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Abstract

Since the 1970s, more and more mathematicians have been trying to propose reason-
able models for the growth of species in all kinds of environments and for the spread
of epidemic diseases, and to understand the long-term behavior of their modelling
systems. This thesis, consisting of five chapters, mainly deals with the dynamics
of population and epidemic models represented by some time-delayed ordinary and
partial differential equations, and reaction-diffusion systems.

In Chapter 1, we present some basic concepts and theorems, which involve the
theories of monotone dynamics, uniform persistence, essential spectrum of linear
operators, asymptotic speeds of spread and minimal traveling wave speed.

Based on some specific competitive models, we formulate in Chapter 2 a class
of asymptotically periodic delay differential equations, which models multi-species
competition, and investigate the global dynamics of the model. More precisely,
we established the sufficient conditions for competitive coexistence, exclusion and
uniform persistence via theories of competitive systems on Banach spaces, uniform
persistence, periodic and asymptotically periodic semiflows.

Chapter 3 focuses on a nonlocal reaction-diffusion equation modelling the growth
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of a single species. For this model, we obtain a threshold dynamics and the global
attractivity of a positive steady state. We also discuss the effects of spatial dispersal
and maturation period on the evolutionary behavior in two specific cases. Our
nuinerical investigation seems to suggest that the model admits a unique positive
steady state even without monotonicity conditions.

In Chapter 4, we consider an epidemic model represented by a reaction-diffusion
equation coupled with an ordinary differential equation, which is proposed by Ca-
passo et al. Here, the existence, uniqueness (up to translation) and global exponen-
tial stability with phase shift of bistable traveling waves are studied by phase plane
techniques, monotone semiflow approaches and a detailed spectrum analysis.

In Chapter 5, the asymptotic speeds of spread for solutions and traveling wave
solutions to the integral version of the epidemic model in Chapter 4 are investigated.
Our results show that the minimal wave speed for monotone traveling waves coin-
cides with the asymptotic speed of spread for solutions with initial functions having

compact supports. Some numerical simulations are also provided.
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Chapter 1

Preliminaries

In this chapter, we present some basic theorems which will be used in this thesis.
They involve persistence theory, monotone dynamical systems, spectrum analysis,

and newly developed theory for asymptotic speeds of spread and traveling waves.

1.1 Uniform Persistence

In population dynamics, uniform persistence is one of important concepts which
characterize the long-term existence of species in an ecosystem. Let X be a metric
space with metric d, and f : X — X a continuous map. Suppose X, is an open

subset of X. Define 0Xy := X \ Xy, and My := {z € 0X,: f"(z) € 0X,y,Vn > 0}.

Definition 1.1.1 A subset A C X s said to be an attractor for f if A is nonempty,
compact and invariant (f(A) = A), and A attracts some open neighborhood of itself.

A global attractor for f: X — X is an atiractor that attracts every point in X.

Definition 1.1.2 f is said to be uniformly persistent with respect to (Xy, 0Xy) if

there exists n > 0 such that iminf d(f™(z),0Xo) > n for all x € X,.

TL—>00
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In this chapter, we present some basic theorems which will be used in this thesis.
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Theorem 1.1.1 ([94, Theorem 2.2]) Let f - X — X be a continuous map with

f(Xo) C Xy. Assume that
(1) f: X — X has a global attractor A;

(2) Let Ay = A My be the mazimal compact invariant set of in 0X,. Az =
UIGA& w(x) has an isolated and acyclic covering Ule M; in Xy, that i3, Ay C
Ule M;, where My, M,, ..., My are pairwise disjoint, compact and isolated
invariant sets of f in Xy such that each M; is also an isolated invariant set

in X, and no subset of the M;’s forms a cycle for fo = fla, in As.

(3) Wo(M;)(Xo = 0@ for each 1 < i < k, where W*(M;) = {z: z € X,w(z) #
O and w(z) < M;} is the stable set of M;.

Then f is uniformly persistent with respect to (Xo, 0Xp).

Theorem 1.1.2 ({94, Theorem 2.3] and [63, Theorem 4.5]) Let f : X — X be a
continuous map with f(Xo) C Xo, where X is a closed subset of a Banach space,

and Xy 18 a conver and relatively open subset in X. Assume that

(1) f + X — X 1is point dissipative and uniformly persistent with respect to

(.Xb, 8;\’0) ¥
(2) f is a-condensing, and f"° is compact for some integer ng > 1.
Then f: Xy — Xy admits a global attractor Ay, and f has a fized point xy € Ap.

For an autonomous semiflow 7(¢) : X — X,t > 0, we can define uniform

persistence by replacing f" with 7'(¢) (see [81]). Furthermore, the continuous-time
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version of Theorem 1.1.1 and 1.1.2 still hold (see [81, Theorem 4.6], [94, Theorem

2.4] or [95, Theorem 1.3.7], and [63, Theorem 4.7]).

Theorem 1.1.3 (/76, Theorem A.2] and [95, Theorem 1.8.9]) Let (Z,Z7") be an
ordered Banach space with int(Z7) # 0 and T'(t) : X — X,t > 0, be an autonomous

semiflow with T'(t) Xo C Xo,t > 0. Assume that

(1) T(t) : X — X is point dissipative, compact for t > t, > 0, and is uniformly

persistent with respect to (Xo,0Xo);

(2) there exists to > 0 such that T'(t2)Xo C int(Z1) and T'(t3) : Xo — nt(Z7) is

continuous.

Then, for any given e € int(Z™), there exists B > 0 such that for any compact subset

B of Xy, there exists to = to(B) > ty such that T(t)B > Be,Vt > ty, in Z.

1.2 Monotone Dynamical Systems

Many types of equations can generate discrete- or continuous-time monotone dy-
namical systems, i.e., ordered initial values imply ordered subsequences or solutions.
These types include difference, ordinary, functional and partial differential equations.
Let E be an ordered Banach space with cone P such that int(P) # 0. For z,y € E,
we writez > yifz—yeP,z>yifz—ye P\ {0}, and 2> y if z — y € int(P).

By an order interval [, b], we mean that [a,b] = {z € E:,a < z < b}.

Definition 1.2.1 Let U be a subset of E, and f : U — U a continuous map.

The map f is said to be monotone if x > y implies that f(x) > f(y); strictly
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wewrite z > yifr—ye Pz>yifz—ye P\ {0}, and z > y if z — y € int(P).

By an order interval [a, b], we mean that [e,b] ={z € E:,a < z < b}.

Definition 1.2.1 Let U be a subsel of F, and f : U — U a continuous map.

The map f is said to be monotone if x > y imphes that f(z) > f(y); strictly




monotone if x > y implies that f(x) > f(y); strongly monotone if x > y implies

that f(x) > f(y).

Definition 1.2.2 Let U be a nonempty closed and order convex set in P. A contin-
wous map f : U — U is said to be subhomogeneous (or sublinear) if f(az) > of(x)
for any x € U and a € [0, 1]; strictly subhomogeneous if f(ax) > af(z) for any
x € U with x > 0 and « € (0,1); strongly subhomogeneous if f(az) > af(z) for

any x € U with x > 0 and o € (0, 1).

Definition 1.2.3 A linear operator L on E is said to be positive if L(P) C P;

strongly positive if L(P \ {0}) C init(P). Denote by r(L) the spectral radius of L.

Theorem 1.2.1 (/93, Theorem 2.3] or [95, Theorem 2.53.4]) Let either V' = [0, ]

with b > 0 or V = P. Assume thal
(1) f:V — V satisfies either

(i) [ is monotone and strongly sublinear; or

(1i) f is strongly monotone and strictly sublinear;

(2) f:V — V is asymptotically smooth, and every positive orbit of f in V is

bounded.

(3) f(0) = 0, and the Fréchet derivative Df(0) of f at zero is compact and strongly

positive.
Then there exist threshold dynamics:

(a) If r(Df(0)) < 1, then every positive orbit in V' converges to zero.



monotone if x > y implies that f(z) > f(y); strongly monotone if x > y implies

that f(z) > f(y).

Definition 1.2.2 Let U be a nonemply closed and order convez set in P. A contin-
uous map f : U — U is said to be subhomogeneous (or sublinear) if f(az) > af(x)
for any z € U and « € [0,1]; strictly subhomogeneous if f(ax) > af(x) for any
z € U with x > 0 and o € (0,1); strongly subhomogeneous if f(az) > af(z) for

any xr € U with £ > 0 and o € (0, 1).

Definition 1.2.3 A linear operator L on FE is said to be positive if L(P) C P;

strongly positive if L(P \ {0}) C int(P). Denote by r(L) the spectral radius of L.

Theorem 1.2.1 (/93, Theorem 2.3] or [95, Theorem 2.8.4]) Let either V = [0, b]

with b > 0 or V = P. Assume that
(1) f:V — V satisfies either

(i) f is monotone and strongly sublinear; or

(ii) f is strongly monotone and strictly sublinear;

(2) f:V — V is asymptotically smooth, and every positive orbit of f in V is
bounded.

(3) f(0) =0, and the Fréchet derivative D f(0) of f at zero is compact and strongly

positive.
Then there exist threshold dynamics:

(a) If r(Df(0)) < 1, then every positive orbit in V converges to zero.



(b) If r(Df(0)) > 1, then there ezrists a unique fized point u* > 0 in V such that

every positive orbit in V' \ {0} converges to u*.

For an autonomous semiflow 7°(¢) on E, we can define monotonicity and sub-
linearity in a similar ways. Moreover, there exists a continuous-time version of
Theorem 1.2.1. [96, Theorem 3.2] is the version for delay differential equations, and

196, Corollary 3.2] is the version for ordinary differential equations.

Theorem 1.2.2 (/95, Theorem 2.2.4]) Let U be a closed convez subset of an ordered
Banach space X, and ®(t) : U — U be a monotone semiflow. Assume that there

exists a monotone homeomorphism h from [0, 1] onto a subset of U such that
(1) For each s € [0,1], h(s) is a stable equilibrium for ®(t) : U — U;
(2) Each orbit of ®(t) in [h(0), h(1)]x is precompact;
(3) One of the following two properties holds:

(3a) If h(sy) <x w(®) for some sy € [0,1) and ¢ € [h(0), h(1)]x, then there

exists 81 € (8o, 1) such that h(s;) <y w(d);
(3b) If w(¢) <x h(r,) for some r, € (0,1] and ¢ € [h(0), h(1)]x, then there

exists ro € (0,71) such that w(@) <y h(re)-

Then for any precompact orbit v (¢do) of ®(t) in U with w(de) N [A(0), h(1)]x # 0,

there exists s* € [0, 1] such that w(¢g) = h(s*).

The following attractivity theorem is due to M. W. Hirsch ([48]), and is a powerful

tool to prove the global attractivity of a unique equilibrium.



(b) If r(Df(0)) > 1, then there ezists a unique fized point u* > 0 in V such that

every positive orbit in V' \ {0} converges to u*.

For an autonomous semiflow T'(¢) on F, we can define monotonicity and sub-
linearity in a similar ways. Moreover, there exists a continuous-time version of
Theorem 1.2.1. [96, Theorem 3.2] is the version for delay differential equations, and

(96, Corollary 3.2] is the version for ordinary differential equations.

Theorem 1.2.2 ([95, Theorem 2.2.4]) Let U be a closed convex subset of an ordered
Banach space X, and ®(t) : U — U be a monotone semiflow. Assume that there

exists a monotone homeomorphism h from [0, 1] onto a subset of U such that
(1) For each s € [0,1], h(s) is a stable equilibrium for ®(t) : U — U,
(2) Each orbit of ®(t) in [h(0), h(1)]x is precompact;
(8) One of the following two properties holds:

(3a) If h(sy) <y w(@) for some sy € [0,1) and ¢ € [h(0), h(1)]x, then there

ezists s) € (8o, 1) such that h(s,) <y w(o);
(3b) If w(@) <x h(ry) for some ry € (0,1] and ¢ € [h(0), h(1)]x, then there

exists rg € (0,7) such that w(d) <x h(rg).

Then for any precompact orbit v (o) of ®(t) in U with w(¢e) N [R(0), R(1)]x # 0,

there exists s* € [0, 1] such that w(gpy) = h(s*).

The following attractivity theorem is due to M. W. Hirsch ([48]), and is a powerful

tool to prove the global attractivity of a unique equilibrium.



Theorem 1.2.3 ([48, Theorem 3.3]) Let T'(t) : E — E be a monotone semiflow.
Assume that T'(t) admats an attractor K such that K contains only one equilibrium

*

x*. Then every trajectory atiracted to K converges to x*.

In the following, we introduce two theorems about competitive systems on or-
dered Banach spaces, which are one of the main tools in Chapter 2. For ¢ = 1,2,
let X; be ordered Banach spaces with positive cones X", where int(X;") # 0. Let
X=X x X, Xt =X x XS, and K = X;' x (—XJ). Denote by <y the order on

X defined by K. The following hypotheses ([50]) are meant to capture the essence

of competition between two adequate competitors:

(A1) f: X+ — X7 is strictly monotone with respect to <g, and is order compact

in the sense that f([0, z,] x [0, z;]) is precompact in X for every (z,,2,) € X .

(A2) 0 is a repelling fixed point of f in the sense that there exists a neighborhood
Uy of 0 in X such that for each z € Uy with z # 0, there is an integer n such

that f"*(z) & Up.

(A3) f(X;"x{0}) c X;" x{0}, and there exists Z; € int(X;") such that f((£,,0)) =
(#,,0) and the omega limit set w((x,0)) of the orbit f™(z;,0) is (#,,0) for
every r; € X"\ {0}. The symmetric conditions hold for f on {0} x X5, and

the fixed point is denoted by (0, Z5).

(Ad) If z,y € X1 satisfy x <y y and either z or y belongs to int(X™), then

f(z) € fy). If z = (21,22) € XT with z; # 0,7 = 1,2, then f(z) > 0.

Denote the “boundary” fixed points of f by Ey = (0,0), E) = (2,,0), £> = (0, Z,).
Let I = [Ey, B)\|g :={x € X : E;, <y z <k E,}. Obviously, I = [0,%,] x [0, Zs].



Theorem 1.2.3 (48, Theorem 3.8]) Let T'(t) : E — E be a monotone semiflow.
Assume that T'(t) admits an attractor K such that K contains only one equilibrium

z*. Then every trajectory attracted to K converges to z~.

In the following, we introduce two theorems about competitive systems on or-
dered Banach spaces, which are one of the main tools in Chapter 2. For i = 1,2,
let X; be ordered Banach spaces with positive cones X", where int(X.") # 0. Let
X=X xX,, Xt =X"x XS, and K = X{ x (—XJ). Denote by <y the order on

X defined by K. The following hypotheses ([50]) are meant to capture the essence

of competition between two adequate competitors:

(A1) f: X" — X7 is strictly monotone with respect to <y, and is order compact

in the sense that f([0,z,] x [0, z2]) is precompact in X for every (z,,z5) € X ™.

(A2) 0 is a repelling fixed point of f in the sense that there exists a neighborhood
Up of 0 in X such that for each z € Uy with = # 0, there is an integer n such

that f*(z) & U,.

(A3) f(X{ x{0}) c Xi{"x{0}, and there exists &; € int(X;") such that f((%,,0)) =
(£;,0) and the omega limit set w((z;,0)) of the orbit f*(z;,0) is (Z,,0) for
every z; € X{ \ {0}. The symmetric conditions hold for f on {0} x X, and

the fixed point is denoted by (0, Z5).

(Ad) If z,y € X1 satisfy x <yx y and either z or y belongs to int(X ™), then

flz) <k fly). f 2 = (z1,35) € X+ with z; # 0,7 = 1, 2, then f(z) > 0.

Denote the “boundary” fixed points of f by Ey = (0,0), E; = (&,,0), E> = (0, ).
Let I = [E,, BE)\|g :={x € X : Ey <k = <g E}. Obviously, I = [0, %] x [0, Z,].



The following result ([50]) says that for a competitive system, either there is a
positive fixed point of f, representing coexistence of the two populations, or one

population drives the other to extinction.

Theorem 1.2.4 (/50, Theorem A.1]) Let (A1)-(A4) hold. Then the omega limit

set of every orbit in X is contained in I, and exactly one of the following holds:
(a) There exists a positive fized point E, of f in I,
(b) w(z) = Ey for every x = (z1,23) € I withz; #0,i=1,2;
(c) w(z) = By for every z = (zy,z2) € I with z; #0,i=1,2.

Finally, if (b) or (c) holds and x = (xy,25) € XT\ I with z; # 0,i = 1,2, then

either w(z) = E, or w(z) = Fs.

Theorem 1.2.5 ([95, Theorem 2.4.2]) Let (A1)-(A4) hold and assume that E,
and E5 are isolated fized points of f. Let W*(E;) be the stable set of E; for f.
If W3(E;) N int(XT) =0, i = 1,2, then there exist positive fized points E,, <y E.
of f such that w(z) = E. for every z = (x,, ;) satisfying E, <y z <x E, and
zq # 0, w(z) = E.. for every & = (x1,z2) satisfying By <y x <y E.. and 7, # 0,

and the order interval [E.., E.)x atiracts any point in (X \ {0}) x (X5 \ {0}).

1.3 Essential Spectrum

This section presents some results about essential spectrum of certain ordinary dif-

ferential operators obtained in [46, Page 136-142).



The following result ([50]) says that for a competitive system, either there is a
positive fixed point of f, representing coexistence of the two populations, or one

population drives the other to extinction.

Theorem 1.2.4 (/50, Theorem A.1]) Let (A1)-(A4) hold. Then the omega limit

set of every orbit in X' is contained in I, and ezactly one of the following holds:
(a) There exists a positive fized point E, of f in I,
(b) w(z) = B, for every x = (z1,x3) € I withz; # 0,1 =1,2;
(c) w(z) = E, for every x = (11,%3) € I with z; #0,i =1, 2.

Finally, if (b) or (c) holds and x = (21,22) € X\ I with z; # 0,7 = 1,2, then

either w(z) = E, or w(z) = E,.

Theorem 1.2.5 ([95, Theorem 2.4.2]) Let (A1)-(A4) hold and assume that F,
and E> are isolated fized points of f. Let W*(E;) be the stable set of E; for f.
If We(E;))int(XT) =0, i = 1,2, then there exist positive fized points F,. <y E,
of f such that w(z) = E, for every x = (xy,x2) satisfying E, <x = <y E, and
To # 0, w(z) = E., for every T = (z1,x;) satisfying Fy <g x <y F.. and z; # 0,

and the order interval [E.., E.lx attracts any point in (X" \ {0}) x (X3 \ {0}).

1.3 Essential Spectrum

This section presents some results about essential spectrum of certain ordinary dif-

ferential operators obtained in [46, Page 136-142].



Definition 1.3.1 If L is a linear operator in a Banach space, a normal point for L
is any complex number which is in the resolvent set, or is an isolated eigenvalue of
L with finite multiplicity. Any other complex number is in the essential spectrum.

Denote the resolvent set and spectrum of L by p(L) and (L), respectively.

Theorem 1.3.1 (/46, Lemma 2]) Suppose the matrices A, (), A_()\) are enalytic

functions of A € C, the complex number set. Let
Sy ={): AL(}) has an imaginary eigenvalue }.

Let A(z,\) = AL (X) forz > 0, A_(X) for z < 0, and define the differential operator
LA = %u + A(-, Nu in Co(R), the continuous function set, or Cyunif(R), the

uniformly continuous function set; we may consider L(\) as closed and densely

defined. Then if G is any open connected set in C\ (S, |JS_), either
(1) 0 € a(L(X)) for all X in G, or

(ii) 0 € p(L()\)) for all X in G except at isolated points, the exceptional points are
poles of L(\)™" of finite order.

Also, 0 € o(L(\)) whenever A € S |JS-.

Theorem 1.3.2 ([46, Theorem A.1]) Suppose X is a Banach space, T : D(T) C
X — X is a closed linear operator, S : D(S) C X — X 1is linear with D(T') C D(S)
and S(NoI — T)7 ! is compact for some Xg. Let U be an open connected set in C
consisting entirely of normal points of T'; then either U consists entirely of normal

points of T + S, or entirely of eigenvalues of T 4+ S.



Definition 1.3.1 If L is a linear operator in a Banach space, a normal point for L
is any complex number which is in the resolvent set, or is an isolated eigenvalue of
L with finite multiplicity. Any other complex number is in the essential spectrum.

Denote the resolvent set and spectrum of L by p(L) and o(L), respectively.

Theorem 1.3.1 (/46, Lemma 2/) Suppose the matrices A (\), A_()\) are analytic

functions of A € C, the complex number set. Let
Sy ={X: AL(\) has an imaginary eigenvalue }.

Let A(x,\) = A (\) forz > 0, A_(\) for z < 0, and define the differential operator
E(A)yu = -dd;u + A(, Nu in Co(R), the continuous function set, or Cyunif(R), the
uniformly continuous function set; we may consider L()\) as closed and densely

defined. Then if G is any open connected set in C\ (S, |JS-), either
(i) 0 € o(L(\)) for all X in G, or

(ii) 0 € p(L(X)) for all X in G except at isolated points, the exceptional points are
poles of L(N\)™! of finite order.

Also, 0 € o(L()\)) whenever X € S, |JS_.

Theorem 1.3.2 ([46, Theorem A.1]) Suppose X is a Banach space, T : D(T) C
X — X is a closed linear operator, S : D(S) C X — X is linear with D(T') C D(S)
and S(Ad — T)~! is compact for some \g. Let U be an open connected set in C
consisting entirely of normal points of T'; then either U consists entirely of normal

points of T + S, or entirely of eigenvalues of T + S.



1.4 Spreading Speeds and Traveling Waves

The theory of asvmptotic speeds of spread and traveling waves, developed in |8, 7,
9, 26, 28, 27, 79, 80, 90|, has been recently generalized to a class of scalar nonlinear

integral equations in [83]. In this section, we present some results obtained in [83].

Definition 1.4.1 A number ¢* > 0 is called the asymptotic speed of spread for a

function v : Ry, x R* — Ry if lim  wu(t,z) = 0 for each ¢ > ¢*, and if there

t—oo,|z|>ct

exists some @ > 0 such that lim wu(t,z) = 4 for each ¢ € (0,c*).
t—o0,|z|<ct

Consider an integral equation
t
u(t, ) = ug(t, z) + / / F(u(t— s,z —y),s,y)dyds, (1.4.1)
0o JRrr

where F': R2 x R* — R is continuous in u and Borel measurable in (s,y), and

g Ry x R" — R, is Borel measurable and bounded. Assume that
(B) There exists a function & : Ry x R* — R, such that
(B1) k*:= [J° [on k(s, z)dzds < o0;
(B2) 0 < F(u,s,z) < uk(s,z),Yu,s > 0,z € R";

(B3) For every compact interval I in (0, 00), there exists some £ > 0 such that

F(u,s,z) > ck(s,z),Vue I,s >0,z € R*;

(B4) For every & > 0, there exists some 6 > 0 such that F'(u,s,z) > (1 —

e)uk(s,z), Yu € [0,6], s > 0, z € R?;

(B5) For every w > 0, there exists some A > 0 such that

|\F(u, s,z) — F(v,s,z)| < Alu —v|k(s, z),Vu,v € [0,w],s > 0,z € R".



10

The following proposition shows that the existence, uniqueness and some properties

of solutions to equation (1.4.1).

Proposition 1.4.1 (/83, Proposition 2.1]) If assumptions (B) hold, then for every
Borel measurable, nonnegative and bounded function uy(t, x), there exists a unique
Borel measurable solution v : R, x R* — Ry of (1.4.1), and u is bounded on

10,7] x R* for every r > 0. Furthermore, the following statements hold.

(a) The solution u is bounded if there exist cy,ca > 0 such that cik* < 1 and

F(u,s,z) < (e + cqu)k(s,z),Yu,s > 0,z € R".

(b) If r > 0 and l'liim ug(t, z) = 0 uniformly for t € [0,r], then the solution u has

the same property.

To obtain some more properties for equation (1.4.1), we have to make some

assumptions on k.
(C) k: Ry x R* — R, is a Borel measurable function such that
(C1) k* := [ [an k(s,y)dyds € (1,00);

(C2) There exists some A° > 0 such that [ [o. e k(s,y)dyds < oo;

(C3) There exist numbers o5 > o7 > 0, p > 0 such that k(s,z) > 0, Vs €
(0'1,0'2), [T| = [0)/))1

(C4) k is isotropic.

Here, a function f :[0,00) x R* — R is said to be isotropic if for almost all s > 0,

f(s,z) = f(s,y) whenever |z| = |y|. For a fixed Z € R" with |Z| = 1, define the



1.4 Spreading Speeds and Traveling Waves

The theory of asymptotic speeds of spread and traveling waves, developed in (8, 7,
9, 26, 28, 27, 79, 80, 90|, has been recently generalized to a class of scalar nonlinear

integral equations in [83]. In this section, we present some results obtained in [83].

Definition 1.4.1 A number ¢* > 0 is called the asymptotic speed of spread for a

function u : Ry x R* - R, if lim u(t,z) = 0 for each ¢ > ¢*, and if there

t—roo,|xz|>ct

ezists some 4 > 0 such that lim wu(t,z) = @ for each c € (0, c*).
t—o0,lz|<ct

Consider an integral equation
t
u(t, z) = uo(t, z) + f Fu(t — s,z — ¥y), s, y)dyds, (1.4.1)
0o JRe

where F' : R x R* — R is continuous in u and Borel measurable in (s,y), and

ug : Ry x R" — R, is Borel measurable and bounded. Assume that
(B) There exists a function & : R, x R* — R, such that

(B1) k* = fooo fR,, k(s, x)dzds < oc;
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F(u,s,z) > ek(s,z),YVu e I,s > 0,z € R";

(B4) For every £ > 0, there exists some § > 0 such that F(u,s,z) > (1 —

g)uk(s, z), Yu € [0,6], s > 0, z € R*;

(B5) For every w > 0, there exists some A > 0 such that

|F(u,s,z) — F(v,s,7)| < Alu —v|k(s, z),Vu,v € [0,w],s > 0,z € R".
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The following proposition shows that the existence, uniqueness and some properties

of solutions to equation (1.4.1).

Proposition 1.4.1 (/83, Proposition 2.1]) If assumptions (B) hold, then for every
Borel measurable, nonnegative and bounded function uy(t, z), there ezists a unique
Borel measurable solution u : Ry x R* — R, of (1.4.1), and u is bounded on

[0,7] x R™ for every r > 0. Furthermore, the following statements hold.

(a) The solution u is bounded if there exist c¢;,co > 0 such that cik* < 1 and

F(u,s,z) < (e + qyu)k(s,z),Vu,s > 0,z € R™.

(b) If r > 0 and llm uo(t, ) = 0 uniformly for t € [0,7], then the solution u has

—!-OO

the same property.

To obtain some more properties for equation (1.4.1), we have to make some

assumptions on k.

(C) k: R, x R* - R, is a Borel measurable function such that

k* = [ Jgn ks, 3)dyds € (1, 00);
(C2) There exists some A° > 0 such that [ [L. e* ¥ k(s, y)dyds < oo;
(C3) There exist numbers oo > o; > 0, p > 0 such that k(s,z) > 0, Vs €
(01,02), || € [0, p);
(C4) k is isotropic.
Here, a function f :[0,00) x R* — R is said to be isotropic if for almost all s > 0,

f(s,z) = f(s,y) whenever |z| = |y|. For a fixed Z € R* with |Z| = 1, define the
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transform
oo
i, A} = / / e Mes=Z0 (s, ) dyds, Ve >0, N >0,
0 Jgn

where - means the usual inner product on R". Suppose that £ is isotropic. Since
for any Z € R" with |Z| = 1, there exists an orthogonal matrix 4 with AZ = —e,,

where e; is the first canonical basis vector of R", there holds

}C(c,/\)=/ f e Mestu g (s, y)dyds,
0o Jgn

where y, is the first coordinate of y. If (C) holds, then, for every ¢ > 0, there exists
some M (c) € (0,00] such that X(c,\) < oo for A € [0, M(c)) and K(c, \) = oo for
A > M(e) ([79, Lemma 3.7]). Let ¢* := inf{c > 0 : K(¢,)) < 1 for some X > 0}.
The following lemma shows the existence of ¢*.

Lemma 1.4.1 (/83, Proposition 2.3]) Let (C) hold and assume that Ll;]}\l%}cg Kle,\) >
k* for every ¢ > 0. Then there exists a unique \* € (0, \*(c*)) such that K(c", \*) =1
and K(c*,\) > 1 for X # X*. Moreover, ¢* and \* are uniquely determined as the

solutions of the system K(c,\) =1, E"‘i—/\f(c, A)=40

The function ug is said to be admissible if for every ¢, A > 0 with K(ec, )) < 1,
there exits some v > 0 such that ug(t, z) < veMe=1D) vt > 0,z € R*. The following

theorems show that ¢* is the asymptotic speed of spread for solutions of (1.4.1).

Theorem 1.4.1 (/83, Theorem 2.1]) Let (B) and (C) hold. then for every admis-

sible ug, the unique solution u(t,z) of (1.4.1) satisfies IiIIn[ u(t,z) = 0 for each
t—o00,|T|>ct

c>c.
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transform
oo
Kle, ) = f f e MS=ZV k(s y)dyds, Ye> 0, X >0,
0 bis n

where - means the usual inner product on R™. Suppose that k is isotropic. Since
for any Z € R" with |Z| = 1, there exists an orthogonal matrix 4 with AZ = —e¢;,

where e, is the first canonical basis vector of R, there holds

Ken) = [ [ et (s, y)dyds
0o JRrn

where 7, is the first coordinate of . If (C) holds, then, for every ¢ > 0, there exists
some N (c) € (0,00] such that K(e,\) < oo for A € [0, \*(¢)) and K(c,\) = oo for
A > M(e) ([79, Lemma 3.7]). Let ¢* := inf{c > 0: K(c,\) < 1 for some X > 0}.

The following lemmma shows the existence of ¢*.

Lemma 1.4.1 (/83, Proposition 2.3]) Let (C) hold and assume that 1\1:;;321€/C(c, A) >
k* for every ¢ > 0. Then there exists a unique \* € (0, X*(c*)) such that K(c*, \*) =1
and K(c*,A) > 1 for X # \*. Moreover, ¢ and \* are uniquely determined as the

solutions of the system K(c,A) =1, £K(c, A) = 0.

The function ug is said to be admissible if for every ¢, A > 0 with K¢, \) < 1,
there exits some v > 0 such that ug(t, z) < yeMet=I7) ¢ > 0,2 € R*. The following

theorems show that ¢* is the asymptotic speed of spread for solutions of (1.4.1).

Theorem 1.4.1 (/83, Theorem 2.1]) Let (B) and (C) hold. then for every admis-

sible ugy, the unique solution w(t,z) of (1.4.1) satisfies lim  wu(t,z) = 0 for each

t—ro0,|z|>ct

e >gr,
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Theorem 1.4.2 ([80, Lemma 3.10] and [83, Theorem 2.3]) Assume that a function

f satisfies
(D) f:R, — Ry is a Lipschitz continuous function such that

(D1) f(0) =0 and f(u) > 0, Yu > 0;
(D2) f is differential at zero, f'(0) =1 and f(u) < u,Vu > 0;

(D3) lim £ =

(D4) there exists a positive solution u* of u = k*f(u) such that k* f(u) > u,

VYu € (0,u*), and k* f(u) < u,Yu > u®.

Set F(u,s,z) = f(u)k(s,x), and let ug : R, x R* — R, be a Borel measurable

function with the property that tliglo ug(t, ) = 0 uniformly in x € R*, and uy(t, z) >

n > 0,Vt € (t;,12), |z] < n, for appropriatety > t, > 0,1 > 0. Assume that (C) holds

and the unique solution u of (1.4.1) is bounded, u™ := limsup sup u(t, z). If there
t—oo zeR?

s no pair v and w such that 0 < v < u* < w < u™® and w = k*f(v),v = k* f(w),

then, lim wu(t,z) = u*, Ve € (0,c*).

t—ro0,|z|<ct

For the general case of F(u, s,2), we define F(u) = [, [L.. F(u,s,y)dyds. Then

Theorem 1.4.3 ([83, Theorem 2.5]) Let (B) and (C) hold and let up: Ry x R* —
R, be a bounded and Borel measurable function with the property that ug(t,z) >
n > 0,Vt € (i, 1), |z| < 7, for appropriate to > t; > 0, > 0. Assume that ﬂ%l
is monotone decreasing and uF(u,s,x) is monotone increasing in u > 0 for each
(s,z) € Ry x R™, that the monotonicities are strict for s € (01, 0), |z| € (0, p) with

appropriate constants oy > oy > 0,p > 0, and that tlir.n ug(t, z) = 0 uniformly in
—00
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x € R*. Then there holds lim wu(t,z) = u*, Ve € (0,c*), where u* is the unique

t—ro0,|z|<ct

positive fized point of F.
In the following, let us consider the limiting equation of (1.4.1) with n = 1

wlt, o) = / [ F(u(t — s,z —y), s,y)dyds. (1.4.2)
0 JE

A solution u(f, x) of (1.4.2) is said to be a traveling wave solution if it is of the form
u(t, ) = v(z + ct). The parameter ¢ is called the wave speed, and the function v is

called the wave profile. Here, we require that

v(+) is positive and bounded on R, and lim v(§) = 0. (1.4.3)

{——00

In the case where F(u,s,z) = f(u)k(s,z), we make the following modified as-

sumptions on f
(DY) f:R, — R, is a continuous function such that
(D1) f(0) = 0, and there exists a positive solution u* of u = k* f(u) such that
k* f(u) > u,Vu € (0,u");
(D2) f is differentiable at zero, f'(0) =1 and f(u) < u,Vu € [0, u"].
Theorem 1.4.4 ([28, Theorem 6.5] and [83, Theorem 3.2]) Let (C) with n = 1
and (D') hold, and set F(u,s,z) = f(u)k(s,z). Assume that |f(u) — f(v)] < |u —

v|,Vu, v € [0,u*]. Then for ¢ > c*, (1.4.2) and (1.4.3) admit at most one monotone

increasing traveling wave v(z + ct) connecting 0 and u* up to translation.

Theorem 1.4.5 ([83, Theorem 8.3]) Let (B2) and (C) with n = 1 hold. Assume

that F(-,s,z) is increasing on [0,u*] for each (s,z) € R, X R, and F(u,s,z) >
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(u — bu?)k(s,z),Vu € [0,6], (s,z) € Ry x R, for appropriate § € (0,u*],0 > 1 and
b > 0, where u* is the fized point of F, and F(u) > u,Yu € (0,u*). Then for each
c > c*, there exists a monotone traveling wave solution of (1.4.2) with speed ¢ and

connecting 0 and u”*.

Theorem 1.4.6 (/83, Theorem 3.4]) Let F(u,s,z) = > fi(u)ki(s,z) and let the
i=1

assumptions of Theorem 1.4.5 be satisfied. Assume that each k;(s,-) is continuous

on R for all s > 0. Then there exists a monotone traveling wave solution of (1.4.2)

with speed ¢* and connecting 0 and u*.

Theorem 1.4.7 ([83, Theorem 3.5]) Let (B) and (C) hold. Then for each ¢ €

(0, ¢"), there exists no traveling wave solutions of (1.4.2) and (1.4.3) with speed c.



Chapter 2

An Asymptotically Periodic
Competitive Model

In this chapter, we consider a time-delayed asymptotically periodic system which
describes the competition among mature populations. By appealing to theories
of monotone dynamical systems, periodic and asymptotically periodic semiflows
and uniform persistence, we analyze the evolutionary behavior of the system and
establish sufficient conditions for competitive coexistence, exclusion and uniform
persistence.

The organization of this chapter is as follows. In Section 2.1, based on some
specific population models, we formulate a general periodic competitive system and
an asymptotically periodic system. Section 2.2 provides some preliminary results
on the spectral radius of the Poincaré map associated with a linear periodic and
delayed equation, threshold dynamics in a scalar periodic and delayed system, and
the relationship between solutions of an asymptotically periodic system with delays

and its limiting system. In Section 2.3, we first analyze the global dynamics in the
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two-species competitive system by applying theories for competitive systems on Ba-
nach spaces [50], and then lift these results to the asymptotically periodic system. In
Section 2.4, we first investigate the uniform persistence of multi-species competitive
systems by two-side comparison method, and then obtain natural invasibility condi-
tions for the uniform persistence and coexistence states of three-species competitive

systems by using the theory of uniform persistence.

2.1 Introduction

Since the 1970s, the population models with stage structure have received extensive
investigations (see [57, 84, 11, 44, 66, 73, 36, 2, 56, 24, 77, 91] and references therein).
To describe a single species growth, Aiello and Freedman [1] proposed the following

system

#(t) = ae~ "zt — ) — Ba(t), (2.1.1)

y(t) = ax(t) — yy(t) — ae™ " 2(t — 1),

where z(¢) and y(¢) denote the mature and immature populations, 5 and v represent
the death rates of the mature and the immature, & denotes the birth rate of the ma-
ture, and 7 is the maturation age. They showed that there exists an asymptotically
stable positive equilibrium, and concluded that the introduction of stage structure
does not affect the permanence of the species.

In order to investigate how the stage structure affects the asymptotical behavior
of the competitive species, Liu et al. [60] combined the competitive Lotka-Volterra

system with system (2.1.1) and obtained a two-species competitive model with stage
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structure.

£i(t) = bie” Tz (t — 1) — zi(t) (@21 (1) + annza(t)), (2.1:2)

yl(t) = b;’Ez(t) - di’ti(t) — bgff_di'riflii(t = Ti)) = 1, 2,

where z;(t) and y;(¢) denote the mature and immature populations of the ith species,
a;; > 0, b; and d; denote the birth rate of the 7th mature population and the death
rate of the ith immature population, respectively, 7; is the maturation age of species
i. One of the basic assumptions is that the immature do not compete with the
other species. Note that studying only (2.1.2) is enough to know the properties of
the whole system. In [60], the authors defined & = d;7; as the degree of stage, and
concluded that if %};} < f—};ﬁ—}‘;— < %’:, then system (2.1.2) is permanent. Furthermore,
Liu et al. generalized the above system to an autonomous competitive system for n

species in [59] and a T-periodic competitive system for n species in [61]:

#:(t) = Bi(t)zi(t — 7)) — mi(2) i ai;j(t)z;(t), (2.1.3)
¥ (t) = bi(t)z:(t) — d;i(t)yi(2) —J—}:lii(t):z:,-(t — )y b= 1,200
where b;(t), ai;(t), di(t) > 0, a;;(t) > 0, and
B;(t) = b;(t — Tz-)e_"r‘t-”i Bk | Zi<n
They concluded that if
B SN opBP e, Yeign, (2.1.4)

i

then system (2.1.3) is permanent, where

f.Lf;J- — il;lf(lfj, ai; = sup a;j, B;- = irtxfBj, B;-" =sup B;, 1 <14,j < n.
: ! t
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structure.
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Bl 'Y afBlia., 1=<i=<n, (2.1.4)

i

then system (2.1.3) is permanent, where

T
ij =

{ —— \ . .
a;; = uzfa;_.,, a

= Sup a;j, Bj- = il:fBj, B = suzp Byl 7<€n,
i
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Note that condition (2.1.4) is very strong. There should exist some more general
conditions, such as average integrals of certain functions over the period, which is
more natural. Also motivated by system (2.1.1), (2.1.2) and (2.1.3), we consider a

more general system of competing mature populations:

’U;,(t) = u,-(t - Ti)Fi(t, ’l.Li(t = Tg)) == u,;(z‘,)G’z-(t,ul(t), iae ,'u,m(t))

(2.1.5)

= filt,ult), ..., Ball), wilt — 1)) 1 €15 m,
where the continuous function f;(¢, uy, . .., Um, v;) is T-periodic in ¢, and Lipschitzian
in (w1, ..., %mn,v;) in any bounded subset of R{""', i = 1,2,..., m. Note that system

(2.1.5) is also a general form of Ayala’s system (see, e.g., [10] and [55] for the
autonomous case, and [34] for the nonautonomous case).

It is known that some parameters in an ecological system are not exactly periodic
in time, but asymptotically periodic in time. Based on the periodic system (2.1.5),

we then consider the following asymptotically periodic system

(1) = @t —n)Eit, 50 — 1)) — 4@)Gi(t, 61(2), . . ., Gm(t))

(2.1.6)
= filt, @), ..., Um(), %t — 7)), 1 <i < m,
with the property that
(A) The continuous function f,—(t, Wiy ne oy g Tp) 18 Lipschitzian 10 (215 . oy Uy Vi)

in any bounded subset of R7"!; F; and G; satisfy ’lim |ﬁ",—(t,ui) — Fi(t,u;)| =0

and Llim |Gt 1y, ..o ) — Gi(t,uy, ..., um)| = 0 uniformly on any bounded
—+ 00
subsets of Ry and RT, respectively, i1 =1,2,...,m.

The purpose of this chapter is to analyze the global dynamics of system (2.1.5)
and (2.1.6). By appealing to the theory of autonomous and nonautonomous semi-

flows, we establish sufficient conditions for the existence of periodic coexistence,
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global persistence and extinction in terms of spectral radii of the Poincaré maps
associated with linear periodic delay equations. In the case where the delays are
integer multiples of the period, these conditions can be determined by the average
integrals of certain periodic functions. When applied to system (2.1.3), the obtained
conditions are necessary to those in [61], and the results improve those obtained in

[61].

2.2 Scalar Delay Differential Equations

In this section, we first present some notation used in this chapter, and then give
some results about scalar delay differential equations. Let 7,73 and 7, be positive

numbers, and
Y = C([_T: 0]! R)! Y+ Tt C"([_Ts O]1R+)s 1\’1' = C([_Tia U]: R),

X+ =C(-m0L,Ry), i=1,2, X = X, x Xy, X* = X{ x X5

Then (Y,Y ), (X;, X;7) and (X, X") are ordered Banach spaces. Denote these or-
ders by <, < and <. Let K = X" x (—XJ"). Then (X, K) is also an ordered Banach
space. Denote the orders by <y, <x and <g. By an order interval [¢, ¥]x on X,
we mean the set

el ={€6€ X : ¢ <k & <k ¥}.

For a linear operator P, we denote the spectral radius of P by I(P)

Cousider a linear scalar equation with delay 7

a(t) = a(t)u(t) + b(t)u(t — 7). (2.2.7)
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Assume that
(E) a(t) and b(t) are T-periodic and continuous, and b(t) > 0, Vi > 0.

Then for any ¢ € Y, equation (2.2.7) has a unique solution u(t, ) for ¢ > 0, with
u(s, p) = p(s),¥s € [—7,0]. Let u,(p) be the solution semiflow for equation (2.2.7)
defined by w,(¢)(s) = u(t + s,p),Vs € [—7,0]. In this chapter, we always denote
by u(t¢,®) the solution of a certain system, and by wu,(p) the associated solution
semiflow. Since b(t) > 0, by the positivity theorem ([72, Theorem 5.2.1]), u(p) >
0,Vo € Y+, ¢t > 0. Define the Poincaré map P : Y+ — Y* by P(p) = ur(yp). It
then follows that P" () = u,r(y) for integer n > 0.

The following result associates the spectral radius r(P) with an integral of the

coefficients of equation (2.2.7).

Proposition 2.2.1 7 = r(P) is positive and is an eigenvalue of P with a positive
eitgenfunction p*. Moreover, if T = kT for some integer k > 0, then r — 1 has the

same sign as fOT(a(t) + b(t))dt.

Proof. By assumption (E), [42, Theorem 3.6.1] and [72, Lemma 5.3.2], there ex-
ists an integer m71 > 27 such that P™ is compact and strongly positive. By the
Krein-Rutman theorem (see, e.g., [47, Theorem 7.2]), r,, = 7(P™) > 0 and is an
algebraically simple eigenvalue of P™ with an eigenfunction ¢}, > 0. Since P is a
bounded linear operator on Y, r,,, = r™ (see, e.g., [54, Theorem 7.4-2]). Moreover,
the spectrum of P consists of the point spectrum of PP and the possible accumulation
point being zero (see, e.g., [42, Page 192]). Thus, r is a positive eigenvalue of P. Let

Py* = rp*. Without lose of generality, we assume ¢*(so) > 0 for some sy € [—7, 0].
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Assume that
(E) a(t) and b(t) are T-periodic and continuous, and b(t) > 0, Vt > 0.

Then for any ¢ € Y7, equation (2.2.7) has a unique solution u(t, @) for £ > 0, with
u(s, ) = @(s),Vs € [—7,0]. Let u,(¢) be the solution semiflow for equation (2.2.7)
defined by u(p)(s) = u(t + s,9),Vs € [—7,0]. In this chapter, we always denote
by u(t,¢) the solution of a certain system, and by u,(¢) the associated solution
semiflow. Since b(¢) > 0, by the positivity theorem ([72, Theorem 5.2.1]), u () >
0,V € Y*,t > 0. Define the Poincaré map P : Y+ — Y by P(p) = ur(p). It
then follows that P"(yp) = un,r(¢) for integer n > 0.

The following result associates the spectral radius r(P) with an integral of the

coefficients of equation (2.2.7).

Proposition 2.2.1 r = r(P) is positive and is an eigenvalue of P with a positive
ewgenfunction p*. Moreover, if T = kT for some integer k > 0, then r — 1 has the

same sign as f(;r(a(t) + b(t))dt.

Proof. By assumption (E), [42, Theorem 3.6.1] and [72, Lemma 5.3.2], there ex-
ists an integer m1" > 27 such that P™ is compact and strongly positive. By the
Krein-Rutman theorem (see, e.g., [47, Theorem 7.2]), r,, = 7(P™) > 0 and is an
algebraically simple eigenvalue of P™ with an eigenfunction ¢}, > 0. Since P is a
bounded linear operator on Y7, r,,, = r™ (see, e.g., [54, Theorem 7.4-2]). Moreover,
the spectrum of P consists of the point spectrum of P and the possible accumulation
point being zero (see, e.g., [42, Page 192]). Thus, r is a positive eigenvalue of P. Let

Pp* = re*. Without lose of generality, we assume ¢*(sg) > 0 for some sy € [—7,0].



21

Since P™p* = r7"¢* = r,,p*, we have p* = cy!, for some positive constant ¢. Thus
" > 0.

Letting u(t) = eMu(t), we obtain a linear periodic equation with parameter ),
o = (a(t) — Av(t) + b(t)e *u(t — 7). (2.2.8)

Define @ : YT — Y+ by Q(¢) = vr(p), where v,(p) is the solution semiflow
of equation (2.2.8). Let F, be a map from Y* to Y defined by [Ex(p)](s) =
e*p(s),Vs € [—7,0]. Then

Q) (s) = vr(p)(s) = v(T + s, ) = e XTHIu(T + 5, Ex()), Vs € [-7,0],
and hence,

Q) = e M E_x(ur(Ba(9)) = e " E_A(P(Ex(9))).

