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Abstract 

Since the 1970s, more and more mathematicians have been trying to propose reason­

able models for the growth of species in all kinds of environments and for the spread 

of epidemic diseases, and to understand the long-term behavior of their modelling 

systems. This thesis, consisting of five chapters, mainly deals with the dynamics 

of population and epidemic models represented by some time-delayed ordinary and 

partial differential equations, and reaction-diffusion systems. 

In Chapter 1, we present some basic concepts and theorems, which involve the 

theories of monotone dynamics, uniform persistence, essential spectrum of linear 

operators, asymptotic speeds of spread and minimal traveling wave speed. 

Based on some specific competitive models, we formulate in Chapter 2 a class 

of asymptotically periodic delay differential equations, which models multi-species 

competition, and investigate the global dynamics of the model. More precisely, 

we established the sufficient conditions for competitive coexistence, exclusion and 

uniform persistence via theories of competitive systems on Banach spaces, uniform 

persistence, periodic and asymptotically periodic semiflows. 

Chapter 3 focuses on a nonlocal reaction-diffusion equation modelling the growth 
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of a single species. For this model, we obtain a threshold dynamics and the global 

attractivity of a positive steady state. We also discuss the effects of spatial dispersal 

and maturation period on the evolutionary behavior in two specific cases. Our 

numerical investigation seems to suggest that the model admits a unique positive 

steady state even without monotonicity conditions. 

In Chapter 4, we consider an epidemic model represented by a reaction-diffusion 

equation coupled with an ordinary differential equation, which is proposed by Ca­

passo et al. Here, the existence, uniqueness (up to translation) and global exponen­

tial stability with phase shift of bistable traveling waves are studied by phase plane 

techniques, monotone semiflow approaches and a detailed spectrum analysis. 

In Chapter 5, the asymptotic speeds of spread for solutions and traveling wave 

solutions to the integral version of the epidemic model in Chapter 4 are investigated. 

Our results show that the minimal wave speed for monotone traveling waves coin­

cides with the asymptotic speed of spread for solutions with initial functions having 

compact supports. Some numerical simulations are also provided. 
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Chapter 1 

Preliminaries 

In this chapter, we present some basic theorems which will be used in this thesis. 

They involve persistence theory, monotone dynamical systems, spectrum analysis, 

and newly developed theory for asymptotic speeds of spread and traveling waves. 

1.1 Uniform Persistence 

In population dynamics, uniform persistence is one of important concepts which 

characterize the long-term existence of species in an ecosystem. Let X be a metric 

space with metric d, and f : X --t X a continuous map. Suppose Xo is an open 

subset of X. Define axo := X \ X o, and Ma := {x E axo: fn(x) E axo, 'in > O}. 

Definition 1.1.1 A subset A c X is said to be an attractor for f if A is nonempty, 

compact and invariant (f(A) = A), and A attracts some open neighborhood of itself. 

A global attractor for f : X --t X is an attractor that attracts every point in X. 

Definition 1.1.2 f is said to be uniformly persistent with respect to (Xo, aXo) if 

there exists TJ > 0 such that liminfd(fn(x),aXo) > TJ for all x E Xo. 
n-+oo 
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2 

Theorem 1.1.1 ([94, Theorem 2.2j) Let f X --+ X be a continuous map with 

f(Xo) C Xo. Assume that 

(1) f : X --+ X has a global attractor A; 

(2) Let Aa = An Ma be the maximal compact invariant set of in axo. .fia 

UXEAa w(x) has an isolated and acyclic covering U:=I Mi in axo, that is, Aa C 

U:=I M i, where M I , M 2 , ... ,Mk are pairwise disjoint, compact and isolated 

invariant sets of f in axo such that each Mi is also an isolated invariant set 

in X, and no subset of the Mi'S forms a cycle for fa = flAa in Aa. 

(3) WS(Mi) nXo = (/) for each 1 < i < k, where WS(Mi) = {x: x E X,w(x) =I 

(/) and w(x) C M i } is the stable set of Mi. 

Then f is uniformly persistent with respect to (Xo, aXo). 

Theorem 1.1.2 ([94, Theorem 2.3j and [63, Theorem 4.5j) Let f : X --+ X be a 

continuous map with f(Xo) C X o, where X is a closed subset of a Banach space, 

and Xo is a convex and relatively open subset in X. Assume that 

(1) f : X --+ X is point dissipative and uniformly persistent with respect to 

(Xo, aXo); 

(2) f is a-condensing, and fno is compact for some integer no > 1. 

Then f : Xo --+ Xo admits a global attractor A o, and f has a fixed point Xo E Ao. 

For an autonomous semiflow T(t) : X --+ X, t > 0, we can define uniform 

persistence by replacing fn with T(t) (see [81]). Furthermore, the continuous-time 
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version of Theorem 1.1.1 and 1.1.2 still hold (see [81, Theorem 4.6], [94, Theorem 

2.4] or [95, Theorem 1.3.7]' and [63, Theorem 4.7]). 

Theorem 1.1.3 ([76, Theorem A.2j and [95, Theorem 1.3.9}) Let (Z, Z+) be an 

ordered Banach space with int(Z+) =1= 0 and T(t) : X -t X, t > 0, be an autonomous 

semifiow with T(t)Xo C X o, t > o. Assume that 

(1) T(t) : X -t X is point dissipative, compact for t > tl > 0, and is uniformly 

persistent with respect to (Xo, axo); 

(2) there exists t2 > 0 such that T(t2 )XO C int(Z+) and T(t2 ) : Xo -t int(Z+) 'lS 

continuous. 

Then, for any given e E int(Z+), there exists (3 > 0 such that for any compact subset 

B of X o, there exists to = to(B) > t2 such that T(t)B > (3e, Vt > to, in Z. 

1.2 Monotone Dynamical Systems 

Many types of equations can generate discrete- or continuous-time monotone dy­

namical systems, i.e., ordered initial values imply ordered subsequences or solutions. 

These types include difference, ordinary, functional and partial differential equations. 

Let E be an ordered Banach space with cone P such that int(P) =1= 0. For x, y E E, 

we write x > y if x - yEP, x > y if x - yEP \ {O}, and x » y if x - y E int(P). 

By an order interval [a, b], we mean that [a, b] = {x E E : ,a < x < b}. 

Definition 1.2.1 Let U be a subset of E, and f : U -t U a continuous map. 

The map f is said to be monotone if x > y implies that f (x) > f (y); strictly 
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monotone if x > y implies that f (x) > f (y); strongly monotone if x > y implies 

that f(x) » f(y)· 

Definition 1.2.2 Let U be a nonempty closed and order convex set in P. A contin­

uous map f : U -+ U is said to be subhomogeneous (or sublinear) if f(ax) > af(x) 

for any x E U and a E [0,1]; strictly subhomogeneous if f(ax) > af(x) fo r any 
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(2) f : V -+ V is asymptotically smooth, and every positive orbit of f in V 2S 

bounded. 

(3) f(O) = 0, and the Fn3chet derivative D f(O) of f at zero is compact and strongly 

positive. 

Then there exist threshold dynamics: 

(a) If r(D f(O)) < 1, then every positive orbit in V converges to zero. 
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(b) If r(D f (0)) > 1, then there exists a unique fixed point u* » 0 in V such that 

every positive orbit in V \ {O} converges to u*. 

For an autonomous semiflow T(t) on E, we can define monotonicity and sub­

linearity in a similar ways. Moreover, there exists a continuous-time version of 

Theorem 1.2.1. [96, Theorem 3.2] is the version for delay differential equations, and 

[96, Corollary 3.2] is the version for ordinary differential equations. 

Theorem 1.2.2 ([95, Theorem 2.2.4}) Let U be a closed convex subset of an ordered 

Banach space X, and <t>(t) : U ~ U be a monotone semiflow. Assume that there 

exists a monotone homeomorphism h from [0, 1] onto a subset of U such that 

(1) For each s E [0,1]' h(s) is a stable equilibrium for <t>(t) : U ~ U; 

(2) Each orbit of <t>(t) in [h(O), h(l)]x is precompact; 

(3) One of the following two properties holds: 

(3a) If h(so) <x w(¢) for some So E [0,1) and ¢ E [h(O), h(l)]x, then there 

exists Sl E (so, 1) such that h(Sl) <x w(¢); 

(3b) If w(¢) <x h(rd for some r1 E (0,1] and ¢ E [h(O), h(l)]x, then there 

exists ro E (0, r1) such that w(¢) <x h(ro). 

Then for any precompact orbit ry+(¢o) of <t>(t) in U with w(¢o) n [h(O), h(l)]x =I- (/J, 

there exists s* E [0,1] such thatw(¢o) = h(s*). 

The following attractivity theorem is due to M. W. Hirsch ([48]), and is a powerful 

tool to prove the global attractivity of a unique equilibrium. 
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Theorem 1.2.3 ([48, Theorem 3.3j) Let T(t) : E -7 E be a monotone semifiow. 

Assume that T(t) admits an attractor K such that K contains only one equilibrium 

X*. Then every trajectory attracted to K converges to X*. 

In the following, we introduce two theorems about competitive systems on or­

dered Banach spaces, which are one of the main tools in Chapter 2. For i = 1,2, 

let Xi be ordered Banach spaces with positive cones xt, where int(Xt) =1= 0. Let 

X = Xl X X 2, X+ = xi x xi, and K = xi x (-Xi). Denote by <K the order on 

X defined by K. The following hypotheses ([50]) are meant to capture the essence 

of competition between two adequate competitors: 

(AI) f : X+ -7 X+ is strictly monotone with respect to <K, and is order compact 

in the sense that f([O, Xl] x [0, X2]) is precompact in X for every (Xl, X2) E X+. 

(A2) 0 is a repelling fixed point of f in the sense that there exists a neighborhood 

Ua of 0 in X+ such that for each X E Ua with X =1= 0, there is an integer n such 

that fn(x) tf- Ua. 

(A3) f(Xi x {O}) c xi x {O}, and there exists Xl E int(Xi) such that f((Xl' 0)) = 

(Xl,O) and the omega limit set W((Xl'O)) of the orbit fn(Xl, 0) is (Xl,O) for 

every Xl E Xi \ {O}. The symmetric conditions hold for f on {O} x X 2, and 

the fixed point is denoted by (0, X2). 

(A4) If x, y E X+ satisfy X <K Y and either X or y belongs to int(X+), then 

f(x) ~K f(y)· If X = (Xl, X2) E X+ with Xi =1= 0, i = 1,2, then f(x) » o. 

Denote the "boundary" fixed points of f by Ea = (0,0), El = (Xl, 0), E2 = (0, X2). 

Let I = [E2' El]K := {x EX: E2 <K X <K E l }. Obviously, I = [0, Xl] x [0, X2]. 



6 

Theorem 1.2.3 ([48, Theorem 3.3j) Let T(t) : E --+ E be a monotone semifiow. 

Assume that T(t) admits an attractor K such that K contains only one equilibrium 

x*. Then every trajectory attracted to K converges to X*. 

In the following, we introduce two theorems about competitive systems on or­

dered Banach spaces, which are one of the main tools in Chapter 2. For i = 1,2, 

let Xi be ordered Banach spaces with positive cones xt, where int(Xt) #- 0. Let 

X = Xl X X 2 , X+ = xt x Xi, and K = xt x (-Xi). Denote by <K the order on 

X defined by K. The following hypotheses ([50]) are meant to capture the essence 

of competition between two adequate competitors: 

(AI) f : X+ --+ X+ is strictly monotone with respect to <K, and is order compact 

in the sense that f([O, Xl] x [0, X2]) is precompact in X for every (Xl, X2) E X+. 

(A2) ° is a repelling fixed point of f in the sense that there exists a neighborhood 

Uo of ° in X+ such that for each X E Uo with X #- 0, there is an integer n such 

that fn(x) ¢ Uo. 

(A3) f(xt x {O}) c xt x {O}, and there exists Xl E int(Xt) such that f((Xl' 0)) = 

(Xl,O) and the omega limit set W((Xl' 0)) of the orbit fn(Xl,O) is (Xl,O) for 

every Xl E xt \ {O}. The symmetric conditions hold for f on {O} x X 2 , and 

the fixed point is denoted by (0, X2). 

(A4) If x, y E X+ satisfy X <K Y and either X or y belongs to int(X+), then 

f(x) 4:;.K fey). If X = (Xl, X2) E X+ with Xi #- 0, i = 1,2, then f(x) » 0. 

Denote the "boundary" fixed points of f by Eo = (0,0), El = (Xl, 0), E2 = (0, X2). 

Let I = [E2' El]K := {x EX: E2 <K X <K E l }. Obviously, I = [0, Xl] x [0, X2]. 



7 

The following result ([50]) says that for a competitive system, either there is a 

positive fixed point of f, representing coexistence of the two populations, or one 

population drives the other to extinction. 

Theorem 1.2.4 ([50, Theorem A.l}) Let (Al)-(A4) hold. Then the omega limit 

set of every orbit in X+ is contained in I, and exactly one of the following holds: 

(a) There exists a positive fixed point E* of f in I; 

(b) w(x) = EI for every x = (Xl, X2) E I with Xi i- 0, i = 1,2; 

(c) w(x) = E2 for every X = (Xl, X2) E I with Xi i- 0, i = 1,2. 

Finally, if (b) or (c) holds and X = (Xl, X2) E X+ \ I with Xi i- 0, i = 1,2, then 

either w(x) = El or w(x) = E 2 . 

Theorem 1.2.5 ([95, Theorem 2.4.2}) Let (Al)-(A4) hold and assume that El 

and E2 are isolated fixed points of f. Let WS (Ei) be the stable set of Ei for f. 

If WS(Ei) n int(X+) = (/), i = 1,2, then there exist positive fixed points E** <K E* 

of f such that w(x) = E* for every X = (Xl, X2) satisfying E* <K X <K EI and ' 

X2 i- 0, w(x) = E** for every X = (Xl, X2) satisfying E2 <K X <K E** and Xl i- 0, 

and the order interval [E**, E*] K attracts any point in (Xi \ {o}) x (Xi \ {o} ). 

1.3 Essential Spectrum 

This section presents some results about essential spectrum of certain ordinary dif­

ferential operators obtained in [46, Page 136-142]. 
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Definition 1.3.1 If L is a linear operator in a Banach space, a normal point for L 

is any complex number which is in the resolvent set, or is an isolated eigenvalue of 

L with finite multiplicity. Any other complex number is in the essential spectrum. 

Denote the resolvent set and spectrum of L by p(L) and a(L), respectively. 

Theorem 1.3.1 ([46, Lemma 2j) Suppose the matrices A+(A), A_(A) are analytic 

functions of A E C, the complex number set. Let 

S± = {A: A±(A) has an imaginary eigenvalue }. 

Let A(x, A) = A+(A) for x > 0, A_(A) for x < 0, and define the differential operator 

L(A)U = d~u + A(·, A)U in Co(lR), the continuous function set, or Cuni/(JR), the 

uniformly continuous function set; we may consider L(A) as closed and densely 

defined. Then if G is any open connected set in C \ (S+ U S_), either 

(i) 0 E a(L(A)) for all A in G, or 

(ii) 0 E p( L( A)) for all A in G except at isolated points, the exceptional points are 

poles of L(A)-l of finite order . 

. Also, 0 E a(L(A)) whenever A E S+ U S_. 

Theorem 1.3.2 ([46, Theorem A.lj) Suppose X is a Banach space, T : D(T) c 

X -t X is a closed linear operator, S : D(S) c X -t X is linear with D(T) c D(S) 

and S(AoI - T)-l is compact for some AO' Let U be an open connected set in C 

consisting entirely of normal points of T; then either U consists entirely of normal 

points of T + S, or entirely of eigenvalues of T + S. 
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1.4 Spreading Speeds and Traveling Waves 

The theory of asymptotic speeds of spread and traveling waves, developed in [8, 7, 

9, 26, 28, 27, 79, 80, 90], has been recently generalized to a class of scalar nonlinear 

integral equations in [83]. In this section, we present some results obtained in [83]. 

Definition 1.4.1 A number c* > ° is called the asymptotic speed of spread for a 

function u : Il4 x IRn ---+ Il4 if lim u( t, x) = ° for each c > c*, and if there 
t--+oo,lxl~ct 

exists some u > ° such that lim u(t, x) = u for each c E (0, c*). 
t--+oo,lxl~ct 

Consider an integral equation 

u(t, x) = uo(t, x) + t J. F(u(t - s, x - y), s, y)dyds, 
Jo ]Rn 

(1.4.1) 

where F : IR~ x IRn ---+ IR is continuous in u and Borel measurable in (s, y), and 

Uo : Il4 x IRn ---+ Il4 is Borel measurable and bounded. Assume that 

(B) There exists a function k : Il4 x IRn ---+ Il4 such that 

(B1) k* := Jo
oo 

J]Rn k(s, x)dxds < 00; 

(B2) ° < F(u, s, x) < uk(s, x), \/u, s > 0, x E IRn; 

(B3) For every compact interval I in (0,00), there exists some c > ° such that 

F(u, s, x) > ck(s, x), \/u E I, s > 0, x E IRn; 

(B4) For every c > 0, there exists some c5 > ° such that F(u, s, x) > (1 -

c)uk(s, x), \/u E [0, c5], s > 0, x E IRn; 

(B5) For every w > 0, there exists some A > ° such that 

IF(u, s, x) - F(v, s, x)1 < Alu - vlk(s, x), \/u, v E [0, w], s > 0, x E IRn. 
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The following proposition shows that the existence, uniqueness and some properties 

of solutions to equation (1.4.1). 

Proposition 1.4.1 ([83, Proposition 2.1}) If assumptions (B) hold, then for every 

Borel measurable, nonnegative and bounded function uo(t, x), there exists a unique 

Borel measurable solution u : 114 x IRn -+ 114 of (1.4.1), and u is bounded on 

[0, r] x IRn for every r > O. Furthermore, the following statements hold. 

(a) The solution u is bounded if there exist C1, C2 > 0 such that C1 k* < 1 and 

F(u, s, x) < (C2 + c1u)k(s, x), Vu, s > 0, x E IRn. 

(b) If r > 0 and lim Uo (t, x) = 0 uniformly for t E [0, r], then the solution u has 
Ixl--+oo 

the same property. 

To obtain some more properties for equation (1.4.1), we have to make some 

assumptions on k. 

( C) k: 114 x IRn -+ 114 is a Borel measurable function such that 

(C1) k* := fo
oo 

flR n k(s, y)dyds E (1,00); 

(C2) There exists some ,\0 > 0 such that fo
oo 

flRn eAoY1 k(s, y)dyds < 00; 

(C3) There exist numbers 0"2 > 0"1 > 0, p > 0 such that k(s, x) > 0, Vs E 

(C4) k is isotropic. 

Here, a function f : [0,00) x IRn -+ IR is said to be isotropic if for almost all s > 0, 

f(s, x) = f(s, y) whenever Ixl = Iyl. For a fixed Z E IRn with IZI = 1, define the 
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K(e,'x):= t)Q!. e-)..(cs-z·Y)k(s, y)dyds, \:Ie > 0, ,x > 0, io ]Rn 

11 

where . means the usual inner product on ]Rn. Suppose that k is isotropic. Since 

for any Z E ]Rn with IZI = 1, there exists an orthogonal matrix A with AZ = -el, 

where el is the first canonical basis vector of ]Rn, there holds 

K(e,'x) = 1°O!. e-)..(cs+yd k(s, y)dyds, 
o ]Rn 

where Yl is the first coordinate of y. If (C) holds, then, for every e > 0, there exists 

some 'x~(e) E (0,00] such that K(e,'x) < 00 for ,x E [0, 'x~(e)) and K(e,'x) = 00 for 

,x > 'x~(e) ([79, Lemma 3.7]). Let e* := inf{e > 0 : K(e,'x) < 1 for some ,x > O}. 

The following lemma shows the existence of e*. 

Lemma 1.4.1 ([83, Proposition 2.3j) Let (C) hold and assume that lim inf K(e,'x) 2 
)..,l').." (c) 

k* for every e > o. Then there exists a unique ,x * E (O,,x~ (e*)) such that K( c*, ,x *) = 1 

and K(e*,'x) > 1 for ,x i= ,X*. Moreover, e* and ,X* are uniquely determined as the 

solutions of the system K(e,'x) = 1, d~K(e,'x) = o. 

The function Uo is said to be admissible if for every e,'x > 0 with K(e,'x) < 1, 

there exits some "'( > 0 such that uo(t, x) < "'(e)..(ct-1xl), \:It 2 0, x E ]Rn. The following 

theorems show that e* is the asymptotic speed of spread for solutions of (1.4.1). 

Theorem 1.4.1 ([83, Theorem 2.1j) Let (B) and (C) hold. then for every admis­

sible Uo, the unique solution u(t, x) of {1.4.1} satisfies lim u(t, x) = 0 for each 
t--too,lxl~ct 

e> e*. 
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)../,)..~(c) 

k* foreverye> O. Then there exists aunique,X* E (O,'x~(e*)) suchthatJC(e*,,X*) = 1 

and JC(e*,'x) > 1 for ,x -=1= ,X*. Moreover, e* and ,X* are uniquely determined as the 

solutions of the system JC(e,'x) = 1, d~ JC(e,'x) = O. 

The function Uo is said to be admissible if for every e,'x > 0 with JC(e,'x) < 1, 
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theorems show that e* is the asymptotic speed of spread for solutions of (1.4.1). 

Theorem 1.4.1 ([83, Theorem 2.1 j) Let (B) and (C) hold. then for every admis­

sible Uo, the unique solution u(t, x) of (1.4.1) satisfies lim u(t, x) = 0 for each 
t-+oo,lxl~ct 

e> e*. 
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Theorem 1.4.2 ([80, Lemma 3.10] and [83, Theorem 2.3}) Assume that a function 

f satisfies 

(D) f : TI4 --+ TI4 is a Lipschitz continuous function such that 

(D1) f(O) = 0 and f(u) > 0, Vu > 0; 

(D2) f is differential at zero, f'(0) = 1 and f(u) < u, Vu > 0; 

(D3) lim !..0l = 0; 
u-too u 

(D4) there exists a positive solution u* of u = k* f(u) such that k* f(u) > u, 

Vu E (0, u*), and k* f(u) < u, Vu > u*. 

Set F(u, s, x) = f(u)k(s, x), and let Uo : TI4 x }Rn --+ TI4 be a Borel measurable 

function with the property that lim uo(t, x) = 0 uniformly in x E }Rn, and uo(t, x) > 
t-too 

'T/ > 0, Vt E (tl' t2), Ixl < 'T/, for appropriate t2 > tl > 0, 'T/ > o. Assume that (C) holds 

and the unique solution u of (1.4.1) is bounded, u oo := lim sup sup u(t, x). If there 
t-too xElRn 

is no pair v and w such that 0 < v < u* < w < u oo and w = k* f(v), v = k* f(w), 

then, lim u(t, x) = u*, Vc E (0, c*). 
t-too,lxl::::ct 

For the general case of F(u, s, x), we define F(u) = Jo
oo 

JlRn F(u, s, y)dyds. Then 

Theorem 1.4.3 ([83, Theorem 2.5}) Let (B) and (C) hold and let Uo : TI4 x}Rn --+ 

TI4 be a bounded and Borel measurable function with the property that uo(t, x) > 

'T/ > 0, Vt E (tl' t2), Ixl < 'T/, for appropriate t2 > tl > 0, 'T/ > o. Assume that F(U~S,x) 

is monotone decreasing and uF(u, s, x) is monotone increasing in u > 0 for each 

(s, x) E TI4 x }Rn, that the monotonicities are strict for s E (0"1,0"2), Ixl E (0, p) with 

appropriate constants 0"2 > 0"1 > 0, p > 0, and that lim uo(t, x) = 0 uniformly in 
t-too 
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x E JRn. Then there holds lim u(t, x) = u*, \lc E (0, c*), where u* is the unique 
t-too,lxl ~ct 

positive fixed point of F. 

In the following, let us consider the limiting equation of (1.4.1) with n = 1 

u(t, x) = 1.00 L F(u(t - s, x - y), s, y)dyds. (1.4.2) 

A solution u(t, x) of (1.4.2) is said to be a traveling wave solution if it is of the form 

u(t, x) = v(x + ct). The parameter c is called the wave speed, and the function v is 

called the wave profile. Here, we require that 

v ( .) is posi ti ve and bounded on JR, and lim v (~) = 0. 
~-t-oo 

(1.4.3) 

In the case where F(u, s, x) = f(u)k(s, x), we make the following modified as-

sumptions on f 

(D') f: ll4 --+ ll4 is a continuous function such that 

(D1') f(O) = 0, and there exists a positive solution u* of u = k* f(u) such that 

k* f(u) > u, \lu E (0, u*); 

(D2') f is differentiable at zero, 1'(0) = 1 and f(u) < u, \lu E [0, u*]. 

Theorem 1.4.4 ([28, Theorem 6.5J and [83, Theorem 3.2}) Let (C) with n = 1 

and (JY) hold, and set F(u,s,x) = f(u)k(s, x). Assume that If(u) - f(v)1 < lu-

vl,\lu,v E [O,u*]. Thenforc > c*, (1.4.2) and (1.4.3) admit at most one monotone 

increasing traveling wave v(x + ct) connecting ° and u* up to translation. 

Theorem 1.4.5 ([83, Theorem 3.3}) Let (B2) and (C) with n = 1 hold. Assume 

that F(·, s, x) is increasing on [0, u*] for each (s, x) E ll4 x JR, and F(u, s, x) > 
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(u - buO")k(s, x), \/u E [0,8], (s, x) E ll4 x JR, for appropriate 8 E (0, u*], a > 1 and 

b > 0, where u* is the fixed point of F, and F(u) > u, \/u E (0, u*). Then for each 

c > c*, there exists a monotone traveling wave solution of (1.4.2) with speed c and 

connecting ° and u*. 

m 

Theorem 1.4.6 ([83, Theorem 3.4J) Let F(u, s, x) = I: fi(u)ki(s, x) and let the 
i=l 

assumptions of Theorem 1.4.5 be satisfied. Assume that each ki(s,') is continuous 

on JR for all s > 0. Then there exists a monotone traveling wave solution of (1.4.2) 

with speed c* and connecting ° and u*. 

