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Abstract 

Starches from different cultivars of black beans, pinto beans, smooth peas, lentils 

and wrinkled peas were isolated and their composition, physicochemical properties and 

susceptibility towards porcine pancreatic a-amylase were determined. 

The yield of starch ranged from 16.4 to 34.1% on a whole seed basis. The shape 

of the granules in black bean, pinto bean, smooth pea and lentil varied from round to oval 

to irregular, while compounds in rounded rosette were observed for wrinkled pea starch. 

Bound and total lipids ranged from 0.26 to 0.80% and 0.35 to 0.84%, respectively. The 

total amylose content of black bean, pinto bean, smooth pea and lentil were in the range 

of 30.5-39.3%, whereas that of wrinkled pea was much higher (78.4%). The percentage 

of lipid-complexed amylose in native starches ranged from 10.3 to 12.2%. The X-ray 

diffraction pattern was of the 'B' type in wrinkled pea starch and of the 'C' type in the 

other starches. The relative crystallinity and the 'B' polymorphic content ranged from 

17.7 to 33.4% and 27.1 to 92.2%, respectively. Wrinkled pea starch exhibited the lowest 

relative crystallinity (17.7%) and the highest 'B' polymorphic content (92.2%). 

The swelling factor (SF) and the extent of amylose leaching (AML) of native 

starches were in the range of 3.4-17.7 and 11.0-17.8%, respectively. The gelatinization 

temperatures (T0 , Tp,, Tc) and enthalpy (ilH) of native starches (with the exception of 

wrinkled pea starch) were in the range of 60.0-65.7°C, 66.0-76.5°C, 76.4-88.8°C, and 

14.6-20.1mJ/mg, respectively. Differences in SF, AML, T0 , Tp, Tc, and LlH between 

cultivars of the same species were more pronounced in black bean and lentil starches. 

Wrinkled pea starch did not show an endothermic peak indicating that starch chain 

interactions within the amorphous domains were more extensive in wrinkled pea starch. 
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All starches exhibited a biphasic hydrolysis pattern, i.e a relatively rapid rate 

initially followed by a progressively decreasing rate thereafter. Wrinkled pea starch 

exhibited a much higher initial hydrolysis velocity than did the other starches. Cultivars 

of black bean and lentil showed significant differences in their initial velocities. 

However, differences in initial velocity between cultivars of smooth pea and pinto bean 

were not significant. Black bean, lentil and wrinkled pea starches showed a plateau at 93, 

85 and 65% hydrolysis, respectively. The time taken for the appearance of the plateau 

was identical for the black bean cultivars, but was different for the lentil cultivars. Pinto 

bean and smooth pea cultivars showed no plateau. At the end of the assay period (120h), 

cultivars of each legume species were hydrolyzed to the same extent, and the extent of 

hydrolysis among the legume species followed the order: black bean > lentil > smooth 

pea > pinto bean > wrinkled pea. Scanning electron micrographs showed that starches 

were slightly eroded during the initial hydrolysis stage (<20% hydrolysis), but the 

integrity of most of the granules was well maintained. However, roughened surfaces and 

disc like depressions were obvious for all starches, except for lentil starch. No 

morphological differences were observed between cultivars from the same species for 

both native and hydrolyzed starches. The X-ray diffraction pattern and the 'B' 

polymorphic content of all starches remained unchanged upon hydrolysis. However, the 

relative crystallinity increased in wrinkled pea, but remained unchanged in the other 

starches. On hydrolysis, the apparent amylose content decreased in all starches. The 

extent of this decrease was most pronounced in wrinkled pea. In all starches, the enthalpy 

of gelatinization decreased, and the gelatinization transition temperatures increased 

slightly, on hydrolysis. 
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This study demonstrated that differences in the composition and physicochemical 

properties of starch between cultivars from the same species were marginal. The rate and 

extent of hydrolysis were influenced mainly by structural organization and interactions of 

the starch chains within the native granule, as well as by the extent of association 

between hydrolyzed amylose chains. 

Keywords: Legume starches; physicochemical properties; a-amylase hydrolysis. 
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Chapter 1 Introduction 

1.1 Legumes - General information 

Legumes are dicotyledonous seeds of leguminous plants which belong to the 

Leguminosae family (Hoover and Sosulski, 1991). Leguminosae, containing about 650 genera 

and 18,000 species, is the third largest family of all flowering plants, after the Compositae and 

the Orchidaceae. Leguminosae comprises three sub-families: Caesalpinioideae, Mimosoideae 

and Papilionoideae. Papilionoideae is the largest and comprises 32 tribes compared with 5 in the 

Caesalpinioideae and 5 also in the Mimosoideae (Smartt, 1990; Sprent, 2001 ). Legumes are 

cultivated throughout the world and play an important role in the diets of many people. 

1.1.1 Classification and production 

In accordance with present Food and Agriculture Organization (F AO) practice, the word 

legume is used for all leguminous plants. For those containing only small amounts of fat, such as 

French beans, lima beans, etc., the term "pulse" is used and for those containing a high 

proportion of fat, such as soybeans and peanuts, the term "leguminous oilseed" is used. Although 

there are many legume species, only about 20 are commonly grown in different continents of the 

world and used for human consumption (Table 1-1 ). Of the various food legumes, soybean, 

peanut, dry bean, pea, broad bean, chickpea, and lentil are the major ones cultivated. Others are 

grown only in some countries, depending on the climatic conditions needed to support growth 

and the food habits of the consumers (Salunkhe and Kadam, 1989). 



Table 1-1 

Most common food legumes grown in the world (Salunkhe and Kadam, 1989) 

Scientific name 

Arachis hypogaea l. 

Cajanus cajan (L.) Milisp. 

Cicer arietinum L. 

Glycine max (l.) Merr. 

Lablab purpureus (L.) Sweet 

Lathyrus sativus l. 

Lens culinaris Medik. 

Lupinus a/bus L. 

Lupinus angustifolius L. 

Lupinus luteus L. 

Macrotyloma uniflorum (Lam.) Verde. 

Phaseolus lunatus L. 

Phaseo!us vulgaris l. 

Pisum sativum L. 

Psophocarpus tetragonolobus ( L.) 

Vicia faba L. 

Vigna aconitifofia (Jacq.) Marechal 

Vigna mungo (L.) Hopper 

Vigna radiata (L.) Wilczek 

Vigna umbelfata (Thumb.) 

Vigna unguiculta (L.) Walp. ssp. 

unguicufata 

Voandzeia subterranea (L.) Thouars 

Common name 

Groundnut, peanut 

Pigeonpea, red gram, Congo pea, Arhar, Tur, Gongo pea 

Chickpea, Bengal gram, garbanzo gram 

Soybean, soya 

Hyacinth bean, Egyptian bean, Val. 

Khesari, chickling vetch, grasspea 

Lentil, Masur 

White lupine 

Blue lupine, New Zealand blue lupine 

European yellow lupine 

Horse gram, Madras gram, Kulthi 

Lima bean, butter bean 

Bean, common bean, French bean, field bean, haricot bean, 

pinto bean, navy bean, dry bean 

Common or garden pea, dry pea 

Winged bean, Goa bean, four-angled bean, Manila bean, 

princess pea 

Broad bean, faba bean, horse bean 

Moth bean, mat bean 

Urd, black gram 

Green gram, golden gram, mung bean 

Rice bean, mambi bean 

Cowpea, black-eyed pea, crowder 

pea 

Bambarra groundnut 
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The total pulse production of the world in 2002 was 55,164,796 tons (Table 1-2). Canada 

and the EU are the main pea-producing countries and the Indian subcontinent and South America 

are the main regions producing dry beans (Phaseolus ssp. and Vigna spp.). The main region 

consuming pulses is the Indian subcontinent. In 1999, the food supply of pulses in Asia and India 

represented 56 and 36% of the world food supply of pulses, respectively. Africa and the 

Americas used 18 and 20% ofthe world supply, respectively (Schneider, 2002). 

In Canada, pulses are mainly cultivated in Saskatchewan, Manitoba and Ontario. There 

has been a tremendous increase in pulse production during the past decade (Table 1-3). Canada is 

the world's largest exporter of dry pea and lentils and in 2000-2001, Canada also became the 

largest exporter of chickpeas. It also holds a significant share of the world's export of dry bean 

(Agriculture and Agri-Food Canada, 2003b). 

1.1.2 Composition of legume seeds 

The composition of legumes is governed by the cultivar, geographic location and growth 

condition. Simplified compositions of some legumes are summarized in Table 1-4; protein, 

carbohydrate and lipid are the major components. Generally, the composition of legumes 

includes approximately 15-45% protein, 24-68% carbohydrate and 0.8-49.7% lipid. Starch is the 

most abundant carbohydrate in legume seeds (22 - 45% ). Some legumes such as peanuts, soy 

beans and chickpeas, are particularly high in their lipid and protein content, and contain about 

45, 20 and 5% lipid, respectively, whereas soy beans, in addition, contain the highest amount of 

crude protein ( ~45%). 

3 



Table 1-2 
World pulse production (Food and Agriculture Organization, 2003) 

Continent Production (MT) 1 

Africa 

Asia 

Europe 

North & Central America 

Oceania 

South America 

World Total 
1. Million metric tons 

Table 1-3 

9,208,194 

25,624,163 

8,343,476 

6,642,455 

1,393,020 

3,953,488 

55,164,796 

Canada pulse production (Agriculture and Agri-Food Canada, 2003a) 

Pulse Year 

Dry Pea 1991- 1992 

1996- 1997 

2003 - 2004f1 

Lentil 1991 - 1992 

1996- 1997 

2003 - 2004f1 

Dry Beans 1991- 1992 

1996- 1997 

2003 - 2004f1 

Chick pea 1991- 1992 

1996- 1997 

2003 - 2004f1 

1. Forecast 
2. Not available 

4 

Production (KT) 

410 

1,169 

2,254 

343 

403 

550 

136 

133 

270 

NA2 

4 

60 



1.1.3 Utilization and potential 

Legumes are consumed as food in many parts of the world. Despite their relatively 

unfavorable protein quality (Gupta, 1983; Augustin and Klein, 1989; Friedman, 1996; Savage 

and Deo, 1989), they are regarded as an important source of protein in many developing 

countries. Extensive studies have been carried out to explore their functional properties and their 

uses as flours, protein isolates and concentrates (Sosulski et al., 1976; Sosulski and Youngs, 

1979; Vose, 1980; Sumner et al., 1981; Sahasrabudhe et al., 1981). 

Legumes are also used as feed for animals. Pea is used extensively as a feed ingredient 

for cattle, swine, poultry and fish in Canada and the EU (Agriculture and Agri-Food Canada, 

2003b; Waldroup and Smith, 1989). 

Although starch is the most abundant carbohydrate in legume seeds, unlike other 

starches, such as wheat, com, potato, and rice whose structure and functional properties have 

been studied extensively and have wide applications in industry and food products, legume 

starches have not been subjected to intensive research and neither have they been used widely by 

the food industry. Some researchers (Hoover and Sosulski, 1985a; Tjahjadi and Breene, 1984) 

have ascribed this to their lack of availability and high retrogradation rates. It was recently 

reported that the high retrogradation rates of legume starches could be reduced by chemical 

modification (Hoover and Sosulski, 1985b; Hoover et al., 1988b) to levels that approach those of 

modified waxy maize starch. This, combined with their high thermal. stability, should render 

legume starches advantageous for use in the food industry (Hoover and Sosulski, 1991). 

Attention to legumes as a healthy food has been increasing recently. Firstly, legumes 

contain a relatively high fiber content (nondigestible food components) compared to other foods 

(Chen and Anderson, 1981), and this may be physiologically beneficial. Fermentation of the 

non-digestible food components (mainly dietary fiber and oligosaccharides) by anaerobic 

5 



Table 1-4 
Com osition of le ume seeds % 

Legumes Protein Fat Total Carbohydrate Starch -- - --
Groundnuts, peanuts 22.7 23.5-33.5 44.5 49.7 25.5 

Pigeon peas, red gram 19.8 18.8-28.5 1.3 2.19 65.2 57.3- 58.7 40.4-48.2 

Chickpeas 19.5 14.9-29.6 5.7 4.99 61.7 

Soybeans 34.3 33.2-45.2 18.7 21.3 31.6 25.4-33.5 0.2-0.9 

Lentils 24.7 20.4-30.5 1.0 1.17 61.2 59.7 34.7-52.8 

Lima beans 21.1 - 1.05 1.41 63.6 

Black beans 21.8 21.2- 31.3 1.4 1.64 63.5 56.5-63.7 32.2-47.9 

Great Northern beans 22.0 - 1.2 3.0 63.4 61.2-61.5 44.0 

Kidney beans 21.5 - 1.3 1.9 62.7 

Navy beans 22.0 - 1.5 - 63.2 58.4 27.0-52.7 

Pink beans 21.6 - 1.2 - 63.6 - 42.3 

Pinto beans 21.4 - 1.2 1.85 64.1 58.4 51.0-56.5 

Mung beans 23.6 - 1.4 - 61.6 53.3-61.2 37.0-53.6 

Cowpea, black-exed eeas 22.0 20.9-34.6 1.3 1.5-2.05 63.4 56.0-68.0 31.5-48.0 

References a b a b a b b 
a. Augustin and Klein ( 1989) 
b. Kadam et at. (1989) 
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bacteria in the intestine gives rise to gas formation and to the formation of lactic acid and volatile 

fatty acids (VF A). These acids are reported to promote rapid intestinal transit of faeces and a 

more bulky, softer stool (Hellendoom, 1978, 1979). Lack of fiber in the western diet is believed 

to result in constipation, and to be a main factor in the appearance of diverticular and colon­

related diseases. Hellendoom (1969, 1973, 1976, 1978, 1979) suggested that the ingestion of 

appreciable amounts of beans along with other foods eases or relieves constipation, and reduce 

the incidence of other colon related diseases. 

Secondly, legumes are fairly resistant to attack by hydrolytic enzymes (Hoover and 

Sosulski, 1985a; Hoover and Sosulski, 1991; Hoover and Zhou, 2003; Dreher eta!., 1984) and 

contain high amounts of resistant starch (RS) (Juliano, 1999). As a consequence, legumes exhibit 

a lower digestion rates and slower release of glucose into the blood stream, resulting in reduced 

glycemic and insulinemic postprandial responses compared with other common foods such as 

cereal grains or potatoes (Jenkins et al., 1982, 1988; Tovar et al., 1992b; Bomet et al., 1997). 

This is quite attractive to nutritionists, since it is helpful in the dietary control of diabetes as well 

as arterial disease. Several researchers have studied the digestibility and RS formation of raw and 

processed legumes (Hoover and Sosulski, 1985a; Bjorck eta!., 1994; Jenkins et al., 1982; Tovar 

et al., 1992a; Tovar and Melito, 1996; Velasco eta!., 1997; Bravo et al., 1998; Skrabanja et al., 

1999; Mahadevamma et al., 2003). 

In addition, legumes also show potential in the prevention of cardiovascular disease 

(Anderson and Major, 2002), cancers (Mathers, 2002), as well as lowering serum cholesterol 

concentrations (Geil and Anderson, 1994). Once known as poor man's meat, legumes are now 

facing a revival and are recommended for frequent consumption (Leterme, 2002). 
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1.2 Objectives of this .research 

The literature is replete with information on the susceptibility of cereal starches (A type 

crystallinity) towards hydrolysis by a.-amylase. However, there is a dearth of information on the 

susceptibility of legume starches (C type crystallinity) towards hydrolysis by a.-amylase. 

Legume starches differ widely in their amylose content, crystallinity, B-polymorphic content and 

magnitude of starch chain associations within the granule interior. They make better substrates 

than cereal and tuber starches for gaining a deeper insight into the structural factors that 

influence a.-amylolysis due to the following reasons: 1) absence of pores on the granule surface 

(Hoover and Sosulski, 1985a); 2) absence ofphosphate groups (Hoover and Sosulski, 1991); 3) 

presence of only trace quantities of bound lipids (Hoover and Sosulski, 1991); and 4) uniformity 

in granule size (Hoover and Sosulski, 1991). Thus, a comparative study of the susceptibility of 

legume starches (belonging to both the same and different biotypes) towards a.-amylase may lead 

to the identification of structural factors that limit a.-amylolysis. 

Objectives of this research are: 

1) To determine the composition and physicochemical properties of black bean (Black 

Jack, CDC Nighthawk), pinto bean (Othello, Sierra), smooth pea (CDC Sonata, CDC 

Mozart), lentil (CDC Redwing, CDC Robin) and wrinkled pea starches; 

2) To study the susceptibility of the above starches towards porcine pancreatic a.­

amylase; 

3) To determine changes in granular morphology, apparent amylose content, thermal 

properties, relative crystallinity and 'B' polymorphic content of starches during the 

time course ofhydrolysis. 
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Chapter 2 Literature Review 

2.1 Starch- general information 

Starch is the second largest biomass, next to cellulose, produced on earth and is the major 

form of carbohydrate storage in green plants. Starch is abundant in many major agricultural 

crops and its content (dry basis) ranges from 40 to 90%, 65 to 85%, and 30 to 70% in cereals, 

roots and tubers, and pulses (legumes), respectively (Guilbot and Mercier, 1985). Most of the 

starches utilized world-wide come from a relatively small number of crops, the most important 

being maize, potato, wheat, and tapioca with smaller amounts from rice, sorghum, sweet potato, 

arrowroot, sago, and mung bean (Wang et al., 1998). Legume starches are not utilized widely in 

the food industry due to their poor functional properties (Sosulski et al., 1997; Ratnayake et al., 

2002). 

Chemically, starch consists of two types of macromolecule, amylose and amylopectin. 

Amylose is essentially a linear molecule (Buleon et al., 1998a) with a molecular weight of 5 x 

105 Da to 106 Da and is composed of anhydroglucose units connected through a. - 1,4 linkages. 

Amylopectin has a molecular weight of several millions and is a much branched polymer formed 

by anhydroglucose units mainly linked by a.- 1,4 bonds, but additionally with 2- 6% a.- 1,6 

linked branches (Hizukuri and Takagi, 1984; Takeda et al., 1984, 1986; Buleon et al., 1998a). 

"Normal" starches from most species contain about 25% amylose and 75% amylopectin 

(Eliasson and Gudmundsson, 1996). However, some mutant genotypes of maize (Zea mays), 

barley (Hordeum vulgare), and rice (Oryza sativa) contain as much as 70% amylose whereas 

other genotypes, called waxy, contain less than 1% amylose (maize, barley, rice, sorghum) 

(Buleon et al., 1998a). 

9 



2.2 Starch production and utilization 

The most common sources of starch are com, potato, wheat, tapioca ae.1d rice. Maize 

(com) is dominant in nearly all regions of the world, and wheat features only in Western Europe, 

and marginally North America and in Australia, while potato plays a role mainly in Europe, and 

tapioca essentially in Asia (Gordon, 1999). Legume starches have not been widely used due to 

their lack of availability and high retrogradation rates. 

The world starch production was about 48.5 million tons in 2000 (Table 2-1), including 

not only native and modified starches, but also the large volume of starch that is converted into 

syrups for direct use as glucose and isoglucose, and as substrates in the form of very high 

dextrose syrups (known as starch hydrolysates) for fermentation into organic chemicals, 

including ethanol. Maize is the main raw material in all three regions listed in the table, 

supplying over 80% of the global starch production, along with 8, 5 and 5% from wheat, potato 

and other materials, respectively. Within the global industry, the US is the largest starch 

producer, with 51% of world production. The EU contributes more than 17% of world output, 

second only to the US. 

Fig. 2-1 provides an overview of the wide range of products obtained from starch. LMC 

(2002) classified all starch products into four main categories: native and modified starches, 

ethanol, glucose and other syrup-based starch products. Products from these four categories 

accounted for 15, 40, 32 and 13%, respectively of the entire US starch output in 2002. 

Starch, as a renewable and biodegradable resource, is abundant, environmentally friendly, 

cost competitive, and versatile. The variations in starch source, composition and structure, and 

the diversities in properties, make starch suitable for various applications contributing to 

10 



Table 2-1 
Starch production by raw material in the EU, US and other countries, in 2000 (million metric tons) 

Maize Potatoes Wheat Other Total 

EU 3.9 1.8 2.8 0 8.4 

us 24.6 0.0 0.3 0 24.9 

Other countries 10.9 0.8 1.1 2.5 15.2 

World 39.4 2.6 4.1 2.5 48.5 
Source: LMC International Ltd, 2002 
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Figure 2-1 Products derived from starch 

Modified from Roper (2002) 
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Table 2-2 
Application of starch and starch derivatives in food and non-food industries. 