Thus, Q(E_»(¢*)) = e E_\(P(¢*)) = re*TE_,(¢*). Let A\¢ = Flnr. Then
E_j,(¢*) is a positive fixed point of Q. Thus vy(t) = v(t, E_x,(¢")) is a positive
T-periodic solution of (2.2.8), and u(t) = vo(t)e* > 0 for ¢ > —7. In particular, if

7 = kT for some integer k > 0, then vy (t) satisfies

o (1) o
vo (1)

a(t) — Ao + b(t)e™o7, Vt > 0.

Integrating both sides of the above equation from 0 to 7', we get My = %fufr(a(t) +
e 27b(t))dt. Note that G(X) = + fOT a(t)dt + g fOT b(t)dt is strictly decreasing,
and Ag is the unique solution of A = G(\), we have \(G(0) > 0, i.e., (r—1) foT(a(t) “+

b(t))dt > 0. The desired results are established. [
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Since P™p* = r"p* = rnpp*, we have ¢* = cyp}, for some positive constant ¢. Thus
p* > 0.

Letting u(t) = e*wv(t), we obtain a linear periodic equation with parameter \,
v = (a(t) — Nv(t) + b(t)e v(t — 7). (2.2.8)

Define @ : Yt — Y* by Q(p) = vr(p), where v,(p) is the solution semiflow
of equation (2.2.8). Let E) be a map from YT to Yt defined by [Ex\(p)](s) =
eMo(s),Vs € [—1,0]. Then

QUp)(5) = vr(p)(8) = v(T + 5,) = e XTHU(T + 5, Ex()), Vs € [-7,0],

and hence,

Q) = e E_x(ur(Er(p))) = e E_y(P(Ex(9)))-

Thus, Q(E_s(¢*)) = e TE_\(P(p*)) = reE_s(¢"). Let Ay = = Inr. Then
E_,(¢7) is a positive fixed point of Q. Thus vy (t) = v(t, E_5,(¢")) is a positive
T-periodic solution of (2.2.8), and u(t) = vy(t)e*! > 0 for ¢ > —7. In particular, if
7 = kT for some integer k > 0, then vy(#) satisfies

Do (t)

= a(t) — Xo + b(t)e ", ¥t > 0.
vo (1)

Integrating both sides of the above equation from 0 to 7', we get \p = % fOT(a(t) =+

e~ *07h(t))dt. Note that G(\) = 7 fﬂ t)dt + Fe fo (t)dt is strictly decreasing,
and Ag is the unique solution of A = G(A) we have \gG(0) > 0, i.e., (r—1) fg a(t)+
b(t))dt > 0. The desired results are established. "



Let us consider a nonlinear T-periodic equation
u = f(t': ‘ZL(t), ‘lL(t - T)))

u(s) = ¢(s),—7<s<0,

where ¢ € YY" is an initial function to be specified later.
Assume that the continuous function f(¢,v;,vs) is T-periodic in ¢ and Lips-

chitzian in (v, v;) in any bounded subset of R? | and satisfies

(E1) f(£,0,0) =0, f(t,0,v2) = 0, 22 f(t,v1,v3) > 0,Yv1,v2 > 0;
(E2) f is strictly sublinear;

(E3) there exists a positive number L > 0 such that f(¢, L, L) < 0.

Let P, be the Poincaré map of the linearized equation associated with equation
(2.2.9) at w = 0, and r = r(P,). Then we have the following threshold type result

on the global dynamics of (2.2.9).

Theorem 2.2.1 Let (E1)-(E3) hold. Then the following statements hold.

(i) Ifr < 1, then zero solution is globally asymptotically stable for equation (2.2.9)

with respect to Y ;

(i) If r > 1, then equation (2.2.9) has a wunique positive T-periodic solution

u(t, po), and u(t, o) is globally asymptotically stable with respect to Y\ {0}.

Proof. Let a(t) = 32-f(t,0,0), b(t) = 5= f(£,0,0). Since f is strictly sublinear,
f(t,v1,v2) < a(t)vy + b(t)ve. Note that b(t) > 0, f(¢,0,v2) > 0. By the comparison

theorem ([72, Theorem 5.1.1]) and the positivity theorem ([72, Theorem 5.2.1]), each
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Let us consider a nonlinear T-periodic equation

i = f(t,u(t), u(t — 7)),
(2.2.9)

'U..(S) — (P(S), =Ty S S S Os
where ¢ € YY" is an initial function to be specified later.
Assume that the continuous function f(f,v;,vs) is T-periodic in ¢ and Lips-

chitzian in (v;, v2) in any bounded subset of R? | and satisfies

(E1) f(t,0,0) =0, f(¢,0,v3) > 0, 5= f(t,v1,v2) > 0,Yvy,v5 > 0;
(E2) f is strictly sublinear;

(E3) there exists a positive number L > 0 such that f(¢, L, L) < 0.

Let P, be the Poincaré map of the linearized equation associated with equation
(2.2.9) at v = 0, and r = r(F,). Then we have the following threshold type result

on the global dynamics of (2.2.9).

Theorem 2.2.1 Let (E1)-(E3) hold. Then the following statements hold.

(i) If r <1, then zero solution is globally asymptotically stable for equation (2.2.9)

with respect to Y ;

(ii) If = > 1, then equation (2.2.9) has a unique positive T-periodic solution

u(t, o), and u(t, o) is globally asymptotically stable with respect to Y\ {0}.

Proof. Let a(t) = %f(t,0,0), b(t) = %f(t, 0,0). Since f is strictly sublinear,
f(t,v1,v2) < a(t)vy + b(t)ve. Note that b(t) > 0, f(¢,0,29) > 0. By the comparison

theorem ([72, Theorem 5.1.1]) and the positivity theorem ([72, Theorem 5.2.1]), each
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solution u(¢, ) of equation (2.2.9) with initial value ¢ € Yt exists globally, and
u(t,) > 0,Vt > —7. Since 6—&_)‘(1&, v1,v2) > 0, the nonautonomous version of [72,
Theorem 5.3.4] implies that for any ,% € Y+ with ¢ < ¢, w,(¢) < u(¥),Vt > 0;
and if ¢ < v, then u(p) < u(¥),VEt > 27. Define S, : Y+ — YT by S.(p) = ur(p).
Then S, is monotone, and S is strongly monotone for nT" > 27. Moreover, the
strict sublinearity of f implies that S, is strictly sublinear (see the proof of [92,
Theorem 3.3]).

By the continuity and differentiability of solutions with respect to initial values,
it follows that the Poincaré map S, is differentiable at zero, and DS, (0) = P,. Since
b(t) > 0, as in the proof of Proposition 2.2.1, (DS,(0))" is compact and strongly
positive for all nT" > 27.

Let us consider S7°, where nogZ" > 27. Then, S]° is strongly monotone, and
(DS,(0))™ is compact and strongly positive.

For any 3 > 1, since f is strictly sublinear, we have f(¢, 8L, 3L) < Bf(t,L, L) <
0. Thus, [72, Remark 5.2.1] implies that for any # > 1, the order interval V; =
[0,BL] = {p € Y+ : 0 < p(s) < BL,s € [—7,0]} is a positive invariant set for
Sy. By [42, Theorem 3.6.1], S : V3 — Vj is compact for any fixed 8 > 1. Then
the closure of S79([p,%]) is a compact subset of V3 for any ¢,¢ € V3 with ¢ <
1. Furthermore, DS (0) = (DS,(0))", which is compact and strongly positive.
Note that S, is strictly sublinear, S”° is strongly monotone, and 7{(DS,(0))™} =
[r(DS,(0))]" = (r(P,))™ = r™. By Theorem 1.2.1, as applied to S™, we have the
following conclusions:

(i) If » < 1, then zero is a globally asymptotically stable fixed point of S™ with

respect to V3.
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solution u(t, ) of equation (2.2.9) with initial value ¢ € Y exists globally, and
u(t,p) > 0,Vt > —7. Since %f(t,v,,'vg) > 0, the nonautonomous version of [72,
Theorem 5.3.4] implies that for any ¢, ¥ € Y+ with ¢ < ¢, u(p) < w(y), Vet > 0;
and if ¢ < 1, then u,(p) < w (), VYt > 27. Define S, : Y — Y+ by Su(v) = ur(p).
Then S, is monotone, and S} is strongly monotone for nT" > 27. Moreover, the
strict sublinearity of f implies that S, is strictly sublinear (see the proof of [92,
Theorem 3.3]).

By the continuity and differentiability of solutions with respect to initial values,
it follows that the Poincaré map S, is differentiable at zero, and DS, (0) = P,. Since
b(t) > 0, as in the proof of Proposition 2.2.1, (DS,(0))" is compact and strongly
positive for all nT" > 27.

Let us consider S]1°, where ngZ" > 27. Then, S]° is strongly monotone, and
(DS,(0))" is compact and strongly positive.

For any 8 > 1, since f is strictly sublinear, we have f(t,8L,5L) < ff(t,L,L) <
0. Thus, [72, Remark 5.2.1] implies that for any 8 > 1, the order interval V3 =
[0,BL] = {g € YT : 0 < ¢(s) € BL,s € [—7,0]} is a positive invariant set for
S.. By [42, Theorem 3.6.1], S™ : V3 — V3 is compact for any fixed # > 1. Then
the closure of S™ ([, ]) is a compact subset of V3 for any ¢,¥ € V3 with ¢ <
¥, Furthermore, DS2°(0) = (DS,(0))"°, which is compact and strongly positive.
Note that S, is strictly sublinear, 5™ is strongly monotone, and r{(DS,(0))*} =

[7(DS,(0))]™ = (r(P,))* = r™. By Theorem 1.2.1, as applied to S°, we have the

following conclusions:

(i) If » < 1, then zero is a globally asymptotically stable fixed point of S7° with

L

respect to Vjz.
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(ii) If » > 1, then S7° has a unique positive fixed point ¢y in Vj, and g is globally

asymptotically stable with respect to V3 \ {0}.

By the arbitrariness of 3, the above results hold on the whole space Y for
Sre. It then follows that zero solution of equation (2.2.9) is globally asymptotically
stable in case (i); and equation (2.2.9) admits the unique positive and nyT-periodic
solution wu(t, o) in case (ii). It remains to prove that u(t, ) is T-periodic. By
Proposition 2.2.1, we know that there exists a positive eigenfunction ¢* such that
DS, (0)(¢") = r*. In the case of r > 1, for any small € > 0, it is easy to find an
increasing sequence 0 < ep* < S,(ep*) < S2(ep*) < -+- < S(ep*) < -+ - (see the
proof of (96, Theorem 2.1]). On the other hand, S7°"(e¢*) — @0 as n — oo. Thus,
by the monotonicity of the sequence of S?(£¢*) and the continuity of Sy, o is a

fixed point of S,. That is, u(t, @) is a T-periodic solution. ]

In order to study the asymptotically periodic system (2.1.6), we need to under-
stand the relationship between solutions of an asymptotically periodic system and its
limiting periodic system. Let C = C([—7,0],R*), f(t, ) and f(t, ) be continuous

functions on R x C. Consider the retarded functional differential equations

ft, u), u € R, (2.2.10)

2.
a = f(t,,), 4 € R, (2.2.11)

Assume that continuous functions f and f are Lipschitzian in ¢ in each compact
subset of Rx C, and f is T-periodic in ¢. For any (o, ¢) € Rx C, denote by u(t, o, @)
and (%, o, ) the solutions of system (2.2.10) and (2.2.11) satisfying u, = ¢ and 2, =

@, respectively. Let ®(t,0,9) = @(0, ), B(t,0,9) = w(o, ), T(t)e = ®(t,0, ).
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(ii) If 7 > 1, then 57° has a unique positive fixed point ¢, in V3, and ¢y is globally

asymptotically stable with respect to Vj \ {0}.

By the arbitrariness of 3, the above results hold on the whole space Y for
S0, It then follows that zero solution of equation (2.2.9) is globally asymptotically
stable in case (i); and equation (2.2.9) admits the unique positive and ny7-periodic
solution wu(#,p) in case (ii). It remains to prove that u(t,@g) is T-periodic. By
Proposition 2.2.1, we know that there exists a positive eigenfunction ¢* such that
DS,(0)(¢*) = ro*. In the case of r > 1, for any small £ > 0, it is easy to find an
increasing sequence 0 € e¢” K Sy,(ep™) < S2(ep*) < -+- < Siep*) < ---(see the
proof of [96, Theorem 2.1]). On the other hand, S!"(ep*) — ¢y as n — co. Thus,
by the monotonicity of the sequence of S*(e¢*) and the continuity of S,, ¢ is a

fixed point of S,. That is, u(t, ) is a T-periodic solution. [

In order to study the asymptotically periodic system (2.1.6), we need to under-
stand the relationship between solutions of an asymptotically periodic system and its
limiting periodic system. Let €' = C([—7,0], R*), f(t,¢) and f(t,¢) be continuous

functions on R x C'. Consider the retarded functional differential equations

w = f(t,u), u e R, (2.2.10)

4= f(t, @), @ € R". (2.2.11)

Assume that continuous functions f and f are Lipschitzian in p in each compact
subset of Rx C', and f is T-periodic in ¢. For any (o, ¢) € Rx C, denote by u(t, o, ©)
and (¢, o, @) the solutions of system (2.2.10) and (2.2.11) satisfying u, = ¢ and i, =

@, respectively. Let ®(t,0,0) = @w(o, ), Bt 0,0) = w(o, @), T(t)e = ®(t,0,p).
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Then, we have the following result for the relationship between ® and 77(¢).

Proposition 2.2.2 Assume that Llim IF (2, ) — F(t, @)l = 0 uniformly for ¢ in any
—00
bounded set of C, and solutions of (2.2.10) and (2.2.11) are uniformly bounded.

Then for any integer M > 0 and real number B > 0,
lll}rono |®(t + nT,nT, @) — T(t)p| =0

uniformly for t € [0, MT) and @ € C with ||¢|| < B. In particular, ® is asymptotic
to T (t).

Proof. For any ¢ € C with ||| < B, there exists B’ such that ||u,(o, )| < B,
|@¢(o, )| < B’ for any t > o > 0. It follows that there exists a compact set
D = D(B) C C such that for any o > 0 and any ¢ € C with ||¢|| < B, w(o,¥),
(o, ) € D for all t > 0. Let ¢ be the Lipschitz constant of f on the set [0, T] x D,
and set u(t) = u(t,nT, ), u(t) = u(t,nT, p),Vt > nT. Integrating system (2.2.10)
and (2.2.11) from nT to t, respectively, we have

t t

u(t) = u(nT) + I f(s,us)ds = p(0) + f(s,us)ds,

ntl nT

u(t) = a(nT) + /'1‘ f(s, @g)ds = ©(0) + /T.f(s,ﬂ,s)ds.

Then,

2 —u@l < [ [1fs2) - s, ulids
< [ 1) = fs )l + [ 11(s3) = £(s,u)llds

T T
t
< MT|f - fli, +c / (e

nT
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Then, we have the following result for the relationship between ® and 7 (¢).

Proposition 2.2.2 Assume that tl.im | f(t, @) — F(t, )| = 0 uniformly for ¢ in any
—»00
bounded set of C, and solutions of (2.2.10) and (2.2.11) are uniformly bounded.

Then for any integer M > 0 and real number B > 0,
lim [| (¢ + nT,nT,¢) — T ()¢l =0

uniformly for t € [0, MT] and @ € C with ||¢|| < B. In particular, ® is asymptotic
to T (¢).

Proof. For any ¢ € C with ||| < B, there exists B’ such that ||u.(o,¢)|| < B,
|z (o, )| < B for any £t > o > 0. It follows that there exists a compact set
D = D(B) c C such that for any 0 > 0 and any ¢ € C with ||| < B, w(o,p),
(o, @) € D for all t > 0. Let ¢ be the Lipschitz constant of f on the set [0, 7] x D,
and set u(t) = u(t,nT, v),u(t) = u(t,nT,p),Vt > nT. Integrating system (2.2.10)

and (2.2.11) from n7" to t, respectively, we have

u(t) = u(nT) + f(s ug)ds = (0) +/ f(s,ug)ds,
a(t) = a(nT) + f fsu)ds—rp(())+/ f(s,1,)ds.

Then,

la(e) — u(@)| < [ (s, ) = f(s,u)lds
<[ T 17,0 = 5wl + [ 115(s,8) = £(s,u)lds

t

< MT||f = flip, +¢ / 12y — ullds
nT
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for t € [nT, (n+ M)T], where
D,={(t¢) e RxC: ||¢|]| < B',te€[nT,(n+ M)T]},

and
If = fllp. = . I ft, @) — F(t, D).

Let v(t) = ||G(nT, @) — us(nT, p)||. Then, it easily follows that
t
o(t) < MTIF = flip, +c | v(s)ds
nT
for t € [nT,(n + M)T]. Applying Grownwall inequality to the last inequality, we
have v(t) < ¢||f — fllp, for t € [nT, (n + M)T], where ¢’ is a constant independent
of t,n and ¢. Replacing t by ¢+ nT, the last inequality is changed into v(t +n7T) <

c|lf = fllp, for t € [0, MT]. That is,

”ﬁ't-l-nT(nT: 99) = ul-l-nT(nT: ‘p)“ S C'”f — f”Dn

for t € [0, MT]. Note that wy,7(nT, @) = u(0, @) = T (t)¢, we have
|®(t + nT,nT, ) — T@)ell < NI f — flipa-
Thus
lim [|®(¢ + nT,nT, ) — T()¢ll < lim ||f — fllp, =0
uniformly for ¢t € [0, MT| and ¢ € C with ||¢|| < B.
In particular, for any (ty,0) € R" x C, choose M > 0,B > 0, such that

to € [0, MT],||eall < B. For any t € [0, MT], ||¢|] < B, by the following triangle

inequality,

1@ (¢ + nT,nT, ) — T (to)poll < |@(t + T, nT, ) — T ()l + |7 (t)e — T (o) ol



for t € [nT, (n + M)T], where
D,={(t,¢) e RxC: ||¢|| < B',t € [nT,(n+ MT]},

and

If = fllp, = max [If(,¢) — f(t,¢)l

(t, 6)E€Dn
Let v(t) = ||, (nT, @) — u,(nT, ¢)||. Then, it easily follows that

¢

o(t) < MT|F — fllon + ¢ / 5(s)ds

nT
for t € [T, (n + M)T]. Applying Grownwall inequality to the last inequality, we
have v(t) < ¢||f — fllp, for t € [nT, (n + M)T], where ¢ is a constant independent
of t,n and . Replacing ¢ by ¢ +nT, the last inequality is changed into v(t +n7T) <
¢\ f — fllp, for t € [0, MT)]. That is,

|Bttnr(nT, @) — Uernr(nT, @)|| < IIf — flip,
for t € [0, MT]. Note that u ,7(nT, @) = u(0,¢) = T (), we have
|@(t + nT,nT, 0) — T@)ell < IIf — fllp.-

Thus
lim [8(t +T,nT, ) — Tl < lim ¢I1f ~ fll, = 0
uniformly for ¢ € [0, MT] and ¢ € C with ||¢|| < B.
In particular, for any (#y, ) € R x C, choose M > 0,B > 0, such that
to € [0, MT], ||po|l < B. For any t € [0, MT], ||¢]| £ B, by the following triangle

inequality,

|18(t + nT, nT, @) — T(to)poll < |B(t + T, nT, @) — T (&)l + [T (£)e — T (to)oll,
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we have ||®(t + nT,nT, ) — T (to)wol|| — 0 as (¢, ¢,n) — (to, Yo, +00). Thus @ is

asymptotic to the T-periodic semiflow 7T (). P

Based on system (2.2.9), we consider a scalar asymptotically periodic system

i= f(t,a(),4(t— 7)), t >0,
(2.2.12)

u(s) = ¢(s),s € [-7,0],p € Y.

Assume that the continuous function f(#, vy, vs) is Lipschitzian in (v;,v3) in any

bounded subset of R? | and satisfies

(E1) f(2,0,0) =0, f(£,0,13) > 0, 3= f(t,v1,v2) > 0 for t > 0,v; > 0,4 = 1,2
(E2') there exists L > 0 such that f(¢,1,1) <0 for all I > L;

(E3’) {lim |f — f| = 0 uniformly on any bounded subset on R? | where f is defined
=00

by equation (2.2.9).

Then, by the positivity theorem ([72, Theorem 5.2.1]), the solution i(t, ¢) of system

(2.2.12) is nonnegative on it’s existence interval for any ¢ € Y. Furthermore, it

is easy to see that @(t, ) is bounded by max(L, ||¢||). Thus solutions of system
(2.2.12) exist globally and are uniformly bounded.

In view of Theorem 2.2.1 and Proposition 2.2.2, the following result is a straight-
forward application of the theory of asymptotically periodic semiflows. Here we omit

the proof (for a similar argument, see, e.g., the proof of Theorem 2.3.4 and [87, The-

orem 2.1]).
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we have ||®(t + nT,nT, @) — T(to)wol — 0 as (t,@,n) — (to, w0, +00). Thus @ is

asymptotic to the T-periodic semiflow 7 (¢). [

Based on system (2.2.9), we consider a scalar asymptotically periodic system

= f(t,a(t),a(t—71)), t >0,
(2.2.12)

i(s) = p(s),s € [-7,0],0 € Y.
Assume that the continuous function f(t, v, vs) is Lipschitzian in (vy,v,) in any

bounded subset of R? , and satisfies
(E1) F(t,0,0) =0, f(£,0,v2) > 0, 3= f(t,v1,v2) >0 for t > 0,v; > 0,i=1,2;
(E2') there exists L > 0 such that f(t, 1) <0 foralll> L;

(E3') zlino}: |f — f| = 0 uniformly on any bounded subset on R?, where f is defined

by equation (2.2.9).

Then, by the positivity theorem ([72, Theorem 5.2.1]), the solution @(%, ¢) of system
(2.2.12) is nonnegative on it’s existence interval for any ¢ € Y. Furthermore, it
is easy to see that u(t, ) is bounded by max(L, |[¢||). Thus solutions of system
(2.2.12) exist globally and are uniformly bounded.

In view of Theorem 2.2.1 and Proposition 2.2.2, the following result is a straight-
forward application of the theory of asymptotically periodic semiflows. Here we omit

the proof (for a similar argument, see, e.g., the proof of Theorem 2.3.4 and [87, The-

orem 2.1]).
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Theorem 2.2.2 Let (E1)-(E3) and (E1')-(ES') hold. Suppose that r is the spectral
radius defined by Theorem 2.2.1 associated with the limiting equation (2.2.9). Then

the following statements hold.
(i) If r < 1, then zero solution attracts every solution of system (2.2.12).

(ii) Ifr > 1, then u(t, wo), which is defined by Theorem 2.2.1, atiracts each solution

of system (2.2.12) except for zero.

2.3 Two-species Competition

For the two-species competition, the solutions of system (2.1.5) preserve a special
order so that the theories of competitive systems on Banach spaces (see [50]) can
be applied. Therefore, we first apply Theorem 1.2.4 and 1.2.5 to obtain the global
dynamics of system (2.1.5) in the first subsection, and then use asymptotically
periodic semiflows to analyze the global dynamics of system (2.1.6) in the second

subsection.

2.3.1 The Periodic Case
Assume that the periodic system (2.1.5) satisfies

H1) Fi(t,u;) > 0, 2 (w; Fi(t,u;)) > 0, and 22-Gi(t,uy,us) > 0 for t > 0, u; > 0,
Bu; du

1<k <%

(H2) fi(t, -,0, ) and f»(¢,0, -, ) are strictly sublinear on R, and f,(¢,L,0,L) <0
and f5(¢,0, L, L) < 0 for some number L > 0.



28

Theorem 2.2.2 Let (E1)-(E3) and (E1')-(ES ) hold. Suppose that r is the spectral
radius defined by Theorem 2.2.1 associated with the limiting equation (2.2.9). Then
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and f»(¢,0, L, L) < 0 for some number L > 0.



Cousider the linearization of system (2.1.5) at zero

w1(t) = by (B)u(t — 1) — a1 (t)ui(t), (2.3.13)

Ua(t) = ba(H)ua(t — 72) — as(H)us(t), (2.3.14)

where b;(t) = Fi(t,0),a;(t) = G;i(t,0,0). Let Pl(o} and Péo) be the Poincaré maps
associated with equation (2.3.13) and (2.3.14), ro; = r(Pl(O)) and 7y = r(Pz(O)) be

the spectral radii of PI(O) and P;O), respectively. Suppose that
(H3) Tor > 1,700 > 1.

By Theorem 2.2.1, it then follows that there exists a unique positive T-periodic

solution u(")(t) for

’l:l.l(t) - ul(t = Tl)Fl (t, ?.L](t — Tl)) — g (t)Gl (t, ’lt,l(t), O) = fl (t} u;(t), 0; U1(t = ’7'1)),
(2.3.15)
and u(M () is globally asymptotically stable with respect to X;" \ {0}. The similar

results hold for the following equation

U (t) = us(t — T2) Fo(t, ua(t — 1)) — u2(t)Ga(t, 0, ua(t)) := fa(t, 0, us(t), us(t — m)).
(2.3.16)

Let u(?)(t) be the positive T-periodic solution for equation (2.3.16).
Obviously, (u'V(t),0) and (0,u®(#)) are T-periodic solutions of system (2.1.5).

Linearizing system (2.1.5) at (u("(¢),0), we have

i (t) = b7 (O (t — 1) — af) ()ua () — afy) (B)ua(2), (2.3.17)

(1) = bV (Dus(t — 1) — aly) (B)ua(t), (2.3.18)



Consider the linearization of system (2.1.5) at zero

1 (t) = by (BD)ur(t — 1) — a1 (t)us(2), (2.3.13)

’U,Q(t) - b»z(t)’u.g(i = Tg) == Cl.g(t)ﬂg(t), (2314)

where b;(t) = Fi(t,0), a:(t) = G:(£,0,0). Let P'” and P{” be the Poincaré maps
associated with equation (2.3.13) and (2.3.14), ro; = r(Pl(o)) and 79y = 7*(17’.2([])) be

the spectral radii of PI{D) and Rz(m, respectively. Suppose that
(H3) Tor > 1,702 > 1.

By Theorem 2.2.1, it then follows that there exists a unique positive T-periodic

solution u{V(t) for

() =u(t — ) Fi(t,u (t — 1)) — wi(B)G (2, u1(2),0) := fi1(t, u1(2),0,uy(t — 7)),
(2.3.15)
and u(!)(¢) is globally asymptotically stable with respect to X;" \ {0}. The similar

results hold for the following equation

() = ua(t — ) Fa(t, ua(t — 72)) — ua(t)Ga(t, 0, u2(t)) = fa(t, 0, ua(t), ua(t — 72)).
(2.3.16)

Let u/®(t) be the positive T-periodic solution for equation (2.3.16).
Obviously, (uM)(¢),0) and (0,4 ? (¢)) are T-periodic solutions of system (2.1.5).

Linearizing system (2.1.5) at (u{*)(¢),0), we have

i (t) = b (W ur(t — 1) — el (@)ur (t) — all) (B)ua(2), (2.3.17)

u3(t) = b (#)ua(t — 72) — alh (t)ua(t), (2.3.18)
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where

b (1) = uM(t — m%fq(t, uM(t — 7))+ Fi (2P — 7))
1
B,
ou
al) () = u“)(t)gi—?Gl(t, uM(1),0), aly) (t) = Ga(t, uV(¢),0).

bV (t) = F(¢,0), oV (2) = G1(t, uM(2),0) + vV (t) —G4 (¢, uM (1), 0),

1

Similarly, we have the linearized system of system (2.1.5) at (0, u®(t))

i (t) = bP ()us (t — 1) — afY (D (t), (2.3.19)
G (t) = b (Wua(t — 72) — a2 () (t) — alP ()ua(t), (2.3.20)

where

b2 () = Fi(t,0), b2 (t) = u®(t — T.z)é?-pz(t, uD(t — 1)) + Fa(t, u®(t — 7)),
s .
: o)
Al (8) = Gr(6,0,u®(1)), az? (1) = u® (&) 5= Ga(t, 0,uD(®)),
. 19, ; ) .
437 (£) = Ga(t, 0,u® (1) + u? (8) 57-Galt, 0,u® (1)),
Let sz and Pl(z) be the Poincaré maps of equations (2.3.18) and (2.3.19), re-
spectively, and denote their spectral radii by 7,5 = T(PQU)), Top = -r(Pl(g)). Let
90*(81) C= u(l)(sl): VSI S [—TI,O]; W*‘(SQ) g 15(2)(52)3 VSQ € [_T23 0]7
and set
EO = (0)0)) El E== (‘70*>0)1 E2 = (01 (pt*)'

For any 7 € X, denote by u(t,%) the solution of system (2.1.5). Let u;(¢)) be
the solution semiflow associated with system (2.1.5). For convenience, we set X =

{(¥1,72) € X : ¢; #0,i = 1,2}. Then we have the following result.



30
where

B () = V(2 — Tl)—F, t, vV — 7)) + Fit, V(@ — 7)),
b5 (2) = Fa(2,0), ai) (1) = Gi(t, uV(2),0) + u“)(t)%cl(t, u®(1),0),
(1) = uD (5= G (6w (2),0), oy (1) = Galt,uV(0), 0).
Similarly, we have the linearized system of system (2.1.5) at (0, u® (%))
iy (t) = b2 (W)uy (t — 1) — ai? (£)uy (2), (2.3.19)
i (t) = b2 (t)ua(t — 1) — a8 (B)uy (t) — a2 (H)ua(2), (2.3.20)

where

b2 (t) = Fi(t,0), b2 (t) = u@(t — Tz)a%Fz(t, u@(t — 7)) + Fo(t, u@(t — m)),
2
ai} (£) = Gi(t,0,u®(®)), a3 (1) = u.‘?)m%c-'g(t,o,u@)(t)),

(lgi)( ) == G?(ta 0} U’(Q)(t)) +u

@(2)).

Let P and P be the Poincaré maps of equations (2.3.18) and (2.3.19), re-

spectively, and denote their spectral radii by r,5 = 'r(P?EI)),Tgl = r(le). Let
@ (s1) = uM(s1), Vs1 € [-71,05; 9™ (s2) = uP(s2), V32 € [-72,0],
and set
Ey = (0.0) E, = (Lplvo): Fo = (0$ 97“))

For any ¥ € X™, denote by u(t,%) the solution of system (2.1.5). Let wu,(%) be
the solution semiflow associated with system (2.1.5). For convenience, we set X =

{(¢1,99) € X+ : 4; % 0,i=1,2}. Then we have the following result.
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Theorem 2.3.1 Let (H1)-(H3) hold and suppose that ri5 > 1,79, > 1. Then the

Jollowing hold for system (2.1.5):

(i) System (2.1.5) has two positive T'-periodic solutions u(t, ¢*) and u(t, ™) sat-

isfying u(t, ¢**) <k u(t,¢*),t > 0, where ¢*, ™ € int(X+) with ¢* <y ¢*.

(11) Jim lu(t, ¥) —ult, ¢*)|| = 0 for every ¥ = (¥1,%2) € X+ with ¢* <k ¥ <k E,
and o # 0. Symmetrically, tlim [[w(t, ¥) — u(t,d*)|| = 0 for every ¢ =
(11, ¥2) € Xt with By <y  <g ¢** and 9, # 0.

(iiz) tlim dist(u(t, ¥), [u(t, **), u(t, ¢*)|x) = 0 for any point ¥ € X°.

—00
In particular, in the case where 7; = k; T for some integers k;, i = 1,2, if assumption
(H1) and (H2) hold, and [ (b;(t) — a;(t))dt > 0, [ (0 (1) — a\)(t))dt > 0 fori # j

and 1,7 = 1,2, then the above results hold.

In the rest of this section, we use S to denote the Poincaré map associated with
system (2.1.5). In order to prove Theorem 2.3.1, we need the following two lemmas.
The first one establishes some properties of S, and the second one implies that
E; (i = 0,1,2) are isolated fixed points for S™, and that there exist no points in

int(X ™) converging to E; under S™, where nq is an integer.

Lemma 2.3.1 The Poincaré map S : X+ — X7 is strictly monotone with respect

to <y, and is a bounded map.

Proof. For any ¥ € X7, by the positivity theorem ([72, Theorem 5.2.1]) and
assumption (H1), the solution u(%, ¢’) of system (2.1.5) is nonnegative on its existence

interval. Note that assumption (H1) implies the inequalities

Fi(t,uy, up, v1) < fi(t,uy,0,v1) and fo(t, uy, uz, v2) < folt, 0, us, vs)
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The first one establishes some properties of S, and the second one implies that
E; (i = 0,1,2) are isolated fixed points for S™, and that there exist no points in

int(X ') converging to E; under S™, where ng is an integer.
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fl(tx uI:UQ:‘Ul) S fl(t, Uy, 0} vl) and f2(t5ul:u2302) S f2(ta Oau‘Z'aU?)
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for u;,v; > 0,7 = 1,2. Since the solutions for equation (2.3.15) and (2.3.16) exist
globally, by the comparison theorem ([72, Theorem 5.1.1]), the solution w(t, ) for
system (2.1.5) globally exists for any v» € X*. By assumption (H1), it easily follows
that the solution u, (¢, ;) of equation (2.3.15) is bounded by B = max{L, ||¢:]|}, and
hence the solution for equation (2.3.15) is uniformly bounded. The same conclusions
hold for equation (2.3.16). Therefore, solutions for system (2.1.5) are also uniformly
bounded.

Let u:(17)) be the solution semiflow of system (2.1.5) with up(¢)) = ¥ € X™.
Then assumption (H1) implies that, u,(¢)) > 0 for all ¢ > 0 (see [72, Theorem
5.2.1]). Moreover, if ¢, ¢ € X with ¢ <g 9, by the comparison theorem and the
transformation U; = u;,U; = —uy, it easily follows that (@) <g wu,(3) for all
t>0. Let S: XT — X' be the Poincaré map associated with system (2.1.5), i.e.,
S = uy (). Then S is monotone with respect to <g, and S is a bounded map.

It remains to prove that S is strictly monotone with respect to <y, i.e., S(¢) <g
S(y) if ¢ <g . Suppose, by contradiction, that S(¢) = S(). Let u(t,p) =
(u1(t, @), ua(t, @), u(t, ) = (u1 (¢, ¥), ua(t, ¥)). Then u;(t;, ) = u;(t;, ) for all t; €
[T — 7, T),i=1,2. Thus,

0 = 4t e) — wlti, ¥)

= wui(t;i — 7, @) Fi (i, wi(ts — 7, 0)) — wi(ts — 1, V) Fi(i, us(ts — 7, )

for t; € (T'—7;, T. Since u; F;(t, u;) is strictly increasing, u;(t; — 7, ) = w;(ti — 73, ¥).
Therefore, w;(t;, p) = u;(t;,¢) for t; € (T’ — 27;,T),7 = 1, 2. By induction, we have
u;(ti, ) = u;(t;, ) for t; € [—7;,0], i.e., ¢ = 1, which contradicts to ¢ < . Thus

we have S(p) <g S(9). "
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for w;,v; > 0,2 = 1,2. Since the solutions for equation (2.3.15) and (2.3.16) exist
globally, by the comparison theorem ([72, Theorem 5.1.1]), the solution u(t, ) for
system (2.1.5) globally exists for any v € X . By assumption (H1), it easily follows
that the solution u; (¢, ¢,) of equation (2.3.15) is bounded by B = max{L, |[¢:]|}, and
hence the solution for equation (2.3.15) is uniformly bounded. The same conclusions
hold for equation (2.3.16). Therefore, solutions for system (2.1.5) are also uniformly
bounded.

Let u:(7)) be the solution semiflow of system (2.1.5) with ug(v) = 1 € XT.
Then assumption (H1) implies that, u,(¢¥)) > 0 for all £ > 0 (see [72, Theorem
5.2.1]). Moreover, if ¢, 7 € X' with ¢ <y %, by the comparison theorem and the
transformation U; = uy,Uy = —uy, it easily follows that w (@) <g u(yp) for all
t>0. Let S: Xt — X be the Poincaré map associated with system (2.1.5), i.e.,
S = up(-). Then S is monotone with respect to <g, and S is a bounded map.

It remains to prove that S is strictly monotone with respect to <g, i.e., S(¢) <k
S(y) if ¢ <g . Suppose, by contradiction, that S(¢) = S(¢). Let u(t,p) =
(u(t, @), ualt, ), ut, ¥) = (u1(t, ¥), ua(t, ¥)). Then u;(t;, @) = ui(t;, ) for all ¢; €
[T — 7;, T}, ¢ = 1, 2. Thus;

0 = i"‘z' (t'i': (P) i ?lé(tiv LZ’)

= wi(t; — i, @) Fi(ti, wi(ti — 71, 0)) — wi(t; — 73, V) Fi (i, w; (4 — 13, ¢))

for t; € (T'—7;, T]. Since u; F;(t, u;) is strictly increasing, u;(t; — 73, @) = ui(t; — 75, ).
Therefore, w;(t;, p) = u;(¢;,¥) for t; € (I' — 27;,T],7 = 1,2. By induction, we have
u;(ti, @) = wi(t;,¥) for t; € [—m;,0], i.e., ¢ = 9, which contradicts to ¢ <x 1. Thus

we have S(¢) <x S(¢). "
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Lemma 2.3.2 Suppose u*(t) = (uj(t),us(t)) is a T-periodic solution of equation
(2.1.5) with ui(t) > 0 for 1 < i < 2, and uj(t) = 0 for some j. Let P; be the

Poincaré map of

u;(t) = Fj(t, 0)u;(t — 75) — G;(t, ui(t), uz(t))u;(t).

If rj = r(P;) > 1, then for any integer ng > 1, there exists § > 0 such that
limsup,, . [|S™"(¢¥) — ¥*|| = 6 for all ¢ € int(X ™), where V* € Xt is the initial

Junction of u*(t).

Proof. Since ©*(t) is also an nyT-periodic solution of nyZ-periodic system (2.1.5),
and r{(P;)"} = [r(P;)]" = r;° > 1, without loss of generality, we can assume that
e == 1.

It suffices to prove that there exists § > 0 such that for any 9 € int(X™*) with
[vv—1*|| < &, there exists N > 1 such that ||S¥(y)—*|| > 4. Let by = Llej[l(]i,'r]’l‘] F;(t,0).

For any £ € (0, b;), let 7° be the spectral radius of the Poincaré map associated with
u(t) = (F;(t,0) — e)u(t — 75) — (G(¢, ui(t), us(t)) + €)u(t). (2:3.21)

Then linr[1j r® = 7; > 1. In what follows, we fix a sufficient small € € (0, b;) such that
E—

¢ > 1. For this fixed &, assumption (H1) implies that there exists §; > 0 such that
F;(t,u;) > F;(t,0) — €, Vi € [0,00), Vu; € [0,6;).

Let by = 11}51% ||z (2)||. By the uniform continuity of G; on the set [0, oc) x [0, by +1]?,
te[o,

there exists 4, > 0 such that

|Gj(t, ur, u2) — Gj(t, uy, us)| < e, Vit € [0, 00),
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Lemma 2.3.2 Suppose u*(t)

|

(us(t), u3(t)) is a T-periodic solution of equation

(2.1.5) with u}(t) > 0 for 1

IA

i < 2, and u}(t) = 0 for some j. Let P; be the

Poincaré map of
wi(t) = Fj(t,0)u;(t — 75) — G;(¢,wj(t), us(t))u;(2).

If r; = r(P;) > 1, then for any integer ng > 1, there exists & > 0 such that
limsup,,_, ||S™™(v) — ¥*|| > & for all 1 € int(X™T), where ¥* € X is the initial

function of u*(t).

Proof. Since u*(t) is also an nyT-periodic solution of ng7-periodic system (2.1.5),
and r{(P;)"} = [r(P;)]™ = r}° > 1, without loss of generality, we can assume that
ng = 1.

It suffices to prove that there exists § > 0 such that for any ¥ € int(X ™) with
llp—2*|| < &, there exists N > 1 such that ||S¥ () —2*|| = 6. Let b; = tlei[luuqlq F;(t,0).

For any € (0, b,), let r* be the spectral radius of the Poincaré map associated with
a(t) = (Fj(,0) — e)ult — 1) — (G;(t, ui(e), us(®)) + e)u(t). (2.3.21)

Then limr® = r; > 1. In what follows, we fix a sufficient small £ € (0, b,) such that

£—0

r¢ > 1. For this fixed &, assumption (H1) implies that there exists 4, > 0 such that
Fj(t,uj) > F}(t, 0) —g, Vt e [0,00), VU_,‘ € [0, 61)

Let b, = "%51% |22*(#)|]. By the uniform continuity of G; on the set [0, 00) x [0, by+1]?,
telo,

there exists ds > 0 such that

|G;(t, uy, uz) — Gj(t, vy, us)| < e, Vt € [0,00),
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for any u = (uy, us),u’ = (u}, uh) € [0, by + 1] with ||u— /|| < &;. By the continuous
dependence of solutions on initial values, there exists § > 0 such that for any ¥ €

int(X ) with [|[op — ¥*|| < 4,
|u(t, ¥) — uw*(t)]| < & = min(1,6;,62), Vt € [0,T).

Proceeding by contradiction, assume that there exists ¥ = (1, 7») € int(X ™)
with ||©p — %*|| < § such that ||S™(x)) — ¢*|| < & for all n > 1. For any ¢ > 0, let
t =nT +t', where t' € [0,T), n = [t/T] is the greatest integer less than or equal to
t/T. Then,

lu(t, ¥) — w*(@t)]] = |lu(t’, S™(¥)) — w*(¢)|| < &', Yt > 0.
Let u(t, ) = (@,(t), u2(t)). Then
Fj(t,’l._l.j(t)) > Fj(t,O) =g,

and

|Gj(t=ﬂ1(t)s'a2(t)) = Gj(t> u?(t)su;(i’)ﬂ <eg, Vi 20.

Thus,

u;(t) = a;(t — 1) F(t,2;(t — 75)) — 4;(H)G;(t, @ (t), Ua(t))
(2.3.22)

> (F5(t,0) — e)u;(t — 75) — a;()(Gi(t, ui, u3) +¢€), V£ > 0.

As in the proof of Proposition 2.2.1, equation (2.3.21) has a solution u°() =

vo (t)erot

, where v (%) is a positive, T-periodic and continuous function, \g = ,IL Inrs >
0. Let ¢o(s) = u%s), s € [—74,0]. Then ¢y > 0. Since ¥; > 0, there exists

1 > 0 such that npy < 'J)j. By the comparison theorem and inequality (2.3.22),
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for any u = (uy, ug), u' = (ul, u) € [0, by + 1]* with ||u — /|| < b5. By the continuous
dependence of solutions on initial values, there exists 6 > 0 such that for any v €

int(X ™) with |[v — ¥*|| < 4,
lu(t, ¥) — u*(t)|| < &' = min(1,d,02), Vt € [0,T).

Proceeding by contradiction, assume that there exists ¢ = (¢, ¥5) € int(X*)
with |[¢p — 9*|| < & such that [|S™(¢)) — ¥*|| < 6 for all n > 1. For any t > 0, let
t =nT +t, where t' € [0,T), n = [t/T] is the greatest integer less than or equal to

t/T. Then,

lu(t, %) — u @) = |lult, S*(%)) — u* ()| < &, ¥t > 0.

Il

Let u(t, ) = (@, (%), @2(t)). Then

FJ(I‘. ﬁj(t)) > FJ('L‘ 0) —sigy

and

|G (¢, @1 (t), Ua(t)) — G5(t, ui(t), us(t))| <&, YVt > 0.

Thus,

u;(t) = it — ) FE, 0t — 15) — 5;(0)G5(E, 0y (2), G (2))
(2.3.22)

> (F)—,(LO) = E)ﬁj(t == Tj) = 'E!J(f)(Gl(t,u;,UE) 4 E), Vi _>_ 0.
As in the proof of Proposition 2.2.1, equation (2.3.21) has a solution u%(¢) =
vo(t)er!, where vy(t) is a positive, T-periodic and continuous function, A\g = _11_ Inr® >
0. Let @o(s) = u’(s), s € [—7;,0]. Then ¢y > 0. Since v; > 0, there exists

7 > 0 such that 7¢y < ;. By the comparison theorem and inequality (2.3.22),
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we have u;(t) > 'af.j(t,@j) > nu’(t), where uj(t, 1;) is the solution of (2.3.21) with
's_Lj-(s,"qZ*j) = 1;(s),¥s € [—7;,0]. Therefore, lim @;(¢) > lim nu°(t) = oo. Thus
t—oo t—o0

S™ (1)) is unbounded, a contradiction. '

Proof of Theorem 2.3.1. Note that the Poincaré map S : X* — X7 is a-
condensing and S™ is compact for sufficiently large n (see, e.g., [42, Theorem 3.6.1]).
We then proceed with two steps. The first step is to verify the basic assumptions
(A1)-(A4) in Section 1.2 for competitive systems on Banach spaces, and then apply
the compression theorem (Theorem 1.2.5) to S™°, where ng is an appropriate positive
integer. In the second step, we prove that fixed points ¢™ and ¢** of S™ are actually
fixed points of S.
Step 1. So far, we have shown that (1). 4V (¢) and u®(¢) are stable positive
T-periodic solutions for equation (2.3.15) and (2.3.16), respectively, and they attract
all of the solutions except for the trivial solution; (2). the Poincaré map S for system
(2.1.5) is bounded and strictly monotone with respect to <y (see Lemma 2.3.1).
Let S,, and S,, be the Poincaré maps of equation (2.3.15) and (2.3.16), re-
spectively. Since X" x {0} and {0} x X, are clearly invariant sets for system
(2.1.5), we have S = (S,,,0) on X;" x {0}, S = (0, S.,) on {0} x X" Therefore,
JE& S"((p1,0)) = E) for any ¢; € X \ {0}, and 1_}2&5"((0,(,92)) = FE, for any
w2 € X5\ {0}.
Claim. For any ¢ = (p1,03) € X°, u(t,p) > 0 for t > 7 = max(m, 7). In

particular, S™(¢) > 0 for all nT > 27.



we have i;(t) > ui(¢, ;) = nu(t), where us(t, ;) is the solution of (2.3.21) with

uS(s, ;) = ¥;(s),¥s € [—7;,0]. Therefore, lim @;(t) > lim nu°(t) = oc. Thus
4 t—o0 t—ro0

57(4)) is unbounded, a contradiction. "

Proof of Theorem 2.3.1. Note that the Poincaré map S : X+ — X7 is a-
condensing and S™ is compact for sufficiently large n (see, e.g., [42, Theorem 3.6.1]).
We then proceed with two steps. The first step is to verify the basic assumptions
(A1)-(A4) in Section 1.2 for competitive systems on Banach spaces, and then apply
the compression theorem (Theorem 1.2.5) to ™, where ng is an appropriate positive
integer. In the second step, we prove that fixed points ¢* and ¢** of S™ are actually
fixed points of S.
Step 1. So far, we have shown that (1). «{(¢) and u/®(#) are stable positive
T-periodic solutions for equation (2.3.15) and (2.3.16), respectively, and they attract
all of the solutions except for the trivial solution; (2). the Poincaré map S for system
(2.1.5) is bounded and strictly monotone with respect to <y (see Lemma 2.3.1).
Let S,, and S,, be the Poincaré maps of equation (2.3.15) and (2.3.16), re-
spectively. Since X" x {0} and {0} x X, are clearly invariant sets for system
(2.1.5), we have S = (S,,,0) on X;" x {0}, S = (0,S,,) on {0} x X{". Therefore,
nli_{toloS”((gol,O)) = FE, for any ¢, € X{ \ {0}, and nli_x&S"((O, w2)) = E, for any
¢2 € X5 \ {0}.
Claim. For any ¢ = (¢1,92) € X% u(t,p) > 0 for t > 7 = max(r,7»). In

particular, S™(p) > 0 for all nT > 27.
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Indeed, for each i = 1, 2, we assume that ¢;(6;) > 0 for some #; € [—7;,0],7 =1, 2.

