change very much. The lagging procedure used 

to obtain the cohort estimates results in missing values at the beginning 

and end of the recruitment time series. In addition, some surveys started 

later than others, and some have been discontinued. Missing values are 

accommodated by analyzing the pairwise covariance matrix; this matrix uses 

all nonmissing pairs of observations in computing the sample covariance for 

any two variables. Another procedure would be to use only that portion of 

the data with no missing values for all the variables but this would eliminate 

too much data for some stocks. 

The estimation procedure is not constructed to handle missing values nor 

is it tractable to specify a likelihood for the pairwise covariance matrix so 

this matrix is treated as if it came from a sample with no missing values. The 

optimization technique requires the sample covariance matrix to be positive 

definite and, if not, this matrix is ridged with a constant (added to all the 

diagonal elements) large enough to make it positive definite. The sample size 

used in computing standard errors for this procedure is the minimum length 

of all recruitment time series . 

2.5 Model estimates 

Estimates are presented in Table 2.7; recall that 

• the ,\'s are the density dependence parameters, 

• the B's are the variances of the errors ( 8's), and 

• ¢is the variance of the true recruitment (0. 

,\1 is always constrained to equal 1. The joint probability that all unknown 

A's are < 1 is approximated with 10000 monte-carlo samples obtained using 

the parameter estimates and their asymptotic distributions . The probability 
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is obtained by counting the number of times any >. > 1 and dividing this 

count by the number of replications . This sampling procedure produced 2 

digit accuracy when applied to some known results. The joint probabilities 

for three stocks indicate it is more likely than not that the >. 's are less than 

one. The Gulf of Maine stock is the most likely in which one would conclude 

that the .A's are not less than one. 

The B's generally range from being approximately equal to i of¢. One B 

estimate is negative for the North Sea stock. Ps;s; is the precision or reliability 

of survey i (Bollen 1989); it is the squared correlation between the observed 

survey and the true (latent) recruitment and is interpreted as the proportion 

of the surveys variance explained by true recruitment. 

The Georges Banks cod stock produced the lowest chi-square p-value and 

adjusted goodness-of-fit index of all stocks examined followed by the Gulf of 

Maine stock . Only the chi-square p-value is reported because this is scaled 

between zero and one so it is comparable with the adjusted goodness-of­

fit index, the statistic can be obtained as a chi-square ( df = 2) percentile. 

Recall that a low adjusted goodness-of-fit index indicates poor model fit. The 

results for both these stocks should be treated with suspicion. The reliability 

of some surveys for these stocks are the lowest of all stocks considered. 

The normalized residuals (Bollen 1989) were analyzed for each cod stock 

but they generally did not indicate results different from the overall fit mea­

sures (i.e. no components of the models fit particularly worse than others) 

and are not presented. 

The estimated .A's and B's are plotted verses age in Figures 2.1 and 2.2. 

The data in these figures is presented in Table 2. 7. Age is defined as time 

since recruitment. Generally there is a decreasing trend in the estimated 

.A's and B's with age. The overall decreasing trend in the .A's is evidence of 

density dependent mortality and is found in most stocks examined. 
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Figure 2.1. The density dependent mortality coefficient, .\, in relation to age 

for cod. The population locations are abbreviated as follows : GB - Georges 

Banks, GM Gulf of Maine, IS - Irish Sea, NS - North Sea, NEAS - North 

East Arctic SGB - Southern Grand Banks. 

2.6 Sensitivity analysis 

A sensitivity analysis is conducted to assess whether the results could be 

caused by statistical artifacts; that is, does density dependence appear for 

the wrong reasons. The sensitivity, in terms of percentage bias, of the 
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Figure 2.2. Estimates of survey error variance, B, in relation to age for cod. 

The population locations are abbreviated the same as in Figure 2.1. 

estimators to violations in distributional assumptions and small sample sizes 

is assessed by simulations. The analysis is taken, in part, from MCa. 

The following parameters are fixed in the simulations: 

• The density dependence parameters p ,i ) are all equal to one. 

• The variability of the true recruitment ( ¢) is equal to one. 

Error variances are constrained to be equal ( 81 = ... = 84 = B) . In all 
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simulations (} is equal to and t of c/J, these are rough bounds on estimates in 

Table 2.7. Sample sizes studied ranged from 10 to 100 but 20 is the norm. 

1000 simulated data sets were generated for each effect studied. 

The results are presented in Table 2.8. The first two columns represent 

the simulation number and corresponding sample size. The next two columns 

indicate the assumed distribution of log recruitment (e) and errors (5's) . 

Columns 5 and 6 show the values of parameters used in the simulation. 

The notation (} / c/J is used, even though c/J = 1, to indicate that the ratio 

of variances is more important than their actual values . The mean biases 

for ..\ 2 , . .. , ..\ 4 and B1,b . . . , B4 ,4 , and their ranges, are reported to simplify the 

analysis . The last column contains the percentage of simulated solutions that 

converged with positive variances (B1,1, ... , B4 ,4 , c/J > 0) . 

In the first 6 simulations the effect of the number of years ( n) used to 

estimate parameters is tested. The assumption about the distribution of~ is 

investigated in simulations 7-8 by generating it as the natural log of a gamma 

random variable whose mean and variance equal that of the natural exponent 

of a standard normal random variable. The gamma distribution is chosen to 

represent a nonsymmetric distribution. The sensitivity of the analysis to the 

error distribution is checked in simulations 8-12 by generating right skewed 

5's from a gamma random variable with shape and scale parameters 2 and 

1/ V2 respectively. The left skewed gamma deviate is the negative of the 

right skewed deviate. 

The effect of correlated errors is tested in simulations 13-14 by adding 0.1 

to the first half of the errors (51) and -0.1 to the later half. 53 is modified 

by the same procedure except 0.1 is added to the first half+ 1 of the errors. 

These simulations model changes in measuring techniques halfway through 

a research survey time series . 

The effect of unequal estimation error vanances 1s investigated m the 
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last four simulations. Of particular concerned is that large estimation error 

variances at younger ages might lead to biased results for small sample sizes. 

An estimation error variance of the youngest age, B1 ,b equal to 4 or 9 times 

the other error variances (which are all assumed equal) is considered. 

Biases in parameter estimates result from small sample sizes and not the 

deviations in model assumptions considered. The simulations indicate that 

bias in the maximum likelihood estimates of the model in Figure 3.2 can be 

up to 30%. Also, if the (} / ¢> ratio (related to reliability, see Chapter 3) is 

large then the biases may be large. However, the simulated biases are too 

small and are of the wrong sign for estimates of density dependent mortality 

to be artifacts of violations in model assumptions, except if the estimation 

error variance is large. 

If the error variance for the youngest age is much larger than for older 

ages and similar to ¢>, then very large biases may result and density depen­

dent mortality may be estimated to exist when there is none. The estimates 

of variance parameters in Table 2. 7 for most stocks are similar to the param­

eters in simulations 3, 4 and 16 in Table 2.8. The biases are not large for 

these simulations, particularly for No. 's 4 and 16. The Gulf of Maine and 

Georges Banks cod stocks have variance estimates somewhere between those 

considered in simulations 3 and 15. While these biases as large, they would 

not result in false conclusions. The variance estimates from all stocks are 

not in the range of simulation 15. It seems safe to conclude that estimates 

of density dependent mortality are not statistical artifacts. 

2.7 Discussion 

Density dependent juvenile mortality appears to be significant in most of 

the cod stocks examined and this study is the first to demonstrate this . 

The confirmatory factor model used here has so far had little application in 
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population ecology and fisheries science and has proven to be an effect tool 

in investigating difficult hypotheses. 

The results appear to be robust in that the conclusion that density de­

pendent mortality is important is not affected by reasonable violations in the 

model assumptions . If anything, the methods under-estimate the strength of 

density dependent mortality. The estimates of observational error variance 

and inter-annual recruitment variance are negatively and positively biased 

respectively, but usually not more than 10%. 

The degree of density dependent mortality is often strong; for example, 

A is estimated to be 0.53 for age 2 North Sea cod (Table 2.7) . The presence 

of such strong density dependent mortality within cohorts may explain why 

there is often little relationship between stock and recruitment; that is, large 

recruitment that occurs when stock size is large may suffer higher mortality 

during the juvenile stage. 

A problem with this analysis is that errors (8's) for recruitment surveys 

obtained from different ages of a numbers at age survey may be correlated; 

however, the model assumes errors are independent. There are generally 

insufficient degrees of freedom to test this assumption unless all correlations 

are assumed to be equal, which is unreasonable. Another problem is that the 

data are not observations but the result of surveys and have estimation error 

variances associated with them. It is plausible that the inclusion of standard 

errors might affect the results. 