Industry 

Food 

Beverage 

Confectionery 

Adhesive 

Paper & Cardboard 

Textile 

Cosmetic 

Detergent 

Pharmaceuticals 

Plastics 

Biochemistry 

Other 

Uses 

Thickener for pie filling, puddings 

stabilizer for salad dressings, frozen foods 

binder for meat and pet foods 

moisture retainer for bakery and meat 
\ 

fat replacer for desserts, spreads, sauces 

adhesive for food packing and meat gluing 

glaze for cakes, donuts, fruits and nuts 

Soft drinks, beer, alcohol, instant coffee 

Ice cream, candy, gums, marshmallows, 

canning, marmalade and jams 

Case sealing, laminating, tube winding, 

corrugated board 

Wet end additives, spraying, surface sizing, 

coating 

Sizing, finishing, printing, fire resistances 

Emulsifiers, humectants, face powders 

Surfactants, builders, bleach activators 

Diluents, binders, drug delivery, encapsulation 

Biodegradable filler 

Organic acids, amino acids, biopolymers, 

polyols, enzymes, alcohols, antibiotics 

Ceramics, coal, water treatment, gypsum 

and mineral fiber, oil drilling, concrete 

Type used 

Native starches, modified starches, 

maltodextrins, high fructose syrups 

Sweeteners 

Starch, maltodextrins, maltose 

syrups 

Starch and dextrins 

Native, cationic, and hydroxyethyl 

starches 

Starch and modified 

Starch, sorbitan esters 

Sucrose derivatives 

Starch, malto- and cyclodextrins, 

glucose syrups, polyols 

·Starch 

Starch hydrolysates 

Starch and modified starches 

Source: Ellis et al. (1998}; Guzman-Maldonado and Paredes-L6pez (1995); Lillford and Morrison (1997). 
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different functions. Native starches have diverse properties, which meet different application 

requirements. However, physical and chemical modifications greatly improve the properties of 

native starches and extend the range of starch applications in food, paper and board, textiles, and 

pharmaceuticals. Also, numerous starch derivatives produced by enzymatic technology, 

including dextrins and various DE syrups, have been used for production of organic acids, 

solvents, alcohols, amino acids, biopolymers and other products. A wide range of applications 

for starch and starch derivatives in various industries are summarized in Table 2-2. 

2.3 Starch composition and structure 

2.3.1 Composition 

Starch usually contains 10 - 15% moisture, 85 - 90% polysaccharides (amylose and 

amylopectin), and minor non-polysaccharide components (protein, lipid and minerals) (Tester, 

1997). In legume starches (Table 2-3), protein, ash and lipid contents range from 0.10 to 1.12%, 

0.03 to 0.81 %, and 0.01 to 0.87%, respectively. 

2.3.1.1 Major components 

Amylose and amylopectin are the principal components of starch and their content varies 

depending on starch source, species and cultivar (Galliard and Bowler, 1987). Normally, non­

mutant starches from most species contain about 25% amylose and 75% amylopectin (Eliasson 

and Gudmundsson, 1996). The amylose content oflegume starches (Table 2-3) ranges from 19.5 

to 75.4%. 
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Table 2 -·- 3 

Composition of legume starches 1 •2·3 ·-

Starch source Yield of pure starch(%) Protein(%) Lipid (%) Ash(%) Amylose(%) Iodine affinit~-

Kidney bean 25 0.13- 0.30 0.18 0.18 34.4- 35.0 7.02-8.04 

Northern bean 18- 31 0.35- 0.97 0.20-0.46 - 31.6 

Navy bean 21 -40 0.13-0.34 0.09-0.60 0.06-0.14 36 6.58-7.20 

Black bean 32 0.55-1.12 0.15 0.11 35.1 -37.3 6.82-7.20 

Mung bean 32-43 0.12-0.28 0.17-0.50 0.18-0.27 19.5-40 5.95-6.98 

Pinto bean 27-38 0.37-0.52 0.16-0.51 0.05-0.09 25.8-30.2 

Adzukibean 21.5 0.1-0.27 0.03-0.06 0.07-0.19 21.2-34.9 6.98 

Moth bean 33.5 0.58 0.87 0.62 26.4 5.81 

Faba bean 39.9 0.49-0.52 0- 0.08 0.06 31.3-42.1 6.03-5.61 

Horse bean 37 0.16-0.90 0.06 0.81 24-32 4.50-6.28 

Lima bean 23-30 0.22-0.44 0.1 0.07-0.13 - 6.56-6.60 

Red bean 46.3 0.13 0.01 0.05 35.7 4.83 

lablab bean - 0.21 0.2 0.03 30 6.05 

Smooth pea 40 0.52-0.70 0.01 - 0.1 0.07 32.5-33 6.98 

Wrinkled pea 18-22 0.34-0.46 0.01 - 0.19 0.08 62.8-75.4 12.80-15.18 

Black gram 45 - - - 26.65 

Chick pea 40 0.70-0.94 0.06 0.07 30.4-32.2 6.08 

Cow pea 37 0.12-0.50 0.21 -· 0.33 0.06 33 6.6 

Horse gram 28 0.05 - 0.05 34.3 

Lentil 25-4?. 0.17··0.53 0.05-0.23 0.13 29-45.5 6.97-9.09 
1. Source: Hoover and Sosulski (1991) --
2. For tuber and root starches, the nitrogen, lipid, phosphorous, and amylose content are in the range 0.006 - 0.49%, 0.006 - 3.96%, 

0.003- 0.08% and 10- 38%, respectively (Hoover, 2001; Narayana Moorthy, 2002). 
3. For barley starclles, the protein, lipid, phospllorous, and amylose content are in the range 0.25- 0.56%, 0.16- 1.17%, 0.022- 0.068%, 

and 1.8- 47.9%, respectively (Morrison eta!., 1986; McDonald and Stark, 1988; Ellis eta/., 1998; Kasemsuwan and Jane, 1996; Lim eta/., 
1994; Song and Jane, 2000). 
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2.3.1.2 Mino:r components 

In addition to amylose and amylopectin, starch contains small amounts of proteins and lipids, 

as well as trace amounts of minerals. Lipid and protein may occur either on the surface of or inside, 

the starch granule (Lillfford and Morrison, 1997). Although these components occur in small amounts, 

their presence greatly influences the properties of starch granules such as digestibility, swelling ability, 

solubility, retrogradation, and granule integrity (Han and Hamaker, 2002; Appelqvist and Debet, 1997; 

Galliard and Bowler, 1987). 

2.3.1.2.1 Lipids 

Lipids in cereal, tuber, root and legume starch granules have been found to occur both on the 

surface of and inside the granule (Morrison, 1981 ), The surface lipids are mainly triacylglycerides, 

followed by free fatty acids, glycolipids and phospholipids (Morrison, 1981; Galliard and Bowler, 

1987; Vasanthan and Hoover, 1992). The internal lipids mostly are monoacylglycerides, with the 

major components being lysophospholipids and free fatty acids (Hargin and Morrison, 1980; Morrison, 

1981; Vasanthan and Hoover, 1992). Total starch lipids (surface plus internal) have been found to be 

generally in the range of0.7-1.2% in cereals (Morrison and Milligan, 1982; Takahashi and Seib, 1988; 

Vasanthan and Hoover, 1992), 0.01-0.87% in legumes (Table 2-3) and 0.08-0.19% in tubers and roots 

(Emiola and Delarosa, 1981; Goshima et al., 1985; Vasanthan and Hoover, 1992). 

Starch lipids may be present in a free state as well as bound to other starch components, linked 

via ionic or hydrogen bonding to hydroxyl groups of the starch components or in the form of an 

amylose-lipid complex in which the ligand resides within the central hydrophobic center of the helix 

(Morrison, 1981). Free lipids are easily extracted by using chloroform-methanol (2:1, v/v) at ambient 

temperature, whereas bound lipids need many hours of extraction with hot aqueous solvent [ n-propanol 
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- water (3:1, v/v)] or acid hydrolysis to completely disrupt the starch granule before the lipids are 

released (Morrison, 1981; Goshima et al., 1985; Hoover et al., 1988a; Vasanthan and Hoover, 1992). 

2.3.1.2.2 Proteins 

Proteins are also associated with starch granules and their amounts vary among and within 

species. Typical protein contents of wheat, maize and potato is 0.2-0.3, 0.35 and 0.06%, respectively 

(Skerritt et al., 1990; Swinkels, 1985). In general, ten principal polypeptide bands are evident in 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) separations of starch granule­

associated protein extracts. These bands correspond to proteins with molecular weights ranging from 

~5 to 149 kDa. As a function of their molecular weights, the proteins have been classified into two 

groups: surface proteins with low molecular weights (~5, 8, 15, 19 and 30 kDa) and internal proteins 

with higher molecular weights ( ~60, 77, 86, 95 and 149 kDa) (Baldwin, 2001 ). 

2.3.1.2.3 Minerals and phosphorous 

Starches contain trace amounts of minerals such as Ca2+, K+, Mg2+ and Zn2+ as well as bound 

phosphorous. Most of the phosphorous in cereal starches is present in the form of lysophospholipid 

(0.02-0.06%) (Morrison, 1995), whereas waxy starches have much less phosphorous (<0.01%), mainly 

in the form of starch phosphate monoesters. High-amylose com starch (70% amylose) contains 

organic phosphorous (0.02%) as starch phosphate monoesters and phospholipids in a 1:4 ratio. Root 

and tuber starches are phospholipid-free, the phosphorous is mainly in the form of phosphate 

monoesters. Legume starches contain ~0.01% phosphorous, mainly in the form of phosphate 

monoesters which are exceptionally high in potato starch (~0.089%). Phosphate monoesters of all 
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starches are located more on the primary carbon (C-6) than on the secondary carbon (C-3) of the 

anhydrous glucose unit of amylopectin (Lim et al., 1994; Kasemsuwan and Jane, 1996). 

2.3.2 Ultrastructure 

2.3.2.1 Overview of granule structure 

The structural basis of starch granules is amylose and amylopectin. Amylose is essentially a 

linear molecule linked by a-(1,4)-D-glycopyranosyl units. Amylopectin is highly branched, formed 

from chains of a-D-glucopyranosyl residues linked together mainly by (1---+4) linkages but with 5 -

6% of (1---+6) bonds at the branch points (Buleon et al., 1998a). Amylose and amylopectin chains 

further form crystalline and amorphous regions of the starch granule. Starch is biosynthesized as semi­

crystalline granules with varying polymorphic types and degrees of crystallinity. Granule crystallinity 

has been mainly attributed to the amylopectin fraction. 

The inner architecture of the native starch granule is characterized by growth rings (Yamaguchi 

et al., 1979; Jenkins et al., 1993; Donald et al., 1997) that represent concentric crystalline shells or 

layers separated by amorphous regions. A model of the arrangement of the amorphous and crystalline 

regions is schematically shown in Fig. 2-2. Regions of amylopectin double helices fall within the 

crystalline lamellae, while the amylopectin branch points lie in the amorphous lamellae. The 

crystalline lamellae exist alternatively with the amorphous lamellae (Fig. 2-2B). The combined 

thickness of crystalline plus amorphous lamellae is 9 and 9.2nm for A-type and B-type starches, 

respectively (Jenkins et al., 1993). 

Gallant eta!. (1997) recently revealed the different levels of structural organization within the 

starch granule. They proposed the presence of blocklets having dimensions of a few hundred 

nanometers within the growth rings. Helbert and Chanzy (1996) suggested that amylopectin is 
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composed of"superclusters" having sizes similar to that of the blocklets. Oostergetel and Van Bruggen 

(1993) proposed a three-dimensional helical structure for the lamellae organization in lintnerized 

potato starch, suggesting the occurrence of a "superhelical" organization. Based on these results, the 

amylopectin side chain clusters have been suggested to form the submacroscopic structure of the 

blocklets. The blocklets range in diameter from approximately 20 to 500lli"ll depending on starch type 

(botanical source) and location in the granule. Starches resistant to enzymatic attack (potato and high­

amylose starches) have been shown to consist oflarger blocklets than less resistant starches (Gallant et 

al., 1992). At the lowest level of granule organization, the starch granules contain alternating hard 

(crystalline) and soft (semicrystalline) shells of several hundred nanometer thickness. The hard shells 

are composed of larger blocklets (50 to 500nm) than the soft shells, where the blocklet size ranges 

between 20 and 50nm. The repeat of a hard and a soft shell has been regarded as a growth ring, which 

can be observed using light microscopy. The width of the shells becomes progressively thinner toward 

the exterior of the starch granules. A detailed schematic illustration of this blocklet structure is shown 

in Fig. 2-3. 

2.3.2.2 Amylose 

Amylose constitutes about 25% of the starch granule. Generally, it is a linear molecule linked 

by a-(1,4)-D-glycopyranosyl units (Fig. 2-4). However, a slight degree of branching [9- 20 a(l---1-6) 

branch points per molecule] has been reported in amylose from various stru:ch sources. The side chains 

range in chain length from 4 to over 100 (Hizukuri et al., 1981; Takeda et al., 1987a). The extent of 

branching has been shown to increase with the molecular size of amylose (Greenwood and Thomson, 

1959). Evidence ofthe occurrence of branch points in amylose is its incomplete conversion into 
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Figure 2-2 Internal structure of a starch granule showing alternating amorphous and 

semi -crystalline growth rings 

A) Stacks of semi-crystalline lamellae are separated by amorphous growth rings. 

B) A magnified view of one such stack, showing that it is made up of alternating 

crystalline and amorphous lamellae. 

C) The crystalline lamellae comprise regions of lined up double helices formed from 

amylopectin branches. The amorphous lamellae are where the amylopectin branch 

points sit. 

Source: Donald et al. (1997), reproduced with permission. 
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Figure 2-3 Blocklet model of starch granule structure 

(a) The granule is composed of alternating crystalline (hard) and semi-crystalline (soft) 

shells (dark and light color, respectively). The shells are thinner towards the granule 

exterior (due to increasing surface area to be added to by constant growth rate) and the 

hilum is shown off centre. 

(b) Blocklet structure is shown, in association with amorphous radial channels. Blocklet 

size is smaller in the semi-crystalline shells than in the crystalline shells. 

(c) One blocklet is shown containing several amorphous and crystalline lamellae. The 

next diagram shows the magnified picture of amorphous and crystalline lamellae of 

amylopectin. 

(d) Amylose-lipid (and protein) complexes feature in the organization of the amylopectin 

chains. 

(e) The crystal structures of A and B type crystalline. 

Source: Gallant et al. (1997), reproduced with permission. 
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Figure 2-4 Representative partial structure of amylose (A) and amylopectin (B) 

Source: LSBU (London South Bank University) (2003) 
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maltose by P-amylase; P-amylolysis has been shown to vary from 73 to 95% (Monison and 

Karkalas, 1990). The molecular weight of amylose has been reported to vary between 105 and 

106 Da (Morrison and Karkalas, 1990; Hizukuri et al., 1989). Table 2-4 summarizes the general 

characteristics of amylose and amylopectin. 

The physicochemical characteristics of some legume amyloses are presented in Table 2-

5. The iodine binding capacity (IBC), limiting viscosity number (TJ), degree of polymerization 

(DP) and ~-amylolysis limit for amylose from legume starches are in the range of 16-22, 136-

280, 1000-1900, and 79-86.9%, respectively. The molecular weights determined only on 

selected legume amyloses range from 165,000 to 312,000 Da. The DP values of legume 

amy loses are lower than those of tuber and root starches, which are 3400-4100, 2110-4920, 

2660 for sweet potato, potato and tapioca, respectively (Hizukuri, 1996). 

2.3.2.2.1 Amylose inclusion complexes 

Despite its slightly branched nature, in neutral solutions and other solvents such as 

dimethylsulfoxide (DMSO), formamide and aqueous alkali, amylose behaves as a random coil, 

assuming a helical conformation in the presence of a complexing agent (Banks and Greenwood, 

1971, 1975). It is well known that amylose can form inclusion complexes with guest molecules 

such as iodine, alcohols and certain lipids. The crystalline structure of the amylose-ligand 

complex is com.111only refened to as V -polymorph. Amylose, in the single helical 

conformation, has six glucosyl residues per turn (with bulky ligands there are seven or eight), 

stabilized by hydrogen bonds between the hydroxyl groups of adjacent glucosyl residues, 2-0H 

- 3 '-OH and 2-0H- 6' -OH interturn hydrogen bonds, and numerous intra- and intermolecular 

van der Waals contacts located on the outer surface of the helix (Banks and Greenwood, 197 5; 

Rappenecker and Zugenmaier, 1981; Blanshard, 1987; Biliaderis, 1998). The helix cavity is 

23 



effectively a hydrophobic channel which provides a place to accommodate the guest molecules 

during complex formation. 

2.3.2.2.1.1 Amylose -lipid complex 

The formation of amylose-lipid complexes (ALC) can occur in situ with natural fatty 

acids and phospholipids during the biosynthesis of starch. Amylose-lipid complexes can also be 

formed during gelatinization of starch in the presence of naturally occurring lipids or added food 

emulsifiers such as monoacylglycerides, sodium or calcium stearoyl lactylate, and sorbitan 

monostearate. Fig. 2-5 is a schematic illustration of an ALC. The hydrophobic chain of the fatty 

acid or lipid lies inside the amylose helix and is stabilized by van der Waals contacts with the 

adjacent C (5)- hydrogen of amylose, but the polar ends of the lipids are not inside the helix 

cavity (Godet et al., 1993). The ' V' - X-ray pattern of ALC'S is found in high-amylose 

starches, and in starches containing genes such as amylose extender and in dull or sugary 

starches (Zobel, 1988a). Proof that ALC'S do exist in native starch granules and that they are not 

artifacts formed during starch isolation was obtained by 13C CP/MAS-NMR spectroscopy 

(Morrison et al., 1993a, 1993b, 1993c ). 

2.3.2.2.1.2 Amylose-iodine complex 

The reaction between amylose and iodine has been known for over a century. Rundle and 

Baldwin (1943) proposed that the iodine component of the complex is present in a 

unidimensional array within any amylose helix with six glucose residues per turn. Teitelbaum et 

al. (1978, 1980) studied the structure of the amylose-iodine complex using Raman and 

Mossbauer spectroscopy and postulated that the principal chromophore was pentaiodine anion 

(!5-). The blue color formed by amylose-iodine complex has served as the principle for 
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Table 2-4 
General characteristics of amylose and amylopectin 

Property 

Molecular structure 

Degree of branching(%) 

Degree of polymerization (DP) 

Molecular weight (Da) 

Average chain length 

Structural conformation 

Iodine complex 

Iodine affinity (g/1 OOg) 

"-max (nm) 

Blue value 

Color 

~-amylolysis limit (%) 

Stability of dilute aqueous solutions 

Gel texture 

Film properties 

Reference 

Amylose 

Essentially linear, 

a.-1 ,4-glucosidic linkage 

0.2-0.7 

700-5000 

105 -106 

100- 550 

Partly complexed with lipid, amorphous 

19-20.5 

640-660 

1.2-1.6 

Blue 

70-95 

Unstable (retrogrades) 

Stiff, thermally irreversible ( < 1 00°C) 

Strong, coherent 

Amylopectin 

Branched, 

a.-1 ,4 and a.-1,6-glucosidic linkage 

4.0-5.5 

104 -105 

107 -109 

18-25 

Double helix, partly crystalline 

0-1.2 

530-570 

0-0.2 

Purple 

55-60 

Stable 

Soft, thermally reversible (<100°C) 

Brittle 

Biliaderis, 1991; Hizukuri, 1996 
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Table 2-5 
Phy_sicochemical characteristics of legume amylases - -·--

Starch source Iodine binding capacity Limiting viscosity number (mUg) Degree of Polymerization Molecular weight P-Amy!olysis 

·-
Kidney beana 20 180 1300 --- 85.9 

Navy beana 18.48 174 1300 165 000 86.2 

Black beana 22.01 

Mung beana 19.43 251 1900 245 000 78.4 

Pinto beana ··-·- - - 123 000 

Adzukibeana 16-19.49 220 1600 --· 86.8 

Adzukibeanb 19.4 - 1350 - 83 

Faba bean8 19.61 188 1400 191 000 85.6 

Horse beana 17.1 -19.2 240-280 1800 -- 82 

Smooth peaa 18.84 -19.2 136- 150 1000- 1100 125 000 79- 84.7 

Peab 19 - 820 - 90 

Field peac - - 1300- 1350 

Lentila 19.62 188 1400 312 000 89.4 

a. Hoover and Sosulski ( 1991) 
b. Yoshimoto et al. (2001) 
c. Ratnayake eta/. (2001) 
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Figure 2- 5 Schematic illustration of amylose-lipid complex 

Source: Carlson et al. (1979), reproduced with permission 
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colorimetric methods to determine amylose content. Amylose can bind some 20% of its weight of 

iodine (Biliaderis, 1998). However, the color of the complex may vary as a result of the chain length 

(DP) of amylose, which influences its binding ability with iodide anions. John eta/. (1983) reported 

that the color of the complexes changed from brown (DP 21- 24) to red (DP 25- 29), red-violet (DP 

30- 38), blue-violet (DP 39- 46), and finally blue (DP>47). When DP is lower than 20, no color was 

formed. 

2.3.2.2.2 Location of amylose 

The location of amylose in a starch granule is still in dispute. The possible locations are listed 

as follows: (1) amorphous growth ring; (2) amorphous lamellae of semi-crystalline growth ring 

(between crystalline lamellae); (3) interspersed or co-crystallized with amylopectin molecules (Jenkins 

and Donald, 1995; Jane eta/., 1992; Kasemsuwan and Jane, 1994); (4) radial channels and central 

cavities (Gallant eta/., 1997). 

Amylose has been located in bundles between amylopectin clusters (Nikuni, 1978; Blanshard, 

1986; Zobel, 1992). However, by using epichlorohydrin cross-linking, phosphorous-31nuclear 

magnetic resonance (NMR) spectroscopy and gel permeation chromatography, other researchers (Jane 

et a/., 1992; Kasemsuwan and Jane, 1994) have shown that amylose molecules are randomly 

interspersed among amylopectin clusters in both the amorphous and crystalline regions instead of 

being in bundles. Reports about the distribution of amylose in starch granules are also 

contradictory. Increased values of blue value, iodine affinity, and amount of amylose fraction during 

granule development in maize (Inouchi et a/., 1984), wheat (Morrison and Gadan, 1987), barley 

(McDonald et al., 1991), rice (Asaoka eta/., 1985), pea (Biliaderis, 1982a), and potato (Jane and Shen, 

1993) starches imply a richer amylose region in the periphery region than in the center of the granules. 
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However, reverse amylose distribution in potato and maize hybrid ae/wx starch granules with reduced 

amylose content has also been reported (Schwatz, 1982; Yun and Matheson, 1992; Kuipers et al., 

1994; Tatge et al., 1999). The independent localization of amylose and amylopectin in starch granules 

with varying amylose contents (0 - 70%) by enzyme-gold labeling (Atkin et al., 1999) revealed that 

the location of amylose differed with different amylose contents. Amylose in low amylose content 

potato starch was mainly located in the amorphous growth rings alternating with semi-crystalline 

growth rings, whereas high amylose content (amylomaize) granules were shown to possess an 

amylopectin center surrounded by an amylose periphery encapsulated by an amylopectin surface. 