Then u;(7; + 0;,¢) > 0. In fact, if u;(7; + 6;,) = 0, then
i (7 + 03, 0) = ui(6;, @) Fi(7i + 0;, ui(0;, 0)) = :(0:) Fi(7i + 63, 0:(6;)) > 0,

which implies that u;(#, ) < 0 for some t; < 7;-+0;. However, by the proof of Lemma
2.3.1, u;(t, ) > 0 for all t > —7;, a contradiction. Thus, we have u;(r; + 0;, @) > 0.

On the other hand,

wi(t, @) = ui(t—7i, @) Fi(t, ui(t — 75, ) —wi(t, ©)Gilt, ur, us) > —wi(t, )Gilt, u1, ug).

Then

Gi(s,uy,u2)ds

ot
wi(t, ) 2 us(7; + 0;, p)e” Imives >0, fort> 7 + 0;.

Therefore, u;(t, ) > 0 for t > 7; + 6;. Thus u(t, @) > 0 for t > 7 = max(7, 7).

Given an order interval I = [0,aq] x [0, ], 0 € X;",2 = 1,2. Since S™ is
compact for nT > 7 (see, e.g., [42, Theorem 3.6.1]), S™(I) is precompact. Thus, for
all nT' > 7, 8™ is order compact with respect to <.

At any point ¢ = (1, @2) € int(X "), the Jacobi matrix of system (2.1.5) is

Dy, —1(0) 522G (t, 1 (0), ©2(0))
D(.fl: f'Z) —
—2(0) a‘,ile(?f, ©1(0), ©2(0)) Dy
where
Dy = 5 (u; Fi(t, u;)) — i("L/;iG'i;(t,ul,ug)) y
du, wimpi(=r) Ot w1 =1(0),u2=2(0)

i=1,2. D(fy, f2) is irreducible due to assumption (H1). By [72, Theorem 5.3.4], it
then easily follows that S"(p) g S™(¥),VnT > 37 for any ¢, ¥ € int(X ™) with

© <k .
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Indeed, for each ¢ = 1, 2, we assume that ;(6;) > 0 for some 6; € [—7;,0],7 =1, 2.

Then w;(7; + 6;, @) > 0. In fact, if u;(7; + 0;,¢) = 0, then
Ui (1 + 03, ) = ui(0;, @) Fi(7: + 65, ui(6;, ) = @i(6;) Fi(m: + 60;, 0i(6:)) > 0,

which implies that u;(t!, ¢) < 0 for some t; < 7;+86;. However, by the proof of Lemma
2.3.1, u;(¢,) > 0 for all t > —7;, a contradiction. Thus, we have u;(7; + 6;, @) > 0.

On the other hand,

il"i(ta (P) = U;‘(t—'fi, ‘}O)E(taui(t_q-is w))_ua(ta W)Gi(t,ﬂl,‘lﬂg) __>_ _ui(tufp)ci(tauhuﬁ)'

Then

Gi(

ul—(t, t,‘?) > ‘u,;(’?}' + 9,‘, ({})e_‘f'i"'gi Sk1mz)ds > 0, for ¢ > T+ 9,:.

Therefore, u;(t, ) > 0 for ¢t > 7; + 6;. Thus u(t,¢) > 0 for t > 7 = max(m, 7).

Given an order interval I = [0,a;] x [0,as], s € X,i = 1,2. Since S" is
compact for nT > 7 (see, e.g., [42, Theorem 3.6.1]), S”?([I) is precompact. Thus, for
all 7" > 7, 8™ is order compact with respect to <p.

At any point ¢ = (¢, p2) € int(X 1), the Jacobi matrix of system (2.1.5) is

Dy, “PI(O)%GI(taG@l(O), 992(0))
D(fl ’ fz) = a
—©2(0) 52-G(t, 1(0), ¥2(0)) D
where
0 %)
D = — (it w)) = (1 Gl E, 27, 140)) ;
Ou; iy, P w1 =01 (0),u2=2(0)

i =1,2. D(f1, f2) is irreducible due to assumption (H1). By [72, Theorem 5.3.4], it
then easily follows that S™(p) <x S™(¥),VnT > 37 for any @, € int(X™*) with

Y <k Y.
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Let @, ¥ be in X satisfying ¢ = (i, p2) > 0,% = (¢1,0) € X{" x {0}, and ¢, <
Yy. Then ¢ <g 1. We want to show that S™(¢) <x S™(%) for all large integers
n. Let u(t, ) = (u1(t, @), uz(t, @), ult,v) = (u1(t,¥),0). Then u(t, ) <g u(t,v),
e, 0 < ui(t,p) < uy(t,¥),us(t, ) > 0. By the above claim, we have wu;(t,¢) >
0,Vt > 7. Thus we only need to prove that u;(t,¢) < uy(t,¥),Vt > 0. Assume, by
contradiction, that u,(tg, ¢) = u;(te, ) for some ¢35 > 0. Since 5‘3—201(15, uy, up) > 0,

8
and a;u.lFl(t,ul) > 0, we have

i1 (to, ) — i (to, ¥) =

ur(to — 71, 9) Fi(to, ur(to — 71, @) — wa(to — 71, ¥) Fi(to, ua(to — 11, 9))

+y (L0, V)G (o, w1 (0, %), 0) — uy (P, ) G1(to, w1 (to, ), ua(to, ¥)) < 0,
which implies that u; (¢, ) —u, (¢,7) > 0 for some ¢ < ¢;. The conclusion contradicts
uy(t, ) < uy(t,9) for all £ > —7. Thus, u1(t,¢) < ui(t,v¥),Vet > 0, and hence
we have u(t,p) Kx u(t,?) for t > 0. In particular, S"(p) g S™(¢) for all
nT > 27. Similarly, if ¢ and 1 belong to X and satisfy ¢ <y 9,7 € int(X*) and
@ € {0} x X, we have S"(p) <x S™(v) for all nT > 27.

Let us fix an integer ng such that S™ satisfies
(1) S™(p) > 0 for any ¢ € X°.

(2) If o, € X satisfy ¢ <x 1/, and either ¢ or % belongs to int(X*), then

5" (p) Kk S™ ().

Also, S™ has the following properties:

(3) S™ is order compact and strictly monotone with respect to <g.
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Let ¢, ¥ be in X satisfying ¢ = (1, 92) > 0,9 = (¢¥1,0) € X" x {0}, and ¢; <
1. Then ¢ <gx 0. We want to show that S™(¢) € S™(¥) for all large integers
n. Let u(t, p) = (u1(t, @), ua(t, ©)), u(t, ¥) = (w1 (¢, %), 0). Then u(t, p) <k u(t,v),
e, 0 < ui(t, @) < ui(t, ), us(t,¢) > 0. By the above claim, we have u;(¢, @) >
0,¥t > 7. Thus we only need to prove that wu,(t, ) < u,(¢,), Vi > 0. Assume, by
contradiction, that u,(tg, ¢) = u, (2o, ) for some ty > 0. Since B%G](f-,‘ul,?.l,g) >,

and 5%1111“1(7:, u;) > 0, we have

1 (to, ©) — 1 (to, ¥) =

u1(to — 71, 0) Filto, ua(to — 71, 9)) — wa(to — 71, ¥) Fi(to, ur(to — 11, %))

+uy (o, )G (to, wr(to, ), 0) — ui(to, ©)G1(to, ui (to, @), ua(te, ) < 0,
which implies that u, (¢, @) —u (¢, ) > 0 for some ¢t < 5. The conclusion contradicts
ui(t, @) < wuy(t, ) for all ¢ > —7. Thus, ui(¢, @) < ui(t,%),¥t > 0, and hence
we have u(t,p) <x u(t,y) for t > 0. In particular, S™(p) K S"(¥) for all
nT > 27. Similarly, if ¢ and ¥ belong to X+ and satisfy ¢ <y 9,9 € int(X) and
p € {0} x X5, we have S™(p) < S™(¢) for all nT > 27.

Let us fix an integer ng such that S™° satisfies
(1) S™(p) > 0 for any ¢ € X°.

(2) If @, € X satisfy ¢ <y %, and either ¢ or 7 belongs to int(X*), then
8™ (p) < S™ ().

Also, §™° has the following properties:

(3) S™ is order compact and strictly monotone with respect to <.
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(4) S™(Ey) = E; and lim S™"((¢;,0)) = E) for any ¢; € X;{ \ {0}. The
n—0o0

symmetric results hold for Es.

(5) Since 115 > 1, it follows from Lemma 2.3.2 that F, is an isolated fixed point
of ™, and W*(E;) Nint(X ™) = 0, where W*(E)) is the stable set of F; for
S™ . The same results hold for Fy, and E,. Also, Theorem 2.2.1 implies that

FEy is a repelling fixed point of S™.

Therefore, S™° satisfies the conditions in Theorem 1.2.5. Thus, for the map S"°,

we have the following results.

(i) S™ has two positive fixed points ¢* and ¢** with ¢ <x ¢*. Then, sys-
tem (2.1.5) has two positive nyT-periodic solutions u(t, ¢*) and u(t, ¢**) with

u(t, ™) <x u(t, ¢*).

(ii) For every ©» = (¢),%2) € X+ with 9, # 0 and ¢* <g ¥ <k E), nlggo STB ()} =
¢*. It then follows that tl_lgg |w(t, ¥) — u(t, ¢%)|| = 0. Symmetrically, for every
¥ = (¢1,2) € X+ with 1 # 0 and Ey <g ¢ <g ¢, T}g& Smon(y) = ¢*,
and hence, fl_l)l'glo | (t, ) — ul(t, ¢**)|| = 0.

(ii1) lim dist(S™"(¢), [¢**, ¢*]k) = 0 for any point 1 € X°, and hence

Nn—cO

tll_:& dist(u(t, ), [u(t, d™™),u(t, d*)]x) = 0.

Step 2. It remains to prove that u(t, ™) and u(t, **) are T-periodic solutions.
We only need to show that ¢* and ¢** are fixed points of S. In what follows, we

prove that ¢** is a fixed point for S.



(4) S™(F,) = E; and le S™™((p,0)) = E; for any ¢; € X \ {0}. The

symmetric results hold for E,.

(5) Since r15 > 1, it follows from Lemma 2.3.2 that E| is an isolated fixed point
of §™, and W*(E,) Nint(X ™) = 0, where W?*(E,) is the stable set of F; for
S™ ., The same results hold for Fy and E;. Also, Theorem 2.2.1 implies that

E, is a repelling fixed point of S™°.

Therefore, S™° satisfies the conditions in Theorem 1.2.5. Thus, for the map S7°,

we have the following results.

(i) S™ has two positive fixed points ¢* and ¢ with ¢** <x ¢*. Then, sys-
tem (2.1.5) has two positive ngT-periodic solutions u(t, ¢*) and u(¢, ¢**) with

H-('t, (b") <k 'U,(t, qu*)

(ii) For every v = (91, %2) € Xt with ¢, # 0 and ¢* <y ¥ <y E,, nh_glo SHon(gh)i=
. It then follows that tl—l:-no!) [|(t, ) — u(t, *)|| = 0. Symmetrically, for every
Y = (P1,12) € X with ¢, # 0 and E; <g ¢ <g ¢*, TELI'I;)SHGH(‘I,{)) = o™,
and hence, ¢h_>12> ||w(t, ¥) — u(t, ¢**)|| = O.

iii) lim dist(S™" (1), [¢**, ¢*]x) = 0 for any point » € X°, and hence
(iii)

n—oo

lim dist(u(t, ), [u(t,d™™),u(t,¢*)]x) = 0.

t—o0

Step 2. It remains to prove that u(t,¢") and u(t, ¢**) are T-periodic solutions.
We only need to show that ¢ and ¢** are fixed points of S. In what follows, we

prove that ¢** is a fixed point for S.
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By Proposition 2.2.1, we have P1(2)61 = 791€1, and e; > 0. Let S™ be the
Poincaré map of the linearized system (2.3.19)-(2.3.20). We claim that ry; is an

eigenvalue of S**. Indeed, for any ¢ € X, suppose that u(t, o, @) solves
G (t) = bPus(t — 1) — a2 ua(t) (2.3.23)

with initial values u, = ¢. Let W(t, o) = u (o, p), then W (t, o) is a continuous
linear evolution operator. Let u; (%, e;) be the solution of equation (2.3.19) satisfying
uy(0,e,) = €,(0),V8 € [—7,0]. By the variation-of-constants formula, the solutions

of equation (2.3.20) can be expressed by

¢
(o, ) = W(t,o)p —l—/ W (t, s)Xoh(s)ds, t> o,

where X;(0) = 0 for 8 € [—73,0), Xy(0) =1 for @ = 0, and h(s) = —aggl)(s)u.l(.s, e) <

0. Consider the following equation
i
(roy — W(T',0))e; = —f W (T, s)Xoh(s)ds, e; € X, (2.3.24)
0

Since u?)(t) is a globally asymptotically stable T-periodic solution of equation
(2.3.16), and its linearized equation at u'® (#) coincides with equation (2.3.23), we
have (W (T,0)) < 1. Since W (T,s)X, > 0, —fOT W(T, s)Xoh(s)ds > 0. By the
Krein-Rutman theorem (see, e.g., [47, Theorem 7.3]), equation (2.3.24) has a unique
solution e» and e; > 0. Let e = (e}, —es), then e > 0. Let P, be the Poincaré

map of equation (2.3.20). Then,
T
Py(—ex) = W(T,0)(—e2) + / W (T, 8) Xoh(s)ds.
0

Thus,

5™e = (P1(2](61): Py(—e2)) = ra1(er, —e2) = rare,
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By Proposition 2.2.1, we have Pl(?')el = rye;, and e; > 0. Let S* be the
Poincaré map of the linearized system (2.3.19)-(2.3.20). We claim that r5; is an

eigenvalue of S**. Indeed, for any ¢ € X, suppose that u(t, o, ¢) solves
2(t) = bPuy(t — 1) — aPua(t) (2.3.23)

with initial values u, = @. Let W(i,0)p = w(o,p), then W(t, o) is a continuous
linear evolution operator. Let u,(t, e,) be the solution of equation (2.3.19) satisfying
uy(8,e,) = e,(0),V0 € [—71,0]. By the variation-of-constants formula, the solutions

of equation (2.3.20) can be expressed by

t
(o, ) = W(t,o)p + f Wi(t, s)Xoh(s)ds, t> o,

where Xy(0) = 0 for @ € [—73,0), Xo(0) = 1 for @ = 0, and h(s) = —a.ggl)(s)ul(s, e1) <

0. Consider the following equation
¥
(a1 — W(T,0))es = — / W (T, 5) Xoh(s)ds, e; € X7 (2.3.24)
0

Since u®(t) is a globally asymptotically stable T-periodic solution of equation
(2.3.16), and its linearized equation at u(*)(¢) coincides with equation (2.3.23), we
have (W (7,0)) < 1. Since W(T,8)Xo > 0, — [ W(T, 5)Xoh(s)ds > 0. By the
Krein-Rutman theorem (see, e.g., [47, Theorem 7.3]), equation (2.3.24) has a unique
solution e; and e; > 0. Let e = (e;, —e3), then e >k 0. Let P, be the Poincaré

map of equation (2.3.20). Then,
T
Py(—es) = W(T, 0)(—es) + / W (T, s)Xoh(s)ds.
0

Thus,

S*e = (_Pl(g)(el): Pz(“'f?'z)) = r91(e1, —€2) = Ta1€,
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and hence 73, is an eigenvalue of ™ with eigenfunction e > g 0.

For any € > 0, note that DS(F,) = S§**, we have
S(Es + €e) = S(Ey) + DS(FE>)(ee) + o(e) = Ey + €(ro1e + o(e) /e).

Since 79y > 1,(r2; — 1)e € int(K), there exists ¢ > 0 such that (ry — 1)e +
o(e)/e € int(K) for any € € (0, ¢]. Hence S(E, + €e) — (Fs + €e) > 0; that is,
Ey + ee € S(FE2 + ee). Since S is monotone with respect to <p, we have an
increasing sequence Es + e K S*(FEy + ee) < ST (E5 + ¢€e) for all n > 1. Since
Ey <y ¢™ and ¢* > 0, we can choose an € such that Fy + ee <g ¢**. Therefore,
lim S™"(FEy + ee) = ¢**, and hence lim S™(F, + ee) = ¢**. By the continuity of
n—+00 n—00
S, it follows that ¢** is a fixed point of S. In the same way, it is easy to show that
o* is a fixed point of S.

In the case of 7 = kT, if [, (bi(t) — a:(8))dt > 0, f (0 (t) — b\ (¢))dt > 0,1 <

1 # 5 < 2, Proposition 2.2.1 implies the last statement in the theorem. .

Theorem 2.3.1 implies that two species coexist. The following result shows that

one species drives the other one to extinction.

Theorem 2.3.2 Let (H1) and (H2) hold. Assume that system (2.1.5) has no pos-
itive T-periodic solution. Then if (H3) holds and r9; > 1, or in the case where
7 = kT for some integers k;, if fOT(bi(t) —a;(t))dt > 0,Vi= 1,2, and fﬂT(b(lz)(t) -

a.(lzl)(t.))(lt > 0, then for any ¢ € X°, the solution u(t,v) of system (2.1.5) satisfies
lim ||u(t, ) — (wM)(2),0)|| = 0.
t—o0o

A symmetric result holds for (0,u®(t)).



40

and hence ry; is an eigenvalue of 5™ with eigenfunction e >y 0.

For any € > 0, note that DS(E;) = S**, we have
S(E; + ee) = S(E2) + DS(E:)(ee) + o(e) = E5 + €(ra1e + o(e) /¢).

Since ry, > 1,(r9; — 1)e € int(K), there exists ¢¢ > 0 such that (ry, — 1)e +
o(e)/e € int(K) for any € € (0,¢]. Hence S(Ey + €e) — (F2 + €e) >k 0; that is,
Ey + ee < S(FE5 + ¢e). Since S is monotone with respect to <y, we have an
increasing sequence Ey + ce K S™(Fa + ee) <y S"T1(E; + €e) for all n > 1. Since
E; <x ¢ and ¢** > 0, we can choose an € such that Fs + ee <g ¢**. Therefore,
7}2{.10 S™n( By + ee) = ¢**, and hence lim S™(FE; + ee) = ¢™. By the continuity of

n—r00

S, it follows that ¢** is a fixed point of S. In the same way, it is easy to show that
¢* is a fixed point of S.
In the case of 7; = k; T, if fOT(bi(t) — a;(t))dt > 0, fOT(bgi}(t) - b%)(t))dt >0,1<

i # 7 < 2, Proposition 2.2.1 implies the last statement in the theorem. 2

Theorem 2.3.1 implies that two species coexist. The following result shows that

one species drives the other one to extinction.

Theorem 2.3.2 Let (H1) and (H2) hold. Assume that system (2.1.5) has no pos-
itive T-periodic solution. Then if (H3) holds and ryy > 1, or in the case where
7i = kiT' for some integers k;, if foT(bé(t) —a;(t))dt > 0,Vi=1,2, and jgl(b?)(t) -

a(lgl)(t))dt > 0, then for any ¢ € X°, the solution u(t, ) of system (2.1.5) satisfies
lim [[u(t, %) - (u@(2),0)]| = 0.

A symmetric result holds for (0,u?(t)).
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Proof. In the case of r5; > 1, by Lemma 2.3.2, for any ¥ € X", the omega limit
set w(1) of S™(¢) can not be E, since S™(v) > 0 for all nT > 27 (see the claim
in the proof of Theorem 2.3.1). Moreover, just as in the proof of Theorem 2.3.1,
we can consider S™ such that S™ satisfies assumptions (A1)-(A4) in Section 1.2.
Note that system (2.1.5) has no positive T-periodic solutions, and hence S has
no positive fixed points. By Theorem 1.2.4, we have S™™°(y) — E) (n — o0).
Therefore, cl_igé |u(t, ) — u(t, Ey)|| = Ll_1}r‘1:r)10 |we(t, ) — (uM(¢),0)|| = 0. A symmetric
result holds for (0, u?(t)). 0

In practice, it is not easy to verify the nonexistence of positive T-periodic solu-
tions. In what follows, we establish some sufficient conditions for the conclusion of
Theorem 2.3.2.

Assume that

(H4) fi(t, -, us2, -) and fa(t,u, -, - ) are strictly sublinear on R% , where u;, ug > 0,

and fi(¢, L,0,L) <0, f2(¢,0,L, L) < 0 for some L > 0.

Then assumption (H1) implies that f;(¢,L,us, L) < 0, fo(t,uy, L, L) < 0 for all

uy, g > 0. By Theorem 2.2.1, if 75; > 1, equation

i (1) = filt,u (@), u® (@), u(t — 7))

admits a unique positive T-periodic solution u(,?)(t), which is globally asymptotically
stable with respect to X"\ {0}, where «/®(¢) is the positive T-periodic solution of
equation (2.3.16). Let 75”’3 be spectral radius defined by Theorem 2.2.1 associated

with

o (t) = folt, ulP(t), ua(t), us(t — m)).



41
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and f(t,L,0,L) <0, fo(t,0, L, L) < 0 for some L > 0.

Then assumption (H1) implies that fi(¢, L,us, L) < 0, fo(t,u;,L,L) < 0 for all

uy, us > 0. By Theorem 2.2.1, if ro; > 1, equation

a(t) = filt,ua(t), u® (@), i (t — 1))

admits a unique positive T-periodic solution u(lg)(l;), which is globally asymptotically

stable with respect to X, \ {0}, where u(® (#) is the positive T-periodic solution of
equation (2.3.16). Let lﬂ be spectral radius defined by Theorem 2.2.1 associated
with

as(t) = folt, w2 (t), ua (), ua(t — 1)).



Then we have the following result.

Corollary 2.3.1 Let (H1), (H3) and (H4) hold. Then if ro; > 1 and 7&‘2 < 1, the

conclusion of Theorem 2.3.2 holds.

Proof. We use the same notation as in Theorem 2.3.2. Assumption (H3) implies
u?)(t) is globally asymptotically stable with respect to X\ {0} for equation (2.3.16).

For any 7 € X°, let u(t,v) = (uy(t), u2(t)). Since assumption (H1) implies
U (t) = fa(t, ur(t), ua(t), us(t — 7)) < fo(t, 0, us(t), ua(t — 7)),
for any small ¢ > 0, we have uy(t) < u®(¢) + ¢ for all t > t(¢). Therefore,
w1 (t) = fi(t, ur(®), ue(®), u1(t — 1)) > fHilt, wa (1), v P (@) + 6, u1(t — 7)) (2.3.25)
for ¢ > t(g). Let r5, be the spectral radius defined by Theorem 2.2.1 associated with
w(t) = fi(t,u@®),v@ @) +&,ult —n)). (2.3.26)

Then l_lnl;% r5, = 191 > 1, and hence 75, > 1 for all sufficiently small . Therefore,
by assumption (H4) and Theorem 2.2.1, there exists a unique positive 7-periodic
solution u5(¢) for equation (2.3.26), and j(¢) is globally asymptotically stable with
respect to X"\ {0}. By inequality (2.3.25), it follows that for any &’ > 0, we have

wy (t) > ui(t) — &’ for t > t(g,e'). Therefore, assumption (H1) implies that
u?(t) = f2(t7 ul(t)'.l 'l[,g(t), 'U,g(ll T TQ)) < f2(t3 U:i(t) s E,, U‘Q(t): u?(t i Tz)) (2327)

for t > t(e,¢’). Let ¥ be the spectral radius defined by Theorem 2.2.1 associated
with

u(t) = falt,ui(t) — &', ult), u(t — 72)). (2.3.28)



Then we have the following result.

Corollary 2.3.1 Let (H1), (H3) and (Hj) hold. Then if roy > 1 and r\’j < 1, the

conclusion of Theorem 2.3.2 holds.

Proof. We use the same notation as in Theorem 2.3.2. Assumption (H3) implies
u?) (%) is globally asymptotically stable with respect to X5 \ {0} for equation (2.3.16).

For any ¥ € X, let w(t,v) = (uy(t), u2(t)). Since assumption (H1) implies
Us(t) = fa(t, ui(t), uz(t), ualt — 7)) < folt, 0, ua(?), ua(t — ™)),
for any small £ > 0, we have uy(t) < u®(t) + ¢ for all £ > t(g). Therefore,
a1 (t) = fi(t, ui(t), ue(®), u1(t — 1)) > filt, w1 (2), u® (@) + 6,46 — 71)) (2.3.25)
for t > (). Let r5; be the spectral radius defined by Theorem 2.2.1 associated with
a(t) = fi(t, u@), v @ (@) +,ult —n)). (2.3.26)

Then ll_l;l;l) r5, = r2; > 1, and hence 75, > 1 for all sufficiently small £. Therefore,
by assumption (H4) and Theorem 2.2.1, there exists a unique positive T-periodic
solution uj(#) for equation (2.3.26), and uj(?) is globally asymptotically stable with
respect to X"\ {0}. By inequality (2.3.25), it follows that for any £’ > 0, we have

ui(t) > ui(t) — &' for t > t(e,"). Therefore, assumption (H1) implies that
ta(t) = folt, ur(t), ua(t), us(t — 7)) < falt,ui(t) — ', ua(t), ua(t — 7)) (2.3.27)

for t > t(s,¢'). Let 7¢ be the spectral radius defined by Theorem 2.2.1 associated
with

a(t) = folt, uS(t) — &', ult), ult — ). (2.3.28)
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Note that hm us (t) = u'? (¢) uniformly for ¢ € [0, T) (see, e.g., [95, Theorem 1.4.1] or

[74, Theorem 2.1]), we have =l,51rﬁu pf = &2«2 < 1, and hence 7' < 1 for all sufficiently
small € and &’. Therefore, by Theorem 2.2.1, zero solution is globally asymptotically
stable for equation (2.3.28). Thus, by inequality (2.3.27), we have tlincl us(t) = 0.
That is, system (2.1.5) has no positive T-periodic solutions. Therefore, Theorem

2.3.2 completes the proof. "

Remark 2.3.1 Theorem 2.3.1, as applied to system (2.1.3) with n = 2, implies
that system (2.1.3) is permanent and has at least one positive T-periodic solu-
tion. In particular, if there is only one positive T-periodic solution, then it is
globally attractive. Therefore, the conclusions of Theorem 2.3.1 are stronger than
[61, Theorem 2.2] for system (2.1.3) with n = 2. Furthermore, since assumptions
(H1)-(H3) are automatically satisfied for system (2.1.3), Theorem 2.3.1 holds if
ri2 > 1,791 > 1, or if [T (0 (¢) — a%y (2))dt > 0 and [, ({7 (2) — a{? (£))dt > 0 in the
case of =KT,17=1,2

Remark 2.3.2 For system (2.1.3) with n = 2, the conditions of [61, Theorem 2.2]
are sufficient for 715 > 1 and ry; > 1 (see Lemma 2.3.3 below). Thus, Theorem 2.3.1

is a natural generalization of [61, Theorem 2.2].

Remark 2.3.3 Theorem 2.3.2 and Corollary 2.3.1 imply that one species persists at
a positive periodic solution while the other one dies out. The conclusion of Corollary
2.3.1, as applied to system (2.1.3) with n = 2, is the same as [61, Corollaries 2.1
and 2.2|. However, by the comparison method in the proofs of Lemma 2.3.3 and
Corollary 2.3.1, one can easily conclude that the conditions in [61, Corollaries 2.1

and 2.2] are sufficient for the conditions in Corollary 2.3.1.
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—00
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Remark 2.3.4 The spectral radii ry; represent the suitability of the i-th species at
the habitat with no competitors. If ry; > 1, the i-species is persistent at the habi-
tat with no competitions, and the population is stabilized at the positive periodic
quantity u® (1), called the carrying capacity of the habitat for the i-th species. Oth-
erwise, the i-species dies out. ry5 (r2; respectively) represents the survival ability of
species 2 (1) at the habitat carrying the 1-th (2-th) population capacity, and can
also be regarded as a kind of suitability of the species 2 (1) at the habitat with the
competitor’s population capacity. By equations (2.3.18) and (2.3.19), ;2 and 79
are decreasing as the corresponding population capacities increase. Thus, we can
control the population of a species through changing these spectral radii. For exam-
ple, if we hope to save a species, say species 1, we can enhance the favorite habitat
characters of species 1, which leads to increase the population capacity of species 1,
and destroy the favorite habitat characters of species 2, which makes the population
capacity of species 2 decrease, such that the two species coexist (Theorem 2.3.1),
or species 2 is even driven to extinction (Theorem 2.3.2). This consequence can be
seen more easily from the case of 7' = k;7;. When our general model (2.1.5) takes
some specific forms, say model (2.1.3), one can easily figure out that the immature
population’s death rate d; and the maturation time 7; have a significant effect on
the persistence of species i, even make the species die out. The same biological

explanation can be drawn from the next section.

Lemma 2.3.3 If inequalities (2.1.4) hold, then ro > 1 and ro; > 1.
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explanation can be drawn from the next section.

Lemma 2.3.3 If inequalities (2.1.4) hold, then rio > 1 and 791 > 1.



Proof. For system (2.1.3) with n = 2, the corresponding equations (2.3.15) and
(2.3.18) reduce to
Q:l(t) = Bl(t)fﬂl(t = 7'1) — a,“x?(t), (2329)
Iz(t) = Bg(t)lfg(t - Tg) — 9] (t)‘u(l)(t)l‘g(ﬂ), (2330)
respectively, where u{) () is the positive T-periodic solution for equation (2.3.29).
Note that uV)(#) is globally asymptotically stable with respect to X;"\ {0}, and that
712 is the spectral radius of the Poincaré map Pgm associated with equation (2.3.30).

Choosing t* such that «(¢*) = max;eo,r "’ (t), we then have
0=aV(t") = B (t)u" (t* — 1) — an (¢7) (uV (7))
Therefore,
a1 (¢°) (uP () = By (#")uM (t* — 7)) < By (¢*)uV(tY),

and hence u(V(t*) < f—,f-, where by the upper indexes we mean the same as these in
11
inequalities (2.1.4).
By inequalities (2.1.4), it is easy to see that for any ¢ € X, with ¢ > 0, the

solution z(t, @) of the following equation
#(t) = Bla(t — 1) — afi 2l a(t)

satisfies Llim z(t, ) = oo. By the proof of Proposition 2.2.1, it follows that equation
— 00
(2.3.30) has a positive solution u°(t) = vo(t)e** with Ag = 7 In7y» and vg(t) being

continuous and T-periodic. Let ¢q(s) = u°(s), s € [—7, 0], then ¢y > 0. Note that

E9(t) = Ba(t)za(t — 72) — ani (£)ulV (£)za(t)
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Proof. For system (2.1.3) with n = 2, the corresponding equations (2.3.15) and

(2.3.18) reduce to

#1(t) = By(t)x (t — 1) — anz?(t), (2.3.29)

E9(t) = Ba(t)@a(t — 72) — as (£)uV (t)za(2), (2.3.30)

respectively, where u(")(¢) is the positive T-periodic solution for equation (2.3.29).
Note that u!")(t) is globally asymptotically stable with respect to X \ {0}, and that
ry5 is the spectral radius of the Poincaré map PQ(” associated with equation (2.3.30).

Choosing ¢* such that »")(¢*) = max.c(or v (), we then have
0 =aM (") = Bi(t)uV (" — 1) — ann (%) (N (5))2
Therefore,
an () (P (t7))? = By (t")uV (#* — ) < Bi(#")ulV ("),

and hence u(M(t*) < %‘?, where by the upper indexes we mean the same as these in
inequalities (2.1.4).

By inequalities (2.1.4), it is easy to see that for any ¢ € X5 with ¢ > 0, the
solution z(t, @) of the following equation

. o B
(t) = Baa(t — ) — azlaTl-T(t)
1

satisfies tIim z(t, ) = oo. By the proof of Proposition 2.2.1, it follows that equation
— 00
(2.3.30) has a positive solution u”(t) = vo(t)e** with Ag = FInry, and vy(t) being

continuous and T-periodic. Let @o(s) = u(s), s € [—7», 0], then g > 0. Note that

() = Ba(t)@2(t — 72) — az ()u'(t)za(t)



B?n
> Béﬂ}g(t — Tp) — as; —a!l z(t).
11

By the comparison theorem, we have u®(t) > (¢, ©o), and hence lim u%(t) = oo.
—00

This implies that Ap > 0 and hence r15 > 1. Similar arguments implies ro; > 1. &

2.3.2 The Asymptotically Periodic Case

In this subsection, we lift the main results in the periodic case to the global dynamics
of the asymptotically periodic system (2.1.6).

Assume that system (2.1.6) satisfies

(Hl’) F;‘(ﬁ, ‘lL,'_) > O, %(uiﬁ}(t,ui)) > 0 and %C‘}',—(t,ul,ug) Z 0 for ¢ 2 0, ;i 2 0,
1<i#j<2;

(H2") if v > L for some number L > 0, then _fl(t, v,0,v), f-g(t, 0,v,v) <0.

It then easily follows that the solution wu,(t, ;) is bounded by max{L,||¢:||} for
any @1 € X, where u(t, ;) solves equation #; = filt, ur, 0, u(F — 71)). The
similar results hold for 74, = fz(t,O,ug,ug(t — 73)). Now, simply following the proof
of Lemma 2.3.1, we can conclude that the solutions for system (2.1.6) exist globally
and are uniformly bounded. Let (¢, s,%) be the solution of system (2.1.6) satisfying

s =t € XT.

Theorem 2.3.3 Let (HI'), (HZ), (A) and the conditions in Theorem 2.53.1 hold.
Then tl_im dist(a(t,0,%), [u(t,d*),u(t,d)]x) = 0 for any point v € X°, where
u(t, ") and u(t, &**) are positive T-periodic solutions for system (2.1.5) defined by

Theorem 2.8.1. In particular, system (2.1.6) is uniformly persistent.
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m
> Bizo(t — 1) — aly Eil_‘”?(t)-

11
By the comparison theorem, we have u°(¢) > z(¢, ), and hence tlim u’(t) = oo.
—00

This implies that A\g > 0 and hence 7y, > 1. Similar arguments implies 79; > 1.

2.3.2 The Asymptotically Periodic Case

In this subsection, we lift the main results in the periodic case to the global dynamics
of the asymptotically periodic system (2.1.6).

Assume that system (2.1.6) satisfies

(H1") Fi(t,u;) > 0, aim(uz-ﬁ‘i(t,ui)) > 0 and %G‘g(t,ul,ug) > 0fort2>20,uwu =0,

1<i#j<2
(H2") if v > L for some number L > 0, then fi(¢,v,0,v), fo(t,0,v,v) < 0.

It then easily follows that the solution u,(¢,¢;) is bounded by max{L, ||¢||} for
any ¢ € X, , where u,(t,¢,) solves equation 1i; = fl(t,vtl,O, ui(t — 7). The
similar results hold for 1, = fg(t, 0, us, us(t — 72)). Now, simply following the proof
of Lemma 2.3.1, we can conclude that the solutions for system (2.1.6) exist globally
and are uniformly bounded. Let @(Z, s,1) be the solution of system (2.1.6) satisfying

s =1 € X,

Theorem 2.3.3 Let (H!'), (HZ), (A) and the conditions in Theorem 2.3.1 hold.
Then tlim dist(u(t,0,%), [u(t,d™),u(t,0%)]|x) = 0 for any point ¢ € X°, where
u(t, ¢*) and u(t, ¢™*) are positive T-periodic solutions for system (2.1.5) defined by

Theorem 2.3.1. In particular, system (2.1.6) is uniformly persistent.
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Let u¢(s,1) and ,(s, ) be the solution maps for system (2.1.5) and (2.1.6), re-
spectively, and set ®(t, s, 1)) = G,(s, %), Tn()) = (0, 9), T(£)1) = u,(0,4), S()) =

T(T). In order to prove Theorem 2.3.3, we need the following lemma.

Lemma 2.3.4 Let the assumptions of Lemma 2.3.2 hold. If r; = v(P;) > 1, then
W () Nint(X+) = 0, where W*(y*) = {v € Xt : limy,0 Tn(¥) = ¥}, and ¢*

is the initial value of u*(t).

Proof. Since solutions of system (2.1.5) and (2.1.6) are uniformly bounded, by
Proposition 2.2.2 and assumption (A), ®(¢,s,) is asymptotic to the T-periodic
semiflow 7 (¢), and hence 7, is an asymptotic autonomous discrete dynamical process
with the limiting autonomous discrete semiflow S.

Assume, by contradiction, that ¢ € ﬁ?“"(gb*) (int(X*) # 0. Then, ?}Lrgoﬂ(v,{)) =
1*. By the reduction theorem ([95, Theorem 3.2.1]), it follows that tl_l:.r& [|@(t,0,1) —
w*(t)|| = 0. Let u(t,0,v¢) = (u,(t), u2(t)). We use the same notation as in Lemma
2.3.2. For any &' € (0,b), let 7% be the spectral radius of the Poincaré map associ-

ated with
a(t) = (Fj(t,0) — 26 )ult — ) — (Gt ui(®), us(®) + 2ehu(®).  (2.3.31)

Then lin}) re = r; > 1. As in the proof of Lemma 2.3.2, in the following, we fix a
e'—

e' € (0,b;) such that ¢ > 1. Then, by the analysis in the proof of Lemma 2.3.2, it

follows that there exists dp < 1 such that
F;(t,u;) > Fj(t,0) — €', Vt € [0,00),u; € [0,d),
and for any u = (uy,us), v’ = (u},u) € [0, by + 1]* with ||u — ¥'|| < do,

|G (¢, w1, us) — G;(t, uy, uy)| < &', Vt € [0, 00).
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Let u(s,v) and (s, 1) be the solution maps for system (2.1.5) and (2.1.6), re-
spectively, and set (¢, s,1) = @h(s, %), Ta(¥) = Gnr(0,%), T(£)Y = u(0,%), S(¥) =

T (7). In order to prove Theorem 2.3.3, we need the following lemma.

Lemma 2.3.4 Let the assumptions of Lemma 2.5.2 hold. If r; = r(P;) > 1, then
73(1])‘)ﬂ'iﬂi(X“") = 0, where ﬁ’rs(lj)“) ={yp € X : lim, o Tn(¥) = ¢*}, and ¢¥*

is the initial value of u*(t).

Proof. Since solutions of system (2.1.5) and (2.1.6) are uniformly bounded, by
Proposition 2.2.2 and assumption (A), @(t,s,vp) is asymptotic to the T-periodic
semiflow 7 (¢), and hence T, is an asymptotic autonomous discrete dynamical process
with the limiting autonomous discrete semiflow S.

Assume, by contradiction, that 1» € W*(0*) (int(X+) # 0. Then, nh_{gg Ta() =
¥»*. By the reduction theorem ([95, Theorem 3.2.1]), it follows that tll_}lg} ||z(t, 0,) —
u*(t)|| = 0. Let u(t,0,7) = (i,(t), 22(¢)). We use the same notation as in Lemma
2.3.2. For any ' € (0,b,), let 7¥ be the spectral radius of the Poincaré map associ-

ated with
u(t) = (F;(t,0) — 28" u(t — 7)) — (G;(¢, ui(t), us(t)) + 2&")u(t). (2.3.31)

Then Iin}] r¢ = r; > 1. As in the proof of Lemma 2.3.2, in the following, we fix a
Ef=¥

g’ € (0,b;) such that r¢ > 1. Then, by the analysis in the proof of Lemma 2.3.2, it

follows that there exists d; < 1 such that
Fj(f}, 'U,j) > Fj(t, 0') = EI, Vt € [O,OO),’U,J' & [0,50),
and for any u = (uy,u), %' = (uy, uh) € [0, by + 1]? with ||u — /|| < &y,

|G (t, ur, ue) — G(t, up, us)| < €', Vt € [0, 00).
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From assumption (A), it follows that there exists an integer Ny such that
Fi(t,uj) > Fj(t,u;) — e > Fj(t,0) — 2¢', Vt > NoT, u; € [0, &),
and for any (u;,uz) € [0, bs + 1]?,
|G5(t, w1, uz) — Gj(t, ur, us)| < €, ¥t > NoT.
Thus, for any u = (uy, us), ' = (u}, ub) € [0, by + 1]? with ||u — /|| < do,

|C:r'j(t, u'l,u'g) — Gj(t,'lbl,'LLz)l < |éj(t,u'1,u'2) — G'J-(t,u',,uf_,)|

+|G;(E, uy, uy) — Gt uy, us)| < 2€"

for all t > NyT. Since tli_}n |a(t,0,1) —u*(t)|| = 0, there exists an integer N > N
oo

such that [|@(t) — u*(t)|| < & for t > NT'. Therefore,

ii(t) = @t — ) F5(t, @t — 75)) — G(H)G;(t, @ (2), (L))
> (Fj(8,0) — 2e")u;(t — 15) — (Gi(2, u3(t), u(t)) + 2¢")4;(2)

for all £t > NT. By the comparison theorem, we have
ii;(t) > uf (¢, NT, %)) = u§ (¢t — NT,0,v}), t > NT,

where ¥5(0) = 4;(NT + 0,0,%),V8 € [—7;,0], and uj’(t,NT, ¥%) is the solution
of equation (2.3.31) satisfying u?’(:t, NT,¢5) = ¢i(t),Vt € [NT — 7;, NT]. Simply
following the claim in the proof in Theorem 2.3.1, we have %;(t) > 0 for t > 7;.
Without loss of generality, we assume that N7 > 27;. Then ¥ > 0. Now, by
the same argument as in the proof of Lemma 2.3.2, it follows that :.ILII.Lﬁ'j(t) >

lim uf
t—oo -7('

t — NT,0,v}) = oo, which contradicts tl_ij]‘l l@(t, 0, ¥) — u*(t)|| = 0. 1
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From assumption (A), it follows that there exists an integer Np such that

Fj(t, ’U.j) - Fj(t,uj) —& > F}(t,O) = 251, Vit > .NQT, Uj S [0, (50),

and for any (u,,us) € [0, by + 1]?,

]Gj(t) uth) a Gj(ta Uy, u?)[ i E’: Vi 2 NOT
Thus, for any u = (u;, u), v’ = (u},uh) € [0, by + 1]* with [|u — u'|| < by,

|C_?J-(t,u'1,u§) — Gji(t,ur, ug)| < ]Gj(t, uy, Uy) — G(1, uy, us)|
+|Gj(t, ?,LI“ ?.L'z) i Gj(t, Uy, U..g)l < 251

for all ¢ > NyT'. Since tlim |@(t, 0,1) — u*(¢)|| = 0, there exists an integer N > N,

such that ||@(t) — u*(t)|| < & for t > NT. Therefore,

wi(t) = a;(t — 1) F(t,4(t — 13)) — @;()G;(t, G (2), Ta(t))
> (F5(t,0) — 2e")a;(t — 75) — (Galt, ui(t), us(t)) + 2¢")i;(t)

for all £ > N7T. By the comparison theorem, we have
@;(t) > us (¢, NT,¢}) = uf (t — NT,0,v}), t > NT,

where 1,’);-(6’) = u;(NT + 6,0,¥),¥0 € [—7;,0], and ugf(t, NT, %) is the solution
of equation (2.3.31) satisfying u5 (¢, NT,v) = ¥i(t),Vt € [NT — 75, NT). Simply
following the claim in the proof in Theorem 2.3.1, we have @;(t) > 0 for t > 7;.
Without loss of generality, we assume that NT" > 27;. Then ¢; > 0. Now, by
the same argument as in the proof of Lemma 2.3.2, it follows that lim @;(t) >

t—ro0

Jim u§ (t — NT,0,¢}) = co, which contradicts tlim l|i(t, 0,%) — u*(t)|| = 0. '
—+00 —00



49

Proof of Theorem 2.3.3. From the proof of Lemma 2.3.4, we know that 7,,n >
0, is an asymptotically autonomous discrete dynamical process with the limiting
discrete semiflow S™. Note that solutions of system (2.1.6) are uniformly bounded.
By [49, Lemma 2.2, it follows that for any ¥» € X, the omega limit set w() of 1
under 7, is a compact and internally chain transitive set for S.

Note that S is a-condensing, and S™ is compact for nT > 27 (see, e.g., the
proof of Theorem 2.3.1). Let X% = X\ XY Then, by Theorem 2.3.1, S is point
dissipative and uniformly persistent with respect to (X% 0X°). Thus, by Theorem
1.1.2, there exists a global attractor 4y for S in X° which attracts strongly bounded
sets in X° Then Ay C Ix. By Lemma 2.3.2 and Theorem 2.3.1, it follows that Fy,
F\ , E5 and Ag are isolated invariant sets for .S, and there is no S-cyclic chain among
them. By [95, Lemma 1.2.8], J}POIO T(2p) = Ey, E;, E; or nlglolo dist(Ta(1)), Ag) = 0.

For any 7 € XY simply following the claim in the proof of Theorem 2.3.1, we
have u(¢,0,%) > 0 for t > 7 = max(7;,72). Therefore, @,,7(0,%) € int(X™) for

nol > 27. By Lemma 2.3.4,
W*(Eo) Nint(X) = W*(Ey) Nint(XT) = W*(E,) Nint(X*) = 0.