Unbiasedness is important in this type of analysis because statistical in­

ference is based more on the distribution of estimates from independent sam­

ples than from any particular sample, e.g. no attempt is made to consider 

standard errors in Figure 2.1. However, repeating a biased estimate does 

not decrease bias. It would be useful to estimate the models with a biased 

reduced estimator as a check of the effect of small sample bias on conclusions. 
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Chapter 3 

Bias reduction using the 
jackknife 

3.1 Introduction 

Previous research about bias in structural equation models (Boomsma 1985; 

Gerbing and Anderson 1985) has not dealt with sample sizes as small as those 

considered in the previous chapter. The simulations in Chapter 2 indicate 

that there is a potential for large biases when sample sizes are small. Also, the 

maximum likelihood estimate of a particularly interesting parameter in MCb 

has large bias in small samples. A biased reduced estimator that consistently 

reduces bias without large increases in standard errors is desirable. Previous 

research indicates the jackknife (and the bootstrap) does not reduce bias in 

structural equations models (Boomsma 1986); however, only a two factor 

model was considered and estimates were based on the correlation matrix. 

It is not clear if these results extend to all models or estimates based on 

the covariance matrix. The jackknife is investigated as a biased reduced 

estimator through simulations in addition to investigating the bias of several 

confirmatory factor models more rigorously than in Chapter 2. 

The jackknife is a statistical technique first purposed by Quenouille (1956) 

and Tukey (1958) to estimate the bias and variance of an estimator. Que-
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nouille developed the jackknife as a simple nonparametric method of estimat­

ing the bias of a maximum likelihood estimator when a parametric approach 

proved too difficult. Tukey recognized the usefulness of the jackknife in terms 

of bias reduction and variance estimation. Other authors such as Schucany 

et al (1971), Miller (1974), Efron (1982) and Wu (1986) have made important 

contributions. A review up to the mid 1980's is found in Frangos (1987). 

3.1.1 Delete-one jackknife 

The notation used loosely follows Efron (1982) . For simplicity, the univari­

ate case is considered; however, the extension to multivariate problems is 

straightforward. Let 0 is a p x 1 vector of unknown parameters and not 

necessarily error variances . Consider a random sample x 1 , .. . , Xn iid F. 

Let O(i ) denote the maximum likelihood estimate of 0 based on the sample 

with X i removed: x 1 , ... , Xi- i, X i+ i , ... , Xn and let b(O) be the bias of iJ . 
For many estimators, including maximum likelihood estimates, E( iJ -

0) = a 1 ~F)+ a
2Jt') + ... where the functions ai( . ), i = 1, ... , do not depend on n 

and the bias is 0(~) (Efron 1982). 0(~) bias means that the bias is< J(jn, 

where J{ is a constant. Define the ith pseudo-value (Tukey 1958) as 

(3 .1) 

The bias of iJ i is O(n- 2
); that is 

If iJ is taken as an approximation for 0 then the jackknife bias estimate is 

given by (Quenouille 1956) 

1 n - A 

-- 2:(0 i - 0 ). 
n i=I 
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The average is taken to maximize the efficiency of the procedure. The jack­

knife bias reduced estimate of 8 is 

~A ~A 1n~ 

8 = 8 - b(8) =- "L 8 i . 
n i=l 

(3 .2) 

The bias in 0 is O(n-2
), therefore the jackknife reduces bias by a factor of 

1/n provided first moments exist and the ai(F) are bounded for all i. 

Tukey's jackknife variance approximation is 

~A 1 n~ ~~ ~ 

V(8 ) = n(n _ 1) ~(8i- 8 )(8i- 8)' (3 .3) 

(3 .3) can also be used as an estimate of V( 0) and it is for this purpose that 

the jackknife is often used. Tukey suggested that 

{J . - B· 
' ' 
v(fJi) 

( fJi is a scalar and is the ith element of B) has approximately a t distribution 

with n- 1 degrees of freedom; however, Miller (1964) has shown that this is 

generally not the case except for linear estimators. 

3.1.2 Delete-g jackknife 

A grouped jackknife estimator is defined by computing pseudovalues from 

a sample with a block of observations removed. Suppose n = gh. Remove 

x 1 , . . . , xh and compute iJ (l) from the remaining observations. Next, remove 

Xh+l, . . . , X2h and compute 8 (2), etc. Compute oi = iJ - (g- 1)B(i) and then 

use these pseudovalues in (3 .2) and (3.3) replacing n with g . The groups need 

not be independent either; for any h < n- p it is possible to form ( ~ ) 

groups and use the average of all pseudovalues as a jackknife estimate. Miller 

(1964) shows that the delete-1 jackknife variance estimator (3.3) is consistent 

only for smooth estimators; however, Wu (1986) suggest that the delete-g 

jackknife works better. The maximum likelihood estimates considered are 

smooth so only the delete one jackknife is considered here. 
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3.1.3 Weighted jackknife 

In unbalanced data all observations are not equidistant from the center of the 

design; for example, data from an analysis of variance with unequal sample 

sizes in each treatment is unbalanced. Hinkley (1977) points out some of 

the shortcomings of the jackknife in a regression analysis with unbalanced 

data. These shortcomings apply to many nonlinear or nonnormal problems. 

Hinkley (1977) considers the regression model 

y = XB + E, 

where the E(E) = 0 and the COV(E) = o- 21. He shows that 

2. V(O) > V(O) (guaranteed by the Gauss-Markhov theorem) except for 

balanced designs, 

3. the jackknife variance estimator (3 .3) is biased unless the diagonal el­

ements ( wi) of X (X'X)-1 X' are all equal. 

Hinkley suggests the bias is because "pseudovalues [(3 .1)] are defined sym­

metrically with respect to the observations, whereas the model is generally 

unbalanced". 

Hinkley (1977) purposes a weighted modification to the jackknife that 

IS free from the above problems. (n - 1)(0 - iJ (i)) in (3.1) is the sample 

influence curve for case i and is proportional to the change in iJ when case 

i is deleted (Cook and Weisberg 1982). For the multiple regression case, 

Hinkley weights (n- 1)(0 - iJ (i)) so that it refects the distance from xi to 

the centroid of x 1 , ... , Xn. He replaces the sample influence curve in (3.1) 

with the emperical influence curve - the rational being that the later is less 
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sensitive to remote cases. Define weighted pseudo-values as: 

x~xn [xJ, ... ,xn] · 

Hinkley's weighted jackknife estimate of (} is: iJ~ = ~ ~~1 iJ~i. The esti­

mator has the property that lJ = 0 and therefore V (B) = V ( 0). V!: ( 0) is 

unbiased even if the w/s are not all equal. 

The methodology may not extend easily to some problems because the 

computation of the emperical influence curve can be difficult. Also, it is 

not obvious how the method extends to the delete-g (g > 1) jackknife. An 

alternative method presented by Wu (1986) does extend easily. Let 

o: 8 + n(n- p)wi( iJ - o(i)), where 

w7 ex 11:-(i)l, 2:::: w7=1. 

I(i) is the fisher information matrix for the sample reduced by the ith ob­

servation. Wu's weighted jackknife estimate of (} is: lJ :' = ~ ~i=I lJ: . Wu 

shows that v: (B) is robust against error variance heterogeneity. For linear 

models : 

-H -w 
SO that (} w = (} w. 

w": 
' 

I X~Xil 
~i IXiXil) 

IX'XI(1- Wi) 

~i IX'XI(1 - Wi)) 

1- Wi 

n-p 

The robustness of the jackknife is also considered by Hinkley (1978) in 

terms of estimating a correltion coefficient . Hinkley and Wang (1980) purpose 
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a trimmed jackknife (the pseudovalues are trimmed) as a naive type of robust 

estimate. 

Wu's procedure is appealing for structural equation models because it 

excludes subsample solutions that do not converge because I(i) is usually 

singular in this case. This topic is not addressed further except to say that 

in some preliminary unreported analyses (simulations using homoscedastic 

data) Wu's weighted jackknife performed very poorly, followed by Hinkley's 

weighted jackknife and the unweighted jackknife. 

3.2 Methods 

The jackknife is modified so that if a subsampled solution does not converge it 

is discarded and the sample size in the bias and variance formulae is reduced 

by 1. This is usually what Wu's weighted jackknife would do for nonconver­

gent cases. If the full sample solution converges but none of the subsampled 

solutions converge then the jackknife estimate is said to not converge. 

Three confirmatory factor models are considered in assessing how the 

jackknife works as a bias reduced estimator. These models are depicted 

in Figures 3.1-3.3 and are denoted as Ml, M2 and M3. The jackknife is 

assessed by simulating known models and comparing estimates with their 

known values. 

Ml is chosen because it is a simple, exactly identified model that has 

closed form expressions for parameter estimates. The population covariance 

matrix is: 

r 
cP + 01 A2cP A3cP l 

).~cjJ + 02 ).2}..3c/J . 

