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Abstract 

 
Purpose – The paper presents an inverse analysis procedure based on a coupled 

numerical formulation through which the coefficients describing non-linear thermal 

properties of blood perfusion may be identified. 

 
Design/methodology/approach – The coupled numerical technique involves a 

combination of the Dual Reciprocity Boundary Element Method and a Genetic 

Algorithm for the solution of the Pennes bioheat equation. Both linear and quadratic 

temperature-dependent variations are considered for the blood perfusion.  

 
Findings – The proposed DRBEM formulation requires no internal discretisation and, 

in this case, no internal nodes either, apart from those defining the interface 

tissue/tumour. It is seen that the skin temperature variation changes as the blood 

perfusion increases, and in certain cases flat or nearly flat curves are produced. The 

proposed algorithm has difficulty to identify the perfusion parameters in these cases, 

although a more advanced GA may provide improved results.  

 

Practical implications – The coupled technique allows accurate inverse solutions of 

the Pennes bioheat equation for quantitative diagnostics on the physiological 

conditions of biological bodies and for optimisation of hyperthermia for cancer 

therapy.  

 
Originality/value – The proposed technique can be used to guide hyperthermia 

cancer treatment, which normally involves heating tissue to 42-43
o
C. When heated up 

to this range of temperatures, the blood flow in normal tissues, e.g. skin and muscle, 

increases significantly, while blood flow in the tumour zone decreases. Therefore, the 

consideration of temperature-dependent blood perfusion in this case is not only 

essential for the correct modelling of the problem, but should provide larger skin 

temperature variations, making the identification problem easier 
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Introduction 
It is well known that the body surface temperature is controlled by blood circulation, 

local metabolism and heat transfer between the skin and the environment (Deng and 

Liu, 2004a). It is also known that several types of tumours, e.g. skin or breast, can 

lead to an increase in local blood flow, and thus to an increase in the local temperature 

(Liu and Xu, 2000). On the other hand, thrombosis or vascular sclerosis decreases the 

blood flowing to the skin, resulting in lower skin temperatures (Liu and Xu, 2000). 

The Pennes bioheat equation can be used for the quantitative diagnostics of 

physiological conditions on biological bodies, e.g. for simulations of regional 

hyperthermia for cancer therapy (Tompkins et al., 1994; Erdmann et al., 1998; Lang 

et al., 1999). The parameters considered in Pennes’ equation are usually assumed to 

be constant except for the blood perfusion, which varies with temperature (Tompkins 

et al., 1994; Erdmann et al., 1998; Lang et al., 1999; Rai and Rai, 1999; Liu and Xu, 

2000). Herein, a numerical technique for identification of the temperature-dependent 

blood perfusion parameters in Pennes’ equation is proposed based on the Dual 

Reciprocity Method (DRM), which has already been used for the direct solution of the 

bioheat equation (Deng and Liu, 2000; Deng and Liu, 2004a; Deng and Liu, 2004b; 

Lu et al., 1998; Liu and Xu, 2000). It is assumed that the size and location of the 

tumour are known from previous diagnostics; in the DRM, the tumour is treated as a 

sub-region and in addition to the nodes used to model the boundary of the tumour, no 

other internal points are required.  

Previous works on inverse analysis of biological bodies were carried out by 

Ren et al. (1995), who applied the Boundary Element Method (BEM) to identify heat 

sources in biological bodies based on the simultaneous measurement of temperature 

and heat flux at the skin surface, by Majchrzak and Paruch (2004), who estimated the 

(constant) thermophysical parameters of a tumour using a least-squares algorithm 

based on sensitivity coefficients, and by Partridge and Wrobel (2007), who presented 

a BEM inverse analysis based on a Genetic Algorithm (GA) (Goldberg, 1989; 

Goldberg et al., 1997) to identify the position and size of shallow tumours using skin 

temperature measurements. 

This paper extends the algorithm developed by Partridge and Wrobel (2007) 

for the identification of the coefficients of linear and quadratic variations of blood 

perfusion. A simple GA, as described in the literature (Castro and Partridge, 2006), is 

adequate for the problem. A cubic radial basis function is employed as an 

approximation function for the DRM, with linear augmentation (Golberg and Chen, 

1994; Bridges and Wrobel, 1996; Partridge, 2000).  Results of the evolution of the 

calculations using the GA are given for one of the cases considered. 