Thus
lim 7,(®) = lim T, (tn,7(0,%)) # Ey, By or Es.

n—od
Therefore, lim dist(7,(¢), Ag) = 0. Note that Ay C I, by the reduction theorem
n—roo

([95, Theorem 3.2.1]), we have tlim dist(a(t,0,v), [u(t, o**), u(t, *)]x) = 0. ]
—00
Theorem 2.3.4 Let (H!'), (H? ), (A) and conditions in Theorem 2.5.2 hold. Then

Jim [la(¢,0,v) — (P (8),0)]| =0
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Proof of Theorem 2.3.3. Irom the proof of Lemma 2.3.4, we know that 7,,n >
0, is an asymptotically autonomous discrete dynamical process with the limiting
discrete semiflow S™. Note that solutions of system (2.1.6) are uniformly bounded.
By (49, Lemma 2.2], it follows that for any ¢ € X, the omega limit set w(2)) of 1
under 7, is a compact and internally chain transitive set for S.

Note that S is a-condensing, and S" is compact for nT" > 27 (see, e.g., the
proof of Theorem 2.3.1). Let 9X° = X+ \ X° Then, by Theorem 2.3.1, S is point
dissipative and uniformly persistent with respect to (X° 8X°). Thus, by Theorem
1.1.2, there exists a global attractor Ay for S in X° which attracts strongly bounded
sets in X% Then Ay C Ix. By Lemma 2.3.2 and Theorem 2.3.1, it follows that Ej,
E, , E5 and Ay are isolated invariant sets for S, and there is no S-cyclic chain among
them. By [95, Lemma 1.2.8], r}ll}l&) Ta(¥) = Ey, Ey, Es or ,3}.;“(;3 dist(Tn(), Ag) = 0.

For any v € X°, simply following the claim in the proof of Theorem 2.3.1, we
have @(t,0,%) > 0 for t > 7 = max(7y,72). Therefore, @,,7(0,%) € int(X™) for

ngd > 27. By Lemma 2.3.4,
W*(Eo) Nint(X 1) = W*(E,) Nint(X1) = W*(E») Nint(X+) = 0.

Thus
lim 7,(¥) = lim Ta(lingr(0,%)) # Eo, By or Es.

n—roo

Therefore, lim dist(7,(1), Ag) = 0. Note that Ay C I, by the reduction theorem

n—oo

([95, Theorem 3.2.1]), we have Llim dist(u(t, 0,v), [u(t, ¢**), u(t, ¢*)]x) = 0. '
Theorem 2.3.4 Let (HI'), (HZ ), (A) and conditions in Theorem 2.3.2 hold. Then

lim [|a(t,0,%) — (u®(¢),0)]| = 0



for any ¥ € X°. A symmetric result holds for (0,u®™(t)).

Proof. By the proof of Theorem 2.3.3, for any 1 € X", the omega limit set w(v) of
% under 7, is a compact and internally chain transitive set for S. By Lemma 2.3.2
and Theorem 2.3.2, it follows that Ey, F, and E5 are isolated invariant sets for S, and
there is no S-cyclic chain among them. Thus, for any 2 € X°, by the convergence
theorem (see [49, Theorem 3.2] or [95, Theorem 1.2.2]), we have w(y) = Ey, Ey,
or F5. Using the argument similar to the claim in the proof of Theorem 2.3.1, we
have i(t,0,v%) > 0 for t > 7 = max(m, 72), i.e., Unr(0,%) € int(X™*) for nT > 271.
Note that Lemma 2.3.4 implies that w(Ey) N X% = w(F») N X% = (. Thus, we have
w(p) = Ey, ie., nli—?;o T.(¢¥) = E;. By the reduction theorem [95, Theorem 3.2.1],
we have tl_iglO |®(t,0,%) — T@(E)| =0, ie., tl_iggﬂﬂ(t,ng) — (uM(*),0)|| =0. A

symmetric result holds for (0, 1 (t)). "

2.4 Multi-species Competition

As we have seen in Section 2.3, the monotonicity of the Poincaré map associated
with the periodic system (2.1.5) with mm = 2 plays an important role in obtaining
the global dynamics. However, for system (2.1.5) with m > 3, we are not able to
appeal to the powerful theory of monotone dynamical systems. In this section, we
use the elementary comparison method to establish a set of conditions for uniform
persistence in the asymptotically periodic competitive system (2.1.6) with m > 3.
In virtue of the persistence theory, we further obtain natural invasibility conditions

for uniform persistence and the existence of positive periodic solutions in 3-species
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Proof. By the proof of Theorem 2.3.3, for any ) € X, the omega limit set w(+)) of
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w(y) = Ey, ie., lim T,(¢¥) = E,. By the reduction theorem [95, Theorem 3.2.1],
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we have lim |®(¢, 0,%) — T(@E)(E)| =0, ie., lim [|a(t, 0,) — (uM(@),0)]| =0. A

symmetric result holds for (0, u(?(t)). [

2.4 Multi-species Competition

As we have seen in Section 2.3, the monotonicity of the Poincaré map associated
with the periodic system (2.1.5) with m = 2 plays an important role in obtaining
the global dynamics. However, for system (2.1.5) with m > 3, we are not able to
appeal to the powerful theory of monotone dynamical systems. In this section, we
use the elementary comparison method to establish a set of conditions for uniform
persistence in the asymptotically periodic competitive system (2.1.6) with m > 3.
In virtue of the persistence theory, we further obtain natural invasibility conditions

for uniform persistence and the existence of positive periodic solutions in 3-species



competitive periodic system (2.1.5).
We first consider m-species competitive system (2.1.5) and (2.1.6). Assume that

for u; > 0,1 <1 5% j < m, we have
(K1) Fi(t,u;) > 0, (u; F;(t, u;)) > 0, B O Gilt, U1y oy Um) > 0;

(K2) fi(t,try ..y Uiry =y Uigly -« -y Um, +) IS strictly sublinear on R?%; and for some
L >0, f;(t,0,...,0,L,0,...,0,L) <0, where the two L are ith and (m + 1)th

components of f; except for t;
(K3) F(t u;) > 0, ()u — (u; F(t u;)) > %éi(t,ul, s 5 i) 2 O

(K4) there exists a positive number L such that f_,-(t, 0,,..,0,1,0,...,0,1) < 0for

all [ > L;

Then

fi(t} Upy e o vy Ui, L1 Uid1y 0 -+ 3 U, L) S 0)

fi(ta Uy, .. '5ui—hl:ui+la L :U‘mil) .<_. 0>

for all u; > 0,0l > L,i = 1,2,...,m. As analyzed before, assumptions (K1)-(K4)
imply that solutions of system (2.1.6) and (2.1.5) are uniformly bounded.

Let 7; be the spectral radius defined by Theorem 2.2.2 associated with
a;(t) = fi(£,0,...,0,%(t),0,...,0, %t — 7). (2.4.32)
Assume that

(KB % 1 =13, 26 .05
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competitive periodic system (2.1.5).
We first consider m-species competitive system (2.1.5) and (2.1.6). Assume that

for u; > 0,1 <1 # 5 < m, we have
(K1) Fi(t,u;) > 0, (.—)‘Z— (ui Fi(t, ;) > 0, 5‘3—@2-(?‘,,'&1, vicing by 50
i J

(K2) fi(t, w1y . oy tio1y 3 Uit1y .-, Um, - ) IS strictly sublinear on R?; and for some
L >0, fi(t,0,...,0,L,0,...,0,L) <0, where the two L are ith and (m+ 1)th
components of f; except for ¢;

(KS) Ff(ts ui) > 0$ TQ_(‘U'iFi(ts ui > Or “_Q_.-G‘?:(t! U‘l! s '“’772) 2 Oi
du

Ou; j

(K4) there exists a positive number L such that f;(¢,0,...,0,1,0,....0,1) < 0 for

all { > L;
Then

fi(t’ Upy v suz‘—l'}[’s Ujgly e }'U,m,L) S O!

fi(t: Upy oo ny Ujay, ls Uigyy -y Up, l) S 01

for all uw; > 0,1 > L,i = 1,2,...,m. As analyzed before, assumptions (K1)-(K4)
imply that solutions of system (2.1.6) and (2.1.5) are uniformly bounded.

Let 7; be the spectral radius defined by Theorem 2.2.2 associated with
i:(t) = fi(t,0,...,0,%(2),0,...,0,4( — 7). (2.4.32)
Assume that

(Kb} Fe), 8 = 1,2, .97
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Then for each i, by Theorem 2.2.2, there exists a unique positive T-periodic solution
a; (t, ¢;) for

i:(t) = £i(£,0,...,0,2:),0,...,0,u:{t — 1)),
which attracts every solution of equation (2.4.32) except for zero. Let r; be the

spectral radius defined by Theorem 2.2.2 with respect to

ﬁz(l‘) = .ft(t: ﬁl(t: (B])) iy ﬁ'i—l (t'p (I’;i—l)v ﬂl(t)~ ﬁ'i—i»l (t) (Bi—}"])) R ﬁm(ta (Z)m)s rai(t T Ti))-
(2.4.33)
If we assume that r, > 1, then there exists a unique positive T-periodic solution

U; (t‘ ¢I) for

a(t) = filt, a1t @1), - - - Gic1 (E, Gim1)y wilt), Gigr (B Gis1)s -+ - Um(E, Pra)s ult — 7)),

which attracts all solutions of equation (2.4.33) except for zero.

Let Z} = C(ITi[—m, O, RY), Z%, = {v = ()21 € 21+ ¥ #£0,Y1 <4 <m}.
For any ¢ € Z}, denote by a(t,v) = (u;(t))™, the solution of system (2.1.6) with
i10(¢) = 1. The following theorem implies that systems (2.1.5) and (2.1.6) are
persistent. We omit the extinction results, which can be obtained by the same

arguments.

Theorem 2.4.1 Let assumption (A) and (K1)-(K5) hold. Suppose that r; > 1,
i =1,2,...,m. Then for any ¢ € Z°,, the solution u(t, ) of system (2.1.6) satisfies
blim dist(i(t, ), [u(t), u(t)]) = 0,

— 00

where [u(t),a(t)] = {u = (w)2, € RP : gi(t,_{f)_é) < u; < Gi(t, @), V1 € i < m}.
In particular, the same result holds for the solution u(t,vy) of system (2.1.5), and

system (2.1.5) admits a positive T'-periodic solution.
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Then for each i, by Theorem 2.2.2, there exists a unique positive T-periodic solution
;(t, ¢;) for
u?(t) =) fi(t! Os ceey O,Ui(t), O, CCE 50) ut(t = Ti)):

which attracts every solution of equation (2.4.32) except for zero. Let r, be the

spectral radius defined by Theorem 2.2.2 with respect to

U (t) = fi(t, @t 1), .., Bim1 (t, i), Gilt), Tisr (8, Big)s -« o, Uty Gm), Bt — 72)).
(2.4.33)
If we assume that r; > 1, then there exists a unique positive 7T-periodic solution

Iéi(t! ‘3_53) for
u(t) — ff(t1 ﬁl(t= él): R ﬁi—-l(t1 é’i-l): ‘U.,;(t), ﬁ'i+l(f’: ‘51‘-!—1): L !ﬂm(t: &’m)s u(t = Tg)),

which attracts all solutions of equation (2.4.33) except for zero.

Let Z} = C(I12,[-%, 0, RT?), 23, = {¢ = (W), € Z5 : ¢ #0,V1 < i < m}.
For any ¢ € Z, denote by 4(t,v¢) = (%;(¢))™, the solution of system (2.1.6) with
to() = 1. The following theorem implies that systems (2.1.5) and (2.1.6) are

persistent. We omit the extinction results, which can be obtained by the same

arguments.

Theorem 2.4.1 Let assumption (A) and (K1)-(K5) hold. Suppose that r; > 1,

i=1,2,...,m. Then for any ¢ € Z°, the solution u(t,v) of system (2.1.6) satisfies

lim dist(a(t, ), [u(t),a(t)]) =0,

t— oo

where [u(t),a(t)] = {v = ()2, € R} : gi(t}qﬁz_) < u < @t i), V1 < i < m}.

In particular, the same result holds for the solution u(t,v)) of system (2.1.5), and

system (2.1.5) admits a positive T'-periodic solution.
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Proof. By Theorem 2.2.2 and the standard two-side comparison method similar
to that in the proof of Corollary 2.3.1, for any ¢ € Z2 and any small £, > 0,
we have u$(t) — &' < u;(t,1) < 4:(t, ¢:) + ¢ for t > t(e, '), where ui(t) is positive
and 7-periodic and satisfies that li_rgaggf(t) = u;(t, ¢.) uniformly for ¢ € [0,T]. Let
g,2" — 0, we have
tl_i}rgxo dist(a(t, V), [u(t), a(t)]) = 0.

In particular, the same result holds for the solutions of the limiting system (2.1.5).

Let S be the Poincaré map of system (2.1.5). Then S is bounded, point dis-
sipative, a-condensing and uniformly persistent with respect to (Z2,0Z7%), where
822 = Z} \ Z°. Furthermore, S™ is compact for nT > 27 = 2max(7y, T2, ..., Tm)
(see, e.g., [42, Theorem 3.6.1]). By Theorem 1.1.2, S has a coexistence state ¢y € Z2,.

Thus system (2.1.5) admits a positive T-periodic solution u(Z, ¢q). n

As mentioned in [87], for the periodic system (2.1.5) in the case of m = 2,
(@ (t, @1),0) and (0, @y (t, ¢3)) (i.e., (uM(£),0) and (0, u?(#)) defined in Section 2.3)
are the semitrivial periodic solutions. Then r;, > 1 and r, > 1 (i.e., 112 > 1, 797 > 1
in Theorem 2.3.1) are natural invasibility conditions for uniform persistence. How-

ever, for the m-species competition periodic system (m > 3), the periodic functions

(ﬁl(ta Q—Sl)a ~ ey ﬁ'i—l(ta égi—-l)a 03 ﬂi(t, d-)i)’ e 1ﬁm(t: (Em))) 1 S Z S m

are not solutions of system (2.1.5), and hence, due to the overestimation of the effect
of competition, conditions r; > 1 in Theorem 2.4.1 are very strong conditions. In
the rest of this section, we use the ideas in [87] to obtain some natural invasibility
conditions for uniform persistence and existence of a positive coexistence state in

the three-species competition.
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to that in the proof of Corollary 2.3.1, for any ¥ € Z° and any small ,&' > 0,
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(see, e.g., [42, Theorem 3.6.1]). By Theorem 1.1.2, S has a coexistence state ¢g € Z7,.
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As mentioned in [87], for the periodic system (2.1.5) in the case of m = 2,
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are not solutions of system (2.1.5), and hence, due to the overestimation of the effect
of competition, conditions r; > 1 in Theorem 2.4.1 are very strong conditions. In
the rest of this section, we use the ideas in [87] to obtain some natural invasibility
conditions for uniform persistence and existence of a positive coexistence state in
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Consider the 7-periodic model for the three-species competition

%;(t) = wi(t — ) Fi(t, ui(t — 7)) — wi()Gi(t, ur(2), ua(t), ua(?))
(2.4.34)

= f,-(t,ul(t), ug(t),ug(t),u,;(t = Tz')), 1 S 3 S 3,

which satisfies condition (K1), (K2) and (K5) in the case of mm = 3. For each i, there

is a corresponding 2-species competition system

le(t) — fj(t,ul(t),u-g_(t),1L3(t),b5j(t— Tj)), 'U.i(t) == O, ] 75 i, 1 S ] S 3. (R.L)

Suppose that each system (R;) satisfies the conditions either in Theorem 2.3.1 or in

Theorem 2.3.2. We consider the following three cases:

(Q1) each (R;) satisfies Theorem 2.3.1 and admits only one positive T-periodic

solution @ (1);

(Q2) both (R5) and (R3) satisfy Theorem 2.3.1, and each of them admits only one

positive T-periodic solution. ([2;) satisfies Theorem 2.3.2;

(Q3) (Rj3) satisfies Theorem 2.3.1 and admits only one positive T-periodic solution.

(IR)) and (R,) satisfy Theorem 2.3.2.

Let ZF = C(ITL,[~7, 01, R2), 22 = {(¢:)2, € ZF : ¢; #0,Y1 < i < 3}. For
any ¢ € Z;, denote the solution of system (2.4.34) by u(t, ¢) = (w;i(t, ¢))?_,, and

the solution semiflow by u;(¢). We then have

Theorem 2.4.2 Let (Q1) hold. Denote by r'Y) the spectral radius defined by Theo-
rem 2.2.1 associated with u(t) = fi(t, w(t), 6V (), u(t—11)). In the same way, we can

define r'9 i = 2.3. Suppose that ') > 1,i = 1,2,3. Then system (2.4.54) admits



Consider the T-periodic model for the three-species competition

wi(t) = ui(t—m)Fi(tuw(t — 7)) — wi(t)Gi(t, uy (t), ua(t), us(t))
(2.4.34)

= fg_(?f,’iﬂ(t),’ltg(t), u3(t)}ui(e‘. = T,‘)), 1 S ) S 3,

which satisfies condition (K1), (K2) and (K5) in the case of m = 3. For each i, there

is a corresponding 2-species competition system

4i(t) = f;(t, ui(t), ua(t), us(t), u;(t — 73)), wi(¥) =0, 7 #14, 1 < j < 3. (R;)

Suppose that each system (R;) satisfies the conditions either in Theorem 2.3.1 or in

Theorem 2.3.2. We consider the following three cases:

(Q1) each (R;) satisfies Theorem 2.3.1 and admits only one positive T-periodic

solution -&“)(t);

(Q2) both (Rs) and (R3) satisfy Theorem 2.3.1, and each of them admits only one

positive T-periodic solution. (R;) satisfies Theorem 2.3.2;

(Q3) (Rj3) satisfies Theorem 2.3.1 and admits only one positive T-periodic solution.

(R;) and (R») satisfy Theorem 2.3.2.

Let Z§ = C(TI (7,0, R), Z8 = {(¢:)2, € ZF : ¢: #0,V1 < i < 3}, For
any ¢ € ZF, denote the solution of system (2.4.34) by u(t, ¢) = (u;(t,¢))?_,, and

the solution semiflow by u;(¢). We then have

Theorem 2.4.2 Let (Q1) hold. Denote by r'V) the spectral radius defined by Theo-
rem 2.2.1 associated with u(t) = fi(t, u(t), 4V (t), u(t—m)). In the same way, we can

define Vi = 2, 3. Suppose that 1) > 1,i = 1,2,3. Then system (2.4.34) admits
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a positwe T -periodic solution and is permanent in the sense that there exist « > 0

and 3 > 0 such that for any ¢ € Z3, B < lim inf u;(t, ¢) < limsupu;(t, ¢) < ov.

t—00

Proof. For any ¢ € Z2, by the argument similar to the claim in the proof of
Theorem 2.3.1, u;(¢,¢) > 0 for all t > 7 = max(n, 72, 73). For any ¢ € Z;, let
T()(P) = ue(d),S(¢) = ur(é). Then T(t)p, S™(¢) € int(Z;) for ¢ € ZJ and
t,nT > 27. By the same argument as in the proof of Corollary 2.3.1 or Theorem
2.4.1, we have u;(¢,¢) < u;(t, ¢:) + ,Vt > t(g). Thus, it is easy to find a number
o such that limsupu;(¢,¢) < o for all ¢ and ¢ € Z2. In particular, S is point
dissipative a.ndtzogounded map (by the same argument of Lemma 2.3.1).

Note that S is a-condensing and orbits of bounded sets are bounded. By
[41, Theorem 2.4.7], S admits a connected global attractor A C ZF. Let M; =
(0,0,0), My = (¢1,0,0), Ms = (0, $2,0), My = (0,0, s), Ms = (0,¢5",85"), Mg =
(67,0,6), My = (3{",6,0), where (85”,85), (41, 47), and ({”, ") are
initial functions of 4V (¢), 4 (t) and @™ (t), respectively. Clearly, all M; are fixed
points of S. For any ¢ € 0Z) = Z3i \ Z3, let w(¢) be the w-limit set of ¢ with
respect to the discrete semiflow {S™}2° . By assumption (Q1) and Theorem 2.3.1,

UJ Uw(q‘)) = {M;, My, M3, My, M5, Mg, M7}, and no subset of the M;’s forms a
iifif; for S in 8Z). By assumption (Q1) and (K1), simply following the proof
of Lemma 2.3.2, we can obtain that M; are isolated invariant sets in Z; for S,
and WH(M;)(int(Z3) = 0, where W*(M;) is the stable set of M; for S. Then
We(M;)( 2y = 0. By Theorem 1.1.1, it follows that S is uniformly persistent with
respect to (Z3,0Z9). Note that S™ is compact for n7T" > 27 (see, e.g., [42, Theo-

rem 3.6.1]), by Theorem 1.1.2, there exists a global attractor Ay C Z3 for S which
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a positive T-periodic solution and is permanent in the sense that there exist o > 0

and 3 > 0 such that for any ¢ € Z2, B < llmmf w;(t, @) < limsupu;(t, @) < a.

t— 00

Proof. For any ¢ € Z2, by the argument similar to the claim in the proof of
Theorem 2.3.1, u;(t,¢) > 0 for all ¢ > 7 = max(7;, 72, m3). For any ¢ € Z;, let
T () (@) = u(d),S(¢) = ur(é). Then T(t)p, S™(¢) € int(Zy) for ¢ € ZJ and
t,nT > 27. By the same argument as in the proof of Corollary 2.3.1 or Theorem
2.4.1, we have u;(t, ¢) < u;i(t, ;) +&,¥t > t(e). Thus, it is easy to find a number
« such that limsupw;(t,¢) < « for all 7 and ¢ € Z2. In particular, S is point
dissipative andjol.;ounded map (by the same argument of Lemma 2.3.1).

Note that S is a-condensing and orbits of bounded sets are bounded. By
[41, Theorem 2.4.7], S admits a connected global attractor A C Z3". Let M, =
(0,0,0), My = (¢,0, 0).M3 = (0,$2,0), My = (0,0,3), M5 = (0,85, 45", Ms
(6,0,89), Mz = (8,8(,0), where (4", 4"), (8?,4), and (4", 53’) are
initial functions of @V (¢), @?(¢) and 4'®) (), respectively. Clearly, all M; are fixed
points of S. For any ¢ € 92 = Z; \ Z3, let w(¢) be the w-limit set of ¢ with
respect to the discrete semiflow {S™}2° ,. By assumption (Q1) and Theorem 2.3.1,

U uw(qb) = {M,;, My, My, My, M5, Mg, M7}, and no subset of the M;’s forms a
iififes for S in 8Z). By assumption (Ql) and (K1), simply following the proof
of Lemma 2.3.2, we can obtain that M; are isolated invariant sets in Z; for S,
and W#(M;)(Nint(Z;) = O, where W*(M;) is the stable set of M; for S. Then
We(M;) () Z9 = 0. By Theorem 1.1.1, it follows that S is uniformly persistent with
respect to (Z9,9Z3]). Note that S™ is compact for nT > 27 (see, e.g., [42, Theo-

rem 3.6.1]), by Theorem 1.1.2, there exists a global attractor Aqg C Z for S which
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attracts strongly bounded sets in Z§, and S admits a coexistence state ¢ € Ay.
Since ¢g € Ag = S™(Ap) C int(Z37) for nT > 27, system (2.4.34) admits a positive
T-periodic solution u(%, ¢g).

Let A = Uggzgno'r T (t) Ao, where ng7" > 27. Then by the argument given in the
claim in the proof of Theorem 2.3.1, A} € int(Z3 ), and by [94, Theorem 2.1], it
follows that A} is a compact set and attracts strongly bounded sets in ZJ. Since
T(t)p € int(Z5) for t > 27 and ¢ € ZJ, A} attracts every point in ZJ under
T(t). For every ¢ € A}, there exists a number 34 > 0 such that ¢ > S,1,;, where
I; = (1,1,1). By the compactness of Aj, it follows that there exists #(V') such that
¢ > B(V)Iy,¥Yo € V, where V is a neighborhood of A} in int(Z5"). Thus for any ¢ €

Z2, T(t)p > B(V)1, for all sufficiently large ¢t. Therefore, litm infu;(t,¢) > B8(V).
—00

Theorem 2.4.3 Let (Q2) hold, and ray be spectral radius defined by Theorem 2.3.2
for (Ry). Suppose that r35 > 1,70 > 1,i = 2,3. Then the conclusions of Theorem

2.4.2 hold.

Proof. We use the same notation as in the proof of Theorem 2.4.2. By Theorem
2.3.2, it follows that nlLr&S"(gb) = (0,¢2,0) = M; for any ¢ = (¢;)}, € 8Z)
with ¢; = 0 and &5 # 0. By assumption (Q2), Theorem 2.3.1 and 2.3.2, |J o
{My, My, M3, My, Mg, M7}, and no subset of the M;’s forms a cycle for §™ ﬁagzg.

Thus as in the proof of Theorem 2.4.2, S is uniformly persistent with respect to

(Z2,0ZY). Now, the same argument given in Theorem 2.4.2 completes the proof. s

Theorem 2.4.4 Let (Q3) hold and r3, be spectral radius defined by Theorem 2.3.2
for (Ry). Suppose that r3; > 1, 130 > 1 and r® > 1. Then the conclusions of

Theorem 2.4.2 hold.
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attracts strongly bounded sets in ZJ, and S admits a coexistence state ¢y € Aj.
Since ¢g € Ag = S*(Ap) C int(Z5) for nT > 27, system (2.4.34) admits a positive
T-periodic solution u(t, ¢g).

Let Ay = UostgnnT T (t)Ag, where ngZ" > 27. Then by the argument given in the
claim in the proof of Theorem 2.3.1, A} € 'i'n.t(ZgL), and by [94, Theorem 2.1], it
follows that Aj is a compact set and attracts strongly bounded sets in ZJ. Since
T(t)p € int(Z]) for t > 27 and ¢ € ZJ, A} attracts every point in ZJ under
T(t). For every ¢ € A}, there exists a number S5 > 0 such that ¢ > S,1;, where
I, = (1,1,1). By the compactness of Aj, it follows that there exists S(V) such that
¢ > B(V)Is, Vo € V, where V is a neighborhood of A} in int(Z;). Thus for any ¢ €

Z3, T(t)o > B(V)1, for all sufficiently large ¢. Therefore, ljlm infu;(¢,0) > B(V). »
—00

Theorem 2.4.3 Let (Q2) hold, and r3s be spectral radius defined by Theorem 2.3.2
for (R,). Suppose that r3» > 1,7 > 1,7 = 2,3. Then the conclusions of Theorem

2.4.2 hold.

Proof. We use the same notation as in the proof of Theorem 2.4.2. By Theorem
2.3.2, it follows that lim S™(¢) = (0,2,0) = M; for any ¢ = (¢:)3, € 0Z
n—oQ
with ¢; = 0 and ¢, # 0. By assumption (Q2), Theorem 2.3.1 and 2.3.2, |J =
$€dZY
{M,, My, My, My, Mg, M7}, and no subset of the M;’s forms a cycle for S™ in §Z23.
Thus as in the proof of Theorem 2.4.2, § is uniformly persistent with respect to

(7Z9.673). Now, the same argument given in Theorem 2.4.2 completes the proof. s

Theorem 2.4.4 Let (Q3) hold and r3; be spectral radius defined by Theorem 2.3.2
for (R3). Suppose that r3; > 1, 130 > 1 and r® > 1. Then the conclusions of

Theorem. 2.4.2 hold.



Proof. We use the same notation as in the proof of Theorem 2.4.2. As in the proof of

Theorem 2.4.3, assumption (Q3) implies that for any ¢ = (¢;)3_, € 829 with ¢, =0

and ¢, # 0. lim S"(¢) = (0, ¢2,0) = M3, and for any ¢ = (¢;)>_, € 8Z with ¢ =0

and ¢y # 0. lim S*(¢) = (41,0,0) = My. Clearly, |J = {M), My, My, My, M3},
n—Cco ¢Eng

Then as in the proof of Theorem 2.4.2, § is uniformly persistent with respect to

(22,08Z29). Now, the same argument given in Theorem 2.4.2 completes the proof. =

Remark 2.4.1 As in Theorem 2.4.1, the permanence for system (2.4.34) in The-
orem 2.4.2-2.4.4 can be lifted to asymptotically periodic systems. According to
Proposition 2.2.1, conditions for the spectral radii in all of the theorems of this
section can be expressed in terms of certain average integrals in the case where

T; = kET



Chapter 3

A Nonlocal and Delayed
Reaction-Diffusion Model

In Chapter 2, we discussed a general model for multi-species competition, which
does not include diffusion terms. In reality, most populations always move around.
Thus, when we consider species which disperse in a domain, population models
should include some kind of diffusion effects. This chapter will investigate a single
species model represented by a nonlocal reaction-diffusion equation. For the model,
we establish a threshold dynamics and global attractivity of positive steady state in
terms of principal eigenvalues, and discuss effects of spatial dispersal and maturation
period on the evolutionary behavior in two specific cases. Also, some numerical
simulations are provided to illustrate the uniqueness of positive steady states.

The rest of this chapter is arranged as follows. Section 3.1 presents the model,
and some related works. In Section 3.2, we establish the global existence and posi-
tivity of solutions, and the existence of a global attractor for the associated solution
semiflow. In Section 3.3, we first obtain a threshold type result on the global ex-

tinction and uniform persistence in terms of the principal eigenvalue of a nonlocal
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Proof. We use the same notation as in the proof of Theorem 2.4.2. As in the proof of

Theorem 2.4.3, assumption (Q3) implies that for any ¢ = (¢;)2_, € 023 with ¢; =0

and ¢, # 0. nl}:& S"(¢) = (0, ¢2,0) = M3, and for any ¢ = (¢;)?_, € 0Z2 with ¢ =0

and ¢, # 0. lim S"(¢) = (¢1,0,0) = Ms. Clearly, |J % { My, My, M3, My, M7}.
$EHZY

Then as in the proof of Theorem 2.4.2, § is uniformly persistent with respect to

(Z3,0Z3). Now, the same argument given in Theorem 2.4.2 completes the proof. u

Remark 2.4.1 As in Theorem 2.4.1, the permanence for system (2.4.34) in The-
orem 2.4.2-2.4.4 can be lifted to asymptotically periodic systems. According to
Proposition 2.2.1, conditions for the spectral radii in all of the theorems of this
section can be expressed in terms of certain average integrals in the case where

T8 = k’,T



Chapter 3

A Nomnlocal and Delayed
Reaction-Diffusion Model

In Chapter 2, we discussed a general model for multi-species competition, which
does not include diffusion terms. In reality, most populations always move around.
Thus, when we consider species which disperse in a domain, population models
should include some kind of diffusion effects. This chapter will investigate a single
species model represented by a nonlocal reaction-diffusion equation. For the model,
we establish a threshold dynamics and global attractivity of positive steady state in
terms of principal eigenvalues, and discuss effects of spatial dispersal and maturation
period on the evolutionary behavior in two specific cases. Also, some numerical
simulations are provided to illustrate the uniqueness of positive steady states.

The rest of this chapter is arranged as follows. Section 3.1 presents the model,
and some related works. In Section 3.2, we establish the global existence and posi-
tivity of solutions, and the existence of a global attractor for the associated solution
semiflow. In Section 3.3, we first obtain a threshold type result on the global ex-

tinction and uniform persistence in terms of the principal eigenvalue of a nonlocal



elliptic problem, and then obtain sufficient conditions for the global attractivity of
the positive steady state. Section 3.4 is devoted to the discussion of the effects of
spatial diffusion and time delay on the asymptotic behavior of the model in two
specific cases. Some numerical results are also included in the last section. Our
simulations seem to suggest that the steady state is globally attractive even without

our monotonicity condition.

3.1 The Model

Recently, an increasing attention has been paid to nonlocal and time-delayed pop-
ulation models in order to study the effects of spatial diffusion and time delay on
the evolutionary behavior of biological systems (see, e.g., (82, 77, 40, 5, 89, 83]). In
reality, species may drift from one spatial point at a time to another spatial point
at another time, and may disperse from a domain to a larger domain. Moreover,
the environment is often spatially heterogeneous. To describe the growth of a single
species in a multi-patch environment, certain delay differential equation models were
proposed and analyzed in [73, 62, 45, 78, 91]. [77, 5, 40] also formulated nonlocal
and delayed reaction-diffusion models for a single species with stage structure, and
established the existence of a family of traveling wave fronts for these models.

In order to obtain a general nonlocal and time delayed model for a single species
in a bounded domain, we let u(¢,a,z) be the density of individuals with age a at

a spatial point 2 and a time ¢, 7 be the length of the juvenile period. Denote by
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elliptic problem, and then obtain sufficient conditions for the global attractivity of
the positive steady state. Section 3.4 is devoted to the discussion of the effects of
spatial diffusion and time delay on the asymptotic behavior of the model in two
specific cases. Some numerical results are also included in the last section. Our
simulations seem to suggest that the steady state is globally attractive even without

our monotonicity condition.

3.1 The Model

Recently, an increasing attention has been paid to nonlocal and time-delayed pop-
ulation models in order to study the effects of spatial diffusion and time delay on
the evolutionary behavior of biological systems (see, e.g., [82, 77, 40, 5, 89, 83]). In
reality, species may drift from one spatial point at a time to another spatial point
at another time, and may disperse from a domain to a larger domain. Moreover,
the environment is often spatially heterogeneous. To describe the growth of a single
species in a multi-patch environment, certain delay differential equation models were
proposed and analyzed in [73, 62, 45, 78, 91]. [77, 5, 40] also formulated nonlocal
and delayed reaction-diffusion models for a single species with stage structure, and
established the existence of a family of traveling wave fronts for these models.

In order to obtain a general nonlocal and time delayed model for a single species
in a bounded domain, we let u(f,a,z) be the density of individuals with age a at

a spatial point z and a time ¢, 7 be the length of the juvenile period. Denote by
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umn(t, z) the density of mature adults. Then we have (see, e.g., [66])

Ou + Ogu = dj(a)Au — pj(a)u, 0<a<T, z€QCRY, : )
3.1,1

Bu=0, ae (0,7), z € 99,

and u,, satisfies

O = Dy — g(uy) +u(t,7,z), t>0, T € Q,
(3.1.2)

Bu=0, t>0, z€ 01,
with u(2,0,z) = f(um(t, z)),t > —7,z € Q, where f(u,,) is the birth rate, g(u,,) is
the mortality rate of mature individuals, 1z;(a) denotes the per capita mortality rate
of juveniles at age a, A is the Laplacian operator on RY, € is a bounded and open
subset of RY with a smooth boundary 9%, either Bu = u or Bu = %%_ + au for some
nonnegative function o € C'*?(9Q, R), 0 > 0, % denotes the differentiation in the
direction of the outward normal n to 9. In (3.1.2), the term w(¢, 7, z) represents
the rate of recruitment to adulthood, being those of maturation age 7. As in [83,
Section 7.1] (see also [73, 82, 77, 5, 58]), integrating (3.1.1) along characteristics

setting (v, a,z) = ul(a + v, a, x), we have

3&‘1’9 = dJ(a.)A(,D P u](a)(lo! 0 < a < Ta € E Q}

{ Bp=0, ac(0,7), z € 89,

! 30(7:03 3’) = f(“m(’)/a :B))

Integrating this equation, we get

o, 8, 2) = /p T(n(a), 7, 9) F(a) f wm(, v))dy,
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Uy (t, z) the density of mature adults. Then we have (see, e.g., [66])

Ot + Ou = dj(a)Du — pj(a)u, 0<a<T7, z€QCRY, (3.1.1)
3.4

Bu=0, a€(0,7), x € 89,

and u,, satisfies

Ot = DUy, — g(tm) +ult,7,2), t>0, z€8Q,
(3.1.2)

Bu=0, t>0, x € 0,
with ©(¢,0,z) = f(u,(t,x)),t > —7,2 € Q, where f(u,,) is the birth rate, g(u,,) is
the mortality rate of mature individuals, ;;(a) denotes the per capita mortality rate
of juveniles at age a, A is the Laplacian operator on RY, € is a bounded and open
subset of RY with a smooth boundary 9<, either Bu = u or Bu = % + au for some
nonnegative function a € C'*?(6, R), 6 > 0, % denotes the differentiation in the
direction of the outward normal n to 9. In (3.1.2), the term u(t, 7, z) represents
the rate of recruitment to adulthood, being those of maturation age 7. As in [83,
Section 7.1] (see also [73, 82, 77, 5, 58]), integrating (3.1.1) along characteristics

setting (v, a, z) = u(a + 7, a, ), we have

,

Oap = dj(@)Dp — pila)p, 0<a<T, TEQ,
{ Be=0, a€(0,7), € 09,

2(7,0,z) = f(um(v, 2)).

\

Integrating this equation, we get

o(v,a,z) = /OF(n(a),fr'y)f(a)f('u»n(%y))d'y;
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where ' is the Green’s function associated with the partial differential operator A

and boundary condition Bu = 0, and

77(@) = f dj(S)dS, F(a) — e f(;l /.r._,'(s)ds.
0

Therefore,
u(t,a,3) = | D(n(a),2,9)F (@) (un(t - a,)dy

Thus, un,(t, r) satisfies

4

a&’zlr”' — dTn_Aranl L g(zll?n)_i_

< Jo D7), 2, 9) F(7) f(um(t — 7,9))dy, t>0, z € Q, (3.1.3)

Bu, =0, t> 0, z € 0%,

| um(t, ) = ¢(t,z), t€[-7,0], z € Q,

where ¢(t, z) is a positive initial function to be specified later.

In the case where Q = RY, [83] studied traveling wave solutions, minimal wave
speed and asymptotic speed of spread for model (3.1.3). In the case of Q@ = R, g(u) =
Pu, system (3.1.3) reduces to the model derived in [77], where traveling wave fronts
are investigated. In the case where Q = R, f(u) = cu and g(u) = Bu?, system (3.1.3)
reduces to the model discussed in [40], where the linear stabilities of two spatially
homogeneous equilibrium solutions, and traveling wave fronts are considered. A
global convergence theorem in the case of bounded intervals was also obtained in
[40]. The threshold dynamics and global convergence were established in [89] for a
special case of system (3.1.3). Here, the purpose is to study the global dynamics of

model (3.1.3).



Gl

where I' is the Green’s function associated with the partial differential operator A

and boundary condition Bu = 0, and

n(a) :/ dj(S)dS: ,7:((1,) — e—J;'ﬂ_i(S)ds.
0

Therefore,
‘U(i, a, T) = AF(7}(G): I,y)f(d._)f('lbm(t - a, y))dy

Thus, u,,(t, z) satisfies

;7

a!,“'m = AnDlym — g(um)”{“

9 fﬂ F(?}'(T), z, y)F(T)f(Um(t =Ty y))dy' b e al, (313)

Bt =0, 120, €058,

un(t,z) = ¢(t,z), te€[-7,0], z €9,

where ¢(¢, ) is a positive initial function to be specified later.

In the case where Q = RY, [83] studied traveling wave solutions, minimal wave
speed and asymptotic speed of spread for model (3.1.3). In the case of Q@ = R, g(u) =
Bu, system (3.1.3) reduces to the model derived in [77], where traveling wave fronts
are investigated. In the case where Q@ = R, f(u) = au and g(u) = Bu?, system (3.1.3)
reduces to the model discussed in [40], where the linear stabilities of two spatially
homogeneous equilibrium solutions, and traveling wave fronts are considered. A
global convergence theorem in the case of bounded intervals was also obtained in
[40]. The threshold dynamics and global convergence were established in [89] for a
special case of system (3.1.3). Here, the purpose is to study the global dynamics of

model (3.1.3).



3.2 Existence of Global Attractor

For convenience, we drop the subscript m in (3.1.3), and write it as

/

Suu(t,z) = dAu(t,z)— g(u(t, z))+

| JoTn(r), 2, ) F(r) f(ult — 7 y))dy, >0, z€Q, (3.2.4)

Bu(t,z) =0, t >0, z € 02,

u(t,z) = ¢(t,x) >0, t€[-1,0], € Q C RV,

\

We assume that
(S1) f € CY(R",R*"), f(0) =0, f'(0) > 0, and f is sublinear;
(S2) g € C'(R",R"), ¢(0) =0, ¢'(0) > 0, and —g is sublinear;

(S3) There exists a number M > 0 such that for all L > M, f(L) — g(L) < 0,
where f(u) = F(r) m[:axx] f(w).
ve(0,u

Let p € (N,o0) be fixed. For each 8 € (3 + :L,-‘“';:,l), let X3 be the fractional
power space of L?(Q) with respect to (-A,B) (see, e.g., [46]), where A := A. Then
X3 is an ordered Banach space with respect to the positive cone XE consisting of
all nonnegative functions in Xz, and X}}' has nonempty interior int(Xz). Moreover,
Xz ¢ C*¥(Q)) with continuous inclusion for v € [0,28 — 1 — %) Denote the norm
on Xz by ||-||s. Then there exists a constant kg > 0 such that ||¢|| = Teaéc lo(z)| <
kgll@llg, Vo € Xs. It is well known that the differential operator A generates an
analytic semigroup 7°(¢) on LP(£2). Moreover, the standard parabolic maximum
principle (see, e.g., [72, Corollary 7.2.3]) implies that the semigroup 7'(t) : X5 — X3

is strongly positive in the sense that 7'(¢)(X5\{0}) C int(X3),Vt > 0.
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3.2 Existence of Global Attractor

For convenience, we drop the subscript m in (3.1.3), and write it as

( du(t,z) = dAu(t,z) — glult,x))+

Jo D), 2, 9) F() f(ult = 7, 9))dy, ©>0, z€Q,

Bu(t,z) =0, t>0, z € 09,

u(t,z) = ¢(t,z) >0, t€[-7,0], z€ Q C RV,
\

We assume that
(S1) f e CY(R*,R"), f(0) =0, f/(0) > 0, and f is sublinear;
(S2) g € C'(R*T,R"), g(0) =0, ¢'(0) > 0, and —g is sublinear;

(S3) There exists a number M > 0 such that for all L > M, f(L) — g(L) < 0,
where f(u) = F(7) max f(v).
vE[0,u]

Let p € (N,00) be fixed. For each 8 € (3 + %, 1), let X5 be the fractional
power space of LP(£)) with respect to (-A,B) (see, e.g., [46]), where A := A. Then
Xz is an ordered Banach space with respect to the positive cone X;; consisting of
all nonnegative functions in Xz, and X}' has nonempty interior int(Xz). Moreover,
Xy € C'*¥(Q) with continuous inclusion for v € [0,23 — 1 — 7). Denote the norm
on Xz by || ||s. Then there exists a constant ks > 0 such that ||¢||. = 1}1&_;( lo(z)| <
kglldllg, Vo € Xg. It is well known that the differential operator A generates an
analytic semigroup 7'(t) on L”(Q). Moreover, the standard parabolic maximum
principle (see, e.g., [72, Corollary 7.2.3|) implies that the semigroup 7'(t) : X5 — X,

is strongly positive in the sense that 7'(2)(X7\{0}) C int(X5),Vt > 0.
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Let Y := C([—7,0],X3) and Yt := C([-7,0],Xf). For convenience, we will
identify an element ¢ € Y as a function from [—7,0] x Q to R defined by ¢(s,z) =
#(s)(z), and for each s € [—7,0], we regard g(¢(s)) as a function on Q defined by
9(6())() = 9(é(s, ). For any function y(-) : [7,b) — Xs, where b > 0, define
ye € Y,t € [0,b) by m(s) = y(t + 8),¥s € [-7,0]. Define F : Y"' — X3 by
F(¢) = —g(¢(0)) + F(r)T(n(7)) f(d(—7,-)), Vo € Y*. Then we can rewrite (3.2.4)

as an abstract functional differential equation

du(t
UD _ 4 Au() + F(w), t>0,
U — Q‘) = Y+.

Therefore, we can write the above equation as an integral equation
v

u(t) = T(@O$(0) + [ T(d(t — ) Fluds, >0,
0

whose solutions are called mild solutions for system (3.2.4).

Since T'(t) : X5 — X3 is strongly positive, we have

lim dist(¢(0) + hF(¢),X5) =0, Vo Y.

h—0+
By [64, Proposition 3 and Remark 2.4] (see also [88, Corollary 8.1.3]), for each
¢ € Y*, system (3.2.4) has a unique non-continuable mild solution u(t, ¢) with
uy = ¢, and u(t, ¢) € X5 for all t € (0,04). Moreover u(t, ¢) is a classical solution

of (3.2.4) for ¢t > 7 (see [88, Corollary 2.2.5]). We further have the following result.

Theorem 3.2.1 Let (S1)-(53) hold. Then for each ¢ € Y, a unique solution
u(t, ¢) globally exists on [—7,00), and the solution semiflow ®(t) = u,(-) : Yt —

Y*,t > 0, admits a connected global attractor.
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Y*, ¢t > 0, admits a connected global attractor.
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Proof. Forany L > M, let ¥y = {p € Xg : p(x) < L,x € Q}, Z, = C([—7,0],ZL).
By [72, Corollary 7.2.4], we have T'(t)Z; C Z., ¥Vt > 0, and ||T(n(7))|| < 1. Since
the function { — hg(l) is increasing on ! € [0, L] for all sufficiently small h > 0, we

have

$(0) +hF(¢) = ¢(0) — hg(6(0)) + hF(T)T(n()) f(6(—7))
< L—hg(L)+hf(L)< L, Vo € Z,.

It then follows that
lim dist(6(0) + hF(4),Tr) =0, Vo € Zy,

By [72, Corollary 7.2.4] and [88, Corollary 8.1.3], Z,, is a positively invariant set for
system (3.2.4). Thus for any ¢ € Y, u(¢, ¢) globally exists on [—7,00), and hence
(3.2.4) defines a semiflow ®(¢) : Y* — Y' by (®(t)o)(s,z) = u(t + s,z,0),Vs €
[—7,0], 2z € Q. Moreover, ®(¢) is compact for all ¢ > 7 ([88, Theorem 2.2.6]).

Let us consider the delay differential equation

(t) = —g(v(®) + f(v(t — 7)),

v(s) = p(s) € C([—7,0],R"), Vse€[-T,0].