).~cjJ + {)3 

There are 6 parameters to estimate from 6 sample covanances . Let the 

observed sample covariance matrix S = { Si,j } . 
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Figure 3.1. Path diagram of a confirmatory factor model 
with one factor and three variables (Ml). 
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Figure 3.2. Path diagram of a confirmatory factor model 
with one factor and four variables (M2). 
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Figure 3.3. Path diagram of a confirmatory factor model with two factors 
and four variables per factor (M3). 
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The parameter estimators are 

~3 

81,281,3 

82,3 

82 ,3 

' 81 ,3 

82,3 

' 81 ,2 

81 ,281 ,3 
81,1-

82 ,3 

81,282,3 
82,2-

81,3 

81 382 3 
833- ' ' 

' 81 ,2 

These are maximum likelihood estimates because iJ = S. 

M2 is considered because it is the model estimated in the previous chapter 

and it is desirable for the results obtained here to apply to those estimates. 

Also, M2 can be used with M1 to assess the effect of adding an indicator 

variable to a model. M3 is chosen to assess if the results obtained from the 

analysis of M1 and M2 extend to a more complex model, and to investigate 

the biases in parameters solely related to latent variables. 

Many combinations of parameters and sample sizes can be considered in 

generating simulated data, even for the model in Figure 3.1. It is necessary 

to constrain those parameter combinations and sample sizes to the minimum 

required to understand their effect. Small sample size effects are the primary 

interest so sample sizes of n = 10, 30 and 50 are considered for all models. f)'s 

that are one-tenth or equal to the latent variable variance ( </>) are considered; 

this results in differential reliability (see the Discussion for more detail) 

or correlation between observed and latent variables. Factor variances and 

loadings are all fixed as one. The correlation among latent variables is 0.9 in 

M3. 

1000 simulations for each model are performed. The latent variables 

and errors are generated as normal random deviates with predetermined 
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covariances and the data then generated using (1.1). The following measures 

are considered in simulations: 

• The percentage bias in the maximum likelihood estimates of model 

parameters (0). 

• The percentage bias m the jackknife estimates of model parameters 

(B). 

• The ratio of the variance of B (V( B)) and the variance of iJ (V( 0) ). 

Percentage bias is the bias divided by the true value. The variances are 

approximated by the sample variance of the 1000 simulated estimates. The 

ratio of variances is considered because a small reduction in bias may result 

in a large decrease in precision which is not useful. 

The Quasi-Newton option is used in estimating parameters with SAS's 

(1990) PROC CALIS because this option resulted in slightly better conver­

gence rates compared to the default option. The computational complexity 

of the simulations should not be underrated. For one model and one set of 

parameters, considering the 3 sample sizes, a total of 93000 optimizations 

are performed, this requires considerable computer ti1ne and storage. 

3.3 Results 

There are three different results obtained in this analysis. The first is the 

potential biases in maximum likelihood estimates of the parameters in some 

structural equation models. The second result is whether the jackknife is 

an effective tool in reducing the bias of the maximum likelihood estimates . 

The third result deals with the extent of improper (negative) estimation of 

variance components by maximum likelihood and jackknifing. 
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The simulated % bias and variance ratio of the maximum likelihood and 

jackknife estimates are presented in Tables 3.1 (M1), 3.4 (M2) and 3.7 (M3) 

for the A and <P parameters and in Tables 3.2, 3.5 and 3.8 for the () parame­

ters. The percentage of converged solutions and the percentage of converged 

solutions with positive variances is presented in Tables 3.3, 3.6 and 3.9 . The 

values of error variances and the sample size used in the simulations are 

indicated in the first four rows . 

3.3.1 Bias of maximum likelihood estimates 

Some consistent patterns in the results are: 

• The percentage bias of maximum likelihood estimates in Tables 3.1, 3.2, 

3.4, 3.5, 3. 7 and 3.8 generally decreases with sample size and indicator 

reliability. 

• The bias in A's and </J's is generally positive except for As, .. , As in M3; 

it is negative for f)'s . 

• The inclusion of a variable (e.g. the difference between M1 and M2) in 

the single factor model did not affect the bias of parameter estimates . 

• The percentage bias of() is relatively large compared to other parame­

ters when () = 0.1 than when () = 1.0. 

• If n = 10, less reliable observed variables seems to result in relatively 

more bias in the maximum likelihood estimate of <P compared to other 

parameters, although this result is not consistent throughout all mod­

els. 

What is not evident in these tables is that the frequency distribution of 

simulated estimates is different if the reliability of observed variables is low 
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than if it is high. Histograms of simulated estimates look well behaved and 

"normal" for n = 50 if f) = 0.1 but a disturbing feature if f) = 1.0 is the 

presence of a small number of very unreasonable estimates. For example, 

when n = 10 and f) = 0.1 is used in generating simulated data in M1, the 

maximum and minimum estimates for B3 ,3 are -0.171 and 0.387 (Figure 3.4) 

but when f) = 1.0 the maximum and minimum are -179 and 33.8 (Figure 

3.5) . The latter estimates are clearly atypical in the histograms. 

3.3.2 Bias reduction with the jackknife 

Consistent patterns in the results are: 

• The percentage bias decreases with sample size and reliability. 

• The jackknife reduces bias almost always if f) = 0.1 and n = 30 or 

n = 50, and usually if n = 10. 

• If f) = 1.0 the jackknife generally increases bias in M1, decreases bias 

only if n = 50 or for error variances (all sample sizes) in M2, and 

decreases bias for all parameter estimators in M3. 

• Where bias reduction exists, the increase in the variance of jackknife pa­

rameter estimates compared to maximum likelihood estimates is small 

for n > 30. 

Some jackknife estimates are even more atypical than the maximum likeli­

hood estimates. For example, if n = 10 and f)= 0.1 in M1, the maximum and 

minimum estimates for B3 ,3 are -0 .110 and 0.464 (Figure 3.4) but if f)= 1.0 

the maximum and minimum estimates are -643 and 5910 (Figure 3.5). 

3.3.3 Convergence and improper estimates 

In the first two rows of Table 3.3 (M1) all solutions converged because these 
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Figure 3.4. Frequency histograms of the simulated maximum likelihood (1) 

and jackknife (2) parameter estimates of Ml. Simulated data was generated 

with()= 0.1 and n = 10. 
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Figure 3.5. Frequency histograms of the simulated maximum likelihood (1 ) 

and jackknife (2) parameter estimates of Ml. Simulated data was generated 

with e = 1.0 and n = 10. 
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estimates come from closed form expressions; however, this part of the table is 

included for consistency. Iterative solutions in Tables 3.6 (M2) and 3.9 (M3) 

do not converge only when the sample size is small ( n = 10) and reliability 

is low (() = 1.0). The percentage of solutions converged is always the same 

for maximum likelihood estimates and jackknife estimates; they could only 

differ if a full sample solution converged but all subsampled solutions did 

not. 

Improper solutions (negative estimates of error variances (f)'s) and latent 

variable variances ( ¢'s)) are more frequent with less reliable surveys and 

small sample sizes. More improper estimates occur in M3 than in M2 (more 

variances estimated) but this is not the case for M2 and Ml. Jackknifing 

produces more improper estimates than maximum likelihood estimates in 

M2 and M3 but not Ml. This is consistent with the results in Boomsma 

(1986). 

3.4 Discussion 

The pnmary outcome in this chapter is a quantification of the potential 

bias in small sample maximum likelihood estimates of the parameters in 

some confirmatory factor models and also whether the jackknife provides bias 

reduced estimates. A secondary outcome is a quantification of the occurrence 

of improper (negative) estimates of model variances. 

The biases are small ( < 20%) when indicators are reliable, even if n = 10, 

and this may be acceptable. The reliability of an observed variable is the 

correlation of the observed variable and its corresponding latent variable. For 

M1 , the reliability of X i is given by 

If ¢ and all .A 's equal one then varying () as 0.1 or 1.0 results in reliabilities 
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of 0.5 or 0.91. If, instead, <P and the ()'s are fixed as ones then the same 

reliabilities could be achieved by taking ).i = 1 or VIQ. The results should 

be similar in models with equivalent indicator reliabilities even if true pa­

rameters differ. The results may not extend to all latent variable models; for 

example, the simulations indicate the bias in ). 's is positive for M1 and M2 

but not for ).5 , . .. , .A8 in M3. 

The jackknife consistently reduces bias only when the reliability is high. 

When the reliability is low the presence of a small percentage of very unrea­

sonable estimates has a large effect on the simulated bias approximation, and 

this is true for both maximum likelihood and jackknife estimates. The pres­

ence of unreasonable estimates in M1 is related to unbounded expectations of 

the parameter estimators. Division by zero or near zero sample covariances 

in the formulas in section 3.2 results in extreme estimates . Bollen (1989), pp. 

250, mentions the problem of zero sample covariances for this same model. 