The DRM formulation for the bioheat equation is considered in the next 

section. This is followed by some results of direct analyses, which illustrate the use of 

the DRM and the relationship between the parameters adopted to model blood 

perfusion and the temperature distribution on the skin surface. Then, the parameter 

identification problem is described and the results of some inverse analyses are 

presented, considering linear and quadratic expansions for the blood perfusion rate. 

The advantages and limitations of the proposed technique are also discussed. 

 

Application of the Dual Reciprocity Method to the Bioheat Equation  
The Pennes bioheat equation can be written in the following form (Deng and Liu, 

2000; Deng and Liu, 2004a; Deng and Liu, 2004b; Lu et al., 1998; Liu and Xu, 2000),  
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where ρ , c and k  denote density, specific heat and thermal conductivity of tissue; 

bρ , bc  are density and specific heat of blood, bω  is the blood perfusion rate, aT  is 

the arterial blood temperature and Q  is metabolic heating. Equation (1) is subject to 

the usual boundary conditions for thermal problems, (i) prescribed temperature 

TT = ; (ii) prescribed heat flux, qq = . Equation (1) can be written, in steady-state 

form, as 
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Equation (2) is a Poisson-type equation with two inhomogeneous terms, the 

first of which is dependent on the problem variable T , the other term being a function 

of space but not of the problem variable. Herein, this equation is solved using the 

DRM (Partridge et al., 1992) in which the fundamental solution to the Laplace 

equation, )/1log(2/1* ru π= , is employed to treat the term on the left-hand side of 

equation (2) and the inhomogeneous terms are taken to the boundary using the 

standard DRM (Partridge et al., 1992), leading to the system of equations: 

 

                                                α)ˆˆ( QGUHGqHT −=−                                             (3) 

 

where the symbols have their usual meaning (Partridge et al., 1992). As the term b  in 

equation (2) is a function of the problem unknowns, equation (3) can be rewritten as 

 

                                              bFQGUHGqHT
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where the F  matrix is calculated from the definition of the approximating functions. 

Replacing 1)ˆˆ( −−= FQGUHS  in equation (4), one obtains 

 

                                                         SbGqHT =−                                                     (5) 

 

In the linear case (used here for the healthy tissue), it is possible to define 

kcc bbb /1 ρω=  and ( ) kQTcc abbb /2 +−= ρω , and equation (5) can be written in the 

form: 
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or 

 

                                                  ScGqTScH 21 )( =−−                       (7)      

                                                                         

For a direct, well-posed problem, boundary conditions (temperature or heat 

flux) are applied to equation (7) in the usual way to produce 
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Equation (8) may finally be solved for the unknown boundary values contained in 

vector x. 

Considering the temperature-dependence of the tumour’s perfusion, 
bω , the 

parameters 1c  and 2c  are redefined as follows: 
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where kcc bb /3 ρ=  and kTcc abb /4 ρ= . When considering a quadratic variation for 

bω , 
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parameters 1c  and 2c  assume the form 
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Defining a diagonal matrix R  with the non-zero terms given by 

)( 2

iii TTR γβα ++= , where 
iT  are known values of 

iT  taken from a previous 

iteration and i  is the column and row number of the main diagonal, equation (11) can 

be rewritten as 
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Replacing the above expressions into equation (6) finally gives 
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Taking the term with the unknown value of T to the left-hand side in the usual 

way produces the final equation: 
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The above equation is solved by iterating on the values of iT  in matrix R.  If a first-

order expansion is considered for bω , γ  is equal to zero in equations (10) and (11). 



A cubic radial basis function, 3r , is used in the DRM approximation, with 

linear augmentation terms 1, x and y. The relevant particular solutions are given by 

(Golberg and Chen, 1994; Bridges and Wrobel, 1996; Partridge, 2000): 

 
3rf = , 25/ˆ 5
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The above choice is justified by the results of the tests carried out by Partridge and 

Wrobel (2007) with several radial basis functions, including the ‘classical’ function  r  

and the thin plate spline 2r log r, with and without augmentation. Results obtained 

using each of these functions were found to differ little. The tests in Partridge and 

Wrobel (2007) also showed that no internal points appear to be necessary in the DRM 

formulation for this type of problem.  More details about the implementation of 

augmentation functions are given by Bridges and Wrobel (1996). 