Based on the fact that increasing amylose content has the effect of increasing the crystalline 

region size but reducing the electron density of small angle x-ray scattering (SAXS), Jenkins and 

Donald (1995) suggested that increased amylose acts to disrupt the packing of the amylopectin double 

helices within the crystalline lamellae. Two mechanisms were provided. Mechanism 1 (Fig. 2-6) 

involves amylose co-crystallizing with amylopectin. Mechanism 2 involves amylose chains oriented 

transverse to the lamella stack, penetrating the amorphous lamellae and introducing disorder. 

However, current evidence is insufficient to distinguish these two mechanisms. 

2.3.2.3 Amylopectin 

Amylopectin constitutes about 75% of most starches. It is a highly branched macromolecule 

formed through chains of a-D-glucopyranosyl residues linked together mainly by (1~ 4) linkages but 

with 5~6% of (1~ 6) bonds at the branch points (Buleon et al., 1998a). Amylopectin is one of the 

largest polymers in the nature, with a Mr (weight average molecular weight) of the order 107 ~ 109 

(Aberle et al., 1994 ). Some general characteristics of amylopectin are listed in Table 2-4. The average 

size of the repeating unit chains of amylopectin is in the range of 20-25 (Hizukuri, 1985). 
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Extensive studies have been carried out on amylopoectin structure in terms of molecular size, 

branch chain length (inner and outer) distribution, location of branch points, and crystallinity by 

various techniques, such as chemical and enzymatic analysis including chromatography, matrix­

assisted laser desorption/ionization mass spectrometry (MALDI-MS), fluorophore-assisted 

carbohydrate electrophoresis (FACE) (Broberg et al., 2000; Wang et al., 2000; Morell et al., 1998; 

Hizukuri, 1996; Morrison and Karkalas, 1990; Manners, 1989), optical and electron microscopy 

(Gallant et al., 1997; French, 1984), nuclear magnetic resonance (NMR) spectroscopy (Gidley, 2001; 

Morgan et al., 1995; Gidley and Bociek, 1985), and X-ray and neutron scattering (Donald et al., 1997, 

2001). A number of reviews on amylopectin structure have been published (Gidley, 2001; Tester et al., 

2001; Gallant, 1997; Oates, 1997; Hizukuri, 1996; Ballet al., 1996; Gidley and Cooke, 1991; Imberty 

et al., 1991; Manners, 1989; Zobel, 1988a, 1992; Sarko and Zugenmaier, 1980; Banks and Greenwood, 

1975). 

2.3.2.3.1 Structural model 

It is now widely accepted that amylopectin is structured in a cluster model (Fig. 2-7). Three 

types of unit chains are present, referred to as A-, B-and C-chains. A-chains are unbranched and linked 

to B- chains through a.-1,6-bonds at their reducing end-group. B-chains are linked to other B-chains 

or C- chain in the same manner, carrying either A- chains orB-chains. C-chains is the only chain with 

a reducing end-group and carrying numerous B-chains. A- chains form c:t:ystalline lamellae and their 

a.-(1,6)- branch points are located in amorphous lamellae. Some B-chains are long enough to traverse 

through both the semi-crystalline growth ring and the inter-crystalline amorphous growth ring. 

The ratio of A-chains to B-chains, which is also referred to as the degree of multiple branching, 

is an important parameter. Manner and Matheson (1981) have shown the A:B ratio to be 0.8 
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Figure 2 - 6 One possible mechanism to explain the disruption of amylopectin 

double helical packing by amylose. 

(A) Amylopectin structure with no amylose present. Small crystalline lamella 

SIZe. 

(B) Co-crystallizing between amylose and amylopectin pulls a number of the 

amylopectin chains out of register. The crystalline lamella size increases. 

Source: Jenkins and Donald (1995), reproduced with permission. 
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Figure 2 - 7 Cluster structure of amylopectin showing growth rings and areas for 

amorphous and crystalline lamellae formation. 

AL, amorphous lamellae; CL, crystalline lamellae; SCGR, semi-crystalline growth 

ring; ICAGR, inter-crystalline amorphous growth ring. 

Source: French (1984), reproduced with permission. 
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-2.2 on a mole basis and 0.4-1.0 on a weight basis. Manners (1989) reported A:B ratios ranging from 

1.1 to 1.5, with potato amylopectin at 1.2, whereas Hizukuri (1985) reported a 0.8 A:B ratio on potato 

amylopectin. This discrepancy may be due to experimental errors or the different methods used. In 

general, amylopectins have rather more A-chains than B-chains, with ratios ranging from 1.1:1 to 1.5:1 

(Manners, 1989). 

2.3.2.3.2 Chain length distribution 

To determine its chain length distribution, amylopectin is first subjected to the action of 

debranching enzymes (e.g. isoamylase and pullulanase, which specifically hydrolyze the branch 

linkages and produce short linear chains), followed by separation techniques to determine the 

molecular weight distribution. (size exclusion chromatography) SEC (Hizukuri, 1985, 1986) and high­

performance anion-exchange chromatography with pulsed amperometric detection (AP AE-P AD) 

(Hizukuri, 1986; Hanashiro eta!., 1996; Wong and Jane, 1997) are the two basic techniques. 

Extensive research has been done to study the chain length profile of amylopectin from 

different starch sources, such as maize (Takeda et al., 1988; Jane eta!., 1999), barley (Tang et al., 

2001 a, b; Song and Jane, 2000; Jane et al., 1999; Yoshimoto et al., 2000, 2002; MacGregor and 

Morgan, 1984), rice (Jane et al., 1999; Hanashiro et al., 1996; Takeda et al., 1987b), wheat (Jane et al., 

1999; Shibanuma et al., 1994; Franco et al., 2002; Hizukuri and Maehara, 1990), tapioca (Jane et al., 

1999), sweet potato (Hanashito et a!., 1996; McPherson and Jane, 1999) and legumes (Biliaderis, 

1982b; Biliaderis et al., 1981; Ratnayake et al., 2001; Yoshimoto et al., 2001). The resulting 

chromatography showed that debranched amylopectin usually exhibits a trimodal or polymodal 

distribution pattern. 
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Figure 2 -8 Gel-permeation chromatograms of debranched amylopectins. 

Fractions of A, B~, B2, B3, B4 and ELC (extra-long chain) are different groups 

of branch chains. The peak DP (degree of polymerization) is labeled on the top 

of each fraction. 

Source: Hizukuri (1996), reproduced with permission. 
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A polymodal distribution (Fig. 2-8) shows 5 fractions, A, B~, B2, B3 and B4, representing different 

chain groups of the amylopectin molecule with average chain lengths (CL) of 11-16, 20-24, 42-48, 

and 69-75, respectively. The relative lengths among B~, B2 and B3 are roughly 1:2:3, implying that the 

A and B1. B2, B3 and B4 chains may be involved in the formation of one, two, three, and more than 

four clusters (Hizukuri, 1996). The A- and Bt- chains account for 80-90% (mole basis) of total chains, 

which represent outer short chains in a single molecule, and B2-chains 10%, B3-chains 1-3%, and B4-

chains 0.1-0.6%, which connect 2, 3 or more clusters (Hizukuri, 1986). Further analysis of the 

connection mode of branching (Hizukuri and Maehara, 1990; Hizukuri, 1996) indicated that the 

average span length (the number of glucose units linked through two adjacent branch points in a chain) 

is in the range of 3-12 and one B-chain carries 0-3 A- or other B-chains while 37% of B-chains have 

no A-chains and carry only B-chains. In general, the average CL for most amylopectins is in the range 

of 18-25, but its distribution is characteristic of starch sources. A-type starches have shorter peak DP 

and shorter average chain length than B- type starches. Also, A-type starches have relatively higher 

proportions of short chains (DP 6-12) than B-type starches and C-type starches have an intermediate 

amount. In addition, amylopectin from amylomaize starches have relatively longer average chain 

length and a higher proportion of long chains (DP:2::37) compared to those from waxy and normal 

maize starches (Jane and Chen, 1992; Shi et al., 1998; Jane et al., 1999). Branch chain length 

distribution of amylopectin has been shown to influence starch physicochemical properties such as 

gelatinization temperature, pasting properties, retrogradation and acid hydrolysis (Franco et al., 2002; 

Jane et al., 1999; McPherson and Jane, 1999; Shi et al., 1998; Shi and Seib, 1992, 1995; Jane and 

Chen, 1992). Table 2-6 summarizes the average chain length of amylopectin from some legume 

starches. 
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2.3.2.4 Double helices, crystallites and crystallinity 

2.3.2.4.1 Double helices 

Double helices are formed between the outer branch chains (A- and B1- chains) of amylopectin 

(French, 1972). This can occur either between adjacent branch chains in the same amylopectin branch 

cluster or between adjacent clusters in three dimensions (Oates, 1997). Two neighboring short chains 

fit together compactly with the hydrophobic parts of the opposed glucose units in close contact inside 

the structure, and the hydroxyl groups at the outside of the double helix, for strong interchain hydrogen 

bonding (helical order or short range order). French and Murphy (1977) proposed the first detailed 

computer model (Fig. 2-9) for a starch double helix with no intra-chain hydrogen bonds. The stability 

of the helix is attained by interchain hydrogen bonding between hydroxyl groups at positions C2 and 

C6 and from van der Waals forces. The helical core is highly hydrophobic and compact so that there is 

no room for water or any other molecule to reside within it. Within starch granules, about 40-50% of 

the weight of starch chains exists in the form of double helices, with approximately half of these 

helical chains present in crystallites large and perfect enough to diffract X-rays (Gidley, 2001; Gidley 

and Bociek, 1985). The water content of starch granules has been shown to .influence the content of 

double helices (Paris et al., 1999; Bogracheva et al., 2001). Bogracheva et a/.(2001) used 13C cross­

polarization magnetic angle spinning NMR to study the ordered and disordered structures of selected 

starches from different genotypes by measuring the content of double helices at different degrees of 

hydration (Table 2-7). They found water contents in the 10-50% range did not influence the 

proportion of double helices in the starch. Decreasing the water content to 1-3% resulted in a 

significant decrease in the proportion of double helices, with the effect being greater in B- than in A­

type starches. 
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Table 2-6 
Average chain length of isolated legume amylopectins 

Starch Source Average Chain Length 

Adzukibean 21 

Adzuki bean 25-26 

Garbanzo bean 22 

Red kidney bean 20 

Wrinkled pea 34 

Lentil 20 

Navy bean 22 

Faba bean 21 

Mung bean 23 

Smooth pea 22-22.4 

Pigeon pea 27 

Bonavist bean 28 

Chick pea 29 

Chick pea (BG) 26 

37 

Reference 

Yoshimoto et al., 2001 

Biliaderis et al. , 1981 

Biliaderis eta/., 1981; Ratnayake eta/. , 2002 

Yoshimoto eta/., 2001 

Tinay et a/. , 1983 

Madhusudhan and Tharanathan, 1996 



Table 2-7 
Compa~ison of short-range order in starches with moderate and low water contents 

% Proportion of Double Helices at Different Water 

Starch Starch Type Content(%) 

Moderate Low 

Potato B 48.3 (15.2)a 23.4 (2.6) 

Waxy potato B 50.9 (13.5) 24.5 (2.0) 

Pea c 39.7 (13.3) 24.6 (1.9) 

Low amylose pea c 48.6 (12.7) No data 

Maize A 37.7 (12.3) 29.9 (0.5) 

Waxy maize A 46.1(12.2) 34.3 (0.5) 

Wheat A 31.5(11.4) 23.7 (2.8) 
a. Moisture content(%) 
Adapted from Bogracheva eta/. (2001) 
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Reduction in the Proportion of Double 
Helices after Drying, % 

51.6 

51.9 

38.0 

No data 

20.7 

25.6 

24.8 



Figure 2-9 Double helix model of starch chain 

Source: French and Murphy (1977), reproduced with permission. 
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2.3.2.4.2 Crystallites and polymorphic patterns 

Crystallites are formed by double helices which associate in pairs, nest together, and are 

stabilized by hydrogen and van der Waals forces (Oates, 1997). Three types of crystallite are known 

depending on the water content and the packing configuration of double helices, namely A, B, and C 

type. C type is a mixture of A and B type (Sarko and Wu, 1978; Blanshard, 1987; Gernat et al., 1990, 

1993). 

The structural models of A and B type crystallites have been developed and extensively 

reviewed (Wu and Sarko, 1978a, b; Imberty and Perez, 1988; Imberty et al., 1988, 1991). One early 

model proposed by Wu and Sarko (1978a,b) is illustrated in Fig. 2-10. Both A and B type crystallite 

are based on parallel-stranded, right-handed double helices. The helices pack in antiparallel fashion 

into an orthorhombic unit cell in A type and a hexagonal unit cell in B type. Both unit cells contain 

twelve glucose residues. However, the B type crystallite has a more open packing structure than A 

type, and there are thirty six water molecules in its unit cell, whereas A type accommodates only eight 

water molecules. This model has been constantly reviewed and updated by other researchers. The most 

recent model described a face-centered monoclinic unit for the A-type crystallite instead of 

orthorhombic, and the helices are suggested to be left-handed instead of right-handed. Table 2-8 

summarizes the structural features of A and B type crystallite unit cell. 

The polymorphic patterns of starch granules can be distinguished by X-ray diffraction. Starches 

exhibit three types of diffraction patterns corresponding to their crystalline types (Fig. 2-11 ). A type 

appears in most cereal starches (normal maize, rice, wheat, barley, oats) and some root and tuber 

starches (taro, some sweet potatoes, tapioca, iris) (Zobel, 1988b; Cheetham and Tao, 1998; Hizukuri, 

1996; Hoover, 2001). B type appears in tuber and root starches (potato, lily, cassava, tulip) as well as 

in high amylose (>40%) cereal starches (amylomaize, high-amylose barley, high-amylose rice) 

40 



(Zobel, 1988b; Hizukuri, 1996; Cheetham and Tao, 1998). The C-type, which is commonly observed 

in legume starches, is considered to be a mixture of A and B type in various proportions (Sarko and 

Wu, 1978; Blanshard, 1987; Gernat et al., 1990, 1993; Hoover and Sosulski, 1991). In addition to 

these three types of diffraction pattern, another pattern called 'V' type was also reported, which is 

mainly exhibited by crystalline amylose helical inclusion compounds (Eliasson and Gudmundsson, 

1996; Blanshard, 1987). 

The main differences between the A and B type polymorphs are as follows: (1) packing 

arrangement of double helices and water content (Wu and Sarko, 1978a, b; Imberty and Perez, 1988; 

Imberty et al., 1988, 1991); see Fig. 2-10 and Table 2-8; (2) Chain length of amylopectin (Hizukuri, 

1985, 1996; Gidley and Bulpin, 1987; Gidley and Cooke, 1991; Pfannemueller, 1987; Hanashiro et al., 

1996). A type usually has a shorter average chain length, DP23- 29; B type has a longer average chain 

length, DP30 - 44 (Gernat et al., 1993); C type displays intermediate chain length, DP26 - 36 

(Hizukuri et al., 1983; Hizukuri, 1985). The difference in the average chain length between A type and 

B type starches can be as small as one glucose unit (Hanashiro et al., 1996). (3) Branching pattern 

(Jane et al., 1997). In A type amylopectin, the a-1, 6 branch linkages are more scattered and mainly 

located within the crystalline region (crystalline lamellae), whereas others are in the amorphous region 

(amorphous lamellae). In B type amylopectin, most ofthe a-1, 6 branch linkages are clustered in the 

amorphous region (Fig. 2-12). In A type amylopectin, due to the scattered branch points, there are 

likely more short A chains derived from branch linkages located inside the crystalline region, which 

produces an inferior crystalline structure containing a-1, 6 branch linkages and short double helices 

which is more susceptible to enzyme hydrolysis. Clustered branch points and relatively fewer short 

chains in B type amylopectin lead to the development of a superior crystalline structure, which is more 

resistant to enzyme attack. Additionally, other factors such as environmental temperature, the presence 
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of certain solutes and solvents (anions and cations), and organic molecules (alcohol, lipid) were also 

reported to influence starch polymorphism, but play no decisive roles (Hizukuri, 1996; Gidley, 1987). 

Unlike A and B type polymorphs, which are considered to be independent from each other, C 

type is a mixture of A and B type in various proportions. It is still not fully understood how C type 

starch granules are structured. For instance, are the A and B polymorphs distributed in different 

granules or do they coexist within the same granule? If the two types occur within the same granule, 

where are they located? From the results ofX-ray wide-angle scattering patterns of legume starches, 

Gemat et al. ( 1990) suggested the legume starches consist of starch granules of pure A type as well as 

of pure B type in varying proportions. However, other researchers (Bogracheva et al., 1998; Buleon et 

al., 1998b) found that all C type starch granules contain both A and B type polymorphs, instead of a 

mixture of pure A and B type granules. The B polymorph is present in the center of the granule and is 

surrounded by the A polymorph. 

2.3.2.4.3 Crystallinity 

Starch granules exhibit an optical birefringence pattern known as a 'Maltese cross' when 

viewed under polarized light, which implies that there is a high degree of molecular order within the 

granule (Greenwood, 1979). In fact, starch is semi-crystalline with varying polymorphic types and 

degree of crystallinity. The crystallinity of native starch granules usually ranges from 15 to 45% 

(Zobel, 1988a) (Table 2-9). 

The crystallinity is exclusively associated with the amylopectin component, as crystalline 

lamellae are formed by tightly packed double helices of amylopectin. Cheetham and Tao (1998) have 

shown that the degree of starch crystallinity decreased with an increase in amylose content and 
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Figure 2-10 Packing arrangement of double helices of A and B type 

crystallite unit cell 

Source: Wu and Sarko (1978a, b), reproduced with permission. 
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Figure 2-11 X-ray diffraction patterns of A, B, and C type starches with their 

characteristic d-spacing 

A type: shows strong peaks at 28 15.27° or with a inter-crystalline spacing d=5.8 

A and 23.40° (d=3.8 A), and an incomplete doublet at 28 17.05° (d=5.2 A) and 

18.1° ( d=4.9 A). The d-spacing at 4.4 A is characteristic to amylose-lipid 

complex (Vasanthan and Bhatty, 1996). 

B type: shows a peak at 28 5.52 - 5.6° (d=l5.8 - 16.0 A), a broad medium 

intensity peak at 28 15.01° (d=5.9 A), the strongest peak at 28 17.05° (d=5.2 A) 

and medium intensity peaks at 19.72° (d=4.5 A), 22.22° (d=4.0 A) and 24.04° (d-

3.7 A). There is a peak at 28 5° (d=l7.70 A) which is characteristic to B pattern. 

C type: shows the same pattern as A type except the occurrence of the medium to 

strong peak at about 28 5.52° (d=l6.0 A) 

Source: Zobel (1988b ), reproduced with permission. 
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Figure 2- 12 Proposed models for branching patterns of A type (waxy maize) and 

B type (potato) amylopectin. 

9.0nm and 9.2nm are the repeating distances of waxy maize and potato starches, 

respectively. The chain length between arrows stands for the length of internal 

long B- chains 

Source: Jane eta!. (1997), reproduced with permission. 
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Table 2-8 
Structures of 'A' and 'B' type crystalline unit cells 

Parameter 

Dimension (nm) 

Density 

Repeat unit 

Space group 

Geometry 

Glucose residues 

Water content 

Conformation of double helices 

A type 

a= 2.124 

b = 1.172 

c=1.069 

y = 123.5° 

d = 1.48 

Maltotriose 

B2 

Monoclinic 

12 

4 

Left-handed, double-stranded 

Source: lmberty eta/. (1991 ), Oates (1997) 
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Btype 

a = 1.85 

b = 1.85 

c = 1.04 

Maltose 

P61 

Hexagonal 

12 

36 

Left-handed, double-stranded 



Table2-9 
Crystallinity of A, B, and C starches 

Starch C~stallini~ {%} Am~lose (%~ Reference 

Starches with A structure 

Oat 33 23 Zobel (1988a) 

Rye 34 26 
, 

Wheat 36 
, 

23 
, 

Waxy rice 37 
, 

Sorghum 37 25 

" Rice 38 17 

" Corn 40 27 

Waxy maize 40 0 
, 

Dasheen 45 16 

Nageli amylodextrin 48 Zobel (1988a) 

Starches with B structure 
, 

Amylomaize 15-22 55-75 
, 

Edible canna 26 28 
, 

Potato 28 22 

Starches with C structure 
II 

Sweet potato 38 20 
II 

Horse chestnut 37 25 

Tapioca 38 18 Zobel (1988a) 

Smooth pea 26-32 30-43 Davydova eta/. (1995) 

Field eea 20-25 42-44 Ratnayake eta/. (2001) 
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amylopectin chain length, and it appeared to be directly proportional to the mole percent of the short 

chain amylopectin fraction with DPlO- 13. 

Granule moisture content is another aspect related to crystallinity, but it does not affect crystal 

type (Cheetham and Tao, 1998). It has been reported that hydrated starches exhibited a significant 

increase in peak resolution and intensity of the X-ray diffractogram (Hizukuri et al., 1964; Nara et al., 

1978; Buleon et al., 1982, 1987; Veregin eta!., 1986; Hibi et al., 1993). Peak areas at 5.5° and 25.5° in 

X-ray diffractograms were reported to be quite sensitive to variations in moisture content (Blanshard, 

1987). 