Theorem 1.4.7 ([83, Theorem 3.5J) Let (B) and (O) hold. Then for each c E 

(0, c*), there exists no traveling wave solutions of (1.4.2) and (1.4.3) with speed c. 
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An Asymptotically Periodic 
Competitive Model 

In this chapter, we consider a time-delayed asymptotically periodic system which 

describes the competition among mature populations. By appealing to theories 

of monotone dynamical systems, periodic and asymptotically periodic semiflows 

and uniform persistence, we analyze the evolutionary behavior of the system and 

establish sufficient conditions for competitive coexistence, exclusion and uniform 

persistence. 

The organization of this chapter is as follows. In Section 2.1, based on some 

specific population models, we formulate a general periodic competitive system and 

an asymptotically periodic system. Section 2.2 provides some preliminary results 

on the spectral radius of the Poincare map associated with a linear periodic and 

delayed equation, threshold dynamics in a scalar periodic and delayed system, and 

the relationship between solutions of an asymptotically periodic system with delays 

and its limiting system. In Section 2.3, we first analyze the global dynamics in the 
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two-species competitive system by applying theories for c ompetitive systems on Ba­

nach spaces [50], and then lift these results to the asymptotically periodic system. In 

Section 2.4, we first investigate the uniform persistence of multi-species competitive 

systems by two-side comparison method, and then obtain natural invasibility condi­

tions for the uniform persistence and coexistence states o f three-species competitive 

systems by using the theory of uniform persistence. 

2.1 Introduction 

Since the 1970s, the population models with stage struct ure have received extensive 

investigations (see [57,84,11,44,66,73,36,2,56,24,77, 91] and references therein). 

To describe a single species growth, Aiello and Freedman [1] proposed the following 

system 

x(t) = ae-'YT x(t - T) - f3x2(t), (2.1.1) 

iJ(t) = ax(t) - ry(t) - ae-'YT x (t - T), 

where x(t) and y(t) denote the mature and immature populations, f3 and r represent 

the death rates of the mature and the immature, a denotes the birth rate of the ma­

ture, and T is the maturation age. They showed that there exists an asymptotically 

stable positive equilibrium, and concluded that the introduction of stage structure 

does not affect the permanence of the species. 

In order to investigate how the stage structure affects the asymptotical behavior 

of the competitive species, Liu et al. [60] combined the competitive Lotka-Volterra 

system with system (2.1.1) and obtained a two-species competitive model with stage 
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structure. 

(2.1.2) 

Y· ·(t) = b·x ·(t) - d·y·(t) - b·e-diTix ·(t - 'I:) i = 1 2 t tt tt t t t, " 

where Xi(t) and Yi(t) denote the mature and immature populations of the ith species, 

aij > 0, bi and di denote the birth rate of the ith mature population and the death 

rate of the ith immature population, respectively, 'Ii is the maturation age of species 

i. One of the basic assumptions is that the immature do not compete with the 

other species. Note that studying only (2.1.2) is enough to know the properties of 

the whole system. In [60], the authors defined f.i = diTi as the degree of stage, and 

concluded that if Q.ll < ~le=~~ < Qli., then system (2.1.2) is permanent. Furthermore, 
a22 2e a21 

Liu et al. generalized the above system to an autonomous competitive system for n 

species in [59] and a T-periodic competitive system for n species in [61]: 

They concluded that if 

n 

j=l 

Bi > 'La7}Bj/a;j' 1 <i< n, 
j:j:i 

then system (2.1.3) is permanent, where 

(2.1.3) 

(2.1.4) 
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j=1 

B: > 'La7JBj/a;j, 1 <i< n, 
j::j:.i 

then system (2.1.3) is permanent, where 

a~ 0 = inf aiJo a~Jo = sup aiJo, Blo = inf BJo BJr:'- = sup BJo, 1 < i, j < n. 
2J t' t J t' t 

(2.1.3) 

(2.1.4) 
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Note that condition (2.1.4) is very strong. There should exist some more general 

conditions, such as average integrals of certain functions over the period, which is 

more natural. Also motivated by system (2.1.1), (2.1.2) and (2.1.3), we consider a 

more general system of competing mature populations: 

(2.1.5) 

where the continuous function h(t, Ul, ... ,Urn, Vi) is T-periodic in t, and Lipschitzian 

in (Ul, ... ,Urn, Vi) in any bounded subset of lR~+l, i = 1,2, ... , m. Note that system 

(2.1.5) is also a general form of Ayala's system (see, e.g., [10] and [55] for the 

autonomous case, and [34] for the nonautonomous case). 

It is known that some parameters in an ecological system are not exactly periodic 

in time, but asymptotically periodic in time. Based on the periodic system (2.1.5), 

we then consider the following asymptotically periodic system 

fli (t) Ui (t - Ti) Pi ( t, Ui (t - Ti)) - Ui ( t ) G i ( t, U 1 ( t ), ... , Urn ( t) ) 
(2.1.6) 

with the property that 

(A) The continuous function h (t, Ul, ... , Urn, Vi) is Li pschi tzian in (Ul, ... , Urn, Vi) 

in any bounded subset of lR~+l; Pi and Gi satisfy lim IPi(t, Ui) - Fi(t, Ui) I = 0 
t---+oo 

and lim IGi(t, Ul, ... , urn) - Gi(t, Ul, ... , Urn) I = 0 uniformly on any bounded 
t---+oo 

subsets of ~ and lR~, respectively, i = 1, 2, ... , m. 

The purpose of this chapter is to analyze the global dynamics of system (2.1.5) 

and (2.1.6). By appealing to the theory of autonomous and nonautonomous semi-

flows, we establish sufficient conditions for the existence of periodic coexistence, 
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glo bal persistence and extinction in terms of spectral radii of the Poincare maps 

associated with linear periodic delay equations. In the case where the delays are 

integer multiples of the period, these conditions can be determined by the average 

integrals of certain periodic functions. When applied to system (2.1.3), the obtained 

conditions are necessary to those in [61], and the results improve those obtained in 

[61] . 

2.2 Scalar Delay Differential Equations 

In this section, we first present some notation used in this chapter, and then give 

some results about scalar delay differential equations. Let 7,71 and 72 be positive 

numbers, and 

Y = C([-r, 0], lR), y+ = C([-7, 0], ~), Xi = C([-7i' 0], lR), 

xt = C([-ri' 0], ~), i = 1,2, X = Xl X X 2 , X+ = xi x Xi· 

Then (Y, Y+), (Xi, xt) and (X, X+) are ordered Banach spaces. Denote these or­

ders by <, < and «. Let K = Xi x (-Xi). Then (X, K) is also an ordered Banach 

space. Denote the orders by <K, <K and ~K. By an order interval [CP,1/J]K on X, 

we mean the set 

For a linear operator p, we denote the spectral radius of P by r(P). 

Consider a linear scalar equation with delay 7 

u(t) = a(t)u(t) + b(t)u(t - 7). (2.2.7) 
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Assume that 

(E) a(t) and b(t) are T-periodic and continuous, and b(t) > 0, Vt > o. 

Then for any cP E Y+, equation (2.2.7) has a unique solution u(t, cp) for t > 0, with 

u(s, cp) = cp(s), Vs E [-7,0]. Let Ut(cp) be the solution semiflow for equation (2.2.7) 

defined by Ut(cp)(s) = u(t + s, cp), Vs E [-7,0]. In this chapter, we always denote 

by u(t, cp) the solution of a certain system, and by Ut(cp) the associated solution 

semiflow. Since b(t) > 0, by the positivity theorem ([72, Theorem 5.2.1]), Ut(cp) > 

0, Vcp E Y+, t > O. Define the Poincare map P : Y+ -1- Y+ by P(cp) = UT(CP). It 

then follows that pn (cp) = UnT( cp) for integer n > O. 

The following result associates the spectral radius r(P) with an integral of the 

coefficients of equation (2.2.7). 

Proposition 2.2.1 r = r(P) is positive and is an eigenvalue of P with a positive 

eigenfunction cp* . Moreover, if 7 = kT for some integer k > 0, then r - 1 has the 

same sign as JoT (a(t) + b(t) )dt. 

Proof. By assumption (E), [42, Theorem 3.6.1] and [72, Lemma 5.3.2], there ex­

ists an integer mT > 27 such that pm is compact and strongly positive. By the 

Krein-Rutman theorem (see, e.g., [47, Theorem 7.2]), rm = r(pm) > 0 and is an 

algebraically simple eigenvalue of pm with an eigenfunction cp:n »0. Since P is a 

bounded linear operator on Y+, rm = rm (see, e.g., [54, Theorem 7.4-2]). Moreover, 

the spectrum of P consists of the point spectrum of P and the possible accumulation 

point being zero (see, e.g., [42, Page 192]). Thus, r is a positive eigenvalue of P. Let 

Pcp* = rcp*. Without lose of generality, we assume cp* (so) > 0 for some So E [-7,0]. 
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defined by Ut(cp)(s) = u(t + s, cp), Vs E [-7,0]. In this chapter, we always denote 

by u(t, cp) the solution of a certain system, and by Ut(cp) the associated solution 

semifiow. Since b(t) > 0, by the positivity theorem ([72, Theorem 5.2.1]), Ut(cp) > 

0, Vcp E Y+, t > O. Define the Poincare map P : Y+ ~ Y+ by P(cp) = UT(CP). It 

then follows that pn (cp) = UnT( cp) for integer n > O. 

The following result associates the spectral radius r(P) with an integral of the 

coefficients of equation (2.2.7). 

Proposition 2.2.1 r = r(P) is positive and is an eigenvalue of P with a positive 

eigenfunction cp*. Moreover, if 7 = kT for some integer k > 0, then r - 1 has the 

same sign as foT(a(t) + b(t))dt. 

Proof. By assumption (E), [42, Theorem 3.6.1] and [72, Lemma 5.3.2], there ex­

ists an integer mT > 27 such that pm is compact and strongly positive. By the 

Krein-Rutman theorem (see, e.g., [47, Theorem 7.2]), rm = r(pm) > 0 and is an 

algebraically simple eigenvalue of pm with an eigenfunction cp:n ~ O. Since P is a 

bounded linear operator on Y+, rm = rm (see, e.g., [54, Theorem 7.4-2]). Moreover, 

the spectrum of P consists of the point spectrum of P and the possible accumulation 

point being zero (see, e.g., [42, Page 192]). Thus, r is a positive eigenvalue of P. Let 

Pcp* = rcp*. Without lose of generality, we assume Cp*(so) > 0 for some So E [-7,0]. 
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Since pm<p* = rm<p* = r m<P*, we have <p* = c <p~ for some positive constant c. Thus 

<p* » O. 

Letting u(t) = e>..tv(t), we obtain a linear periodic equation with parameter A, 

v = (a(t) - A)V(t) + b(t)e->"Tv(t - 7). (2.2.8) 

Define Q : Y+ --+ Y+ by Q(<p) = VT(<P) , where Vt(<p) is the solution semifiow 

of equation (2.2.8). Let E>.. be a map from Y+ to Y+ defined by [E>..(<p)](s) = 

e>"s<p(s) , Vs E [-7,0]. Then 

Q(<p)(S) = VT(<p)(S) = v(T + s, <p) = e->"(T+s)u(T + s, E>..(<p)) , Vs E [-7,0]' 

and hence, 

Thus, Q(E_>..(<p*)) = e->"T E_>..(P(<p*)) = re->"T E_>..(<p*), Let Ao = ~ In r. Then 

E->..o(<p*) is a positive fixed point of Q. Thus vo(t) = v(t,E->..o(<p*)) is a positive 

T-periodic solution of (2.2.8), and u(t) = vo(t)e>..ot > 0 for t > -7. In particular, if 

7 = kT for some integer k > 0, then vo(t) satisfies 

vo((t)) = a(t) - Ao + b(t)e->"OT, Vt > O. 
Vo t 

Integrating both sides of the above equation from 0 to T, we get Ao = ~ JoT (a(t) + 

e->"oTb(t))dt. Note that G(A) = ~ JOT a(t)dt + ~e->"T JOT b(t)dt is strictly decreasing, 

and Ao is the unique solution of A = G(A), we have AoG(O) > 0, i.e., (r -1) JOT (a(t) + 

b(t))dt > O. The desired results are established. • 
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Let us consider a nonlinear T -periodic equation 

u = f(t, u(t), u(t - 7)), 

u(s) = cp(s), -7 < s < 0, 

where cp E Y+ is an initial function to be specified later. 
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(2.2.9) 

Assume that the continuous function f(t, VI, V2) is T-periodic in t and Lips­

chitzian in (VI, V2) in any bounded subset of 1R~, and satisfies 

(E2) f is strictly sublinear; 

(E3) there exists a positive number L > 0 such that f(t, L, L) < O. 

Let Pu be the Poincare map of the linearized equation associated with equation 

(2.2.9) at u - 0, and r = r(Pu). Then we have the following threshold type result 

on the global dynamics of (2.2.9). 

TheoreIll 2.2.1 Let (El)-{E3) hold. Then the following statements hold. 

(i) Ifr < 1, then zero solution is globally asymptotically stable for equation (2.2.9) 

with respect to Y+; 

(ii) If r > 1, then equation (2.2.9) has a unzque positive T-periodic solution 

u(t, CPo), and u(t, CPo) is globally asymptotically stable with respect to Y+ \ {O}. 

Proof. Let a(t) = 8~lf(t,0,0), b(t) = 8~2f(t,0,0). Since f is strictly sublinear, 

f(t, VI, V2) < a(t)VI + b(t)V2' Note that b(t) > 0, f(t, 0, V2) > o. By the comparison 

theorem ([72, Theorem 5.1.1]) and the positivity theorem ([72, Theorem 5.2.1]), each 
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solution u(t, cp) of equation (2.2.9) with initial value cp E Y+ exists globally, and 

u(t, cp) > 0, Vt > -7. Since a~2 J(t, VI, V2) > 0, the nonautonomous version of [72, 

Theorem 5.3.4] implies that for any cp, 'ljJ E Y+ with cp < 'ljJ, Ut(cp) < Ut('ljJ) , Vt > 0; 

and if cp < 'ljJ, then Ute cp) ~ Ute 'ljJ), Vt > 27. Define Su : Y+ -7 Y+ by Su (cp) = UTe cp). 

Then Su is monotone, and S;; is strongly monotone for nT > 27. Moreover, the 

strict sublinearity of J implies that Su is strictly sublinear (see the proof of [92, 

Theorem 3.3]). 

By the continuity and differentiability of solutions with respect to initial values, 

it follows that the Poincare map Su is differentiable at zero, and DSu(O) = Pu. Since 

bet) > 0, as in the proof of Proposition 2.2.1, (DSu(o))n is compact and strongly 

positive for all nT > 27. 

Let us consider S;;o, where noT > 27. Then, S;;o is strongly monotone, and 

(DSu(o))no is compact and strongly positive. 

For any f3 > 1, since J is strictly sublinear, we have J(t, f3L, f3L) < f3J(t, L, L) < 

o. Thus, [72, Remark 5.2.1] implies that for any f3 > 1, the order interval V,e = 

[0, f3L] = {cp E Y+ : 0 < cp( s) < f3L, s E [-7, On is a positive invariant set for 

SUo By [42, Theorem 3.6.1], S;;o : V,e -7 V,e is compact for any fixed f3 > 1. Then 

the closure of S;;o ([cp, 'ljJ]) is a compact subset of V,e for any cp, 'ljJ E V,e with cp < 

'ljJ. Furthermore, DS;;o (0) = (DSu(O) )no, which is compact and strongly positive. 

Note that Su is strictly sublinear, S;;o is strongly monotone, and r{ (DSu(O) )no} = 

[r(DSu(o))]no = (r(Pu))no = rno. By Theorem 1.2.1, as applied to S;;o, we have the 

following conclusions: 

(i) If r < 1, then zero is a globally asymptotically stable fixed point of S;;o with 

respect to V,e. 
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(ii) If r > 1, then S:;o has a unique positive fixed point <Po in VtJ , and <Po is globally 

asymptotically stable with respect to VtJ \ {O}. 

By the arbitrariness of (3, the above results hold on the whole space Y+ for 

S:;o. It then follows that zero solution of equation (2.2.9) is globally asymptotically 

stable in case (i); and equation (2.2.9) admits the unique positive and noT-periodic 

solution u( t, <Po) in case (ii). It remains to prove that u( t, <Po) is T -periodic. By 

Proposition 2.2.1, we know that there exists a positive eigenfunction <p* such that 

DSu(O)(<p*) = r<p*. In the case ofr > 1, for any small c > 0, it is easy to find an 

increasing sequence 0 « c<p* « Su(c<p*) < S~(c<p*) < ... < S:;(c<p*) < ... (see the 

proof of [96, Theorem 2.1]). On the other hand, s:;on(c<p*) -7 <Po as n -7 00. Thus, 

by the monotonicity of the sequence of S:;(c<p*) and the continuity of Su, <Po is a 

fixed point of Suo That is, u(t, <Po) is a T-periodic solution. • 

In order to study the asymptotically periodic system (2.1.6), we need to under­

stand the relationship between solutions of an asymptotically periodic system and its 

limiting periodic system. Let C = C([-7, 0], lRn), f(t, <p) and j(t, <p) be continuous 

functions on lR xC. Consider the retarded functional differential equations 

it = f ( t, Ut), u E lRn , 

{j, = j ( t, Ut), U E lRn. 

(2.2.10) 

(2.2.11) 

Assume that continuous functions f and fare Lipschitzian in <p in each compact 

subset oflRx C, and f is T-periodic in t. For any (a, <p) E lRx C, denote by u(t, a, <p) 

and u(t, a, <p) the solutions of system (2.2.10) and (2.2.11) satisfying U a = <p and ua = 

<p, respectively. Let ~(t, a, <p) = ut(a, <p), <I>(t, a, <p) = ut(a, <p), T(t)<p = <I>(t, 0, <p). 
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(ii) If r > 1, then S;;o has a unique positive fixed point <Po in V,B, and <Po is globally 
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Then, we have the following result for the relationship between <I> and T(t). 

Proposition 2.2.2 Assume that lim 1I](t, cp) - f(t, cp) II = 0 uniformly for cp in any 
t-+CXJ 

bounded set of C, and solutions of {2.2.10} and {2.2.11} are uniformly bounded. 

Then for any integer M > 0 and real number B > 0, 

lim 11<I>(t + nT, nT, cp) - T(t)cpll = 0 
n-+CXJ 

uniformly for t E [0, MT] and cp E C with Ilcpll < B. In particular, <I> is asymptotic 

to T(t). 

Proof. For any cp E C with Ilcpll < B, there exists B' such that Ilut(a, cp)11 < B', 

II Ut (a, cp) II < B' for any t > a > o. It follows that there exists a compact set 

D = D(B) c C such that for any a > 0 and any cp E C with Ilcpll < B, ut(a, cp), 

Ut (a, cp) E D for all t > a. Let c be the Lipschitz constant of f on the set [0, T] x D, 

and set u(t) = u(t, nT, cp), u(t) = u(t, nT, cp), Vt > nT. Integrating system (2.2.10) 

and (2.2.11) from nT to t, respectively, we have 

u(t) = u(nT) + lt f(s, us)ds = cp(O) + lt f(s, us)ds, 
nT nT 

u(t) = u(nT) + lt ](s, us)ds = cp(O) + lt ](s, us)ds. 
nT nT 

Then, 

Ilu(t) - u(t) II < lt 11](s, us) - f(s, us) lids 
nT 

< lt 11](s, us) - f(s, us) II + lt Ilf(s, us) - f(s, us) lids 
nT nT 

< MTII] - fllDn + clt Ilus - usllds 
nT 
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for t E [nT, (n + M)T], where 

Dn = {(t, c/J) E IR xC: Ilc/JII < B', t E [nT, (n + M)T]}, 

and 

Iii - fllDn = max 11](t, c/J) - f(t, c/J)II· 
Ct, <I»EDn 

Let v(t) = Ilut(nT, cp) - ut(nT, cp)ll. Then, it easily follows that 

v(t) < MTlli - fllDn + eit v(s)ds 
nT 

for t E [nT, (n + M)T]. Applying Grownwall inequality to the last inequality, we 

have v(t) < e/ll] - fllDn for t E [nT, (n + M)T], where e' is a constant independent 

of t, nand cpo Replacing t by t + nT, the last inequality is changed into v(t + nT) < 

e/ll] - fllDn for t E [0, MT]. That is, 

Ilut+nT(nT, cp) - ut+nT(nT, cp)11 < e/ll] - fllDn 

for t E [0, MT]. Note that ut+nT(nT, cp) = Ut(O, cp) = T(t)cp, we have 

11<I>(t + nT, nT, cp) - T(t)cpll < e/ll] - fllDn· 

Thus 

lim 11<I>(t + nT, nT, cp) - T(t)cpll < lim e/ll] - fllDn = ° 
n-+oo n-+oo 

uniformly for t E [0, MT] and cp E C with Ilcpll < B. 

In particular, for any (to, CPo) E IR+ x C, choose M > 0, B > 0, such that 

to E [0, MT], IICPol1 < B. For any t E [0, MT], Ilcpll < B, by the following triangle 

inequali ty, 

11<I>(t + nT, nT, cp) - T(to)CPoll < 11<I>(t + nT, nT, cp) - T(t)cpll + IIT(t)cp - T(to)CPoll, 



26 

for t E [nT, (n + M)T], where 

Dn = {(t, ¢) E 1R xC: II¢II < B', t E [nT, (n + M)T]), 

and 

II! - fllvn = max 11!(t, ¢) - f(t, ¢)II· 
(t, ¢)EVn 

Let v(t) = Ilut(nT,cp) - Ut(nT,cp)ll. Then, it easily follows that 

v(t) < MTII! - fllDn + ei
t 

v(s)ds 
nT 

for t E [nT, (n + M)T]. Applying Grownwall inequality to the last inequality, we 

have v(t) < e/ll! - fllvn for t E [nT, (n + M)T], where e' is a constant independent 

of t, nand cpo Replacing t by t + nT, the last inequality is changed into v(t + nT) < 

e/ll! - fllvn for t E [0, MT]. That is, 

Ilut+nT(nT, cp) - Ut+nT(nT, cp)11 < e/ll! - fllDn 

for t E [0, MT]. Note that Ut+nT(nT, cp) = Ut(O, cp) = T(t)cp, we have 

11<I>(t + nT, nT, cp) - T(t)cpll < e/ll! - fllvn· 

Thus 

lim 11<I>(t + nT, nT, cp) - T(t)cpll < lim e/ll! - fllvn = ° 
n-+oo n-+oo 

uniformly for t E [0, MT] and cp E C with Ilcpll < B. 

In particular, for any (to, CPo) E 1R+ x C, choose M > 0, B > 0, such that 

to E [0, MT], IICPol1 < B. For any t E [0, MT], Ilcpll < B, by the following triangle 

inequality, 

11<I>(t + nT, nT, cp) - T(to)cpoll < 11<I>(t + nT, nT, cp) - T(t)cpll + IIT(t)cp - T(to)CPoll, 



27 

we have 11<I>(t + nT, nT, cp) - T(to) CPo II ~ 0 as (t, cp, n) ~ (to, CPo, +CX)). Thus <P is 

asymptotic to the T-periodic semifiow T(t). • 

Based on system (2.2.9), we consider a scalar asymptotically periodic system 

u = !(t, u(t), u(t - r)), t > 0, 
(2.2.12) 

u(s) = cp(s), s E [-r, 0], cp E Y+. 

Assume that the continuous function !(t, VI, V2) is Lipschitzian in (VI, V2) in any 

bounded subset of lR~, and satisfies 

- - 8 - . 
(E1') I(t, 0, 0) = 0, I(t, 0, V2) > 0, 8V2 I(t, VI, V2) > 0 for t > 0, Vi > 0,1,= 1,2; 

(E2') there exists L > 0 such that ! (t, l, l) < 0 for all l > L; 

(E3') lim I! - II = 0 uniformly on any bounded subset on lR~, where I is defined 
t--+CXJ 

by equation (2.2.9). 

Then, by the positivity theorem ([72, Theorem 5.2.1]), the solution u(t, cp) of system 

(2.2.12) is nonnegative on it's existence interval for any cp E Y+. Furthermore, it 

is easy to see that u(t, cp) is bounded by max(L, Ilcpll). Thus solutions of system 

(2.2.12) exist globally and are uniformly bounded. 

In view of Theorem 2.2.1 and Proposition 2.2.2, the following result is a straight­
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- - 8 - . 
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Theorem 2.2.2 Let (E1)-(E3) and (E1')-(E3') hold. Suppose that r is the spectral 

radius defined by Theorem 2.2.1 associated with the limiting equation (2.2.9). Then 

the following statements hold. 

(i) If r < 1, then zero solution attracts every solution of system (2.2.12). 

(ii) Ifr > 1, then u(t, CPo), which is defined by Theorem 2.2.1, attracts each solution 

of system (2.2.12) except for zero. 

2.3 Two-species Competition 

For the two-species competition, the solutions of system (2.1.5) preserve a special 

order so that the theories of competitive systems on Banach spaces (see [50]) can 

be applied. Therefore, we first apply Theorem 1.2.4 and 1.2.5 to obtain the global 

dynamics of system (2.1.5) in the first subsection, and then use asymptotically 

periodic semiflows to analyze the global dynamics of system (2.1.6) in the second 

subsection. 

2.3.1 The Periodic Case 

Assume that the periodic system (2.1.5) satisfies 

(HI) Fi(t, Ui) > 0, 8~i (UiFi(t, Ui)) > 0, and 8~j Gi(t, Ul, U2) > ° for t > 0, Ui > 0, 

1 < i -# j < 2; 

(H2) fl (t, . ,0, . ) and f2 (t, 0, . , . ) are strictly sublinear on JR~, and fl (t, L, 0, L) < ° 
and f2(t, 0, L, L) < ° for some number L > 0. 
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Consider the linearization of system (2.1.5) at zero 

Ul(t) = bl(t)Ul(t - 71) - al(t)Ul(t), 

U2(t) = b2(t)U2(t - 72) - a2(t)U2(t), 

29 

(2.3.13) 

(2.3.14) 

where bi(t) = Fi(t, 0), ai(t) = Gi(t, 0, 0). Let p?) and pia) be the Poincare maps 

associated with equation (2.3.13) and (2.3.14), rOl = r(P}O») and r02 = r(piO») be 

the spectral radii of p}O) and piO), respectively. Suppose that 

(H3) rOl > 1, r02 > 1. 