 

Direct results for different values of the blood perfusion parameters 

Considering Figure 1, the external boundary, ABCD or 2Γ , is a vertical section 

through the skin tissue, the part AD being at the skin surface while the opposite 

boundary BC is considered to be an internal boundary maintained at body 

temperature, T = 37
o
C. The boundaries AB and CD are truncation boundaries, at 

which the boundary condition 0=q W/m
2
 is considered. If the boundary AD is 

assumed to have a zero flux boundary condition, this is equivalent to thermal isolation 

on that boundary, for instance a bandage. The internal boundary or 1Γ  in Figure 1 is 

considered to divide the domain into two parts, 2Ω  the external part and 1Ω  which is 

a sub-region. On the boundary 1Γ  the usual compatibility and equilibrium conditions 

apply, i.e. 21 TT =  and 21 qq −= .  The thickness of the skin is assumed to be 0.03m 

and a section of length 0.08m is considered. In what follows, the parameters 1c  and 

2c  given in equation (6) are considered to be constant on 2Ω , and taken to be the 

values for healthy tissue. However, in the sub-region 1Ω , a nonlinear model is 

considered and different parameters are used for the blood perfusion, considering this 

sub-region to be a tumour.  

 



 
 

Figure 1. Tumour within a matrix of healthy tissue 

 

 

3.1 Results employing a first-order expansion 

With the boundary condition at the skin surface AD taken to be 0=q W/m
2
, values of 

the parameters necessary to calculate 1c  and 2c  for the healthy tissue are taken from 

Liu and Xu (2000): bρ  = 1000kg/m
3
, bc = 4000J/(kg 

o
C), k = 0.5 W/(m

 o
C), bω = 

0.0005 mlb/mlt/s and Q = 420 J/(m
3 

s). For the tumour, the same values of bρ , bc  and 

k are taken, with Q = 4200 J/(m
3 

s). The unit employed for the perfusion coefficient 

bω  is such that bρ bω  represents mass flow rate of blood per unit volume of tissue. 

Initially, a first-order expansion for the blood perfusion is considered, 

)( Tb βαω += . Following Deng and Liu (2000), possible variations which the 

coefficients α  and β  might take are as follows: (i) Tb 0001.00005.0 +=ω , (ii) 

Tb 0001.0005.0 +=ω  and (iii) Tb 0003.0005.0 +=ω . According to equation (9), the 

parameter bω  always appears multiplied by kcbb /ρ . Using the above numerical 

values gives the following expressions: (i) =1c )15(800 T+× , (ii) 

)150(8001 Tc +×=  and (iii) )350(8001 Tc +×= . Similar considerations are valid for 

the parameter 2c .   

The discretisation adopted involves 16 linear elements along the internal 

boundary 1Γ  and 56 linear elements along 2Γ . Sensitivity tests were performed with 

different discretisations; for instance, using half the above number, i.e. 8 linear 

elements along 1Γ  and 28 linear elements along 2Γ , produces results which are 

virtually the same as those in Table 1. 

Results for different first-order variations for the tumour perfusion are given in 

Table 1. The table shows temperature values at the skin surface, boundary AD in 

Figure 1. It can be seen that the temperature variation in all cases is very small. The 



results for curves B, C and D are flat or nearly so and the curvature changes for curves 

E and F, in the sense that the temperatures at the centre points are lower than at the 

end points.  

Since the temperature is almost constant in all cases, around 37
o
C, the average 

value of the tumour perfusion for the linear variations considered are 
bω = 0.00195 

mlb/mlt/s for curve A, 
bω = 0.0042 mlb/mlt/s for curve B, 

bω = 0.00655 mlb/mlt/s for 

curve C, 
bω = 0.094 mlb/mlt/s for curve D, 

bω = 0.0141 mlb/mlt/s for curve E and 
bω = 

0.0161 mlb/mlt/s for curve F. The values for curves D, E and F are high compared to 

average tumour perfusion values of bω = 0.002 mlb/mlt/s quoted in the literature (Liu 

and Xu, 2000), explaining the unexpected results obtained with these curves. 