The crystallinity of starch granules can be destroyed by mechanical disruptions such as ball 

milling or by subjecting to high pressure at room temperature which will eventually completely destroy 

both the optical birefringence and the X-ray patterns (Lineback, 1984; Baldwin et al., 1994). 

2.4 Starch properties 

2.4.1 Gelatinization 

Gelatinization is the collapse (disruption) of molecular orders within the starch granule 

manifested in irreversible changes in properties such as granular swelling, native crystallite melting, 

loss of birefringence, and starch solubilization. The point of initial gelatinization and the range over 

which it occurs is governed by starch concentration, method of observation, granule type, and 

heterogenities within the granule population under observation (Atwell et al., 1988). 

Granular starch is essentially insoluble in cold water, and even when it is added to water at 

room temperature, little happens until heat is applied. A combination of heat and water, however, 

causes uncooked granules to undergo unique and irreversible changes as mentioned above, the most 

dramatic of which are (1) the disruption of the semi-crystalline structure, as evidenced by a loss of 
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birefringence; and (2) an increase in granule size, although not all granules within a given population 

swell at the same rate or to the same extent. As these changes are taking place, there is an attendant 

increase in the viscosity of the medium in which the starch is heated. When a majority of the granules 

have undergone this process, the starch is considered to be" pasted" or" cooked-out". In most cases, it 

is this pasting (i.e., viscosity-forming) ability that makes starch so functional as a food ingredient. 

Various methods have been used to characterize starch gelatinization, such as polarized light 

microscope, Kofler hot stage microscopy, X-ray diffraction, differential scanning calorimetry (DSC), 

viscoamylography, NMR spectroscopy, enzymatic digestibility, and small-angle light scattering. 

Because not all the granules of a given starch, when subjected to water and heat, begin to gelatinize at 

exact by the same temperature, the gelatinization temperature is more approximately defined as a 

relatively narrow temperature range rather than one specific temperature. Gelatinization temperatures 

also vary depending on the source of the starch. In general, the gelatinization temperature of tuber and 

root starches such as potato and tapioca is slightly lower than that of cereal starches such as com and 

wheat. The gelatinization parameters of legume starches are summarized in Table 2-10. DSC is widely 

used to estimate the gelatinization parameters (onset temperature T 0 , peak temperature T P• conclusion 

temperature Tc, gelatinization temperature range Tc- T0 , and gelatinization enthalpy ~H). Noda eta!. 

(1996) have postulated that DSC parameters are influenced by the molecular architecture of the 

crystalline region, which corresponds to the distribution of amylopectin short chains (DP6 - 11 ), and 

not by the proportion of crystalline region which corresponds to the amylose to amylopectin ratio. The 

above authors have shown by studies on sw:eet potato and wheat starches, that a low T 0 , T P• T c and .1H 

reflects the presence of abundant short amylopectin chains. Cooke and Gidley (1992) have shown 

( 13C-CP-MAS-NMR and X-ray diffraction) that the enthalpy of transition is primarily due to the loss 

49 



Table 2-10 
Thermal characteristics of legume starches (DSC parameters) 

Starch Source To(0 C) TpCC) TcCC} Unspecified(0 C) LlH(J/g) 

Kidney beana 62-67 70-73 76-79 15.0 

Northern beana 63 66 70 12.5 

Navy beana 64 68 71 13.4 

Navy beanc 65.6-66.0 74.4-75.1 84.8-85.0 13.2- 13.5 

Navy bean9 69.8-71.8 76.1 -77.5 81.7-85.8 16.3 -19.9 

Black beana 62 66 70 12.5 

Black beanc 62.0-66.9 69.9-76.5 82.8-84.2 12.1 - 12.9 

Pinto beana 72 74 79 16.7 

Pinto beanc 72.0-72.5 75.0-75.5 80.5-81.0 15.4- 16.2 

Adzukibeana 70 76 87 

Smooth peaa 48-55 61 -64 80 13.4 

Smooth peac 60.8-61.6 66.9-67.4 73.4-74.5 10.8- 13.8 

Wrinkle peaa > 99 

Wrinkle pead 117 133 138 12.1 

Field peab 61.0-61.4 66.8-67.5 75.0-76.0 11.2- 11.5 

Chick peac 59.4-59.7 64.7-67.7 71.1 -78.2 9.7-12.4 

Cowpeae 72.7 16.9 

Lentila 47 57 77 14.2 

Len tile 60.7-63.0 66.1-69.6 76.1 -78.7 12.6- 13.3 

Lentilt 52.2-56.0 61.2-62.0 69.0-73.0 8.8 -13.4 
a. Hoover and Sosulski (1991), starch: water= 1 :2. 
b. Ratnayake eta/. (2001 ), starch : water= 1 : 3. 
c. Hoover and Ratnayake (2002}, starch: water= 1 : 3. 
d. Colonna eta/. (1982) 
e. Chung eta/. (1998} 
f. Hoover and Manuel (1995} 
g Srisuma eta/. (1994) 
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of double helical order rather than the loss of crystallinity. However, Tester and Morrison (1990) have 

postulated that LiH reflects the overall crystallinit-y (quality and amount of starch crystallites) of 

amylopectin. Gernat eta!. (1993) have stated that the amount of double-helical order in native starches 

is strongly correlated to the amylopectin content, and that granule crystallinity increases with 

amylopectin content. This suggests that LiH values should preferably be calculated on an amylopectin 

basis. 

2.4.1.1 Mechanism of gelatinization 

According to Donovan (1979) and Jenkins and Donald (1997, 1998), gelatinization in excess 

water is primarily a swelling driven process. In the presence of excess water, extensive hydration and 

swelling of the amorphous regions are considered to "strip" starch chains from the surface of 

crystallites, thereby disrupting crystalline order. This swelling driven process generates the DSC 

endotherm (referred to as G). It occurs rapidly for an individual crystallite, but over a limited 

temperature range for a single granule (1 - 2°C) and a wider range (10- l5°C) for whole population of 

granules with endothermic enthalpy values in the range of 10- 20J/g (French, 1984; Liu and Lelievre, 

1993; Eliasson and Gudmundsson, 1996). When there is insufficient water present for all crystallites to 

be disrupted in this manner (usually defined as conditions in which a second endotherm is seen in DSC 

measurements) crjstallites located in areas of locally high concentrations of water undergo "stripping", 

giving rise to the G endotherm; those remaining after the conclusion of this process undergo "melting" 

at higher temperatures, giving rise to the Ml endotherm. If the water content is reduced still further, 

none of the crystallites undergo the "stripping" process, and only the Ml melting endotherm is 

observed (Jenkins and Donald, 1998). Fig. 2-13 is an illustration of this solvation-assisted melting 

process. 
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Based on a large amount of experimental data [DSC, SAXS, SANS, dynamic mechanical 

analyses (DMA), optical microscopy and NMR], Waigh et al. (2000b) established a side-chain liquid­

crystalline polymer (SCLCP) model for the structure and physical properties of starch to explain the 

process of gelatinization. They postulated that gelatinization is due to the inter-play between self­

assembly and the breakdown of structure during heating (Waigh et al., 2000a). The structural phase 

transitions (mesophases) can be neatly summarized by considering three order parameters: helical 

ordering [P2 (cos9)], the tendency of the helices to line up], lamellar ordering (\If, the amplitude of a 

sinusoidal density modulation) and the number of helices (h) (Landau and Lifshitz, 1958). At low 

water contents (<5%, w/w) the amylopectin helices are in a glassy nematic state (Fig. 2-14a). Upon 

heating in a DSC a single endotherm is observed due to the helix~coil transition (Waigh et al., 

2000a). Intermediate water contents (>5%, <40%, w/w) have two steps in their breakdown and there 

are two corresponding DSC endotherms (Fig. 2-14b ). The first is thought to be due to the 

rearrangement of dislocations between constituent amylopectin helices leading to a smectic~nematic 

(isotropic) transition. The second is the helix~coil transition as the amylopectin helices unwind in an 

irreversible manner. In excess water (40%, w/w), lamellae break up and the helix-coil transition occurs 

at the same point, since free unassociated helices are unstable (Fig. 2-14c ), Hydrated self-assembled 

starches are unable to experience swelling of the crystalline growth rings before a smectic~nematic or 

smectic~amorphous phase transition has taken place, because unless this self assembly has occurred it 

implies there is insufficient water entering the granule to provoke the swelling. The self-assembly can, 

therefore, be viewed as a signature of solvent ingress. 
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Figure 2-13 Schematic representation of the possible interrelationships among the 

various parameters involved in phase transition phenomena of 

granular starch (solvation-assisted melting process). 

Source: Biliaderis et al. (1980), reproduced with permission. 
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Figure 2-14 SCLCP model for starch gelatinization. 

a) The single stage process in the gelatinization of starch at low water contents. 

b) The two-stage process involved in the gelatinization of starch in limiting water. Two 

different processes are shown for A and B type starches: i) in B-type starch the 

intermediate phase is nematic in character; ii) and in A-type starch the intermediate 

phase is isotropic in character. It is proposed that the intermediate phase is 

determined by the length of the amylopectin helices. 

c) The two-stage process involved in the gelatinization of starch in excess water 

(Thc<T55). The first stage involves a slow dissociation of the helices side-by-side. 

Immediately a helix-coil transition occurs as a secondary effect. Relative values of 

the orientational (<j>), lamellar (\If) and helical order parameter (h) are included. The, 

temperature for the unassociated helix-coil transition of the amylopectin double 

helices; T55, temperature for the dissociation of helices side-by-side in their 

crystallites. 

Source: Waigh et al. (2000a, b), reproduced with permission. 
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2.4.1.2 Factors influencing gelatinization 

The gelatinization and swelling properties of starch are controlled in part by amylopectin 

structure (unit chain lengths, extent of branching, branching pattern, molecular weight, polydispersity 

and degree of phosphorylation), and starch composition (amylose/amylopectin ratio and lipid content) 

(Tester, 1997). However, besides these heritable traits, other factors can also influence starch 

gelatinization, e.g., solutes and solvents (sugars, salts, alcohols, lipids) (Evans and Haisman, 1982; 

Chiotelli et al., 2002), physical modification (annealing and heat-moisture treatment) (Hoover et al., 

1993; Jacobs and Delcour, 1998; Tester and Debon, 2000), and defatting and chemical modification 

(acid hydrolysis, hydroxypropylation, acetylation) (Hoover et al., 1988b, 1993; Hoover, 2000; Kim 

and Eliasson, 1993; Atichokudomchai et al., 2002). 

2.4.2 Retrogradation 

Starch retrogradation is a process which occurs when the molecules comprising gelatinized 

starch begin to reassociate in an ordered structure. In its initial phase, two or more starch chains may 

form a simple juncture point which then may develop into more extensively ordered regions. 

Ultimately, under favorable conditions, a crystalline order appears (Atwell et al., 1988). The molecular 

interactions (mainly hydrogen bonding between starch chains) develop 'B' type crystallinity on storage 

(Miles et al., 1985a; Russell, 1987; Van Soest et al., 1995) regardless of the initial crystalline pattern 

of the native starch. This process exerts a major and usually unacceptable influence on the texture of 

foods rich in starch. Starch retrogradation is the main factor in the staling of bread and other baked 

products (Eliasson and Gudmundsson, 1996). 

Common methods used to measure retrogradation include turbidity measurement (Miles et al., 

1985b; Ring et al., 1987; Jacobson et al., 1997), DSC (Russell, 1987; Fredriksson et al., 1998; Hoover 
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et al., 2003), rheology (I' Anson et al., 1988; Mita, 1992), X-ray diffraction (I' Anson et al., 1988), 

microscopy (Jacobson et al., 1997), FTIIR (Wilson et al., 1991; Van Soest eta!., 1995) and NMR 

spectroscopy (Wu and Eads, 1993). These methods provide a variety of information about the process 

and products of retrogradation. X-ray diffraction gives a view of the crystalline structure of the 

retrograded gels, DSC is well suited to follow the rate and extent of the retrogradation, while 

rheological methods can be used to monitor gel firmness (rigidity) on aging. 

Retrogradation proceeds in two stages (Miles et al., 1985a). In the first stage, the rigidity and 

crystallization of starch gels develop quickly as a result of amylose gelation and the increased mobility 

of the smaller size amylopectin fragments (Biliaderis, 1998; Zhang and Jackson, 1992). In the second 

stage, further crystallinity develops slowly in the amylopectin region (Biliaderis, 1998; Miles et al., 

1985a). 

Retrogradation is influenced by starch structure (Russell, 1987; Orford eta!., 1987), storage 

temperature (Jankowski and Rha, 1986), moisture content (Longton and LeGrys, 1981; Zeleznak and 

Hoseney, 1986), lipids (Eliasson and Ljunger, 1988; Huang and White, 1993), sugars (Kohyama and 

Nishinari, 1991; Wang and Jane, 1994), salts (Ciacco and Fernandes, 1979; Bello-Perez and Paredes­

Lopez, 1995), and physical and chemical modifications (Orford et al., 1993; Gunaratne and Hoover, 

2002; Yook et al., 1993). 

2.5 a-Amylolysis 

2.5.1 a.-Amylase 

a.-amylase (E.C. 3.2.1.1) is representative of a large enzyme family (glycoside hydrolase clan 

GH-H) known as the a.-amylase family (Janecek 2000). It consists of twenty seven different enzyme 

specificities (Horvathova et al., 2000). The a.-amylase family has been defined (Takata et al. 1992) as 
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a family of enzymes that: 1) catalyze hydrolysis and/or transglycosylation at the a-1,4- and a-1,6-

glucosidic linkages; 2) act with the retaining mechanism with retention of the a-anomeric 

configuration; 3) have four highly conserved sequence regions containing all the catalytic residues and 

most of the substrate binding sites; and 4) possess Asp, Glu and Asp residues as catalytic sites 

corresponding to Asp206, Glu230 and Asp297 of Taka-amylase A (Matsuura et al. 1984; Nakajima et 

al. 1986; Kuriki and Imanaka 1999). 

Three-dimensional X-ray structures of some a-amylases have been reported. These include: 

Aspergillus oryzae (Matsuura et al., 1984; Swift et al., 1991), A. niger (Boel et al., 1990; Brady et al., 

1991), Bacillus licheniformis (Machius et al., 1995), Bacillus subtilis (Fujimoto et al., 1998), pig 

pancreas (Qian et al., 1993; Larson et al., 1994), human pancreas (Brayer et al., 1995), human salivary 

gland (Ramasubbu et al., 1996), and barley (Kadziola et al., 1994). These studies have provided the 

overall information about a-amylase. Despite differences in their amino acid sequences, a-amylases 

have generally similar three-dimensional structures with three domains: domain A consisting of a 

central (j3/a)8-barrel flanking the active site, domain B overlaying the active site from one side, and 

domain C consisting of a 13-structure with a Greek-key motif (Fig. 2-15). 

One remarkable feature of a-amylases isolated from different sources is the divergence 

observed in their primary sequences. For example, alignments of the sequences of animal and fungal 

a-amylases has found homology on the order of only ~ 10% between the residues present (Brayer et 

al., 1995). Overall, studies have found only four short segments of polypeptide chain that demonstrate 

reasonably good homology amongst the a-amylases. The first of these segments is involved in binding 

a calcium ion, whereas the latter three each contain a putative active site residue (Boel et al., 1990; 

Larson et al., 1994; Qian et al., 1994). In total, these represent twenty seven amino acids out ofthe 
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Figure 2-15 Schematic representation ofthe polypeptide chain fold ofhuman 

pancreatic a-amylase. 

Also indicated are the relative positions of the three structural domains featured 

in all a-amylases (Domain A, B, C), along with locations of the calcium and 

chloride binding sites. N and C indicate the terminal ends of the polypeptide 

chain. A central feature of this structure is the eight-stranded parallel P-barrel that 

forms the bulk of Domain A and is believed to contain the active site region. 

Source: Brayer et al. (1995), reproduced with permission. 
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~500 that make up the typical a-amylase. All other regions of the polypeptide chain sequences of 

animal and fungal a-amylases have essentially no homology when aligned using traditional methods 

based on matching schemes dependent solely on amino acid identity. Despite the results obtained from 

sequence alignments, recent structural studies have shown that a-amylases do have considerable 

similarity with regard to polypeptide chain folding, even between distantly related a-amylases. For 

example, Brayer et al. (1995) noted that overall there was ~ 70% topological equivalence between the 

animal and fungal groups of a-amylases. It seems that within the a-amylase family of enzymes, that 

beyond the four short segments of polypeptide chain related to active site structure, considerable 

flexibility is available to alter the identities of other residues to optimize enzymatic activity under the 

particular conditions that each a-amylase is required to function. 

2.5.2 Mechanism of a-amylolysis 

2.5.2.1 Cleavage of glucosidic bonds - double displacement mechanism 

Throughout the a-amylase family, the enzymes are believed to have a similar mechanism of 

action, and so the catalytic amino residues are thought to be common to all enzymes (Svensson, 1994). 

Anomeric configuration is retained when the substrate is converted to product, i.e., the enzymes act on 

a-linkages in glucans or glucosides and yield a-linked products. 

Three acidic amino acid residues (Asp, Glu, Asp) have been identified for the catalytic sites of 

a-amylase family enzymes based on the results obtained by X-ray crystallographic analysis (Katsuya 

et al., 1998), chemical modification (Kuriki et al., 1996), and site-directed mutagenesis (Takata et al., 

1994). Two distinct mechanisms have been proposed for the catalytic reaction of glycosylases: SN1 

(Kaneko et al., 1998) and SN2 (Tao et al., 1989; Uitdehaag et al., 1999). However, the SN2 

mechanism, also called the double displacement mechanism, is more accepted by researchers. 
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The mechanism involves five steps (van der Maarel et al., 2002): (1) after the substrate has 

bound to the active site, the glutamic acid in the acid form donates a proton to the glycosidic bond 

oxygen, i.e. the oxygen between two glucose molecules at subsites -1 and + 1 and the nucleophilic 

aspartate attacks the C 1 of glucose at subsite -1; (2) an oxocarbonium ion-like transition state is formed 

followed by the formation of a covalent intermediate; (3) the protonated glucose molecule at subsite + 1 

leaves the active site while a water molecule or a new glucose molecule moves into the active site and 

attacks the covalent bond between the glucose molecule at subsite -1 and the aspartate; (4) an 

oxocarbonium ion-like transition state is formed again; (5) the base catalyst glutamate accepts a 

hydrogen from an incoming water or the newly entered glucose molecule at subsite + 1, the oxygen of 

the incoming water or the newly entered glucose molecule at subsite + 1 replaces the oxocarbonium 

bond between the glucose molecule at subsite -1 and the aspartate, forming a new hydroxyl group at 

the C1 position of the glucose at subsite -1 (hydrolysis) or a new glycosidic bond between the glucose 

at subsites -1 and +1 (transglycosylation). A schematic illustration of this process is shown in Fig. 2-

16. The covalently bonded intermediate has been confirmed by many researchers (Tao et al., 1989; 

McCarter and Withers, 1996; Braun et al., 1996; Mosi et al., 1997; Mackenzie et al., 1997a, 1997b; 

Uitdehaag et al., 1999). 

2.5.2.2 Cleavage of starch chains - multiple attack 

It was proposed that a.-amylases have a multiple attack mechanism when acting on starch 

substrates (Robyt and French, 1967) (Fig. 2-17a). In the multiple-attack mechanism, once the enzyme 

forms a complex with the substrate and produces the first cleavage, the enzyme remains with one of 

the fragments of the original substrate and catalyzes the hydrolysis of several bonds before it 

dissociates and forms a new active complex with another substrate molecule. It was established that the 
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direction of multiple attack is from the reducing end toward the nonreducing end: i.e., after the first 

cleavage, the fragment with the new nonreducing end dissociates from the active site, while the 

fragment with the newly formed hemiacetal reducing end remains associated with the active site and 

repositions itself to give another cleavage and the formation of maltose or maltotriose (Fig. 2-17b ). 

A chromatographic study of the types of low-molecular-weight products produced by porcine 

pancreatic and human salivary a.-amylases (Robyt and French, 1967) shows that the products are 

maltose, maltotriose, and maltotetraose. From the investigation, it was also postulated that porcine 

pancreatic a.-amylase has five D-glucose subsites and that the catalytic groups are located between the 

second and third subsites from the reducing-end subsite. The action of porcine pancreatic a.-amylase 

on amylopectin or glycogen eventually gives a series of dextrins that contain a.-D- (1 --+ 6) linkages. 

The products include tetrasaccharide, pentasaccharide, and heptasaccharide in addition to D-glucose, 

maltose and maltotriose (Robyt, 1984). 

2.5.3 Factors influencing starch digestibility 

Differences in the in vitro digestibility of native starches, among and within species, have been 

attributed to the interplay of many factors such as starch source (Ring et al., 1988), granule size (Snow 

and O'Dea, 1981), extent of molecular association between starch components (Dreher et al., 1984), 

amylose/amylopectin ratio (Hoover and Sosulski, 1985a), degreee of crystallinity (Hoover and 

Sosulski, 1985a), type of crystalline polymorphic form (A, B or C) (Jane et al., 1997), distribution ofB 

type crystallites in the granule (Gerard et al., 2001), amylose-lipid complexes (Guraya et al., 1997; 

Holm et al., 1983; Nebensy eta!., 2002; Seneviratne and Biliaderis, 1991; Tufvesson et al., 2001), 

physical distribution of starch in relation to dietary fiber components (Dreher et al., 1984; Rao, 1969; 
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Figure 2 - 16 Double displacement mechanism of a-amylase 

Source: Kuriki and Imanaka (1999), reproduced with permission. 
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Figure 2-17 a) Multiple attack of a.-amylase. 