By Theorem 2.2.1, it then follows that there exists a unique positive T-periodic 

solution u(1) (t) for 

Ul(t) = Ul(t - 7l)Fl (t, Ul(t - 71)) - Ul(t)Gl(t, Ul(t), 0) := fl(t, Ul(t), 0, Ul(t - 71)), 

(2.3.15) 

and u(1) (t) is globally asymptotically stable with respect to xi \ {O}. The similar 

results hold for the following equation 

U2(t) = U2(t - 72)F2(t, U2(t - 72)) - U2(t)G2(t, 0, U2(t)) := f2(t, 0, U2(t), U2(t - 72)). 

(2.3.16) 

Let U(2) (t) be the positive T-periodic solution for equation (2.3.16). 

Obviously, (u(1) (t), 0) and (0, u(2)(t)) are T-periodic solutions of system (2.1.5). 

Linearizing system (2.1.5) at (u(1) (t), 0), we have 

Ul(t) = b~l)(t)Ul(t - 71) - a~i)(t)Ul(t) - a~~(t)u2(t), 

U2(t) = b~1)(t)U2(t - 72) - a~~(t)u2(t), 

(2.3.17) 

(2.3.18) 
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U1(t) = b~1)(t)U1(t - 71) - a~i)(t)U1(t) - a~~)(t)U2(t), 
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(2.3.17) 

(2.3.18) 
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where 

b~l)(t) = u(1)(t - 71)aa F1(t, U(l)(t - 71)) + F 1(t, u(1)(t - 71)), 
U1 

b~l)(t) = F2(t,0), a~i)(t) = G 1(t,u(1)(t), 0) +U(l)(t)aa G1(t,U(1)(t),0), 
U1 

a~~(t) = U(l)(t)aa G 1(t,U(1)(t),0), a~~)(t) = G2(t,u(1)(t), 0). 
U2 

Similarly, we have the linearized system of system (2.1.5) at (0, U(2)(t)) 

U1(t) = b~2)(t)U1(t - 71) - a~;)(t)U1(t), 

U2(t) = b~2) (t)U2(t - 72) - a~;) (t)U1 (t) - a~~ (t)U2(t), 

where 

(2.3.19) 

(2.3.20) 

b~2)(t) = F1(t, 0), b~2)(t) = U(2)(t - 7 2)aa F2(t,U(2)(t - 72)) + F2(t,U(2)(t - 72)), 
U2 

a~;) (t) = G 1 (t, 0, U(2) (t)), a~;) (t) = U(2) (t) aa G2 (t, 0, U(2) (t)), 
U1 

a~~(t) = G 2(t, 0, U(2)(t)) + U(2)(t)aa G 2(t, 0, U(2)(t)). 
U2 

Let pP) and p{2) be the Poincare maps of equations (2.3.18) and (2.3.19), re­

spectively, and denote their spectral radii by r12 = r(pJ1»), r21 = r(pF»). Let 

and set 

Eo = (0,0), E1 = (<p*, 0), E2 = (0, <p**). 

For any 'l/J E X+, denote by u(t, 'l/J) the solution of system (2.1.5). Let Ut('l/J) be 

the solution semifiow associated with system (2.1.5). For convenience, we set X O = 

{('l/J1, 'l/J2) E X+ : 'l/Ji -=I 0, i = 1, 2}. Then we have the following result. 
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Theorem 2.3.1 Let (H1)-{H3) hold and suppose that r12 > 1, r21 > 1. Then the 

following hold for system (2.1.5): 

(i) System (2.1.5) has two positive T-periodic solutions u(t, 4;*) and u(t, 4;**) sat­

isfying u(t, 4;**) <K u(t, 4;*), t > 0, where 4;*,4;** E int(X+) with 4;** <K 4;*. 

(ii) lim Ilu(t, 'ljJ) - u(t, 4;*)11 = 0 for every 'ljJ = ('ljJl, 'ljJ2) E X+ with 4;* <K 'ljJ <K El 
t~oo 

Symmetrically, lim Ilu(t,'ljJ) - u(t, 4;**)11 = 0 for every 'ljJ = 
t~oo 

(iii) lim dist( u( t, 'ljJ), [u( t, 4;**), u( t, 4;*)]K) = 0 for any point 'ljJ E XO. 
t~oo 

In particular, in the case where Ti = kiT for some integers ki' i = 1,2, if assumption 

and i, j = 1,2, then the above results hold. 

In the rest of this section, we use S to denote the Poincare map associated with 

system (2.1.5). In order to prove Theorem 2.3.1, we need the following two lemmas. 

The first one establishes some properties of S, and the second one implies that 

Ei (i = 0, 1, 2) are isolated fixed points for sno , and that there exist no points in 

int(X+) converging to Ei under sno , where no is an integer. 

Lemma 2.3.1 The Poincare map S : X+ -+ X+ is strictly monotone with respect 

to <K, and is a bounded map. 

Proof. For any 'ljJ E X+, by the positivity theorem ([72, Theorem 5.2.1)) and 

assumption (HI), the solution u(t, 'ljJ) of system (2.1.5) is nonnegative on its existence 

interval. Note that assumption (HI) implies the inequalities 
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for Ui, Vi > 0, i = 1,2. Since the solutions for equation (2.3.15) and (2.3.16) exist 

globally, by the comparison theorem ([72, Theorem 5.1.1]), the solution u(t,1jJ) for 

system (2.1.5) globally exists for any 1jJ E X+. By assumption (HI), it easily follows 

that the solutionul(t, CPI) of equation (2.3.15) is bounded by B = max{L, IlcpIII}, and 

hence the solution for equation (2.3.15) is uniformly bounded. The same conclusions 

hold for equation (2.3.16). Therefore, solutions for system (2.1.5) are also uniformly 

bounded. 

Let Ut(1jJ) be the solution semiflow of system (2.1.5) with uo(1jJ) = 1jJ E X+. 

Then assumption (HI) implies that, Ut(1jJ) > 0 for all t > 0 (see [72, Theorem 

5.2.1]). Moreover, if cP, 1jJ E X + with cP < K 1jJ, by the comparison theorem and the 

transformation UI = UI, U2 = -U2, it easily follows that Ut(cp) <K Ut(1jJ) for all 

t > O. Let S : X+ ---1- X+ be the Poincare map associated with system (2.1.5), i.e., 

S = UT(·). Then S is monotone with respect to <K, and S is a bounded map. 

It remains to prove that S is strictly monotone with respect to <K, i.e., S(cp) <K 

S(1jJ) if cP <K 1jJ. Suppose, by contradiction, that S(cp) = S(1jJ). Let u(t, cp) = 

(UI(t, cp), U2(t, cp)), u(t, 1jJ) = (UI(t, 1jJ), U2(t, 1jJ)). Then Ui(ti , cp) = Ui(ti , 1jJ) for all ti E 

[T - Ti, T], i = 1,2. Thus, 

o Ui ( t i , cp) - Ui ( t i , 1jJ ) 

Ui (ti - Ti, cp) Fi ( t i , Ui (ti - Ti, cp)) - Ui (ti - Ti, 1jJ) Fi ( t i , Ui (ti - Ti, 1jJ) ) 

for ti E (T-Ti, T]. Since UiFi(t, Ui) is strictly increasing, Ui(ti-Ti, cp) = Ui(ti-Ti, 1jJ). 

Therefore, Ui(ti,CP) = Ui(ti ,1jJ) for ti E (T- 2Ti,T],i = 1,2. By induction, we have 

Ui(ti , cp) = Ui(ti , 1jJ) for ti E [-Ti' 0], i.e., cp = 1jJ, which contradicts to cp <K 1jJ. Thus 

we have S(cp) <K S(1jJ). • 
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Lemma 2.3.2 Suppose u*(t) = (ui(t),u2(t)) is a T-periodic solution of equation 

(2.1.5) with ui(t) > 0 for 1 < i < 2, and uj(t) = 0 for some j. Let Pj be the 

Poincare map of 

If rj = r(Pj ) > 1, then for any integer no > 1, there exists 6 > 0 such that 

limsuPn-+oo IIsnon(7jJ) - 7jJ*11 > 6 for all 7jJ E int(X+), where 7jJ* E X+ is the initial 

function ofu*(t). 

Proof. Since u*(t) is also an noT-periodic solution of noT-periodic system (2.1.5), 

and r{(Pj)no} = [r(pj)]no = rjO > 1, without loss of generality, we can assume that 

no = 1. 

It suffices to prove that there exists 6 > 0 such that for any 7jJ E int(X+) with 

117jJ-7jJ*11 < 6, there exists N > 1 such that IISN(7jJ)-7jJ*11 > 6. Let b1 = min Fj(t, 0). 
tE[O,T] 

For any c E (0, b1 ), let r£ be the spectral radius of the Poincare map associated with 

u(t) = (Fj(t, 0) - c)u(t - Tj) - (Gj(t, u~(t), u;(t)) + c)u(t). (2.3.21) 

Then lim r C = rj > 1. In what follows, we fix a sufficient small c E (0, b1 ) such that 
£-+0 

r£ > 1. For this fixed c, assumption (HI) implies that there exists 61 > 0 such that 

Let b2 = max Ilu*(t)ll. By the uniform continuity of G j on the set [0,00) x [0, b2+1]2, 
tE[O,T] 

there exists 62 > 0 such that 
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for any u = (Ul' U2), U' = (u~, u~) E [0, b2 + 1]2 with lIu - u'll < 62. By the continuous 

dependence of solutions on initial values, there exists 6 > 0 such that for any 'ljJ E 

int(X+) with 11'ljJ - 'ljJ*11 < 6, 

Ilu(t, 'ljJ) - u*(t)11 < 6' = min(l, 61, 62), Vt E [0, T). 

Proceeding by contradiction, assume that there exists i{; = (i{;I, i{;2) E int(X+) 

with IIi{; - 'ljJ*11 < 6 such that Ilsn(i{;) - 'ljJ*11 < 6 for all n > 1. For any t > 0, let 

t = nT + t', where t' E [0, T), n = [tiT] is the greatest integer less than or equal to 

tiT. Then, 

Ilu(t, i{;) - u*(t)11 = Ilu(t', sn(i{;)) - u*(t')11 < 6', Vt > o. 

Let u(t, i{;) = (ih(t), U2(t)). Then 

and 

Thus, 

Uj(t - Tj)Fj(t, Uj(t - Tj)) - Uj(t)Gj(t, Ul(t), U2(t)) 
(2.3.22) 

> (Fj(t, O) - c)Uj(t - Tj) - Uj(t)(Gi(t, ui, u2) + c), Vt > o. 

As in the proof of Proposition 2.2.1, equation (2.3.21) has a solution UO(t) 

vo(t)eAot , where vo(t) is a positive, T-periodic and continuous function, Ao = ~ In r C > 

O. Let CPo (s) = uO (s), s E [-Tj, 0]. Then CPo »0. Since i{;j » 0, there exists 

TJ > 0 such that TJCPo < i{;j. By the comparison theorem and inequality (2.3.22), 
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for any u = (U1,U2),U' = (u~ , u~) E [0,b2+1]2 with Ilu-u'lI < 02. By the continuous 

dependence of solutions on initial values, there exists 0 > ° such that for any 'lj; E 

int(X+) with 11'lj; - 'lj;* II < 0, 

Ilu(t, 'lj;) - u* (t) II < 0' = min(l, 01,02), vt E [0, T). 

Proceeding by contradiction, assume that there exists 1/; = (1/;1,1/;2) E int(X+) 

with II1/; - 'lj;*11 < 0 such that Ilsn(1/;) - 'lj;*11 < 0 for all n > 1. For any t > 0, let 

t = nT + t', where t' E [0, T), n = [tiT] is the greatest integer less than or equal to 

tiT. Then, 

Ilu(t, 1/;) - u*(t)11 = Ilu(t', sn(1/;)) - u*(t')11 < 0', Vt > 0. 

Let u(t,1/;) = (ih(t), U2(t)). Then 

and 

Thus, 

Uj(t - Tj)Fj(t, Uj(t - Tj)) - Uj(t)Gj(t, U1(t), U2(t)) 
(2.3.22) 

> (Fj(t, O) - c)Uj(t - Tj) - Uj(t)(Gi(t, ui, u;) + c), Vt > 0. 

As in the proof of Proposition 2.2.1, equation (2.3.21) has a solution UO(t) 

vo(t)e>.ot, where vo(t) is a positive, T-periodic and continuous function, Ao = ~ In r€ > 

0. Let <Po(s) = uO(s), s E [-Tj, 0]. Then <Po »0. Since 1/;j » 0, there exists 

T} > ° such that T}<po < 1/;j. By the comparison theorem and inequality (2.3.22), 
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we have Uj(t) > uj(t, i/Jj) > TJUO(t), where uj(t, i/Jj) is the solution of (2.3.21) with 

uj(s, i/Jj) = i/Jj(s), Vs E [-Tj, 0]. Therefore, lim Uj(t) > lim TJUO(t) = 00. Thus 
t--+oo t--+oo 

sn (i/J) is unbounded, a contradiction. • 

Proof of Theorem 2.3.1. Note that the Poincare map S : x+ ---+ X+ is Q-

condensing and sn is compact for sufficiently large n (see, e.g., [42, Theorem 3.6.1]). 

We then proceed with two steps. The first step is to verify the basic assumptions 

(A1)-(A4) in Section 1.2 for competitive systems on Banach spaces, and then apply 

the compression theorem (Theorem 1.2.5) to sno , where no is an appropriate positive 

integer. In the second step, we prove that fixed points ¢* and ¢** of sno are actually 

fixed points of S. 

Step 1. So far, we have shown that (1). U(I)(t) and u(2)(t) are stable positive 

T-periodic solutions for equation (2.3.15) and (2.3.16), respectively, and they attract 

all of the solutions except for the trivial solution; (2). the Poincare map S for system 

(2.1.5) is bounded and strictly monotone with respect to <K (see Lemma 2.3.1). 

Let SUi and SU2 be the Poincare maps of equation (2.3.15) and (2.3.16), re­

spectively. Since xi x {O} and {O} x xi are clearly invariant sets for system 

(2.1.5), we have S = (SUll 0) on xi x {O}, S = (0, SuJ on {O} x xi. Therefore, 

lim sn(('Pl, 0)) = El for any 'PI E xi \ {O}, and lim sn((o, 'P2)) = E2 for any 
n--+oo n--+oo 

'P2 E xi \ {O}. 

Claim. For any 'P = ('PI, 'P2) E XO, U(t, 'P) » 0 for t > T max( Tl, T2). In 

particular, sn ( 'P) » 0 for all nT > 2T. 
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we have Uj(t) > uj(t,7/;j) > TjUO(t) , where uj(t,7/;j) is the solution of (2.3.21) with 

uj(s,7/;j) = 7/;j(s), \Is E [-Tj, 0]. Therefore, lim Uj(t) > lim TjUO(t) = 00. Thus 
t-+oo t-+oo 

sn (7/;) is unbounded, a contradiction. • 

Proof of Theorem 2.3.1. Note that the Poincare map S : x+ ---+ X+ is Q(-

condensing and sn is compact for sufficiently large n (see, e.g., [42, Theorem 3.6.1]). 

We then proceed with two steps. The first step is to verify the basic assumptions 

(A1)-(A4) in Section 1.2 for competitive systems on Banach spaces, and then apply 

the compression theorem (Theorem 1.2.5) to sno , where no is an appropriate positive 

integer. In the second step, we prove that fixed points ¢* and ¢** of sno are actually 

fixed points of S. 

Step 1. So far, we have shown that (1). U(I)(t) and U(2)(t) are stable positive 

T-periodic solutions for equation (2.3.15) and (2.3.16), respectively, and they attract 

all of the solutions except for the trivial solution; (2). the Poincare map S for system 

(2.1.5) is bounded and strictly monotone with respect to <K (see Lemma 2.3.1). 

Let SUI and SU2 be the Poincare maps of equation (2.3.15) and (2.3.16), re­

spectively. Since xt x {O} and {O} x xi are clearly invariant sets for system 

(2.1.5), we have S = (SUll 0) on xt x {O}, S = (0, SU2) on {O} x xt. Therefore, 

lim sn ((CPI , 0)) = EI for any CPI E xt \ {O}, and lim sn((o, CP2)) = E2 for any 
n-+oo n-+oo 

CP2 E xi \ {O}. 

Claim. For any cP = (CPI, CP2) E XO, u(t, cp) » 0 for t > T 

particular, sn ( cp) ~ 0 for all nT > 2T. 
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Indeed, for each i = 1,2, we assume that CPi(Oi) > 0 for some Oi E [-Ti' 0], i = 1,2. 

Then Ui(Ti + Oi, cp) > O. In fact, if Ui(Ti + Oi, cp) = 0, then 

which implies that Ui (t~, cp) < 0 for some t~ < Ti +Oi. However, by the proof of Lemma 

2.3.1, Ui(t, cp) > 0 for all t > -Ti, a contradiction. Thus, we have Ui(Ti + Oi, cp) > o. 
On the other hand, 

Then 

Therefore, Ui(t, cp) > 0 for t > Ti + Oi. Thus u(t, cp) » 0 for t > T = max(T1' T2). 

Given an order interval J = [0,0'1] x [0,0'2], ai E xt, i = 1,2. Since sn is 

compact for nT > T (see, e.g., [42, Theorem 3.6.1]), sn(J) is precompact. Thus, for 

all nT > T, sn is order compact with respect to <K. 

At any point cP = (CP1, CP2) E int(X+), the Jacobi matrix of system (2.1.5) is 

Dll 

where 

i = 1,2. D(f1, f2) is irreducible due to assumption (HI). By [72, Theorem 5.3.4], it 

then easily follows that sn(cp) «K sn('IjJ), VnT > 3T for any cP, 'IjJ E int(X+) with 

cP <K 'IjJ. 
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Indeed, for each i = 1,2, we assume that <Pi (Oi) > ° for some Oi E [-Ti' 0], i = 1,2. 

Then Ui( Ti + Oi, <p) > 0. In fact, if Ui( Ti + Oi, <p) = 0, then 

which implies that Ui(t~, <p) < ° for some t~ < Ti+Oi. However, by the proof of Lemma 

2.3.1, Ui(t, <p) > ° for all t > -Ti, a contradiction. Thus, we have Ui(Ti + Oi, <p) > 0. 

On the other hand, 

Then 

Therefore, Ui(t, <p) > ° for t > Ti + 0i. Thus u(t, <p) ~ ° for t > T = max(TI' T2)' 

Given an order interval J = [0, al] x [0, a2], ai E xt, i = 1,2. Since sn is 

compact for nT > T (see, e.g., [42, Theorem 3.6.1]), sn(J) is precompact. Thus, for 

all nT > T, sn is order compact with respect to < K. 

At any point <p = (<PI, <P2) E int(X+), the Jacobi matrix of system (2.1.5) is 

where 

Dii = a~. (UiFi(t,Ui))1 - a~ . (UiGi(t,UI,U2))1 ' 
Z Ui=CPi(-Ti) Z Ul=CPl(O),U2=CP2(O) 

i = 1,2. D(h, 12) is irreducible due to assumption (HI). By [72, Theorem 5.3.4]' it 

then easily follows that sn(<p) «K sn('ljJ) , VnT > 3T for any <p, 'ljJ E int(X+) with 

<P <K 'ljJ. 
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Let <p, 'ljJ be in X+ satisfying <p = (<PI, «2) » 0, 'ljJ = ('ljJ1, 0) E Xi x {O}, and <PI < 

'ljJ1. Then <P <K 'ljJ. We want to show that sn(<p) ~K sn('ljJ) for all large integers 

n. Let u(t, <p) = (U1(t, <p), U2(t, <p)), u(t, 'ljJ) = (U1(t, 'ljJ), 0). Then u(t, <p) <K u(t, 'ljJ), 

i.e., 0 < U1(t, <p) < U1(t, 'ljJ), U2(t, <p) > o. By the above claim, we have Ui(t, <p) > 

0, Vt > T. Thus we only need to prove that U1(t, <p) < U1(t, 'ljJ), Vt > o. Assume, by 

contradiction, that U1(to, <p) = U1(to, 'ljJ) for some to > O. Since 8~2 G 1(t, U1, U2) > 0, 

and 8~1 U1 F1 (t, U1) > 0, we have 

U1 (to, <p) - U1 (to, 'ljJ) = 

U1(to - T1, <P)F1(to, U1(to - T1, <p)) - U1(to - T1, 'ljJ)F1(to, U1(to - T1, 'ljJ)) 

+U1(to, 'ljJ)G1(to, U1(to, 'ljJ), 0) - U1 (to, <p)G1(to, U1(to, <p), U2(to, <p)) < 0, 

which implies that U1(t, <p) -U1(t, 'ljJ) > 0 for some t < to. The conclusion contradicts 

U1 (t, <p) < U1 (t, 'ljJ) for all t > -T1. Thus, U1 (t, <p) < U1 (t, 'ljJ), Vt > 0, and hence 

we have u(t,<p) «K u(t,'ljJ) for t > o. In particular, sn(<p) «K sn('ljJ) for all 

nT > 2T. Similarly, if <p and 'ljJ belong to X+ and satisfy <p <K 'ljJ, 'ljJ E int(X+) and 

<p E {O} x X:{, we have sn( <p) «K sn( 'ljJ) for all nT > 2T. 

Let us fix an integer no such that sno satisfies 

(1) sno ( <p) ~ 0 for any <p E Xo. 

(2) If <p, 'ljJ E X+ satisfy <p <K 'ljJ, and either <p or 'ljJ belongs to int(X+), then 

sno ( <p) «K sno ( 'ljJ ) . 

Also, sno has the following properties: 

(3) sno is order compact and strictly monotone with respect to <K. 
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Let <p, 'ljJ be in X+ satisfying <p = (<PI, <P2) » 0, 'ljJ = ('ljJl, 0) E xt x {O}, and <PI < 

'ljJ1. Then <P <K 'ljJ. We want to show that sn(<p) «K sn('ljJ) for all large integers 

n. Let u(t, <p) = (Ul(t, <p), U2(t, <p)), u(t, 'ljJ) = (Ul(t, 'ljJ), 0). Then u(t, <p) <K u(t, 'ljJ), 

i.e., 0 < Ul(t, <p) < Ul(t, 'ljJ), U2(t, <p) > O. By the above claim, we have Ui(t, <p) > 

0, Vt > T. Thus we only need to prove that Ul(t, <p) < Ul(t, 'ljJ), Vt > o. Assume, by 

contradiction, that Ul(to, <p) = Ul(tO, 'ljJ) for some to > O. Since a~2 G1(t, Ul, U2) > 0, 

and a~l u1F1 (t, Ul) > 0, we have 

Ul(tO, <p) - Ul(tO, 'ljJ) = 

Ul (to - Tl, <p) Fl (to, Ul (to - Tl, <p)) - Ul (to - Tl, 'ljJ) Fl (to, Ul (to - Tl, 'ljJ) ) 

+Ul(tO, 'ljJ)G1(to, Ul(tO, 'ljJ), 0) - Ul(tO, <p)G1(to, Ul(tO, <p), U2(tO, <p)) < 0, 

which implies that Ul (t, <p) - Ul (t, 'ljJ) > 0 for some t < to. The conclusion contradicts 

Ul(t,<P) < Ul(t,'ljJ) for all t > -Tl. Thus, Ul(t,<P) < Ul(t,'ljJ),Vt > 0, and hence 

we have u(t, <p) «K u(t, 'ljJ) for t > o. In particular, sn(<p) «K sn('ljJ) for all 

nT > 2T. Similarly, if <p and 'ljJ belong to X+ and satisfy <p <K 'ljJ, 'ljJ E int(X+) and 

<p E {O} x Xi, we have sn(<p) «K sn('ljJ) for all nT > 2T. 

Let us fix an integer no such that sno satisfies 

(1) sno ( <p) » 0 for any <p E Xo. 

(2) If <p, 'ljJ E X+ satisfy <p <K 'ljJ, and either <p or 'ljJ belongs to int(X+), then 

sno ( <p) ~ K sno ( 'ljJ ) . 

Also, sno has the following properties: 

(3) sno is order compact and strictly monotone with respect to <K. 
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(4) sno (EI ) = EI and lim snon( ('PI, 0)) EI for any 'PI E xi \ {a}. The 
n400 

symmetric results hold for E 2 . 

(5) Since rl2 > 1, it follows from Lemma 2.3.2 that EI is an isolated fixed point 

of sno, and WS(EI ) nint(X+) = (/), where WS(EI ) is the stable set of EI for 

sno. The same results hold for Eo and E 2. Also, Theorem 2.2.1 implies that 

Eo is a repelling fixed point of sno. 

Therefore, sno satisfies the conditions in Theorem 1.2.5. Thus, for the map sno, 

we have the following results. 

(i) sno has two positive fixed points ¢* and ¢** with ¢** <K ¢*. Then, sys­

tem (2.1.5) has two positive noT-periodic solutions u(t, ¢*) and u(t, ¢**) with 

u(t, ¢**) <K u(t, ¢*). 

(ii) For every 'ljJ = ('ljJI, 'ljJ2) E X+ with 'ljJ2 -=I 0 and ¢* <K 'ljJ <K E I , lim snon('ljJ) = 
n400 

¢*. It then follows that lim Ilu(t, 'ljJ) - u(t, ¢*) II = O. Symmetrically, for every 
t400 

'ljJ = ('ljJI, 'ljJ2) E X+ with 'ljJI -=I 0 and E2 <K 'ljJ < K ¢**, lim snon ('ljJ) = ¢**, 
n400 

and hence, lim Ilu(t, 'ljJ) - u(t, ¢**)II = O. 
t400 

(iii) lim dist (snon ( 'ljJ ), [¢**, ¢*] K) = 0 for any point 'ljJ E X O, and hence 
n400 

lim dist( u( t, 'ljJ), [u( t, ¢**), u( t, ¢*)]K) = O. 
t400 

Step 2. It remains to prove that u(t, ¢*) and u(t, ¢**) are T-periodic solutions. 