  

 

 Table 1: Temperature variations (
o
C) at the skin surface considering first-order 

tumour perfusion 
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 Curve F 

0.035 37.17 37.15 37.15 37.14 37.14 37.13 

0.03 37.18 37.15 37.15 37.14 37.13 37.13 

0.025 37.19 37.15 37.15 37.14 37.13 37.13 

0.02 37.21 37.15 37.15 37.14 37.12 37.12 

0.015 37.23 37.16 37.15 37.13 37.11 37.11 

0.01 37.27 37.16 37.15 37.13 37.10 37.09 

0.005 37.29 37.17 37.15 37.12 37.09 37.08 

0.0 37.30 37.17 37.15 37.12 37.09 37.08 

-0.005 37.29 37.17 37.15 37.12 37.09 37.08 

-0.01 37.27 37.16 37.15 37.13 37.10 37.09 

-0.015 37.23 37.16 37.15 37.13 37.11 37.11 

-0.02 37.21 37.15 37.15 37.14 37.12 37.12 

-0.025 37.19 37.15 37.15 37.14 37.13 37.13 

-0.03 37.18 37.15 37.15 37.14 37.13 37.13 

-0.035 37.17 37.15 37.15 37.14 37.14 37.13 

 

 

3.2 Results employing a second-order expansion 

Next, a second-order temperature-dependence for the tumour perfusion is considered. 

Results in Table 2 also show slight temperature variations at the skin surface, 

boundary AD in Figure 1, for all expansions adopted, which were chosen in order to 

cover a range of values similar to those in the first-order case. It can be seen that the 

results for curve H are flat and that for curves I and J have a different curvature from 

curve G. The interpretation of these results is as discussed above. 

 

 

 

 

 



Table 2: Temperature variations (
o
C) at the skin surface considering second-order 

tumour perfusion 
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0.035 37.16 37.15 37.14 37.14 

0.03 37.16 37.15 37.14 37.13 

0.025 37.17 37.15 37.13 37.13 

0.02 37.18 37.15 37.13 37.12 

0.015 37.19 37.15 37.12 37.11 

0.01 37.21 37.15 37.11 37.09 

0.005 37.22 37.15 37.11 37.08 

0.0 37.23 37.15 37.11 37.08 

-0.005 37.22 37.15 37.11 37.08 

-0.01 37.21 37.15 37.11 37.09 

-0.015 37.19 37.15 37.12 37.11 

-0.02 37.18 37.15 37.13 37.12 

-0.025 37.17 37.15 37.13 37.13 

-0.03 37.16 37.15 37.14 37.13 

-0.035 37.16 37.15 37.14 37.14 

 

 

Procedure for identification of blood perfusion parameters  

GAs are ideally suited to the inverse problem of identifying the parameters used in the 

temperature-dependence expansions for blood perfusion (Ren et al., 1995; Majchrzak 

and Paruch, 2004). The method is of an evolutionary type, based on the process of 

natural selection, requiring no initial guess about the values of the parameters. It is 

necessary to know only the range of values that these might take in order to choose 

the number of bits to allocate in each chromosome. No calculations of derivatives, 

sensitivities or directions in which to search are required.  

In this work, a simple GA detailed in Castro and Partridge (2006) has been 

implemented. The geometry of each tumour is initially considered to be rectangular, 

of size 0.01 by 0.02m, with its centre at position (0.01, 0.0) as shown in Figure 1.  The 

size of the initial population of chromosomes is defined considering the range of 

values which the parameters used to calculate 1c  in Tables 1 and 2 might take. The 

highest first-order expansion, curve F, has )0.350(8001 Tc +×= . If this is written as 

)(800 211 Tppc +×= , then 1p  will take positive integer values up to 50 and the 

largest value of 2p  is 3, with an interval of 0.1 considered between successive values. 

Regarding the second-order expansions, )(800 2
3211 TpTppc ++×= , 1p  takes 

values up to 7, 2p  takes values up to 1.9, and an interval of 0.1 is considered between 

successive values. The highest value for parameter 3p  is 0.07, with an interval of 0.01 

between successive values.  

Thus, for the first-order approximation, and considering the values of the 

coefficients given in Table 1, the chromosome has two alleles; for 1p  and 2p  the first 

allele has 6 bits, 5063126 >=− , while the second has 5 bits, in such a way that the 



largest number which can be represented is 3.1 for intervals of 0.1. For the second-

order approximation, and considering the values of the coefficients given in Table 2, 

each chromosome has 3 alleles for the values 1p , 2p  and 
3p , the first and third 

alleles having 3 bits and the second 5 bits.  Thus, in both cases, the chromosome is of 

size 11. The parameter 1p  is calculated directly by converting the binary value of the 

allele to decimal; for 2p , the decimal value of the allele is divided by 10, and for 3p  

the decimal value is divided by 100. The population size was fixed at 20, which is 

within the guidelines established by Kahn (2002), who suggested that this value 

should be between l and l2  where l  is the size of the chromosome. 