Kenny (1979), pp. 40, refers to this problem as empirical underidentifica­

tion and suggests that it is often the result of two few observed variables 

(indicators). 

The theory of jackknifing does not apply for M1 and it seems that any 

estimation procedure based on subsampling data will not work because of 

the increased chance of getting unreasonable estimates. The estimation of 

covariances improves as the sample size increases, and the frequency of oc­

currence of unreasonable values decreases; however, the expectations are still 

unbounded for all finite sample sizes. The problem is not unique to M1 either, 

many examples where zero sample covariances yield undefined estimates are 

given in Bollen (1989) and also Joreskog (1978). 

Atypical values occur in simulations of M2 and M3 though not as extreme 

as for Ml. Whether the maximum likelihood estimators are bounded for M2 

and M3 has not been shown. An analysis of some simulation iterations with 
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atypical estimates reveal that the resulting estimated population covariance 

matrix is reasonable as are goodness of fit statistics. If a parameter estimate 

is extreme it is usually multiplied by another estimate that is near zero in 

the population covariance matrix so that the estimate of a sample covariance 

is reasonable. In these cases an analysis of the parameter estimates corre­

lation matrix (computed from the linearized covariance matrix of maximum 

likelihood estimates defined in the next chapter) reveals a high (> 0.99) cor­

relation between the large and near zero parameters . Excluding these cases 

and also cases where the 95% confidence intervals for negative estimates of 

variance parameters do not contain zero removes many of the unreasonable 

estimates, but not all of them. 

The problem of atypical estimates has been noted by Kelly (1984) for 

the errors in variables problem (a type of latent variable model) where "ex­

treme values" of parameters estimates occurred in bootstrap replications 

causing the estimates of standard errors to be positively biased when n = 20. 

Boomsma (1986) also found that both the jackknife and the bootstrap were 

substantially influenced by "extreme outliers due to improper solutions" 

when n = 25 and the reliability of observed variables was either 0.36 or 

0.64. Further research into the problems of unbounded estimates and meth­

ods for dealing with them is necessary. For example, a statistic that indicates 

that a data set has a potential to produce seriously biased estimates would 

be useful. 

A serious bias in estimating the variance of the maximum likelihood es­

timate for >. 5 compared to the other >.'s exists in M3. The results are not 

reported because of the uncertainty about the impact of atypical estimates; 

however, the bias for variances of parameter estimators are generally large 

and negative for sample sizes less than 50, even with reliable observed vari­

ables. The exception is the bias in the linearized variance approximation of 

38 



the maximum likelihood estimate of As in M3, it is very large and increases 

with sample size. The true variance of As (obtained from the simulations) 

is about 40 times less than the variance for the other .A's when n = 50 and 

() = 0.1; however, the average variance approximation of ..\s from all simu­

lations does not differ from the other -A's, and is identical when the known 

(those used in generating simulated data) parameters are used to compute 

the covariances of the maximum likelihood estimates. The jackknife variance 

approximation ("V(B)) seems to work better because the simulated average 

is about 20 times less for As than for the other A's. 

The analysis of the jackknife has not provided sufficient evidence to war­

rant its application to the data sets in Chapter 2. The jackknife reduces bias 

in maximum likelihood estimates only when the maximum likelihood esti­

mates have little bias, at least for the confirmatory factor models considered 

here 
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Chapter 4 

Bias reduction by Taylor's 
• series 

4.1 Introduction 

The results in Chapter 3 suggest that the jackknife does not reduce bias in 

maximum likelihood estimates of the parameters of some simple structural 

equation models sufficiently to warrant its use, although this problem may 

be related more to the estimators than the jackknife itself, hence an alter­

native method is investigated. A parametric approach for estimating the 

bias in maximum likelihood estimates, based on a Taylor's series expansion 

of the loglikelihood, is presented in Cox and Snell (1968) and in Cox and 

Hinkley (1974). The methodology has been applied to nonlinear regression 

models with normal errors (Box 1971; Cook et al. 1986), generalized linear 

models (Cordeiro and McCullagh 1991) and nonlinear exponential family re­

gression 1nodels (Paula 1992). Cordeiro (1993) presents 2 examples involving 

multiplicative heteroscedastic regression models. 

The bias reduction method has not been applied to structural equation 

models, therefore it is developed first generally, and then for structural equa­

tion models . The method is tested with the results from the simulation study 

of M2. 
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4.2 Methods 

4.2.1 First order Taylor's series approximation of bias 

Much of the statistical theory developed for structural equation models comes 

from the large sample statistical theory of general maximum likelihood es­

timates which is based on a Taylor's series expansion of the loglikelihood 

function. Let L denote the loglikelihood function where L = L(8 ) is a func­

tion of 8 and 8 is a p x 1 vector of parameters to estimate. The notation 

used is similar to Cox and Hinkley's (1974) . Let ui(8) = g~ and u(8) = !n· 
The first order Taylor's series approximation of u(B) about 8 is 

A 8u ( 8) A 

u (8 ) ~u(8)+ 
8

, (8 - 8 ). 

Let I = -E [ ad~) ] = E[u(8)u (8 )']; I is known as Fisher's information 

matrix. Substituting I for ad~ ) gives 

where u( B) = 0 ; that is, because 0 is a maximum likelihood estimate which is 

the solution of u( 8 ) = 0. The maximum likelihood estimate of 8 is unbiased 

using the first order approximation because the E(u(8 )) = 0. A variance 

approximation of 8 ( refered to as the linearized variance estimator) is 

The bias approximation is o(1); that is, as n ~ oo the bias ~ 0 (Cox 

and Hinkley 1974, 294). Consequently, maximum likelihood estimates are 

generally unbiased and the variance approximation exact only as the sample 

size approaches infinity. The finite sample results developed in Chapters 2 

and 3 also suggest that the estimators for structural equation models are 

biased, hence a better approximation is developed. 
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4.2.2 Second order Taylor ' s series approximation of 
bias 

The same technique is used as in the previous section; however, the Taylor's 

series expansion has one more term (second order approximation) which gives 

0 u(B) ~ u(O) + 

or 

(B-0) + 1/ 2 

(B - 0 )' 8lJb~ ) (B- 0) 

(8- oyaob~) (8- o) 

where ,) is the jth column of I-1 and u ( 0) = 8{j~) = a~B ' . 
Taking expectations yields 

0 ~ E(u (O))b(B) + COV( u (O)B) + 1/2 tit) [E ( ovec(u.(O)) ') vec(I - 1 ) 

j=1 [) (}t 

+ COV{Dve~~(8))'vec ((9- 8)(9 - 8)')) ] · 

b( B) is the bias in B. The covariance terms are evaluated as follows 

COV(u (O)B) E[(u (O) + I )(B - 0 )], 

~ E[u (O)I - 1 u (O)] . 

The ~ approximation comes from the substitution of the first order approx­

imation B- 0 = I-1 u (O). The last COV is o(n- 1 ) (Cox and Hinkley 1974, 

309). 

Using these covariances yields 

0 ~ -Ib(B) + E [u(O)I-1 u (O)] + 1/ 2 tit)E ( ovec(u (O)) ') vec(I-1 ) . 

j=1 [) (}i 
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Hence the bias estimator is 

This estimator is o(n-1
) compared to o(1) for the first order approximation. 

4.2.3 Bias in structural equation models 

The following results are required for the second order Taylor's series bias 

approximation ( 4.1) 

'T-1 
• ..L ' 

• E[ui( B)u( B)], 

E [~] • 88; . 

These quantities are developed in Appendix B . 

The algorithm used to compute the bias is as follows. Let 

n · 1 

2 L1i W L1 , 
n · I • I 

2[L1u ... , L1P]W8j, 

where L1 , W , ~j and b j are all defined in Appendix B . The bias formula is 

b(B) = I-1 {t(B3,j-B1,j)tJ } 
J=1 

p 

+1/2 L tr (I-1 (2B 1,j- B 2,j- B ;,j- B 3 ,j)) ,). (4.2) 
j=1 
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4.3 Results 

4.3.1 Evaluation of the bias approximation 

The accuracy of the bias approximation ( 4.2) for the maximum likelihood 

estimates of M2 can be tested using the average simulated bias obtained in 

Chapter 3. The technique is not used for M1 because the maximum likelihood 

estimates are unbounded and the methodology does not apply. It is not used 

for M3 because the computation of derivatives is very difficult . The test with 

M2 suffices in a preliminary analysis . 

The results are presented in Table 4.1 (note that they are multiplied by 

100) . The Taylor's series bias approximation is based on the known parame­

ters used in generating the simulated data and is not an estimate. The bias 

approximation corresponds very well with the simulated estimates in terms 

of the sign and magnitude of the bias, this indicates that the second order 

Taylor's series expansion is a good approximation. 