We only need to show that ¢* and ¢** are fixed points of S. In what follows, we 

prove that ¢** is a fixed point for S. 
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EI for any CPI E xt \ {O}. The 

symmetric results hold for E 2 . 

(5) Since Tl2 > 1, it follows from Lemma 2.3.2 that EI is an isolated fixed point 

of sno , and WS(Ed n int(X+) = 0, where WS(EI ) is the stable set of EI for 

sno. The same results hold for Eo and E 2. Also, Theorem 2.2.1 implies that 

Eo is a repelling fixed point of sno. 

Therefore, sno satisfies the conditions in Theorem 1.2.5. Thus, for the map sno, 

we have the following results. 

(i) sno has two positive fixed points ¢* and ¢** with ¢** <K ¢*. Then, sys­

tem (2.1.5) has two positive noT-periodic solutions u(t, ¢*) and u(t, ¢**) with 

u(t, ¢**) <K u(t, ¢*). 

(ii) For every 'ljJ = ('ljJI, 'ljJ2) E X+ with 'ljJ2 =I- 0 and ¢* <K 'ljJ <K E I , lim snon('ljJ) = 
n--+oo 

¢*. It then follows that lim Ilu(t, 'ljJ) - u(t, ¢*)II = O. Symmetrically, for every 
t--+oo 

'ljJ = ('ljJI, 'ljJ2) E X+ with 'ljJ1 =I- 0 and E2 <K 'ljJ < K ¢**, lim snon ('ljJ) = ¢**, 
n--+oo 

and hence, lim Ilu(t, 'ljJ) - u(t, ¢**)II = o. 
t--+oo 

(iii) lim dist(snon('ljJ) , [¢**, ¢*]K) = 0 for any point 'ljJ E X O, and hence 
n--+oo 

lim dist(u(t, 'ljJ), [u(t, ¢**), u(t, ¢*)]K) = O. 
t--+oo 

Step 2. It remains to prove that u(t, ¢*) and u(t, ¢**) are T-periodic solutions. 

We only need to show that ¢* and ¢** are fixed points of S. In what follows, we 

prove that ¢** is a fixed point for S. 
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By Proposition 2.2.1, we have p}2)e1 = r21e1, and e1 »0. Let S** be the 

Poincare map of the linearized system (2.3.19)-(2.3.20). We claim that r21 IS an 

eigenvalue of S**. Indeed, for any cp E xi, suppose that u(t, a, cp) solves 

(2.3.23) 

with initial values u(]" = cpo Let W(t, a)cp = ut(a, cp), then W(t, a) is a continuous 

linear evolution operator. Let U1(t, e1) be the solution of equation (2.3.19) satisfying 

U1 (f), e1) = e1 (B), VB E [-71, 0]. By the variation-of-constants formula, the solutions 

of equation (2.3.20) can be expressed by 

u,(a-, cp) = Wet, a-)cp + l' Wet, s)Xoh(s)ds, t > a-, 

where Xo(B) = 0 for B E [-72,0), Xo(B) = 1 for B = 0, and h(s) = -a~~)(s)U1(S, e1) < 

O. Consider the following equation 

(r21 - WeT, 0))e2 = -IT WeT, s)Xoh(s)ds, e2 E xi. (2.3.24) 

Since u(2) (t) is a globally asymptotically stable T-periodic solution of equation 

(2.3.16), and its linearized equation at U(2) (t) coincides with equation (2.3.23), we 

have r(W(T,O)) < 1. Since W(T, s)Xo > 0, - JOT W(T, s)Xoh(s)ds > O. By the 

Krein-Rutman theorem (see, e.g., [47, Theorem 7.3]), equation (2.3.24) has a unique 

solution e2 and e2 »0. Let e = (e1' -e2), then e »K O. Let P2 be the Poincare 

map of equation (2.3.20). Then, 

P2( -e2) = WeT, 0)( -e2) + lT WeT, s)Xoh(s)ds. 

Thus, 
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By Proposition 2.2.1, we have Pi2)el = r21el, and el »0. Let S** be the 

Poincare map of the linearized system (2.3.19)-(2.3.20). We claim that r21 is an 

eigenvalue of S**. Indeed, for any cp E Xi, suppose that u(t,o-,cp) solves 

(2.3.23) 

with initial values Ua = cpo Let W(t,o-)cp = Ut(o-, cp), then W(t,o-) is a continuous 

linear evolution operator. Let Ul (t, el) be the solution of equation (2.3.19) satisfying 

ul(B, el) = el(B), VB E [-71,0]. By the variation-of-constants formula, the solutions 

of equation (2.3.20) can be expressed by 

u,(a, rp) = W(t, a)rp + l' W(t, s)Xoh(s)ds, t > a, 

where Xo(B) = 0 for B E [-72,0), Xo(B) = 1 for B = 0, and h(s) = -a~~)(s)Ul(S, el) < 

O. Consider the following equation 

(T21 - W(T, 0))e2 = -IT W(T, s)Xoh(s)ds, e2 E xi. (2.3.24) 

Since U(2)(t) is a globally asymptotically stable T-periodic solution of equation 

(2.3.16), and its linearized equation at U(2)(t) coincides with equation (2.3.23), we 

have r(W(T,O)) < 1. Since W(T, s)Xo > 0, - JOT W(T, s)Xoh(s)ds > O. By the 

Krein-Rutman theorem (see, e.g., [47, Theorem 7.3]), equation (2.3.24) has a unique 

solution e2 and e2 »0. Let e = (el' -e2), then e »K O. Let P2 be the Poincare 

map of equation (2.3.20). Then, 

P2( -e2) = W(T, 0)( -e2) + lT W(T, s)Xoh(s)ds. 

Thus, 
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and hence r21 is an eigenvalue of S** with eigenfunction e »K O. 

For any E > 0, note that DS(E2) = S**, we have 

Since r21 > 1, (r21 - 1)e E int(K), there exists EO > 0 such that (r21 - 1)e + 

O(E)/E E int(K) for any E E (0, EO]' Hence S(E2 + Ee) - (E2 + Ee) »K 0; that is, 

E2 + Ee «K S(E2 + Ee). Since S is monotone with respect to <K, we have an 

increasing sequence E2 + Ee «K sn(E2 + Ee) <K sn+l(E2 + Ee) for all n > 1. Since 

E2 <K ¢** and ¢** » 0, we can choose an E such that E2 + Ee <K ¢**. Therefore, 

lim snon(E2 + Ee) = ¢**, and hence lim sn(E2 + Ee) = ¢**. By the continuity of 
n-too n-too 

S, it follows that ¢** is a fixed point of S. In the same way, it is easy to show that 

¢* is a fixed point of S. 

In the case of Ti = kiT, if JoT(bi(t) - ai(t))dt > 0, JoT(b;i)(t) - b;'i(t))dt > 0,1 < 

i i= j < 2, Proposition 2.2.1 implies the last statement in the theorem. • 

Theorem 2.3.1 implies that two species coexist. The following result shows that 

one species drives the other one to extinction. 

Theorem 2.3.2 Let (H1) and (H2) hold. Assume that system (2.1.5) has no pos-

itive T -periodic solution. Then if (H3) holds and r21 > 1, or in the case where 

Ti = kiT for some integers ki' if JoT(bi(t) - ai(t))dt > O,\fi = 1,2, and JoT(b~2)(t)­

a~~)(t))dt > 0, then for any 'ljJ E X O, the solution u(t, 'ljJ) of system (2.1.5) satisfies 

lim Ilu(t, 'ljJ) - (U(l)(t), 0)11 = O. 
t-too 

A symmetric result holds for (0, U(2)(t)). 
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and hence r21 is an eigenvalue of S** with eigenfunction e »K 0. 

For any E > 0, note that DS(E2) = S**, we have 

Since r21 > 1, (r21 - l)e E int(K), there exists EO > ° such that (r21 - l)e + 

O(E)/E E int(K) for any E E (0, EO]' Hence S(E2 + Ee) - (E2 + Ee) »K 0; that is, 

E2 + Ee «K S(E2 + Ee). Since S is monotone with respect to <K, we have an 

increasing sequence E2 + Ee «K sn(E2 + Ee) <K sn+l(E2 + Ee) for all n > 1. Since 

E2 <K 1>** and 1>** » 0, we can choose an E such that E2 + Ee <K 1>**. Therefore, 

lim snon(E2 + Ee) = 1>**, and hence lim sn(E2 + Ee) = 1>**. By the continuity of 
n~= n~= 

S, it follows that 1>** is a fixed point of S. In the same way, it is easy to show that 

1>* is a fixed point of S. 

In the case of Ti = kiT, if JoT(bi(t) - ai(t))dt > 0, JoT(by)(t) - b;y(t))dt > 0,1 < 

i -=F j < 2, Proposition 2.2.1 implies the last statement in the theorem. • 

Theorem 2.3.1 implies that two species coexist. The following result shows that 

one species drives the other one to extinction. 

Theorem 2.3.2 Let (Hi) and (H2) hold. Assume that system (2.1.5) has no pos-

itive T -periodic solution. Then if (H3) holds and r21 > 1, or in the case where 

Ti = kiT for some integers ki' if JoT(bi(t) - ai(t))dt > 0, \Ii = 1,2, and JoT(bi2)(t) -

ai~)(t))dt > 0, then for any 'lj; E X O
, the solution u(t,'lj;) of system (2.1.5) satisfies 

lim Ilu(t, 'lj;) - (u(1) (t), 0)11 = 0. 
t~= 

A symmetric result holds for (0, U(2)(t)). 
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Proof. In the case of r21 > 1, by Lemma 2.3.2, for any 'ljJ E XO, the omega limit 

set w ( 'ljJ) of sn ( 'ljJ) can not be E2 since sn ( 'ljJ) ~ ° for all nT > 27 (see the claim 

in the proof of Theorem 2.3.1). Moreover, just as in the proof of Theorem 2.3.1, 

we can consider sno such that sno satisfies assumptions (Al)-(A4) in Section 1.2. 

Note that system (2.1.5) has no positive T-periodic solutions, and hence S has 

no positive fixed points. By Theorem 1.2.4, we have sn.no('ljJ) -+ El (n -+ (0). 

Therefore, lim Ilu(t, 'ljJ) - u(t, E1)11 = lim Ilu(t, 'ljJ) - (U(l)(t), 0)11 = 0. A symmetric 
t-tcx> t-tcx> 

result holds for (0,u2 (t)). • 

In practice, it is not easy to verify the nonexistence of positive T-periodic solu-

tions. In what follows, we establish some sufficient conditions for the conclusion of 

Theorem 2.3.2. 

Assume that 

(H4) fl(t, " U2, . ) and f2(t, Ul, " . ) are strictly sublinear on lR~, where Ul, U2 > 0, 

and fl(t, L, 0, L) < 0, f2(t, 0, L, L) < ° for some L > 0. 

Then assumption (HI) implies that fl(t,L,U2,L) < 0, f2(t,Ul,L,L) < ° for all 

Ul, U2 > 0. By Theorem 2.2.1, if r21 > 1, equation 

admits a unique positive T-periodic solution U~2)(t), which is globally asymptotically 

stable with respect to xt \ {O}, where U(2) (t) is the positive T-periodic solution of 

equation (2.3.16). Let ri2J be spectral radius defined by Theorem 2.2.1 associated , 

with 
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Then we have the following result. 

Corollary 2.3.1 Let (H1) , (H3) and (H4) hold. Then if r21 > 1 and r~2J < 1, the , 

conclusion of Theorem 2.3.2 holds. 

Proof. We use the same notation as in Theorem 2.3.2. Assumption (H3) implies 

u (2) (t) is globally asymptotically stable with respect to xi \ {O} for equation (2.3.16). 

For any 'lj; E X O, let u(t, 'lj;) = (Ul(t), U2(t)). Since assumption (HI) implies 

for any small c > 0, we have U2(t) < U(2)(t) + c for all t > t(c). Therefore, 

for t > t(c). Let r~l be the spectral radius defined by Theorem 2.2.1 associated with 

u(t) = fl(t, u(t), U(2)(t) + c, u(t - Td). (2.3.26) 

Then lim r~l = r21 > 1, and hence r~l > 1 for all sufficiently small c. Therefore, 
e-+O 

by assumption (H4) and Theorem 2.2.1, there exists a unique positive T-periodic 

solution u~(t) for equation (2.3.26), and u~(t) is globally asymptotically stable with 

respect to xi \ {O}. By inequality (2.3.25), it follows that for any c' > 0, we have 

Ul(t) > u~(t) - c' for t > t(c, c'). Therefore, assumption (HI) implies that 

for t > t(c, c'). Let reI be the spectral radius defined by Theorem 2.2.1 associated 

with 

(2.3.28) 
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Note that lim u1 (t) = U~2) (t) uniformly for t E [0, T] (see, e.g., [95, Theorem 1.4.1] or 
e-+O 

[74, Theorem 2.1]), we have lim r e ' = ri2J < 1, and hence r e ' < 1 for all sufficiently 
e,e'-+O ' 

small c and c'. Therefore, by Theorem 2.2.1, zero solution is globally asymptotically 

stable for equation (2.3.28). Thus, by inequality (2.3.27), we have lim U2(t) = o. 
t-+oo 

That is, system (2.1.5) has no positive T-periodic solutions. Therefore, Theorem 

2.3.2 completes the proof. • 
Remark 2.3.1 Theorem 2.3.1, as applied to system (2.1.3) with n = 2, implies 

that system (2.1.3) is permanent and has at least one positive T-periodic solu-

tion. In particular, if there is only one positive T-periodic solution, then it is 

globally attractive. Therefore, the conclusions of Theorem 2.3.1 are stronger than 

[61, Theorem 2.2] for system (2.1.3) with n = 2. Furthermore, since assumptions 

(H1)-(H3) are automatically satisfied for system (2.1.3), Theorem 2.3.1 holds if 

r12 > 1, r21 > 1, or if JoT(b~l)(t) - a~;)(t))dt > 0 and JoT(b~2)(t) - ag)(t))dt > 0 in the 

case of Ti = kiT, i = 1,2. 

Remark 2.3.2 For system (2.1.3) with n = 2, the conditions of [61, Theorem 2.2] 

are sufficient for r12 > 1 and r21 > 1 (see Lemma 2.3.3 below). Thus, Theorem 2.3.1 

is a natural generalization of [61, Theorem 2.2]. 

Remark 2.3.3 Theorem 2.3.2 and Corollary 2.3.1 imply that one species persists at 

a positive periodic solution while the other one dies out. The conclusion of Corollary 

2.3.1, as applied to system (2.1.3) with n = 2, is the same as [61, Corollaries 2.1 

and 2.2]. However, by the comparison method in the proofs of Lemma 2.3.3 and 

Corollary 2.3.1, one can easily conclude that the conditions in [61, Corollaries 2.1 

and 2.2] are sufficient for the conditions in Corollary 2.3.1. 
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Remark 2.3.4 The spectral radii rOi represent the suitability of the i-th species at 

the habitat with no competitors. If rOi > 1, the i-species is persistent at the habi­

tat with no competitions, and the population is stabilized at the positive periodic 

quantity U(i)(t), called the carrying capacity of the habitat for the i-th species. Oth­

erwise, the i-species dies out. r12 (r21 respectively) represents the survival ability of 

species 2 (1) at the habitat carrying the 1-th (2-th) population capacity, and can 

also be regarded as a kind of suitability of the species 2 (1) at the habitat with the 

competitor's population capacity. By equations (2.3.18) and (2.3.19), r12 and r21 

are decreasing as the corresponding population capacities increase. Thus, we can 

control the population of a species through changing these spectral radii. For exam­

ple, if we hope to save a species, say species 1, we can enhance the favorite habitat 

characters of species 1, which leads to increase the population capacity of species 1, 

and destroy the favorite habitat characters of species 2, which makes the population 

capacity of species 2 decrease, such that the two species coexist (Theorem 2.3.1), 

or species 2 is even driven to extinction (Theorem 2.3.2). This consequence can be 

seen more easily from the case of T = kiTi. When our general model (2.1.5) takes 

some specific forms, say model (2.1.3), one can easily figure out that the immature 

population's death rate di and the maturation time Ti have a significant effect on 

the persistence of species i, even make the species die out. The same biological 

explanation can be drawn from the next section. 

Lemma 2.3.3 If inequalities (2.1.4) hold, then r12 > 1 and r21 > 1. 
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Proof. For system (2.1.3) with n = 2, the corresponding equations (2.3.15) and 

(2.3.18) reduce to 

:;h(t) = B 1(t)X1(t - 71) - anxi(t), 

X2(t) = B 2(t)X2(t - 72) - a21(t)u(1)(t)X2(t), 

(2.3.29) 

(2.3.30) 

respectively, where U(l) (t) is the positive T -periodic solution for equation (2.3.29). 

Note that U(l)(t) is globally asymptotically stable with respect to Xi\ {O}, and that 

T12 is the spectral radius of the Poincare map pP) associated with equation (2.3.30). 

Choosing t* such that u(1)(t*) = maxtE[O,T] u(1)(t), we then have 

Therefore, 

and hence u(1) (t*) < BF, where by the upper indexes we mean the same as these in 
all 

inequalities (2.1.4). 

By inequalities (2.1.4), it is easy to see that for any <p E Xi with <p » 0, the 

solution x(t, <p) of the following equation 

satisfies lim x(t, <p) = 00. By the proof of Proposition 2.2.1, it follows that equation 
t-'HX) 

(2.3.30) has a positive solution uO(t) = vo(t)eAot with Ao = tIn T12 and vo(t) being 

continuous and T-periodic. Let <Po(s) = UO(s), s E [-72,0]' then <Po »0. Note that 
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By the comparison theorem, we have uO(t) > x(t, CPo), and hence lim UO(t) = (X). 
t-'tex:> 

This implies that Ao > ° and hence r12 > 1. Similar arguments implies r21 > 1. • 

2.3.2 The Asymptotically Periodic Case 

In this subsection, we lift the main results in the periodic case to the global dynamics 

of the asymptotically periodic system (2.1. 6) . 

Assume that system (2.1.6) satisfies 

- 8 - 8 -
(HI') Fi(t, Ui) > 0, 8

U
i (UiFi(t, Ui)) > ° and 8uj Gi(t, Ul, U2) > ° for t > 0, Ui > 0, 

1 < i 1= j < 2; 

(H2') if v > L for some number L > 0, then 11(t, v, 0, v), 12(t, 0, v, v) < 0. 

It then easily follows that the solution Ul(t, CPl) is bounded by max{L, Ilcplll} for 

any CPl E xi, where Ul (t, CPl) solves equation Ul = 11 (t, Ul, 0, Ul (t - 71))' The 

similar results hold for U2 = 12(t, 0, U2, U2(t - 72)). Now, simply following the proof 

of Lemma 2.3.1, we can conclude that the solutions for system (2.1.6) exist globally 

and are uniformly bounded. Let u(t, s, 'ljJ) be the solution of system (2.1.6) satisfying 

Us = 'ljJ E X+. 

Theorem 2.3.3 Let (H1') , (Hf!) , (A) and the conditions in Theorem 2.3.1 hold. 

Then lim dist(u(t, 0, 'ljJ), [u(t, <1>**), u(t, <I>*)]K) = ° for any point 'ljJ E X O, where 
t-'tex:> 

U(t, <1>*) and u(t, <1>**) are positive T-periodic solutions for system (2.1.5) defined by 

Theorem 2.3.1. In particular, system (2.1. 6) is uniformly persistent. 
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By the comparison theorem, we have UO(t) > x(t, CPo), and hence lim UO(t) = (X). 
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Theorem 2.3.1. In particular, system (2.1.6) is uniformly persistent. 
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Let Ut(s, 'lj;) and Ut(s, 'lj;) be the solution maps for system (2.1.5) and (2.1.6), re­

spectively, and set <I>(t, s, 'lj;) = Ut(s, 'lj;), Tn('lj;) = UnT(O, 'lj;), T(t)'lj; = Ut(O, 'lj;), S('lj;) = 

T(T)'lj;. In order to prove Theorem 2.3.3, we need the following lemma. 

LeIIlIIla 2.3.4 Let the assumptions of Lemma 2.3.2 hold. If rj = r(Pj ) > I, then 
~ ~ 

WS('lj;*) nint(X+) = 0, where WS('lj;*) = {'lj; E X+: limn-+oo Tn('lj;) = 'lj;*}, and'lj;* 

is the initial value of u*(t). 

Proof. Since solutions of system (2.1.5) and (2.1.6) are uniformly bounded, by 

Proposition 2.2.2 and assumption (A), <I>(t, s, 'lj;) is asymptotic to the T-periodic 

semifiow T(t), and hence Tn is an asymptotic autonomous discrete dynamical process 

with the limiting autonomous discrete semifiow S. 

Assume, by contradiction, that 'lj; E WS('lj;*) n int(X+) =I 0. Then, lim Tn('lj;) = 
n-+oo 

'lj;*. By the reduction theorem ([95, Theorem 3.2.1]), it follows that lim Ilu(t, 0, 'lj;)-
t-+oo 

u*(t)11 = 0. Let u(t,O,'lj;) = (Ul(t),U2(t)). We use the same notation as in Lemma 

2.3.2. For any E' E (0, b1), let rc' be the spectral radius of the Poincare map associ-

ated with 

u(t) = (Fj(t, 0) - 2E')U(t - Tj) - (Gj(t, u~(t), u;(t)) + 2E')U(t). (2.3.31) 

Then lim rcl = rj > 1. As in the proof of Lemma 2.3.2, in the following, we fix a 
c/-+O 

E' E (0, b1) such that rcl > 1. Then, by the analysis in the proof of Lemma 2.3.2, it 

follows that there exists 00 < 1 such that 

and for any u = (Ul' U2), U' = (u~, u~) E [0, b2 + 1]2 with Ilu - u'll < 00, 
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follows that there exists 60 < 1 such that 

and for any u = (Ul,U2),U' = (u~,u~) E [0,b2 + 1]2 with Ilu - u'll < 60, 



From assumption (A), it follows that there exists an integer No such that 

Thus, for any u = (Ul' U2), U' = (U~, u~) E [0, b2 + 1]2 with Ilu - u'll < 60, 

IGj(t, u~, u;) - Gj(t, Ul, u2)1 < IGj(t, u~, u;) - Gj(t, u~, u;)1 

+IGj(t, u~, u;) - Gj(t, Ul, u2)1 < 2c' 
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for all t > NoT. Since lim Ilu(t, 0, 'l/J) - u*(t)11 = 0, there exists an integer N > No 
t-HX) 

such that Ilu(t) - u*(t)11 < 60 for t > NT. Therefore, 

iij(t) Uj(t - Tj)Fj(t, Uj(t - Tj)) - Uj(t)Gj(t, Ul(t), U2(t)) 

> (Fj(t,O) - 2c')uj(t - Tj) - (Gi(t, ui(t) , u2(t)) + 2c')uj(t) 

for all t > NT. By the comparison theorem, we have 

Uj(t) > uj' (t, NT, 'l/Jj) = uj' (t - NT, 0, 'l/Jj), t > NT, 

where 'l/Jj(B) = uj(NT + B, 0, 'l/J), VB E [-Tj, O], and uj' (t, NT, 'l/Jj) is the solution 

of equation (2.3.31) satisfying uj' (t, NT, 'l/Jj) = 'l/Jj(t) , Vt E [NT - Tj, NT]. Simply 

following the claim in the proof in Theorem 2.3.1, we have Uj(t) > ° for t > Tj. 

Without loss of generality, we assume that NT > 2Tj. Then 'l/Jj » 0. Now, by 

the same argument as in the proof of Lemma 2.3.2, it follows that lim Uj(t) > 
t-+oo 

lim uJc.' (t - NT, 0, 'l/Jj) = (X), which contradicts lim Ilu(t, 0, 'l/J) - u*(t)11 = 0. • 
t-+oo t-+oo 
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Proof of Theorem 2.3.3. From the proof of Lemma 2.3.4, we know that Tn, n > 

0, is an asymptotically autonomous discrete dynamical process with the limiting 

discrete semiflow sn. Note that solutions of system (2.1.6) are uniformly bounded. 

By [49, Lemma 2.2], it follows that for any 'ljJ E X+, the omega limit set w( 'ljJ) of 'ljJ 

under Tn is a compact and internally chain transitive set for S. 

Note that S is a-condensing, and sn is compact for nT > 27 (see, e.g., the 

proof of Theorem 2.3.1). Let axo = X+ \ XO. Then, by Theorem 2.3.1, S is point 

dissipative and uniformly persistent with respect to (XO, aXO). Thus, by Theorem 

1.1.2, there exists a global attractor A o for S in XO which attracts strongly bounded 

sets in XO. Then A o elK. By Lemma 2.3.2 and Theorem 2.3.1, it follows that Eo, 

El , E2 and A o are isolated invariant sets for S, and there is no S-cyclic chain among 

them. By [95, Lemma 1.2.8], lim Tn('ljJ) = Eo, E l , E2 or lim dist(Tn('ljJ) , A o) = 0. 
n-+oo n-+oo 

For any 'ljJ E XO , simply following the claim in the proof of Theorem 2.3.1, we 

have u(t, 0, 'ljJ) > ° for t > 7 = max(7l,72). Therefore, UnoT(O, 'ljJ) E int(X+) for 

noT > 27. By Lemma 2.3.4, 

Thus 

Therefore, lim dist(Tn('ljJ), A o) = 0. Note that A o elK, by the reduction theorem 
n-+oo 

([95, Theorem 3.2.1]), we have lim dist(u(t,O,'ljJ), [u(t, </>**),u(t, </>*)]K) = 0. • 
t-+oo 

Theorem 2.3.4 Let (H1'j, (Hi! j, (Aj and conditions in Theorem 2.3.2 hold. Then 

lim II u ( t , 0, 'ljJ) - (u (1) ( t ), 0) II = ° 
t-+oo 
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for any 'ljJ E Xo. A symmetric result holds for (0, U(2) (t)). 