After establishing an initial population, the values of 1p , 2p  and 3p  for each 

chromosome are obtained as considered above, and results for the temperature 

distribution at the skin surface (nodes along the part AD of the 2Γ  boundary in Figure 

1) are calculated using the DRBEM. The objective of the algorithm is to minimise the 

value of the sum of the squares of the differences between the temperatures calculated 

at the surface nodes and the predetermined values corresponding to given values of 

1p , 2p  and 3p . The chromosomes are ordered according to the value of the sum of 

the squares, with the smallest value first, the position in this new order being 

considered the fitness. Individuals are selected for crossover using the roulette wheel 

method described by Goldberg (1989), the fitter individuals having the greater 

probability of selection.  The probability of crossover is 80%. Two point crossover 

and mutation with a probability of 1% is carried out, following the results in Goldberg 

et al. (1997). A process of elitism is employed by which the best individual from one 

generation passes automatically to the next, in order to ensure that the best solution is 

not lost. A maximum of 100 generations is permitted; if the process has not converged 

after this, iterations are halted. The stopping criterion considered is that 80% of the 

individuals in the fitness table must have converged to the same value. The evolution 

of the results obtained using the GA is illustrated in the next section for one of the 

examples considered. 

 

Some results for the identification of perfusion parameters 
Considering the geometry shown in Figure 1, in which a 0.08m section of tissue of 

thickness 0.03m is considered with the tumour in the position shown, the temperature 

values for part AD of the 2Γ  boundary for the inverse analysis are fixed using the 

values given in Tables 1 and 2. These values are compared with those calculated for 

each tentative set of perfusion parameters indicated by the chromosomes in the GA, 

and the sum of the squares of the differences minimised. Similar to the direct 

simulations, the boundary 2Γ  is discretised with 56 linear boundary elements and the 

boundary 1Γ  with 16.  

 

5.1 Results considering a first-order approximation  

It is considered that 1c  in equation (11) is given by )(800 211 Tppc +×=  and the 

parameters 1p  and 2p  are identified. The temperature values used as input on the skin 

surface are taken from Table 1.  

 

Case 1.  In this case, the data for the measured temperatures on the skin surface are 

taken from curve A. The results produced by the GA were 11 =p  and 6.02 =p , and 



converged in 31 generations. The data used to generate the values at the skin surface 

are 11 =p  and 5.02 =p . 

No convergence was obtained for curves B to D as these curves are flat or 

nearly flat, and the resulting surface temperatures constant or nearly constant. 

 

Case 2.  In this case, the data for the measured temperatures on the skin surface are 

taken from curve E. Although the results are physically unrealistic since the tumour 

perfusion is too high, it is possible to identify the perfusion parameters due to the 

surface temperature variations. The results produced by the GA were 311 =p  and 

9.22 =p , and converged in 21 generations. The data used to generate the values at 

the skin surface are 301 =p  and 32 =p . The evolution of the results obtained using 

the GA is considered at the end of the section. 

 

Case 3.  In this case, the data for the measured temperatures on the skin surface are 

taken from curve F. The results produced by the GA were 561 =p  and 9.22 =p , and 

converged in 21 generations. The data used to generate the values at the skin surface 

are 501 =p  and 32 =p . 

    

5.2 Results using a second-order approximation 

It is considered that 1c  in equation (11) is given by )(800 2
3211 TpTppc ++×=  and 

the parameters 1p , 2p  and 3p are identified. The temperature values used as input on 

the skin surface are taken from Table 2. 

 

Case 4.  In this case, the data for the measured temperatures on the skin surface are 

taken from curve G. The results produced by the GA were 01 =p , 6.02 =p  and 

01.03 =p . Results converged in 25 generations. The data used to generate the input 

on the skin surface are 31 =p , 5.02 =p  and 01.03 =p . 

No convergence was obtained for curve H as this curve is nearly flat, and the 

resulting surface temperatures nearly constant. 

 

Case 5.  In this case, the data for the measured temperatures on the skin surface are 

taken from curve I. The results produced by the GA were 21 =p , 2.12 =p  and 

05.03 =p . Results converged in 21 generations. The data used to generate the values 

on the skin surface are 21 =p , 5.12 =p  and 04.03 =p . 

 

Case 6.  In this case, the data for the measured temperatures on the skin surface are 

taken from curve J. The results produced by the GA were 21 =p , 1.22 =p  and 

07.03 =p . Results converged in 32 generations. The data used to generate the values 

on the skin surface are 71 =p , 9.12 =p  and 07.03 =p . 