The arrows represent the catalytic hydrolysis of a glycosidic bond; the numbers 

indicate the sequence of each catalytic event. The direction of multiple attack is 

toward the non-reducing end. 

Source: Robyt and French (1970) 

b) Sequence of events at the active site for multiple attack by an endo-

acting enzyme. 

The active site is pictured here with five binding subsites and the catalytic groups 

located between the second and third subsites; ~ and T represent the catalytic 

groups; 0 represents a glucosyl unit; 0, a reducing glucose unit; and -, an a-D­

(l--t4) glucosidic bond. 

Source: Robyt (1984), reproduced with permission. 
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Snow and O'Dea, 1981), antinutrients (Thompson and Gabon, 1987), a-amylase inhibitors (Lajo1o et 

al., 1991; Puls and Keup, 1973), physical insulation of starch by thick walled cells (Wursch et al., 

1986), porosity (Colonna et al., 1988), and the influence of drying and storage conditions (Kayisu and 

Hood, 1979). 

Colonna et al. (1992) used a mechanistic approach to analyze the steps involved in an a­

amylolysis process. Four successive phases have been considered: the diffusion of the enzyme 

molecule towards its substrate, the porosity of starchy substrate, the adsorption of enzymes on the 

substrate, and finally the catalytic event. In addition, the overall hydrolysis rate was also thought to be 

influenced by the hydrolyzed products. Fig. 2-18 summarizes various factors involved in the kinetics 

of starch hydrolysis by a-amylase. 

2.5.3.1 Particle size and porosity 

Particle size and surface area to starch ratio play an important role in influencing the enzymatic 

hydrolysis rate. A larger surface area available to enzymes leads to a higher initial rate of hydrolysis. 

Snow and O'Dea (1981) showed that starch in cereal flours was more rapidly hydrolyzed than starch in 

rolled (flattened) cereals, when comparing both raw and cooked forms. Rolled cereals have a tightly 

packed physical form with a low surface area relative to flours. In a study on wheat (Holm et al., 

1985), it was shown that wet-homogenization of steam-cooked grains resulted in a higher initial 

hydrolysis rate with a-amylase compared with dry-milling. Microscopically, the wet-homogenized 

sample was more disintegrated, resulting in a greater surface area being available to the enzyme. 

Several researchers (Knutson et al., 1982; Guraya et al., 2001) have shown that the rate of a-amylase 

hydrolysis of starches was directly proportional to the surface area ofthe granules. Kong et al. (2003) 
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Figure 2-18 Factors involved in the kinetics of starch hydrolysis by a-amylase 

Source: Colonna et al. (1992); Bjorck (1996); Hoover and Zhou (2003) 
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studied porcine pancreatic a-amylase activity on native starch granules from potato, maize and rice, 

and they found that the reciprocal of initial velocity was a linear function of the reciprocal of surface 

area. 

Specific area and porosity are considered as physicochemical factors responsible for 

differences in susceptibility of native starch granules (McGregor and McGregor, 1985; Colonna et al., 

1988). It has been speculated (Leach and Schoch, 1961; Gallant et al., 1972) that amylases hydrolyze 

native starch granules by entering the granule through pores or a loose sponge-like structure that 

permits the enzyme molecules to penetrate into the granule and hydrolyze the starch chains. These 

pores might be inherent properties of the various starches and the number may vary according to the 

type of starch. The presence of pores has been observed by Fannon et al. (1992) for maize, sorghum 

and millet starches and by Baldwin et al. (1998) for potato, rice and wheat starches. Fannon et al. 

(1993) further pointed out that the pores present on the external surface of sorghum starch granules are 

openings to serpentine channels that penetrate into the granule interior. 

2.5.3.2 Amylose/amylopectin ratio 

The amylose/amylopectin ratio is higher in legume starches than in "common" varieties of 

cereal or tuber starches (Eliasson, 1988). Due to the low glycaemic index (GI) reported for most 

legume products, this has focused interest on potential varietal differences in amylose content. 

Among cereals (e.g., rice, com, and barley) the amylose/amylopectin ratio may differ 

considerably among genotypes. In some studies on rice (Goddard et al., 1984; Juliano and Goddard, 

1986; Miller et al., 1992), a higher amylose content was shown to lower metabolic response. In fact, 

according to Miller et al. (1992), only high-amylose varieties of rice are potentially useful in low-GI 

diets. By exchanging high-amylose com flour for ordinary com flour (70%) in glucose and insulin 
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responses were significantly reduced in healthy subjects (Granfeldt et al., 1995). Sticky rice, with a 

lower amylose content, was hydrolyzed very rapidly in vitro, producing a hydrolysis graph similar to 

that with white bread (Granfeldt et al., 1992). Also, the metabolic responses and in vitro rate of starch 

hydrolysis of gels made from wheat, manihot, and smooth pea starch were inversely related to the 

amylose content (17-35%) (Bomet et al., 1989). 

Inclusion of high-amylose com starch (70% amylose) into products has been shown to lower 

metabolic responses compared with products based on low-amylose starch. As a consequence, Behall 

et al. (1988) reported reduced postprandial responses of glucose and insulin in healthy subjects 

following ingestion of crackers made from high-amylose com starch compared with a corresponding 

product made from low-amylose starch. A beneficial effect of incorporating autoclaved, high-amylose 

com starch into products was further reported by van Amelsvoort and Weststrate (1992) in healthy 

subjects. In both investigations, the effect on insulin was most pronounced, which is in accordance 

with data on high-amylose rice starch (Goddard et al., 1984). 

2.5.3.3 Starch interactions/physical structure 

Interactions between starch and protein can greatly influence the a-amylolysis rate. It has been 

demonstrated that the protein matrix, in cereal (Holm and Bjorck, 1988; Holm et al., 1989; Jenkins et 

al., 1987a) as well as in legume products (Tovar et al., 1990), limits the accessibility of starch to 

amylase. By deproteinizing pasta, the rate of in vitro amylolysis increased (Colonna et al., 1990). 

Differences in the in vitro rate of amylolysis between processed wheat samples were evened out 

following preincubation with pepsin (Holm and Bjorck, 1988; Holm et al., 1989). The in vitro 

procedure, which included pepsin, allowed closer prediction of glycemic response in rats, suggesting 
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that at least some protein-starch interactions are broken under physiological conditions (Holm et a/., 

1989). 

In pasta products, gluten forms a viscoelastic network that surrounds the starch granules, thus 

restricting starch swelling and leaching of starch during boiling (Colonna eta/., 1990; Pagani eta/., 

1986). As to the cause of the slow-release starch features of pasta, the limited swelling of starch 

granules may reduce the availability to amylases. However, as judged from the prominent increase in 

the rate of amylolysis even at pre gelatinized stages of granule crystallinity (Holm et al., 1988), 

differences in the extent of swelling of gelatinized granules might not account for the lowered 

availability observed. The presence of a glutinous phase, although available to preteolytic enzymes, 

will possibly release the starch substrate more gradually to amylolytic attack. According to Jenkins et 

al. (1987a), protein-starch interaction also reduces the availability of the starch in bread products, and a 

bread made from gluten-free flour elicited a higher glucose response than an ordinary wheat bread. 

Other forms of starch interactions involve formation of amylose-lipid complexes and 

interactions between starch molecules. Amylose-lipid complexation affected the enzyme susceptibility 

of sago starch by reducing starch granule swelling (thus providing less opportunity for enzyme access 

to the granule interior and less leaching of amylose from the granules) and by increasing resistance to 

digestive enzymes (Cui and Oates, 1999). Amylose compl~xed with lysolecithin was more slowly 

digested and absorbed from the rat small intestine, and produced less pronounced postprandial 

glycemia than "soluble" amylose (Holm et al., 1983). This reduction is noteworthy, since the soluble 

amylose reference also can be expected to be less readily available to amylases due to its disposition to 

retrograde. In products based on starches in which amylose is the minor starch component, amylose 

retrogradation and/or formation of amylose-lipid complexes is probably most efficient in reducing the 

enzymic availability if the amylose involved is enriched on surfaces, thus encapsulating the bulk of 
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starch, rather than being evenly distributed. Such interactions may explain the improvement in product 

characteristics of rice seen in some studies as a result of parboiling. The low glycemic responses 

reported for products based on high-amylose starches might, however, be related to retrogradation of 

amylose. Although high-amylose starch granules do not swell under "ordinary conditions for food 

preparation", following the disappearance of the crystalline granule structure, amylose molecules could 

still interact, leading to a reduction in the overall enzymic availability of starch. As to the effect of 

retrogradation of amylopectin, even significant staling of starch in bread did not reduce the rate of in 

vitro amylolysis (Siljestrom et al., 1988). 

2.5.4 Hydrolysis of legume starches 

Native legume starches have been found to be more digestible than native potato or high 

amylose maize starch, but less digestible than native cereal or cassava starch (Dreher et al., 1984; Frins 

et al., 1998; Hoover and Sosulski, 1985a; Ring et al., 1988; Socorro et al., 1989; Tovar et al., 1991). 

Hoover and Sosulski (1985a) have shown that during a 6h digestion with porcine pancreatic a.­

amylase, maize starch was hydrolyzed to the extent of 75%, whereas, at the same enzyme 

concentration, the corresponding value for legume starches belonging to the biotype Phaseolus 

vulgaris ranged from 25 to 35%. 

The reduced bioavailability of legume starches has been attributed to the presence of intact 

tissue/cell structures enclosing starch granules, higher levels of amylose (30 - 65%), high content of 

viscous soluble dietary fiber components, the presence of a large number of antinutrients, 'B' type 

crystallites and strong interactions between amylose chains (Deshpande and Cheryan, 1984; Hoover 

and Sosulski, 1985a; Siddhuraju and Becker, 2001; Tovar et al., 1991; Wursch et al., 1986). Table 2-

11 presents the in vitro amylolysis of legume starches by a-amylase from different origins. It is 
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difficult to rank the legume starches with regard to their susceptibility towards a-amylase, due to 

differences in enzyme concentration, time of hydrolysis and source of a-amylase. Furthermore, the 

data presented in Table 2-11 have been on a single cultivar. Therefore, it is difficult to ascertain 

whether the reported extent of starch hydrolysis is truly representative of the particular species. 

There is growing interest in the application of legume starches as resistant starch. Resistant 

starch is defined as the sum of starch and starch degradation products not digested in the small 

intestine of healthy individuals. It is subdivided into four categories depending on the cause of 

resistance (Englyst et al., 1992; Eerlingen et al., 1993): RSt, physically inaccessible starch due to 

entrapment in a nondigestible matrix; RS2, raw starch granules with crystallinity; RS3, retrograded 

amylose; and RS4, chemically modified starch slowly digestible starch (SDS) and RS are of particular 

interest because of their potential health benefits to humans. A high proportion of SDS relative to 

rapidly digestible starch (RDS) in a starchy food indicates a food with a low glycemic index. Foods 

with a low glycemic load are thought to be beneficial for all individuals, especially for type II diabetics 

(Englyst et al., 1999; Bjorck et al., 2000; Roberts, 2000; Roberts et al., 2000; Jenkins et al., 2001). 

Raw and processed legumes have been shown to contain significant amounts of RS in 

comparison to cereal and potatoes (Bednar et al., 2001; Bjorck et al., 1994; Bravo et al., 1998; 

Elmstahl, 2002; Garcia-Alonso et al., 1998; Lehmann et al., 2003; Lintas and Cappelloni, 1992; 

Marlett and Longacre, 1996; Osorio-Diaz et al., 2002; Periago et al., 1997; Rosin et al., 2002; Tovar 

and Melito, 1996; Tovar et al., 1992a, b; Truswell, 1992; Velasco et al.; 1997). For this reason the 

ingestion of legumes results in reduced glycemic and insulinemic postprandial responses in 

comparison to cereals or potatoes (Jenkins et al., 1982, 1987b; Tovar et al., 1992b). 
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Table 2-11 
In vitro digestibility of native legume starches 

Starch Source 
Smooth pea (Pisum Sativum L.) 

Source of a-amylase Reaction Time(h) Degree of hydrol~sis(%) 

Porcine Pancreatic 24 18.2 - 22.2 

Porcine Pancreatic 29 91 

Wrinkled pea (Pisum Sativum l.) 

Grass pea (Pisum sativum L.) 

Green pea (Pisurn sativum L.) 

Beach pea (lathyrus rnaritimus l..) 

lentil (lens culinaus L.) 

Mung bean (Phaseolus aureus ) 

lima bean (Phaseolus lunatus ) 

Lablab bean (Lablab purpureus ) 

Pinto bean (Phaseo/us vulgaris ) 

Navy bean (Phaseo/us vulgaris ) 

Northern bean (Phaseolus vulgaris) 

Black bean (Phaseo/us vulgaris ) 

Kidney bean (Phaseolus vulgaris ) 

Moth bean (Phaseolus acontifolius ) 

Tepary bean (Phaseofus acutifolius ) 

Yam bean ( Sphenostylis stenocarpa ) 

Bacillus Sp. 

Aspergillus Fumigatus 

Porcine Pancreatic 

Bacillus Species 

Aspergillus Fumigatus 

Porcine Pancreatic 

Porcine Pancreatic 

Porcine Pancreatic 

Porcine Pancreatic 

Porcine Pancreatic 

Porcine Pancreatic 

Bacillus Subtilis 

Porcine Pancreatic 

Porcine Pancreatic 

Porcine Pancreatic 

Porcine Pancreatic 

Porcine Pancreatic 

Porcine Pancreatic 

Porcine Pancreatic 

Porcine Pancreatic 

Human Salivary 

Porcine Pancreatic 

Saliva 

Chick pea ( Cicer arientum ) Porcine Pancreatic 
Human Salivary 

Horse gram (Dolichos biflorus) Saliva 

Cow pea (Vigna Sinensis ) Saliva 
Source: Hoover and Zhou (2003) 

71 

29 

29 

29 

29 

29 

24 

24 

24 

24 

24 

6 

2 

1 

6 

6 

6 

6 

3 

6 

NA 
1.6 

2 

1 
24 

2 

2 

2 

78 

100 

72 

66 
77 

22 

16 

35 

14.5-35.5 

71.1 

25 

30 
62 

25.2 

32 

29 
34.8 

49.5 

31.4 

25.4-28.2 

30.2 

8 

18 
60 
15 

10.2 

10.8 



Chapter 3 Materials and Methods 

3.1 Materials 

Black bean (Phaseolus vulgaris L.) cultivars (CDC Nighthawk, Black Jack); pinto bean 

(Phaseolus vulgaris L.) cultivars (Othello, Sierra); lentil (Lens culinaris Mekik) cultivars (CDC 

Rrobin, CDC Redwing); smooth pea (Pisum sativum L.) cultivars (CDC Mozart, CDC Sonata) and 

wrinkled pea (Pisum sativum L.) were obtained from the Crop Development Center, University of 

Saskatchewan, Saskatoon, Canada. Crystalline porcine pancreatic a-amylase (E.C. 3.2.2.1, type 1A) 

was purchased from Sigma Chemical Co., (St. Louis, MO, USA). Potato starch and waxy com starch 

were gifts from National Starch and Chemical Co., Bridgewater, NJ, USA. All other chemicals and 

solvents were of ACS-certified grade. 

3.2 Methods 

3.2.1 Starch isolation 

Starch was isolated from legume seeds by the procedure of Hoover and Sosulski (1985a). Seeds 

(200 g) were steeped in 300 mL of 0.01% (w/v) sodium metabisulfite for 24 hat ambient temperature 

(20-25°C). The swollen seeds were thoroughly washed with water, peeled and homogenized in a 

Commercial Waring Blender (Dynamics Corporation of America, New Hartford, CT,_ USA) for 90 sec. 

The homogenate was then filtered (under vacuum) through a double-layer of cheesecloth. The filtrate 

was collected and left to settle for 2 h, then the supernatant was removed by a siphoning tube. The 

sediment was suspended in excess 0.2% (w/v) NaOH and after standing for 12 h the supernatant was 

removed. The sedimentation procedure was repeated thrice. The final sediment was suspended in 

distilled water and passed through a 70 J.tm polypropylene filter cloth under vacuum. The filtrate was 
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allowed to settle for 2h and the supernatant was removed, again this procedure was repeated three 

times. Finally, the slurry was neutralized to pH 7.0 by HCl and passed through a double-layer of 

Whatman No.4 filter paper, and the filter cake oven dried at 30°C for 24h in a Fisher Isotemp 615G 

forced air oven (Fisher Scientific, Nepean, ON, Canada). The dried starch cake was carefully crushed 

and sieved (250 11m test sieve, Fisher Scientific Company, USA) to obtain a free flowing powder, 

which was weighed and the yield was calculated as the percentage of the initial seeds weight. 

3.2.2 Granule morphology 

The granule surface was studied by scanmng electron microscopy. Starch samples were 

mounted on circular aluminum stubs with double sticky tape and then coated with 20 nm of gold and 

examined and photographed in a Hitachi scanning electron microscope (S570, Nissei Sangyo, Inc., 

Rexdale, ON, Canada) at an accelerating potential of 5 kV. The size and shape of native starches were 

examined by a Leica Gallen III microscope. The range of granule size was determined by measuring 

the length and width of 40 granules from a 1.0% starch suspension at 10 x 100 magnification with an 

eye-piece micrometer. 

3.2.3 Compositional analyses 

.3.2.3.1 Moisture content 

Quantitative estimation of moisture vvas performed according to standard AACC (American 

Association of Cereal Chemists, 1984) procedures. Pre-weighed ( 4-5 g) starch samples were dried a 

forced air oven (Fisher Isotemp 615G, Fisher Scientific, Nepean, ON, Canada) at l30°C for 1 h. The 

sample was then removed and cooled in a desiccator. The moisture content was calculated as the 

percentage weight loss of the sample. 
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3.2.3.2 Ash content 

Pre-weighed (5±0.01 g) samples were transferred into a clean, dry porcelain crucible, and 

ignited over a flame until thoroughly carbonized. Then the sample was placed in a pre-heated (525°C) 

muffle furnace (Lab Heat- Blue M model M30A-l C, Blue M Electric Co., Blue Island, IL, USA) and 

allowed to stand until it became a cotton-like substance and free of carbonaceous matter ( ~ 12 h). The 

sample was cooled to room temperature in a desiccator and weighed. The ash content was calculated as 

the percentage weight loss ofthe sample (AACC, 1984). 

3.2.3.3 Nitrogen content 

Nitrogen content was determined by the micro-Kjeldahl method. Samples (0.3 g, db) were 

weighed on nitrogen free paper and placed in digestion tubes on a Buchi 430 digester (Buchi 

Laboratorimus-Technik AG, Flawill/Schweiz, Switzerland). The catalyst (two Kjeltab M pellets) and 

20 mL of concentrated sulfuric acid were added to each tube and the sample was digested until a clear 

yellow solution was obtained. The digested samples were then cooled, diluted with 50 mL of distilled 

water, 100 mL of 40% (w/v) NaOH was then added, and the released ammonia was steam distilled into 

50 mL of 4% (w/v) boric acid (H3B03) containing 12 drops of end-point indicator (N-point indicator, 

EM Science, NJ, USA) using a Buchi 321 distillation unit until 150mL of distillate was collected. The 

amount of ammonia in the distillate was determined by titrating against 0.05N sulfuric acid (AACC, 

1984). Percentage nitrogen was calculated as: 

(Volume of acid- Blank) x Normality of acid x 14.0067 x 100 
Nitrogen(%)= 

Sample weight (mg) 
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3.2.3.4 Lipid content 

Different categories of lipid were extracted from starch by the following procedures and the 

amounts of extracted lipid were expressed as percentages of the initial starch sample weight. 

3.2.3.4.1 Surface lipids 

Surface lipids were extracted at room temperature (25- 27°C) by mixing starch (5 g, db) with 

1 OOmL of 2:1 (v/v) chloroform-methanol under vigorous agitation in a wrist action shaker for 1h. The 

solution was then filtered (Whatman No.4 filter paper) into a round bottom flask and the residue was 

washed thoroughly with a small amount of the above chloroform-methanol solution. The solution was 

then evaporated to dryness using a rotary evaporator (Rotavapor -RllO, Buehl Laboratorimus -

Technik AG, Flawill/Schweiz, Switzerland). The crude lipid extracts were purified by the method of 

Bligh and Dyer (1959) before quantification. The starch residue was saved for bound lipid extraction. 

3.2.3.4.1.1 Bligh and Dyer (1959) method of lipid purification 

The crude lipid from the above extract was purified by extraction with chloroform-methanol­

water (1:2:0.8, v/v/v) and by forming a biphasic system (chloroform-methanol-water, 1:1:0.9, v/v/v) by 

the addition of chloroform and water at room temperature (25-27°C)in a separation funnel. The 

chloroform layer was then diluted with benzene and brought to dryness using a rotary evaporator 

followed by drying at 60°C for 1h in a forced-air oven. The dried lipid was.cooled to room temperature 

in a desiccator. 
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3.2.3.4.2 Bound lipids 

Bound lipid was extracted using the residue left after surface lipid extraction. The residue was 

refluxed with 3:1 (v/v) n-propanol-water in a soxhlet apparatus at 85°C for 7 h (Vasanthan and 

Hoover, 1992). The extracted solution was evaporated using a rotary evaporator. The crude lipid 

extract was purified by the method of Bligh and Dyer (1959) before quantification. 