Proof. By the proof of Theorem 2.3.3, for any 'ljJ E X+, the omega limit set w( 'ljJ) of 

'ljJ under Tn is a compact and internally chain transitive set for S. By Lemma 2.3.2 

and Theorem 2.3.2, it follows that Eo, El and E2 are isolated invariant sets for S, and 

there is no S-cyclic chain among them. Thus, for any 'ljJ E Xo, by the convergence 

theorem (see [49, Theorem 3.2] or [95, Theorem 1.2.2]), we have w( 'ljJ) = Eo, E l , 

or E 2 . Using the argument similar to the claim in the proof of Theorem 2.3.1, we 

have u(t, 0, 'ljJ) > ° for t > 7 = maX(7l, 72), i.e., UnT(O, 'ljJ) E int(X+) for nT > 27. 

Note that Lemma 2.3.4 implies that w(Eo) n XO = W(E2) n XO = 0. Thus, we have 

w('ljJ) = E l , i.e., lim Tn('ljJ) = E l . By the reduction theorem [95, Theorem 3.2.1], 
n--+oo 

we have lim 11<I>(t, 0, 'ljJ) - T(t)(El) II = 0, i.e., lim Ilu(t, 0, 'ljJ) - (U(l)(t), 0)11 = 0. A 
t--+oo t--+oo 

symmetric result holds for (0, U (2) (t) ) . • 

2.4 Multi-species Competition 

As we have seen in Section 2.3, the monotonicity of the Poincare map associated 

with the periodic system (2.1.5) with m = 2 plays an important role in obtaining 

the global dynamics. However, for system (2.1.5) with m > 3, we are not able to 

appeal to the powerful theory of monotone dynamical systems. In this section, we 

use the elementary comparison method to establish a set of conditions for uniform 

persistence in the asymptotically periodic competitive system (2.1.6) with m > 3. 

In virtue of the persistence theory, we further obtain natural invasibility conditions 

for uniform persistence and the existence of positive periodic solutions in 3-species 
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competitive periodic system (2.1.5). 

We first consider m-species competitive system (2.1.5) and (2.1.6). Assume that 

for Ui > 0, 1 < i =I j < m, we have 

(K2) fi(t, Ul, ... , Ui-l, ., Ui+l, ... , Urn, . ) is strictly sublinear on IR~; and for some 

L > 0, fi(t, 0, ... ,0, L, 0, ... ,0, L) < 0, where the two L are ith and (m + l)th 

components of Ii except for t; 

(K4) there exists a positive number L such that h(t, 0, ... ,0, i, 0, ... ,0, i) < ° for 

alIi > L; 

Then 

for all Ui > 0, i > L, i = 1,2, ... , m. As analyzed before, assumptions (K1)-(K4) 

imply that solutions of system (2.1.6) and (2.1.5) are uniformly bounded. 

Let fi be the spectral radius defined by Theorem 2.2.2 associated with 

7li ( t) = h ( t, 0, . . . , 0, Ui ( t ), 0, . . . , 0, Ui (t - Ti)). (2.4.32) 

Assume that 

(K5) fi > 1, i = 1, 2, ... , m. 
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Tben for each i, by Theorem 2.2.2, there exists a unique positive T-periodic solution 

which attracts every solution of equation (2.4.32) except for zero. Let 'Li be the 

spectral radius defined by Theorem 2.2.2 with respect to 

fti(t) = h(t, ih(t, ¢l), ... , Ui-l(t, ¢i-l), Ui(t), Ui+l(t, ¢i+l), ... , um(t, ¢m), Ui(t - Ti)). 

(2.4.33) 

If we assume that 'Li > 1, then there exists a unique positive T-periodic solution 

which attracts all solutions of equation (2.4.33) except for zero. 

Let z;t; = C (IT;:l [-Ti' 0], lR~), z~ = {'lj; = ('lj;i)~l E z;t; : 'lj;i -I- 0, V 1 < i < m}. 

For any ¢> E z;t;, denote by u(t, 'lj;) = (Ui(t))~l the solution of system (2.1.6) with 

uo('lj;) = 'lj;. The following theorem implies that systems (2.1.5) and (2.1.6) are 

persistent. We omit the extinction results, which can be obtained by the same 

arguments. 

TheoreIll 2.4.1 Let assumption (A) and (K1)-{K5) hold. Suppose that'Li > 1, 

i = 1,2, ... , m. Then for any 'lj; E z~, the solution u(t, 'lj;) of system (2.1.6) satisfies 

lim dist(u(t, 'lj;), [u(t), u(t)]) = 0, 
t-+oo 

where [u(t),u(t)] = {u = (Ui)~l E lR+ : Ui(t,¢» < Ui < Ui(t,¢i), VI < i < m}. 

In particular, the same result holds for the solution u(t, 'lj;) of system (2.1.5), and 

system (2.1. 5) admits a positive T -periodic solution. 
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Proof. By Theorem 2.2.2 and the standard two-side comparison method similar 

to that in the proof of Corollary 2.3.1, for any 'ljJ E Z~ and any small c, c' > 0, 

we have ui(t) - c' < Ui(t, 'ljJ) < Ui(t, ¢i) + c for t > t(c, c'), where ui(t) is positive 

and T-periodic and satisfies that limui(t) = ui(t, cPJ uniformly for t E [0, T]. Let 
c;-+o • 

c, c' ---+ 0, we have 

lim dist(u(t,'ljJ), [u(t),u(t))) = 0. 
t-+oo 

In particular, the same result holds for the solutions of the limiting system (2.1.5). 

Let S be the Poincare map of system (2.1.5). Then S is bounded, point dis­

sipative, a-condensing and uniformly persistent with respect to (Z~, aZ~), where 

az~ = Z~ \ Z~. Furthermore, sn is compact for nT > 2T = 2 max(T1' T2, ... , Tm) 

(see, e.g., [42, Theorem 3.6.1)). By Theorem 1.1.2, S has a coexistence state cPo E Z~. 

Thus system (2.1.5) admits a positive T-periodic solution u(t, cPo). • 

As mentioned in [87], for the periodic system (2.1.5) in the case of m = 2, 

(U1(t, (1), 0) and (0, U2(t, (2)) (i.e., (u(1) (t), 0) and (0, U(2)(t)) defined in Section 2.3) 

are the semitrivial periodic solutions. Then r1 > 1 and r2 > 1 (i.e., r12 > 1, r21 > 1 

in Theorem 2.3.1) are natural invasibility conditions for uniform persistence. How­

ever, for the m-species competition periodic system (m > 3), the periodic functions 

are not solutions of system (2.1.5), and hence, due to the overestimation of the effect 

of competition, conditions ri > 1 in Theorem 2.4.1 are very strong conditions. In 

the rest of this section, we use the ideas in [87] to obtain some natural invasibility 

conditions for uniform persistence and existence of a positive coexistence state in 

the three-species competition. 
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Consider the T-periodic model for the three-species competition 

Ui(t - Ti)Fi(t, Ui(t - Ti)) - Ui(t)Gi(t, UI(t), U2(t), U3(t)) 

h(t, UI(t), U2(t), U3(t), Ui(t - Ti)), 1 < i < 3, 
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(2.4.34) 

which satisfies condition (K1), (K2) and (K5) in the case of m = 3. For each i, there 

is a corresponding 2-species competition system 

Suppose that each system (~) satisfies the conditions either in Theorem 2.3.1 or in 

Theorem 2.3.2. We consider the following three cases: 

(Q1) each (~) satisfies Theorem 2.3.1 and admits only one positive T-periodic 

solution U(i) (t); 

(Q2) both (R2 ) and (R3) satisfy Theorem 2.3.1, and each of them admits only one 

positive T-periodic solution. (RI ) satisfies Theorem 2.3.2; 

(Q3) (R3) satisfies Theorem 2.3.1 and admits only one positive T-periodic solution. 

(R I ) and (R2 ) satisfy Theorem 2.3.2. 

Let z;t = C(TI;=I[-Ti,O],lRt),Z~ = {(¢>i)t=1 E z;t: ¢>i -# 0,\11 < i < 3}. For 

any ¢> E z;t, denote the solution of system (2.4.34) by u( t, ¢» = (Ui (t, ¢» )t=I' and 

the solution semiflow by Ut(¢». We then have 

TheoreIll 2.4.2 Let (Q1) hold. Denote by r(l) the spectral radius defined by Theo­

rem 2.2.1 associated with u(t) = fl(t, u(t), U(I)(t), U(t-TI)). In the same way, we can 

define r(i), i = 2,3. Suppose that r(i) > 1, i = 1,2,3. Then system (2.4.34) admits 
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(2.4.34) 
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a positive T -periodic solution and is permanent in the sense that there exist a > ° 
and f3 > ° such that for any ¢ E zg, f3 < lim inf Ui(t, ¢) < lim sup Ui(t, ¢) < a. 

t-+oo t-+oo 

Proof. For any ¢ E zg, by the argument similar to the claim in the proof of 

Theorem 2.3.1, Ui(t, ¢) > ° for all t > , = max('l, '2, '3). For any ¢ E zt, let 

T(t)(¢) = Ut(¢), S(¢) = UT(¢). Then T(t)¢, sn(¢) E int(Zt) for ¢ E zg and 

t, nT > 2,. By the same argument as in the proof of Corollary 2.3.1 or Theorem 

2.4.1, we have Ui(t, ¢) < Ui(t, ¢i) + c, Vt > t(c). Thus, it is easy to find a number 

a such that lim sup Ui (t, ¢) < a for all i and ¢ E zg. In particular, S is point 
t-+oo 

dissipative and a bounded map (by the same argument of Lemma 2.3.1). 

Note that S is a-condensing and orbits of bounded sets are bounded. By 

[41, Theorem 2.4.7], S admits a connected global attractor A c zt. Let Ml 

(0,0,0),M2 = (¢1,0,0),M3 = (0,¢2,0),M4 = (0,0,¢3),M5 = (0,¢~1),¢~1)),M6 
A(2) A(2) A(3) A(3) A(l) A(l) A(2) A(2) A(3) A(3) 

(¢l ,0, ¢3 ), M7 = (¢l , ¢2 ,0), where (¢2 , ¢3 ), (¢l , ¢3 ), and (¢l , ¢2 ) are 

initial functions of U(l)(t), U(2)(t) and U(3)(t), respectively. Clearly, all Mi are fixed 

points of S. For any ¢ E azg = zt \ zg, let w(¢) be the w-limit set of ¢ with 

respect to the discrete semiflow {sn}~=o. By assumption (Q1) and Theorem 2.3.1, 

U w(¢) = {Ml,M2,M3,M4,M5,M6,M7}, and no subset of the M/s forms a 
4>E8Z~ 

cycle for S in azg. By assumption (Q1) and (K1), simply following the proof 

of Lemma 2.3.2, we can obtain that Mi are isolated invariant sets in zt for S, 

and WS(Mi) n int(Zt) = 0, where WS(Mi) is the stable set of Mi for S. Then 

WS(Mi) n zg = 0. By Theorem 1.1.1, it follows that S is uniformly persistent with 

respect to (zg, azg). Note that sn is compact for nT > 2, (see, e.g., [42, Theo­

rem 3.6.1]), by Theorem 1.1.2, there exists a global attractor Ao c zg for S which 
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a positive T -periodic solution and is permanent in the sense that there exist a > ° 
and j3 > ° such that for any ¢> E zg, j3 < liminfui(t, ¢» < limsupui(t, ¢» < a. 

t--'HXJ t-+ 00 
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t-+oo 
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(0,0,0), M2 = (¢1, 0, 0), M3 = (0, ¢2, 0), M4 = (0,0, (3), M5 = (0, ¢~1), ¢~1)), M6 
~(2) ~(2) ~(3) ~(3) ~(1) ~(1) ~(2) ~(2) ~(3) ~(3) 

(¢>1 ,0'¢>3 ),M7 = (¢>1 '¢>2 ,0), where (¢>2 '¢>3 )'(¢>1 '¢>3 ), and (¢>1 '¢>2 ) are 
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respect to the discrete semiflow {sn}~=o. By assumption (Q1) and Theorem 2.3.1, 

U w(¢» = {Mt, M2, M3, M4, M5, M6, M7 }, and no subset of the M/s forms a 
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WS(Mi) n zg = 0. By Theorem 1.1.1, it follows that S is uniformly persistent with 
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rem 3.6.1]), by Theorem 1.1.2, there exists a global attractor Ao C zg for S which 
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attracts strongly bounded sets in z~, and S admits a coexistence state ¢o E Ao. 

Since ¢o E Ao = sn(Ao) C int(Zt) for nT > 27, system (2.4.34) admits a positive 

T -periodic solution u( t, ¢o). 

Let Ao = UO~t~noT T(t)Ao, where noT > 27. Then by the argument given in the 

claim in the proof of Theorem 2.3.1, A(; E int(Zt), and by [94, Theorem 2.1], it 

follows that A(; is a compact set and attracts strongly bounded sets in Z~. Since 

T(t)¢ E int(Zt) for t > 27 and ¢ E Z~, A(; attracts every point in Z~ under 

T(t). For every ¢ E A(;, there exists a number {3¢ > 0 such that ¢ » (3¢Id, where 

Id = (1,1,1). By the compactness of Ao, it follows that there exists (3(V) such that 

¢ » (3(V)Id, V¢ E V, where V is a neighborhood of A(; in int(Zt). Thus for any ¢ E 

Z~, T(t)¢» (3(V)Id for all sufficiently large t. Therefore, liminfui(t, ¢) > (3(V). I 
t~oo 

Theorelll 2.4.3 Let (Q2) hold, and r32 be spectral radius defined by Theorem 2.3.2 

for (RI). Suppose that r32 > 1, r.(i) > 1, i = 2,3. Then the conclusions of Theorem 

2.4.2 hold. 

Proof. We use the same notation as in the proof of Theorem 2.4.2. By Theorem 

2.3.2, it follows that lim sn(¢) = (0, ¢2, 0) = M3 for any ¢ = (¢i)~=1 E az~ 
n~oo 

with ¢I = 0 and ¢2 =I o. By assumption (Q2), Theorem 2.3.1 and 2.3.2, U 
¢E8Z~ 

{MI' M 2 , M 3 , M 4 , M 6 , M 7 }, and no subset of the M/s forms a cycle for sno in az~. 

Thus as in the proof of Theorem 2.4.2, S is uniformly persistent with respect to 

(Z~, aZ~). Now, the same argument given in Theorem 2.4.2 completes the proof. I 

Theorelll 2.4.4 Let (Q3) hold and r3I be spectral radius defined by Theorem 2.3.2 

for (R2). Suppose that r3I > 1, r32 > 1 and r.(3) > 1. Then the conclusions of 

Theorem 2.4.2 hold. 
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Proof. We use the same notation as in the proof of Theorem 2.4.2. As in the proof of 

Theorem 2.4.3, assumption (Q3) implies that for any ¢ = (¢i)f=1 E az~ with ¢1 = 0 

and ¢2 -# o. lim sn(¢) = (0, ¢2, 0) = M 3 , and for any ¢ = (¢i)f=1 E az~ with ¢2 = 0 
n-too 

and ¢1 -# o. lim sn(¢) = (4)1,0,0) = M 2 . Clearly, U = {Ml' M 2 , M 3 , M 4 , M7}. 
n-too 

¢E8Z~ 
Then as in the proof of Theorem 2.4.2, S is uniformly persistent with respect to 

(z~, aZ~). Now, the same argument given in Theorem 2.4.2 completes the proof. I 

Remark 2.4.1 As in Theorem 2.4.1, the permanence for system (2.4.34) in The­

orem 2.4.2-2.4.4 can be lifted to asymptotically periodic systems. According to 

Proposition 2.2.1, conditions for the spectral radii in all of the theorems of this 

section can be expressed in terms of certain average integrals in the case where 



Chapter 3 

A N onlocal and Delayed 
Reaction-Diffusion Model 

In Chapter 2, we discussed a general model for multi-species competition, which 

does not include diffusion terms. In reality, most populations always move around. 

Thus, when we consider species which disperse in a domain, population models 

should include some kind of diffusion effects. This chapter will investigate a single 

species model represented by a nonlocal reaction-diffusion equation. For the model, 

we establish a threshold dynamics and global attractivity of positive steady state in 

terms of principal eigenvalues, and discuss effects of spatial dispersal and maturation 

period on the evolutionary behavior in two specific cases. Also, some numerical 

simulations are provided to illustrate the uniqueness of positive steady states. 

The rest of this chapter is arranged as follows. Section 3.1 presents the model, 

and some related works. In Section 3.2, we establish the global existence and posi­

tivity of solutions, and the existence of a global attractor for the associated solution 

semifiow. In Section 3.3, we first obtain a threshold type result on the global ex­

tinction and uniform persistence in terms of the principal eigenvalue of a nonlocal 
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elliptic problem, and then obtain sufficient conditions for the global attractivity of 

the positive steady state. Section 3.4 is devoted to the discussion of the effects of 

spatial diffusion and time delay on the asymptotic behavior of the model in two 

specific cases. Some numerical results are also included in the last section. Our 

simulations seem to suggest that the steady state is globally attractive even without 

our monotonicity condition. 

3.1 The Model 

Recently, an increasing attention has been paid to nonlocal and time-delayed pop­

ulation models in order to study the effects of spatial diffusion and time delay on 

the evolutionary behavior of biological systems (see, e.g., [82, 77, 40, 5, 89, 83]). In 

reality, species may drift from one spatial point at a time to another spatial point 

at another time, and may disperse from a domain to a larger domain. Moreover, 

the environment is often spatially heterogeneous. To describe the growth of a single 

species in a multi-patch environment, certain delay differential equation models were 

proposed and analyzed in [73, 62, 45, 78, 91]. [77, 5, 40] also formulated nonlocal 

and delayed reaction-diffusion models for a single species with stage structure, and 

established the existence of a family of traveling wave fronts for these models. 

In order to obtain a general nonlocal and time delayed model for a single species 

in a bounded domain, we let u(t, a, x) be the density of individuals with age a at 

a spatial point x and a time t, T be the length of the juvenile period. Denote by 
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a spatial point x and a time t, T be the length of the juvenile period. Denote by 



Um(t, x) the density of mature adults. Then we have (see, e.g., [66]) 

atU + aau = dj (a)6u - /-Lj(a)u, 0 < a < T, X Ene JRN, 

Bu = 0, a E (0, T), x E an, 

and U m satisfies 

atUm = dm6um - g(um) + u(t, T, x), t > 0, x E n, 

Bu = 0, t > 0, x E an, 

60 

(3.1.1) 

(3.1.2) 

with u(t, 0, x) = f(um(t, x)), t > -T, X E n, where f(um) is the birth rate, g(um) is 

the mortality rate of mature individuals, /-Lj(a) denotes the per capita mortality rate 

of juveniles at age a, 6 is the Laplacian operator on JRN, n is a bounded and open 

subset of JRN with a smooth boundary an, either Bu = u or Bu = ~~ + au for some 

nonnegative function a E 0 1+0 (an, JR), () > 0, :n denotes the differentiation in the 

direction of the outward normal n to an. In (3.1.2), the term u(t, T, x) represents 

the rate of recruitment to adulthood, being those of maturation age T. As in [83, 

Section 7.1] (see also [73, 82, 77, 5, 58]), integrating (3.1.1) along characteristics 

setting <p(" a, x) = u(a +" a, x), we have 

aa<p = dj (a)6<p - /-Lj(a)<p, 0 < a < T, X E n, 

B <p = 0, a E (0, T), x E an, 

Integrating this equation, we get 

cp{-y, a, x) = 1 r{1]{a), x, y).F{a)f{um{-y, y))dy, 



Um(t, x) the density of mature adults. Then we have (see, e.g., [66]) 

OtU + oau = dj (a)6.u - J.Lj(a)u, 0 < a < T, X Ene ]RN, 

Bu = 0, a E (0, T), x EOn, 

and U m satisfies 

OtUm = dm 6.um - g(um ) + u(t, T, x), t > 0, x E n, 

Bu = 0, t > 0, x EOn, 

60 

(3.1.1) 

(3.1.2) 

with u(t, 0, x) = f(um(t, x)), t > -T, X E n, where f(um) is the birth rate, g(um) is 

the mortality rate of mature individuals, J.Lj(a) denotes the per capita mortality rate 

of juveniles at age a, 6. is the Laplacian operator on ]RN, n is a bounded and open 

subset of]RN with a smooth boundary on, either Bu = u or Bu = ~~ + au for some 

nonnegative function a E C 1+O (on, ]R), () > 0, :n denotes the differentiation in the 

direction of the outward normal n to on. In (3.1.2), the term u(t, T, x) represents 

the rate of recruitment to adulthood, being those of maturation age T. As in [83, 

Section 7.1] (see also [73, 82, 77, 5, 58]), integrating (3.1.1) along characteristics 

setting cp(ry, a, x) = u(a + ry, a, x), we have 

oaCP = dj (a)6.cp - J.Lj(a)cp, 0 < a < T, X E n, 

B cp = 0, a E (0, T), x EOn, 
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where r is the Green's function associated with the partial differential operator 6 

and boundary condition Bu = 0, and 

Therefore, 

u(t, a, x) = In r('1(a), x, y):F(a)f(um(t - a, y))dy. 

Thus, um(t, x) satisfies 

In r(7](r), x, y)F(r)f(um(t - r, y))dy, t > 0, xED, 
(3.1.3) 

BUm = 0, t > 0, x E aD, 

Um(t, x) = ¢(t, x), t E [-r,O], xED, 

where ¢(t, x) is a positive initial function to be specified later. 

In the case where D = lRN , [83] studied traveling wave solutions, minimal wave 

speed and asymptotic speed of spread for model (3.1.3). In the case of D = lR, 9 ( u) = 

/3u, system (3.1.3) reduces to the model derived in [77], where traveling wave fronts 

are investigated. In the case where D = lR, f(u) = au and g(u) = /3u2
, system (3.1.3) 

reduces to the model discussed in [40], where the linear stabilities of two spatially 

homogeneous equilibrium solutions, and traveling wave fronts are considered. A 

global convergence theorem in the case of bounded intervals was also obtained in 

[40]. The threshold dynamics and global convergence were established in [89] for a 

special case of system (3.1.3). Here, the purpose is to study the global dynamics of 

model (3.1.3). 
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3.2 Existence of Global Attractor 

For convenience, we drop the subscript m in (3.1.3), and write it as 

atu(t, x) = dLu(t, x) - g(u(t, x))+ 

In r(1](T), x, y)F(T)f(u(t - T, y))dy, t > 0, x E 0, 
(3.2.4) 

Bu (t, x) = 0, t > 0, x E a~, 

u ( t, x) = ¢ (t, x) > 0, t E [-T, 0], x E 0 C JRN. 

We assume that 

(81) f E C1(JR+, JR+), f(O) = 0, f'(O) > 0, and f is sublinear; 

(82) 9 E C1(JR+, JR+), g(O) = 0, g'(O) > 0, and -g is sublinear; 

(83) There exists a number M > 0 such that for all L > M, f(L) - g(L) < 0, 

where f(u) = F(T) max f(v). 
vE[O,u] 

Let p E (N,oo) be fixed. For each /3 E (~+ Z' 1), let Xf3 be the fractional 

power space of LP(O) with respect to (-A,B) (see, e.g., [46]), where A := L. Then 

Xf3 is an ordered Banach space with respect to the positive cone xt consisting of 

all nonnegative functions in Xf3, and xt has nonempty interior int(Xf3). Moreover, 

Xf3 C C1+V(O) with continuous inclusion for 1/ E [0,2/3 - 1 - ~). Denote the norm 

on Xf3 by 11·1113. Then there exists a constant kf3 > 0 such that 11¢lloo = maJC 1¢(x)1 < 
xEn 

kf3 ll¢ll.e, V¢ E Xf3. It is well known that the differential operator A generates an 

analytic semi group T(t) on V(O). Moreover, the standard parabolic maximum 

principle (see, e.g., [72, Corollary 7.2.3]) implies that the semigroup T(t) : Xf3 -+ Xf3 

is strongly positive in the sense that T(t)(Xt\ {O}) c int(Xt), Vt > O. 
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Let Y := C([-7, 0], X/3) and Y+ := C([-7, 0], xt). For convenience, we will 

identify an element ¢J E Y as a function from [-7,0] X n to lR. defined by ¢(s, x) = 

¢(s)(x), and for each s E [-7,0]' we regard g(¢(s)) as a function on n defined by 

g(¢(s))(·) = g(¢(s, .)). For any function y(.) : [-7, b) ---+ X/3, where b > 0, define 

Yt E Y, t E [0, b) by Yt(s) = y(t + s), Vs E [-7,0]. Define F : Y+ ---+ ~ by 

F(¢) = -g(¢(O)) + F(T)T(TJ(7))!(¢(-7, .)), V¢ E Y+. Then we can rewrite (3.2.4) 

as an abstract functional differential equation 

du(t) 
dt = d Au(t) + F(ut), t > 0, 

Uo = ¢ E y+. 

Therefore, we can write the above equation as an integral equation 

u(t) = T(dt)</>(O) + l' T(d (t - s))F(us)ds, t > 0, 

whose solutions are called mild solutions for system (3.2.4). 

Since T(t) : X/3 ~ X/3 is strongly positive, we have 

lim dist(¢(O) + hF(¢), xt) = 0, V¢ E y+. 
h-tO+ 

By [64, Proposition 3 and Remark 2.4] (see also [88, Corollary 8.1.3]), for each 

¢ E Y+, system (3.2.4) has a unique non-continuable mild solution u(t, ¢) with 

Uo = ¢, and u(t, ¢J) E xt for all t E (0, (j4». Moreover u(t, ¢) is a classical solution 

of (3.2.4) for t > 7 (see [88, Corollary 2.2.5]). We further have the following result. 

Theorem 3.2.1 Let (S1)-(83) hold. Then for each ¢ E Y+, a unique solution 

u(t, ¢) globally exists on [-7,00), and the solution semifiow <I>(t) = Ut(·) : Y+ ---+ 

Y+ , t > 0, admits a connected global attractor. 
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Let Y := C([-7, 0], X,B) and Y+ := C([-7, 0], xt). For convenience, we will 

identify an element ¢ E Y as a function from [-7,0] X n to lR defined by ¢(s, x) = 

¢(s)(x), and for each s E [-7,0]' we regard g(¢(s)) as a function on n defined by 

g(¢(s))(·) = g(¢(s, .)). For any function y(.) : [-7, b) ---t X,a, where b > 0, define 

Yt E Y, t E [0, b) by Yt(s) = y(t + s), Vs E [-7,0]. Define F : Y+ ---t X,a by 

F(¢) = -g(¢(O)) + F(7)T(rJ(7))f(¢( -7, .)), V¢ E Y+. Then we can rewrite (3.2.4) 

as an abstract functional differential equation 

du(t) 
~ = dAu(t) + F(ut), t > 0, 

Uo = ¢ E y+. 