 
5.3 Evolution of GA results for Case 2 

As the initial population in the GA is generated randomly, the predicted values of 1p  

and 2p  display a large scatter, as shown in Figure 2a. There is already considerable 

improvement after 5 generations (Figure 2b), and much improvement after 10 

generations (Figure 2c), with 70% of chromosomes predicting the solution 301 =p , 



9.22 =p . The process is considered to have converged after 21 generations (Figure 

2d), with 85% of the solutions producing the same values 311 =p , 9.22 =p , 

compared to the correct solution 301 =p , 32 =p . In this case, however, we extended 

the simulations to obtain convergence of 100% of the chromosomes; the converged 

values, 311 =p , 9.22 =p , were obtained after 36 generations (Figure 2e). 
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b. Generation 5 
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c. Generation 10 
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d. Generation 21 
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e. Generation 36 

 
Figure 2. Evolution of GA results for curve E in Table 1 

 



5.4 Results for a circular tumour 

A circular tumour of radius 0.01 was next analysed. The centre of the tumour was 

located at position (0.015, 0.0), and its discretisation used 16 nodes. The total 

discretisation thus has the same number of nodes and elements as for the rectangular 

tumours. 

Initially, a direct simulation was carried out to obtain the temperature 

distribution at the skin surface using first-order tumour perfusion. Results for three 

different cases are shown in Table 3. The curve labels refer to the variations defined 

in Table 1. 

 

Table 3: Temperature variations (
o
C) at the skin surface for a circular tumour 

considering first-order perfusion 

 

y at skin surface Curve A Curve E Curve F 

0.035 37.17 37.14 37.14 

0.03 37.18 37.14 37.13 

0.025 37.19 37.13 37.13 

0.02 37.21 37.13 37.12 

0.015 37.24 37.12 37.11 

0.01 37.27 37.11 37.10 

0.005 37.31 37.10 37.09 

0.0 37.32 37.09 37.08 

-0.005 37.31 37.10 37.09 

-0.01 37.27 37.11 37.10 

-0.015 37.24 37.12 37.11 

-0.02 37.21 37.13 37.12 

-0.025 37.19 37.13 37.13 

-0.03 37.18 37.14 37.13 

-0.035 37.17 37.14 37.14 

 

It can be seen, by comparison with Table 1, that the results differ little from those for 

a rectangular tumour.  

For the inverse analysis, data for the measured temperatures on the skin 

surface are initially taken from curve A in Table 3. The results produced by the GA 

were 01 =p  and 6.02 =p , and converged in 31 generations. The data used to 

generate the values at the skin surface are 11 =p  and 5.02 =p . 

Next, skin temperature data are taken from curve E. The results produced by 

the GA were 251 =p  and 1.32 =p , and converged in 43 generations. The data used 

to generate the values at the skin surface are 301 =p  and 32 =p . Finally, skin 

temperature data are taken from curve F. The results produced by the GA 

were 471 =p  and 0.32 =p , and also converged in 43 generations. The data used to 

generate the values at the skin surface are 501 =p  and 32 =p . 

 

Conclusions 
In this paper, the DRBEM was coupled to a GA in an inverse procedure for 

identifying parameters of a temperature-dependent approximation for the tumour 

perfusion, considering temperature data on the skin surface.  The procedure has the 

advantage of not requiring the calculation of derivatives or sensitivities, or an initial 



estimate of these values. The DRBEM formulation requires no internal discretisation, 

and in this case no internal nodes either, apart from those defining the interface 

tissue/tumour. The technique can be directly extended to more realistic three-

dimensional inverse analysis estimations, at an increased computational cost. 

It is seen that the skin temperature variation changes as the blood perfusion 

increases, and in certain cases flat or nearly flat curves are produced. The proposed 

algorithm has difficulty to identify the perfusion parameters in these cases, although a 

more advanced GA may provide improved results.  

Hyperthermia cancer treatment normally involves heating tissue to 42 - 43
o
C. 

This is achieved through the use of electromagnetic waves, and should be designed to 

avoid ‘hot spots’ in healthy tissue and ‘cold spots’ in the tumour region. When heated 

up to this range of temperatures, the blood flow in normal tissues, e.g. skin and 

muscle, increases significantly, while blood flow in the tumour zone decreases 

(Erdmann et al., 1998). Therefore, the consideration of temperature-dependent blood 

perfusion in this case is not only essential for the correct modelling of the problem, 

but should provide larger skin temperature variations, making the identification 

problem easier.  
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