4.3.2 Bias corrected estimate 

The analysis in the previous section requires known parameters values but 

in practise these values are unknown. A maximum likelihood estimate of the 

bias can be obtained using the estimates of the parameters and the invariance 

property of maximum likelihood estimators (Bain and Engelhardt 1987). A 

bias corrected estimate is formed by subtracting the estimated bias from the 

parameter estimate. The procedure is tested using the simulated estimates 

of M2. 

The results are presented in Table 4.2 and should be analyzed in conjunc­

tion with Tables 3.4-3 .6. Some patterns in the results are: 

• The percentage bias of the Taylor's series biased reduced estimator usu­

ally decreases with sample size and reliability, although small increases 
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sometimes occur. 

• Bias is reduced for all realizations of M2, except when () = 1.0 and 

n = 10 and occasionally when n = 50 in which case the percentage 

bias is very small. 

• When bias reduction does occur the increase in sampling variability of 

the bias reduced estimate compared to the maximum likelihood esti­

mate is small and is sometimes less by as much as 50% . 

• The Taylor's series bias reduced estimator has slightly less bias than 

the jackknife estimator, except when () = 1.0 and n = 10. Their biases 

and variance ratio's are nearly identical when n = 50 . 

• The percentage of converged solutions with positive variances are greater 

for the biased reduced estimator than for the maximum. likelihood es­

timator . 

The presence of a atypical simulated estimates is again problematic. For 

example, when n = 10 and () = 0.1 the maximum and minimum biased 

reduced estimates for ()1 are -0.075 and 0.486. When n = 10 and () = 1.0 the 

maximum and minimum estimates are -76.8 and 447.0. 

4.4 Discussion 

The Taylor's series bias reduced estimator consistently reduces bias with lit­

tle increase (and sometimes a decrease) in sampling variability except when 

n = 10 and observed variables are not highly correlated with model factors 

(reliability= 0.5). Another advantage of this estimator is that is reduces the 

occurrence of improper (negative) estimates of population variances. The bi­

ased reduced estimator is often more efficient than the jackknife (at least for 

M2) in that it has less bias and lower sampling variability when n is small 
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except with low indicator reliability; however, the two techniques are ap­

proximately equivalent when n = 50 . Akahira (1983) found that the biased­

adjusted maximum likelihood estimator is asymptotically equivalent to the 

jackknife in the variance, which corresponds with the results here. The above 

findings may not apply to every structural equation model, so analyses of dif­

ferent types of models would be useful to test this. 

The conclusion from this analysis is that the Taylor's series biased reduced 

estimator works slightly better than the jackknife in reducing bias; however, 

like the jackknife, reduction in bias only occurs when the bias in maximum 

likelihood estimates is small. It seems likely that the atypical estimates have 

an effect here. For this reason the Taylor's series biased reduced estimator 

does not seem to be a viable procedure for reducing bias in the maximum 

likelihood estimates of the parameters in structural equation models. Further 

research dealing with atypical estimates may result in a feasible procedure. 

A better approach may be to consider a bias reduced estimation scheme such 

as that developed by Firth (1993) rather than merely correcting the bias of 

maximum likelihood estimates. 
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Chapter 5 

Appendix A Tables 

Table 2.1. Data for the Irish Sea cod stock from the North Whales 
groundfish survey in October, March and June. Units are in numbers 
per 16 hours fished. 

cohort OCTOBER MARCH JUNE OCTOBER 
0 yr. old's 1 yr. old's 1 yr. old's 1 yr. old's 

si s2 S3 S4 

1975 20 4 18 
1976 21 54 20 48 
1977 11 30 18 3 
1978 19 292 51 10 
1979 491 777 267 173 
1980 51 77 212 98 
1981 5 10 7 8 
1982 113 240 31 29 
1983 168 155 11 11 
1984 36 132 53 17 
1985 1 6 17 5 
1986 458 686 210 412 
1987 50 51 20 
1988 1 7 2 
1989 24 18 44 
1990 1143 161 
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Table 2.2. Data for the North Sea cod stock from the international 
youngfish survey (IYFS) and English groundfish survey (EGFS). 
Units are in numbers per hour fished. 

cohort EGFS IYFS EGFS IYFS 
0 yr. old's 1 yr. old's 1 yr. old's 2 yr. old's 

81 82 8 3 84 

1970 98.3 34.5 
1971 4.1 10.6 
1972 38 9.5 
1973 14.7 6.2 
1974 40.3 19.9 
1975 7.9 3.2 
1976 36.7 62.7 29.3 
1977 13.9 12.9 22.8 9.3 
1978 12.6 9.9 24.2 14.8 
1979 18.6 16.9 50.8 25 .5 
1980 10.2 2.9 11.4 6.7 
1981 74.2 9.2 32.4 16.6 
1982 2.5 3.9 15.4 8 
1983 95.1 15.2 61.2 17.6 
1984 0.4 0.9 4.3 3.6 
1985 8.3 17 34.4 28 .8 
1986 1.2 8.8 14.2 6.1 
1987 0.4 3.6 8.4 6.3 
1988 16.8 13.1 22.8 15.2 
1989 6 3.4 6.1 4.1 
1990 3.9 2.4 7.5 
1991 48.4 
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Table 2.3. Data for the Gulf of Maine cod stock from the U.S.A. 
Northeast Fisheries Center spring and fall surveys. Units are in 
numbers per tow. 

cohort SPRING FALL SPRING FALL 
1 yr. old's 1 yr. old's 2 yr. old's 2 yr. old's 

sl s2 s3 s4 

1961 0.865 
1962 0.416 0.078 
1963 0.059 0.564 
1964 0.545 0.41 
1965 0.131 0.138 
1966 0.083 0.791 0.115 
1967 0.393 0.023 0.023 0.079 
1968 0 0.038 0.079 0.17 
1969 0.102 0.603 0.091 0.153 
1970 0.016 0.114 0.098 0.78 
1971 0.226 3.576 2.724 1.393 
1972 0.022 0.21 0.036 0.121 
1973 0.305 0.72 0.448 1.966 
1974 0.06 0.094 0.195 0.134 
1975 0.027 0.156 0.191 0.291 
1976 0.016 0.018 0.067 0.301 
1977 0.022 1.111 1.045 0.361 
1978 0.343 0.236 0.357 2.111 
1979 0.057 1.026 0.537 0.245 
1980 0.623 0.397 0.827 2.014 
1981 0.273 0.449 0.627 0.626 
1982 0.401 1.064 0.662 0.27 
1983 0.097 0.246 0.0952 0.364 
1984 0.0112 0.1512 0.132 0.196 
1985 0.1668 0.1204 0.2552 0.5296 
1986 0.0196 0.2396 0.4212 0.898 
1987 0.2652 0.7804 0.3288 1.2104 
1988 0.0116 0.2104 0.0964 0.1856 
1989 0 0.0148 
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Table 2.4. Data for the Georges Banks cod stock from the U.S.A . 
Northeast Fisheries Center spring and fall surveys. Units are in 
numbers per tow. 

cohort SPRING FALL SPRING FALL 
1 yr. old's 1 yr. old's 2 yr. old's 2 yr. old's 

si s2 s3 s4 

1962 0.778 
1963 0.719 0.699 
1964 0.64 0.998 
1965 1.299 1 
1966 1.693 1.334 
1967 7.596 1.615 1.611 
1968 0.136 0.314 0.546 0.622 
1969 0.123 0.343 0.814 1.353 
1970 0.381 1.688 0.819 0.632 
1971 0.207 0.602 1.833 1.295 
1972 2.902 7.443 11.644 6.07 
1973 0.521 1.749 4.557 0.654 
1974 0.446 0.409 0.378 0.421 
1975 0.064 0.994 1.922 2.072 
1976 1.301 6.148 3.527 3.424 
1977 0.028 0.237 0.187 0.255 
1978 0.376 1.855 1.359 1.717 
1979 0.435 1.619 2.265 0.564 
1980 0.039 0.818 1.916 2.25 
1981 2.303 3.525 3.395 2.094 
1982 0.488 0.875 1.967 1.022 
1983 0.329 0.647 0.462 0.101 
1984 0.402 2.496 2.633 0.803 
1985 0.098 0.22 0.423 0.153 
1986 0.871 2.28 1.612 1.353 
1987 0.034 0.414 0.684 0.433 
1988 0.7 0.903 1.334 1.03 
1989 0.38 2.738 0.926 1.534 
1990 0.194 0.362 0.499 
1991 1.038 
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Table 2.5. Data for the Southern Grand Banks cod stock from the 
Canadian and Russian spring surveys. Units are in numbers per tow. 