Therefore, we can write the above equation as an integral equation 

u(t) = T(dt)¢(O) + l T(d (t - s))F(u,)ds, t > 0, 

whose solutions are called mild solutions for system (3.2.4). 

Since T(t) : X,B ---t X,B is strongly positive, we have 

lim dist(¢(O) + hF(¢), xt) = 0, V¢ E y+. 
h-+O+ 

By [64, Proposition 3 and Remark 2.4] (see also [88, Corollary 8.1.3]), for each 

¢ E Y+, system (3.2.4) has a unique non-continuable mild solution u( t, ¢) with 

Uo = ¢, and u(t, ¢) E xt for all t E (0, CJ¢). Moreover u(t, ¢) is a classical solution 

of (3.2.4) for t > 7 (see [88, Corollary 2.2.5]). We further have the following result. 

Theorem 3.2.1 Let (Sl)-(S3) hold. Then for each ¢ E Y+, a unique solution 

u(t, ¢) globally exists on [-7, cx»), and the solution semifiow <I>(t) = Ut(·) : Y+ ---t 

Y+ , t > 0, admits a connected global attractor. 
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Proof. For any L > M, let ~L = {cp E xt : cp(x) < L, xED}, ZL = 0([-7, 0], ~L). 

By [72, Corollary 7.2.4], we have T(t)ZL C ZL, Vt > 0, and IIT(7](7))11 < 1. Since 

the function l - hg(l) is increasing on l E [0, L] for all sufficiently small h > 0, we 

have 

¢(O) + hF(¢) ¢(O) - hg(¢(O)) + hF(7)T(7](7))J(¢( -7)) 

< L - hg(L) + h/(L) < L, V¢ E ZL. 

It then follows that 

lim dist(¢(O) + hF(¢), ~L) = 0, V¢ E ZL. 
h-tO+ 

By [72, Corollary 7.2.4] and [88, Corollary 8.1.3], ZL is a positively invariant set for 

system (3.2.4). Thus for any ¢ E Y+, u(t, ¢) globally exists on [-7, (X»), and hence 

(3.2.4) defines a semiflow <I>(t) : Y+ -t Y+ by (<I>(t)¢)(s, x) = u(t + s, x, ¢), Vs E 

[-7,0]' xED. Moreover, <I>(t) is compact for all t > 7 ([88, Theorem 2.2.6]). 

Let us consider the delay differential equation 

v(t) = -g(v(t)) + /(v(t - 7)), 
(3.2.5) 

v ( s) = cp ( s) E 0 ( [ - 7, 0], IR.+ ) , V s E [-7, 0]. 

we claim that the function / is Lipschitz in any bounded subset of IR.+. In fact, by the 

definition of /, we know that / is monotone. Without loss of generality, we assume 

that 0 < II < l2' and /(ll) < /(l2). Then /(l2) = F(7)J(l3) for some l3 E [it, l2], 

and 0 < /(l2) - /(it) < J(l3) - J(it) < J'(I;,)(l3 - it) < J'(0)(l2 - ll). Therefore, 

for any cp E 0([-7,0]' IR.+), system (3.2.5) admits a unique solution v(t, cp) with 

v(s, cp) = cp(s), Vs E [-7,0]. It is easy to see that v(t, cp) is bounded. Hence v(t, cp) 
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Proof. For any L > M, let EL = {cp E XJ : cp(x) < L, x EO}, 7lL = C([-7, 0], EL)' 

By [72, Corollary 7.2.4]' we have T(t)7lL C 7lL, Vt > 0, and IIT(7](7))11 < 1. Since 

the function l - hg(l) is increasing on l E [0, L] for all sufficiently small h > 0, we 

have 

</>(0) + hF( </» </>(0) - hg(</>(O)) + hF(7)T(7](7))!(</>(-7)) 

< L - hg(L) + hl(L) < L, V</> E 7lL. 

It then follows that 

lim dist( </>(0) + hF( </», EL ) = 0, V</> E 7lL . 
h-tO+ 

By [72, Corollary 7.2.4] and [88, Corollary 8.1.3], 7lL is a positively invariant set for 

system (3.2.4). Thus for any </> E Y+, u(t, </» globally exists on [-7, (0), and hence 

(3.2.4) defines a semifiow <I>(t) : Y+ ---+ y+ by (<I> (t) </>)(s, x) = u(t + s, x, </», Vs E 

[-7,0]' x E O. Moreover, <I>(t) is compact for all t > 7 ([88, Theorem 2.2.6]). 

Let us consider the delay differential equation 

v(t) = -g(v(t)) + l(v(t - 7)), 
(3.2.5) 

v(s) = cp(s) E C([-7, 0], jR+), Vs E [-7,0]. 

we claim that the function 1 is Lipschitz in any bounded subset of jR+. In fact, by the 

definition of 1, we know that 1 is monotone. Without loss of generality, we assume 

that 0 < II < l2' and l(h) < l(l2)' Then l(l2) = F(7)!(l3) for some l3 E [h, l2], 

and 0 < l(l2) - l(h) < !(l3) - !(h) < 1'(I;,)(l3 - h) < 1'(0)(l2 - ll)' Therefore, 

for any cp E C([-7, 0], jR+), system (3.2.5) admits a unique solution v(t, cp) with 

v(s, cp) = cp(s), Vs E [-7,0]. It is easy to see that v(t, cp) is bounded. Hence v(t, cp) 
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exists globally on [-7,00). Furthermore, we claim that limsupv(t, cp) < M, \:Icp E 
t---+OCi 

0([-7,0]' JR+). Indeed, for any cp E C([-7, 0], JR+), the omega limit set w(cp) of the 

Or bi t ')'+ ( cp) is nonem pty, com pact and invariant, where ')'+ ( cp) = {Vt ( cp) : t > O}. 

Let G = {'l/J (s) : 'l/J E w (cp), s E [-7, OJ}. Then G is compact because of the 

compactness of w(cp). Therefore, there exist So E [-7,0] and 'l/J E w(cp) such that 

7/;(so) = sup G := L G . By the invariance of w(cp), there exists 'l/Jl E w(cp) such that 

VT ('l/Jl) = 'l/J, i.e., V(7+S,'l/Jl) = 'l/J(s) , \:Is E [-7,0]. Without loss of generality, we can 

assume that 'l/J(O) = L G . Thus, 

- g( v( 7, 'l/Jl)) + f( v(O, 'l/Jl)) 

< -g(LG) + f(LG). 

If LG > M, then iJ(7, 'l/Jl) < 0, which implies that there exists some s E [-7,0) 

such that 'l/J(s) > 'l/J(O) = L G , a contradiction. Thus, limsupv(t, cp) < M, \:Icp E 
t---+OCi 

C([-7, 0], JR+). 

For any given ¢ E Y+, let L(s) = max{¢(B, x) : B E [-7,0]' XED}, \:Is E [-7,0]. 

Then limsupv(t, L) < M. Note that, for any ( E Y+ with ((s,·) < v(t + s, L), 
t---+OCi 

\:Is E [-7,0], we have 

v(t, L) ((0, x) + h( -g(v(t, L)) + f(v(t - 7, L)) 

h( -g(((O, x)) + In r(7](7), x, y):F(7)f((( -7, y))dy 

> v(t, L) - ((0, x) - h(g(v(t, L)) - g(((O, x))) 

> 0 for 0 < h « 1, xED. 

By [64, Proposition 3] (see also [88, Theorem 8.1.10]), u(t, x, ¢) < v(t, L), \:Ix E 

D, t > -7. Thus, lim sup u(t, x, ¢) < M, \:Ix E D. That is, <I>(t) : Y+ -t Y+ is point 
t---+OCi 
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exists globally on [-7, (0). Furthermore, we claim that limsupv(t, <p) < M, V<p E 
t--+oo 

C([-7, 0], JR+). Indeed, for any <p E C([-7, 0], JR+), the omega limit set w(<p) of the 

orbit ')'+(<p) is nonempty, compact and invariant, where ')'+(<p) = {Vt(<P) : t > O}. 

Let G = {'ljJ(s) : 'ljJ E w(<p), s E [-7, On. Then G is compact because of the 

compactness of w(<p). Therefore, there exist So E [-7,0] and 'ljJ E w(<p) such that 

'ljJ(so) = sup G := Le. By the invariance of w(<p), there exists 'ljJl E w(<p) such that 

VT ('ljJl) = 'ljJ, i.e., v (7 + s, 'ljJl) = 'ljJ( s), V s E [-7,0]. Without loss of generality, we can 

assume that 'ljJ(0) = Le. Thus, 

-g(V(7, 'ljJd) + f(v(O, 'ljJl)) 

< -g(Le) + f(Lc). 

If Le > M, then iJ(7, 'ljJl) < 0, which implies that there exists some s E [-7,0) 

such that 'ljJ(s) > 'ljJ(0) = L e , a contradiction. Thus, limsupv(t,<p) < M,V<p E 
t--+oo 

C([-7, 0], JR+). 

For any given cp E Y+, let £(s) = max{cp(B, x) : B E [-7,0]' x En}, Vs E [-7,0]. 

Then limsupv(t, £) < M. Note that, for any ( E Y+ with ((s,·) < v(t + s, i), 
t--+oo 

Vs E [-7,0]' we have 

v(t, £) - ((0, x) + h( -g(v(t, £)) + f(v(t - 7, £)) 

- h( -g(((O, x)) + In r(1](7), x, y)F(7)f((( -7, y))dy 

> v(t, £) - ((0, x) - h(g(v(t, £)) - g(((O, x))) 

> 0 for 0 < h « 1, x E n. 

By [64, Proposition 3] (see also [88, Theorem 8.1.10]), u(t, x, cp) < v(t, i), Vx E 

n,t > -7. Thus, limsupu(t,x,cp) < M,Vx E n. That is, <I>(t): y+ ---+ Y+ is point 
t--+oo 
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dissipative. By [41, Theorem 3.4.8], <p(t) admits a connected global attractor on 

Y+, which attracts each bounded set in Y+. • 

3.3 Threshold Dynamics and Positive Steady State 

In this section, we present our main results of this chapter in terms of principal 

eigenvalues. Let us first consider the following nonlocal problem: 

atu(t, x) = d.6.u(t, x) - g'(O)u(t, x))+ 

J'(O):F(r) In r(7](r), x, y)u(t, y)dy, x E n, 

Bu (t, x) = 0, t > 0, x E an, 

As noted in the previous section (taking delay r as zero), the system generates a 

compact, positive solution semigroup on xt. By the same arguments as in [72, 

Theorem 7.6.1], the nonlocal eigenvalue problem 

AV(x) = d.6.v(x) - g'(O)v(x)+ 

J'(O):F(r) In r(7](r), x, y)v(y)dy, x E n, 

Bv(x) = 0, x E an. 

(3.3.6) 

admits a principal eigenvalue, denoted by Ao. Then we have the following thresh­

old dynamics for system (3.2.4), which shows that the linear stability of (3.2.4) at 

zero implies the extinction of the species while the instability implies the uniform 

persistence of the species. 

Theorem 3.3.1 Let e* E int(Xt) be fixed, and (81)-(83) hold. For any ¢ E Y+, 

denote by u(t, x, ¢) or u(t, ¢) the solution oj system (3.2.4). 
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dissipative. By [41, Theorem 3.4.8], <I>(t) admits a connected global attractor on 

Y+, which attracts each bounded set in y+. • 

3.3 Threshold Dynamics and Positive Steady State 

In this section, we present our main results of this chapter in terms of principal 

eigenvalues. Let us first consider the following nonlocal problem: 

atu(t, x) = d6u(t, x) - g'(O)u(t, x))+ 

j'(O)F(T) In r(1](T), x, y)u(t, y)dy, x E n, 

Bu(t, x) = 0, t > 0, x EOn, 

As noted in the previous section (taking delay T as zero), the system generates a 

compact, positive solution semigroup on xt. By the same arguments as in [72, 

Theorem 7.6.1], the nonlocal eigenvalue problem 

AV(x) = d6v(x) - g'(O)v(x)+ 

j'(O)F(T) In r(1](T), x, y)v(y)dy, x E n, 

Bv(x) = 0, x Eon. 

(3.3.6) 

admits a principal eigenvalue, denoted by AD. Then we have the following thresh­

old dynamics for system (3.2.4), which shows that the linear stability of (3.2.4) at 

zero implies the extinction of the species while the instability implies the uniform 

persistence of the species. 

Theorem 3.3.1 Let e* E int(Xt) be fixed, and (Sl)-(S3) hold. For any ¢ E Y+, 

denote by u(t, x, ¢) or u(t, ¢) the solution of system (3.2.4). 
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(i) If Ao < 0, lim Ilu(t, ¢)1113 = ° for every ¢ E Y+. 
t-'too 

(ii) If Ao > 0, then system (3.2.4) admits at least one steady state cp* with cp*(x) E 

(0, M], \Ix E 0, and there exists 8 > ° such that for every ¢ E Y+ with 

¢(O, .) ~ 0, there is to = t o(¢) > ° such that u(t,·, ¢) > 8e*(·), t > to. 

Proof. Note that zero is an equilibrium of (3.2.4). The variational equation about 

zero is given by 

atv(t, x) = d6v(t, x) - g'(O)v(t, x)+ 

J'(O)F( T) In r(1]( T), x, y)v(t - T, y)dy, t > 0, x E n, 
(3.3.7) 

Bv (t, x) = 0, t > 0, x E an, 

v(s, x) = ¢(s, x) > 0, S E [-T, 0], x E n. 

By [95, Theorem 9.2.1] and a similar argument in the case of Dirichlet boundary 

condition, it follows that the eigenvalue problem 

AV(x) = d6v(x) - g'(O)v(x)+ 

f'(O)F(T)e- AT In r(1](T), x, y)v(y)dy, x E n, (3.3.8) 

Bv(x) = 0, x E an, 

has a principle eigenvalue ).0, and ).0 shares the same sign with Ao. 

(i). In the case of Ao < 0, the properties of the principal eigenvalue ).0 and linear 

semi groups imply that lim Ilv(t,·,¢)1113 = O,\I¢ E Y, where v(t,x,¢) is the unique 
t-'too 

solution of (3.3.7). Note that a solution u(t, x) of (3.2.4) satisfies 

8t u(t, x) < d6u(t, x) - g'(O)u(t, x) + j'(O):F( r) In r(1/(r), x, y)u(t - r, y)dy, t > O. 
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{i} If Ao < 0, lim Ilu(t, ¢) 1111 = 0 for every ¢ E Y+. 
t-rOO 

{ii} If Ao > 0, then system {3.2.4} admits at least one steady state cp* with cp*(x) E 

(0, M], \:Ix E 0, and there exists c5 > 0 such that for every ¢ E y+ with 

¢(O,·) =1= 0, there is to = to(¢) > 0 such that u(t,·, ¢) > 8e*(·), t > to. 

Proof. Note that zero is an equilibrium of (3.2.4). The variational equation about 

zero is given by 

Otv(t, x) = dL.v(t, x) - g'(O)v(t, x)+ 

J'(O):F(T) In r(1](T), x, y)v(t - T, y)dy, t > 0, x E 0, 
(3.3.7) 

Bv (t, x) = 0, t > 0, x E 00, 

v(s, x) = ¢(s, x) > 0, s E [-T, 0], x E 0. 

By [95, Theorem 9.2.1] and a similar argument in the case of Dirichlet boundary 

condition, it follows that the eigenvalue problem 

AV(x) = dL.v(x) - g'(O)V(x)+ 

J'(O):F(T)e-)..T In r(1](T), x, y)v(y)dy, x E 0, (3.3.8) 

Bv(x) = 0, x E 00, 

has a principle eigenvalue ).0, and ).0 shares the same sign with Ao. 

(i). In the case of Ao < 0, the properties of the principal eigenvalue ).0 and linear 

semigroups imply that lim Ilv(t, ., ¢) 1111 = 0, \:I¢ E Y, where v(t, x, ¢) is the unique 
t-rOO 

solution of (3.3.7). Note that a solution u( t, x) of (3.2.4) satisfies 

Otu(t, x) < dL.u(t, x) - g'(O)u(t, x) + j'(0):F( T) In r(1]( T), x, y)u(t - T, y)dy, t > o. 
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The comparison theorem for abstract functional differential equations ([64, Propo-

sit ion 3]) implies that u(t,·, ¢) < v(t,·, ¢), Vt > -T. Thus, lim Ilu(t, ¢)IIf3 = 0, V¢ E 
t-HXJ 

Y+. 

(ii). In the case of Ao > 0, let Yo = {¢ E Y+ : ¢(O,·) t= O}, ayo := Y+ \ Yo. For 

any ¢ E Y+, the solution u(t, x, ¢) of (3.2.4) satisfies 

atu(t, x) > dt6.u(t, x) - g(u(t, x)), t > 0, x E n. 

By the standard parabolic maximum principle, it then follows that <I>(t)(Yo) C 

int(Y+), Vt > 0. Let Zl = {¢ E ayo : <I>(t)¢ E ayo, Vt > O}. Then U¢EZI w(¢) = 

{O}, where w(¢) denotes the omega limit set of the orbit ry+(¢) := {<I>(t)¢: Vt > O}. 

We claim that 

Claim. Zero is a uniform weak repeller for Yo in the sense that there exists 60 > ° 
such that lim sup 11<I>(t)¢IIf3 > 60, V¢ E Yo. 

t-HX) 

Let us consider the following eigenvalue problem 

AV(x) = dt6.v(x) - (g'(O) + c)v(x)+ 

(f'(O) - c):F(T)e----:>\' In r(rJ(T), x, y)v(y)dy, x E n, (3.3.9) 

Bv(x) = 0, x E an. 

Since (3.3.8) admits a positive principal eigenvalue ).0, there exists a sufficiently 

small positive c such that (3.3.9) admits a positive principal eigenvalue Ac. For 

this c, there exists 6c > ° such that for all u E (0,6c )' g(u) < (g'(O) + c)u and 

f(u) > (f'(O) - c)u. Let 60 = 6c /kf3. Suppose, by contradiction, that there exists 

¢o E Yo such that lim sup 11<I>(t)¢ollf3 < 60. Then there exists t' > T such that 
t-+oo 
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The comparison theorem for abstract functional differential equations ([64, Propo-

sition 3]) implies that u(t,·,cp) < v(t,·,cp),Vt > -T. Thus, lim Ilu(t,cp)llt3 = O,Vcp E 
t-HXJ 

y+. 

(ii). In the case of Ao > 0, let Yo = {cp E y+ : cp(O,·) :¢ O}, ayo := Y+ \ Yo. For 

any cp E Y+, the solution u(t, x, cp) of (3.2.4) satisfies 

atu(t, x) > d6u(t, x) - g(u(t, x)), t > 0, x E n. 

By the standard parabolic maximum principle, it then follows that <I>(t)(Yo) c 

int(Y+), Vt > O. Let Zl = {cp E ayo : <I>(t)cp E ayo, Vt > O}. Then U¢EZl w(cp) = 

{O}, where w(cp) denotes the omega limit set of the orbit 7+(CP):= {<I>(t)cp: Vt > O}. 

We claim that 

Claim. Zero is a uniform weak repeller for Yo in the sense that there exists 60 > 0 

such that lim sup 11<I>(t)cpllt3 > 60, Vcp E Yo. 
t--+oo 

Let us consider the following eigenvalue problem 

AV(X) = d6v(x) - (g'(O) + c)v(x)+ 

(1'(0) - c)F(T)e-AT In r(7](T), x, y)v(y)dy, x E [2, (3.3.9) 

Bv(x) = 0, x E an. 

Since (3.3.8) admits a positive principal eigenvalue ).0, there exists a sufficiently 

small positive c such that (3.3.9) admits a positive principal eigenvalue Ac. For 

this c, there exists 6c > 0 such that for all u E (0,6c ), g(u) < (g'(O) + c)u and 

f(u) > (1'(0) - c)u. Let 60 = 6c /k t3 • Suppose, by contradiction, that there exists 

CPo E Yo such that lim sup 11<I>(t)CPollt3 < 60. Then there exists t' > T such that 
t--+oo 
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Ilu(t, " <Po) 1100 < k.e Ilu(t, " <Po) 11.e < 6£ for all t > t' - T. Therefore, u(t, x, <Po) satisfies 

atu(t, x) > dLu(t, x) - (g'(O) + c)u(t, x)+ 
(3.3.10) 

(f'(O) - c).r(T) In r(1](T), x, y)u(t - T, y)dy, 

for all t > t', x E n. Let <p E X.e be the positive eigenfunction associated with the 

principal eigenvalue A£. Then u£(t, x) = <p(x)eAe:t is a solution to 

atu(t, x) = dLu(t, x) - (g'(O) + c)u(t, x)+ 

(f'(O) - c).r( T) In r(1]( T), x, y)u(t - T, y)dy, t > 0, x E n, 

Bu (t, x) = 0, t > 0, x E an. 

Since u(t, x, <Po) > 0, Vt > 0, x E n, there exists <; > 0 such that u(t' + s, x, <Po) > 

<;u£(s, x) for s E [-T, 0], x E n. By inequality (3.3.10) and the comparison theorem 

([64, Proposition 3]), we have u(t,x, <Po) > <;u£(t-t',x) = <;<p(x)eAe:(t-t'),Vt > t',x E 

n. Since A£ > 0, u(t, x, <Po) is unbounded, a contradiction. 

By the continuous time version of Theorem 1.1.1 (see [81, Theorem 4.6]), ~(t) 

is uniformly persistent with respect to Yo in the sense that there exists 61 > 0 such 

that liminfdist(~(t)<p,ayo) > 61 ,V<p E Yo. Since ~(t) : Y+ -t Y+ is compact for 
t-+oo 

each t > T, Theorem 1.1.3 with e = e* E int(Y+) implies that there exists 6 > 0 

such that for any <p E Yo, u(t, x, <p) > 6e*(x) for all t > t(<p), x E n. 
It remains to prove the existence of a positive steady state. We consider 

atu(t, x) = dLu(t, x) - g(u(t, x))+ 

In r(1](T), x, y).r(T)f(u(t, y))dy, t > 0, x E n, 

Bu( t, x) = 0, t > 0, x E an, 

u(O, x) = <p(X) > 0, x E n. 
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Ilu(t,·, ¢0)1100 < k,8llu(t,', ¢0)11,8 < Oc for all t > t' - T. Therefore, u(t, x, ¢o) satisfies 

atu(t, x) > d6.u(t, x) - (g'(O) + c)u(t, x)+ 
(3.3.10) 

(1'(0) - c)F(T) In r(7](T), x, y)u(t - T, y)dy, 

for all t > t', x E n. Let c.p E X,8 be the positive eigenfunction associated with the 

principal eigenvalue Ag • Then uc(t, x) = c.p(x)eAct is a solution to 

atu(t, x) = d6.u(t, x) - (g'(O) + c)u(t, x)+ 

(1'(0) - c)F(T) In r(7](T), x, y)u(t - T, y)dy, t > 0, x E n, 

Bu (t, x) = 0, t > 0, x E an. 

Since u(t, x, ¢o) > 0, Vt > 0, x E n, there exists c; > 0 such that u(t' + s, x, ¢o) > 

c;uc(s, x) for s E [-T, 0], x E n. By inequality (3.3.10) and the comparison theorem 

([64, Proposition 3]), we have u(t, x, ¢o) > C;Uc (t - t', x) = c;c.p(x )eAc(t-t'), Vt > t', x E 

n. Since Ag > 0, u(t, x, ¢o) is unbounded, a contradiction. 

By the continuous time version of Theorem 1.1.1 (see [81, Theorem 4.6]), cI>(t) 

is uniformly persistent with respect to Yo in the sense that there exists 01 > 0 such 

that lim inf dist( cI>(t)¢, ayo) > Ob V¢ E Yo. Since cI>(t) : Y+ ---+ y+ is compact for 
t--+oo 

each t > T, Theorem 1.1.3 with e = e* E int(Y+) implies that there exists 0 > 0 

such that for any ¢ E Yo, u(t, x, ¢) > oe*(x) for all t > t(¢), x E n. 
It remains to prove the existence of a positive steady state. We consider 

atu(t, x) = d6.u(t, x) - g(u(t, x))+ 

In r(7](T), x, y)F(T)f(u(t, y))dy, t> 0, x E n, 

Bu( t, x) = 0, t > 0, x E an, 

u(O, x) = c.p(x) > 0, x E n. 
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Let <I>o(t) : xt -7 xt, t > 0, be the solution semiflow. As proven for <I>(t) : Y+ -7 

Y+, it follows that <I>o(t) is point dissipative on xt, compact for each t > 0, and 

uniformly persistent with respect to xt \ {O}. Then, by the continuous version of 

Theorem 1.1.2, <I>o(t) has an equilibrium <p* E xt \ {O}, i.e., <I>o(t)<p* = <p* for all 

t > O. Clearly, <p* E int(Xt). • 

Theorem 3.3.2 Let (Sl)-{S3) hold and Ao > O. Suppose that either f or -g is 

strictly sublinear on [0, M], and that f is monotone increasing on [0, M]. Then 

(3.2.4) admits a unique positive steady state <p*, and lim Ilu(t, ¢) - <p*II.e = 0 for 
t-+oc> 

every ¢ E Y+ with ¢(O,·) =t 0, where u(t, ¢) is the solution of (3.2.4). 