(3.2.5)

we claim that the function f is Lipschitz in any bounded subset of R*. In fact, by the
definition of f, we know that f is monotone. Without loss of generality, we assume
that 0 < I} < Iy, and f(l;) < f(l2). Then f(l,) = F(7)f(l3) for some I3 € [I;, 1],
and 0 < f(la) — f(lh) < flls) — f(h) < f{(&)s — L) < F(0)(I2 — h). Therefore,
for any ¢ € C([—7,0],R"), system (3.2.5) admits a unique solution v(¢,¢) with

v(s, ) = p(s), Vs € [—7,0]. It is easy to see that v(¢, ) is bounded. Hence v(%, )
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v(s,p) = w(s),Vs € [—7,0]. It is easy to see that v(¢, ) is bounded. Hence v(t, )



exists globally on [—7,00). Furthermore, we claim that limsupv(t,¢) < M,Vp €
C([—7,0], R"). Indeed, for any ¢ € C([—7,0], R"), the omsiE:?limit set w(yp) of the
orbit 7" (y) is nonempty, compact and invariant, where v (p) = {v(¢) : t > 0}.
Let G = {¥(s) : ¥ € w(p),s € [-7,0]}. Then G is compact because of the
compactness of w(y). Therefore, there exist so € [—7,0] and ¥ € w(y) such that
Y(sg) = sup G := L¢g. By the invariance of w(yp), there exists ¢, € w(y) such that
v-(Uy) = 9, e, v(T+s,91) = ¥(s),Vs € [—7,0]. Without loss of generality, we can

assume that ¢(0) = Lg. Thus,

o(r, 1) = —g(u(r, 1)) + F(v(0,%1))
< —g(Le) + f(Le).
If L > M, then 9(7,v¢;) < 0, which implies that there exists some s € [—7,0)
such that ¢(s) > 1¥(0) = Lg, a contradiction. Thus, limsupuv(t,p) < M,Vy €
C([—m,0], R"). i
For any given ¢ € Y, let L(s) = max{¢(0,z) : 0 € [-7,0],z € Q},Vs € [-,0].
Then lirtisupv(t,f,) < M. Note that, for any ¢ € Y+ with ((s,-) < v(t + s, L),

Vs € [—7, 0], we have

o(t, L) — €(0,z) + h(—g(v(t, L)) + f(v(t — 7, L))
= h(=g(C(0,z)) + [oT(n(7), z,y) F(7) f({(—T7,y))dy
> o(t, L) - ¢(0,2) — h(g(v(t, L)) — g(¢(0, 2)))
> 0 for 0<h<l,z€.

By [64, Proposition 3] (see also [88, Theorem 8.1.10)), u(t,z,¢) < v(t,L),Vz €

Q,t > —7. Thus, limsupu(t, z,¢) < M,Vz € Q. That is, ®(¢) : Y+ — Y is point

t—co
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t—o0

Vs € [—7,0], we have

v(t,L) — ¢(0,2)+h(-g((t, L)) + Fv(t — 7, L))
—  h(=g(¢(0,2)) + [ T(n(r), 2, ) F(7) f(C(~T, y))dy
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By [64, Proposition 3] (see also [88, Theorem 8.1.10]), u(t,z,¢) < v(t,L),Vz €

Q,t > —7. Thus, limsupu(t, z,¢) < M,Vz € . That is, ®(¢) : Y* — Yt is point

t—00
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dissipative. By [41, Theorem 3.4.8], ®(¢) admits a connected global attractor on

Y*, which attracts each bounded set in Y. "

3.3 Threshold Dynamics and Positive Steady State

In this section, we present our main results of this chapter in terms of principal

eigenvalues. Let us first consider the following nonlocal problem:

4

Owu(t,z) = dAu(t,z) — ¢'(0)u(t,z))+
< FO)F(T) JoT(n(r), z, y)ult,y)dy, =€ Q,

Bu(t, z) =0, ¥ 0, o€ 8%,

\

As noted in the previous section (taking delay 7 as zero), the system generates a
>0 p: luti X5 . By the 1€ 1€ 5 in |72
compact, positive solution semigroup on XJ. By the same arguments as in [72,

Theorem 7.6.1], the nonlocal eigenvalue problem

(

M(z) = dAv(z) — g'(0)v(x)+

) FO)F(7) [oT(n(r), z, y)v(y)dy, z€Q, (3.3.6)

Bv(z) =0, =€ 5.

\

admits a principal eigenvalue, denoted by Ag. Then we have the following thresh-
old dynamics for system (3.2.4), which shows that the linear stability of (3.2.4) at
zero implies the extinction of the species while the instability implies the uniform

persistence of the species.

Theorem 3.3.1 Let e¢* € int(X‘};) be fized, and (S1)-(S3) hold. For any ¢ € YT,

denote by u(t, z,d) or u(t, @) the solution of system (3.2.4).
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(i) If Ao < 0, tlim ||w(t, @)||g = 0 for every ¢ € Y.

(i1) If Ao > 0, then system (3.2.4) admits at least one steady state p* with o™ (z) €
(0, M],¥Yz € Q, and there exists § > 0 such that for every ¢ € Y+ with
#(0,+) # 0, there is tyg = to(¢p) > 0 such that u(t,-, ) > de*(-),t > t,.

Proof. Note that zero is an equilibrium of (3.2.4). The variational equation about

zero is given by

,

Sw(t,z) = dAv(t,x) — g'(0)v(t, z)+

4 f’(O)f(T) fQ F(T)(T), x, y)'U(t =idis y)dys t> 0’ T € Q’ (337—)

Buy(t,z) =0, t>0, z € 99,

i v(s,z) = ¢(s,z) >0, s€[—7,0], z €.

By [95, Theorem 9.2.1] and a similar argument in the case of Dirichlet boundary

condition, it follows that the eigenvalue problem

(

M(z) = dAv(z) — ¢ (0)v(z)+

< FOF(r)e™ [(Tn(r), z,y)v(y)dy, =€ Q, (3.3.8)

L Bu(z) =0, z € 99,

has a principle eigenvalue Ao, and Ay shares the same sign with Ao.

(i). In the case of \g < 0, the properties of the principal eigenvalue A and linear
semigroups imply that tl_i}rgo |v(t, -, &)z = 0,Vp € Y, where v(t, z, ¢) is the unique
solution of (3.3.7). Note that a solution w(¢, z) of (3.2.4) satisfies

Ou(t, z) < dAu(t,z) — g’ (0)u(t, z) + f(0)F(7) /(;F(*r)("r),:c, u(t — 7, y)dy, t> 0.
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The comparison theorem for abstract functional differential equations ([64, Propo-
sition 3]) implies that u(¢,-, ¢) < v(t,-, ¢),Vt > —7. Thus, tlim |u(t, d)||lg = 0,V €
) i

(ii). In the case of Ny > 0, let Yy = {¢p € Y : ¢(0,-) # 0}, 0Yp := Y* \ Y,. For

any ¢ € Y*, the solution u(t, z, ¢) of (3.2.4) satisfies
Ou(t, z) > dAu(t, z) — g(u(t,z)), t>0, z € .

By the standard parabolic maximum principle, it then follows that ®(¢)(Y,) C
int(Y+), Vvt > 0. Let Z; = {¢ € Yy : B(t)¢ € Yy, Vt > 0}. Then U, , w(o) =
{0}, where w(¢) denotes the omega limit set of the orbit v*(¢) := {®(t)o : Vi > 0}.
We claim that

Claim. Zero is a uniform weak repeller for Y in the sense that there exists g > 0
such that limsup||®(¢)¢||s = do, Vo € Y.

t—roo

Let us consider the following eigenvalue problem

’

M(z) = dAv(z) — (§'(0) + e)v(x)+
; (f'(0) — &) F(r)e > [ T(n(r), z, y)v(y)dy, €, (3.3.9)

Bv(z) =0, z € 0Q.

.
Since (3.3.8) admits a positive principal eigenvalue ), there exists a sufficiently
small positive £ such that (3.3.9) admits a positive principal eigenvalue X.. For
this &, there exists 6. > 0 such that for all v € (0,4.), g(u) < (¢'(0) + £)u and
fu) > (f'(0) — e)u. Let &g = d./kg. Suppose, by contradiction, that there exists

¢o € Yo such that limsup||®(t)¢olls < do. Then there exists ¢’ > 7 such that

L— 00
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Av(z) = dAv(z) — (¢'(0) +e)v(z)+
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.
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—+00
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[ (t, -, @0)lloc < kgllu(t, -, do)|lg < 8 for all t > t' — 7. Therefore, u(t, z, ¢o) satisfies

Ou(t,z) > dAu(t,z) — (¢'(0) + e)u(t, z)+
(3.3.10)

(f'(0) =€) F(7) Jo T(n(r), =, y)ult — 7, y)dy,

forall t > t', z € Q2. Let ¢ € X3 be the positive eigenfunction associated with the

t

principal eigenvalue A.. Then u.(t,z) = p(z)e** is a solution to

Ou(t,z) = dAu(t,z) — (¢'(0) + e)ul(t, )+
< (f'(0) — e)F(7) [(T(n(r),z,y)ult — r,y)dy, t>0, z €,

Bu(t,z) =0, t >0, z € 0Q.

\
Since u(t,z, ¢o) > 0,Vt > 0,z € Q, there exists ¢ > 0 such that u(t' + s, 2, ¢g) >

cu.(s,z) for s € [-7,0], z € Q. By inequality (3.3.10) and the comparison theorem
([64, Proposition 3]), we have u(t, z, ¢o) > suc(t — #,z) = cp(x)er =) Vi > ¢! z €
Q. Since A\, > 0, u(t, z, ¢g) is unbounded, a contradiction.

By the continuous time version of Theorem 1.1.1 (see [81, Theorem 4.6]), ®(¢)
is uniformly persistent with respect to Yy in the sense that there exists §, > 0 such
that litn_lniélfd'.ist(tf)(t)(ﬁ,SYO) > 6,V € Yy. Since ®(1) : Y© — YT is compact for
each ¢ > 7, Theorem 1.1.3 with e = ¢* € int(Y") implies that there exists § > 0
such that for any ¢ € Yo, u(t, z, @) > de*(z) for all t > t(¢),z € Q.

[t remains to prove the existence of a positive steady state. We consider

4

ou(t,x) = dAu(t,z)— g(ult, z))+

: o D),z ) F(r) f(ult,y))dy, t>0, z€Q,
Bu(t,z) =0, t >0, z € 09,

{ 2(0,z) = p(z) > 0, z € .
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l2e(t, 5 @o)|loo < kgllu(t, -, do)l|lsg < 6 for all £ > ¢’ — 7. Therefore, u(t, z, ¢y) satisfies

Owu(t,z) > dAu(t,z)— (¢'(0) + e)ult, z)+
(3.3.10)

(f'(0) — &) F(7) [o T(n(7), z, y)ult — 7, y)dy,
forall t > ¢, z € Q. Let ¢ € X5 be the positive eigenfunction associated with the

principal eigenvalue \.. Then u.(f,z) = ¢(z)e" is a solution to

[ u(t,z) = dAOu(t,z)— (¢'(0) + e)ul(t, z)+

) (f'(0) — &) F(7) JoT(n(r), z, y)u(t — 7,y)dy, t>0, z€Q,

; Bul(t, z) =8, t>0, = €95).
Since u(t, z, ¢o) > 0,Vt > 0,z € 2, there exists ¢ > 0 such that u(t' + s, z, ¢y) >
su.(s,z) for s € [—7,0],z € Q. By inequality (3.3.10) and the comparison theorem
([64, Proposition 3]), we have u(t,z, ¢o) > su.(t —t',z) = cp(x)eXt") VYt > ' z €
Q. Since M. > 0, u(t, z, ¢g) is unbounded, a contradiction.

By the continuous time version of Theorem 1.1.1 (see [81, Theorem 4.6]), ®(t)
is uniformly persistent with respect to Yy, in the sense that there exists ¢, > 0 such
that Iigglfdist(@(t)rb, dYy) > 6,;,V¢ € Y. Since ®(t) : Y™ — YT is compact for
each ¢t > 7, Theorem 1.1.3 with e = e* € in{(Y") implies that there exists § > 0
such that for any ¢ € Yy, u(t, z, ¢) > de*(z) for all t > t(¢), z € Q.

It remains to prove the existence of a positive steady state. We consider
duu(t,z) = dAu(t,z)— glu(t, z))+

JaT(n(7), 2, ) F(7) f(ult, y))dy, t>0, z€Q,
Bu(t,z) =0, t>0, z € 08,

#(0,2) = plz) =20, €.

\
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Let ®y(t) : X7 — XJ,t > 0, be the solution semiflow. As proven for ®(¢) : Y© —
Y+, it follows that ®g(t) is point dissipative on X7, compact for each ¢ > 0, and
uniformly persistent with respect to Xg \ {0}. Then, by the continuous version of

Theorem 1.1.2, ®¢(#) has an equilibrium ¢* € X7 \ {0}, i.e., ®o(t)¢* = ¢ for all

t > 0. Clearly, ¢* € int(X}'). "

Theorem 3.3.2 Let (51)-(S3) hold and Ao > 0. Suppose that either f or —g is
strictly sublinear on [0, M], and that f is monotone increasing on [0, M]. Then
(3.2.4) admits a unique positive steady state ©~, and tlim lu(t, ) — ¢*||s = 0 for

every ¢ € YT with ¢(0, ) # 0, where u(t, ¢) is the solution of (5.2.4).

Proof. We use notations in the proofs of Theorem 3.2.1 and 3.3.1. Note that f is

monotone increasing on [0, M]. It then follows that

lim —dist((0) — p(0) + h(F(w) ~ F()), X§) = 0,

for all @, € Zys with (s, z) < ¥(s,z),Vs € [-7,0],z € Q. By [64, Proposition 3
and Corollary 5] (see also [88, Corollary 8.1.11]), ®(¢) : Zy; — Zys is a monotone
semiflow with respect to the order on Y induced by Y*. By the proof of Theorem
3.2.1, every omega limits set w(¢) of ®(¢) is contained in Z,s. In particular, every
nonnegative steady state ¢ of (3.2.4) is contained in X,. We further claim that
(3.2.4) admits at most one positive steady state. Indeed, it suffices to show that
®y(t) has at most one positive equilibrium in X,,. By [64, Corollary 5] with 7 = 0,
it then follows that ®q(1) : £y — Sy is a monotone semiflow with respect to the

order on X3 induced by X;. Moreover, for any ¢y, @2 € X with o — s € X}‘ \ {0},
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Let @o(t) : Xj — Xi,t > 0, be the solution semiflow. As proven for ®(¢) : Y* —
Y+, it follows that ®q(t) is point dissipative on X}, compact for each t > 0, and
uniformly persistent with respect to X3 \ {0}. Then, by the continuous version of
Theorem 1.1.2, ®o(t) has an equilibrium ¢* € X3 \ {0}, i.e., Qo(t)p* = ¢* for all

t > 0. Clearly, ¢ € int(X3). '

Theorem 3.3.2 Let (51)-(53) hold and N\g > 0. Suppose that either f or —g is

strictly sublinear on [0, M|, and that f is monotone increasing on [0, M]. Then

(3.2.4) admits a unique positive steady state p*, and flim llu(t, @) — ¢*|lz = 0 for
L= OO

every ¢ € Y with ¢(0,-) # 0, where u(t, ¢) is the solution of (3.2.4).

Proof. We use notations in the proofs of Theorem 3.2.1 and 3.3.1. Note that f is

monotone increasing on [0, M]. It then follows that

lim ld.z'st(z/)([)) — @(0) + h(F(y) — F(9)), X3) =0,

h—0+ h

for all v, € Zy with @(s,z) < ¥(s,z),Vs € [-7,0],z € Q. By [64, Proposition 3
and Corollary 5] (see also [88, Corollary 8.1.11]), ®(t) : Zys — Zys is a monotone
semiflow with respect to the order on Y induced by Y*. By the proof of Theorem
3.2.1, every omega limits set w(@) of ®(f) is contained in Z,,;. In particular, every
nonnegative steady state ¢ of (3.2.4) is contained in ¥,,. We further claim that
(3.2.4) admits at most one positive steady state. Indeed, it suffices to show that
@, (t) has at most one positive equilibrium in X,,. By [64, Corollary 5] with 7 = 0,
it then follows that ®¢(t) : £y — s is a monotone semiflow with respect to the

order on X3 induced by Xg. Moreover, for any ¢, @2 € X with @ — g € X; \ {0},
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u(t, z) == (Po(t)1)(z) — (Po(t)p2)(z) satisfies

1
Ouu(t,z) = dAu(t,z) — U(t,fr)/o g (s@o()pr(z) + (1 — 5)Po(t)p2(x))ds

> dAu(t,z) — ku(t,z), t>0, z € Q,

where k; = 31;1?” g'(u). Then the standard parabolic maximum principle implies
that u(¢) € ntjéxgl) YVt > 0. That is, ®q(t) : pr — T)s is strongly monotone. By the
strict sublinearity of f or —g, it easily follows that for each ¢t > 0, ®o(¢) : Ly — Zns
is strictly sublinear (see, e.g., [37, Theorem 2.2]). Now fix a real number ¢, > 0.
Then [93, Lemma 1] implies that the map ®,(%y) has at most one positive fixed point
in X, and hence the semiflow ®y(¢) has at most one positive equilibrium in ;.
Note that ®(¢) : Y© — YT is compact for ¢ > 7, admits a global attractor in Y*, and
is uniformly persistent with respect to Y,. By [43, Theorem 3.2], ®(¢t) : Zy () Yo —
Zy; (Yo has a global attractor Ag. Theorem 3.3.1, together with the uniqueness
of the positive steady state, implies that Ay contains only one equilibrium ¢*. By
Hirsch’s attractivity theorem (Theorem 1.2.3), it then follows that ¢* attracts every
point in Z () Yo. Consequently, every orbit in Z,; converges to either the trivial
equilibrium or the positive equilibrium ¢*. Note that the equilibria 0 and ¢* are
also isolated invariant sets in Z,s, and there is no cyclic chain of equilibria. By
the continuous time version of [95, Theorem 1.2.2], every compact internally chain
transitive set for ®(¢) : Zas — Zps is an equilibrium. For any given ¢ € Y, by the
proof of Theorem 3.2.1, w(¢) C Zas, and hence w(¢) is an equilibrium. If ¢ € Y+

with ¢(0,-) # 0, by Theorem 3.3.1 (ii), we then have w(¢) = ©*. [



u(t, z) = (Po(t)1)(x) — (Po(t)w2)(z) satisfies
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Hirsch’s attractivity theorem (Theorem 1.2.3), it then follows that ¢* attracts every
point in Zys () Yo. Consequently, every orbit in Zj; converges to either the trivial
equilibrium or the positive equilibrium ¢*. Note that the equilibria 0 and ¢* are
also isolated invariant sets in Zj;, and there is no cyclic chain of equilibria. By
the continuous time version of [95, Theorem 1.2.2], every compact internally chain
transitive set for ®(t) : Zp; — Zys is an equilibrium. For any given ¢ € Y*, by the
proof of Theorem 3.2.1, w(¢) C Zys, and hence w(¢) is an equilibrinm. If ¢ € Y*

with ¢(0,-) # 0, by Theorem 3.3.1 (ii), we then have w(¢) = ¢". '
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3.4 Discussion

In this section, we investigate the effects of spatial diffusion and time delay on the
global behavior of model (3.1.3) in two specific cases, and provide some numerical
simulations, some of which seem to suggest that Theorem 3.3.2 holds even without
the monotonicity condition.

First let us compute the principal eigenvalue Ay for problem (3.3.6). In the case
of the Neumann boundary condition, it easily follows that the eigenvalue problem
(3.3.6) admits the principle eigenvalue Ao = —g'(0) + f/(0)F(7) (with the eigenfunc-
tion v(-) = 1). In the case of the Dirichlet boundary condition, we consider (3.3.6)
with @ = (0,7). Let To(t)p = [, T'(¢ z,y)¢(y)dy, which is the linear semigroup
generated by

O = Au,

§ u(t,0) = u(t, ) =0, (3.4.11)

u(0,z) = p(z) € X}.

.

It then follows that e *sin z is a solution of (3.4.11) with ¢(z) = sin 2. Thus,

To(t) sin(z) = / [(t,z,y)sinydy = e *sinz,Vt > 0,z € (0, 7).
Jo

In particular, Ty(n(7)) sinaz = e ") sin z. It is easy to verify that sin z is a positive
solution of (3.3.6) with A\ = —d — ¢'(0) + f'(0)F(7)e "), Therefore, Ay = —d —
¢(0) + F{(O)F(r)e~.

Example 1. Consider the model (3.1.3) with g(u) = pfu?, f(u) = cu and F{r) =
e "7, where «,f,pt; and the immature diffusion coefficient d; in (3.1.1) are all

positive constants.
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3.4 Discussion

In this section, we investigate the effects of spatial diffusion and time delay on the
global behavior of model (3.1.3) in two specific cases, and provide some numerical
simulations, some of which seem to suggest that Theorem 3.3.2 holds even without
the monotonicity condition.

First let us compute the principal eigenvalue Ay for problem (3.3.6). In the case
of the Neumann boundary condition, it easily follows that the eigenvalue problem
(3.3.6) admits the principle eigenvalue Ay = —¢'(0) + f'(0)F(7) (with the eigenfunc-
tion v(-) = 1). In the case of the Dirichlet boundary condition, we consider (3.3.6)
with Q@ = (0,7). Let To(t)p = [, Tt z,y)o(y)dy, which is the linear semigroup
generated by

&u - A’U-,

Q u(t,0) = u(t,n) =0, (3.4.11)

u(0,z) = o(z) € X3.
\

It then follows that e *sinx is a solution of (3.4.11) with ¢(z) = sin z. Thus,
To(t) sin(z) = / ['(t,z,y)sinydy = e tsinz,Vt > 0,z € (0, 7).
Q
In particular, 75(7n(7)) sinx = e ") sin z. It is easy to verify that sin z is a positive

solution of (3.3.6) with A = —d — ¢'(0) + f(0)F(7)e "), Therefore, \g = —d —
g'(0) + f'(0)F(r)e~"".

Example 1. Consider the model (3.1.3) with g(u) = pu?, f(u) = au and F(7) =
e 7, where o, fJ,t; and the immature diffusion coefficient d; in (3.1.1) are all

positive constants.
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In the case of the Neumann boundary condition, we have Ay = ae ™" > 0. By
Theorem 3.3.2 with M = Ze "7, it follows that for each ¢ € Y™ with #(0,-) # 0,
llrn um(t, z,9) = *(z) = e 7 uniformly for z € Q, where u,(t,z,¢) is the
solution of (3.1.3) with the initial function ¢. This convergence result is consistent
with that in [40]. In this case, we can see that the maturation period 7 and the
diffusion of the species do not affect the permanence of the species.

In the case of the Dirichlet boundary condition, let Q@ = (0,x). Then, \g =
—dy, + ae~#i+4)7T (4 in (3.1.3) is d in (3.3.6)). Note that )y < 0 if &« < d,, and

in the case of @ > d,,, we have A\g > 0 if 7 € [0,7), and Ao < 0 if 7 > 75, where

To = In -& o By Theorem 3.3.1 and 3.3.2 with M = —F'-‘”-? , we have the

,u_?+d

following result for this case.

Proposition 3.4.1 Let u,,(t, z, ¢) be the solution of (8.1.3) subject to the Dirichlet

boundary condition and with the initial function ¢ € Y.
(1) If o < dyp, then for any ¢ € YT, tlim un(t, z, ®) = 0 uniformly for z € [0, 7.
—300

(2) In the case of o > dy,, let 79 = > 0.

o
u_,—!—d In dm
(a) If T > 19, then for any ¢ € YT, ltlim U (t, z,0) = 0 uniformly for © €
— 00
[0, 7].

(b) If 7 € [0,7), then for any ¢ € Y with ¢(0,-) # 0, tl_i)fngg Uit @) =
©"(x) uniformly for x € [0,7n], where ¢* is the unique positive steady

state of (3.1.3).

By Proposition 3.4.1, we have the following observations on the model (3.1.3)

subject to the Dirichlet boundary condition.



In the case of the Neumann boundary condition, we have \j = ae 7 > 0. By
Theorem 3.3.2 with M = Ze™#7, it follows that for each ¢ € Y with ¢(0,:) # 0,
Ll_i}lgum(t,a:,d)) = @*(z) = Se™7 uniformly for z € Q, where U (t, z, ) is the
solution of (3.1.3) with the initial function ¢. This convergence result is consistent
with that in [40]. In this case, we can see that the maturation period 7 and the
diffusion of the species do not affect the permanence of the species.

In the case of the Dirichlet boundary condition, let Q = (0,%). Then, \¢ =
—dp + e~ Witd)7™ (d in (8.1.3) is d in (3.3.6)). Note that Mg < 0 if @ < d,, and

in the case of & > d,,, we have Ay > 0 if 7 € [0,79), and Ag < 0 if 7 > 75, where

T = In = > 0. By Theorem 3.3.1 and 3.3.2 with M = “ e "7, we have the

Hj +d

following result for this case.

Proposition 3.4.1 Let u,,(t, x, @) be the solution of (3.1.3) subject to the Dirichlet

boundary condition and with the initial function ¢ € Y.
(1) If o < dpn, then for any ¢ € YT, tlim U (t, T, @) = 0 uniformly for z € [0, «].
—00

(2) In the case of a > d,,, let 7y = in 2 =0,

+i
(a) If T > 7y, then for any ¢ € YT, ||‘l_i‘m um(t, z, ¢) = 0 uniformly for © €
[0, 7].

(b) If 7 € [0,7), then for any ¢ € Y with ¢(0,-) # 0, l_i}m Tt pd) =
©*(x) uniformly for x € [0, 7], where ¢* is the unique positive steady

state of (3.1.3).

By Proposition 3.4.1, we have the following observations on the model (3.1.3)

subject to the Dirichlet boundary condition.
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Conclusion 1. If all parameters except for d,, are fixed, then the fast mature

dispersal in space brings negative effect on persistence of the species.

Conclusion 2. If all parameters except for the delay 7 are fixed, then the large

maturation time 7 brings negative effect on persistence of the species.

Example 2. Consider the model (3.1.3) with g(u) = Su, f(u) = pue™® and F(7) =
e "7, where [3, p, q, nj and d; are all positive constants. A direct computation shows
that f'(u) = pe (1 —qu), f"(u) = —pge~9%(2 — qu), and f(u) reaches its maximum
value f(;) = Ze ™.

In the case of the Neumann boundary condition, A\g = —f3 + pe #i". Therefore,
if 5 > pe ", then Theorem 3.3.1 (i) with M = 0 implies that the species goes
extinct; if § < pe 7, then Theorem 3.3.1 (ii) with M = é’;}e“‘““i" implies that
the species persists. If, in addition, pe='7%7 < B < pe 7, Theorem 3.3.2 with
M = é(ln E — py7) > 0 implies that (3.1.3) admits the unique positive steady state
p*(z) = ;li—(ln £ — py7), which is globally attractive.

The above analysis supports our second conclusion. For various values of the
maturation time 7, the species may go to extinction, persist, or stabilize at a positive
steady state. However, the diffusion coeflicient d,,, has no effects on the persistence
of the species.

In the case of the Dirichlet boundary condition, A\g = —(dm + 3) + pe~H+di)7,
By Theorem 3.3.1 and 3.3.2 with M =0, or M = E"Ee—’_”ﬂ and i(ln% — p4T), we
have the following result, which implies the same conclusions about the effects of

the maturation period 7 and the diffusion coeflicient d,, as in Example 1.
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Conclusion 1. If all parameters except for d,, are fixed, then the fast mature

dispersal in space brings negative effect on persistence of the species.

Conclusion 2. If all parameters except for the delay 7 are fixed, then the large

maturation time 7 brings negative effect on persistence of the species.

Example 2. Consider the model (3.1.3) with g(u) = Bu, f(u) = pue™® and F(7) =
e T, where /3, p, g, ;t; and d; are all positive constants. A direct computation shows
that f'(u) = pe (1 —qu), f"(u) = —pge~ (2 — qu), and f(u) reaches its maximum
value f(7) = Ze™'.

In the case of the Neumann boundary condition, \g = —3 + pe # 7, Therefore,
if # > pe 7, then Theorem 3.3.1 (i) with M = 0 implies that the species goes
extinet; if 7 < pe 7, then Theorem 3.3.1 (ii) with M = b%e“““ﬂ implies that
the species persists. If, in addition, pe "7 < 8 < pe 7, Theorem 3.3.2 with
M = %(ln £ — p;7) > 0 implies that (3.1.3) admits the unique positive steady state

¢*(z) = ;(In & — p;7), which is globally attractive.

L
q

The above analysis supports our second conclusion. For various values of the
maturation time 7, the species may go to extinction, persist, or stabilize at a positive
steady state. However, the diffusion coefficient d,,, has no effects on the persistence
of the species.

In the case of the Dirichlet boundary condition, Ay = —(d,, + ) + pe~#i+d)7,
By Theorem 3.3.1 and 3.3.2 with M =0, or M = ?j‘r’—qe"‘""i”’ and é‘(l“g‘ — W;T), We

have the following result, which implies the same conclusions about the effects of

the maturation period 7 and the diffusion coeflicient d,, as in Example 1.
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Proposition 3.4.2 Let u,,(t,z,¢) be the solution of system (3.1.3) subject to the

Dirichlet boundary condition and with the initial function ¢ € Y.

(1) If p < d,,+83, then for any ¢ € Y, Llim um(t, z,d) = 0 uniformly for z € [0, .

(2) In the case of p > d,, + 3, let 7o = Ilj—:—d_f In ;25,1 = ﬁ;(lng 1

(a) If 7 > 719, then for any ¢ € YT, l5lim um(t, z,®) = 0 uniformly for z €
[0, 7].

(b) If 1 < 7 < 79, then for any ¢ € YT with ¢(0,-) # 0, tl_i)rn Mokt @) =

@ () uniformly for x € [0, 7|, where ©* is the unique positive steady state

of system (3.1.3).

Numerical simulation. We numerically simulate Example 2 with the domain
Q = (0, 7). Model (3.1.3) is discretised by using the finite difference method, where

the nonlocal term is approximated by composite integration formulas. Note that in
the case of the Neumann boundary condition,
L(n(r),z,y) = = + 2 i e 5T cos na cos ny,
%

n=1

and in the case of the Dirichlet boundary condition,

o0

2
L(n(r), z,y) = v Z e ™47 gin na sin ny

=l

(see, e.g., [65, Section 5.1]).
For the case of the Neumann boundary condition, let p = ¢ = p; = 1,d,, =

0.5,8 = 0.2,d; = 0.25. Then, when 7 > 1.6094, every positive solution goes to

zero as t goes to infinity (Theorem 3.3.1); when 7 € (0.6094, 1.6094), model (3.1.3)
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Dirichlet boundary condition and with the initial function ¢ € Y.
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— 00

©* () uniformly for x € [0, |, where p* is the unique positive steady state

of system (3.1.3).
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Il i
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0.5,8 = 0.2,d; = 0.25. Then, when 7 > 1.6094, every positive solution goes to

zero as t goes to infinity (Theorem 3.3.1); when 7 € (0.6094, 1.6094), model (3.1.3)
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admits a globally attractive and positive steady state ¢*(z) = {l}(ln% — p;T) > 0
(Theorem 3.3.2). We simulate solutions of system (3.1.3) with the initial function
o(t,z) = 1 — cos2zx in the case of 7 = 1.7 and 7 = 1, which are shown in Figure
3.1 and Figure 3.2, respectively. Clearly, the solution in Figure 3.1 converges to
zero, while the solution in Figure 3.2 converges to the unique positive steady state
©*(z) = 0.6094. Thus, the numerical results are consistent with our theoretical
results. We also simulate solutions of system (3.1.3) when 7 < 0.6094, which implies
that the monotonicity condition in Theorem 3.3.2 is not satisfied. In Figure 3.3,
3.4, 3.5 and 3.6, the solutions share the parameters with those in Figure 3.1 and 3.2
except for 7 = 0.3 and different initial functions. The numerical results shows that
all the solutions converge to the same steady state ¢*(x) = é(lnﬁ — p;7) = 1.3094.
Therefore, in this case, the positive steady state ¢*(z) may be unique and globally
attractive even if the monotonicity condition in Theorem 3.3.2 is not satisfied.

For the case of the Dirichlet boundary condition, let p = 5,q = = 1,u; =
1.2,d; = 0.25,d,, = 0.5. Then, by Proposition 3.4.2, when 7 > 0.8303, zero solution
attracts every solution of system (3.1.3); when 7 € (0.5078,0.8303), model (3.1.3)
admits a globally attractive and positive steady state. In Figure 3.7, the solution of
system (3.1.3) with initial function ¢(t, ) = sinz and 7 = 1 converges to zero, while
in Figure 3.8, the solution with the same initial function and 7 = 0.65 converges to
the unique steady state @*(z). Our theoretical results coincide with the numerical
simulations. Just as in the case of the Neumann boundary conditions, we also
simulate the solutions of system (3.1.3) in the case of 7 < 0.5078. The numerical
results are shown in Figure 3.9, 3.10, 3.11, 3.12. We can see that the solutions in

these figures converge to the same steady state. The numerical simulations, just as
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@*(z) = 0.6094. Thus, the numerical results are consistent with our theoretical
results. We also simulate solutions of system (3.1.3) when 7 < 0.6094, which implies
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attracts every solution of system (3.1.3); when 7 € (0.5078,0.8303), model (3.1.3)
admits a globally attractive and positive steady state. In Figure 3.7, the solution of
system (3.1.3) with initial function ¢(¢, z) = sinz and 7 = 1 converges to zero, while
in Figure 3.8, the solution with the same initial function and 7 = 0.65 converges to
the unique steady state ¢*(z). Our theoretical results coincide with the numerical
simulations. Just as in the case of the Neumann boundary conditions, we also
simulate the solutions of system (3.1.3) in the case of 7 < 0.5078. The numerical
results are shown in Figure 3.9, 3.10, 3.11, 3.12. We can see that the solutions in

these figures converge to the same steady state. The numerical simulations, just as
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attractive, even if the monotonicity condition in Theorem 3.3.2 is not satisfied.

However, we could not mathematically prove it.
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2

Figure 3.1: The solution of Example 2 in the case of the Neumann boundary con-
dition. The parameters of the system are as follows: 2 = (0,7), p =g = p; = 1,
dey =05, 8 =0.2,d; = 0.25,¢ = LT ¢t z) =1 =co8(22)

Figure 3.2: The solution of Example 2 with the same condition and parameters as
in Figure 3.1, except for 7 = 1, ¢(¢,z) = 1 — cos(2z).
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Figure 3.1: The solution of Example 2 in the case of the Neumann boundary con-
dition. The parameters of the system are as follows: Q = (0,7), p = ¢ = p; = 1,
dm =05, B=10.2, d; =025, 7= 1.7, olt,5) = 1= cos(2z):

Figure 3.2: The solution of Example 2 with the same condition and parameters as
in Figure 3.1, except for 7 = 1, ¢(¢,z) = 1 — cos(2z).
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Figure 3.3: The solution of Example 2 with the same condition a:nd parameters as
in Figure 3.1, except for 7 = 0.3, ¢(¢,z) = 1 — cos(2z).

Figure 3.4: The solution of Example 2 with the same condition aand parameters as
in Figure 3.1, except for 7 = 0.3, ¢(t, z) = 3 — 3 cos(2z).
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Figure 3.3: The solution of Example 2 with the same condition and parameters as
in Figure 3.1, except for 7 = 0.3, ¢(¢,z) = 1 — cos(2x).

Figure 3.4: The solution of Example 2 with the same condition and parameters as
in Figure 3.1, except for 7 = 0.3, ¢(¢,z) = 3 — 3cos(2z).
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Figure 3.5: The solution of Example 2 with the same condition and parameters as
in Figure 3.1, except for 7 = 0.3, ¢(t, z) = 1 — cos(4x).

Figure 3.6: The solution of Example 2 with the same condition and parameters as
in Figure 3.1, except for 7 = 0.3, ¢(¢,z) = 5 — 5 cos(4z).
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x 0 -0

Figure 3.5: The solution of Example 2 with the same condition and parameters as
in Figure 3.1, except for 7 = 0.3, ¢(t,z) = 1 — cos(4z).

0 -10

Figure 3.6: The solution of Example 2 with the same condition and parameters as
in Figure 3.1, except for 7 = 0.3, &(t,z) = 5 — 5 cos(4x).
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Figure 3.7: The solution of Example 2 in the case of the Dirichlet boundary condi-
tion. The parameters of the system are as follows: Q = (0,7),p =5,q¢q =8 =1,
=12, dy = 0.25, dopy =05, F= 1pdlt ) =g

Figure 3.8: The solution of Example 2 with the same condition and parameters as
in Figure 3.7, except for 7 = 0.65, ¢(t, z) = sin z.
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Figure 3.7: The solution of Example 2 in the case of the Dirichlet boundary condi-
tion. The parameters of the system are as follows: Q = (0,7),p=5,q¢= 8 = 1,
i = 1.2, d; =025, diy =05, 7= 1; ¢{t,2) =sinz.

Figure 3.8: The solution of Example 2 with the same condition and parameters as
in Figure 3.7, except for 7 = 0.65, ¢(¢t, z) = sin z.
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Figure 3.9: The solution of Example 2 with the same condition and parameters as
in Figure 3.7, except for 7 = 0.3, ¢(¢, z) = sin z.

Figure 3.10: The solution of Example 2 with the same condition and parameters as
in Figure 3.7, except for 7 = 0.3, ¢(¢,z) = 3sinz.
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Figure 3.9: The solution of Example 2 with the same condition and parameters as
in Figure 3.7, except for 7 = 0.3, ¢(¢,z) = sinz.

Figure 3.10: The solution of Example 2 with the same condition and parameters as
in Figure 3.7, except for 7 = 0.3, ¢(t,z) = 3sinz.
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Figure 3.11: The solution of Example 2 with the same condition and parameters as
in Figure 3.7, except for 7 = 0.3, ¢(¢t,z) = 1 — cos4ax.

Figure 3.12: The solution of Example 2 with the same condition and parameters as
in Figure 3.7, except for 7 = 0.3, ¢(¢,z) = 5 — 5 cos4z.
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Figure 3.11: The solution of Example 2 with the same condition and parameters as
in Figure 3.7, except for 7 = 0.3, ¢(¢,2) = 1 — cos4z.

Figure 3.12: The solution of Example 2 with the same condition and parameters as
in Figure 3.7, except for 7 = 0.3, ¢(¢,x) = 5 — 5 cos4z.



Chapter 4

Bistable Traveling Waves in an
Epidemic Model

Traveling wave solutions are important in epidemic models when investigating the
geographic spread of infectious diseases (e.g. [68]). This chapter will focus on
bistable traveling waves in an epidemic model proposed by Capasso et al., which
models man-environment-man epidemics, while Chapter 5 will be involved in monos-
table traveling waves in the integral version of the model. In this chapter, the ex-
istence, uniqueness up to translation and global exponential stability with phase
shift of bistable traveling waves are established. The methods involve phase plane
investigation, monotone semiflow approaches and spectrum analysis.

The organization of this chapter is as follows. In Section 4.1, we provide an
introduction to the epidemic model and a review of the works related to the model
and the methods for studying the existence and the stability of traveling waves.
In Section 4.2, we establish the existence of bistable waves for the model by a
qualitative analysis of a three dimensional ordinary differential system. In Section

4.3, a convergence theorem for monotone semiflows is employed to prove the global
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attractivity and then the uniqueness of traveling waves (up to translations). This
method has its own interest. Section 4.4 is devoted to the global exponential stability
of traveling waves. To do this, we analyze in detail the point spectrum and essential
spectrum of the associated linear operator, respectively, and then use the global
attractivity obtained in Section 4.3 and some results due to Evans ([30, 31, 32, 33]).

A numerical simulation section completes this chapter.

4.1 Introduction

The geographic spread of infectious diseases is an important subject in mathematical
epidemiology. To model the cholera epidemic which spread in the European Mediter-
ranean regions in 1973, Capasso and Paveri-Fontana [19] proposed a system of two
ordinary differential equations. As a basic feature, this model involves a positive
feedback interaction between the infective human population and the concentration
of bacteria. The human population, once infected, has a contribution to the growth
rate of bacteria, which is then returned to the environment to increase the infection
rate of humans. This kind of mechanism seems to be appropriate to interpret other
fecally-orally transmitted epidemics such as typhoid fever, infectious hepatitis, poly-
ometitis etc., with suitable modifications. Under the assumption that the bacteria
disperse randomly while the small mobility of the infective human population is

neglected, Capasso and Maddalena [17] further obtained a reaction-diffusion system

C—%Ul(ﬂf, t) = d%Ul(iﬁ, t) = (IuL‘I'l(.'L‘,t) S & algUg(:n, t),

(4.1.1)
:‘%Ug(x, t) = —anUs(z,t) + g(U,(z,1)).
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;%Ul(a:, L= dg;z Ui(z,t) — anUy(z, t) + appUs(z, t),

(4.1.1)
%Ug(.’ﬂ, t) B —agng(."s,t) + g(U[(“L,t))
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Here d,a;;,a,5 and ays are positive constants, U,(z,t) and U;(x,t), respectively,
denote the spatial densities of infectious agent and the infective human population
at a point x in the habitat at time ¢ > 0, 1/a,; is the mean lifetime of the agent in
the environment, 1/as5 is the mean infectious period of the human infections, a;» is
the multiplicative factor of the mean infectious agent due to the human populations,
and the function g is the infection rate of humans under the assumption that total
susceptible human population is constant during the evolution of the epidemic. Note
that the second equation of system (4.1.1) has no diffusion terms. That is why we
can not directly apply any results in reference when dealing with the existence and
the linear stability of traveling waves.

System (4.1.1) and its corresponding reaction system have received extensive in-
vestigations. For example, the case in which there is at most one nontrivial endemic
equilibrium was studied in [19, 17, 16, 15], and it is known that above some pa-
rameter threshold a unique nontrivial state exists and all epidemic outbreaks tend
to it (i.e., monostable case), below the parameter threshold, all epidemics tend to
extinction. In [18], the bistable case (where the corresponding reaction system of
(4.1.1) admits exactly two nontrivial steady states) was obtained by assuming that
the infection rate g is sigma-shaped. A saddle point structure was obtained in [18]
for (4.1.1) with Neumann boundary conditions and its reaction system, and a com-
plete analysis of the steady states of (4.1.1) subject to Dirichlet boundary conditions
and numerical simulations were presented in [20]. It was shown in [52] that system
(4.1.1) subject to Dirichlet boundary conditions also admits saddle point behavior.

Recently, the existence of monotone traveling waves and the minimal wave speed

were established in [97] for system (4.1.1) in the monostable case. Moreover, it was
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proven in [83] that this minimal wave speed coincides with the asymptotic speed of
spread for solutions with initial functions having compact supports. The purpose of
this chapter is to study the existence, uniqueness and global exponential stability of
traveling waves of system (4.1.1) with bistable nonlinearity.

Various approaches exist for proving the existence of wave solutions of parabolic
equations, ranging from topological methods ([38, 39, 23]) to shooting methods based
on Wazewski's principle ([29]). For scalar bistable evolution equations, the exis-
tence, uniqueness and global exponential stability of traveling waves are well known
(see, e.g., [35, 21] for reaction-diffusion equations, [71, 75] for time-delayed reaction-
diffusion equations). For quasi-monotone parabolic systems with positive diffusion
coeflicients, monotone traveling waves were proven to exist via topological meth-
ods ([85]). Also by topological methods, the existence and uniqueness of bistable
traveling waves were obtained in [67] and [51], respectively, for a reaction-diffusion
model of n mutualist species, in which all diffusion coefficients were assumed to be
positive.

A standard method to study the local stability of traveling waves is to use the
linearization at the waves under study. The stability then splits into two steps. The
first step is to prove that the linear stability implies the nonlinear stability. That is,
proving that the stability for the linearized system implies the stability for the full
nonlinear system. The general results can be found in [46, 12] and references therein.
The second step is to analyze the linearized equations. All the information needed
is about the spectrum of the corresponding linear operator. This is the key issue
for the stability problem. For FitzZHugh-Nagumo equations, the spectrum analysis

53] shows that traveling waves are stable. For quasi-monotone parabolic systems
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with positive diffusion coefficients, the location of the spectrum was investigated
in [85, 86] and references therein, and the global stability of traveling waves was
obtained in [70]. In the case of positive diffusion coefficients, a general strategy for
the second step was given in [4].

Evans did a series of works ([30, 31, 32, 33]) for an evolution system of nerve axon
equations, where a reaction-diffusion equation is coupled with n ordinary differential
equations. In [30], he completed the first step, and the main result in [32], in fact,
states that the linearized equations are stable if all spectrum points of the linear
operator except for zero lie in an appropriate negative half-plane of the complex
plane, and zero is a simple eigenvalue. It then follows that the local stability of
bistable waves of system (4.1.1) reduces to the spectral analysis of the linear operator

associated with the linearization at the wave profile. That is just what we will do.

4.2 Existence of Traveling Waves

Since we are interested in the bistable case of system (4.1.1), throughout the whole

chapter we make the following assumption on the function g.

(R1) g € C?*(R.),9(0) =0,4'(0) > 0,¢'(2) > 0,Yz > 0, lim g(z) = 1, and there is a
€ > 0 such that g”(z) > 0 for z € (0,£) and ¢"(2) < 0 for z > &.

Mathematically, we can rescale system (4.1.1) and only study the rescaled system

22U (z,t) = d%Ul(J:, t) — U (z,t) + al,(x, t),
(4.2.2)

2Us(x,t) = —BUs(z, t) + g(Ur(z, 1)),
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& > 0 such that ¢”(z) > 0 for z € (0,&) and ¢”(z) < 0 for z > &.

Mathematically, we can rescale system (4.1.1) and only study the rescaled system
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(4.2.2)
B%UZ(:ES t) = _ﬁU2(3:s t) E i g(UI (l’, t)),
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where a = aj2/a?,, 8 = ax/a;.

Let v = f/a. Note that the global dynamics of the cooperative system

Ur(t) = —Ui () + als(t)
(4.2.3)

Us(t) = —BUs(t) + g(U(2))
has been described in detail ([18, 15, 20]). In particular, the following results are

known.
Proposition 4.2.1 There exists Vi > 0 such that

(i) For v > Yerit, (0,0) € R? is the only equilibrium for system (4.2.3). It is

globally asymptotically stable in the positive quadrant of R?;

(ii) For v = Yerit 07 0 < v < ¢'(0) in the case of ¢'(0) > 0, system (4.2.3) admits

a unique nontrivial equilibrium in addition to (0,0);

(iii) For ¢'(0) < v < Yerit, system (4.2.3) has three equilibria in the first quadrant
of R?: E- =(0,0), E° = (a,a/a), ET = (b,b/a), where 0 < a < b are the two
positive roots of g(u) = %u. In this case, E° is a saddle point, E~ and E* are

stable nodes.

In order to discuss the existence of bistable waves for (4.2.2), i.e., traveling waves
connecting two stable equilibria, we further assume ¢'(0) < v < vt See Figure 4.1
for an illustration of three equilibria.