cohort CANADA CANADA CANADA RUSSIA 
1 yr. old's 2 yr. old's 3 yr. old's 3 yr. old's 

sl s2 s3 s4 
1965 
1966 
1967 
1968 25.79 
1969 2.56 8.82 
1970 0 1.15 2.38 
1971 0.01 2.34 4.05 
1972 0.06 1.13 4.16 
1973 0.04 2.8 2.74 
1974 0.41 3.69 9.41 23 
1975 0.55 2.28 7.11 18.4 
1976 0.01 0.71 2.33 3.8 
1977 0.55 0.93 1.35 3.6 
1978 3.09 5.29 4.89 6.6 
1979 0.01 0.35 1.18 10 
1980 0.32 9.35 12.4 
1981 1.56 6.2 33.4 
1982 3.28 4.47 64.3 
1983 0.01 0.41 0.71 12.4 
1984 0.01 0.7 2.84 2.1 
1985 0.02 2.76 2.2 7.2 
1986 0.21 1.66 1.9 1.7 
1987 0.01 0.25 0.96 0.4 
1988 0.02 0.47 1.24 1.8 
1989 0.04 6.3 
1990 0.02 
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Table 2.6. Data for the Northeast Arctic cod stock from the 
Norwegian and Russian surveys. Units for Russian surveys in 
numbers per hour fished . Units not available for Norwegian surveys . 

cohort RUSSIA NORWAY RUSSIA NORWAY 
1 yr. old's 1 yr. old's 2 yr. old's 2 yr. old's 

81 82 83 84 

1981 0.6 17.7 
1982 3.7 259 8.9 366 
1983 5.4 2170 9.2 647 
1984 0.9 39 4.9 403 
1985 5 562 2.2 387 
1986 0.7 25.3 0.2 63 .5 
1987 0.01 3.8 0.2 12.7 
1988 0.1 7.1 0.1 49 .9 
1989 0.4 122 2.4 213 
1990 3.9 357 
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Table 2.7. Para1neters estimates for the 1 factor model (SE's in parentheses). 
The data is for 6 cod stocks. N is the minimum length (in numbers of years) 
of a survey. AG F I is the adjusted goodness of fit index and p - value 
corresponds to the chi-square goodness of fit test. P(>.. < 1) is the joint 
probability that all -\ < 1. Ps;s; is the reliability of survey s i . 

IRISH NORTH GULF OF GEORGES SOUTHERN NORTH-
SEA SEA MAINE BANKS GRAND EAST 

BANKS ARCTIC 
N 12 15 23 24 15 9 

AGFI 0.66 0.97 0.70 0.22 0.98 0.58 
p- value 0.37 0.91 0.18 0.01 0.95 0.40 

AI 1.00 1.00 1.00 1.00 1.00 1.00 

J\2 0.75 0.73 1.40 1.01 0.64 1.03 
(0.16) (0.22) (0.60) (0.25) (0.24) (0.17) 

J\3 0.56 0.69 1.43 1.04 0.49 0.81 
(0.15) (0.17) (0.60) (0.24) (0.20) (0.16) 

J\4 0.63 0.53 0.84 0.85 0.73 0.67 
(0.16) (0.14) (0.40) (0.22) (0.29) (0.14) 

01,1 0.74 1.32 1.48 0.81 1.90 0.59 
(0.51) (0.49) (0.4 7) (0.25) (0.84) (0.36) 

02,2 0.47 0.45 0.72 0.24 0.31 0.28 
(0.30) (0.17) (0.32) (0.09) (0.20) (0.26) 

03,3 0.60 -0.02 0.29 0.06 0.36 0.45 
(0.29) (0.05) (0.25) (0.06) (0.17) (0.26) 

04,4 0.73 0.11 0.61 0.23 0.81 0.40 
(0.35) (0.05) (0.20) (0.08) (0.38) (0.22) 

¢ 3.62 1.51 0.53 0.75 1.80 3.90 
(1.80) (0.91) (0.43) (0.39) (1.26) (2.11) 

P(>.. ~ 1) 0.930 0.882 0.154 0.353 0.793 0.419 
Ps1 s1 0.83 0.53 0.26 0.48 0.49 0.87 
Ps2s2 0.81 0.64 0.59 0.76 0.71 0.94 
Ps3 s3 0.66 1.02 0.79 0.93 0.54 0.85 
Ps4s4 0.67 0.79 0.38 0.70 0.54 0.82 
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Table 2.8. Simulation results to test the robustness of the estimation model. 
The number of years of data used to estimate the model is n. D(.) denotes 
distribution of(.); N- Normal, G- Gamma. The minimum and maximum 
percentage biases for ). and () are in parentheses. See text for details. 

No. n D(f.) D(8i) () /¢ e1 ,I/B mean mean % conv. 
bias bias bias with 

>.2, ... , >.4 ()1,····()4 ¢ var> 0 
1 100 N N 1 1 .013 -.020 .010 100 

( .001,.015) ( -.024,-.018) 
2 100 N N .2 1 .005 -.002 -.002 100 

( .004,.006) (-.003,- .001) 
3 20 N N 1 1 .186 -.080 .084 90 .1 

( .149,.215) (- .092,- .060) 
4 20 N N .2 1 .013 -.014 .002 98.3 

( .010,.017) ( -.015,-.013) 
5 10 N N 1 1 .137 -.129 .313 59.2 

( .073,.212) ( -.218,-.053) 
6 10 N N .2 1 .022 -.021 .078 79.4 

(.017,.029) ( -.027 ,-.013) 
7 20 log( G) N 1 1 .196 -.088 -.131 82.8 

( .164, .24 7) ( -.103,-.072) 
8 20 log( G) N .2 1 .013 -.012 -.185 98 .3 

( .011,.016) ( -.015,-.008) 
9 20 N Gl 1 1 .145 -.076 .087 88.9 

( .136,.156) ( -.09.- .058) 
10 20 N Gl .2 1 .017 -.011 .008 87.5 

( .013,.022) ( -.016,-.008) 
11 20 N G2 1 1 .128 -.079 .104 87.3 

( .121,.140) (-.090,-.070) 
12 20 N G2 .2 1 .011 -.010 .027 86.2 

( .008,.015) ( -.011,-.008) 
13 20 N N3 1 1 .142 -.069 .118 90.3 

( .133,.149) (-.088,-.057) 
14 20 N N3 .2 1 .015 -.008 .025 98.2 

( .009, .018) (-.012,-.005) 
15 20 N N 1 4 .216 -.127 .540 76.9 

( .206,.251) ( -.399,- .087) 
16 20 N N .2 4 .064 -.019 .042 95.3 

(.062, .066) (-.054,-.004) 
17 20 N N 1 9 -.141 -.250 .979 72.0 

( -.205,-.089) (-. 777,- .066) 
18 20 N N .2 9 .123 -.036 .144 93.8 

( .144,.132) ( -.110,-.007) 

note: 1. left skewed. 2. Right skewed. 3. correlated errors. 
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Table 3.1. Simulated percentage bias and variance ratio of 
maximum likelihood 0 and jackknife 0 estimates of the A's 
and cjY for the one factor - 3 variables per factor model (M1). 
The A's and c/Y are always 1. ()11 ... ,()3 =e. 

() 

0.1 1.0 
n n 

10 30 50 10 30 50 

A2 2.7 0.4 0.4 58 .6 24.5 4.9 
5.2 -0.7 -0.0 0.1 7104.8 1222.7 -39 .0 

V(.:\2)/V(~2) 1.2 1.0 1.0 31669.6 3818.5 674.3 

A3 1.6 0.6 0.3 50.6 15.1 4.6 
5.3 -1.1 0.1 0.0 -1206.6 -983.8 -10.7 

V( .:\3) /V(~3) 1.0 1.0 1.0 1236.5 34475.2 14.2 

cP 3.3 2.4 0.2 -11.1 2.3 6.1 

J 1.6 2.0 -0.0 -378.5 -609.6 -0.4 
V(J)/V(¢) 1.0 1.0 1.0 104.5 1164.9 0.9 
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Table 3.2. Similar to 3.1 but for the B's. 

e 
0.1 1.0 

n n 

10 30 50 10 30 50 

el -9.6 -2.3 -0.4 10.1 -0.5 -5.0 
81 7.0 1.7 1.9 377.5 611.4 1.4 

v( 81) ;v( el) 1.4 1.1 1.0 105.9 1189.5 0.9 

e2 -17.2 -3.4 -3.3 -12.7 -8.7 -6.0 
82 -3.2 0.6 -1.0 -3905.3 -149.0 18.3 

V( 82) /V( B2) 1.3 1.1 1.0 73353.2 9730.6 195.4 
e3 -12.3 -5.7 -2.6 -50.1 -12.6 -5.2 
83 2.2 -1.8 -0.3 564.3 251.8 2.6 

V(83)/V(B3) 1.3 1.1 1.0 579.7 13958.2 2.8 
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Table 3.3. Percentage converged and percentage converged with pos­
itive variances in simulations of maximum likelihood (1) and jackknife 
(2) solutions for the one factor - 3 variables per factor model (M1). 