Proof. We use notations in the proofs of Theorem 3.2.1 and 3.3.1. Note that f is 

monotone increasing on [0, M]. It then follows that 

1 
lim hdist('ljJ(O) - <p(0) + h(F('ljJ) - F(<p)), xt) = 0, 

h-+O+ 

for all <p, 'ljJ E 7lM with <p(s, x) < 'ljJ(s, x), 'is E [-T, 0], x E n. By [64, Proposition 3 

and Corollary 5] (see also [88, Corollary 8.1.11]), <I>(t) : 7lM -7 7lM is a monotone 

semiflow with respect to the order on Y induced by Y+. By the proof of Theorem 

3.2.1, every omega limits set w(¢) of <I>(t) is contained in 7lM . In particular, every 

nonnegative steady state <p of (3.2.4) is contained in EM. We further claim that 

(3.2.4) admits at most one positive steady state. Indeed, it suffices to show that 

<I>o(t) has at most one positive equilibrium in EM' By [64, Corollary 5] with T = 0, 

it then follows that <I>o(t) : EM -7 EM is a monotone semi flow with respect to the 

order on X.e induced by xt· Moreover, for any <PI, <P2 E EM with <PI - <P2 E xt \ {O}, 
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u(t, x) := (<I?O(t)CPl)(X) - (<I?O(t)CP2)(X) satisfies 

Otu{t, x) > dl>u{t, x) - u{t, x) l' g' (s<I>O{t)CP1 (x) + (I - s ) <I> 0 {t)CP2 {x ) )ds 

> dLu(t, x) - ksu(t, x), t > 0, XED, 
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where ks = sup g'(u). Then the standard parabolic maximum principle implies 
uE[O,M] 

that u(t) E int(Xt), Vt > 0. That is, <I?o(t) : ~M -+ ~M is strongly monotone. By the 

strict sublinearity of f or -g, it easily follows that for each t > 0, <I?o(t) : ~M -+ ~M 

is strictly sublinear (see, e.g., [37, Theorem 2.2]). Now fix a real number to > 0. 

Then [93, Lemma 1] implies that the map <I?o(to) has at most one positive fixed point 

in ~M' and hence the semifiow <I?o(t) has at most one positive equilibrium in ~M. 

Note that <I?(t) : Y+ -+ Y+ is compact for t > T, admits a global attractor in Y+, and 

is uniformly persistent with respect to Yo. By [43, Theorem 3.2], <I?(t) : 7lM n Yo -+ 

7lM n Yo has a global attractor Ao. Theorem 3.3.1, together with the uniqueness 

of the positive steady state, implies that Ao contains only one equilibrium cp*. By 

Hirsch's attractivity theorem (Theorem 1.2.3), it then follows that cp* attracts every 

point in 7lM n yo. Consequently, every orbit in 7lM converges to either the trivial 

equilibrium or the positive equilibrium cp*. Note that the equilibria ° and cp* are 

also isolated invariant sets in 7lM , and there is no cyclic chain of equilibria. By 

the continuous time version of [95, Theorem 1.2.2], every compact internally chain 

transitive set for <I?(t) : 7lM -+ 7lM is an equilibrium. For any given ¢ E Y+, by the 

proof of Theorem 3.2.1, w(¢) C 7l M , and hence w(¢) is an equilibrium. If ¢ E Y+ 

with ¢(O,·) =t 0, by Theorem 3.3.1 (ii), we then have w(¢) = cp*. • 
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3.4 Discussion 

In this section, we investigate the effects of spatial diffusion and time delay on the 

global behavior of model (3.1.3) in two specific cases, and provide some numerical 

simulations, some of which seem to suggest that Theorem 3.3.2 holds even without 

the monotonicity condition. 

First let us compute the principal eigenvalue Ao for problem (3.3.6). In the case 

of the Neumann boundary condition, it easily follows that the eigenvalue problem 

(3.3.6) admits the principle eigenvalue Ao = -g'(O) + J'(O)F(T) (with the eigenfunc­

tion v(·) 1). In the case of the Dirichlet boundary condition, we consider (3.3.6) 

with n = (0,7r). Let To(t)<p = In r(t, x, y)<p(y)dy, which is the linear semigroup 

generated by 

u(t,O) = u(t, 7r) = 0, 

u(O, x) = <p(x) E xt. 
(3.4.11) 

It then follows that e-t sin x is a solution of (3.4.11) with <p(x) = sin x. Thus, 

To (t) sin(x) = 1, r(t, x, y) sin ydy = e-t sin x, Vt > 0, x E (0, 7f). 

In particular, TO(TJ(T)) sin x = e-1J(T) sinx. It is easy to verify that sinx is a positive 

solution of (3.3.6) with A = -d - g'(O) + J'(O)F( T)e- 1J(T). Therefore, Ao = -d -

g'(O) + J'(O)F(T)e- 1J(T). 

Example 1. Consider the model (3.1.3) with g(u) = (3u2
, J(u) = au and F(T) = 

e-}J,jT, where a, (3, J-Lj and the immature diffusion coefficient dj in (3.1.1) are all 

positive constants. 
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In the case of the Neumann boundary condition, we have AO = ae-/1-jT > 0. By 

Theorem 3.3.2 with M = ~e-/1-jT, it follows that for each ¢ E Y+ with ¢(O, .) :f= 0, 

lim um(t, x, ¢) = cp*(x) = gj3e-/1-jT uniformly for x E n, where um(t, x, ¢) is the 
t-'too 

solution of (3.1.3) with the initial function ¢. This convergence result is consistent 

with that in [40]. In this case, we can see that the maturation period T and the 

diffusion of the species do not affect the permanence of the species. 

In the case of the Dirichlet boundary condition, let n = (0,7r). Then, AO = 

-dm + ae-(/1-j+dj)T (dm in (3.1.3) is d in (3.3.6)). Note that AO < ° if a < dm, and 

in the case of a > dm , we have AO > ° if T E [0, TO)' and AO < ° if T > TO, where 

TO = _+l
d

_ In dQ > 0. By Theorem 3.3.1 and 3.3.2 with M = gj3e-/1-jT we have the 
/1-J J Tn ' 

following result for this case. 

Proposition 3.4.1 Let um(t, x, ¢) be the solution of (3.1.3) subject to the Dirichlet 

boundary condition and with the initial function ¢ E Y+. 

(1) If a < dm, then for any ¢ E Y+, lim um(t, x, ¢) = ° uniformly for x E [0,7r]. 
t-'too 

(2) In the case of a > dm , let TO = _+1 d- In d
Q > 0. 

/1-J J Tn 

(a) If T > TO, then for any ¢ E Y+, lim um(t, x, ¢) = ° uniformly for x E 
t-'too 

[0,7r]. 

(b) 1fT E [0, TO), then for any ¢ E Y+ with ¢(O,·) :f= 0, lim um(t,x,¢) = 
t-'too 

cp* (x) uniformly for x E [0,7r], where cp* is the unique positive steady 

state of (3.1.3). 

By Proposition 3.4.1, we have the following observations on the model (3.1.3) 

subject to the Dirichlet boundary condition. 
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Conclusion 1. If all parameters except for dm are fixed, then the fast mature 

dispersal in space brings negative effect on persistence of the species. 

Conclusion 2. If all parameters except for the delay 7 are fixed, then the large 

maturation time 7 brings negative effect on persistence of the species. 

Example 2. Consider the model (3.1.3) with g(u) = j3u, J(u) = pue-qu and ;::(7) = 

e-/-LjT, where 13, p, q, J-lj and dj are all positive constants. A direct computation shows 

that J'(u) = pe-qU(l- qu), J"(u) = -pqe-qU (2 - qu), and J(u) reaches its maximum 

value J( 1) = Ee- 1 . 
q q 

In the case of the Neumann boundary condition, Ao = -13 + pe-/-LjT. Therefore, 

if 13 > pe-/-LjT, then Theorem 3.3.1 (i) with M = 0 implies that the species goes 

extinct; if 13 < pe-/-LjT, then Theorem 3.3.1 (ii) with M = -!qe-1-/-LjT implies that 

the species persists. If, in addition, pe-1-/-LjT < 13 < pe-/-LjT, Theorem 3.3.2 with 

M = * (In ~ - J-lj7) > 0 implies that (3.1.3) admits the unique positive steady state 

cp*(x) _ * (In ~ - J-lj7) , which is globally attractive. 

The above analysis supports our second conclusion. For various values of the 

maturation time 7, the species may go to extinction, persist, or stabilize at a positive 

steady state. However, the diffusion coefficient dm has no effects on the persistence 

of the species. 

In the case of the Dirichlet boundary condition, Ao = - (dm + 13) + pe-(/-Lj+dj)T. 

By Theorem 3.3.1 and 3.3.2 with M = 0, or M = -!qe-1-/-LjT and *(In ~ - J-lj7) , we 

have the following result, which implies the same conclusions about the effects of 

the maturation period 7 and the diffusion coefficient dm as in Example 1. 
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Proposition 3.4.2 Let um(t, x, ¢) be the solution of system (3.1.3) subject to the 

Dirichlet boundary condition and with the initial function ¢ E Y+. 

(1) Ifp < dm+/3, thenforany¢ E Y+, lim um(t,x,¢) = 0 uniformly for x E [0,7r]. 
t-+oo 

(2) In the case of p > dm + /3, let TO = JLj~dj ln~, T1 = :j (In ~ - 1). 

(a) If T > TO, then for any ¢ E Y+, lim um(t, x, ¢) = 0 uniformly for x E 
t-+oo 

(b) If T1 < T < TO, then for any ¢ E Y+ with ¢(O,·) t= 0, lim um(t, x, ¢) = 
t-+oo 

cp*(x) uniformly for x E [0,7r], where cp* is the unique positive steady state 

of system (3.1.3). 

N uIllerical siIllulation. We numerically simulate Example 2 with the domain 

n = (0,7r). Model (3.1.3) is discretised by using the finite difference method, where 

the nonlocal term is approximated by composite integration formulas. Note that in 

the case of the Neumann boundary condition, 

1 2 00 2 . 

r(TJ(T), x, y) = - + - L e-n 
dJT cos nx cos ny, 

7r 7r 
n=1 

and in the case of the Dirichlet boundary condition, 

(see, e.g., [65, Section 5.1]). 

For the case of the Neumann boundary condition, let p = q = /-lj = 1, dm = 

0.5, /3 = 0.2, dj = 0.25. Then, when T > 1.6094, every positive solution goes to 

zero as t goes to infinity (Theorem 3.3.1); when T E (0.6094,1.6094), model (3.1.3) 
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admits a globally attractive and positive steady state cp*(x) - ~(ln ~ - {LjT) > 0 

(Theorem 3.3.2). We simulate solutions of system (3.1.3) with the initial function 

¢(t, x) = 1 - cos 2x in the case of T = 1.7 and T = 1, which are shown in Figure 

3.1 and Figure 3.2, respectively. Clearly, the solution in Figure 3.1 converges to 

zero, while the solution in Figure 3.2 converges to the unique positive steady state 

cp*(x) 0.6094. Thus, the numerical results are consistent with our theoretical 

results. We also simulate solutions of system (3.1.3) when T < 0.6094, which implies 

that the monotonicity condition in Theorem 3.3.2 is not satisfied. In Figure 3.3, 

3.4, 3.5 and 3.6, the solutions share the parameters with those in Figure 3.1 and 3.2 

except for T = 0.3 and different initial functions. The numerical results shows that 

all the solutions converge to the same steady state cp*(x) = ~(ln ~ - {LjT) = 1.3094. 

Therefore, in this case, the positive steady state cp*(x) may be unique and globally 

attractive even if the monotonicity condition in Theorem 3.3.2 is not satisfied. 

For the case of the Dirichlet boundary condition, let p = 5, q = f3 = 1, {Lj 

1.2, dj = 0.25, dm = 0.5. Then, by Proposition 3.4.2, when T > 0.8303, zero solution 

attracts every solution of system (3.1.3); when T E (0.5078,0.8303), model (3.1.3) 

admits a globally attractive and positive steady state. In Figure 3.7, the solution of 

system (3.1.3) with initial function ¢(t, x) = sin x and T = 1 converges to zero, while 

in Figure 3.8, the solution with the same initial function and T = 0.65 converges to 

the unique steady state cp*(x). Our theoretical results coincide with the numerical 

simulations. Just as in the case of the Neumann boundary conditions, we also 

simulate the solutions of system (3.1.3) in the case of T < 0.5078. The numerical 

results are shown in Figure 3.9, 3.10, 3.11, 3.12. We can see that the solutions in 
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those for the Neumann boundary condition, seem to suggest that cp*(x) is globally 

attractive, even if the monotonicity condition in Theorem 3.3.2 is not satisfied. 

However, we could not mathematically prove it. 
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Figure 3.1: The solution of Example 2 in the case of the Neumann boundary con­
dition. The parameters of the system are as follows: n = (0, 7r), p = q = J-lj = 1, 
dm = 0.5, {3 = 0.2, d j = 0.25, T = 1.7, ¢(t, x) = 1 - cos(2x). 
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Figure 3.2: The solution of Example 2 with the same condition and parameters as 
in Figure 3.1, except for T = 1, ¢(t, x) = 1 - cos(2x). 
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Figure 3.2: The solution of Example 2 with the same condition and parameters as 
in Figure 3.1, except for T = 1, ¢>(t, x) = 1 - cos(2x). 
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Figure 3.3: The solution of Example 2 with the same condition a d parameters as 
in Figure 3.1, except for T = 0.3, ¢(t, x) = 1 - cos(2x). 
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Figure 3.4: The solution of Example 2 with the same condition aa.nd parameters as 
in Figure 3.1, except for T = 0.3, ¢(t, x) = 3 - 3 cos(2x). 
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Figure 3.4: The solution of Example 2 with the same condition and parameters as 
in Figure 3.1, except for T = 0.3, ¢(t, x) = 3 - 3cos(2x). 



1.5 

" 1 

0 .5 

o 
4 

80 

......... 

40 

o -10 

Figure 3.5: The solution of Example 2 with the same condition and parameters as 
in Figure 3.1, except for T = 0.3, ¢(t, x) = 1 - cos(4x) . 
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Figure 3.6: The solution of Example 2 with the same condition and parameters as 
in Figure 3.1, except for T = 0.3, ¢(t, x) = 5 - 5 cos(4x). 
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Figure 3.5: The solution of Example 2 with the same condition and parameters as 
in Figure 3.1, except for T = 0.3, ¢(t, x) = 1 - cos(4x). 
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Figure 3.6: The solution of Example 2 with the same condition and parameters as 
in Figure 3.1, except for T = 0.3, ¢(t, x) = 5 - 5 cos(4x). 
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Figure 3.7: The solution of Example 2 in the case of the Dirichlet boundary condi­
tion. The parameters of the system are as follows: n = (0, 1r), p = 5, q = f3 = 1, 
f.1j = 1.2, d j = 0.25, dm = 0.5, T = 1, ¢(t, x) = sin x . 
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Figure 3.8: The solution of Example 2 with the same condition and parameters as 
in Figure 3.7, except for T = 0.65, ¢(t, x) = sin x. 
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Figure 3.7: The solution of Example 2 in the case of the Dirichlet boundary condi­
tion. The parameters of the system are as follows: n = (0, 7r),p = 5, q = f3 = 1, 
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Figure 3.8: The solution of Example 2 with the same condition and parameters as 
in Figure 3.7, except for T = 0.65, ¢(t, x) = sin x. 
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Figure 3.9: The solution of Example 2 with the same condition and parameters as 
in Figure 3.7, except for T = 0.3, ¢(t, x) = sin x. 
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Figure 3.10: The solution of Example 2 with the same condition and parameters as 
in Figure 3.7, except for T = 0.3, ¢(t, x) = 3 sin x. 
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Figure 3.9: The solution of Example 2 with the same condition and parameters as 
in Figure 3.7, except for T = 0.3, ¢(t, x) = sin x. 
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Figure 3.10: The solution of Example 2 with the same condition and parameters as 
in Figure 3.7, except for T = 0.3, ¢(t, x) = 3 sin x. 
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Figure 3.11: The solution of Example 2 with the same condition and parameters as 
in Figure 3.7, except for T = 0.3, ¢(t, x) = 1 - cos4x . 
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Figure 3.12: The solution of Example 2 with the same condition and parameters as 
in Figure 3.7, except for T = 0.3, ¢(t, x) = 5 - 5 cos 4x. 
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Figure 3.11: The solution of Example 2 with the same condition and parameters as 
in Figure 3.7, except for T = 0.3, ¢(t, x) = 1 - cos 4x. 
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Figure 3.12: The solution of Example 2 with the same condition and parameters as 
in Figure 3.7, except for T = 0.3, ¢(t, x) = 5 - 5 cos 4x. 



Chapter 4 

Bistable Traveling Waves 
Epidelllic Model 

• In an 

Traveling wave solutions are important in epidemic models when investigating the 

geographic spread of infectious diseases (e.g. [68]). This chapter will focus on 

bistable traveling waves in an epidemic model proposed by Capasso et aI., which 

models man-environment-man epidemics, while Chapter 5 will be involved in monos-

table traveling waves in the integral version of the model. In this chapter, the ex-

istence, uniqueness up to translation and global exponential stability with phase 

shift of bistable traveling waves are established. The methods involve phase plane 

investigation, monotone semiflow approaches and spectrum analysis. 

The organization of this chapter is as follows. In Section 4.1, we provide an 

introduction to the epidemic model and a review of the works related to the model 

and the methods for studying the existence and the stability of traveling waves. 

In Section 4.2, we establish the existence of bistable waves for the model by a 

qualitative analysis of a three dimensional ordinary differential system. In Section 

4.3, a convergence theorem for monotone semiflows is employed to prove the global 
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attractivity and then the uniqueness of traveling waves (up to translations). This 

method has its own interest. Section 4.4 is devoted to the global exponential stability 

of traveling waves. To do this, we analyze in detail the point spectrum and essential 

spectrum of the associated linear operator, respectively, and then use the global 

attractivity obtained in Section 4.3 and some results due to Evans ([30, 31, 32, 33]). 

A numerical simulation section completes this chapter. 

4.1 Introduction 

The geographic spread of infectious diseases is an important subject in mathematical 

epidemiology. To model the cholera epidemic which spread in the European Mediter­

ranean regions in 1973, Capasso and Paveri-Fontana [19] proposed a system of two 

ordinary differential equations. As a basic feature, this model involves a positive 

feedback interaction between the infective human population and the concentration 

of bacteria. The human population, once infected, has a contribution to the growth 

rate of bacteria, which is then returned to the environment to increase the infection 

rate of humans. This kind of mechanism seems to be appropriate to interpret other 

fecally-orally transmitted epidemics such as typhoid fever, infectious hepatitis, poly­

ometitis etc., with suitable modifications. Under the assumption that the bacteria 

disperse randomly while the small mobility of the infective human population is 

neglected, Capasso and Maddalena [17] further obtained a reaction-diffusion system 

gt U1 (x, t) = d ::2 U1 (x, t) - all U1 (x, t) + a12U2 (x, t), 

gtU2(x, t) = -a22U2(x, t) + g(U1(x, t)). 

(4.1.1) 
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Here d, a11, a12 and a22 are positive constants, U1(x, t) and U2(x, t), respectively, 

denote the spatial densities of infectious agent and the infective human population 

at a point x in the habitat at time t > 0, 1/ a11 is the mean lifetime of the agent in 

the environment, 1/ a22 is the mean infectious period of the human infections, a12 is 

the multiplicative factor of the mean infectious agent due to the human populations, 

and the function 9 is the infection rate of humans under the assumption that total 

susceptible human population is constant during the evolution of the epidemic. Note 

that the second equation of system (4.1.1) has no diffusion terms. That is why we 

can not directly apply any results in reference when dealing with the existence and 

the linear stability of traveling waves. 

System (4.1.1) and its corresponding reaction system have received extensive in­

vestigations. For example, the case in which there is at most one nontrivial endemic 

equilibrium was studied in [19, 17, 16, 15], and it is known that above some pa­

rameter threshold a unique nontrivial state exists and all epidemic outbreaks tend 

to it (i.e., monostable case), below the parameter threshold, all epidemics tend to 

extinction. In [18], the bistable case (where the corresponding reaction system of 

(4.1.1) admits exactly two nontrivial steady states) was obtained by assuming that 

the infection rate 9 is sigma-shaped. A saddle point structure was obtained in [18] 

for (4.1.1) with Neumann boundary conditions and its reaction system, and a com­

plete analysis of the steady states of (4.1.1) subject to Dirichlet boundary conditions 

and numerical simulations were presented in [20]. It was shown in [52] that system 

(4.1.1) subject to Dirichlet boundary conditions also admits saddle point behavior. 

Recently, the existence of monotone traveling waves and the minimal wave speed 

were established in [97] for system (4.1.1) in the monostable case. Moreover, it was 
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proven in [83] that this minimal wave speed coincides with the asymptotic speed of 

spread for solutions with initial functions having compact supports. The purpose of 

this chapter is to study the existence, uniqueness and global exponential stability of 

traveling waves of system (4.1.1) with bistable nonlinearity. 

Various approaches exist for proving the existence of wave solutions of parabolic 

equations, ranging from topological methods ([38,39,23]) to shooting methods based 

on Wazewski's principle ([29]). For scalar bistable evolution equations, the exis­

tence, uniqueness and global exponential stability of traveling waves are well known 

(see, e.g., [35, 21] for reaction-diffusion equations, [71, 75] for time-delayed reaction­

diffusion equations). For quasi-monotone parabolic systems with positive diffusion 

coefficients, monotone traveling waves were proven to exist via topological meth­

ods ([85]). Also by topological methods, the existence and uniqueness of bistable 

traveling waves were obtained in [67] and [51], respectively, for a reaction-diffusion 

model of n mutualist species, in which all diffusion coefficients were assumed to be 

positive. 

A standard method to study the local stability of traveling waves is to use the 

linearization at the waves under study. The stability then splits into two steps. The 

first step is to prove that the linear stability implies the nonlinear stability. That is, 

proving that the stability for the linearized system implies the stability for the full 

nonlinear system. The general results can be found in [46, 12] and references therein. 

The second step is to analyze the linearized equations. All the information needed 

is about the spectrum of the corresponding linear operator. This is the key issue 

for the stability problem. For FitzHugh-Nagumo equations, the spectrum analysis 

[53] shows that traveling waves are stable. For quasi-monotone parabolic systems 
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with positive diffusion coefficients, the location of the spectrum was investigated 

in [85, 86] and references therein, and the global stability of traveling waves was 

obtained in [70]. In the case of positive diffusion coefficients, a general strategy for 

the second step was given in [4]. 

Evans did a series of works ([30,31, 32, 33]) for an evolution system of nerve axon 

equations, where a reaction-diffusion equation is coupled with n ordinary differential 

equations. In [30], he completed the first step, and the main result in [32], in fact, 

states that the linearized equations are stable if all spectrum points of the linear 

operator except for zero lie in an appropriate negative half-plane of the complex 

plane, and zero is a simple eigenvalue. It then follows that the local stability of 

bistable waves of system (4.1.1) reduces to the spectral analysis of the linear operator 

associated with the linearization at the wave profile. That is just what we will do. 

4.2 Existence of Traveling "W"aves 

Since we are interested in the bistable case of system (4.1.1), throughout the whole 

chapter we make the following assumption on the function g. 

(R1) 9 E C 2 (R.t-), g(O) = 0, g'(O) > 0, g'(z) > 0, Vz > 0, lim g(z) = 1, and there is a 
z-+oo 

~ > 0 such that g"(z) > 0 for z E (O,~) and g"(z) < 0 for z > ~. 

Mathematically, we can rescale system (4.1.1) and only study the rescaled system 

(4.2.2) 
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where a = a12/ ail' j3 = a22/ au· 

Let ry = j3 / a. Note that the global dynamics of the cooperative system 

(;1 (t) = -Ul (t) + aU2(t) 

(;2(t) = -j3U2(t) + g(Ul(t)) 

89 

(4.2.3) 

has been described in detail ([18, 15, 20]). In particular, the following results are 

known. 

Proposition 4.2.1 There exists rycrit > 0 such that 

(i) For ry > rycrit, (0,0) E JR2 is the only equilibrium for system (4.2.3). It is 

globally asymptotically stable in the positive quadrant of JR2 ; 

(ii) For ry = rycrit or 0 < ry < g'(O) in the case of g'(O) > 0, system (4.2.3) admits 

a unique nontrivial equilibrium in addition to (0,0); 

(iii) For g' (0) < ry < rycrit, system (4.2.3) has three equilibria in the first quadrant 

of JR2: E- = (0,0), EO = (a, a/a), E+ = (b, b/a), where 0 < a < b are the two 

positive roots of g( u) = ~u. In this case, EO is a saddle point, E- and E+ are 

stable nodes. 

In order to discuss the existence of bistable waves for (4.2.2), i.e., traveling waves 

connecting two stable equilibria, we further assume g'(O) < ry < rycrit. See Figure 4.1 

for an illustration of three equilibria. 

Let (Ul(x, t), U2(x, t)) = (Ul(X + ct), U2(X + ct)) be a traveling wave solution of 

(4.2.2). Then the wave front profile (Ul(T),U2(T)) satisfies the ODE system 

CU~(T) = dUl"(T) - Ul(T) + aU2(T), 
( 4.2.4) 
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a unique nontrivial equilibrium in addition to (0,0); 

{iii} For g'(O) < "'( < "'(crit, system {4.2.3} has three equilibria in the first quadrant 

of]R2: E- = (0,0), EO = (a, a/a), E+ = (b, b/a), where 0 < a < b are the two 

positive roots of g( u) = ~u. In this case, EO is a saddle point, E- and E+ are 

stable nodes. 

In order to discuss the existence of bistable waves for (4.2.2), i.e., traveling waves 

connecting two stable equilibria, we further assume g'(O) < "'( < "'(crit. See Figure 4.1 

for an illustration of three equilibria. 