3.2.3.4.3 Total lipids 

Total starch lipid was determined by hydrolyzing starch (2 g, db) with 25 mL of24% (v/v) HCI 

at 70-80°C for 30 min. The hydrolyzate was extracted three times with n-hexane. The extract was 

evaporated to dryness in a rotary evaporator. The crude lipid extract was purified by the method of 

Bligh and Dyer (1959) before quantification. 

3.2.3.5 Amylose content 

Apparent and total amylose content were determined as described by Hoover and Ratnayake 

(2001). 

3.2.3.5.1 Apparent amylose 

Starch (20 mg, db) was accurately weighed into a round bottom screw cap tube, then 8 mL of 

90% dimethylsulfoxide (DMSO) was added to the tube. The contents were mixed vigorously for 2min 

using a vortex mixer followed by heating in a water bath (PolyScience, Model 2L-M, PolyScience, 

Niles, IL, USA) at 85°C for 15 min with intermittent shaking. The tube was then allowed to cool to 

room temperature ( ~45 min) and then diluted to 25 mL in a volumetric flask. 1 mL of the diluted 

solution was mixed with water (40 mL), 5 mL ofh/KI solution (0.0025M hand 0.0065M KI mixture) 
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was added, and the final volume was adjusted to 50 mL in a volumetric flask. After 15 min (for color 

development), the absorbance was read at 600 nm using a UV -visible spectrophotometer (LKB 

Novaspec-4049 spectrophotometer, LKB Biochrom Ltd., Cambridge, England). In order to avoid over­

estimation of amylose content (due to complex formation between h and the long outer branch chains 

of amylopectin), amylose content was calculated from a standard curve prepared using mixtures of 

pure potato amylose and amylopectin (over the range 0-100% amylose and 100-0% amylopectin) (Fig. 

A-1 in Appendix). 

3.2.3.5.2 Total amylose 

Starch samples were defatted by extracting in a Soxhlet extractor (85°C) with 3:1 (v/v) n­

propanol-water for 7h prior to the determination of total amylose content by the above procedure. 

3.2.4 Starch damage 

Starch damage was estimated following the AACC (1984) standard procedures. Starch samples 

(lg, db) were digested with fungal a-amylase from Aspergillus oryzae (0.05 g) having a specific 

activity of 50-200 units/mg in a water bath (PolyScience waterbath, PolyScience, Niles, IL, USA) at 

30°C for 15 min. At the end of the incubation, the enzyme action was terminated by adding 3.68N 

sulfuric acid (3 mL) and 12% (w/v) sodium tungstate (NazW04·2HzO) (2 mL), respectively. The 

mixture was allowed to stand for 2min and then filtered through a Whatman No. 4 filter paper. 

Aliquots (2 mL) of the filtrate were mixed with 2 mL of 3,5 - dinitrosalicylic (DNS) acid and then 

heated in a boiling water bath for 5 min. The reaction mixture was chilled using an ice bath and diluted 

with 8 mL of distilled water. The absorbance was measured at 540 nm against a blank (Bruner, 1964) 

(the details of the procedure are outlined in 3.2.4.1). A calibration curve (Fig. A-2 in Appendix) was 
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established with maltose (to calculate the maltose equivalents in the digest) and the percentage starch 

damage was calculated using the following equation: 

Starch damage(%)= (M x 1.64) I (W x 1.05) x 100 

M: mg maltose equivalents in the digest. 

W: mg (db) of starch 

1.64: the reciprocal of the mean percentage maltose yield from starch (an empirical 

factor which assumes that tmder the conditions of the experiment, the maximum 

degree of hydrolysis is 61% ). 

1.05: molecular weight conversion of starch to maltose 

3.2.4.1 Determination of reducing sugar content (Bruner, 1964) 

Sample solution (2 mL) was pipetted into a screw cap tube, followed by 2 mL of 3,5-

dinitrosalicylic acid (DNS) solution (20 g ofDNS dissolved in 700 mL of lN NaOH). The mixture was 

stirred well to dissolve the DNS and then diluted to 1 L with distilled water and filtered through a 

double-layer of Whatman No. 1 filter paper. The mixture was heated in a boiling water bath for 5 min 

for color development. The tube was then cooled in an ice bath for 10 min, and then 8 mL of distilled 

water was added to mal(e the total volume to 12 mL. The absorbance was read at 540 nm using a UV­

visible spectrophotometer (LKB Novaspec-4049 spectrophotometer, LKB .Biochrom Ltd., Cambridge, 

England) against a reagent blank (25°C). Standard curves were established by preparing a series of 

mixtures with known ammmts of maltose (Fisher Scientific, Fair Lawn, NJ, USA) (Fig. A-2 in 

Appendix). 
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3.2.5 Swelling factor (SF) 

The SF of the starches at 80°C in excess water was measured according to the method of Tester 

and Morrison (1990). Starch samples (50 mg, db) were weighed into a screw cap tube, 5 mL of water 

was added, and the tube was heated in a shaking water bath at 80°C for 30 min. The tube was then 

cooled to 20°C immediately on ice, 0.5 mL of blue dextran (MW 2,000,000) was added and mixed 

well. The tube was then centrifuged at 2000 r.p.m for 5 min and the absorbance of the supernatant was 

measured at 620nm using a UV -visible spectrophotometer against a reference without starch. This 

method measures only intragranular water and hence is regarded as the true SF at a given temperature. 

Calculation of SF was based on starch weight corrected to 10% moisture, assuming a density of 

1.4 mg/mL. 

Free or interstitial plus supernatant water (FW) is given by: 

FW = 5.5 (A/As)- 0.5 

Where Ar and As are the absorbances of the reference and sample, respectively. 

The initial volume of starch (V0 ) of weight W (in mg) is 

Yo= W/1,400 

And the volume of absorbed intragranular water (V t) is thus: 

V1 = 5.0 -FW 

Hence the volume of the swollen starch granule (V 2) is: 

V2 = Vo + 

And SF= V2/Vo 

This can also be expressed by the single equation: 

SF= 1 + {(7700 I W) x [(As- A,) I As]} 

The coefficient of variation of the method was generally less than 1%. 
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3.2.6 Extent of amylose leaching (AML) 

Native starches (20 mg, db) in water were heated at 80°C in volume-calibrated sealed tubes for 

30min. The tubes were then cooled to ambient temperature (25-27°C) and centrifuged at 2000 r.p.m for 

10 min. The supernatant liquid (1 mL) was withdrawn and its amylose content determined as described 

by Hoover and Ratnayake (2001). Amylose leaching was expressed as percentage of amylose leached 

per 100 g of starch. 

3.2. 7 Differential scanning calorimetry (DSC) 

Gelatinization parameters of native and enzyme treated residues were measured and recorded 

on a Seiko DSC 210 (Seiko Instruments Inc., Chiba, Japan) differential scanning calorimeter equipped 

with a thermal analysis data station and data recording software. Water (llj.tL) was added with a 

microsyringe to starch (3.0 mg) in the DSC pans, which were then sealed, weighed, and allowed to 

stand for 24 h before DSC analysis. The scanning temperature range and the heating rate were 20-

l200C and 10°C/min, respectively. In all measurements, the thermogram was recorded with an empty 

aluminum pan as the reference. The transition temperatures reported are the onset (T 0), peak (T p), and 

conclusion (Tc) of the gelatinization endotherm. The enthalpy ofthe gelatinization (ilH) was estimated 

by integrating the area between the thermogram and a base line connecting the points of onset and 

conclusion temperature, and was expressed in terms of mJ/mg starch (Fig. A-4 in Appendix). All DSC 

experiments were performed in triplicate. 

3.2.8 X-ray diffraction 

X-ray diffractograms of native and enzyme hydrolyzed starches were obtained with a Rigaku 

RU 200R X-ray diffractometer (Rigaku-Denki Co., Tokyo, Japan) under the following operating 
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conditions as: target voltage- 40 KV, current- 100 rnA, aging time- 5 min, scanning range- 3-35°, 

scan speed- 2.000°/min, step time- 4.5 s, divergence slit width- 1.00, scatter slit width- 1.00 and 

receiving slit width- 0.60. 

The moisture contents of all starch samples were adjusted to ~ 19% by being kept in a 

desiccator over saturated BaCh solution (25°C, aw=0.9) for about 1 week (Barron et al., 2000). 

3.2.8.1 Determination of relative crystallinity 

The relative crystallinity of samples was quantitatively estimated following the method ofNara 

and Komiya (1983). A smooth curve which connected peak baselines was computer-plotted on the 

diffractogram. The area above the smooth curve was considered as the crystalline portion, and the 

lower area between the smooth curve and a linear baseline which connected the three points of 

intensity at 28 of 4.5°, 6.6° and 35° was taken as the amorphous portion. The upper diffraction peak 

area and total diffraction area over the diffraction angle 4.5° - 35° 28 were integrated by Origin 

software (version6.0, Microcal Inc., Northampton, MA, USA). The ratio of the upper area to the total 

diffraction area was calculated as the relative crystallinity (Fig. A-5 in Appendix). 

3.2.8.2 Determination of B-polymorphic composition 

B-polymorph content of samples was estimated by the method of Davydova et al. (1995). 

Different amounts (0 - 100%) of pure potato starch (B type) were thoroughly mixed with proportionate 

amounts (100- 0%) of pure waxy com (A type) starch. Moisture content was adjusted to ~19% as 

previously described. The diffractogram of each mixture was obtained (using the same diffractometer 

settings) and the ratio of peak area at 5.54° 28 to the total peak area (crystalline portion) was calculated 

by Origin software (Version 6.0, Microcal. Inc). A standard curve was established by plotting the ratio 

versus the corresponding percentage of potato starch in the mixture (Fig. A-6 in Appendix). 
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3.2.9 Eneymatic hydrolysis by porcine pancreatic a-amylase 

3.2.9.1 Hydrolysis pattern 

Enzymatic digestibility studies on native starches were conducted usmg a crystalline 

suspension of porcine pancreatic a-amylase in 2.9M saturated sodium chloride containing 3mM 

calcium chloride (Sigma Chemical Co., St. Louis, MO, USA), in which the concentration of a-amylase 

was 32 mg/mL and the specific activity was 1370 units/mg protein. The procedure was essentially that 

of Knutson et al.(l982), however, a higher concentration of enzyme was used in this study (12 

units/mg starch). Starch granules (0.2g, db) were suspended in distilled water (llmL) and then 9 mL of 

O.lM phosphate buffer (pH 6.9) containing 0.006M NaCl were added. The slurry was pre-warmed for 

30min at 37°C and gently stirred before adding 54.7 J-LL a-amylase suspension. The reaction mixtures 

were shaken manually on a daily basis to resuspend the deposited granules. One mL aliquots were 

withdrawn at specific time intervals, pipetted into 0.2 mL of 95% ethanol, and centrifuged 

(2000r.p.m.). Aliquots of the supernatant were analyzed for reducing sugar content (Bruner, 1964). 

The extent of hydrolysis was calculated as the percentage of initial starch converted to maltose. 

Controls without enzyme but subjected to the above experimental conditions were run concurrently. 

The experiment was performed in triplicate. 

H d 1 . t t (01 ) Released reducing sugar as maltose (g) x 0.95 100 y ro ys1s ex en ;o = x 
Initial starch weight (g) 

3.2.9.2 Preparation of hydrolyzed residues 

Residues obtained at various time intervals of hydrolysis were washed three times -vvith distilled 

water, centrifuged (2000 r.p.m.) and freeze-dried. 
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3.2.9.3 Calculation of initial velocity 

Initial velocity calculations for wrinkled pea and other legume starches were based on the data 

within the first 20min and 4h hydrolysis period, respectively. A linear regression line was plotted by 

the computer and the slope was regarded as the initial velocity (Fig. A-3 in Appendix). 

3.2.10 Statistical analysis 

All determinations were replicated three times, mean values and standard deviations were 

reported. Analysis of variance (ANOVA) was performed by Turkey's HSD test (P<0.05) using 

statistical software SPSS 11.0 for Windows (SPSS, Inc., Chicago, IL, USA). 
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Chapter 4 Results and Discussion 

4.1 Chemical composition of legume starches 

Data on the composition of the legume starches are presented in Table 4-1. The purity of the 

starches was judged on the basis of composition and microscopic examination. The ash content ranged 

from 0.01 to 0.04%. This low value indicated that the starches were relatively free of hydrated fine 

fibers which are derived from the cell wall enclosing the starch granules. The nitrogen content was low 

in all starches (0.02-0.07%), indicating the absence of non-starch lipids (lipids associated with 

endosperm proteins). Therefore, the total lipid (obtained by acid hydrolysis) in the legume starches 

(0.35-0.84%) mainly represent the free and bound lipids. In all starches, the bound lipid content (0.26-

0.81%) was higher than the surface lipid (0.01- 0.10%). Significant differences (P<0.05) in bound lipid 

content between cultivars was evident only in black bean [Black Jack (0.43%) > CDC Nighthawk 

(0.26%)] and pinto bean [Othello (0.57%) >Sierra (0.43%)] starches. The amounts of bound lipids in 

wrinkled pea (0.80%) and lentil (0.72- 0.81%) were higher than those in the other legume starches 

(0.26- 0.48%). In all starches, there was no significant difference (P<0.05) between the amount of 

lipid extracted by acid hydrolysis and that extracted by solvent extraction. Most of the data on the total 

lipid contents of legume starches reported in the literature have been obtained by the use of solvent 

systems that have been proven to be ineffective in removing bound lipids. Therefore, a meaningful 

comparison cannot be made. 

The total amylose content of legume starches has generally been reported (Hoover and 

Sosulski, 1991) to be in the range of24- 65%. The total amylose content of the legume starches in this 

study (Table 4-1) ranged from 30.5 (lentil, CDC Redwing) to 78.4% (wrinkled pea). There was no 

significant difference (P < 0.05) in total amylose content between cultivars of the same species. The 
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Table 4-1 

Chemical comp()sition(Ofc,)1 and some properties of legume starches 

Characteristics Black bean 

CDC Nif,Jhthawk BlackJack 

Yield (% of initial seeds) 16.37 ± 0.82e 21.80 ± 1.06c,d 

Moisture 10.99 ± 0.16b,c 10.82 ± 0.1 ob,c 

Ash 0.04 ± 0.01 8 0.03 ± o.ooa,b 

Nitrogen 0.03 ± 0.01b,c 0.05 ± 0.01a,b,c 

Lipid 

Surface lipid2 0.10 ± 0.01 8 0.08 ± 0.01a,b 

Bound lipid3 0.26 ± 0.02d 0.43 ± 0.03c 

Totallipid4 0.35 ± 0.02e 0.52 ± 0.03d 

Amylose content 

Apparent amylose5 35.21 ± 0.68b 33.07 ± 1.19b,c 

Total amylose6 39.32 ± 1.70b 37.17 ± 0.68b,c 

Lipid-complexed amylose7 10.37 ± 2.828 11.04 ± 3.148 

Starch damage 0.28 ± 0.03c,d 0.27 ± 0.04c,d 

Granule size (f.lm) 

Width 10.0- 32.0 10.0-37.5 

Length 10.0-40.0 10.0-41.0 

Granule shape round to oval round to oval 

Pinto bean 

Othello 

28.25 ± 1.25b 

11.38 ± 0.12b 

0.03 ± 0.01a,b 

0.07 ± 0.02a,b 

0.06 ± 0.02b,c 

0.57 ± 0.03b 

0.62 ± 0.04c 

28.36 ± 1.62d,e 

31.93 ± 2.60d,e 

11.18 ± 1.928 

0.22 ± 0.03d,e 

10.0-29.0 

10.0-40.0 

round to oval 

Sierra 

25.01 ± 1.50b,c 

12.22 ± 0.208 

0.02 ± 0.01a,b 

0.08 ± 0.038 

0.04 ± 0.01c,d,e 

0.43 ± 0.02c 

0.48 ± 0.01d 

27.83 ± 0.81d,e 

31.34 ± 0.36d,e 

11.21 ± 1.068 

0.24 ± 0.02c,d 

10.0-32.0 

10.0-42.0 

round to oval 

Wrinkled pea 

21.60 ± 1.08c,d 

11.76 ± 0.23a,b 

o.o1 ± o.oob 

0.03 ± 0.01b,c 

0.05 ± 0.01b,c,d 

0.80 ± 0.058 

0.84 ± 0.028 

68.84 ± 1.71 8 

78.42 ± 1.528 

12.22 ± 1.968 

3.54 ± 0.028 

5.0-34.0 

5.0-37.0 

irregular to compound 
/rounded rosette 

1. Data with the same superscript in the same row are not significantly different (P < 0.05) by Tukey's HSD test. All data reported on dry basis and represent the mean ± SD of three determinations. 

2. Lipids extracted by chloroform-methanol2:1 (v/v) at 25•c (mainly unbound lipids). 

3. lipids extracted by hot n-propanol-water 3:1 (v/v) from the residue left after chloroform-methanol extraction (mainly bound lipids). 

4. Lipids obtained by acid hydrolysis (24% HCI) ofthe native starch. 

5. Apparent amylose determined by iodine binding without removal of free and bound lipids. 

6. Total amylose determined by iodine binding after removal of free and bound lipids. 

7. Total amylose- Apparent amylose 

Total amylose 
x100 
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Table 4-1 

Chemical compg~jtifm(<>.(o}~ C)l"l_d S()me properties of legume starches(cont'd) 

Characteristics 

Yield(% of initial seeds) 

Moisture 

Ash 

Nitrogen 

Lipid 

Surface lipid2 

Bound lipid3 

Totallipid4 

Amylose content 

Apparent amylose5 

Total amylose6 

Lipid-complexed amylose7 

Starch damage 

Granule size (~m) 

Width 

Length 

Shape 

CDC Robin 

27.44 ± 1.62b 

8.98 ± 0.32e 

0.03 ± 0.01a,b 

0.04 ± 0.02a,b,c 

0.01 ± 0.01e 

0.81 ± 0.038 

0.83 ± 0.028 

28.78 ± 1.29d,e 

32.29 ± 1.05d,e 

10.88 ± 0.908 

0.30 ± 0.01c 

8.0-28.0 

8.0-36.0 

round to oval to 
irregular 

Lentil 

CDCRedwing 

34.07 ± 2.048 

9.87 ± 0.18d 

0.03 ± 0.01a,b 

0.05 ± 0.01a,b,c 

0.01 ± 0.01e 

0.72 ± 0.058 

0.71 ± 0.03b 

27.35 ± 1.70e 

30.51 ± 0.63e 

10.34 ± 1.748 

0.15 ± 0.02e 

6.0-27.0 

6.0-37.0 

round to oval to 
irregular 

CDC Mozart 

19.40 ± 1.02d,e 

9.47 ± 0.15d,e 

0.02 ± 0.01a,b 

0.08 ± 0.028 

0.02 ± 0.01d,e 

0.47 ± 0.04b,c 

0.48 ± 0.03d 

31.04 ± 0.21c,d 

35.09 ± 0.64c,d 

11.54 ± 1.298 

0.40 ± 0.03b 

8.0-32.0 

8.0-50.0 

round to oval to 
irregular 

Smooth ~ea 

CDC Sonata 

28.90 ± 2.20b 

10.47 ± 0.25c 

0.02 ± o.ooa,b 

0.02 ± 0.01c 

0.03 ± 0.01c,d,e 

0.48 ± 0.03b,c 

0.52 ± 0.03d 

30.63 ± 0.31c,d,e 

34.73 ± 1.09c,d 

11.83± 1.768 

0.43 ± 0.03b 

9.0-34.0 

10.0-50.0 

oval to irregular 

1. Data with the same su;>erscript in the same row are not significantly different (P < 0.05) by Tukey's HSD test. All data reported on dry basis and represent the mean± SD of three determinations. 

2. Lipids extracted by chloroform-methanol2:1(v/v) at 25•c (mainly unbound lipids). 

3. Lipids extracted by hot n-propanol-water 3:1 (v/v) from the residue left after chloroform-methanol extraction (mainly bound lipids). 

4. Lipids obtained by acid hydrolysis (24% HCI) of the native starch (total lipids) 

5. Apparent amylose determined by iodine binding without removal of free and bound lipids. 

6. Total amylose determined by iodine binding after removal of free and bound lipids. 

7. Total amylose- Apparent amylose 

Total amylose 
x100 



extent of granule damage in wrinkled pea starch (3.54%) was higher than that in the other legume 

starches (0.22- 0.43%). Significant differences (P < 0.05) in starch damage between cultivars was 

observed only for lentil [CDC Robin (0.30) >CDC Redwing (0.15)]. 