() 

0.1 1.0 
n n 

10 30 50 10 30 50 
% (1) conv 100.0 100.0 100.0 100.0 100.0 100.0 
% (2) conv 100.0 100.0 100.0 100.0 100.0 100.0 

% (1) conv with +var 76 .6 98.7 99.7 51.8 89.1 97.0 
% (2) conv with +var 78.1 98.8 99.8 53 .9 94.8 99.0 
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Table 3.4. Simulated percentage bias and variance ratio 
of maximum likelihood 0 and jackknife 0 estimates of 
the ,\'s and ¢>for the one factor - 4 variables per factor 
model (M2). The ,\'sand¢> are always 1. ()11 ..• ,()4 =e. 

() 

0.1 1.0 
n n 

10 30 50 10 30 50 
,\2 1.7 0.4 0.0 11.8 7.1 4.2 
).2 -1.8 -0.1 -0.2 -3.4 -9.7 -1.1 

V(5.2)/V(_\2) 1.6 1.0 1.0 25.4 4.1 0.7 
,\3 1.6 0.6 0.1 18.6 6.9 4.4 
).3 -2.0 0.1 -0.2 11.9 -8.1 -1.2 

V( 5.3) /V ( _\3) 1.8 1.0 1.0 12.3 2.1 0.6 
,\4 1.4 0.6 0.3 13.9 6.7 4.9 
).4 -1.9 0.1 0.1 -15.5 -11.7 -0.7 

V ( 5.4) /V ( _\4) 1.4 1.0 1.0 15.2 6.2 0.7 
¢> 2.9 1.5 0.0 24.8 6.8 3.5 

~ 1.8 1.2 -0.2 -6.7 1.2 0.1 

V(~)/V(~) 1.0 1.0 1.0 4.4 1.3 1.0 
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Table 3.5. Similar to 3.4 but for the ()'s. 

() 

0.1 1.0 
n n 

10 30 50 10 30 50 
()1 -9.8 -3.3 -3.6 -19.8 -5.1 -2.1 
o1 0.7 -0 .1 -1.5 4.8 0.4 1.2 

11( 81) /11( 81) 2.6 1.1 1.1 6.8 1.8 1.1 
()2 -9.7 -3.1 -1.7 -14.3 -5.2 -4.2 
02 -0.5 0.4 0.3 0.8 2.3 -0.9 

11( 02) /11( 02) 2.3 1.1 1.1 5.1 3.6 1.1 
()3 -8.1 -3.2 -2.3 -16.2 -4.0 -3.6 
03 2.0 0.2 -0.3 -12.4 1.7 -0.4 

11(03)/11(03) 2.3 1.1 1.0 6.1 1.8 1.1 
()4 -11.7 -5.8 -3.0 -16.2 -5 .6 -2.2 
04 -2.1 -2.6 -0.9 -3.7 1.9 1.0 

11( 04) /11( 04) 2.3 1.1 1.1 6.2 2.1 1.1 
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Table 3.6. Percentage converged and percentage converged with pos­
itive variances in simulations of maximum likelihood (1) and jackknife 
(2) solutions for the one factor - 4 variables per factor model (M2). 

e 
0.1 1.0 

n n 
10 30 50 10 30 50 

% (1) conv 100.0 100.0 100.0 90.7 100.0 100.0 
% (2) conv 100.0 100.0 100.0 90.7 100.0 100.0 

% (1) conv with +var 83.4 99.9 100.0 64.1 98.3 99.9 
% (2) conv with +var 71.1 99.7 100.0 52.9 96.9 99.7 
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Table 3.7. Simulated percentage bias and variance ratio 
of maximum likelihood 0 and jackknife 0 estimates of 
the .A's and ¢'s for the two factor - 4 variables per factor 
1nodel (M3). The A's, ¢1,1 and ¢2,2 are always 1. ¢1,2 = 
0.9; ()1, ... , ()s = (). 

() 

0.1 1.0 
n n 

10 30 50 10 30 50 
.\2 1.4 0.4 0.5 9.2 5.1 3.0 
).2 -1.1 -0.0 0.2 -0.5 -4.8 -1.1 

V(5.2)/V(.\2) 4.9 1.0 1.0 5.8 1.0 0.8 
.\3 1.9 0.5 0.2 8.5 5.9 3.2 
).3 -1.4 0.1 -0.1 1.6 -5.1 -0.8 

v ( 5.3) I v ( .\3) 1.4 1.0 1.0 6.2 0.8 0.8 
.\4 1.6 0.0 0.2 11.7 6.0 2.6 
).4 -1.3 -0.4 -0.0 10.6 -4.4 -1.4 

V(5.4)/V(.\4) 1.7 1.0 1.0 6.1 1.0 0.8 
As -2.2 -0.6 -0.4 -16.3 -7.6 -4.4 
).5 -2.0 0.2 0.0 -4.9 2.0 0.3 

V(5.s)/V(.\s) 15.6 6.3 4.2 31.0 6.6 1.6 
.\6 0.2 0.1 0.2 -17.3 -3.8 -2.3 
).6 -0.8 0.5 0.4 -16.3 1.2 -0.3 

V( 5.6) /V( .\6) 3.0 1.1 1.0 20.0 2.0 1.1 
.\1 -0.5 -0.2 0.1 -13.8 -3.3 -2.7 
).7 -1.6 0.2 0.3 0.1 1.0 -0.6 

V(5.7 )jV(.\1) 2.5 1.1 1.0 16.3 1.9 1.1 
As 0.4 0.3 0.2 -14.2 -2.8 -2.0 
As -0.5 0.7 0.4 -2.2 2.7 0.1 

V ( 5.s) /V ( .\s) 2.8 1.1 1.0 15.1 1.9 1.1 
¢1,1 1.2 -1.0 -0.4 24.0 3.6 4.5 
¢1,1 0.5 -1.3 -0.7 -2.0 -0.3 2.2 

V(¢1,1)/V(¢1,1) 1.1 1.0 1.0 3.2 1.1 1.0 

~1,2 1.5 -0.6 -0.4 24.2 6.1 7.1 
¢1,2 3.0 -1.2 -0.8 11.3 0.2 3.2 

V ( J>1,2) /V ( ¢1,2) 1.1 1.0 1.0 4.1 1.2 1.0 
¢2,2 4.7 0.7 0.0 64.0 20.5 14.4 
¢2,2 3.7 -1.1 -1.0 18.9 -2.2 2.0 

V ( ~2,2) /V ( ~2,2) 1.3 1.0 1.0 9.5 1.3 1.1 
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Table 3.8. Similar to 3. 7 but for the B's. 

e 
0.1 1.0 

n n 

10 30 50 10 30 50 
e1 -5.1 -2.7 -2.4 -20.0 -5.0 -2.5 
el 1.2 0.8 -0.4 -5.2 -1.2 -0.0 

V( B1) /V( OI) 4.0 1.1 1.0 5.3 1.2 1.1 
e2 -6.2 -3.5 -2.4 -8.7 -5.4 -3.1 
82 -5.5 -0.4 -0.4 -3.6 -1.2 -0.6 

V( B2) /V( 02) 2.9 1.1 1.0 5.9 1.3 1.1 
e3 -11.4 -4.1 -2.2 -7.5 -5.2 -2.1 
e3 -16.8 -0.7 -0.1 -6.0 -0.3 0.5 

V( 03) /V( 03) 2.8 1.1 1.0 4.6 1.2 1.1 
e4 -11.3 -3.0 -0.3 -12.1 -6.4 -3.4 
84 -11.7 0.3 1.8 -11.6 -2.7 -1.0 

V( 04) /V( 04) 3.1 1.1 7.5 1.4 1.0 
Bs -7.7 -3.1 -2.4 -10.6 -3.7 -2.3 
Bs -3.4 0.3 -0.3 4.8 0.4 0.3 

V(B5 )/V(05 ) 2.9 1.1 1.0 10.8 1.4 1.1 
e6 -7.4 -3.0 -1.8 -7.2 -4.3 -3.3 
e6 -7.7 0.3 0.3 4.1 0.6 -0.7 

V(B6)/V(06) 3.3 1.1 1.0 5.1 2.7 1.1 
e7 -10.9 -3.1 -2.7 -9.4 -6.7 -1.0 
e7 -7.4 0.1 -0.6 -8.5 -2.5 1.4 

V(B7 )/V(07) 3.0 1.1 1.1 5.9 1.5 1.1 
Bs -5.5 -3.3 -1.9 -10.7 -5.0 -2.7 
Bs -6.6 -0.0 0.0 -6.4 0.3 -0.2 

V(Bs)/V(Os) 3.2 1.1 1.0 9.0 2.1 1.1 
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Table 3.9. Percentage converged and percentage converged with pos­
itive variances in simulations of maximum likelihood (1) and jackknife 
(2) solutions for the two factor - 4 variables per factor model (M3). 