Let (Uy(z,t),Us(z,t)) = (ui(z + ct), us(z + ct)) be a traveling wave solution of

(4.2.2). Then the wave front profile (u,(7),u2(7)) satisfies the ODE system

cuy (1) = duy" (1) — u1(7) + aua(r),
(4.2.4)

cub (1) = —Pua(7) + glui (7)),
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where oo = ajp/a%,, 8 = az/an .-
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of R?: E- =(0,0), E° = (a,a/a), E* = (b,b/a), where 0 < a < b are the two
B

positive roots of g(u) = Zu. In this case, E° is a saddle point, E~ and E™ are

stable nodes.

In order to discuss the existence of bistable waves for (4.2.2), i.e., traveling waves
connecting two stable equilibria, we further assume ¢’(0) < v < 7.4:. See Figure 4.1
for an illustration of three equilibria.

Let (U(z,t),Us(z,t)) = (u1(z + ct), us(x + ct)) be a traveling wave solution of

(4.2.2). Then the wave front profile (u,(7), uz(7)) satisfies the ODE system

cu (1) = duy"(7) — uy (1) + aus(7),
(4.2.4)

cu,’z(*r) = —,B'H-Q(T) 1% 9’(“1(7))=
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Figure 4.1: Illustration of the three equilibria £~, E° and E*.

where ’ denotes the derivatives %. Since we are interested in traveling wave fronts
connecting £~ and E', we impose the asymptotic boundary conditions on the
system

uy(—o0) = uj(—o0) = uz(—o00) = 0. (4.2.5)

Consider the case where ¢ # 0. By the second equation of system (4.2.4), we

have
s

1 8
us(T) = e~ ™) ys (1) + Z/ e_E(T‘s)g(ul(s))ds.
70

Note that, as 7 — —o00, ua(7) and g(u;(7)) are bounded. By taking 75 — —o0, we

obtain

1 T 1 0
up(r) = — / e g(ur(s))ds = - / e<*g(ui(r +5))ds,Vr € R, (4.2.6)

—00 -0

Therefore, if u;(7) is increasing with

u1(—o0) =0, wu1(+00) = b, (4.2.7)
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where ' denotes the derivatives %. Since we are interested in traveling wave fronts
connecting £~ and E, we impose the asymptotic boundary conditions on the
system

uy (—o0) = uj(—o0) = us(—o0) = 0. (4.2.5)

Consider the case where ¢ # 0. By the second equation of system (4.2.4), we
have

v

1 P
us(7) = e_'g(f_":')w(?‘o) + E/ e_g(f_s]g(ul(s))ds-

70

Note that, as 7 — —o0, us(7) and g(u,(7)) are bounded. By taking 79 = —o0, we

obtain

i L 7% e,
u(7) = E,/ e‘g(T—s)g(ul(s))dS = E/ e%"’g(ul('r +38))ds, YT € R.  (4.2.6)

o0

Therefore, if u;(7) is increasing with

uy(—o0) =0, wui(+o0) =b, (4.2.7)
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then us(7), defined by formula (4.2.6), is also increasing and satisfies
up(—00) =0, ux(+o00) = b/a.

Consequently, it suflices to consider positive and increasing solutions u, (7) of system
(4.2.4) subject to the boundary conditions (4.2.7).
In the case of ¢ # 0 in system (4.2.4), let uz(7) = u}(7). Then system (4.2.4) is

equivalent to
]

ul (r) = ua(7)

) = &(=Bua(r) + g(wi (7)), (4.2.8)

=

|

us(1) = gleus(r) + ui(7) — aua(7)).

\

Obviously, system (4.2.8) admits three equilibria: (£~,0), (£°,0) and (E*,0). The

Jacobian matrix of (4.2.8) is

Let f(A,m) := (A + %)(—/\2 + £X + 2) — m. Then, at the point (E—,0), the
eigenvalues of J are given by the roots of f(\, %¢'(0)) = 0. Note that f(/\,%)
admits three real zero points: \; < 0, As = 0, A3 > 0, and f(\,0) also has three zero
points: two negative and one positive. By 0 < ¢'(0) < ;_‘i-, it follows that at (E—,0),
J admits a positive eigenvalue \(¢) and two negative eigenvalues. Therefore, system
(4.2.8) has a one dimensional unstable manifold corresponding to A(e¢) at (0,0, 0).

Denote by U, this manifold. Note that (1, ¢'(0)/(8 + c¢A(e)), A(c)) is an eigenvector
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then uy(7), defined by formula (4.2.6), is also increasing and satisfies
Up(—00) =0, ux(+o0) =b/a.

Consequently, it suffices to consider positive and increasing solutions u;(7) of system
(4.2.4) subject to the boundary conditions (4.2.7).

In the case of ¢ # 0 in system (4.2.4), let u3z(7) = u}(7). Then system (4.2.4) is
equivalent to

uy (1) = ug(7)

| ua(r) = H(=Bua(r) + g(wi(7))), (+248)

uh(7) = S(cus(r) + ui(7) — aus(7)).
Obviously, system (4.2.8) admits three equilibria: (E-,0), (E°,0) and (E*,0). The

Jacobian matrix of (4.2.8) is

g e %
J=1 l¢(z) -2 o0
IE e 4 <

d d d

Let f(A\,m) := (A + £)(=A% + £A + 1) — m. Then, at the point (E~,0), the
eigenvalues of J are given by the roots of f(), 5¢'(0)) = 0. Note that f(A,%)
admits three real zero points: A; < 0, Ay =0, A\3 > 0, and f(A, 0) also has three zero
points: two negative and one positive. By 0 < ¢'(0) < —g, it follows that at (E—,0),
J admits a positive eigenvalue A(c) and two negative eigenvalues. Therefore, system
(4.2.8) has a one dimensional unstable manifold corresponding to A(¢) at (0,0,0).

Denote by U, this manifold. Note that (1, ¢'(0)/(5 + cA(¢)), A(¢)) is an eigenvector



92

corresponding to A(c). It is easy to prove the following lemma for the solutions on

U, (see, e.g., [22]).

Lemma 4.2.1 Assume that ¢ # 0. Then system (4.2.4)-(4.2.5) has exactly one
positive solution on U, (up to translations). For sufficiently large negative 7, this

solution satisfies

ui (1) = uz(7) = Ae)ur (1) + O(uy (7)),
g'(0)

WU.I(T) + O(uy(1)).

uy(7) =
Remark 4.2.1 If §’(0) = 0, we assume that ¢”(0) 5% 0. Then us(7) in Lemma 4.2.1

can be approximated by

g"(0)
28 + 4eA(c)

us (1) = uy (1) + O(ui(r)), (r = —o0).

In the case where ¢ = 0, system (4.2.4) is equivalent to

dyy (1) — n (1) + %g(yl('r)) =0

or
7 4 ! 1 r [
yi(r) = ya(7), ws3(7) = E(Z}I(T) = Bg(yl(’r))) (4.2.9)
with boundary conditions #,(—o0) = ys(—oc0) = 0. In what follows, we are only

interested in positive and increasing solutions u,(7) and y,(7) of (4.2.4) or (4.2.8)
and (4.2.9), respectively. As long as y}(7) > 0, for the trajectory ¥(n) := y3(y; ' (n))
we have the following graph equation in the (y;,y3) phase space

() = 7 z9(n)

—_— for n > 0. 4.2.10
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corresponding to A(e). It is easy to prove the following lemma for the solutions on

U, (see, e.g., [22]).

Lemma 4.2.1 Assume that ¢ # 0. Then system (4.2.4)-(4.2.5) has ezxactly one
positive solution on U. (up to translations). For sufficiently large negative T, this

solution satisfies

wy (1) = u3(7) = Me)uy (1) + O(uy (7)),

_ g%
us(7) = [J’+—c,\(c)u1(T) + O(uy (7))

Remark 4.2.1 If ¢'(0) = 0, we assume that ¢”(0) # 0. Then u5(7) in Lemma 4.2.1

can be approximated by

us(7) = g'(0)

- mﬂl(ﬂ + O@3(7)), (1 — —c0).

In the case where ¢ = 0, system (4.2.4) is equivalent to
" @
dyy (1) — yi(7) + E.@(yl(ﬂ) =0
or
o

B

with boundary conditions y;(—o0) = y3(—o0) = 0. In what follows, we are only

W) = 5(n), Bh(r) = 5l (7) = 9 () (129

interested in positive and increasing solutions u;(7) and y;(7) of (4.2.4) or (4.2.8)
and (4.2.9), respectively. As long as ¥ (7) > 0, for the trajectory ¥(n) := y3(y; ' (1))

we have the following graph equation in the (y;, y3) phase space

= 59()

W(n) = U0 for n > 0. (4.2.10)
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In the case where ¢ # 0, as long as u}(7) > 0, for V(n) = v} (u7'(n)) (5 = w1 (7))
we have
— avtig (1)

3 C 7
V = — & st

(n) p - avin) for n > 0, (4.2.11)
where us(7) = ua(u;'(n)). For the solutions of (4.2.11) associated with the trajec-

tory for (4.2.4)-(4.2.5), the boundary conditions (4.2.5) and Lemma 4.2.1 provide
V(0+) =0, V(0+)= A(c). (4.2.12)

Our proofs involve continuous “switching” between solutions for the graph equation
(4.2.11) and the original system (4.2.4) or (4.2.8). So we first give the following
lemma on some general properties of trajectories V' (n) with (4.2.12), which will be
frequently used. Let u(7) = (u;(7), u2(7), u3(7)) be the solution of system (4.2.8)

associated with V(7).
Lemma 4.2.2 Let ¢ > 0. Then the following statements hold.
(i) V(1) > 0, and V() > ¢ >0 forn € (0,al.

(it) Let 1 = inf{n € (0,b] : V(n) = 0}. Then 7} > a, and 77 < b implies that

N P
lim Y — oo,

n/n 17
Proof. (i) As long as V() is well defined (i.e., u{(7) = wua(7) > 0), it follows
from (4.2.6) that us(7) < %g(u;(?‘)) for u,(7) € (0, b]. Therefore, for uz(7) > 0 and
u1(7) € (0, al, we have uy(7) < %g(ul('r)) < Luy(7) (see Figure 4.1). We claim that
uy(T) > 0 as long as u;(7) € (0,a]. Indeed, Lernma 4.2.1 implies that u3(7) > 0 for

small positive u;(7). It follows that for small u;(7), there holds

(el ey — el i 5 6

WalT) = ‘ 7

SO
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In the case where ¢ # 0, as long as 4/ (7) > 0, for V(n) := v (u7'(n)) (7 = (7))

we have
- c 71— auy(T)
i) = =t fi 4.2.11
V(n) 5t V() or > 0, ( )
where us(7) = uz(u;'(n)). For the solutions of (4.2.11) associated with the trajec-

tory for (4.2.4)-(4.2.5), the boundary conditions (4.2.5) and Lemma 4.2.1 provide
V(0+) =0, V(0+)=Ae). (4.2.12)

Our proofs involve continuous “switching” between solutions for the graph equation
(4.2.11) and the original system (4.2.4) or (4.2.8). So we first give the following
lemma on some general properties of trajectories V'(7) with (4.2.12), which will be
frequently used. Let u(7) = (ui(7),u2(7),u3(7)) be the solution of system (4.2.8)

associated with V' (n).

Lemma 4.2.2 Let ¢ > 0. Then the following statements hold.
(i) V(n) >0, and V(n) > £ >0 forn € (0,a].

(ii) Let 77 = inf{n € (0,b] : V(n) = 0}. Then 7 > a, and 77 < b implies that
i

i 2 = =g,

n/q 1N

Proof. (i) As long as V() is well defined (i.e., »}(7) = uz(7) > 0), it follows
from (4.2.6) that uy(7) < $g(ui(7)) for ui(r) € (0,]. Therefore, for uz(r) > 0 and
u (1) € (0,a], we have us(7) < 59(u1(7)) < Zui(7) (see Figure 4.1). We claim that
uy(7) > 0 as long as u;(7) € (0, a]. Indeed, Lemma 4.2.1 implies that uz(7) > 0 for

small positive u;(7). It follows that for small u,(7), there holds

us(7) = é((fﬂﬂg(?‘) + uy(7) — auy(T)) > écu;;(‘r) > 0.
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Suppose, by contradiction, that 75 € R is the first point such that «4(7) = 0 and

uy(m0) € (0,a]. Then

1
H(C'U,:;(Tg) + uy(79) — aua(7p)) = 0, and usz(m) > 0.

Therefore, u,(79) < aus(79), and hence u;(79) > a, a contradiction. It then follows
that u3(7) > 0 and aus(7) < ui(7) as long as u,(7) € (0, a]. Thus, for n € (0, a], we
have V(n) > 0 and V(7)) = = “—‘%{%‘ﬁm > £ > 0, where 7 = uy'(n).

(ii) Clearly, 7 > a. Suppose that 77 < b. Then u3(7) = 0 and u4(7) < 0, where
7 = uy'(77). We claim that u4(7) < 0. Suppose, by contradiction, that u4(7) = 0.
Then u(7) — aua(7) = 0, and 7 < +o00. Moreover, we can choose a small ¢ > 0

such that for 7 € (7 —¢,7), u4(7) < 0 and uz(7) > 0, and hence, u; (7) —aus(7) < 0.

Using (4.2.6) and the fact that «}(7) > 0 for 7 < 7, we then have

0 < ui(T) —auy(T) = us(T) — 2(—Pua(T) + g(ui(7)))

= —9(=Pus(7) + glui(7))) < 0,

a contradiction. Thus u4(7) < 0, and hence lim Y@ — lim w) _ iy, 0 - o,
n A 1T T 7 uy (7) T T uz(T)
n
Assume that fob(%g(z) — z)dz > 0. Let
Ne={(n,¢) € R*: ¢*/2+ F(n) = k}\ {(0,0), (a,0), (b,0)},
where F(n) = 3 J}(%g(z) — z)dz. Since z > Fg(z) for z € (0,a) in the case of

g'(0) < v < veu (see Figure 4.1), kg = F'(a) < 0. Note that N are exactly the
trajectories of solutions to system (4.2.9), and k > 0 gives exactly the trajectories

intersecting (-axis. For k > 0, we define N = Ny, N {(n,{) € R’ : ¢ > 0} and
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Suppose, by contradiction, that 7, € R is the first point such that u4(7) = 0 and

u1(79) € (0,a]. Then
1
(—i(cus('rg) + u1(70) — aus(p)) = 0, and us(7) > 0.

Therefore, 1, () < aus(7y), and hence u,(79) > a, a contradiction. It then follows
that u3(7) > 0 and aus(7) < u;(7) as long as u,(7) € (0,a]. Thus, for n € (0,al, we
have V() > 0 and V(5) = & %ﬂﬂ > £ > 0, where 7 = uy(n).

(ii) Clearly, 7 > a. Suppose that 7 < b. Then u3(7) = 0 and u4(7) < 0, where
7 = u; (7). We claim that u4(7) < 0. Suppose, by contradiction, that u4(7) = 0.
Then u(7) — aus(7) = 0, and 7 < +oc. Moreover, we can choose a small € > 0

such that for 7 € (7—¢&,7), u4(7) < 0 and u3(7) > 0, and hence, u;(7) — auz(7) < 0.

Using (4.2.6) and the fact that u}(7) > 0 for 7 < 7, we then have

0 < w(7) —auy(7) = ua(T) — T(—Pua(T) + 9(wa(7)))
= —2(—Pux(7) + g(m(7))) <0,

a contradiction. Thus u4(7) < 0, and hence lim Y% = lim 451 — Jjm %0 = _ oo,
n/f 1 T )T uly (7) T T uz(7)

Assume that fob(%g(z) — z)dz > 0. Let

Ne={(n¢) € R*: ¢*/2+ F(n) = k} \ {(0,0), (a,0), (5,0)},

where F(7n) = ﬁf(;?(%g(z) — z)dz. Since z > Fg(z) for z € (0,a) in the case of
g (0) < v < Yerit (see Figure 4.1), kg = F(a) < 0. Note that N, are exactly the
trajectories of solutions to system (4.2.9), and k > 0 gives exactly the trajectories

intersecting (-axis. For k > 0, we define N = Ny n {(n,{) € R* : ¢ > 0} and
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*ote by Wi(n) the solution of equation (4.2.10) in N;t. Let V.(n) be the solution of
pations (4.2.11)-(4.2.12) with the velocity of ¢, and u.(7) = (u1(7), ua(7), us(7))
#the solution of system (4.2.8) with (4.2.5) corresponding to V(7). Then we have

e following result on the relationship between ¥, and V, or u,.

ug Y VYL G

-
No=Meg,

o
W

b u.y.n

Figure 4.2: Phase portrait of (4.2.9).

lemma 4.2.3 For ¢ > 0 and us(7) > 0, (u\(7), us(7)) crosses through increasing
kvel sets N with increasing T whenever u, (1) € (0,b). That is, V.(n) intersects a
kvel set N at most once for n € (0,b). Furthermore, at the point of intersection

ey Ve(me)) = (g, Wi(ng)), there holds V!(ng) > S+ Wi (nk).

Proof. Note that us(7) < é—g(ul(r)) whenever u,(7) € (0,0). We then have

Gk =GR + Pun(n) = wlnu(n) + 5(Golu(n) — m(m) ()
= Zud(n) + zua(n) (G () - aun(r) > 0.
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denote by ¥ (7) the solution of equation (4.2.10) in N;7. Let V.(n) be the solution of
equations (4.2.11)-(4.2.12) with the velocity of ¢, and u.(7) = (u(7), u2(7), uz(7))
be the solution of system (4.2.8) with (4.2.5) corresponding to V.(n). Then we have

the following result on the relationship between W, and V. or ..

Ugy Yoo V¥, ¢

’
N =Ny

b u.y.m

Figure 4.2: Phase portrait of (4.2.9).

Lemma 4.2.3 For ¢ > 0 and uz(7) > 0, (u,(7),u3(7)) crosses through increasing
level sets N, with increasing T whenever uy(7) € (0,b). That is, V.(n) intersects a
level set N," at most once for n € (0,b). Furthermore, at the point of intersection

(m, Velme)) = (e, Wilmw)), there holds V() > S + Wi(m).

Proof. Note that us(7) < é—g(ul('r)) whenever uy(7) € (0,b). We then have

Tk = (R0 + P () = umi(n) + 5(Gem(n) - u(@)u)
= gug(r) f Eljug(r)(%g(ul(r)) — auy(7)) > 0.
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This proves the first part of the results. The second part follows from a direct

computation

c 5 M — (1)

e — 59(m) ¢
N _ 5 .
d V(i)

cC
VI = n g
C(T)k) d ‘Ilk(nk) d

=

+ Wi ().

Now we are ready to prove the main result of this section.

Theorem 4.2.1 Assume that g'(0) < ¥ < Yerir- Then there exists a wave speed c*
such that system (4.2.2) has a nontrivial strictly monotone wave solution connecting
E~ and E*, and ¢* has the same sign as f; (%q(z) — z) dz. Moreover, ¢ = 0 if

and only if the integral vanishes.

Proof. Without loss of generality, we assume that

/Ob (%g(z) - z) dz > 0. (4.2.13)

Otherwise, by the change of variables V) = b— U, V5 = éb — Us, we can transform

the original system (4.2.2) into

E)%Vl(xs t) = d%‘/l (3"5 t) = ‘/] (:E,t) =+ CY"{-z(fC, t),
2Va(z,t) = G(Vi(z, t)) — BVa(z, t),

where G(z) = g(b) — g(b — z). Since g(b) = gb, G(z) satisfies assumption (R1) on
[0,b) and (4.2.13).

If ¢* = 0, the heteroclinic orbit of system (4.2.9) implies that the integral (4.2.13)
vanishes. Conversely, if the integral vanishes, there is a nontrivial wave solution of
the ODE system (4.2.4) with velocity ¢ = 0. Therefore, we restrict ourselves to the

positive integral.
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This proves the first part of the results. The second part follows from a direct
computation

m— 59(Mk) ¢
M. b S I T B
W b

' c | M — ouy(7y)
16(’7’») d L;C(T?k) =

4
d

Now we are ready to prove the main result of this section.

Theorem 4.2.1 Assume that ¢’(0) < v < Yeriz- Then there ezists a wave speed c*
such that system (4.2.2) has a nontrivial strictly monotone wave solution connecting
E~ and ET, and ¢* has the same sign as fﬂb (%g(z) — z) dz. Moreover, ¢ = 0 if

and only if the integral vanishes.

Proof. Without loss of generality, we assume that

.ﬂb(%g@)—z)dzzo. (4.2.13)

Otherwise, by the change of variables V; = b — U, V; = C‘—!b — Us,, we can transform

the original system (4.2.2) into

E%Vl (.’L‘, t) = d%"ﬂ(.‘l}, t) o V'l (.’E, t) I an(a:, i),
ZVo(z, 1) = G(Vi(z, t)) — BVa(z,t),

where G(z) = g(b) — g(b — z). Since g(b) = %b, G(z) satisfies assumption (R1) on
[0,b) and (4.2.13).

If ¢* = 0, the heteroclinic orbit of system (4.2.9) implies that the integral (4.2.13)
vanishes. Conversely, if the integral vanishes, there is a nontrivial wave solution of
the ODE system (4.2.4) with velocity ¢ = 0. Therefore, we restrict ourselves to the

positive integral.
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Let N, := N‘;ﬁ(b) be the level curve through the critical point (b,0), and ¥, () :=

¥ ) (n) be the corresponding solution. Define
E ={c>0: V. and N, intersect at (1., Ve(1:)) = (9, ¥u(n:)) with n. € (0, b]}.

In the rest of the proof, we proceed with four steps.
Step 1. E # 0.

For ¢ > 0 and n € (0, a), we have V(1) > 0 and V.(n) > ¢/d > 0. If V.(5) > 0
for 77 € (a,b), then Vi(r) must intersect with N, on (0,b]. Suppose that V (1) = 0

for no € (a,b). Then
1 ] .
Ve(mo) = E(auz(ﬂ)) —uy (7)) > Ve(a) — Ve(0) = aV (),

where 7, € (0,a), 70 = uy (19). We then have awuy(rg) — uy(70) > %Q-a. Note that

0 < up(mp) < % Thus, whenever ¢ > %, we have Vc(n) > 0 for n € (a,b). Then

V.(n) intersects N.. Thus, E # 0.
Step 2. ¢:=inf F > 0.

Let mn > 0 be a constant. Consider the line V = —m(n — b) (n € [0,0]). If V.(n)
intersects with this line, then, at the intersection we have

+—b~n —l(c—-—l—)
md(n—b) d m’

= C n — Gus
Bl = S
() d mdin—1>b) —

£
d
For any sufficiently small ¢ > 0, we can choose m € (0, —¢/2 + \/m) such
that ¢ — 1/m < —m. Then we must have V.(n.) = 0 for some 7. € (a,b]. Thus, by
Lemma 4.2.3, V. does not intersect with N, on (0, b]. Therefore, ¢ > 0.

Step 3. c€ E.

Suppose, by contradiction, that V,(77) does not intersect with N,. Then Lemma

4.2.2 and 4.2.3 imply that V.(7) = 0 for 77 € (a, b]. If 77 = b, we are done.
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Let N, := N}ﬁ(b) be the level curve through the critical point (b,0), and ¥,.(n) :=

Wz (77) be the corresponding solution. Define
E ={c>0: V. and N, intersect at (1., Ve(n:)) = (77e; Yo (7)) with 5. € (0, b]}.

In the rest of the proof, we proceed with four steps.
Step 1. E # 0.

For ¢ > 0 and 5 € (0, a], we have V() > 0 and Vi(n) > ¢/d > 0. If Vo(n) > 0
for n € (a,b), then V.(n) must intersect with N, on (0, b]. Suppose that Ve(no) =0

for np € (a,b). Then
Ve(mo) = %(aug(rg) — uy(10)) > Ve(a) — Vo(0) = aV(?h),

where 7, € (0,a),70 = uy'(n0). We then have aus(ry) — u (7)) > %a. Note that
0 < uz(m) < L. Thus, whenever ¢ > % we have V.(n) > 0 for n € (a,b). Then
V.(n) intersects N,. Thus, F # {.
Step 2. ¢:=inf E > 0.

Let m > 0 be a constant. Consider the line V = —m(n — b) (n € [0,b]). If V.(n)

intersects with this line, then, at the intersection we have

T R P P L 1 L T ]
Veln) = 3 nzd(n—b)_d+m.d(n—b)_d(c e

For any sufficiently small ¢ > 0, we can choose m € (0, —¢/2 + /1 + ¢2/4) such
that ¢ — 1/m < —m. Then we must have V.(r.) = 0 for some 7. € (a,b]. Thus, by
Lemma 4.2.3, V. does not intersect with N, on (0, b]. Therefore, ¢ > 0.
Step 3. c€ E.

Suppose, by contradiction, that V.(n) does not intersect with N,. Then Lemma

4.2.2 and 4.2.3 imply that V.(7) = 0 for 77 € (a,b]. If 7 = b, we are done.
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Assume that 77 < b. Let P; be a small plane in a small neighborhood of (0,0, 0)
in (wu;,us, u3) phase space, which is normal to the eigenvector (1,m(c), \(c)) cor-

g'(0

responding to the eigenvalue \(¢), where m(c) = ATV

By Lemma 4.2.1, the
trajectory u.(7) transversely intersects with P, at I.. By the local continuous de-
pendence of U, on ¢, for all ¢ in a small neighborhood of ¢, u.(7) transversely
crosses through P, at I, and £1_r}r(1: 1. = I.. Without loss of generality, we assume that
u:(0) = I, 5,(0) = I, Lét Py o {(ur, us,u3) € R® : uy,us > 0,us = 0}. Then,
Lemma 4.2.2 implies that u.(7) transversely intersects P» at (7, ug(uy ' (7)), 0). By
the continuous dependence of solutions on parameters and initial values, for all I, in
a sufficiently small neighborhood of I, u.(7) transversely intersects P,. Thus, we can
choose a ¢ > ¢ such that u.(7) intersects P. That is, V.(n) = 0 for some 1 € (a, b).
By Lemma 4.2.3, V.(n7) has no intersection points with N,. Hence, ¢ < ¢ ¢ E, which
contradicts the definition of c. Therefore, V, does intersect with N,. That is, c € E.
Step 4. 7. = b.

Suppose that 7. < b. Let Py = {(uy,us,u3) € R® : (u;,u3) € N,,us > 0}. Then
by Lemma 4.2.3, u.(7) transversely intersects P3 at (7¢, us(u; ' (1)), Va(n,)). By the
same argument as in Step 2, we obtain that, as ¢ — ¢, u.(7) transversely intersects

Py at (ne, ua(uy ' (1:)), Ve(ne)), and 1. — n. < b. It follows that there exists a § > 0

such that ¢ — § € F, which contradicts the definition of c. »
Remark 4.2.2 Note that

/Db (%g(z) o z) = [/b (%g(z) 2 éz) - fo (%z 5 %g(z)) d.z] .

By Theorem 4.2.1, it then follows that there exists 5 € (¢'(0), Yerit) Such that ¢* > 0

if v € (4'(0),%), and ¢ < 0 if v € (¥, Yerit)-
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Assume that 77 < b. Let P; be a small plane in a small neighborhood of (0,0, 0)
in (u,,us,u3) phase space, which is normal to the eigenvector (1, m(c), A(c)) cor-

g'(0

responding to the eigenvalue A(¢), where m(c) = TSR

By Lemma 4.2.1, the
trajectory u.(7) transversely intersects with Py at I.. By the local continuous de-
pendence of U, on ¢, for all ¢ in a small neighborhood of ¢, u.(7) transversely
crosses through P, at I, and 161_13 I. = I.. Without loss of generality, we assume that
uc(0) = Ie,u(0) = I.. Let P _= {(uy,us,u3) € R® : uy,us > 0,u3 = 0}. Then,
Lemma 4.2.2 implies that u.(7) transversely intersects Py at (7, uo(uj'(7)),0). By
the continuous dependence of solutions on parameters and initial values, for all /. in
a sufficiently small neighborhood of I, u.(7) transversely intersects P,. Thus, we can
choose a ¢ > ¢ such that u.(7) intersects P,. That is, V.(n) = 0 for some 5 € (a,b).
By Lemma 4.2.3, V.(n) has no intersection points with N,. Hence, ¢ < ¢ ¢ E, which
contradicts the definition of ¢. Therefore, V. does intersect with V,. That is, ¢ € E.
Step 4. 7, = b.

Suppose that 1, < b. Let Py = {(u1,u2,u3) € R® ¢ (uy,u3) € N.,us > 0}. Then
by Lemma 4.2.3, u.(7) transversely intersects Ps at (1., up(uy ' (n:)), Ve(7.)). By the
same argument as in Step 2, we obtain that, as ¢ — ¢, u.(7) transversely intersects
Py at (1., us(uy' (17:)), Ve(ne)), and 7. — 1, < b. It follows that there exists a § > 0

such that ¢ — 6 € E, which contradicts the definition of c. '
Remark 4.2.2 Note that

: %g(z)ﬂz de=a|ls lg(Z)—éz dz— [ éz—lg(z) dz| .
0 \/ a \B 0 B

By Theorem 4.2.1, it then follows that there exists ¥ € (g'(0), Yerit) Such that ¢* > 0

if v € (§'(0),%), and c* <0 if v € (F Verit)-
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4.3 Attractivity and Uniqueness

In this section, we discuss the global attractivity and uniqueness of traveling waves
of system (4.2.2). For convenience, in the rest of this chapter we consider a more
general quasi-monotone system

2 U\(z,t) = dZ5Ui (2, t) + FY(Uy(z, t), Us(z, 1)),
(4.3.14)

2Us(z,t) = —BUs(z,t) + g(Us(z, 1)) := F2(Ui(z, 1), Us(z, t)).

Assume that

(R2) There exists I > 0 such that F' € C?((—/,00)?% R), and %Fl(ul,ug) < 0,

-a—Fl(‘lL'l,’tl-g) > 0 for (‘DL],UQ) = (—ZDC))2

Aus

(R3) F'(0,0) = 0, and for any Iy > 1/, there exists [, > 0 such that F'(l;,1,) < 0.

Without loss of generality, we may assume that the function g admits a smooth
extension defined on (—/,c0) with ¢'(z) > 0 for z € (—/,0). In what follows, we use

notations

5 a - vi 82 i &
Fi(uy,ug) := B—F‘(ul,ug), Fl(uy, ug) := 5 o, us), 154.5,6%2,

U 1O

Consider the ODE system

wi(t) = F(w (), ws(t)),
(4.3.15)

wy(t) = F2(wi(t), wa(t)).
. s 1 o o o 2
Because of our assumptions on F' and g, system (4.3.15) is cooperative on R%.
Hence the comparison principle implies that every solution to (4.3.15) with nonneg-

ative initial values remains nonnegative. By the standard comparison arguments, it
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easily follows that solutions of (4.3.15) on R are uniformly bounded and ultimately
bounded. Thus, each solution of (4.3.15) with nonnegative initial values exists glob-
ally on [0,00), and the solution semiflow of (4.3.15) is compact, point dissipative,
and monotone on R2 .

Obviously, E~ is an equilibrium of (4.3.15). We further assume that (4.3.15)
admits two nonnegative equilibria in RZ. With a little abuse of notations, we denote
them by EY and E*. Furthermore, suppose that E~ <« E° <« E*, and E* are stable
nodes and E° is a saddle point, where “<” means that the two vectors satisfy “<”
elementwise. Let

[E-,El={weR:: E- <w< E%
and
[E?, 00) = {w € R% : E° < w}.
By the Dancer-Hess connecting orbit lemma (see [25, Proposition 1]) and [72, The-

orem 2.3.2], as applied to [E~, E°] and [E°, 00), respectively, it follows that
Llim w(t, wo) = E~ for wy € [E~, E°] \ {E°},

and

lim w(t, wg) = E* for wy € [E°, 00) \ {E°},
4

t—oo
where w(t, wp) is the solution to (4.3.15) with w(0, wg) = wy € R?..
Let X := BUC(R,R?) be the Banach space of all bounded and uniformly con-

tinuous functions from R to R? with the usual supreme norm. Let

X+ - {(‘If)l,’wg) (o . & wi(l) Z O.VIE S R,? = 1.2}
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4.3 Attractivity and Uniqueness

In this section, we discuss the global attractivity and uniqueness of traveling waves
of system (4.2.2). For convenience, in the rest of this chapter we consider a more
general quasi-monotone system

‘('%Ul (I, t) = d%Ul (I‘ t) 7 Fk(DPI(I\t): U?(Ia t)):
(4.3.14)

5iUa(z,t) = —BUs(,t) + g(Ui(z, 1)) := F*(Ui(g, 1), Uz(z, 1)).
Assume that
(R2) There exists [ > 0 such that F'' € C?((—{,00)?% R), and %Fl(ul,uz) < 0,

33—21?'(1“,11.2) > 0 for (uy,us) € (—1,00)%
(R3) F'(0,0) = 0, and for any ly > 1/7, there exists /; > 0 such that F'(l},l,) < 0.

Without loss of generality, we may assume that the function g admits a smooth
extension defined on (-1, oc) with ¢'(z) > 0 for z € (—1,0). In what follows, we use

notations

; 0 . 9
F;(U-l,u'z) s ‘fFi(UI,?tz)s Fip(uy, ug) :=

F'uy,us), 1<14,5,k<2.
Ou; C Ou ;O (w1, u2) e

Consider the ODE system

TU; (t) = Fl('wl(t)fw?(t))s
(4.3.15)

why(t) = F2(w) (t), wy(t)).
Because of our assumptions on F! and g, system (4.3.15) is cooperative on RZ.
Hence the comparison principle implies that every solution to (4.3.15) with nonneg-

ative initial values remains nonnegative. By the standard comparison arguments, it
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easily follows that solutions of (4.3.15) on R? are uniformly bounded and ultimately
bounded. Thus, each solution of (4.3.15) with nonnegative initial values exists glob-
ally on [0,00), and the solution semiflow of (4.3.15) is compact, point dissipative,
and monotone on R? .

Obviously, £~ is an equilibrium of (4.3.15). We further assume that (4.3.15)
admits two nonnegative equilibria in R2 . With a little abuse of notations, we denote
them by E® and E*. Furthermore, suppose that E~ <« E° < E*, and E* are stable
nodes and E° is a saddle point, where “<” means that the two vectors satisfy “<”
elementwise. Let

[E-,E={weR:: E- <w<E%

and

[E° o0) = {weR; : E° <w}.

By the Dancer-Hess connecting orbit lemma (see [25, Proposition 1]) and [72, The-

orem 2.3.2], as applied to [E~, E°] and [E?, 00), respectively, it follows that
Llim w(t, wo) = E~ for wy € [E~, E°] \ {E"},

and

lim w(t, wo) = E* for wy € [E®, 00) \ {E°},

t—oc0
where w(t, wp) is the solution to (4.3.15) with w(0, wp) = wp € RZ..
Let X := BUC(R, R?) be the Banach space of all bounded and uniformly con-

tinuous functions from R to R? with the usual supreme norm. Let

X—i— = {(?!JlawZ) € X: 'Z!)I(.T) Z O‘V:L € R‘I?’ = 112}
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It is easy to see that X, isa closed cone of X and its induced partial ordering makes X
into a Banach lattice. Denote the partial orders by “ <y, <y, <x ”. For v, ¢? € X
with ¢! <x +?, denote order intervals by [i!, ¢¥?|x = {¢ € X: ¢! <x ¢ <x ¢?}.
To prove the global attractivity and uniqueness of traveling waves, we need a
series of lemmas. The following lemma shows the existence, uniqueness and the

strong monotonicity of solutions to system (4.3.14).

Lemma 4.3.1 For any ¢ € Xy, system (4.3.14) has a unique, bounded and non-
negative solution U(x,t,v) with U(-,0,%) = ¢, and the solution semiflow of (4.53.14)
is monotone. Moreover, U(z,t, ') <« U(z,t,¢?) for t > 0 and z € R whenever

Pl p? € X, with ¥ <x o2

Proof. Let T\(¢) be the analytic semigroup on BUC(R, R) generated by % = g—iﬁ—,

and T5(t)s = e Plahy, Vaby € BUC(R, R). Clearly, T'(t) = (71(t), T2(t)) is a linear

semigroup on X. Let B(¢)(z) = (F'(¢1(2), ¥2(2)), 9(¥1(2))), Vb = (th,12) € X,

Then system (4.3.14) can be rewritten as as the following integral equation
t
U(t) = T(£)U(0) + / Tt — 5)B(U(s))ds,
0

whose solutions are called mild solutions for system (4.3.14). It is easy to check the
quasi-monotonicity of B(y). By [64, Corollary 5] (taking delay as zero, also see [88,
Corollary 8.1.3]), it then follows that for any ¢ € X, system (4.3.14) has a unique
nonnegative and noncontinuable mild solution U(z,t,) satisfying U(-,0,%) = .
Moreover, by [88, Corollary 2.2.5], U(z, t,v) is a classical solution for £ > 0. Note
that [64, Corollary 5] also implies that the comparison principle holds for system
(4.3.14). By the comparison argument, solutions of (4.3.14) on X, are uniformly

bounded. Therefore, system (4.3.14) defines a monotone solution semiflow on X, .
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[t is easy to see that X is a closed cone of X and its induced partial ordering makes X
into a Banach lattice. Denote the partial orders by * <y, <y, <x ”. For ¥!,9? € X
with ¢! <x 7?2, denote order intervals by [¥!,¢?]x = {¢¥ € X: ¢! <x ¢ <x ¢*}.
To prove the global attractivity and uniqueness of traveling waves, we need a
series of lemmas. The following lemma shows the existence, uniqueness and the

strong monotonicity of solutions to system (4.3.14).

Lemma 4.3.1 For any ¢ € X,, system (4.8.14) has a unique, bounded and non-
negative solution U(z,t, ) with U(-,0,¢) = 1, and the solution semiflow of (4.5.14)
is monotone. Moreover, U(z,t,¢") <« Ulz,t,¥?) for t > 0 and x € R whenever

Y1 9?% e X, with ¢! <x ¥

Proof. Let 73(¢) be the analytic semigroup on BUC (R, R) generated by 2% = g}‘},
and To(t)yn = e Plpy, Vi, € BUC(R,R). Clearly, T(t) = (71(%), T2(t)) is a linear

semigroup on X. Let B(v)(z) = (F'(¢1(z), %2(z)), g(1(x))), Vb = (¥1,1) € X,

Then system (4.3.14) can be rewritten as as the following integral equation
'
U(t) =T(t)U(0) + / T(t — s)B(U(s))ds,
0

whose solutions are called mild solutions for system (4.3.14). It is easy to check the
quasi-monotonicity of B(v). By [64, Corollary 5] (taking delay as zero, also see [88,
Corollary 8.1.3]), it then follows that for any ¢ € X, system (4.3.14) has a unique
nonnegative and noncontinuable mild solution U(z, ¢, ) satisfying U(-,0,7) = 2.
Moreover, by [88, Corollary 2.2.5], U(x,1,%) is a classical solution for ¢ > 0. Note
that [64, Corollary 5] also implies that the comparison principle holds for system
(4.3.14). By the comparison argument, solutions of (4.3.14) on X, are uniformly

bounded. Therefore, system (4.3.14) defines a monotone solution semiflow on X, .
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Suppose that ¥, 1¥? € X, with ! <x ¥?. Then U(z,t,%') > 0, Vz € R, ¢t > 0.
Let U(z,t) = Uz, t,¥?*)—U(z,t,¥*'). Then U(z,t) > 0,Vz € R,t > 0, and U(-,0) #
0. Note that the first component U, (z,t) of U(z,1) satisfies

2 1
Ui = dUz0+ Zsz FlsU(z,t,¢?) + (1 — s)U(z, t,9"))ds (4.3.16)
0

g3

1
> dUpgze + U1/ Fl(sU(z,t,v*) + (1 — s)U(=z, t,%"))ds, (4.3.17)

0

and the second component Uy(z, t) of U(x,t) satisfies
UZ,t(a:v t) = _5U2(Ia t) + A(T: t)UI (_’L‘, f):

where Uy (z, ¢, ¢1), Ui (x, t, 1?) are the first components of U(z, t,%') and U(z, t, 1?),

respectively, and

'
Aw,t) = [ o (sVia,t,0) + (1~ Ui 31)ds.
0
It then follows that

'/}
Us(z, 1) = e~PUp(s, 0) + / =B~ (. VI (o, 8} . (4.3.18)

0

In the case where U, (-,0) # 0, the strict positivity theorem ([85, Theorem 5.5.4])
and inequality (4.3.17) imply that U,(z,t) > 0, Vz € R,t > 0. Since ¢'(z) > 0 for
z > 0, (4.3.18) implies Us(z,t) > 0,Vz € R,t > 0. Thus, U(z,t,¥') < U(z,t,¥?)
for z € Rt > 0.

In the case where U, (-, 0) # 0, it follows from (4.3.18) that Us(-,¢) # 0 for ¢ > 0.
Since F} > 0 on RZ%, the equality (4.3.16) implies that U;(-,t) # 0 for t > 0, and

hence by the inequality (4.3.17) and [85, Theorem 1.4.5], we must have U, (z,t) > 0,
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Suppose that !, 9% € X, with ¢! <x ¥2. Then U(z,t,%!) > 0, Yz € R, ¢t > 0.
Let U(z,t) = U(z,t,¢?)—U(z,t,9!). Then U(z,t) > 0,Vz € Rt > 0, and U(-,0) #

0. Note that the first component U, (z,t) of U(x,t) satisfies
Uy = dUyzz+ ZQ:U;; /01 FMsU(z,t,%%) + (1 — s)U(z,t,¥"))ds (4.3.16)
i=1
> dUy 2. + U, /: Fl(sU(z,t,¥?) + (1 — s)U(z,t,¢'))ds, (4.3.17)
and the second component Us(z,t) of U(z,t) satisfies
Usy(z,t) = —BU(z,t) + Az, t)U, (z, t),

where U;(z, t, %), Uy(z, t,%?) are the first components of U(z, t,9') and U(z, t, 4?),

respectively, and

1
A(.‘I‘, t) = / gI(SUl(:E} t, 'w?) + (1 = S)Ul (1’, ts “#’)l))ds'
0

It then follows that
£
Us(z,t) = e Uy (z, 0) + / e PU=3) A(z, 5)U;(z, s)ds. (4.3.18)
0

In the case where U, (-,0) # 0, the strict positivity theorem ([85, Theorem 5.5.4])
and inequality (4.3.17) imply that U,(z,t) > 0, Vz € R, > 0. Since ¢'(z) > 0 for
z > 0, (4.3.18) implies Us(z,t) > 0,Vz € R, ¢ > 0. Thus, U(z, t,¥') <« U(z, t,%?)
forx € R, t > 0.

In the case where Us(-,0) # 0, it follows from (4.3.18) that Us(-,¢) % 0 for ¢ > 0.
Since F} > 0 on RZ, the equality (4.3.16) implies that U;(-,¢) # 0 for ¢ > 0, and

hence by the inequality (4.3.17) and [85, Theorem 1.4.5], we must have U, (z,t) > 0,
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Vz € R,t > 0. Therefore, it follows from (4.3.18) that U(z,t) > 0, Vz € R, ¢ > 0.
Thus Uz, t,¥!) < Uz, t,9?), Vz € R, ¢ > 0. "

In view of Section 4.2, we suppose that ¢(z — ct) = (p1(z — ct), po(z — ct)) is
a strictly increasing traveling wave solution of (4.3.14) connecting £~ and E*. By
the moving coordinate z = z — ct, we transform (4.3.14) into the following system

uy (2, 1) = cuy . (2, t) + duy .. (2, t) + FH(u (2, 1), us(z2, t)),
(4.3.19)

ug (2, 1) = cua (2, t) + F2(u1(2, 1), ua(z, t)).
Then ¢(z) is an equilibrium solution of system (4.3.19). In what follows, we denote
by u(z,t,v%) = (u1(z,t),us(z,t)) the solution of system (4.3.19) with u(-,0,7) =
Y € X,. Clearly, the solution U(x,t,%) of (4.3.14) with initial value % is given
by Ul(xz,t,v¥) = u(x — ct, t, 7). As noted before, the comparison principle holds for

(4.3.14) and hence for (4.3.19). For convenience, we set
Ny(ur, ug) = ure(z,t) — cur (2, 1) — duy,z2(z, ) — FH(ui(z, 1), ua(z, 1)) = 0,
No(uy, ug) i= gz, t) — cug . (z,t) — F2(uy(2, 1), u2(z2, 1)) = 0.

Lemma 4.3.2 If ) = (¥, 19) € X, satisfies

limsup (&) < E° < lifrn inf (&), (4.3.20)

T el
then, for any € > 0, there exist 7 = Z(e,1) > 0 and a large time t = t(e,2)) such

that p(z — ) —e < u(z,t,9) < p(z+ 2) +&.

Proof. Without loss of generality, we assume that ¢0(¢) < 1,,V€ € R and ¥ (&) < I,

V€ < 0, where 1,1, € R2,l; > EY,E- <l < E° Let v*(t) = (v{(t),v5(2)) :=
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Vz € R,t > 0. Therefore, it follows from (4.3.18) that U,(z,t) > 0, Vz € R, > 0.
Thus U(z, t,¢¥') < U(z,t,9?), Vz € Rt > 0. 1

In view of Section 4.2, we suppose that p(z — ct) = (pi1(z — ct), p2(z — ct)) is
a strictly increasing traveling wave solution of (4.3.14) connecting E~ and E™. By
the moving coordinate z = z — ct, we transform (4.3.14) into the following system

u14(2,t) = cuy (2, t) + duy 42(2,t) + FHu(z, ), ua(2, 1)),
(4.3.19)

up (2, 1) = cus (2, t) + F2(u1(z2,t), us(z,t)).
Then (z) is an equilibrium solution of system (4.3.19). In what follows, we denote
by u(z,t,%) = (uy(z,t),us(z,t)) the solution of system (4.3.19) with u(-,0,v¢) =
¥ € X,. Clearly, the solution U(z,t,1) of (4.3.14) with initial value v is given
by Ul(z,t,) = u(z — ct,t,1). As noted before, the comparison principle holds for

(4.3.14) and hence for (4.3.19). For convenience, we set
N{ (’le, U-g) = um(z, t) = cul‘z(z, t) — = duhz:(z, t) — Fl ('U.[(Z, t), ug(z, t)) = 0,
No(ug, us) i= ug4(z, 1) — cug,(z,t) — F2(uy(z, 1), us(z,t)) = 0.

Lemma 4.3.2 If ) = (q,¢) € X, satisfies

limsup#(§) <« E° < li{m inf(€), (4.3.20)

£—=—co
then, for any € > 0, there exist 2 = %(e,v) > 0 and a large time t = (e, ) such

that p(z — 2) — e < u(z,t,9) < p(z + 2) +&.