4.2 X-ray diffraction of native starches 

The X-ray diffraction pattern, relative crystallinity and 'B' polymorphic content of the legume 

starches are presented in Table 4-2 and Fig.4-l (a, b) [the X-ray spectra of smooth pea, lentil and pinto 

bean starches (not shown) were similar to that of black bean starch (Fig. 4-1a)]. With the exception of 

wrinkled pea starch, all other starches showed the characteristic 'C' pattern of legume starches (Hoover 

and Sosulski, 1985a; Gernat et al., 1990; Cheetham and Tao, 1998). The 'C' X-ray pattern was 

characterized by peaks at diffraction angles 28 of 5.6°, 15°, 17°, 20°, and 23°. The X-ray spectrum of 

wrinkled pea (Fig. 4-1b) starch was of the 'B' type, representative of tuber starches, with prominent 

peaks at diffraction angles 28 of 5.6°, 15°, 17°, 20°, 22°, and 23°. The intensity of the peak at 28=5.6° 

(characteristic of the 'B' polymorphic form) in wrinkled pea starch was higher than that in the other 

legume starches. However, the overall intensity of the peaks in wrinkled pea starch was much lower 

than that of the other legume starches (Fig. 4-la). The relative crystallinity (RC) of wrinkled pea starch 

(17.7%) was much lower than that of the other legume starches (29.9- 33.4%) (Table 4-2). There was 

no significant difference (P < 0.05) in RC either among or between cultivars of black bean, pinto bean, 

smooth pea and lentil (Table 4-2). The lower RC of wrinkled pea starch could be attributed to its low 

amylopectin content (Table 4-1). The 'B' polymorphic content of wrinkled pea starch (92.2%) was 

much higher than those of the other legume starches (27.1 - 37.5%) (Table 4-2). There was no 

significant difference (P < 0.05) in the 'B' polymorphic content (Table 4-2) between 
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Figure 4-1 X -ray diffraction patterns of native and hydrolyzed black bean (Black Jack) 

(Fig. la) and wrinkled pea starch (Fig. lb). The X-ray pattern (native and 

hydrolyzed) of all other starches used in this study were similar to that of 

Fig. la. 
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Table 4-2 

X-ray diffraction pattern, relative crystallinity and 'B' polymorphic content of legume starches 1 

Starch source & cultivar Crystalline pattern 

Black bean 

CDC Nighthawk c 
Black Jack c 

Pinto bean c 
Othello c 
Sierra c 

Lentil c 
CDC Robin c 
CDC Redwing c 

Smooth pea c 

CDC Mozart c 
CDC Sonata c 

Wrinkled pea B 
1. Moisture content of all starches -19.0%. 

Relative crystallinity (%)2 

32.1 ± 1.0a 

32.7 ± 2.2a 

33.4 ± 3.0a 

33.0 ± 0.6a 

31.7 ± 2.5a 

32.3 ± 2.2a 

30.0 ± 2.0a 

30.3 ± 2.4a 

17.7 ± 2.3b 

'B' polymorphic content (0/o)2 

32.1 ± 2.4b,c 

33.1 ± 2.7b,c 

32.1 ± 2.0b,c 

37.5 ± 2.1b 

28.1 ± 1.8c 

36.1 ± 3.2b 

27.1 ± 2.7c 

28.8 ± 2.1c 

92.2 ± 3.0a 

2. Mean ± SD of three determinations. Data with the same superscript within the same column are not significantly different (P<0.05). 
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cultivars of black bean, pinto bean and smooth pea. However, the 'B' polymorphic content of lentil 

cultivars differed significantly (P<0.05) [CDC Redwing (36.1 %) >CDC Robin (28.1 %)]. 

4.3 Swelling factor (SF) and amylose leaching (AML) at 80°C 

The SF and AML of native legume starches are presented in Table 4-3. The SF ranged from 3.4 

(wrinkled pea) to 18.4 (lentil- CDC Robin). No significant difference (P < 0.05) in SF was observed 

between cultivars of pinto bean, lentil, and smooth pea. However, cultivars of black bean differed in 

their SF [Black Jack (17.7) > CDC Nighthawk (8.2)]. The SF of black bean, lentil, pinto bean and 

smooth pea starches were generally lower than those reported for green pea (21.1), field pea (19.4), 

and mung bean (31.9), but comparable to those ofbeach pea (18.4) and grass pea (13.0) (Chavan et al., 

1999; Ratnayake et al., 2001). The extent of AML at 80°C ranged from 11.0 (pinto bean- Othello) to 

17.8% (smooth pea- CDC Sonata). There was a significant difference (P < 0.05) in AML between 

cultivars of black bean (Black Jack> CDC Nighthawk), pinto bean (Sierra > Othello) and lentil (CDC 

Robin > CDC Redwing). However, cultivars of smooth pea showed no significant difference (P<0.05) 

in AML. The extent of AML exhibited by the legume starches (Table 4-3) was comparable to that 

reported for beach pea (9.5%), grass pea (15.1 %) and green pea (14.3%), but was lower than that 

reported for mung bean starch (Chavan et al., 1999; Hoover et al., 1997). 

SF has been shown to be influenced by: 1) amylose-lipid complexes (Maningat and Juliano, 

1980; Tester and Morrison, 1990; Tester et al., 1993); 2) amylose content (Sasaki and Matsuki, 1998); 

3) extent of interaction between starch chains within the amorphous and crystalline domains of the 

granule (Hoover and Manuel, 1996) and 4) amylopectin molecular structure (Shi and Seib, 1992; 

Tester et al., 1993; Sasaki and Matsuki, 1998). The differences in SF among legume starches and 

between cultivars of the same species (Table 4-3) could be attributed to the interplay of factors 2, 3, 
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Table 4-3 
Swelling factor (SF) and amylose leaching (AML) of native legume starches at sooc 

Starch source & cultivar 

Black bean 

CDC Nighthawk 

Black Jack 

Pinto bean 

Othello 

Sierra 

lentil 

CDC Robin 

CDC Redwing 

Smooth pea 

CDC Mozart 

CDC Sonata 

8.2 ± 1.9b 

17.7 ± 0.48 

10.4 ± 0.9b 

9.9 ± 0.8b 

18.4 ± 0.98 

16.0 ± 1.08 

16.2 ± 1.38 

16.6 ± 0.58 

AML(%)'1 

13.6 ± 0.5b 

16.5 ± 0.68 

11.0 ± 0.4b 

13.0 ± 0.6b 

17.7 ± 0.98 

b 13.6 ± 0.3 

17.6 ± 0.58 

17.8 ± 0.28 

Wrinkled pea 3.4 ± 0.5c 11.1 ± 0.5c 
1. Mean ± SD of three determinations. Data with the same superscript within the same column are not 

significantly different (P<O.OS). 
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and 4, since there was no significant difference (P < 0.05) in the amount of lipid-complexed amylose 

chains (Table 4-1). The difference in SF between black bean cultivars (Black Jack> CDC Nighthawk) 

suggests the presence of longer amylopectin chains in CDC Nighthawk. Association between long 

amylopectin chains could result in the formation of a large number of double helices, and the helices 

could then form crystalline clusters which would increase granular stability, thereby reducing the 

extent of granular swelling. The lower SF (3.4) of wrinkled pea starch (Table 4-3) could be attributed 

to the interplay of the following factors: 1) lower amylopectin content (17 .1%) (Table 4-1 ); 2) longer 

average amylopectin chain length (CL32- 45 vs. CL24- 27 for the other legume starches) (Colonna et 

al., 1982; Colonna and Mercier, 1984; Biliaderis et al., 1981; Hoover and Sosulski, 1991; Ratnayake et 

al., 2002); and 3) closer packing of amylose chains [due to higher amylose (78.4%) content (Table 4-

1)]. 

The extent of AML has been shown to be influenced by: 1) the extent of interaction between 

amylose chains (AM-AM) and/or between amylose and the outer branches of amylopectin (AM­

AMP), and 2) the amount of lipid-complexed amylose chains (Ratnayake et al., 2001; Hoover and 

Ratnayake, 2001). In this study, the extent of AML is mainly influenced by starch chain (AM-AM, 

AM-AMP) interactions within the native granule, since differences in the amount of lipid-complexed 

amylose chains between and among legume cultivars were not significant (Table 4-1). The results 

(Table 4-3) indicate that the extent of AM-AM and AM-AMP interactions between cultivars follows 

the trend: CDC Nighthawk> Black Jack; Othello > Sierra; CDC Redwing > CDC Robin; CDC Mozart 

~ CDC Sonata. The results also indicate that the total amylose content per se does not influence AML, 

since wrinkled pea starch with its much higher amylose content (78.4%) exhibited nearly the same 

degree of AML as did pinto bean starch (32.0% amylose) (Table 4-1). 
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4.4 Gelatinization parameters 

The gelatinization transition temperatures [To (onset), Tp (peak), Tc (conclusion) and ~H 

(gelatinization enthalpy)] of native starches are presented in Table 4-4. T0 , Tp, Tc and Tc- T0 of both 

cultivars of pinto bean were significantly (P < 0.05) higher than those of the other legume starches. 

There were significant (P < 0.05) differences in T0 , Tp and Tc between cultivars of black bean (CDC 

Nighthawk> Black Jack), pinto bean (Othello >Sierra) and lentil (CDC Redwing > CDC Robin). 

Wrinkled pea starch showed no endotherm (Table 4-4). Significant differences in m were evident 

only between cultivars of black bean (CDC nighthawk> blackjack) and lentil (CDC redwing >CDC 

robin). Noda et al. (1998) demonstrated that gelatinization temperatures are influenced by the 

molecular architecture of the crystalline region which corresponds to the distribution of amylopectin 

short chains (DP6 - 11) and not by the proportion of crystalline region, which corresponds to the 

amylose/amylopectin ratio. The above authors showed by studies in fifty one cultivars of sweet potato 

and twenty seven cultivars of buckwheat starches that a low T 0 , T P and T c reflects the presence of 

abundant short amylopectin chains. Shi and Seib (1995) have also shown by studies on ae wx, ae du 

wx, wx and du wx maize starch, that ae wx starch having the lowest proportion of short chains (DP6 -

11) exhibited the highest gelatinization temperature and enthalpy. This suggests that the higher To, T P 

and T c shown by black bean and pinto bean starches indicate the presence of longer amylopectin chains 

(Table 4-4). The wider Tc- T0 exhibited by pinto and black bean starches (Table 4-4) suggests the 

presence of crystallites of varying stability. 

Waigh et al. (2000b) have postulated that two stages are involved during starch gelatinization 

in excess water. The first stage involves a slow side by side dissociation of helices and the second 

stage involves a rapid helix ~ coil transition. Cooke and Gidley (1992) have claimed that 8H reflects 
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Table 4-4 

Gelatinization characteristics of native legume starches 1 

Starch source & cultivar To2(°C) Tp(°C) Tc(°C) Tc- To(°C) ilH I AP3(mJ/mg) 
Black bean 

Black Jack 61.0 ± 0.2d 70.9 ± 0.3c 81.2 ± 0.3d 20.3 ± 0.5b 17.8 ± 0.6b,c,d 

CDC Nighthawk 65.7 ± 0.3a 74.9 ± 0.4b 86.7 ± 0.2b 21.0±0.1b 20.1 ± 1.0a 

Pinto bean 

Othello 64.5 ± 0.2b 76.5 ± 0.6a 88.8 ± 0.3a 24.3 ± 0.4a 17.9 ± 0.3b,c 

Sierra 63.3 ± 0.2c 70.9 ± 0.2c 85.1 ± 0.7c 21.8 ± 0.5b 18.8±0.1a,b 

Smooth pea 

CDC Sonata 60.1 ± 0.2e 66.0 ± 0.2e 76.4 ± 0.2e 16.3 ± 0.4c 15.5 ± 0.5e.f 

CDC Mozart 60.0 ± 0.4e 66.6 ± 0.1e 77.5 ± 0.4e 17.5 ± 0.7c 16.6 ± 0.8c,d,e 

Lentil 

CDC Redwing 63.9 ± 0.1b,c 70.6±0.1c 80.1 ± 0.9d 16.2 ± 1.0c 16.3 ± 0.4d,e 

CDC Robin 61.1 ± 02d 67.7 ± 0.1d 77.3 ± 0.3e 16.2 ± 0.2c 14.6 ± 0.1f 

Wrinkled pea4 

1. Mean ± SD of three determinations. Data with the same superscript in the same column are not significantly different (P < 0.05). 
2. T0 , T P• Tc indicate the onset, peak and conclusion temperature of gelatinization, respectively. 

3. Gelatinization enthalpy (mJ/mg) I Amylopectin content(%) 
4. Gelatinization characteristics were not detected within the temperature range 25°C to ·t45°C. 
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primarily the loss of double helical order rather than loss of crystalline register. The larger L'I.H values 

for starches of black bean and pinto bean cultivars (Table 4-4) suggest that interactions via hydrogen 

bonding between double helices that are packed in clusters forming the crystalline region of the above 

starches are probably more extensive (due to longer chains in amylopectin) than in smooth pea and 

lentil starches. Consequently, the L'I.H associated with dissociation and unraveling (hydrogen bonds are 

broken during both stages of gelatinization) and melting of the double helices would be of a higher 

order of magnitude in pinto bean and black bean starches. 

Jenkins (1994) has postulated that in excess water, gelatinization is primarily a swelling driven 

process. Water uptake by the amorphous background regions is accompanied by swelling within these 

regions. Swelling acts to destabilize the amylopectin crystallites within the crystalline lamellae, which 

are broken, Thus, the DSC endotherm represents solvation assisted melting of amylopectin crystallites. 

This suggests, that the absence of an endotherm for wrinkled pea starch (within the temperature range 

20 - 145°C) is probably due to its low degree of swelling (Table 4-3) and consequently, a higher 

thermal input(> 145°C) would be required for crystallite melting. 

4.5 Hydrolysis patterns 

The hydrolysis by porcine pancreatic a-amylase in black bean (Fig. 4-2a), lentil (Fig. 4-2d) and 

wTinkled pea (Fig. 4-2e) starches was biphasic, a relatively rapid rate initially followed by a 

progressively decreasing rate thereafter (Fig. 4-2a,d,e). However, in pinto bean (Fig. 4-2b) and smooth 

pea (Fig. 4-2c) starches, the decrease in the rate of hydrolysis, following the initial rapid increase was 

much less than in the other starches (Fig. 4-2a,d,e). The hydrolysis curves of black bean cultivars (Fig. 

4-2a), lentil cultivars (Fig. 4-2d), and wrinkled pea (Fig. 4-2e) showed a plateau at hydrolysis levels of 

93 (Fig. 4-2a), 85 (Fig. 4-2d) and 65% (Fig. 4-2e ), respectively. 
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Figure 4-2 Hydrolysis patterns (37°C) by porcine pancreatic a-amylase with legume 

starches. 

a) black bean; b) pinto bean; c) smooth pea; d) lentil; e) wrinkled pea. 
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Table 4-5 

Initial velocity of a-amylase hydrolysis of legume starches 1 

Starch source & cuitivar 

Black bean 

Black Jack 

CDC Nighthawk 

Pinto bean 

Othello 

Sierra 

Smooth pea 

CDC Sonata 

CDC Mozart 

Lentil 

CDC Robin 

CDC Redwing 

Initial velocity2 

(%I h) 

3.9 ± 0.3c 

2.3 ± 0.4d,e 

1.5 ± 0.38 

1.5 ± 0.28 

5.5 ± 0.4b 

5.4 ± 0.5b 

5.4 ± 0.2b 

2.9 ± 0.3d 

Wrinkled pea 241.6 ± 5.6a 
1. Initial velocity calculation for wrinkled pea and the other legume starches are based on the data 

within the first 20min and 4h, respectively. Data represent mean ± SO of three determinations. 
2. Data with the same superscript in the column are not significantly different (P<0.05). 
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This plateau, appeared at the same time for black bean cultivars (55 h), but was different for cultivars 

of lentil [CDC Robin (35h), CDC Redwing (55 h)]. Cultivars of pinto bean (Fig.4-2b) and smooth pea 

(Fig.4-2c) starches did not exhibit a plateau during the hydrolysis period. Wrinkled pea starch 

exhibited a higher initial velocity (241.6%/h) than the other legume starches ( 1.4 - 5 .5%/h) (Table 4-5). 

Difference in initial velocity between cultivars was evident only in black bean [Black Jack (3.9%/h) > 

CDC Nighthawk (2.3%/h)] and lentil [CDC Robin (5.4%/h) > CDC Redwing (2.9%/h)]. During the 

initial rapid phase of hydrolysis, cultivars of black bean (Fig. 4-2a) and lentil (Fig. 4-2d) were 

hydrolyzed to different extents. This difference was most marked between the 5th and 40th hour of 

hydrolysis in both black bean (Black Jack> CDC Nighthawk) and lentil (CDC Robin> CDC Redwing) 

cultivars. However, during the above time period, there was no significant difference (P<0.05) in the 

extent of hydrolysis between cultivars of pinto bean (Fig. 4-2b) and smooth pea (Fig. 4-2c) starches. 

After 120h, there was no difference in the extent of hydrolysis between cultivars of each legume 

species (Fig. 4-2). At the end of this time period, the extent of hydrolysis among the legume starches 

followed the order: black bean> lentil> smooth pea> wrinkled pea> pinto bean (Fig. 4-2). 

It is appropriate at this stage to give a brief description of the mechanism of a-amylase action, 

which would then enable a subsequent discussion ofthe hydrolysis kinetics of the legume starches. 

Porcine pancreatic a-amylase (PP A) has been shown to have five binding sites with the 

catalytic site located between subsites 2 and 3, with two subsites to the right and three subsites to the 

left of the catalytic site (Robyt and French, 1970). These authors have shovm that only chain to the 

right diffuses away after the initial cleavage and the remaining chain to the left diffuses to fill the open 

binding subsites to give maltose (G2), maltotriose (G3) and maltotetraose (G4) as products in a 

multiple attack mechanism. The products of hydrolysis, particularly G2 and G3, are known to have an 

inhibitory effect on the action of a-amylase in vitro (Robyt and French, 1970; Elodi et al., 1972; 
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Leloup et al., 1991). G2 and G3 have been shown to bind strongly to PPA, thereby impeding their 

adsorption onto crystalline spherulites of short chain amylose (Leloup et al., 1991). 

The appearance of a plateau during hydrolysis of black bean (Fig. 4-2a), smooth pea (Fig. 4-

2c ), lentil (Fig. 4-2d) and wrinkled pea (Fig. 4-2e) starches reflects the interplay of the following 

factors: 1) inhibition of a-amylase activity by G2 and G3 (the occupation of the subsites to the left of 

the catalytic center by G2 and G3 would prevent further hydrolysis of starch chains); 2) formation of 

crystalline regions during hydrolysis (hydrolyzed amylose chains may retrograde forming crystalline 

regions which could hinder the accessibility of a-amylase to the glucosidic bond), and 3) depletion of 

substrate. The absence of a plateau in pinto bean starch (Fig. 4-2b), even after 120h of hydrolysis, 

suggests strong interactions between starch chains within the amorphous and crystalline domains of the 

native granule. These interactions probably reduce the degree of accessibility of the glucosidic bonds 

to a-amylase, thereby decreasing the rate of release of G2 and G3 during hydrolysis. Thus, the time 

taken for a-amylase inhibition by G2 and G3 would be much longer in pinto bean than in other legume 

starches. 

Jenkins and Donald (1995) have postulated that co-crystallization of amylose with amylopectin 

disrupts amylopectin crystallites. Their postulation was based on the observation that the electron 

density difference between the crystalline and amorphous lamella decreases with increased amylose 

content. Cheetham and Tao (1998) have shown by X-ray diffraction studies on native maize starches of 

varying amylose content (0- 84%) that crystallinity decreases with increased amylose content both 

'A' and 'C' type starches. This suggests that the low RC (17.7%) of wrinkled pea starch (Table 4-2) is 

probably due to disrupted amylopectin crystallites. The extent of this disruption is likely to be higher in 

-wrinkled pea starch than in the other legume starches, due to its higher amylose content (78.1 %) (Table 

4-1) and the longer average amylopectin chain length [CL 32- 45 vs. CL 24- 27] in the other legume 
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starches (Biliaderis et al., 1981; Colonna et al., 1982; Colonna and Mercier, 1984; Hoover and 

Sosulski, 1991; Ratnayake et al., 2002) ]. Thus, the higher initial velocity (Table 4-5) exhibited by 

wrinkled pea starch could be a reflection of a highly disrupted crystalline structure. It is also likely, 

that the higher initial velocity of wrinkled pea starch could also be a reflection of the higher extent of 

granule damage incurred during starch isolation (Table 4-1). 

Tester and Sommerville (2000) have postulated that granular swelling is controlled by granule 

order which controls a-amylolysis. The difference between black bean cultivars with respect to SF 

(Black Jack > CDC Nighthawk) and AML (Black Jack > CDC Nighthawk) at 80°C (Table 4-3) 

suggests that starch chain interactions (amylose-amylose, amylopectin-amylopectin, amylose­

amylopecin) within native starch granules are of a higher order of magnitude in CDC Nighthawk. 

Strong interactions between starch chains would not only reduce granular swelling at 37°C (assay 

temperature), but also could hinder the chair ---+- half chair conformational transition (the degree of 

accessibility of the glucosidic oxygen to a-amylase is influenced by this transition) of the D­

glucopyranosyl unit during hydrolysis [Hoover, 2000]. This would then explain the initial velocity 

difference between the black bean cultivars (Black Jack > CDC Nighthawk) (Table 4-5). The 

difference in initial velocity between cultivars of lentil (CDC Robin > CDC Redwing) can be attributed 

to a lower degree of interaction between starch chains in CDC Robin [indicated by a higher SF and a 

higher degree of AML (Table 4-3)]. The marginal difference in SF and AML between cultivars of 

pinto bean and smooth pea (Table 4-3) may explain their nearly identical initial velocities (Table 4-5). 

The above explanation based on SF and AML seems plausible, since differences between 

cultivars with respect to granule size (Table 4-1), amylose content (Table 4-1), starch damage (Table 4-

1), lipid-complexed amylose chains (Table 4-1), relative crystallinity (Table 4-2) and 'B' polymorph 
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content (Table 4-2) are too small to account for the large difference in initial velocity between cultivars 

of black bean and lentil. 