() 

0.1 1.0 
n n 

10 30 50 10 30 50 
% (1) conv 99.9 100.0 100.0 83.8 100.0 100.0 
% (2) conv 99.9 100.0 100.0 83.8 100.0 100.0 

% (1) conv with +var 74.3 100.0 100.0 63.4 99.0 100.0 
% (2) conv with +var 40.4 99.8 100.0 16.3 95.4 99.7 
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Table 4.1. Comparison of the simulated bias (top) 
and the Taylor's series approximation of bias 
(bottom) of maximum likelihood estimates for a 
one factor - 4 variables per factor model (M2). 

umbers are multiplied by 100. 

8 
0.1 1.0 

n n 

10 30 50 10 30 50 
,\2 1.65 0.40 0.02 11.80 7.09 4.25 

1.17 0.36 0.21 16.67 5.17 3.06 
,\3 1.63 0.58 0.06 18.64 6.87 4.38 

1.17 0.36 0.21 16.67 5.17 3.06 
,\4 1.43 0.55 0.33 13.87 6.69 4.87 

1.17 0.36 0.21 16.67 5.17 3.06 
¢ 2.87 1.49 0.00 24.81 6.77 3.45 

1.17 0.36 0.21 16.67 5.17 3.06 
81,1 -0.98 -0.33 -0.36 -19.83 -5.09 -2.12 

-1.17 -0.36 -0.21 -16.67 -5.17 -3.06 
82,2 -0.97 -0.31 -0.17 -14.28 -5.22 -4.16 

-1.17 -0.36 -0.21 -16 .67 -5.17 -3.06 
83,3 -0.81 -0.32 -0.23 -16.20 -4.04 -3.65 

-1.17 -0.36 -0.21 -16.67 -5.17 -3.06 
84,4 -1.17 -0.58 -0.30 -16.15 -5 .64 -2.19 

-1.17 -0.36 -0.21 -16.67 -5.17 -3.06 
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Table 4.2. Simulated percentage bias and variance ratio (compared to max­
Imum 
likelihood 0 of the Taylor's series biased reduced estimates 
0 of the parameters for the one factor - 4 variables per factor 
model (M2). The .A's and ¢are always 1. ()1? ... , B4 =B. The 
percentage of solutions converged with positive variances is 
given in the last row. 

() 

0.1 1.0 
n n 

10 30 50 10 30 50 
).2 -0.0 0.0 -0.2 -221.0 -2.7 -0.1 

V(.\2)/V(~2) 0.9 1.0 1.0 760.8 0.5 0.7 
).3 -0.1 0.2 -0.2 -169.7 -2.5 -0.1 

V ( 5.3) /V( ~3) 0.8 1.0 1.0 195.8 0.5 0.7 
).4 -0.3 0.2 0.1 -124.8 -2.8 0.4 

V( 5.4) /V( ~4) 0.8 1.0 1.0 233.5 0.5 0.7 
¢ 1.8 1.1 -0.2 -45.1 1.6 0.4 

V(~)/V(~) 1.0 1.0 1.0 186.1 1.0 1.0 
()1 0.6 0.2 -1.5 50.1 0.1 0.9 

V(8I)jV(OI) 1.2 1.1 1.0 301.4 1.0 1.0 
()2 0.7 0.4 0.4 12.9 0.0 -1.2 

V( 82) /V( 02) 1.2 1.1 1.0 31.1 1.0 1.0 
()3 2.4 0.3 -0.3 24.9 1.0 -0.6 

V( 83)/V( 03) 1.2 1.1 1.0 27.7 1.0 1.0 
()4 -1.5 -2.4 -0.9 17.9 -0.5 0.9 

V( 84) /V( 04) 1.2 1.1 1.0 47.6 1.0 1.0 
% conv with +var 83.8 99.9 100.0 69.8 99.3 99.9 
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Chapter 6 

Appendix B Derivatives and 
expectations 

6.1 Loglikelihood 

The distributional assumption for the data is: 

XI, . .. , XN iid MVN(JL, E), 

where E = E(B) and MVN denotes the multivariate normal distribution. 

The analysis is in terms of deviations from the mean so there are only n = 

N- 1 independent deviates defined as follows. Let Z i =xi -:X, then 

ZI, ... , Z n iid MVN(O, E). 

Note that nS = L:i=I Z i Z~. The loglikelihood of z1 , ... , Z n is 

where k1 is a constant. The analysis is in terms of covariance structures so the 

loglikelihood can be expressed in terms of S - the sample covariance matrix. 

If si,j is the (i,j)th element of S then the loglikelihood of s 1 ,1 , s 1 ,2 , ... , sp,p (from 

the Wishart distribution) is 
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where k 2 is a constant . Both loglikelihoods can be written as 

where k is a constant. The constants k1 and k2 change for L 1 and L 2 but the 

derivatives with respect to parameters will be the same as for L . 

6.2 Matrix derivatives 

The chain rule is used for differentiating a function f of a matrix (Graham 

1981) . Let ai,j be the (i,j)th element of an n x n matrix A and ai,j is a 

function of bs say. Then 

of( A ) = t t of( A) oai,j. 

obs i = 1 i=1 oai,j obs 

Other results required are (Graham 1981) : 

otr(A ) 
[)A 

ologi A I 
[)A 
[)A - 1 

oa · . t,J 

I, 

(A-1)', 

[)A 
- A-1--A-1. 

oai,j 

where A is symmetric matrix functional. 

6.3 Other matrix results 

1. If A ism X nand A = [a1 , . .. , a n] then define the vee operator (Graham 

1981) as 

vec(A )mnxl = 
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2. If A is an m x n matrix and B is an r x s matrix then the Kronecker 

product (direct product or tensor product - Graham 1981) of A and B 

lS 

am,1 B am,2 B 

A 0 B is a matrix of order (mr x ns). 

3. tr(AB) = vec(A ')'vec(B ). 

4. vec(AXB) = (B ' 0 A )vec(X ) . 

6.4 First order derivatives 

To compute the first order derivatives of L = L( E ( 0)) with respect to ()i 

( ;~, i=l, ... ,p) make the substitution U = s.E- 1 in L. Using the standard 

matrix derivative results given in the previous section, 

aL 
- n (I - (U -1)') and 

a u 2 
a u 

- s..E -1 ~~ E -1. 
aBi 

Using the chain rule gives 

!~ =; tr { E -'cs - E )E-• ~~ } . 
An alternative version of this formula is 

aL _ n avec( E )'( _ ) 
aB . - 2 aB . 's ' ' 

' ' 
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~ is the multivariate score function and is used to compute maximum like­

lihood estimates. 

6.5 Second order derivatives 

a2 L . d f 11 L A avec( ..E) d W ~ IS compute as o ows. et ..u i = (} an 
aBa(} aBia 

First compute: 

- WL1 , 

Then 

where I* is a p2 x p2 identity matrix Note that E( 1 8 ) = 1 so that 

The matrix I is known as Fisher's information matrix, the inverse of this 

matrix is a large sample approximation of the covariance matrix of the max­

imum likelihood estimates of (} . 

6.6 Third order derivatives 

~ ~L · ~L 
_1_0 compute (} () ' rewnte - 8 () ' as 

aBk a a a a 

82 
L n { · 1 • 1 } 

8 (}8 ()1 = 2 [L1I(Is -1), .. . , L1p(ls -1)]- L1
1
WV L1 , 

where V = (I ® s...E- 1
) + (S..E- 1 0 I ) - I*. First compute 
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Let h k be the kth column of ..::1 . Then 

Taking expectations yields 

6. 7 Some additional expectations 

It may be necessary to compute E (%t 8~:~,) . This will be done elementwise. 

In doing so the following result is required 

where R is a pxp symmetric matrix and Q is a pxp matrix . This expectation 

is computed as follows. Write 

n n 

tr( .E-1 S.E- 1 Q )tr(.E- 1 S.E-1 R ) = n- 2 tr(2:: ziz:Q*)tr(I: ziz:R *) 
i = l i = l 

Hence 

n n 

n-2 L 2:: (z:Q*zi)(zjR*zj ), 
i=l j=l 
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Taking the expectation of {.} yields 

n(n- l)tr(Q*)tr(R*) + nE ((z'Q*z)(z'R*z)), 

where z rv MVN(O, I). It is not difficult to show that the last expectation 

is tr(Q*)tr(R*) + 2tr(Q*R*) where R* is symmetric. Using the last two 

expectations yields the required result 

2 
tr(Q*)tr(R*) + -tr(Q*R*), 

n 
2 

tr(E- 1 Q)tr(E-1 R) + -tr(E-1 QE-1 R). 
n 

Returning to the computation of E (:t 8~:~~), write 

Using :t from the section First order derivatives gives 

8L 82 L 
arh aeiaej 

Using the expectation results derived previously gives 
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Hence 

E 8L 82 L 
( 8fh 8888') 
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