Proof. Without loss of generality, we assume that (&) < [}, V€ € Rand ¢¥(§) < Iy,

V& < 0, where l1,l, € R2,l; > EY,E~ < [, < E° Let v*(¢) = (vi(t),vF(2)) =
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w(t,2l; — ly) and v () := w(t,ls) be the solutions of the reaction system (4.3.15)

with v+(0) = 2[,—l,v~(0) = l,. Define ((s) = 3(1+tanh $). Then ¢’ = ((1—-¢),¢" =

¢'(1 —2¢). Let,

FERY =R o () — v ()2
¢ = o+ dsup{ LB IR (0)] + L2 2= L)

+2(u} (1) — vj ()| Fip(0)] : 8 € [0,400),8 € (v (), v* (1)), 1 S i #j < 2}

Set ¢ > ¢ be a fixed number, and define the function

v(z,t) =vt(@)((z+¢ét) +v ()1 - ((z+ &), VzeRt>0.

It easily follows that v(-,0) > 1(-). We further claim that v(z,t) is a super-solution

of system (4.3.19). Indeed, by Taylor’s expansion, we have

Ai = (F(uY)+ (1= QOF (v7) — Fi(¢u" + (1 - ()v7)
21— Qf — v )2Fiy(6) + 50~ O(vF — 07 )P Fiy(6)

+C(1 = Q) (v — v)(vF — v3 ) F,(6),

1

where 6 € (v (t),v"(t)). For each 7 = 1,2, and (2,¢) € R x R, , we have

N;(v(z,t)) = wvidz,t) — cviz(2,t) — diviz.(2,t) — F'(v(z, 1))

= (Fi(vt) + (1= OF(v™) — Fi(v(z,1))
+C(1 - Ol(E— (v —v;) —di(1 — 2¢0)(vi" —v;7)] = 0,
where d, = d,d, = 0, and v;(z,1) is the i-th component of v(z,t). Therefore v(z,t)

is a super-solution of system (4.3.19).

Thus, by the comparison principle we have u(z, t,9) < v(z,t),Vt > 0. Note that

lim v*(¢) = E*. It then follows that for any £ > 0, there exist { = #(g,%) > 0, and
t—roo
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w(t,2l, — Iy) and v~ (¢) := w(t,l») be the solutions of the reaction system (4.3.15)

with v+ (0) = 21, —l3, v~ (0) = l5. Define ((s) = §(1+tanh §). Then ' = ((1-¢),¢{" =

¢'(1 - 2¢). Let
e (v () —vi (8)* . (v3 (t) — w3 (1))? |
¢ = c+d+sup{ o () — v (2) | F},(8)| + 27 () — v () | F50(0)]

+2(uf (1) — v ()IFL0)] : ¢ € [0, +00),0 € (v (&), v* (1)), 1 S i # 5 < 2}.

Set ¢ > ¢ be a fixed number, and define the function

v(z,t) =vr(@)((z+ét) +v () (1 = (= +¢ct)), VzeRt>0.

It easily follows that »(-,0) > ¥(:). We further claim that v(z,t) is a super-solution

of system (4.3.19). Indeed, by Taylor’s expansion, we have

A = (Fh)+ (1= OF @) = F(¢vt + (1 -¢)v7)

1 ; 1 .
561 = Qvi —vr)*F, (0) + 5¢(1 — Q) (v — v7)*Fp(6)
+C(1 = Qe —vr)(vF — v3) Fip(6),

where 6 € (v~ (¢),v"(¢t)). For each i = 1,2, and (z,%) € R x R,, we have

Ni(v(z,t)) = wvig(z,t) — cvi.(2,t) — diviz.(2,t) — F'(v(z2,1))
CF'(v*) + (1 = Q) F*(v™) — F'(v(z, 1))

+¢(1 = Qe - o) (v —v7) — di(1 = 2¢) (v — v7)] 2 0,

where d; = d,d; = 0, and v;(z,1?) is the i-th component of v(z,t). Therefore v(z,t)

I

is a super-solution of system (4.3.19).

Thus, by the comparison principle we have u(z,t,1) < v(z,¢),Vt > 0. Note that

tlim v*(t) = E*. It then follows that for any £ > 0, there exist £ = #(¢,%) > 0, and
—00
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Z = #(e,v) € R such that u(z,t,v%) < ¢(z + 2) +¢,V2 € R. A similar estimate on

the lower bound of the solution completes the proof. 1

Note that £* are stable nodes for the reaction system (4.3.15), i.e., the Jacobian
matrices (F;(E*)) have only negative eigenvalues. Let A* = (y;) be the constant
matrices so that F;(Ei) o /.L?;-,l < 4,7 < 2, and that A* are irreducible and have
only negative eigenvalues. Denote by p™ = (pi, pi) the positive eigenvectors cor-
responding to the principle eigenvalues of A*. Let p,(£), p2(€) be smooth positive
functions such that p(&) = (p1(€), p2(§)) — p* in C*-topology as & — +oo. Moti-

vated by [69], we have the following result on super- and sub-solution for (4.3.19).

Lemma 4.3.3 There exist positive numbers o and ¢ such that for any ¢ > <y, any
2eR, and e € (0,e0(5)),
wE(z,t) =zt 2+ce(1 —e ) L ep(z+ 2)e™, Vze Rt >0,
are super- and sub-solutions of system (4.3.19), respectively.
Proof. Clearly, there exist 4, k£ > 0 such that
i, 4 i ot . 2 L
Fi(u) < pj; for |lu— E*|| < 6,u e R%,1<4,j <2,
5 (4.3.21)
> uip; < —kpi for p= (p1, p2) € RS with ||p — p*|| € 6,i =1,2.
j=1

Since (&) — E*, p(€) — pF, p'(£), p"'(€) — 0 as £ = +oo, there exist €1, M > 0

such that
k — cE1 — d&'.l > 0,

lei(m)|, 1pi ()| < erpi(m), Vin| > M —1,i=1,2;
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Z = Z(e,v) € R such that u(z,%,%) < ¢(z + %) + €,V2 € R. A similar estimate on

the lower bound of the solution completes the proof. .

Note that E* are stable nodes for the reaction system (4.3.15), i.e., the Jacobian
matrices (F;(E*)) have only negative eigenvalues. Let A* = (4;) be the constant
matrices so that F;(E‘i) & ,uf:}-, 1 <14,7 < 2, and that A* are irreducible and have
only negative eigenvalues. Denote by p* = (pi, p¥) the positive eigenvectors cor-
responding to the principle eigenvalues of A*. Let p;(£), p2(€) be smooth positive
functions such that p(€) = (p1(€), p2(€)) — p* in C?-topology as € — +oo. Moti-

vated by [69], we have the following result on super- and sub-solution for (4.3.19).

Lemma 4.3.3 There exist positive numbers o and ¢y such that for any ¢ > <3, any
2€eR, and e € (0,e0(5)),
wE(z,t) =z 2+ ce(l —e ™)) Lep(z £ 2)e™, VzeRt>0,
are super- and sub-solutions of system (4.3.19), respectively.
Proof. Clearly, there exist §, k > 0 such that
Fi(u) < pj; for lu — B*|| < 6,u e R%,1< 4,5 < 2,
(4.3.21)

2
> wp; < —kp; for p = (p1, p2) € R with ||p — p*|| < 6,4 =1,2.
=

Since (&) — E*, p(€) — p*, p'(€),p"(€) = 0 as £ — oo, there exist ;, M > 0

such that

k—c&l—d61>0;

i ()], 1o{ ()| < erpi(n), Vnl > M —1,i=1,2;
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= Vp < —M +1;
lo(n) — p*[| < 8,¥n = M —1; |lp(m) — P~ I S & 7T =

~1,5>2M-1; (4.3.22
10(€) + ep(n) — E*|| < 6, Ve € (0,e1), 6 = M N2 ( )

/ 1 < —M +1;
lo(€) +ep(n) — E~|| < 6, Ve € (0,61], € < ~M +1,n=<

R. Defi
Let By, > 0 so that ||p(n)|l, [lo'(m]l, ||o" ()] < B1 for all ? € ene

- 3 — » f I {
By = sup{|Fi(u)| : u € [B- — 68, B + Budl}, Bs = dif,, £ (Ol

Choosing 0 < o0 < k — cg; — d &, set

> —.___B’
S =2 G
” O'B3

_ min{es, =}
ni{&i, —f-
(By+o0+c+d), Eo L

' : _ o4 Z2+ce(l —e %) and p, p;
With ¢ = e, the argument of ¢ and ¢, being £ = 2 © ( ) P P

being n = z + 2, for any ¢ € (0, &), we have

Ni(wt(z,8)) = wifzt) —cwi,z,t) = dw;,, (% t) — F'(w(z,1))

= F¥(p) — Fi(p+ epg) +esouph — (P Fepit Gy )eq

where d), = d, d, = 0. We distinguish among three cases-

: : S for i = j, and ¢, > 0. By
Case (i): || < M. Note that F} > 0 for ¢ £ 5y F} 5 grror =1 @

the choice of ¢, ¢, and o, we have
' ' : : i ; ls > — B, Bszq,
F:((,O)-FI((‘O-I-E/)(]):——/ £q (ijFj((p—(—-E-SPQ))CS_ 1 D224
0 ey
and hence

: =2 U
N;(w*(z,t)) > —B,Byeq — Bieg(o + ¢+ d;) + Bsecoq =

=k , by - £
Case (ii): £ > M. Since E —n<ce <1,£>7 > M 1. Thus, by the group o

inequalities (4.3.22), we have

S 1).
() + sep(n) — Bl < 6, llom) = #*ll <& Vo € OV
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lo(n) — ol <62 M =1; |lp(n) —p || £6,Vn < =M + 1;
le(€) +ep(n) — EY|| <6, Ve€ (0,e1), 62 M -1,n> M —1; (4.3.22)

() +ep(n) —E7|| <6, Ve € (0,61, L ~M+1,n< —M+1;
Let By > 0 so that |[p(n)l], [[o'(n)], [[6"(n)|| < B, for all € R. Define

B, = sup{|Fj(u)| : v € [E”™ —6¢, E* + Byé]}, Bz = ||siﬁ1<fM I ().

Choosing 0 < 0 < k — ¢y — d &y, set

B _ 1
& > s = G—Bla(Bg +o0+c+d), &= min{e,, E}

With ¢ = e 7, the argument of ¢ and y; being £ = z + Z + ¢e(1 — e 7t) and p, p;

being n = z + z, for any € € (0,2p), we have
Ni(w*(z,1)) = wii(zt) —cwl,(z,t) — diwi,.(2,t) — F'(w"(2,1))
= F'(p) — F'(p +epq) + es0qp; — (pio + cp; + dip])eg.

where d, = d,d, = 0. We distinguish among three cases.
Case (i): |§] < M. Note that F} > 0 for i  j, F} <0 for i = j, and ¢} > 0. By

the choice of £, ¢, and o, we have
2
F'(p) — F'(p+epq) = — /01 £q (Z p; E3 (o + .s.qu)) ds > — B, Bazq,
j=1
and hence
Ni(w*(2,t)) 2 —B1Baeq — Bieg(o + ¢ + d;) + Bsesog > 0.

Case (ii): £ > M. Since §E —n <¢e <1, & >n > M — 1. Thus, by the group of

inequalities (4.3.22), we have

le(€) + sep(n) — ET|| <6, |lp(n) — pT|| <6, Vs € (0,1).



Therefore, by (4.3.21), there holds

F'(p) — F'(p +epg) = —/Oleq (Zpﬂ’}(wswq)) ds

=1
2

> —eq ) pip; = kegps.
j=1

Hence,
Ni(w*(z,1)) > kepig — (pio + cp}; + dip{)eq
> (k_U—ij—dic‘fl)quiZO_

Case (iii): £ < —M. By an argument similar to case (ii), we have N;(w*(z,1)) >

Combining cases (i)-(iii), we have N;(w*(z,t)) > 0 for all £ € (0,£0) and ¢ > 0.
Thus w*(z,t) is a super-solution of system (4.3.19). By a similar argument, we can

prove that w™(z,1) is a sub-solution. "
Lemma 4.3.4 The wave profile p(z) is a Liapunov stable equilibrium of (4.3.19).

Proof. Let gy and w*(z,t,£) be defined as in Lemma 4.3.3 with 2 = 0 and ¢ = .

It then follows that there exists K > 0, independent of &, such that ||w*(z,¢,2) —

e(z)|| < Ke, Vz € R,t > 0, € (0,&9). For any € € (0,&p), let § = ain&p(z). Thus,
EAS

for any given |[[¢ — || < 6, we have
w(z,0,e) = p(z) —ep(2) < Y(2) < p(2) +ep(z) = wt(z,0,6), VzeR

Then the comparison principle implies that w=(z,t,e) < u(z,t,¢) < wt(z,t, ),

Vz € R, ¢ > 0, and hence ||u(:, %, %) — ()| < Ke, Vt > 0. u

Now we are in a position to prove the main result of this section.
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Therefore, by (4.3.21), there holds

F(p) — F'(p +epq)

1 2
—/ £q (Z piF; (v + sepq)) ds
0

=1

2
> —EQZuijﬂj > keqp;.
i=1

Hence,
Ni(w*(z,t)) > kepig— (pio + cp} + dip})eq
> (k—o0—cey —die)egp; > 0.

Case (iii): £ € —M. By an argument similar to case (ii), we have N;(w*(z,t)) >

Combining cases (i)-(iii), we have N;(w™(z,t)) > 0 for all € € (0,50) and ¢ > 0.
Thus wt(z,t) is a super-solution of system (4.3.19). By a similar argument, we can

prove that w™(z,%) is a sub-solution. 1
Lemma 4.3.4 The wave profile p(z) is a Liapunov stable equilibrium of (4.3.19).

Proof. Let gy and w*(z,t,¢) be defined as in Lemma 4.3.3 with 2 = 0 and ¢ = ¢.
It then follows that there exists K > 0, independent of £, such that ||w®(z,t,&) —
@(2)|| < Ke,Vz € Rt > 0,e € (0,6). For any € € (0,&p), let 6 = ¢ ig&p(z). Thus,

for any given ||¢ — ¢|| < 4, we have
w(2,0,¢) = p(2) — eple) < W(2) < p(2) +ep(z) = w(2,0,6), VzeR

Then the comparison principle implies that w™(z,t,2) < u(z,t,¥) < w(z,t,¢),

Vz € Rt > 0, and hence [|u(:,t,¢) — ©(:)|| < Ke, Vt > 0. '

Now we are in a position to prove the main result of this section.
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Theorem 4.3.1 Let p(z — ct) be a monotone traveling wave solution of system
(4.8.14) and U(z, t,v) be the solution of (4.8.14) with U(-,0,%) = () € X,.. Then

for any ¢ € X satisfying (4.3.20), there exists sy, € R such that
Jim_ [|U(@,t,9) = p(o = ct+ sy)]| = 0
— 00

uniformly for © € R. Moreover, any traveling wave solution of system (4.5.14)

connecting £~ and E* is a translate of .

Proof. We will apply the notations in Lemma 4.3.3. Let §y = n}_:iél p(z), and choose

¢ > max{<p, %} For € € (0,e0(s)), by Lemma 4.3.2, there exists £ such that
w(z — 2) —ebp < ulz,t,9) < p(z + 2) + &by, V2 € R

Let f(z) = u(z,t,4). Then, from the construction of w*(z,t) in Lemma 4.3.3, we
have w™(2,0) < u(z,0,f) < w'(z,0),¥Vz € R By the comparison principle, we
have w=(z,t) < u(z,t, f) < wr(z,t), Vz € R,t > 0. Note that u(z,t + £,9¢) =

u(z,t,u(z,t,7)). We then have

plz—2—¢e5) — eplz—2)e % < ulz,t+1t,v)
(4.3.23)

< @lz+z+e5)+eplz+ 2)e %, Vt>0.

Define ®,(v)) := u(-,t,¢),Vip € X, ,t > 0. By the estimate (4.3.23), the positive
orbit v () := {®,(¢)) : t > 0} is bounded in C*(R, R?). Note that zl}gloo(,()(z) -
E*. Consequently, the positive orbit v (7)) is precompact in X, and hence its omega
limit set w(?) is nonempty, compact and invariant.

Letting zp = Z + £¢ and ¢ — oo in (4.3.23), we then have

w(¥) € I := [p(- — 20), p(- + 20)]x.
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Theorem 4.3.1 Lei o(xz — ct) be a monotone traveling wave solution of system
(4.3.14) and U(z,t,) be the solution of (4.5.14) with U(+,0,v¢) = P(-) € Xy. Then
for any ¥ € X, satisfying (4.5.20), there exists sy, € R such that

tl}};ﬂw Uz, t,9) — p(z — ct + 54)|| =0

uniformly for x € R. Moreover, any traveling wave solution of system (4.3.14)

connecting E~ and E™ is a translate of .

Proof. We will apply the notations in Lemma 4.3.3. Let 65 = mi_tg p(z), and choose
zZEE

¢ > max{<o, 516} For € € (0,£0(¢)), by Lemma 4.3.2, there exists ¢ such that
p(z — %) —eby S ulz,t,9) < p(z+ 2) + b6, Vz € R

Let f(z) = u(z,t,7). Then, from the construction of w*(z,¢) in Lemma 4.3.3, we
have w™(z,0) < u(z,0,f) < w*(z,0),Vz € R. By the comparison principle, we

have w™(z,t) < u(z,t,f) < w*(z,t), V2 € Rt > 0. Note that ulz,t + £,9) =
u(z,t,u(z,1,v)). We then have

plz—2zZ—¢e5) — eplz—2)e " < u(z,t+1t,¢)
(4.3.23)
< @(z+2Z+e5) +ep(z+2)e?, VE>0.

Define ®,(1)) := u(-,t,9), V) € X, ,t > 0. By the estimate (4.3.23), the positive
orbit (1)) := {®(¥) : t > 0} is bounded in C*(R, R?). Note that lim p(z) =

E*. Consequently, the positive orbit v (%) is precompact in X, and hence its omega

limit set w(?)) is nonempty, compact and invariant.

Letting zp = Z + £¢ and ¢ = oo in (4.3.23), we then have

w(®) C I :=[p(- — 2), (- + 20)]x-
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Let h(s) = ¢(-+ 5),Vs € [—2p,2]. Then h is a monotone homeomorphism from
[—z0, z0] onto a subset of I. Let V = [E—, E"]x. Then &, : V — V is a monotone
autonomous semiflow. By Lemma 4.3.4, each h(s) is a stable equilibrium for &,.
Clearly, each ¢ € I satisfies condition (4.3.20) and hence, by the above proof, v (¢)
is precompact. By Theorem 1.2.2, it suffices to verify the condition 3(a) to obtain
the convergence of v (7).

Assume that for some sy € [—2p,20) and ¢g € I, (- + 350) <x ¢(-) for all
¢ € w(do); that is, (- + sp) <x w(¢o). By Lemma 4.3.1, ¢(z + 3¢) € Pi(0)(2),Vz €

R, ¢ > 0, and hence, by the invariance of w(g), ©w(z+s9) K ¢(2), Ve € w(do), z € R.

Since lirﬂ:n ¢'(z) = 0, we can choose a large positive number z;, € (zy, +00)
Z—y=00
such that § = sup ||¢'(2)|| < 4%2 By the compactness of w(@y), there exists
|2|Zz1—z0

81 € (S0, z0) such that s, — 85 < 2g4¢, and

oz + 81) € ¢(2), Vz € [—21, 21], ¢ € w(dy).

For any fixed ¢ € w(¢y), there exists a time sequence {t;} such that lim ¢; = +o0,
j—rco
and lim &, (¢o) = ¢. Fix a ; such that ||®y,(¢o) — || < §(s1— ). Since p(z+35;) <
J—00
¢(z) for z € [—2z1, z1], and @(z + s0) — (2 + 51) K ¢(z) — (2 + 51) for Vz € R, we

have
@y (h0)(2) —p(z+81) = @4(d0)(2) — &(2) + ¢(2) — p(2 + 51)
=> —‘5(5‘1 - 30)€+ !,‘15(2,’) =i ‘10(2 e 81)

> —0(sy — s0)€ — ISiUP lo(z + so) — @(z + s1)||€
z|>z)

> —d(sy — 50)€— (51 — s0) sup [|¢'(2)[|€
|z|2 2
> —26(s; — s0)€ > —e1p(z + 81), Vz €R,
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Let h(s) = ¢(- + 8),Vs € [—zp, 20]. Then h is a monotone homeomorphism from
[—20, 2z0] onto a subset of I. Let V = [E~, Et|x. Then ®;: V — V is a monotone
autonomous semiflow. By Lemma 4.3.4, each h(s) is a stable equilibrium for &,.
Clearly, each ¢ € I satisfies condition (4.3.20) and hence, by the above proof, v"(¢)
is precompact. By Theorem 1.2.2, it suffices to verify the condition 3(a) to obtain
the convergence of v ().

Assume that for some so € [—z9,25) and ¢ € I, @(- + so) <x ¢(-) for all
¢ € w(gg); that is, (- + s¢) <x w(¢g). By Lemma 4.3.1, p(z + 59) < B4(0)(2), Vz €
R, ¢ > 0, and hence, by the invariance of w(¢y), p(z+39) K ¢(2), V¢ € w(dy), z € R.

Since zrlirinw ¢©'(z) = 0, we can choose a large positive number 2; € (zp, +00)
such that 6 = sup [|¢'(2)| < ;. By the compactness of w(dg), there exists

[z[>21—20 £
s1 € (8o, 20) such that s, — sp < 2e45, and

p(z + s1) K ¢(2), Vz € [—21, 21], ¢ € w(gho).

For any fixed ¢ € w(¢y), there exists a time sequence {¢;} such that lim ¢; = 400,
j—roo
and lim &, (¢o) = ¢. Fix a ¢; such that ||®,;(¢o) — || < 6(s1—s0)- Since p(z+5)) <
j—oo
¢(z) for z € [—2z1, z1), and @(z + s9) — (2 + 1) K ¢(2) — p(z + s1) for Vz € R, we

have
De; (o) (2) — @z +51) = By (do)(2) — 6(2) + &(2) — p(z + 1)
> —08(s1 — s0)€+ ¢(2) — oz + 51)

> —6(s; — 80)€— sup |lp(z + s0) — @z + s1)||€

|z[>21

> —6(sy — 80)€ — (81— s0) sup ||¢'(z)]|€

[z|=2z

> —26(s; — sg)€ > —e1p(z+51), Vz€ER,
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where € is the unit vector in R?, £, = 23153? Note that €; < gg and g,¢ < %(81 — Sp).
By the construction of w~(z,t) in Lemma 4.3.3, we have w™(z,0) < ®;, (¢o)(z). It

then follows that

(@, (d0))(2) = w(z,t) =245 —e15(l —e™ %)) —e1p(z + s1)e™"

A%

p(z + 51 —e15) —e1p(z + s1)e™

v

o(z + 51 — 3(81 — 30)) — e1p(z + s1)e™"
= p(z+3(s1+ %)) —ap(z+s)e™”, zeR, t>0.

Setting t = t; —t; and ; — oo, we then obtain that ¢(-+3(s;+s0)) <x ¢(-). Denote
52 = 5(s1 + s0). Then s € (so,51) C [0, 20] and @(- + s2) <x ¢(-). Since ¢ € w(¢y)
is arbitrary, we have ¢(- + s2) <x w(dyp).

By Theorem 1.2.2, there exists sy € [—2z0, zo] such that w(v¥) = h(sy) = @(-+ ).
Then tl_i}n;a O, () = o(- + sy). Since U(z, t,¥) = u(z — ct, t,¥) = (¢)(z — ct), we
have 51_1323 |U(x,t, %) — p(x — ¢t + sy)|| = 0 uniformly for z € R

Let @(z — ét) be a traveling wave solution of system (4.3.14) connecting £~ and
E*. Then ¢ satisfies condition (4.3.20). By what we have proven above, there
exists 3, € R so that tli}r& l@(- — &) — (- — et + §y4)|| = 0. By a change of variable
z = x — ct, we have tl_i}rgo |@(- + (¢ — é)t) — (- + 3y)|| = 0. Since @(+oo) = E%, and

@(+) is strictly increasing on R, we must have ¢ = ¢, and hence, @(-) = @(- + 54).

4.4 Global Exponential Stability

In the last section we proved that for a large class of initial values, solutions of

(4.3.14) converge to translates of the traveling wave front. In this section, we will
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where € is the unit vector in R?, £, = 752 Note that €, < €9 and £,¢ < 5 (81 — 50).

By the construction of w™(z,t) in Lemma 4.3.3, we have w™(z,0) < ®, (¢o)(2). It

then follows that

By ( Py (00))(2) =2 w(2,t) =p(z+ 51 —e1c(1 — e ) —e1p(z + s1)e™

Vv

(p(z e Sg — 51‘;) = El,D(Z + -5'1)6—‘“

v

w(z+s1 — 3(s1 — 80)) —e1p(z + s1)e™ "
= @(z+3(51+%0)) —e1p(z+s1)e”™, z€R t>0.

Setting t = t; —t; and t; — oo, we then obtain that ¢(-+(s1+s0)) <x ¢(-). Denote
52 = 5(s1 + s0). Then s3 € (s0,51) C [s0, z0] and (- + s3) <x &(-). Since ¢ € w(¢o)
is arbitrary, we have ¢(- + s2) <x w(dy)-

By Theorem 1.2.2, there exists s, € [—2p, 20| such that w(1) = h(sy) = @(-+sy).
Then tl_'hnolo ®,(1)) = (- + sy). Since Uz, t,9) = u(xz — ct, t,v) = ®,()(z — ct), we
have tl_l}r& |U(z,t, ) — p(z — ct + sy)|| = 0 uniformly for z € R.

Let @(x — ét) be a traveling wave solution of system (4.3.14) connecting E~ and
E*. Then ¢ satisfies condition (4.3.20). By what we have proven above, there
exists 5y € R so that tl:r& |@(- —ét) — (- — et + §5)|| = 0. By a change of variable
z =z — ct, we have ,h_}& |&(- + (¢ — &)t) — (- + 3y)|| = 0. Since @(+o0) = E*, and

@(-) is strictly increasing on R, we must have ¢ = ¢, and hence, @(-) = (- + §y).

4.4 Global Exponential Stability

In the last section we proved that for a large class of initial values, solutions of

(4.3.14) converge to translates of the traveling wave front. In this section, we will
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show that this convergence is also uniformly exponential via the spectrum analysis.
A standard technique for determining stability (exponential) of traveling waves
is to use the linearization criterion. As in the last section, we assume that system

(4.3.14) admits a strictly increasing traveling wave solution

U(:L‘a t) == (19(1" . Ct) = ((Pl(r il Ct)! 902(1" - Ct))! ¢ # 0.

If the right-hand side of (4.3.19) is linearized about its equilibrium solution ¢(z),
the resulting linear operator is

dul,zz =t Cuy - (23]
Lu = + Jo(2) ;

Cun Us

-y

where J,,(2) = (F}(p(2))), u(z) = (w1(2),u2(2)) € X

The linearization criterion for stability of the traveling wave front is that the
spectrum o (L) of L (except for zero) lies in a left-half complex plane and is bounded
away from the imaginary axis, and zero is a simple eigenvalue. Note that zero is
always an eigenvalue of L because of the translation invariance of traveling waves.

For the point spectrum o,(L) of L, we have the following result.

Lemma 4.4.1 Assume that X\ is an eigenvalue of L with eigenfunction u € X,

complezified X. If u & span{y'(:)}, then ReX < 0.

Proof. Let D = diag(d,0),C = diag(c, c), B(z) = (F}(¢(2))) and B* = (F}(E*)).
We claim that there exist positive vectors ¢& such that B¥¢* < 0. Note that the
reaction system (4.3.15) is cooperative and E= are stable nodes. Since B is ir-

reducible, we can choose ¢* as a positive eigenvector associated with the negative
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show that this convergence is also uniformly exponential via the spectrum analysis.
A standard technique for determining stability (exponential) of traveling waves
is to use the linearization criterion. As in the last section, we assume that system

(4.3.14) admits a strictly increasing traveling wave solution

Uz, t) = p(z —ct) = (p1(z — ct), p2(z — ct)), cF#O.

If the right-hand side of (4.3.19) is linearized about its equilibrium solution ¢(z),
the resulting linear operator is

dul,zz 4 Cuy » Uy
Tar = + J,(2) :

Cuy , Uz
where J,(2) = (Fi(¢(2))), u(z) = (u1(2),u2(2)) € X
The linearization criterion for stability of the traveling wave front is that the
spectrum o (L) of L (except for zero) lies in a left-half complex plane and is bounded
away from the imaginary axis, and zero is a simple eigenvalue. Note that zero is
always an eigenvalue of L because of the translation invariance of traveling waves.

For the point spectrum o,(L) of L, we have the following result.

Lemma 4.4.1 Assume that A is an eigenvalue of L with eigenfunction u € X,

complezified X. If u & span{yo'(:)}, then ReX < 0.

Proof. Let D = diag(d,0),C = diag(c,c), B(z) = (Fj(¢(z))) and B* = (F}(E¥)).
We claim that there exist positive vectors ¢= such that B¥¢™ < 0. Note that the
reaction system (4.3.15) is cooperative and E* are stable nodes. Since B¥ is ir-

reducible, we can choose ¢* as a positive eigenvector associated with the negative
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principle eigenvalue of B*. Thus, B*¢" < 0. If ¢’(0) > 0, then B~ is an irreducible
matrix. Therefore, a positive eigenvector g~ can be chosen such that B~ ¢~ < 0.
If ¢'(0) = 0, let ¢~ = (1,2). Then B~¢~ < 0 for some sufficiently small positive
number .

Let zp > O be a sufficiently large number so that B(z)g" < 0 for z > zp, and
B(z)g~ < 0 for z < —2z. Set € > 0 be small so that (2D + ¢C + B(z))q" < 0 for
z > 29, and (2D +eC + B(z))g~ < 0 for z < —25. Letting Q*(2) = e*“*¢q*, we have
LQY <0 for 2 > 25, and LQ~ < 0 for z < —z.

Assume that A is an eigenvalue of L with eigenfunction v € X, and u ¢
span{¢'(:)}. Rewrite X = A\; + M\oi, u = u! + u?i, where A\, )y € R, v}, u? € X,

and u? = 0 if A\» = 0. Consider the Cauchy problem:
v(z,t) = Lo(z, t) — Mv(z, 1), v(z,0) = u'(2).

The function v(z,t) = u'(2) cos Aot — u?(2) sin Aot is a solution of this problem. We
require that at least one of the elements of the vector-valued function v(z,1) takes
on a positive value (otherwise, we can consider —v(z,1)). Let ¥(z) = ¢'(2) > 0.

Since v(z,t) is periodic and bounded, we can choose a positive number r such that
v(z,t) < r(z) for |z| < zp and t > 0, (4.4.24)

where for at least one k = 1 or 2, and one |z,| < z; and ¢; > 0, we have the following

equality for the k-th components
ve(21,t) = i (21). (4.4.25)

We proceed the proof by contradiction. Suppose that A; > 0. Then there hold

the following two claims.
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where for at least one k£ = 1 or 2, and one |z;| < z; and £, > 0, we have the following

equality for the k-th components
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We proceed the proof by contradiction. Suppose that A\; > 0. Then there hold

the following two claims.
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Claim 1. v(z,t) < r¢p(z) for all z € R, t > 0.

Suppose, by contradiction, that there exist some z > zg,t > 0 such that v(z,¢) >
rip(z). Since Q1 (z) = e“q" — +oo0 as z — +oco, there exists 7 > 0 such that
v(z,t) < r(z) +7Q1(2) for z > z5,t > 0, where at least for one j, one 2z, > 2, and

to > 0, we have the equality for j-th component:

vz, 1) = 1(2) + 7Q ().

Let y(z,t) = ry(z) + 7Q*(2) —v(z,t). Then the j-th component y;(z,t) satisfies
y;(z2,12) = 0,9y;(20,t) > 0,y;(2,t) > 0 for z > z,t > 0. Therefore, y;:(z2,t2) < 0,
Yiz(22,t2) = 0, and if j = 1, then y; ,.(22,%2) > 0. Since LY (z) = 0, and LQT(2) < 0

for z > 2y, y;(z,t) satisfies

Yie = —vie=—(Lv— \v);

> (—Lv+MNv+ Lry+ LrQ*T — M\ (ry +7QT));

= (Ly — \y);

= dYjes + c¥se + FY (0(2)0n + F (0(2))%2 — Mays,
where d; = d if j = 1 and d; = 0 if j = 2. Evaluating the above inequality at
(#s, 1) and using the positivity of F7(¢(z)) for i # j, we then have a contradiction
in signs. Thus v(z,t) < r¢(z),Vz > 2¢,t > 0. Using the same argument, we obtain
that v(z,t) < ry(z),Vz < —zp,t > 0. Thus the claim is established.
Claim 2. v(z,t) = r¢(z), Vz € Rt > 0.

Suppose, by contradiction, that v(z,t) # rv(z). Then there exist £ > 0,Z € R

and k = 1 or = 2, such that vg(2,%) < r¥(2). Let Y(z,t) = r¢(2) — v(z,t). Then

Y(z,t) > 0 for z € R, > 0, and Yz(z,7) > 0. Moreover, the components Y;(z,t) of
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Y (z,t) satisfy

e 2 (LY — A Y);
(4.4.26)

= diY.. + cYi. + Fi(p(2)Yh + F5(e(2))Y2 — MY,

By a similar argument as in Claim 1, it follows from the inequality (4.4.26) that
Y;(z,%) > 0 for each i = 1,2. Applying the strict positivity theorem ([85, Theorem
5.5.4]), we have Y(z,t) > 0 for z € R, ¢t > {. By the periodicity of Y in ¢, we have
Yi(z,t) > 0 for 2 € R,t > 0. Therefore, if k = 1, defined by (4.4.25), we then have
a contradiction. Let us consider the case where k& = 2. Since Y3(2;,t,) = 0 and
Y3(z,t) > 0 for z € R, t > 0, it follows that Y5,(z1,%;) < 0,Y2.(21,11) = 0. Note that
Yi(z1,%1) > 0. Evaluating (4.4.26) with 7 = 2 at (z;,%;), we have a contradiction in
signs. This established the claim.

For A\ # 0, Claim 2 implies that Lv(z,¢t) = Lr(z) = 0, i.e., Lu'(z) cos Aot —
Lu?(z)sin Ayt = 0,Vt > 0. Hence Lu'(z) = 0 and Lu*(z) = 0. Therefore, Lu = 0,
which contradicts the fact that Lu = Au # 0. For Ay = 0, we have uy = 0 and hence
u(z) = u'(z) = v(z,t) = r(z), which contradicts our assumption that u & span{:}.

Therefore, A\ = ReX < 0. ]

To show that the essential spectrum o, (L) of L satisfies the linearization criterion,
we will use the results in Section 1.3 developed in [46].

Let T be the following linear operator:

Ay 2z = Clbt 3 uy

AR == J(Z) s

cus ; o

where J(z) = (F}(E")) for z > 0, J(z) = (F}(E7)) for z < 0, and u(z) =
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Y (z,t) satisfy

Yi: 2 (LY — \Y);

(4.4.26)
= d;Yi .+ cYi: + Fi(p(2))Y1 + Fi(p(2))Y: — A1Y;,
By a similar argument as in Claim 1, it follows from the inequality (4.4.26) that
Y;(Z,f) > 0 for each i = 1,2. Applying the strict positivity theorem ([835, Theorem
5.5.4]), we have Yi(z,t) > 0 for z € R, ¢ > {. By the periodicity of Y in ¢, we have
Yi(z,t) > 0 for z € R, ¢ > 0. Therefore, if k£ = 1, defined by (4.4.25), we then have
a contradiction. Let us consider the case where & = 2. Since Ya2(z;,%,) = 0 and
Ya(z,t) > 0 for z € Rt > 0, it follows that Y5,(21,%,) < 0, Ys.(21,%) = 0. Note that
Yi(z1,t) > 0. Evaluating (4.4.26) with ¢ = 2 at (2;,1,), we have a contradiction in
signs. This established the claim.

For Ay # 0, Claim 2 implies that Lu(z,t) = Lr¢(z) = 0, i.e., Lu'(2) cos Apt —
Lu?(z)sin A\gt = 0,V¢ > 0. Hence Lu'(z) = 0 and Lu?(z) = 0. Therefore, Lu = 0,
which contradicts the fact that Lu = Au # 0. For A\, = 0, we have uy; = 0 and hence
u(z) = u'(z) = v(z,t) = rip(z), which contradicts our assumption that u ¢ span{i}.

Therefore, A\; = ReA < 0. o

To show that the essential spectrum o, (L) of L satisfies the linearization criterion,
we will use the results in Section 1.3 developed in [46].

Let 7" be the following linear operator:

duy ., + cuy , 1

Tu = G g J(z) )

Cly Uy

where J(z) = (F}(EY)) for 2 > 0, J(z) = (F}(E™)) for z < 0, and u(z) =



(u1(2),u2(2)) € X. Consider the eigenvalue problem of T

P
(T — \I) =0, (4.4.27)

7
where (z) € X,, complexified X. Rewrite (4.4.27) as a system

p'(z) = q,
¢ (z) = —3(cq+ Ju(z)p+ Ji2(2)r — Ap),
r'(z) = —L(Ja(2)p + Ja2(2)r — A1),

where J(2) = (J;;(2)). Let y = (p,q,7) € C*, and write the above system as
¥ = A(z, Ny, (4.4.28)

where

Az, ) = —ﬁ(Ju(z) =) ~ _5']12(3)

K —%ng(z) 0 —%(ng(z) = )\) /
Define AT(\) := A(1,)), A= ()\) := A(—=1,)\), and S* = {A € C: A* = A%(]) have

imaginary eigenvalues}, which will provide the necessary information about o.(L).

Lemma 4.4.2 C\ S* has an open connected set G for which there ezists a g < 0

such that {\: Rel > X} C G.
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o
o
o
\]
j —

p
where (z) € X., complexified X. Rewrite (4.4.27) as a system

P(z) = g
q'(}:) = —5(Cq+a]11(2)p+t]12(2)7‘—/\])),
7"(2) — —%(.]21 (Z)p “f JQQ(Z)T = /\T'),

where J(z) = (J;;(2)). Let y = (p, ¢, 7) € C*, and write the above system as
y = A(z, Ny, (4.4.28)

where

( 0 1 0 \

A(Z,A) = —";;(J“(Z) = /\) —ﬁ —'51112(2)

\ ”%J‘zl("«') 0 "%(J').'z(z) —A) )
Define AT()) := A(1, ), A=()\) := A(=1,)), and S* = {A € C: A* = A*()) have

imaginary eigenvalues}, which will provide the necessary information about o,(L).

Lemma 4.4.2 C\ S* has an open connected set G for which there exists a Ay < 0

such that {\: Rex > N} C G.
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Proof. Let P()\) = det(A* — uil). Then

/ — i 1 0 \
PQ) = | —L3(FHE*)-A) —5— pi ~L B BF)
\  —ET(EY) 0 —o(FR(EF) = A) — i
= (Gui— p® + (FL(E®) + FR(EF))A — 5% + pP(ui + §) + (uF3(EF)

—Lpi(FL(E*) + FR(B*)) + L(F2(B+)F}(B*) — FNE*)F3(E*)).
Setting P(\) = 0, we have
A= %(F]‘(Ei) + F2(E®) + 2cpi — dp® = VA),

where A = (F§(E*) — FHE®) + du?)? + 4F2(E*)F) (E*), which is positive since
Fi(uy,up) > 0 fori+# j,1 <i,j <2 Let A=\ + Agi, where A\;, Ay € R. Then

1 .
M = S(Fl(BF) + F3(E*) — dy® & VA), A = cp.
Eliminating the parameter y, we have

AN = l(Fl(Ei)+F2(Ei)—ﬁ,\g)

\/(Fe(Ei) Lo 9 \2)2 + 4F2(E*)F}(E*).

Thus the set S* is symmetric about the real axis in the complex plane. It is easy
to obtain that the derivative d)\;/dX\s < 0 for Ay > 0. Therefore, the maximal real

part of the point in S= is one of the following values

= —(r (E*) + F2(E*)) + \/(F-f E+) — FL(E+))? + AF2(E*)F} (E%).
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Proof. Let P()\) = det(A* — wil). Then

/

— 11 1 0
P(A) = | —L(FNE*) =X) —&— i —LEl(E*)
\  —TET) 0 —(FHE=) = X) = w2

= (3pi— Lp?+ L(FHE®) + F2(B%))A - A2 4 (i + 5) + LpPFI(ET)

— Ll FL(B*) + F(E®)) + L(FH(B*) F}(B*) - F}(B) F3(E")).

Setting P(A) = 0, we have
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0| =

where A = (FZ(E=) — FHE®) + dp?)? + 4F2(E*)F}(E®*), which is positive since
Fi(uy,up) > 0 fori# 5,1 <4,7 <2 Let X =\, + Aot where A\, Ay € R. Then

1 .
o= S(FH(E*) + F(E*) — dp* £ VA), = cp

Eliminating the parameter p, we have

f S d
Moo= S(FIES) + BB - 5X)
1\ [(F3(B2) - (B4 + 2092 + 4R (BB,

Thus the set S= is symmetric about the real axis in the complex plane. It is easy
to obtain that the derivative d\;/dX\s < 0 for Ay > 0. Therefore, the maximal real

part of the point in S* is one of the following values

XE = C(FL(E®) + F(EY) + 5/ (F3(B*) - FI(B*))? + 4F2(E*) F}(E*).
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Note that A\* are exact eigenvalues of the Jacobian matrix of the reaction system
(4.3.15) at E*. Thus A* < 0. Therefore, the curves S* are bounded uniformly away

from the imaginary axis. This proves the lemma. "

The implication of Lemma 4.4.2 is that there is no essential spectrum point of L

in G.
Lemma 4.4.3 o(L)NG C g,(L).

Proof. Define the differential operator L(A)y = ¥’ — A(z, A)y. Then, by Theorem
1.3.1, one of the following cases holds: (i). 0 € o(L()\)) for all A € G (defined by
Lemma 4.4.2); (ii). 0 € p(L(\)) for all A € G except for isolated points, and the
exception points are poles of L(A)~! of finite order. Therefore, the set G consists
either entirely of spectral points o(7T") of T" (case (1)), or entirely of normal points of
T (case (ii)). Here a normal point is a resolvent point or an isolated eigenvalue of T'
with finite multiplicity. It is not difficult to see that large positive numbers are not
eigenvalues of T (see, e.g., the proof of Lemma 4.4.1). Thus, G consists entirely of
normal points of T'. Let S = J,(z) — J(z). Then L =T + S. It is easy to show that
S(AoI — T)~ ! is compact for large positive A\g. By Theorem 1.3.2, G consists either
entirely of normal points of L, or entirely of eigenvalues of L. Hence, Lemma 4.4.1

implies that o(L) (G C o,(L). "
Now we know that o.(L) causes no problem for linear stability. Hence, we can
draw the following conclusion about the global exponential stability.

Theorem 4.4.1 Let o(x — ct) be a monotone traveling wave solution of (4.3.14)

with ¢ # 0. Then there exists a positive constant p > 0 such that for every ¢ € X,
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Note that A* are exact eigenvalues of the Jacobian matrix of the reaction system
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Now we know that o.(L) causes no problem for linear stability. Hence, we can
draw the following conclusion about the global exponential stability.
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satisfying (4.3.20), the solution U(z,t,) of (4.3.14) satisfies
U (z,t, %) — p(z — ct + sp)|| < Cpe™, Vz € R,t >0,
for some constant sy, € R and Cy > 0.

Proof. By Lemma 4.4.1 and 4.4.3, it follows that zero is a simple eigenvalue of L
and the rest of the spectrum o (L) lies in the left-hand complex plane and is bounded
away from the imaginary axis. Thus, by the main theorem in [32], zero solution is
stable for the linearized PDE system of (4.3.14) at the traveling wave solution. Then
by the result in [30], the traveling wave solutions are locally exponentially stable for

the original system (4.3.14), and hence, Theorem 4.3.1 completes the proof. .

4.5 Numerical Simulations

By Theorems 4.2.1, 4.3.1 and 4.4.1, we know that the epidemic model (4.2.2) admits
a unique monotone bistable traveling wave solution (up to translation), which is
globally exponentially stable with phase shift. In order to check this result, we
numerically simulate solutions of system (4.2.2). Assume that d = 0.2, = 2.3, =

1 and ¢g(2) = ,_J’ig. Then, a = 0.5821,b = 1.7179, and the integral (4.2.13) is

0.07521 > 0. Hence, Theorem 4.2.1 implies that the wave speed ¢* is positive.
System (4.2.2) is discretised by using the finite difference method on a finite spatial
interval [—L, L] with the Neumann boundary condition, where L > 0 is sufficiently
large in comparison with the domain in which the solutions rapidly change shapes.
The numerical wave profile is shown as solid lines in Figure 4.3 and 4.4. Figure 4.5

and 4.6 provide the evolution of the solution with initial function being the dashed
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lines in Figure 4.3 and 4.4. We can see that the solution rapidly converges to the

wave profile.

Figure 4.4: The initial function for v, component.
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lines in Figure 4.3 and 4.4. We can see that the solution rapidly converges to the

wave profile.

25 —r = =

component.

Figure 4.4: The initial function for uy component.



Figure 4.5: The evolutionary graph of u,(z, ?).

Figure 4.6: The evolutionary graph of us(z,t).



Chapter 5

Spreading Speed and Traveling

Waves for a Nonlocal Epidemic
Model

This chapter will investigate the asymptotic speeds of spread for solutions and travel-
ing wave solutions to the integral version of the epidemic model studied in Chapter
4. We will establish the existence of minimal wave speed for monotone traveling
waves, and show that it coincides with the asymptotic speed of spread for solutions
with initial functions having compact supports.

This chapter is organized as follows. Section 5.1 presents the nonlocal epidemic
model. In Section 5.2, we first reduce the system into an integral equation, and then
obtain the asymptotic speed of spread under appropriate assumptions. Section 5.3 is
devoted to the existence and nonexistence of monotone traveling wave solutions. Our
results show that the asymptotic speed of spread is exactly the minimal wave speed
for monotone traveling waves. Finally, some numerical simulations are provided to

illustrate the asymptotic speed of spread and monotone traveling waves.
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Figure 4.5: The evolutionary graph of u,(x, t).
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Figure 4.6: The evolutionary graph of us(x, t).
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illustrate the asymptotic speed of spread and monotone traveling waves.
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5.1 Introduction

Recall that, in Chapter 4, we investigated the existence, uniqueness and exponential
stability of bistable traveling waves for the epidemic model:

3£u1(t, I) = ClA'lL](t, iE’) — 11U (i, JJ) + al-g?.Lg(t, SU),
(5.1.1)

Qrug(t, ) = —anus(t,x) + glui(t, z)),

where u, (¢, 2) and us(¢, z) denote the spatial densities of infectious agents and the
infective human population at time t > 0, respectively, d, a,y, a;2 and a9y are positive
constants. This model has some basic assumptions: (i) the total susceptible human
population is large enough, with respect to the infective population, to be considered
as constant; (ii) the infectious agents diffuse randomly in the habitat Q due to a
particular transmission mechanism; (iii) the infective population at 2 €  only
contributes to the infectious agents at the same spatial point.