4.6 Morphology of native starch granules and enzyme hydrolyzed starch residues 

The morphologies of native legume starches and their hydrolyzed residues (at nearly equivalent 

levels of hydrolysis) are presented in Figs. 4-3-4-7. The granules of native black bean (Figs. 4-3a, b), 

pinto bean (Figs. 4-4a, b), smooth pea (Figs. 4-5a, b) and lentil (Figs. 4-6a, b) ranged from oval to 

irregular in shape. The width and length of the granules were within the range 5.0- 37.5J.Lm and 5.0-

50J!m, respectively (Table 4-1 ). Wrinkled pea starch appeared to be a mixture of simple and compound 

granules (Figs. 4-7a,b,c). Many of the compound granules contained clusters (3-5) of individual 

granules. Many of the simple granules (mainly small granules) were round in shape; whereas large 

granules (forming the cluster) were irregular in shape. The width and length of small and large 

granules ranged from 5.0 to 34.0J!m and 5.0 to 37.0j.lm, respectively (Table 4-1). In native wrinkled 

pea starch, some of the larger granules showed extensive damage, resulting in splitting and exposure of 

the internal layering (Fig. 4-7b). A similar observation was reported by Bertoft et al (1993). The 

granule surfaces of native pinto bean (Figs. 4-4a, b), smooth pea (Figs. 4-5a, b) and lentil (Figs. 4-6a, 

b) starches were smooth and showed no evidence of pores, fissures or indentations. However, in black 

bean (Figs. 4-3a, b) and wrinkled pea (Figs. 4-7a,b,c) starches, indentations were present on the surface 

of some granules, whereas others were smooth and free of pores, fissures and indentations. There was 

no difference in granule morphology between cultivars of the same legume species. 

The mode of a-amylase attack was examined by SEM during the early stages of hydrolysis ( < 

20%), and at nearly equivalent levels ofhydrolysis. Hydrolyzed (15.4%) black bean starch (Black 
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Figure 4-3 Scanning electron micrographs of native black bean (Black Jack) granules (a 

& b) and hydrolyzed (15.4%) granules (c & d). 
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Figure 4-4 Scanning electron micrographs of native pinto bean (Othello) granules (a & 

b) and hydrolyzed ( 18.1%) granules ( c & d). 
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Figure 4-5 Scanning electron micrographs of native smooth pea (CDC Sonata) granules 

(a & b) and hydrolyzed (17.0%) granules (c & d). 
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Figure 4-6 Scanning electron micrographs of native lentil (CDC Redwing) granules (a & 

b) and hydrolyzed (14.2%) granules ( c & d). 
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Figure 4-7 Scanning electron micrographs of native (a, b, c) wrinkled pea granules and 

hydrolyzed (16.2%) granules (d). 
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Jack) granules showed slightly roughened surfaces and disc like depressions and the number of 

depressions varied from granule to granule (Figs. 4-3c, d). Roughened surfaces and disc like 

depressions were also visible on the surfaces of hydrolyzed (18.1%) pinto bean (Othello) starch. 

However, the depth of these depressions (Fig. 4-4d) was much lower than that in black bean (Fig. 4-

3d) starch. In hydrolyzed (17%) smooth pea starch (CDC Sonata), some granules ( ~ <1% of the total 

population) had fragmented so that their interior parts were exposed (Fig. 4-Sd), whereas, the major 

population of the granules was intact and exhibited only roughened surfaces and disc like depressions 

(Figs. 4-Sc,d). Lentil starch (CDC Robin) at 14.2% hydrolysis behaved similarly to smooth pea starch 

with respect to roughened surfaces and granule fragmentation ( < 1% of the granule population). 

However, none of the hydrolyzed granules showed disc like depressions on their surfaces. In 

hydrolyzed (16.2%) wrinkled pea starch (Fig. 4-7d), several of the large granules had fragmented, 

exposing their interior structure. However, some granules were still intact with no evidence of a­

amylase attack. Furthermore, the extent of fragmentation in wrinkled pea starch was much higher than 

that in smooth pea and lentil starches. A similar pattern of hydrolysis was observed by Bertoft et al. 

(1993) on wrinkled pea starch hydrolyzed by Bacillus amyloliquefaciens. 

4. 7 X-ray analysis of hydrolyzed starch residues 

The X-ray patterns of native and control (treated without a-amylase) and the hydrolyzed 

residues of the legume starches are presented in Figs. 4-la, band Table 4~6. There was no significant 

difference in the X-ray pattern, relative crystallinity or 'B' polymorphic content between native and 

control starches (Table 4-6). Hydrolysis did not change the X-ray pattern, relative crystallinity or 

the 'B' polymorphic content of black bean (Black Jack), pinto bean (Othello), smooth pea (CDC 

Sonata), and lentil (CDC Robin) starches (Table 4-6). This was also true for the other cultivars of the 
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Table 4-6 
X-ray diffraction parameters of a.-amylase hydrolyzed legume starch residues 

Starch source & cultivar Crystalline pattern Relative crystallinity(%) 1 

Black bean 
Black Jack 

native 
control2 

hydrolyzed (55.7%) 
Pinto bean 

Othello 

native 
control2 

hydrolyzed (45.6%) 
Smooth pea 

CDC Sonata 
native 
control2 

hydrolyzed (41.6%) 
Lentil 

CDC Robin 

native 

control2 

hydrolyzed (48.9%) 
Wrinkled pea 

native 
control2 

hydrolyzed (53.5%} 

c 32.7 ± 2.2a 

c 32.3 ± 2.2a 
c 28.7 ± 2.5a 

c 33.4 ± 3.0b 

c 32.9 ± 2.6b 

c 29.4 ± 2.0 b 

c 30.3 ± 2.4c 

c 30.0 ± 1.7c 

c 29.0 ± 1.7c 

c 31.7 ± 2.5d 

c 31.0 ± 2.0d 

c 28.2 ± 2.1d 

B 17.7 ± 2.3e 

8 17.8 ± 1.7e 

8 33.4 ± 3.1e 

'B' Polymorphic content(%)1 

33.1 ± 2.i 
33.8 ± 2.8f 
31.7±2.0f 

32.1 ± 2.09 

32.4 ± 1.29 

33.4 ± 1.99 

28.8 ± 2.1h 
28.0 ± 1.7h 
27.1 ± 2.6h 

28.1 ± 1.8i 
28.1 ± 2.1i 
27.8 ± 2.8i 

92.2 ± 3.d 
91.3 ± 2.3i 
89.8 ± 2.2i 

1. Mean ±SO. For each cultivar, data with the same superscript in the same column are not significantly different(P<O.OS). 
2. Treated without a-amylase but subjected to the same experimental conditions. 
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above starches (data and figures not shown). The hydrolyzed residues of wrinkled pea starch 

also showed an unchanged X-ray pattern (Fig. 4-1b) and 'B' polymorphic content (Table 4-6). 

However, relative crystallinity increased (17.8 to 33.4%) substantially on hydrolysis (Table 4-6). 

Several researchers have shown that a-amylases can simultaneously solubilize both amorphous 

and crystalline regions of starch granules (Leach and Schoch, 1961; Colonna et al., 1988; Lauro et al., 

1999). This was based on the observation that a-amylolysis did not produce an increase in crystallline. 

However, crystallinity and gelatinization enthalpy of barley starches have been shown to decrease 

during the later stages of a-amylolysis (Lauro et al., 1999). This suggests that extensive hydrolysis 

effectively destroys and solubilizes the crystallline areas of the granule. However, the exact 

mechanism by which starch crystallites are degraded by a-amylase remains controversial. Comparison 

of our X -ray data with that of Lauro et al., 1999 suggests that crystallites of legume starches are more 

resistant to a-amylolysis than the' A' type crystallites of barley starch. This is based on the observation 

that even at 55% hydrolysis, the relative crystallinity of black bean starch remained unchanged (Table 

4-6). The increase in relative crystallinity on hydrolysis of wrinkled pea starch could be attributed to 

interaction (retrogradation) between partially hydrolyzed amylose chains (dextrins) during the 

hydrolysis period. This interaction would be of a greater order of magnitude in wrinkled pea starch, 

due to its higher amylose content (Table 4-1 ). A high amylose content may have resulted in amylose 

chains being in close proximity to each other within the amorphous domains of the granule, thus 

facilitating rapid interaction between hydrolyzed amylose chains. It is highly unlikely that the above 

interactions are influenced by the temperature of incubation (37°C), since the relative crystallinity of 

both native and control wrinkled pea starches were identical (Table 4-6). 
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4.8 Apparent amylose content of hydrolyzed starch. :residues 

The changes in apparent amylose content (AAC) at different times during hydrolysis are 

presented in Fig. 4-8. In aU starches, AAC decreased with hydrolysis time and the extent of this 

decrease was most pronounced in wrinlded pea starch. At 60% hydrolysis, AAC decreased from 68.5 

to 28.0% for wrinkled pea starch. For the other legume starches, the decrease in AAC at 60% 

hydrolysis ranged from 9 to 21% (Fig. 4-8). There was no significant difference (P<0.05) in the extent 

of decrease in AAC between cultivars of pinto bean, smooth pea and lentil starches. However, in black 

bean starches, the decrease in AAC was higher in Black Jack (21 %) than in CDC Nighthawk (12.0%). 

As discussed earlier, disruption of amylopectin crystallites by amylose was most pronounced in 

wrinkled pea starch. Consequently, the degree of accessibility of a-amylase to amylose chains within 

the amorphous domains of the granule would be of a very high order of magnitude in wrinkled pea 

starch. This would explain the rapid and large decrease in AAC content upon hydrolysis (Fig. 4-8e). 

Amylose leaching measurements (Table 4-3) showed that among legume starches, differences in the 

magnitude of starch chain interactions (AM-AM and/or AM-AMP) were more pronounced between 

cultivars of black bean (CDC Nighthawk> Black Jack). This suggests that the differences in the extent 

of decrease in AAC between black bean cultivars (Fig. 4-8a) reflect differences in the degree of 

accessibility of a-amylase to amylose chains within the amorphous domains of the granule. Biliaderis 

et a!. (1981) showed that on acid hydrolysis, the AAC of wrinkled pea starch (64.0%) decreased 

slowly reaching a value of 26.0% after 20 days whereas the AAC of smooth pea starch (33.0%) 

decreased rapidly reaching a value of 5.0% after 12 days. This was in marked contrast to changes in 

AAC during a-amylolysis of smooth pea (Fig. 4-8c) and wrinkled pea starch (Fig. 4-8e). This 

difference can be explained as follows. In acid hydrolysis, amorphous domains are more rapidly 

hydrolyzed than crystalline domains (Hoover, 2000), 
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Figure 4-8 Apparent amylose content of legume starches at different time periods of a­

amylase hydrolysis. 
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whereas both amorphous and crystalline domains are hydrolyzed simultaneously during a.-amylase 

hydrolysis (Lauro et al., 1999). Thus, certain proportions of amylose chains in wrinkled pea starch are 

closely associated with each other, forming crystalline regions, and/or are co-crystallized with 

amylopectin. Hence, acid hydrolysis would be much slower than a.-amylase hydrolysis. 

4.9 Thermal properties of hydrolyzed starch residues 

The gelatinization parameters of native and control starches and hydrolyzed residues are 

presented in Table 4-7. In general, gelatinization transition temperatures (T 0 , T P• T c) increased slightly 

on hydrolysis. The extent of this increase was nearly of the same order of magnitude in all starches. 

However, increases in T 0 , T p and T c were evident only for CDC Mozart and CDC Robin (Table 4-7). 

Sierra, CDC Redwing and CDC Sonata showed increases only in T0 , Tp and Tp & Tc, respectively 

(Table 4-7). Whereas, Black Back, CDC Nighthawk and Othello showed increases only in T 0 and T c 

(Table 4-7). In all starches, MI decreased on hydrolysis and the extent of this decrease was nearly the 

same for all starches (Table 4-7). The decrease in ~H on hydrolysis reflects disorganization of 

amylopectin chains involved in double helical associations within the crystalline domains of the 

granule. Since T 0 , T P and T c reflect crystallite melting, a decrease in MI should have theoretically 

resulted in a corresponding decrease in T 0 , T p and T c· Thus, the increase in T 0 , T P and T c on hydrolysis 

support my earlier postulation that hydrolyzed amylose chains retrograde, forming crystallites. The 

decrease in ~H on hydrolysis suggests that the crystallites formed due to. amylose retrogradation are 

not involved in double helical associations. 

I postulate that the crystallites formed by amylose retrogradation probably differ in number and 

size among the hydrolyzed legume starches. This would explain why increases in T 0 , T p and T c on 

hydrolysis occur only in some starches, whereas in others only one or two of the above 
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Table 4-7 

DSC parameters 1 of a-amylase hydrolyzed legume starch residues 

Starch source & cuitivar To2("C) Tp(°C) TC(°C) Tc- To("C) _ L1H3(mJ/mg) 

Black bean 

Black Jack 

native 61.0 ± 0.2b 70.9 ± 0.38 81.2±0.3b 20.3 ± 0.5a,b 11.2±0.18 

control4 60.7 ± 0.3b 71.3 ± 0.38 81.4 ± 0.4b 20.8 ± 0.5a 11.4 ± o.t• 
hydrolyzed 28.3% 62.6 ± 0.28 70.8 ± 0.2a,b 82.5 ± 0.4a 19.9 ± 0.4a,b 10.2 ± 0.2b 

55.7% 63.5 ± 0.68 70.2 ± O.ib 82.5 ± 0.3a 19.0 ± 0.7b 10.0 ± 0.3b 

CDC Nighthawk 

native 65.7 ± 0.3e 74.9 ± 0.4e 86.7 ± 0.2e 21.0 ± O:le 12.2 ± 0.6e 

control4 65.6 ± 0.5e 75.0 ± 0.3e 86.3 ± 0.4e 20.6 ± 0.4e 12.1 ±0.3e 

hydrolyzed 24.6% 66.5 ± 0.4e,f 75.6 ± 0.1e 86.7 ± 0.1e 20. i ± 0.5e 10.3 ± o.i 
58.8% 67.2 ± 0.61 75.4 ± 0.5e 88.2 ± 0.41 21.0 ± 0.6e 11.0 ± 0.5e,f 

Pinto bean 

Othello 

native 64.5 ± 0.29 76.5 ± 0.69 88.8 ± 0.39 24.3 ± 0.49 12.2 ± 0.29 

control4 64.5 ± 0.49 76.5 ± 0.39 88.8 ± 0.49 24.3 ± 0.69 12.4 ± 0.29 

hydrolyzed 18.1% 66.5 ± 0.311 77.1 ± 0.29 89.9 ± 0.211 23.4 ± 0.39 10.7±0.3h 

41.2% 66.9 ± 0.311 77.0 ± 0.29 90.2 ± 0.211 23.4 ± 0.29 10.2 ± 0.411 

Sierra 

native 63.3 ± 0.21 70.9 ± 0.2' 85.1 ± o.i 21.8 ± 0.51 12.9 ± 0:1 1 

contrd 63.5 ± 0.41 70.8 ± 0.41 85.1 ± 0.21 21.6 ± 0.41'm 12.9±0.11 

hydrolyzed 29.0% 64.3 ± 0.2m 70.7 ± 0.1 1 85.7 ± 0.61 21.5 ± 0.81'm 10.6 ± 0.2m 

46.1% 65.6 ± 0.2n 71.1 ± o.i 86.0 ± 0.31 20.4 ± 0.3m 10.9 ± 0.4m 
1. For each cultivar, data with the same superscript in the same column are not significantly different (P < 0.05). The data represent the mean ±SO of three determinations. 

2. To, Tp, Tc indicate the onset, peak and conclusion temperature of gelatinization, respectively. Tc- To indicates the temperature range of gelatinization. 

3. ~H. Gelatinization enthalpy 

4. Treated without a-amylase but subjected to the same experimental conditions. 
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Table 4-7 

DSC parameters 1 of a-amylase hydrolyzed legume starch residues(cont'd) 
Starch source & cultivar To2( 0 C) Tp(°C) Tc(°C) Tc- To(°C) ~H3(mJ/mg) 
Smooth pea 

CDC Sonata 

native 60.1 ± 0.2q 66.0 ± 0.2q 76.4 ± 0.2q 16.3 ± 0.4q 10.1 ± 0.3q 

control4 60.2 ± 0.4q 66.0 ± 0.2q 76.3 ± 0.3q 16.2 ± 0.6q 10.1±0.3q 

hydrolyzed 17.0% 58.2 ± 0.4r 65.8 ± 0.2q 76.7 ± 0.1q 18.5 ± 0.4r 8.5 ± 0.8r 

47.8% 60.2 ± 0.5q 67.1 ± 0.6r 78.4 ± 0.2r 18.2 ± 0.6r 8.8 ± 0.2r 

CDC Mozart 

native 60.0 ± 0.45 66.6 ± 0.1 5 77.5 ± 0.45 17.5 ± 0.75 10.8 ± 0.55 

control4 60.2 ± 0.55 66.7 ± 0.25 77.3 ± 0.35 17.2 ± 0.65 11.0 ± 0.35 

hydrolyzed 17.3% 59.4 ± 0.35 67.2 ± 0.35 77.6 ± 0.35 18.2 ± 0.55 9.2 ± 0.31 

47.0% 61.2 ± 0.11 68.5 ± 0.31 80.9 ± 0.41 19.7 ± 0.31 10.1 ± 0.45 '1 

Lentil 

CDC Redwing 

native 63.9 ± 0.1u 70.6 ± 0.1u 80.1 ± 0.9u 16.2 ± 1.0u 11.3 ± 0.3u 

control4 63.9 ± 0.2u 70.5 ± 0.3u 80.6 ± 0.5u 16.7 ± 0.5u 11.2 ± 0.2u 

hydrolyzed 29.0% 64.2 ± 0.4u 71.3 ± 0.2v 79.8 ± 0.3u 15.6±0.1u 9.6± 0.1v 

52.6% 64.3 ± 0.3u 71.8 ± 0.1v 81.1 ± 0.3u 16.9 ± 0.1u 9.6 ± 0.5v 

CDC Robin 

native 61.1 ± 0.2w,x 67.7 ± 0.1w 77.3 ± 0.3w 16.2 ± 0.2w 9.9 ± 0.1w 

control4 60.9 ± 0.4w 67.6 ± 0.3w 77.1 ± 0.4w 16.2 ± 0.5w 9.9 ± 0.2w 

hydrolyzed 21.4% 61.7 ± 0.3x 68.3 ± 0.2x 78.0 ± 0.3w 16.2 ± 0.2w 9.1 ± 0.3x 

61.9% 63.9 ± 0.2Y 70.7±0.1y 81.1 ± 0.4x 17.3 ± 0.5x 8.8 ± 0.2x 

Wrinkled pea 
native5 

control4 

hydrolyzed 22.1% 

53.5% 
1. For each cultivar, data with the same superscript in the same column are not significantly different (P < 0.05). The data represent the mean ± SD of three determinations. 

2. To, Tp, Tc indicate the onset, peak and conclusion temperature of gelatinization, respectively. Tc- To indicates the temperature range of gelatinization. 

3. aH, Gelatinization enthalpy 

4. Treated without a-amylase but subjected to the same experimental conditions. 

5. Gelatinization characteristics were not detected within the temperature range 2s•c to 145"C. 



parameters increase on hydrolysis (Table 4-7). Furthermore, the absence of an endotherm in 

hydrolyzed wrinkled pea starch (Table 4-7) also suggests a large extent of amylose retrogradation 

during hydrolysis. This seems plausible, since the swelling factor of 58.5% for hydrolyzed wrinkled 

pea starch residue (1.8) was lower than that of its native counterpart (3.4). 
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Summary and Conclusions 

1. This study has shown that the granular morphology, relative crystallinity, X-ray pattern ('C' type), 

extent of starch damage, 'B' polymorphic content and composition differed only marginally among 

black bean, pinto bean, smooth pea and lentil starches. 

2. Swelling factor, amylose leaching and differential scanning calorimetry measurements showed that 

the extent of starch chain interactions within the amorphous and crystalline domains of the native 

granule were more pronounced in pinto bean than in black bean, lentil and smooth pea starches. 

Wrinkled pea differed from the other legume starches in exhibiting a higher extent of starch 

damage, a higher content of bound lipids, a different X-ray pattern ('B' type), lower relative 

crystallinity, different granule shapes and sizes, a highly disrupted crystalline structure and strong 

interaction between amylose chains. 

3. The rate and extent of a-amylolysis of black bean, pinto bean, smooth pea and lentil starches were 

mainly influenced by the interplay of : 1) the magnitude of interaction between starch chains within 

the amorphous domains of the native granule; and 2) extent to which hydrolyzed amylose chains 

interact with each other during the time course of hydrolysis. However, in wrinkled pea starch, in 

addition to the above two factors, a disrupted crystalline structure (influenced by its higher amylose 

content and longer amylopectin chain length), a higher 'B' polymorphic content and a higher 

extent of starch damage were also causative factors influencing the rate and extent of hydrolysis. 

Differences in hydrolysis between cultivars were evident only in black bean and lentil starches. 
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Directions for Future Research 

1. A study of the fine structures of amylose and amylopectin from the legume starches used in this 

study would give a deeper insight into how starch chains influence a-amylolysis. 

2. Application of TEM (Transmission Electron Microscopy) and AFM (Atomic Force Microscopy) 

may reveal more information on changes in ultrastructure and surface morphology during 

enzymatic hydrolysis. 

3. Since legume starches are generally resistant to a-amylase attack and exhibit a low glycermic 

index in vivo, which is considered beneficial to human health, it is worthwhile to explore their 

potential as resistant starch (RS) or slowly digestible starch (SDS) related food products. 

4. Legume starches have very limited applications in the food industry, partly due to their unattractive 

properties (e.g. high retrogradation rates). Therefore, further research (i.e. physical and chemical 

modifications) aimed at to improving their performance would be useful. 
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Figure A-1 Standard curve for amylose determination 
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Figure A-2 Standard curve for reducing sugar determination as maltose at 

540nm 
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Figure A-3 Schematic illustration for initial velocity determination 
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Figure A-4 Schematic illustration for gelatinization parameters 

determination 
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Figure A-5 Schematic illustration for relative crystallinity determination 
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Figure A-6 Standard curve for 'B' polymorphic content determination 
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