As mentioned in [6], to deal with indirect transmission diseases, typical of in-
fectious diseases transmitted via the pollution of the environment due to the infec-
tive population (typhoid fever, schistosomiasis, malaria, etc.), a different approach
should be used to model the mechanism of production of the pollutants. A possi-
ble model is the one proposed in [14]. Assume that the growth rate of bacteria or

pollutants due to the infective population can be modeled by

/ K(z,y)ua(t,y)dy, t>0, z €Q,
Q

where K(z,y) describes the transfer kernel of infectious agents produced by the
infective humans located at y and made available at z. From the viewpoint of

statistics, normal distribution is one of the most common probability distributions.
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Many phenomena generate random variables with probability distributions which are
very well approximated by a normal distribution. Therefore, it is natural to assume
that the transfer kernel K(z,%), just like the standard normal density function,
is only contingent on the distance between the two spatial points z and y, i.e.,
K(z,y) = K(z — y), and K(u) = K(v) if |u| = |v|,Vu,v € Q, where | - | denotes
the usual norm on R*, n = 1,2,3. This kind of function is said to be isotropic. A
typical isotropic function is the standard normal density function. The whole model
system is then governed by

Ouui(t,z) = dAuy(t,z) — anu(t, z) + [ K(z — y)ua(t, y)dy, 2
5.1.2

Qua(t, ) = —agus(t,z) + glu,(t, x)).

For the monotone increasing infection rate g and a general kernel K (z,y), the
stabilities of trivial solution and the unique nontrivial equilibrium solution of (5.1.2)
were studied in [14], and [6] provides conditions for exponential decay of the epi-
demics for (5.1.2). Here, we want to study the asymptotic speed of spread, traveling
waves and the minimal wave speed for system (5.1.2) with Q = R”.

The existence of Fisher type monotone traveling waves and minimal wave speed
of (5.1.1) were obtained in [97] via the method of upper and lower solutions. In
Chapter 4, bistable monotone traveling waves of (5.1.1) were established. Recently,
the theory of asymptotic speeds of spread and monotone traveling waves, developed
in [8, 3, 13, 7, 9, 26, 28, 27, 79, 80, 71, 90|, has been generalized to a large class
of scalar nonlinear integral equations in [83]. As an application example, a time-
delayed version of (5.1.1) was also analyzed in [83]. We will use this theory to

obtain the asymptotic speed of spread for solutions and the minimal wave speed of
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K(z,y) = K(z — y), and K(u) = K(v) if |u| = |v|,Yu,v € Q, where | - | denotes
the usual norm on R*, n = 1,2, 3. This kind of function is said to be isotropic. A
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monotone traveling waves for (5.1.2).

5.2 The Asymptotic Speed of Spread

Recall that a number ¢* > 0 is called the asymptotic speed of spread for a function

u: R xR* > R, if lim u(t,z) = 0 for every ¢ > ¢*, and there exists some
t—oo,|z|>ct

@ > 0 such that lim wu(t,z) = @ for every ¢ € (0,¢*), where | - | denotes the
t—oo,|z|<ct

usual norm in R". In this section, we will find such ¢* for solutions of system (5.1.2).

For system (5.1.2), scaling the space variable, we can assume that d = 1. Scaling

time and absorbing the appropriate constants into uy and g, we can rewrite system

(5.1.2) as
Our(t,z) = Aui(t,z) —u(t, z) + [z K(z — y)us(t, y)dy,
(5:2.3)
Oyug(t,z) = —pPus(t,x)+ g(u,(t, z)), =€ R?,
where § = 2%, and g is the E%T times of g in system (5.1.2). System (5.2.3) is
supplemented by initial conditions
u1(0,z) = ¢1(z) > 0, us(0,2) = ¢a(z) > 0, z € R™. (5.2.4)

In what follows we reduce system (5.2.3)-(5.2.4) into an integral equation for
uy. Let I['(¢,x) and I'y (¢, z) be the Green’s functions associated with the parabolic

equations 9;u = Au and du = Au — u, respectively. Then I';(¢,z) = ['(¢, z)e ",



124

monotone traveling waves for (5.1.2).

5.2 The Asymptotic Speed of Spresad

Recall that a number ¢* > 0 is called the asymptotic speed | of spread for a function
u: R, xR* - R, if lim wu(f,z) =0 for every ¢ > ¢™*, and there exists some
t—o0,|z|>ct
% > 0 such that lim u(f,2) = @ for every ¢ € (0,c¢*)y, where | - | denotes the
t—ro0,|z|<ct
usual norm in R”. In this section, we will find such ¢* for sollutions of system (5.1.2).
For system (5.1.2), scaling the space variable, we can asssume that d = 1. Scaling

time and absorbing the appropriate constants into u; and eg, we can rewrite system

(5.1.2) as

Oyuy (t, z) Auy(t, ) — ui(t, z) + fgn K(z — y)0ua(t, y)dy,

(5.2:3)
Ous(t,z) = —Pus(t,z) + glu (¢, z)), = &R,
where 8 = 22, and g is the a11 times of g in system (5s.1.2). System (5.2.3) is

supplemented by initial conditions

11(0,2) = ¢1(z) > 0, us(0,2) = ¢a(z) >0, z€R" (5.2.4)

In what follows we reduce system (5.2.3)-(5.2.4) into : an integral equation for
uy. Let T'(¢,x) and T'; (¢, x) be the Green’s functions assocziated with the parabolic

equations dyu = Awu and dyu = Au — u, respectively. Thaen I'y(¢,z) = (¢, z)e "
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Integrating system (5.2.3) together with (5.2.4), we have
wta) = [ Tuto-yo)dy+

/ a’s/l L'y{t—s,z—y) ik, K(y — 2)us(s, z)dzdy, (5.2.5)

w(te) = ePoaa)+ [ A Dgunr ) (5.2.6)
Changing the order of spatial integration in (5.2.5),
u(t,z) = / Itz —y)o(y)dy +
/ ds /" ua (s, z) F (t — s,z —y)K(y — 2z)dydz.
After a substitution,
ui(t,z) = 5 Iyt z — y)di(y)dy +
/Ot ds /n (s, 2) /" 't — s,z — z— y)K(y)dydz=.
Let
ki(t, &) = do (¢ € — y)K(y)dy. (5.2.7)
Then

t
ult, @) = / Iyt x—y)éi(y)dy + / ds/ us(s, 2)k1(t — 8,2 — 2)dz.
L 0 n
Inserting (5.2.6) into the above equation,
t s
uy(t, ) = ug(t, x) —!—/ d.sf ki(t — s,z — z)[ e P g(uy (r, 2))drdz,
0 n 0

where

14
w(t,) = [ Tita-na@dy+ [ ds [ k(t—sz- e P g (528

0 Rn
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Integrating system (5.2.3) together with (5.2.4), we have
ur(t,z) = / Itz —y)d(y)dy +

t
/ dsf Oyt —s,2—y) K(y — z)us(s, z)dzdy, (5.2.5)
0 n REBn

us(t, ) e Ploy(z) +/ e P gy (r, 2))dr. (5.2.6)
0

Changing the order of spatial integration in (5.2.5),

u(t,z) = / [y(tz —y)ou(y)dy +
R'ﬁ
t
/ ds/ us(s, z) Iyt — s,z —y)K(y — z)dydz.
D __n Rfl

After a substitution,

ut) = [ Tt -y +

¢
f (13/ Uy (s, z) / It —s,z—z—y)K(y)dyd-z.
0 " R"

Let

ky(t, €) = 4 [y (¢, € — y) K (y)dy. (5.2.7)

Then

. :
Wt m) = / 'tz —y)o(y)dy —l—f dsf us(s, 2)k\ (t — s,z — 2)dz.
FEn 0 n

Inserting (5.2.6) into the above equation,

ot . 8
uy (t, x) = up(t, z) + / ds/ ki(t — s,z — z)/ e P gluy (7, 2) )drdz,
0 n 0

where

¢
uglt, z) = / (¢, z — y)ody (y)dy —I—/ ds/ ki(t — s,z — 2)e™ P ¢y(2)dz. (5.2.8)
R" 0 n
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Changing the order of the time integration,

{ » 1.
ui(t,z) = w(t, z)+ f d"‘/ / ki(t — s,z — 2)e PG g(uy(r, 2))dsdz
0 Rn Jr
1 l—71
= ug(t,z) + / (17‘/ / kit —r—s,o — z)e"gsg(ul(r, z))dsdz.
0 nJo

After a substitution, we have

o1 t—r
o) = wta)+ [ dr [ [ k== sg)e e - v)dsdy
0 en Jo
t g
= uo(t,x) + / dr/ f ky(r — s,y)e P g(u,(t — r, 2 — y))dsdy.
0 e Jo

Letting ko (t, z) = f(: ki(t — s, x)eP4ds, we have

t
uilt, ) = uo(t,a) + [ ds [ glur(t =5, y)kas, )y, (5.2.9)
0 R
where
¢
ko(t,z) = / / Tt —s,z—y)K(y)e P dyds. (5.2.10)
0 n

Before making some assumptions on system (5.2.3), we need to compute some
Laplace-like transforms of integral kernels. Define k(t,z) = ¢'(0)k2(¢, z), f(u) =
;‘3%}5. For any function ¥ : Ry x R* — R, let

m »
Kolc,A) = f / e Mt g(s, y)dyds, ¢, A >0,
0 @n

where 7, is the first coordinate of y. By [83, Proposition 4.2], we have
oo
k(e N) = [ [ eNer (s, y)ayds
0 Bn

o0
/ / e_A((rs+y1)_sF(S, y)dydb
000 =

o / e)«"s——:\cs-—-sds.
0

I
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Changing the order of the time integration,
t t
Uy (t: ‘I") i uU(t! I) +f d7/ / ’l](t — Gy z)e“’g(s_")g(ul[?'s Z))dsdz

= ug(t,x) / dr / [ Wt =1 — s,z — 2)e P g(u(r, 2))dsdz.

After a substitution, we have
w(t,z) = wuo(t, o) +/ dT/ f Lt — 1 — s,y)e Pg(uy (T — y))dsdy

B uo(t’m)+f dr/ / ky(r — s,y)e P glua (t — 7, ¢ — Y))dsdy.
Q nJQ

Letting ks(t, z) = f(: ki(t — s, z)e ?3ds, we have

uy(t, x) = ug(t, x) + /: da /;n g(ur(t — s,z — y))ka(s, y)dy (5.2.9)

where
t
ko(t,2) = f / T (t —s,7—y)K(y)e **dyds. (5.2.10)
0 n

Before making some assumptions on system (5.2.3), we need (0 compute some
Laplace-like transforms of integral kernels. Define k(¢,z) = ¢/ (0k2(t, 2], f(u) =

E;QL(%) For any function ¢ : Ry x R* — R, let

Ko, A) :=/ / e (s, y)dyds, €A > 0
U n

where y; is the first coordinate of y. By [83, Proposition 4.2, we have

ICFI(C-M\) e / /e")‘(c”yl)rl(s,y)dyds

3 / / e M (s, y)dyds
= / 25— Acs— —S.s.
0
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By [83, Proposition 4.1 (1)], we further obtain

o0
Kile,)) = ¢'(0)Kr,(c, )\)/ / e 2estv) K () e Podyds
o Jmn

9'(0)
Ac+ 3

where C(\) = [, e K(y)dy. In particular, Kx(0,)) = (l" &U))ﬂiC()\) Lat BF =

KN K, (¢, M), (5.2.11)

Ki(c,0) = ‘(’—g]llC(O). We now can make the following assumptions on system (5.2.3).

(M1) K : R* — R, is continuous, and K is isotropic, i.e., K(z) = K(y) if |z| = |y,

where | - | is the usual norm on R”.

(M2) K(0) > 0, and there exists some \g > 0 such that X(\y) = oo, and KL(\) < oo

for all A € [0, \g), where \g may be infinity.

(M3) g : R, — R, is Lipschitz continuous with g(0) = 0, differentiable at 0, and
satisfies ¢’(0)K(0) > 3, 0 < g(u) < ¢'(0)u, Vu > 0.

Since K(0) > 0and I'y(¢,+) > 0,Vt > 0, k(¢,-) > 0 for all t > 0. One can easily check
that (M1)-(M3) imply the assumptions (B) and (C) in Section 1.1 with F(u, s, y) =
f(u)k(s,y). Our assumptions also imply that system (5.2.3) is quasi-monotone. By
(64, Corollary 5| (see also [88, Corollary 8.1.3]) and [88, Corollary 2.2.5], for any
bounded, uniformly continuous and nonnegative function ¢(z) = (¢(z), ¢a2(x)),
system (5.2.3) with (5.2.4) admits a unique and nonnegative mild solution u(¢,z) =
(uy(t, z), us(t, x)), and it is a classic solution for ¢ > 0. Note that u,(t,z) is also a
solution of (5.2.9).

With assumption (M2), the expression (5.2.11) shows that if A*(¢) = min(§ +

\/ C—l'- + 1, o), then Ky(c, \) < oo for all A € [0, A¥(¢)), and . h,\r;n( )le(c A) = oo for
Vs
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By [83, Proposition 4.1 (1)}, we further obtain

/Ck(c, /\\) — g’(O)}C[‘I (C, )\) f / 6—'\(”3—*_""1)]{'[j,-'?Eﬁ'Bded-‘?
0 R»

9'(0) oy 5.2.11
7/\C+BK(/\)M1(6, A), (5.2.11)

where C(\) = [, e ' K(y)dy. In particular, Ky(0, ) :%IC(/\). Let k* =
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where | - | is the usual norm on R*.
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(M3) ¢ : R. — R, is Lipschitz continuous with g(0) = 0, dfferentiable at 0, and
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bounded, uniformly continuous and nonnegative function o(z) = (D1(x), d2(2)),
system (5.2.3) with (5.2.4) admits a unique and nonnegativemild solution u(t, z) =
(uy(t, ), us(t, 2)), and it is a classic solution for ¢ > 0. Not that u (t, x) is also a
solution of (5.2.9).

With assumption (M2), the expression (5.2.11) shows that if A’(¢) = min(5 +

& + 1, M), then Ki(e,\) < oo for all X € [0, M¥(c)), and ‘1/1\11( }/C;;(C, A) = oo for
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every ¢ > 0. Define
¢ =inf{e > 0: Ki(e,\) < 1 for some A > 0}.

According to Lemma 1.4.1, ¢* can be uniquely determined as the solution of the
system

d
Kle,X)=1, —(D-\Klk(c, Xp=10,

That is, (¢*, A*) is the unique positive solution of the system

(B+ Ac)(1 + e — ) = ' (0)K(N),
2\ — ¢ s C B 1
1 - AC = C2 _,‘6) - AC . }C(A) R

e K (y)dy.

The following theorem shows that ¢* is the asymptotic speed of spread for solu-
tions of system (5.2.3) with initial functions having compact supports. In order to

obtain the convergence for 0 < ¢ < ¢*, we need the following additional conditions.

(M4) lim -g%l = 0, and there exists u* > 0 such that g is increasing on [0, u*],
u—00

g(w)K(0) > Bu for u € (0,u*), and g(u)K(0) < pBu for u > u”.

(M5) limsup 92:") £ )C?O)’ Q(u"') is strictly decreasing, and ug(u) is strictly increasing
U—r OO

for v > 0.

Theorem 5.2.1 Let (M1)-(M3) hold and c* be defined as above. Denote by u(t, z, ¢)
the unique solution of system (5.2.3)-(5.2.4). Then the following statements are

valid:

(i) For any continuous function ¢ = (¢, ¢2) : R* — RZ with the property that

O1(+) + @2(-) # 0, and that for every x; > 0, there exists ko > 0 such that
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every ¢ > 0. Define
c* :=inf{c > 0: Kr(c,)) <1 for some X\ > 0}.

According to I.emma 1.4.1, ¢* can be uniquely determined as the solution of the
system

d L~
iCk(c,)\) 3= 1, EX’L};(C,)\) = 1.

That is, (¢*,A\*) is the unique positive solution of the system

([3 o /\C)(l + e — 6‘2) = g'(())}C(/\)

2A—¢ c 1 L5
- = ALY & Y.
l+Xe—c2 B+Ix K [F_n 18 “(v)dy

The following theorem shows that ¢* is the asymptotic speed of spread for solu-

tions of systemx (5.2.3) with initial functions having compact supports. In order to

obtain the conwvergence for 0 < ¢ < ¢*, we need the following additional conditions.

(M4) lim 1(}} = 0, and there exists u* > 0 such that g is increasing on [0, u*],
U—00

g(u)K(0) > pu for u € (0,u*), and g(u)K(0) < Bu for u > u*.

g() < i) g(u)

(M5) limsup %5 T

U000

for u > 0.

is strictly decreasing, and ug(u) is strictly increasing

Theorem 5.2.1 Let (M1)-(M3) hold and ¢* be defined as above. Denote by u(t, x, ¢)
the unique solution of system (5.2.3)-(5.2.4). Then the following statemnents are

valid:

(i) For any continuous function ¢ = (¢1,¢2) : R* — RZ with the property that

o1 (+) + @o() # 0, and that for every ky, > 0, there exists ko > 0 such that



(251 y) + ¢2 i Koe ™ Vy € K , We have
(</) (j) —“< 2 |y|) J 4

im. . ult,z,¢) =1(0,0); Ye>e.

t—00, |z|>ct

(ii) Assume in addition that either (M4) or (M5) holds. Then for any bounded and
uniformly continuous function ¢ = (¢1, ) : R* — RZ with ¢1(-) + ¢a(*) # 0,
we have

lim u(t,z,¢) = (u*,v*), Vee (0,c"),

t—oo,|z|<ct

where u* is the unique solution of g(u)k(0) = Bu, and v* = g(;-

Proof. Let ¢ = (é1,¢2) : R* — Ri be a bounded continuous function with
o1(-) + &2(-) # 0. For convenience, we let u(t,z,¢) = (uy(¢, z),us(t,x)). Note
that I'y(¢,:) > 0,Vt > 0, and K(0) > 0. We have ug(¢,:-) > 0 for t > 0. Let
uo(t, ) = uo(t, z) + w2 (t, ), where
ugy (t, v) = fu‘e itz — y)oi(y)dy,
i
ugz(t, ) = / ciS/ ki(t — s, — y)e P da(y)dy.
0

In what follows, we show that Llim ug(t, ) = 0 uniformly in z € R*. In view of
— 00

(5.2.7) and the fact that fmn L(t,z — y)dy = 1,Vt > 0,z € R*, we have

t
uge(t, z) = / dsf / Ly(t—s, o —y— 2)K(2)e”* ¢a(y)dzdy
0 En RBn
i
— / ds/ e PPK(2) et — s,z — y — 2)da(y)dydz
D T Rﬂ
t
< M, f g [ ety K(z)dz
0

EBn

A
M, K(0) f g
0
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&1(y) + d2(y) < koe ™ W Vy € R*, we have

hm u(t,z,¢)=(0,0);, Ye>c"

=0, |z|>ct

(ii) Assume in addition that either (M4) or (M5) holds. Then for any bounded and
uniformly continuous function ¢ = (¢1, @) : R* — RE with ¢,(-) + ¢2(-) # 0,
we have

lim u(t,z,¢) = (u*,v*), Yee (0,c),

t—o0,|z|<Lct

where u* is the unique solution of g(u)K(0) = Pu, and v* = £ ;

Proof. Let ¢ = (¢1,¢2) : R* — R% be a bounded continuous function with
é1(-) + ¢2(-) # 0. For convenience, we let u(t,z,¢) = (u (¢, z),us(t,z)). Note
that I'y(¢,-) > 0,V¥t > 0, and K(0) > 0. We have up(t,-) > 0 for t > 0. Let

ug(t, z) = w1 (t, ) + ue2(t, z), where

un(t,s) = [ it =)oy

uOQ(ti ’L)

t
/ ds [ ki(t — s,z —y)e " pa(y)dy.
0 R"

In what follows, we show that tlim ug(t,z) = 0 uniformly in z € R*. In view of
- 00

(5.2.7) and the fact that [, (¢, — y)dy = 1,Vt > 0,z € R", we have

1 -
uge(t, z) = / ds/ / [ (t—s,z—y— 2)K(2)e? ¢o(y)dzdy
0 n Jmn
t
= / ds/ e"ﬂsK(z)/ e D (t — 5,2 — y — 2)da(y)dydz
0 R Rn
&
< M f e=tPstegy / K(z)dz
0 n

t
= M’MC(O)/ etrtegg
0
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where M; = sup ¢2(y). Therefore, lim up(¢,z) = 0 uniformly in z € R*. Since
ye]]an t—o00

f."%;ﬂ Uy (t,y)dy = e %, it follows that lim wug(¢,z) = 0, and hence lim uy(t,z) = 0

I t— oo t—rco

uniformly in z. By Proposition 1.4.1, u,(#, z) is the unique solution of (5.2.9).

(i). For given ¢, A > 0 with Ki(c,\) < 1, Kr, (¢, A) and K(\) are finite numbers.
Therefore, A*> — A\c — 1 < 0. Note that for every w € R* with |w| = 1, —|y| <
w-y < |y|l,Yy € R*, where - is the inner product on R". By the assumption on
$, and ¢,, there exists v > 0 such that ¢;(y) < ye W < ver¥ vy € R*, i = 1, 2.

In the following, we show that uy(#, z) is admissible in the sense that there exists a

constant 7' > 0 such that ug(¢,z) < yeM1#D) Vvt > 0,2 € R*. Note that

T(t,y)e Wy = [ T(t,y)e Wdy = M.
‘I?‘" Rn
We then have
]Ru R"

= v | ity Vdy = ’Yewrt/ T(t, y)e Vdy
Rn o

o ,)!eAw-Ie{Az—I)t-

Letting w = -ﬁ, and using the inequality A\*> — 1 < Ac, we obtain
uor(t, ) < yee1F0 vt > 0, z € R".
Applying the similar arguments to ugz(¢, ), we have
uge(t, ) = /L ds / / e P po(y)T1(t — 5,2 — y — 2) K (2)dzdy
0 rn JRn
= /t d,s/ f e Ppo ()1 (t — 5,2 — y — 2) K (2)dydz
0 n JRn

'
< ”y/ ds/ / e P A (t — 5,0 — y — 2) K (2)dydz
0 n JRn
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where M, = sup ¢o(y). Therefore, lim up(t,z) = 0 uniformly in £ € R*. Since
yERn t—+00

Jen T1(t,y)dy = e, it follows that Jim ug, (t,z) = 0, and hence tli}r& ug(t,z) = 0

uniformly in z. By Proposition 1.4.1, u,(¢, z) is the unique solution of (5.2.9).

(i). For given ¢, A > 0 with Ki(e, \) < 1, Kr, (e, A) and IC(\) are finite numbers.
Therefore, A2 — A\¢ — 1 < 0. Note that for every w € R* with |w| = 1, —|y| <
w-y < |yl,Vy € R*, where - is the inner product on R". By the assumption on
¢ and ¢, there exists v > 0 such that ¢;(y) < ye W < ve?v¥ vy € R*,i = 1,2.
In the following, we show that ug(¢, z) is admissible in the sense that there exists a

constant v > 0 such that ug(t, z) < ve*et—l=) vt > 0,z € R*. Note that
[(t,y)e ¥y = [ D(t,y)edy = ™.
Rn Rn

We then have
w(t) = [ Tite-naway< [ Tito- e
RN "

= 7/ Lyt y)e Edy = ”femr_i/ L(t, y)e " ¥dy
Rn Rn

- ,Te,\w-;ce(k2— 1)t

Letting w = —ﬁ, and using the inequality A\? — 1 < Ae, we obtain
up (¢, z) < v vt >0, z € R™.
Applying the similar arguments to ug(t, ), we have
t
wnltyz) = [ds [ [ ePh)Nie— s —y - K ()dady
0 Rn JR®
t
- / ds/ / e, (y)Ti(t — 5,7 — y — 2) K (2)dydz
0 Rn JRn
t

< '}’/ ds/ / e P3eMID (t — 5,5 — y — 2) K (2)dydz
R'l n

0
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t
0 n
t
< ,),e,\(cm-w-x}/- g“(’\c"’“ﬁ}st/ e M K(z)dz
0 R7
< /C()\) eAettw )

e+ (B

Letting w =

'—Tﬁj’
uoa(t, ) < ()‘) =), M@, e BB
e+ B
Therefore, uq(%, z) is admissible. By Theorem 1.4.1, it follows that

lim wuy(t,z) =0, for each c > c*,
t—ro00,|xz|>ect

and hence (5.2.6) implies the result.

(i1). Assume in addition that either (M4) or (M5) holds. Then we can find some
constants ¢y, ¢ > 0 such that ¢;k* < 1 and g(u) < ¢'(0)(e2+c1u), Vu > 0. Therefore,
Proposition 1.4.1 implies that every solution of (5.2.9) is bounded. Note that the
monotonicity of g on [0, u*] implies that there is no pair w > u* > v > 0 such that

Bw = K(0)g(v) and Bv = K(0)g(w). Thus, by Theorem 1.4.2 and 1.4.3, we have

bm . wi(t, z)=n", Ye&(0,e).

t—oo,|z|<cl

Therefore,

lim wus(t,x) = g(u"‘)/ e Pds = g(u) =:9%, We € (0,<cr).
0

t—o00,|z|<Lct

This completes the proof. .

Remark 5.2.1 Theorem 5.2.1 implies that ¢* is the asymptotic speed for solutions

of system (5.2.3) with initial functions having compact supports. Let u(t,z) =
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< 7ftd8/ e~Bshur(m—2) (W ~1)(t=3) Fr (1),
0 %
< ,},e,\(cww-z) /te—(xc-r,a)sdsf e A% K(z)dz
Jo n
< O wrun
Letting w = —-ﬁ,
uga(t, ) < AC(:)/} Met=lz) vt > 0, z € R™.

Therefore, ug(z, z) is admissible. By Theorem 1.4.1, it follows that

lim w4 (¢,z) =0, foreachc>c,
t—roo,lz|>ct

and hence (5.2.6) implies the result.

(i1). Assume in addition that either (M4) or (M5) holds. Then we can find some
constants ¢;, ¢s > 0 such that ¢;k* < 1 and g(u) < ¢'(0)(ca+eyu), Vu > 0. Therefore,
Proposition 1.4.1 implies that every solution of (5.2.9) is bounded. Note that the
monotonicity of g on [0, *] implies that there is no pair w > u* > v > 0 such that

Bw = K(0)g(v) and fv = K(0)g(w). Thus, by Theorem 1.4.2 and 1.4.3, we have

im w(t,9) =6", Ve€(0,c).

t—oroo,|z|<ct

Therefore,

lim wus(t, z) = g(-u*)/ e Pds = 9(w’) =", ¥e€ (0.27)-
0

t—roo,|z|<ct

This completes the proof. n

Remark 5.2.1 Theorem 5.2.1 implies that ¢* is the asymptotic speed for solutions

of system (5.2.3) with initial functions having compact supports. Let u(t,z) =
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(uy(t, z), u2(t, z)) be such a solution. For any given p € (0,u*), denote by z (¢) and
x”? (t) the most right and left points with (¢, z%.(¢)) = p, respectively. Clearly, =% (¢)
and z” (t) are well defined for all large ¢ because of the two limit formulas in Theorem
5.2.1. We claim that fllf&ﬁt(—” = c*. Indeed, by Theorem 5.2.1, it follows that for
any 0 < € < min(p, u* — p), there exists some £y = t3(c) > 0 such that u(¢,z) < ¢
for all ¢ > to, |z| = (¢* + )¢, and |u1(t,z) — u*| < € for all £ > g, |z] < (¢* — &)t.
Therefore, 2% (t) < (¢* +¢)t and £ (t) > (¢* —e)t, and hence, |3:~‘%(—£l —c*| < g, for all

220 _
t

t > tg. By a similar argument, we can prove that lim c*. We will use this

t—oa

observation to compute ¢* numerically.

5.3 Traveling Wave Solutions

In this section, we consider the traveling wave solutions of system (5.2.3) with n = 1.
Recall that a solution u(t, z) of system (5.2.3) is said to be a traveling wave solution
if it is of the form wu(t, z) = U(xz +ct). The parameter c is called the wave speed, and
the function U(-) is called the wave profile. We will impose the following conditions

on the wave profile:

U(-) is positive and bounded on R, and EHr_lrlooU(f) =}, (5.3.12)
Consider the system

uy(t,x) = /Doo ds -/E flui(t — s,z — y)k(s,y)dy, (5.3.13)

shslt, 1) /Owe—-ﬁsg(ul(t e (5.3.14)

If system (5.3.13)-(5.3.14) admits a solution with the form (U (z + ct), Us(z + ct)),

then it is called a traveling wave solution with speed ¢. The following lemma shows
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u(t, z), us(t,z) be such a solution. For any given p € (0, "), denote by z’ (1) an
(w1 (¢, 7), us(t, z)) be such a sol For any given p € (0, "), denote by z.(t) and

z” (t) the most right and left points with wu, (¢, 2, (1)) = p. respectively. Clearly, =%, (¢)

and z” (t) are wdl defined for all large ¢ because of the two limit formulas in Theorem

5.2.1. We claim that tlim 5 2 c*. Indeed, by Theorem 5.2.1, it follows that for

t
—200
any 0 < € < mii(p, u* — p), there exists some £y = #5(g) > 0 such that u, (¢, z) < ¢

for all ¢ > tp,|z > (¢* + )¢, and |u (¢, z) — u*| < e for all t > &, |z]| < (¢* — €)t.

I
x+t(t-) —c*| < g, for all

Therefore, % (1) < (¢" +¢€)t and 24.(t) > (¢* —¢)t, and hence, |

=201 _

- c*. We will use this

t > ty. By a sinilar argument, we can prove that lim
t—ro0

observation to mmpute ¢* numerically.

5.3 'Traveling Wave Solutions

In this section, we consider the traveling wave solutions of system (5.2.3) with n = 1.
Recall that a solution u(t, z) of system (5.2.3) is said to be a traveling wave solution
if it is of the form u(¢, z) = U(z +ct). The parameter ¢ is called the wave speed, and
the function U( ) is called the wave profile. We will impose the following conditions

on the wave profile:

U(-) is positive and bounded on R, and Elim tg) = 0. (5:3.12)

——00

Consider the system

Ul{t,ﬂf) = foo dS/ f(ul(t — &L — y))k(s,’y)dy, (5313)
0 R

us(t, z) = A'w e P g(u (t — s, x))ds. (5.3.14)

If system (5.3.13)-(5.3.14) admits a solution with the form (U, (z + ct), Us(x + ct)),

then it is called a traveling wave solution with speed ¢. The following lemma shows
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that the existence of traveling wave solutions of system (5.2.3) is equivalent to those

of system (5.3.13)-(5.3.14).

Lemma 5.3.1 If system (5.3.13)-(5.3.14) admits a traveling wave U (z + ct) subject
to (5.3.12), then U(x + ct) s also a traveling wave of (5.2.3) subject to (5.3.12).

The converse also holds.

Proof. Let (u,(t, @), us(t, z)) = (Uy(z + ¢t), Us(x + ct)) be a traveling wave solution
of system (5.3.13)-(5.3.14). Then

Uslt, ) = / e P g(us(t — s, 2))ds = Us(z + ct).
0

In view of (5.2.10), we have

ulte) = [ ds [ fn(t— sz -9k

. /0 a5
=y
- I

fﬂ K /Ooo ds/g(ul(t—r— 5. 5% — PITus: VKl — 2y~ Pr s
= /000 Fl(s z f fg(ul (t—r—s,z—y)K({y— 2)e " dydrdz

= / ds/ 'y (s,2) / / glu(t —r — s,z — ) K (y — 2)e Prdrdydz
0 R = J0

&= / T (s) / K(y — z)us(t — s,z — y)dyds, (5.3.15)
0 R

3"

dy/ dr / g(u1(t — s,z —y)Ti(s —ry — 2) K(2)e P dz
R

5.
A

dy ds/g(ul(a‘~7 — s,z —yDIi(s, ¥y — 2) K (2)e P dz
0 R

4
g

I~
3

2
.
z\,ﬂ\»m\a\w\\

i / glur(t — s, —y))l1(s — 1,y — 2) K(2)e " dz
R

oo

dr

where 77 (t) is the semigroup on BUC(R, R) generated by the parabolic equation
O = Au — u, and BUC(R, R) is the Banach space of all bounded and uniformly
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that the existence of traveling wave solutions of system (5.2.3) is equivalent to those

of system (5.3.13)-(5.3.14).

Lemma 5.3.1 If system (5.3.13)-(5.8.14) admits a traveling wave U(z + ct) subject
to (5.8.12), then U(x + ct) is also a traveling wave of (5.2.83) subject to (5.3.12).

The converse also holds.

Proof. Let (u,(t,z), us(t, x)) = (Uy(z + ct), Us(z + ct)) be a traveling wave solution
of system (5.3.13)-(5.3.14). Then

ug(t, ) = / e P g(uy(t — s, x))ds = Up(z + ct).
0

In view of (5.2.10), we have

[ as [ sttt s - ks, )ay
0 K

/ ds/ dy/ dr / glur(t — s,z —y))\T1(s — 1,y — 2)K(2)e P dz
0 R 0 R
/‘ drf dy/ ds/ g(u (t — s,z —y))\1(s — r,y — 2) K(2)e P dz

_/Omdrj dy f db/ g(ur(t — 7 — s,z — y))i(s,y — 2) K (2)e P dz
/:odr dy f ds/ gur(t —r — s,z —y))Ti(s, 2) K(y — z)e ~Br 4
/:o Tife:#) / / glw(t =7 — 5,2 — y)) K(y — 2)e” " dydrdz
/:O da | Filerz /_/ glus(t — 7 — 5,2 — y))K(y — 2)e ""drdydz

/UOOTI(S

where T)(t) is the semigroup on BUC(R, R) generated by the parabolic equation

=~

‘?-L

w\sa\fa\

S

/ K(y — z)us(t — 8,z — y)dyds, £5.3.15)

N

Ou = ANu — u, and BUC(R, R) is the Banach space of all bounded and uniformly
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continuous functions from R to itself. By [83, Proposition 4.3], it follows that

(w1 (2, -), ua(t, -)) satisfies the abstract integral equations

e =Tl — i 7S 3 / Ty(t — 5) /RK(y _ Pus(s)dyds,  (5.3.16)

t
ug(t) = e P uy(r) +/ e P9 g(uy(s))ds, Vt>r,reR (5.3.17)

Clearly, us(t, z) satisfies the second equation of system (5.2.3). By the form u, (¢, z) =
U,(z -+ ¢t) and the smoothing property of parabolic operators (see, e.g., [88, Corol-
lary 2.2.5] with r = 0), it follows that wu, (¢, z) satisfies the first equation of system
(5.2.3). Thus (uy(t, z), us(t, z)) = (Uy(xz+ct), Us(z+ct)) is a traveling wave solution
of system (5.2.3) with speed c.

Conversely, let (u(t,z), us(t, z)) = (Ui(z + ct), Us(x + ct)) be a traveling wave
solution of system (5.2.3). Then (u,(¢,x), us(t,x)) is a continuous and bounded
solution of (5.3.16)-(5.3.17) on (—oo, +00). By [83, Proposition 4.3], uy(t, z) satisfies

(5.3.14) and u, (¢, z) satisfies

wilt, z) = / Tl(s)/ K(y — 2)us(t — 8,z — y)dyds.
0 E

Since the process in formula (5.3.15) is invertible, u, (¢, z) satisfies equation (5.3.13).
It follows that (w(¢,z),us(t,z)) is a traveling wave solution of system (5.3.13)-

(5.3.14) with wave speed c. '

Theorem 5.3.1 Let (M1)-(M3) hold, and let ¢*, v* be defined as in Theorem 5.2.1.

Then the following statements are valid.

(i) There is no traveling wave solution for system (5.2.3) and (5.3.12) with wave

speed ¢ € (0, c).



134

continuous functions from R to itself. By [83, Proposition 4.3], it follows that

(u1(t,-), us(t,-)) satisfies the abstract integral equations

u(t) = T1(t — r)uy(r) + /t T, (t — s) /R K(y — z)us(s)dyds, (5.3.16)

T

¢
us(t) = e P uy(r) + / e P g(uy(s))ds, Vt>r,reR  (53.17)

Clearly, us(t, ) satisfies the second equation of system (5.2.3). By the form u, (¢, z) =
U, (z + ct) and the smoothing property of parabolic operators (see, e.g., [88, Corol-
lary 2.2.5] with = 0), it follows that u,(¢, z) satisfies the first equation of system
(5.2.3). Thus (u; (¢, z),us(t, ) = (Up(z+ct), Us(z+ct)) is a traveling wave solution
of system (5.2.3) with speed c.

Conversely, let (u, (¢, z),us(t, z)) = (Uy(z + ct), Us(z + ct)) be a traveling wave
solution of system (5.2.3). Then (u;(f,2),us(¢, x)) is a continuous and bounded
solution of (5.3.16)-(5.3.17) on (—oc, +00). By [83, Proposition 4.3], us(t, z) satisfies

(5.3.14) and u,(t, z) satisfies

H%i1,. 3) = /000 T (s) /R K(y — z)us(t — s,z — y)dyds.

Since the process in formula (5.3.15) is invertible, u (¢, z) satisfies equation (5.3.13).
It follows that (u,(t,z),us(t,z)) is a traveling wave solution of system (5.3.13)-

(5.3.14) with wave speed c. 0

Theorem 5.3.1 Let (M1)-(M8) hold, and let ¢*,v* be defined as in Theorem 5.2.1.

Then the following statements are valid.

(i) There is no traveling wave solution for system (5.2.3) and (5.3.12) with wave

speed ¢ € (0, c*).
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(ii) Assume in addition that (M) holds, and that |g(u) _ g(v)] < ¢'(0)|u —
v|,Yu,v € [0,u"], and g"(0) exists. Then system (5.2..5*) Wwith (5.8.12) admits
a monotone traveling wave connecting (0,0) and (u.*,f;,s) with speed ¢ > c*.
Moreover, the monotone traveling wave with speed c > € s unique up to

translation.

Proof. (i). Note that (M1)-(M3) imply the assumption (B) y,d (C) in Section 1.3.
The result is a straight forward consequence of Theorem 1.4,

(ii). Since ¢”(0) exists, we can find two numbers § > 0, & < 0 such that g(u) >
9'(0)(u—bu?),Yu € [0, 6]. By Theorem 1.4.5 and 1.4.6, as appli 4 to equation (5.3.13)
with F(u,s,z) = f(u)k(s,x), it follows that for each ¢ > o, (5.3.18) admits a

monotone traveling wave u; (¢, z) = Uj(z + ct) connecting 0 1 u*. Define uy(t, z)

as in equation (5.3.14), we then have
sl ) o= / P g(Uy( + c(t — 5)))ds = Un(z 1. ), (5.3.18)
0

where U, (§) = [;° e g(U, (€ — cs))ds. Obviously, U5(€) > 0, By the dominant con-
vergence theorem, ﬁlir_nm Us(€) = 0, and fan;O Us(€) = v*. Therygore, (ug(t, ), us(t, z))
is a traveling wave of system (5.3.13)-(5.3.14), and hence Le,,ma 5.3.1 implies the
result. The uniqueness of traveling waves with ¢ > ¢* follo‘;\,s from Theorem 1.4.4,

as applied to (5.3.13) with F(u, s, z) = f(u)k(s,z), and Lem, a 5.3.1. '

Numerical simulation. We numerically simulate syster, (5.2.3) with n = 1.

Let the transfer kernel K be the standard normal density g nction, ie., K(z) =

1 —z2/2

P S 2u
V2r

, and set g(u) = 7%, f = 1. It is easy to see that system (5.2.3) satisfies

assumptions (M1)-(M4) with u* = v* = 1. By Theorem 5.3 1, for any continuous
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(ii) Assume in addition that (M4) holds, and that |g(u) — g(v)| < ¢'(0)|u —
v|,Yu,v € [0,u*], and ¢"(0) ezists. Then system (5.2.3) with (5.8.12) admits
a monotone traveling wave connecting (0,0) and (u*,v") with speed ¢ > c*.
Moreover, the monotone traveling wave with speed ¢ > ¢* is unique up to

translation.

Proof. (i). Note that (M1)-(M3) imply the assumption (B) and (C) in Section 1.3.
The result is a straight forward consequence of Theorem 1.4.7.

(ii). Since ¢”(0) exists, we can find two numbers § > 0,6 > 0 such that g(u) >
g (0)(u—bu?),Yu € [0, §]. By Theorem 1.4.5 and 1.4.6, as applied to equation (5.3.13)
with F'(u,s,z) = f(u)k(s,z), it follows that for each ¢ > ¢*, (5.3.13) admits a
monotone traveling wave u, (¢, z) = U;(z + ¢t) connecting 0 and u*. Define us(t, z)

as in equation (5.3.14), we then have
us(t, z) = / e P g(U,(z + c(t — 5)))ds = Us(z + ct), (5.3.18)
0

where U (€) = [° e P g(U,(€ — ¢s))ds. Obviously, Uj(£) > 0. By the dominant con-

vergence theorem, lim Us(£) = 0, and lim U(§) = v*. Therefore, (uy (¢, z), ua(t, z))
£——0o §—roo

is a traveling wave of system (5.3.13)-(5.3.14), and hence Lemma 5.3.1 implies the

result. The uniqueness of traveling waves with ¢ > ¢* follows from Theorem 1.4.4,

as applied to (5.3.13) with F(u,s,z) = f(u)k(s,z), and Lemma 5.3.1. "
Numerical simulation. We numerically simulate system (5.2.3) with n = 1.

Let the transfer kernel K be the standard normal density function, ie., K(z) =

1 6—3:2/'2
V2

assumptions (M1)-(M4) with u* = v* = 1. By Theorem 5.2.1, for any continuous

, and set g(u) = -fi—u, B = 1. It is easy to see that system (5.2.3) satisfies
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initial functions ¢, ¢ with compact supports, we have

lim_ w2, z) =(0,0), VYe>

t—o00,|z|>ct
and

lim u(t,z) = (1,1), Vee (0,c).

t—ro0,|z|<ct

We discretise system (5.2.3) by the finite difference method coupled with composite
integration formulas on a finite spatial interval [—L, L] with the Neumann boundary
condition, where L > 0 is sufficiently large in comparison with the domain in which

the solutions rapidly change shapes. Let

p

0, ifz < —7/2,
$1(z) = ¢a(x) = < %cos:z:, ifx e (—n/2,7/2), (5.3.19)

0, ifz>mx/2.

\

Figure 5.1 and 5.2 illustrates the corresponding numerical solution w (¢, z) = (u, (¢, x),
us(t, z)). Obviously, the result is consistent with the above two limit formulas. In
order to get the asymptotic speed ¢*, we use Remark 5.2.1 to approximate ¢*. Figure
5.3 shows the curves z%2°(t)/t and z%%°(t)/t versus t. Thus, ¢* =~ 1.0. To get a

traveling wave, we choose the initial condition as

;

0, fz <1,
¢1(z) = d2(x) = ¢ L(1+42), ifze(-1,1), (5.3.20)

1, ifz>1.

.

The evolution of the solution is shown in Figure 5.4 and 5.5. The solution becomes

smooth immediately. The shape of the solution promptly converges to a traveling
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initial functions ¢;, ¢, with compact supports, we have

lim - w@,z)=(0,0), Ve>c,

t—o00,|z|>ect
and

lim  ult,z)=(1,1), Vee€(0,c).

t—roo,|z|<ct
We discretise system (5.2.3) by the finite difference method coupled with composite
integration formulas on a finite spatial interval [—L, L] with the Neumann boundary
condition, where L > 0 is sufficiently large in comparison with the domain in which

the solutions rapidly change shapes. Let

g

0, ifz < —m/2,
$1(x) = da(z) = ¢ scosz, ifz € (—m/2,7/2), (5.3.19)

0, ifz>n/2.

\

Figure 5.1 and 5.2 illustrates the corresponding numerical solution u(t, z) = (u, (¢, ),
us(t, z)). Obviously, the result is consistent with the above two limit formulas. In
order to get the asymptotic speed ¢*, we use Remark 5.2.1 to approximate ¢*. Figure
5.3 shows the curves z%%°(¢)/t and x%%(t)/t versus t. Thus, ¢* = 1.0. To get a

traveling wave, we choose the initial condition as

4

0, ifzx < —1,
¢1(z) = ¢2(2) = ¢ L1+2z), ifze(~1,1), (5.3.20)
1, ifz>1.

The evolution of the solution is shown in Figure 5.4 and 5.5. The solution becomes

smooth immediately. The shape of the solution promptly converges to a traveling



wave. The wave moves in the negative z-direction as the time t increases (shown as
in Figure 5.6), and the wave speed is about 1.0, which coincides with the spreading

speed.
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wave. The wave moves in the negative z-direction as the time ¢ increases (shown as
in Figure 5.6), and the wave speed is about 1.0, which coincides with the spreading

speed.
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Figure 5.1: The evolutionary graph of u, (¢, z) for the solution (u; (¢, z), us(¢, z)) with
initial function (5.3.19)

Figure 5.2: The evolutionary graph of u, (%, z) for the solution (u, (¢, z), us(t, z)) with
initial function (5.3.19).
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Figure 5.1: The evolutionary graph of u, (¢, z) for the solution (u, (¢, z), us(t, z)) with
initial function (5.3.19)

Figure 5.2: The evolutionary graph of u,(t, z) for the solution (u, (¢, z), us(t, z)) with
initial function (5.3.19).
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Figure 5.3: The curves 29?°(¢)/t (upper) and z%23(t)/t (lower) versus t.

Figure 5.4: The first component of the solution (u;(t, z), us(#, x)) with initial func-
tion (5.3.20).
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Figure 5.3: The curves z%%(¢)/t (upper) and z%2°(t)/t (lower) versus t.

Figure 5.4: The first component of the solution (ui(¢, ), us(¢, z)) with initial func-
tion (5.3.20).
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Figure 5.5: The second component of the solution (u,(¢,z),us(t, z)) with initial

function (5.3.20).
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Figure 5.6: The first component of the solution at some specific times.
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