Let (U1(x, t), U2(x, t)) = (Ul(X + ct), U2(X + ct)) be a traveling wave solution of 

(4.2.2). Then the wave front profile (Ul(T),U2(T)) satisfies the ODE system 

1 
CU~(T) = dUl"(T) - Ul(T) + aU2(T), 

( 4.2.4) 

CU~(T) = -f3U2(T) + g(Ul(T)), 
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Figure 4.1: Illustration of the three equilibria E-, EO and E+. 

where I denotes the derivatives ddT. Since we are interested in traveling wave fronts 

connecting E- and E+, we impose the asymptotic boundary conditions on the 

system 

(4.2.5) 

Consider the case where c =I o. By the second equation of system (4.2.4), we 

have 

Note that, as T ~ -00, U2(T) and g(Ul(T)) are bounded. By taking TO ~ -00, we 

obtain 

(4.2.6) 

Therefore, if Ul (T) i~ increasing with 

Ul ( -00) = 0, Ul (+00) = b, (4.2.7) 
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where' denotes the derivatives ddT' Since we are interested in traveling wave fronts 

connecting E- and E+, we impose the asymptotic boundary conditions on the 

system 

(4.2.5) 

Consider the case where c =f- O. By the second equation of system (4.2.4), we 

have 

Note that, as T ---+ -CX), U2(T) and g(Ul(T)) are bounded. By taking TO ---+ -CX), we 

obtain 

(4.2.6) 

Therefore, if Ul(T) i~ increasing with 

Ul (-CX)) = 0, Ul (+CX)) = b, (4.2.7) 
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then U2(T), defined by formula (4.2.6), is also increasing and satisfies 

Consequently, it suffices to consider positive and increasing solutions Ul (T) of system 

(4.2.4) subject to the boundary conditions (4.2.7). 

In the case of c#-O in system (4.2.4), let U3 (T) = u~ (T). Then system (4.2.4) is 

equivalent to 

(4.2.8) 

U~(T) = ~(CU3(T) + Ul(T) - aU2(T)). 

Obviously, system (4.2.8) admits three equilibria: (E-, 0), (EO, 0) and (E+, 0). The 

Jacobian matrix of (4.2.8) is 

o 0 1 

J = ~g'(z) -~ 0 

Let f(A, m) := (A + ~)( -A2 + ~A + ~) - m. Then, at the point (E-, 0), the 

eigenvalues of J are given by the roots of f(A, ~g'(O)) = O. Note that f(A, :d) 

admits three real zero points: Al < 0, A2 = 0, A3 > 0, and f(A, 0) also has three zero 

points: two negative and one positive. By 0 < g'(O) < ~, it follows that at (E-, 0), 

J admits a positive eigenvalue A(C) and two negative eigenvalues. Therefore, system 

(4.2.8) has a one dimensional unstable manifold corresponding to A(C) at (0,0,0). 

Denote by Uc this manifold. Note that (1, g'(O)/({3 + CA(C)), A(C)) is an eigenvector 
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then u2(r), defined by formula (4.2.6), is also increasing and satisfies 

Consequently, it suffices to consider positive and increasing solutions Ul (r) of syst em 

(4.2.4) subject to the boundary conditions (4.2.7). 

In the case of c -# 0 in system (4.2.4), let u3(r) = u~(r). Then system (4.2.4) is 

equivalent to 

( 4.2.8) 

u~(r) = ~(cu3(r) + ul(r) - aU2(r)). 

Obviously, system (4.2.8) admits three equilibria: (E-, 0), (EO, 0) and (E+, 0). The 

Jacobian matrix of (4.2.8) is 

o 0 1 

J = ~9'(Z) -~ 0 

Let f().., m) := ().. + ~)( _)..2 + ~).. + ~) - m. Then, at the point (E-, 0), the 

eigenvalues of J are given by the roots of f().., ~9'(0)) = o. Note that f().., !) 
admits three real zero points: )..1 < 0, )..2 = 0, )..3 > 0, and f().., 0) also has three zero 

points: two negative and one positive. By 0 < 9'(0) < ~, it follows that at (E-, 0), 

J admits a positive eigenvalue )..(c) and two negative eigenvalues. Therefore, system 

(4.2.8) has a one dimensional unstable manifold corresponding to )..(c) at (0,0,0). 

Denote by Uc this manifold. Note that (1, g'(O)/({3 + c)..(c)) , )..(c)) is an eigenvector 
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corresponding to A(C). It is easy to prove the following lemma for the solutions on 

Uc (see, e.g., [22]). 

Lemma 4.2.1 Assume that C -# 0. Then system (4.2.4)-(4.2.5) has exactly one 

positive solution on Uc (up to translations). For sufficiently large negative T, this 

solution satisfies 

U~(T) = U3(T) = A(C)Ul(T) + O(Ul(T)), 

g'(O) 
U2(T) = ,B + CA(C) Ul(T) + O(Ul(T)). 

Remark 4.2.1 If g'(O) = 0, we assume that g"(O) -# 0. Then U2(T) in Lemma 4.2.1 

can be approximated by 

In the case where C = 0, system (4.2.4) is equivalent to 

or 

(4 .2.9) 

with boundary conditions Yl ( -ex)) = Y3 ( -ex)) = 0. In what follows, we are only 

interested in positive and increasing solutions Ul(T) and Yl(T) of (4.2.4) or (4.2.8) 

and (4.2.9), respectively. As long as Y~(T) > 0, for the trajectory W(77) := Y3(Yl 1 (77)) 

we have the following graph equation in the (Yl, Y3) phase space 

~( ) = 77 - ~9(77) 
77 dW(77) for 77 > 0. ( 4.2.10) 
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corresponding to A ( c). It is easy to prove the following lemma for the solutions on 

Uc (see, e.g., [22]). 

Lemma 4.2.1 Assume that c -=1= 0. Then system (4.2.4}-(4.2.5) has exactly one 

positive solution on Uc (up to translations). For sufficiently large negative T, this 

solution satisfies 

Remark 4.2.1 If g'(O) = 0, we assume that g"(O) -=1= 0. Then U2(T) in Lemma 4.2.1 

can be approximated by 

In the case where c = 0, system (4.2.4) is equivalent to 

or 

(4.2.9) 

with boundary conditions Yl (-00) = Y3( -00) = 0. In what follows, we are only 

interested in positive and increasing solutions Ul (T) and Yl (T) of (4.2.4) or (4.2.8) 

and (4.2.9), respectively. As long as Y~(T) > 0, for the trajectory wCl]) := Y3(Yl 1 ('l])) 

we have the following graph equation in the (Yl, Y3) phase space 

for 'l] > 0. ( 4.2.10) 
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we have 

for TJ > 0, (4.2.11) 

where U2(T) = u2(u11(TJ)). For the solutions of (4.2.11) associated with the trajec­

tory for (4.2.4)-(4.2.5), the boundary conditions (4.2.5) and Lemma 4.2.1 provide 

V(O+) = 0, V(O+) = A(C). ( 4.2.12) 

Our proofs involve continuous "switching" between solutions for the graph equation 

(4.2.11) and the original system (4.2.4) or (4.2.8). So we first give the following 

lemma on some general properties of trajectories V(TJ) with (4.2.12), which will be 

frequently used. Let U(T) = (Ul(T),U2(T),U3(T)) be the solution of system (4.2.8) 

associated with V (TJ). 

LeIllIlla 4.2.2 Let C > o. Then the following statements hold. 

(i) V(TJ) > 0, and V(TJ) > ~ > 0 for TJ E (0, a]. 

(ii) Let fj = inf{TJ E (0, b] : V(TJ) = O}. Then fj > a, and fJ < b implies that 

lim V(7J) = -00. 
7J /"r; 7J-7J 

Proof. (i) As long as V(TJ) is well defined (i.e., U~(T) = U3(T) > 0), it follows 

from (4.2.6) that U2(T) < ~g(Ul(T)) for Ul(T) E (0, b]. Therefore, for U3(T) > 0 and 

Ul(T) E (0, a], we have U2(T) < ~g(Ul(T)) < ~Ul(T) (see Figure 4.1). We claim that 

U~(T) > 0 as long as Ul(T) E (0, a]. Indeed, Lemma 4.2.1 implies that U3(T) > 0 for 

small positive Ul(T). It follows that for small Ul(T), there holds 
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In the case where c =I 0, as long as U~(T) > 0, for VeT]) := u~(ul1(1])) (1] = Ul(T)) 

we have 

for 1] > 0, (4.2.11) 

where U2(T) = u2(u11(1])). For the solutions of (4.2.11) associated with the trajec­

tory for (4.2.4)-(4.2.5), the boundary conditions (4.2.5) and Lemma 4.2.1 provide 

V(o+) = 0, 11(0+) = "\(c). ( 4.2.12) 

Our proofs involve continuous "switching" between solutions for the graph equation 

( 4.2.11) and the original system (4.2.4) or (4.2.8). So we first give the following 

lemma on some general properties of trajectories V(1]) with (4.2.12), which will be 

frequently used. Let U(T) = (Ul(T), U2(T), U3(T)) be the solution of system (4.2.8) 

associated with V(1]). 

LeIllIlla 4.2.2 Let c > 0. Then the following statements hold. 

(i) V(1]) > 0, and 11(1]) > ~ > ° for 1] E (0, a]. 

(ii) Let fj = inf{1] E (0, b] : V(1]) = O}. Then fj > a, and fj < b implies that 

lim V(11] = -00. 
11 /'fj 11-11 

Proof. (i) As long as V(1]) is well defined (i.e., U~(T) = U3(T) > 0), it follows 

from (4.2.6) that U2(T) < ~g(Ul(T)) for Ul(T) E (0, b]. Therefore, for U3(T) > ° and 

Ul(T) E (0, a], we have U2(T) < ~g(Ul(T)) < ~Ul(T) (see Figure 4.1). We claim that 

U~(T) > ° as long as Ul(T) E (0, a]. Indeed, Lemma 4.2.1 implies that U3(T) > ° for 

small positive Ul (T). It follows that for small Ul (T), there holds 
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Suppose, by contradiction, that TO E IR is the first point such that u~ (TO) = 0 and 

Therefore, Ul(TO) < aU2(TO), and hence Ul(TO) > a, a contradiction. It then follows 

that U3(T) > 0 and aU2(T) < Ul(T) as long as Ul(T) E (0, a]. Thus, for 'T] E (0, a], we 

have V(n) > 0 and V(n) = .f + Ul(r)- aU2(r) > .f > 0 where T = u-1 (n) 
'f 'f d dV(71) - d' 1 'f' 

(ii) Clearly, fj > a. Suppose that fj < b. Then u3(f) = 0 and u~(f) < 0, where 

f = u11(fj). We claim that u~(f) < O. Suppose, by contradiction, that u~(f) = O. 

Then ul(f) - aU2(f) = 0, and f < +00. Moreover, we can choose a small c > 0 

such that for T E (f-c, f), U~(T) < 0 and U3(T) > 0, and hence, Ul(T) -au2(T) < O. 

Using (4.2.6) and the fact that U~(T) > 0 for T < f, we then have 

u3(f) - ~(-!3u2(f) + g(ul(f))) 

-~( -!3u2(f) + g(ul(f))) < 0, 

a contradiction. Thus u~ (f) < 0, and hence lim V~71] = lim u?(r) = lim u3(r) = -00. 
71/fi 71 71 r /7 u 1 (r) r /7 u3(r) 

• 
Assume that J~(~g(z) - z)dz > O. Let 

Nk = {( 'T], () E IR2 : ( 2 /2 + F ( 'T]) = k} \ {( 0, 0), (a, 0), (b, 0) } , 

where F('T]) = ~ J071(~g(Z) - z)dz, Since z > ~g(z) for z E (0, a) in the case of 

gf(O) < I < lcrit (see Figure 4.1), ko = F(a) < O. Note that Nk are exactly the 

trajectories of solutions to system (4.2.9), and k > 0 gives exactly the trajectories 

intersecting (-axis. For k > 0, we define Nt = Nk n {('T], () E IR2 : ( > O} and 
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Suppose, by contradiction, that TO E ]R is the first point such that u~ (TO) = 0 and 

Ul(TO) E (0, a). Then 

Therefore, Ul (TO) < aU2( TO), and hence Ul (TO) > a, a contradiction. It then follows 

that U3(T) > 0 and aU2(T) < Ul(T) as long as Ul(T) E (0, a). Thus, for TJ E (0, a], we 

have V(71) > 0 and 1/(71) = f. + Ul(T)- aU2(T) > f. > 0 where T = U-1 (71) " "d dV(17) - d' 1 ',. 

(ii) Clearly, fj > a. Suppose that fj < b. Then U3(T') = 0 and u~(T') < 0, where 

T' = u11(ij). We claim that u~(T') < O. Suppose, by contradiction, that u~(T') = O. 

Then Ul(T') - aU2(T') = 0, and T' < +00. Moreover, we can choose a small E > 0 

such that for T E (T'-E, T'), U~(T) < 0 and U3(T) > 0, and hence, Ul(T) -au2(T) < O. 

Using (4.2.6) and the fact that U~(T) > 0 for T < T', we then have 

U3(T') - ~(-f3U2(T') + g(Ul(T'))) 
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• 
Assume that J~(~g(z) - z)dz > O. Let 

Nk = {(TJ, () E ]R2 : (2/2 + F(TJ) = k} \ {(O, 0), (a, 0), (b, On, 

where F(TJ) = ~ J017(~g(Z) - z)dz. Since z > ~g(z) for z E (0, a) in the case of 

g'(O) < 'Y < 'Ycrit (see Figure 4.1), ko = F(a) < O. Note that Nk are exactly the 

trajectories of solutions to system (4.2.9), and k > 0 gives exactly the trajectories 

intersecting (-axis. For k > 0, we define Nt = Nk n {(TJ, () E ]R2 : ( > O} and 
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denote by 'ltk(rJ) the solution of equation (4.2.10) in N:. Let Vc(rJ) be the solution of 

equations (4.2.11)-(4.2.12) with the velocity of c, and Uc(T) = (Ul(T), U2(T), U3(T)) 

be the solution of system (4.2.8) with (4.2.5) corresponding to Vc(rJ). Then we have 

the following result on the relationship between 'It k and Vc or u c . 

Figure 4.2: Phase portrait of (4.2.9). 

Lemma 4.2.3 For c > ° and U3(T) > 0, (Ul(T), U3(T)) crosses through increasing 

level sets N: with increasing T whenever Ul(T) E (0, b). That is, Vc(rJ) intersects a 

level set N: at most once for rJ E (0, b). Furthermore, at the point of intersection 

(ryk, ~(rJk)) = (rJk, 'ltk(rJk)), there holds V;(rJk) > ~ + 'lt~(rJk)' 

Proof. Note that U2(T) < ~g(Ul(T)) whenever Ul(T) E (0, b). We then have 

;f;.k :T (~U~(T) + F(UI (T))) = U3(T)U~(T) + ~(~9(Ul(T)) - U, (T))U~ (T) 

JU~(T) + ~U3(T)(~9(Ul(T)) - aU2(T)) > O. 
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denote by W k(7]) the solution of equation (4.2.10) in N:. Let Vc(7]) be the solution of 

equations (4.2.11)-(4.2.12) with the velocity of c, and Uc(T) = (Ul(T), U2(T), U3(T)) 

be the solution of system (4.2.8) with (4.2.5) corresponding to Vc(7]). Then we have 

the following result on the relationship between W k and Vc or Uc . 

Figure 4.2: Phase portrait of (4.2.9). 

Lemma 4.2.3 For c > ° and U3(T) > 0, (Ul(T), U3(T)) crosses through increasing 

level sets N: with increasing T whenever Ul(T) E (0, b). That is, Vc(7]) intersects a 

level set N: at most once for 7] E (0, b). Furthermore, at the point of intersection 

Proof. Note that U2(T) < !g(Ul(T)) whenever Ul(T) E (0, b). We then have 

:Tk ddT(~U~(T) + F(Ul(T))) = U3(T)U~(T) + ~(;9(Ul(T)) - Ul(T))U~(T) 

~U~(T) + ~U3(T)(;9(Ul(T)) - aU2(T)) > 0. 
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This proves the first part of the results. The second part follows from a direct 

computation 

• 
Now we are ready to prove the main result of this section. 

Theorem 4.2.1 Assume that g'(O) < 'Y < 'Ycrit. Then there exists a wave speed c* 

such that system (4.2.2) has a nontrivial strictly monotone wave solution connecting 

E- and E+, and c* has the same sign as J: (~g(z) - z) dz. Moreover, c* = 0 if 

and only if the integral vanishes. 

Proof. Without loss of generality, we assume that 

[ (~g(z) - z) dz > O. ( 4.2.13) 

Otherwise, by the change of variables VI = b - UI , V2 = ~b - U2 , we can transform 

the original system (4.2.2) into 

where G(z) = g(b) - g(b - z). Since g(b) = ~b, G(z) satisfies assumption (R1) on 

[0, b) and (4.2.13). 

If c* = 0, the heteroclinic orbit of system (4.2.9) implies that the integral (4.2.13) 

vanishes. Conversely, if the integral vanishes, there is a nontrivial wave solution of 

the ODE system (4.2.4) with velocity c = O. Therefore, we restrict ourselves to the 

positive integral. 
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such that system (4.2.2) has a nontrivial strictly monotone wave solution connecting 
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Proof. Without loss of generality, we assume that 
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Otherwise, by the change of variables VI = b - U1 , V2 = ±b - U2 , we can transform 

the original system (4.2.2) into 

f g, V, (x, t) = d::, V, (x, t) - V, (x, t) + aV2(x, t), 

1 g, V2(x, t) = G(V, (x, t)) - ,BV2(x, t), 

where G(z) = g(b) - g(b - z). Since g(b) = ~b, G(z) satisfies assumption (R1) on 

[0, b) and (4.2.13). 

If c* = 0, the heteroclinic orbit of system (4.2.9) implies that the integral (4.2.13) 

vanishes. Conversely, if the integral vanishes, there is a nontrivial wave solution of 

the ODE system (4.2.4) with velocity c = o. Therefore, we restrict ourselves to the 

positive integral. 
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Let N* := Nt(b) be the level curve through the critical point (b, 0), and \][*("7) := 

\][ F(b) ("7) be the corresponding solution. Define 

In the rest of the proof, we proceed with four steps. 

Step 1. E -# (/). 

For c > 0 and "7 E (0, a], we have Vc("7) > 0 and ~("7) > cld > O. If Ve("7) > 0 

for "7 E (a, b), then Vc("7) must intersect with N* on (0, b]. Suppose that ~("70) = 0 

for "70 E (a, b). Then 

where "71 E (O,a),To = u11("70). We then have aU2(TO) - U1(TO) > e;a. Note that 

o < U2( TO) < ~. Thus, whenever c2 > b:;, we have ~("7) > 0 for "7 E (a, b). Then 

Vc("7) intersects N*. Thus, E -# (/). 

Step 2. ~ := inf E > O. 

Let m > 0 be a constant. Consider the line V = -m("7 - b) ("7 E [0, b]). If Ve("7) 

intersects with this line, then, at the intersection we have 

. c "7 - aU2 c b - "7 1 1 
Ve("7) = d - md("7 - b) < d + md("7 - b) = d(c - m)' 

For any sufficiently small c > 0, we can choose m E (0, -c/2 + VI + c2 14) such 

that C - 11m < -m. Then we must have Vc("7e) = 0 for some "7e E (a, b]. Thus, by 

Lemma 4.2.3, Ve does not intersect with N* on (0, b]. Therefore, ~ > O. 

Step 3. ~E E. 

Suppose, by contradiction, that V~("7) does not intersect with N*. Then Lemma 

4.2.2 and 4.2.3 imply that V~(i]) = 0 for i] E (a, b]. If i] = b, we are done. 
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Let N* := Nt(b) be the level curve through the critical point (b, 0), and W*(7]) := 

W F(b) (7]) be the corresponding solution. Define 

In the rest of the proof, we proceed with four steps. 

Step 1. E ~ 0. 

For c > 0 and 7] E (0, a], we have Vc(7]) > 0 and Vc(7]) > cld > O. If Vc (7]) > 0 

for 7] E (a, b), then Vc(7]) must intersect with N* on (0, b]. Suppose that Vc(7]o) = 0 

for 7]0 E (a, b). Then 

where 7]1 E (0, a), TO = u11(7]0). We then have aU2(TO) - U1(TO) > c; a. Note that 

o < U2(TO) < ~. Thus, whenever c2 > b:, we have Vc(7]) > 0 for 7] E (a,b). Then 

Vc(7]) intersects N*. Thus, E ~ 0. 

Step 2. £:= inf E > O. 

Let m > 0 be a constant. Consider the line V = -m(7] - b) (7] E [0, b]). If Vc (7]) 

intersects with this line, then, at the intersection we have 

For any sufficiently small c > 0, we can choose m E (0, -c/2 + J1 + c2 14) such 

that c - 11m < -m. Then we must have Vc(7]c) = 0 for some 7]c E (a, b]. Thus, by 

Lemma 4.2.3, Vc does not intersect with N* on (0, b]. Therefore, £ > O. 

Step 3. £ E E. 

Suppose, by contradiction, that V~(7]) does not intersect with N*. Then Lemma 

4.2.2 and 4.2.3 imply that V~(i7) = 0 for fj E (a, b]. If fj = b, we are done. 
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Assume that ij < b. Let PI be a small plane in a small neighborhood of (0,0,0) 

In (UI' U2, U3) phase space, which is normal to the eigenvector (1, m(~), A(~)) cor­

responding to the eigenvalue A(~), where m(~) = /3!J~t~). By Lemma 4.2.1, the 

trajectory u~( T) transversely intersects with PI at I£. By the local continuous de­

pendence of U£ on ~, for all c in a small neighborhood of ~, u e ( T) transversely 

crosses through PI at Ie and lim Ie = Ie. Without loss of generality, we assume that 
e~~ -

ue(O) = Ie, u£(O) = I£. Let P2 = {(UI' U2, U3) E ]R3 : UI, U2 > 0, U3 = O}. Then, 

Lemma 4.2.2 implies that Ue(T) transversely intersects P2 at (ij,u2(u11 (ij)),0). By 

the continuous dependence of solutions on parameters and initial values, for all Ie in 

a sufficiently small neighborhood of I£, ue( T) transversely intersects P2. Thus, we can 

choose a c > ~ such that Ue(T) intersects P2. That is, Vc(17) = 0 for some 17 E (a,b). 

By Lemma 4.2.3, Ve (17) has no intersection points with N*. Hence, ~ < c tf. E, which 

contradicts the definition of~. Therefore, V£ does intersect with N*. That is, ~ E E. 

Step 4. 17£ = b. 

Suppose that 17£ < b. Let P3 = {(UI' U2, U3) E ]R3 : (UI' U3) E N*, U2 > O}. Then 

by Lemma 4.2.3, U£(T) transversely intersects P3 at (17£, U2(U11 (17£)), V£(17£)). By the 

same argument as in Step 2, we obtain that, as c ---t ~, u e ( T) transversely intersects 

such that ~ - <5 E E, which contradicts the definition of ~. • 
Remark 4.2.2 Note that 

By Theorem 4.2.1, it then follows that there exists 1 E (g' (0), ryerit) such that c* > 0 

if ry E (g'(O), 1), and c* < 0 if ry E (1, ryerit). 
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Assume that fj < b. Let PI be a small plane in a small neighborhood of (0,0,0) 

m (UI' U2, U3) phase space, which is normal to the eigenvector (1, m(~), ).(~)) cor­

responding to the eigenvalue ).(~), where m(~) = /3!J~t~). By Lemma 4.2.1, the 

trajectory u~/ T) transversely intersects with PI at I£. By the local continuous de­

pendence of U£ on ~, for all c in a small neighborhood of ~, Ue(T) transversely 

crosses through PI at Ie and lim Ie = Ie. Without loss of generality, we assume that 
e~~ -

Ue(O) = Ie, u£(O) = I£. Let P2 = {(UI' U2, U3) E ]R3 : UI, U2 > 0, U3 = O}. Then, 
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choose a c > ~ such that Ue(T) intersects P2. That is, Vc(17) = 0 for some 17 E (a, b). 
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P3 at ('T]e, U2 (u11 ('T]e)) , Vc( 'T]e)) , and 17e -+ 17£ < b. It follows that there exists a <5 > 0 

such that ~ - <5 E E, which contradicts the definition of ~. • 
Remark 4.2.2 Note that 

l (; g{z) - z ) dz = a [[ G g{z) - ! z ) dz - 1" (! z - ~g{z)) dZ]. 

By Theorem 4.2.1, it then follows that there exists 1 E (g'(O),"Yerit) such that c* > 0 

if"Y E (g'(0),1), and c* < 0 if"Y E (1, "Yerit). 
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4.3 Attractivity and Uniqueness 

In this section, we discuss the global attractivity and uniqueness of traveling waves 

of system (4.2.2). For convenience, in the rest of this chapter we consider a more 

general quasi-monotone system 

%tU1(X, t) = d::2U1(X, t) + Fl(U1(X, t), U2(x, t)), 
( 4.3.14) 

%tU2(x, t) = -j3U2(x, t) + g(U1(x, t)) := F2(U1(X, t), U2(x, t)). 

Assume that 

(R2) There exists l > 0 such that Fl E C 2((-l,00)2,JR), and a~lFl(Ul,U2) < 0, 

a~2Fl(Ul,U2) > 0 for (Ul,U2) E (-l, 00)2. 

(R3) F1(0,0) = 0, and for any l2 > 1/ j3, there exists h > 0 such that Fl(h, l2) < o. 

Without loss of generality, we may assume that the function 9 admits a smooth 

extension defined on (-l, 00) with g'(z) > 0 for z E (-l, 0). In what follows, we use 

notations 

Consider the ODE system 

lU~(t) = Fl(lUl(t), lU2(t)), 

lU~(t) = F2(lUl(t),lU2(t)). 
(4.3.15) 

Because of our assumptions on Fl and g, system (4.3.15) is cooperative on JR~. 

Hence the comparison principle implies that every solution to (4.3.15) with nonneg-

ative initial values remains nonnegative. By the standard comparison arguments, it 
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easily follows that solutions of (4.3.15) on lRt are uniformly bounded and ultimately 

bounded. Thus, each solution of (4.3.15) with nonnegative initial values exists glob­

ally on [0, CX)), and the solution semiflow of (4.3.15) is compact, point dissipative, 

and monotone on lRt. 

Obviously, E - is an equilibrium of (4.3.15). We further assume that (4.3.15) 

admits two nonnegative equilibria in lRt. With a little abuse of notations, we denote 

them by EO and E+. Furthermore, suppose that E- « EO « E+, and E± are stable 

nodes and EO is a saddle point, where "«" means that the two vectors satisfy "<" 

elementwise. Let 

and 

By the Dancer-Hess connecting orbit lemma (see [25, Proposition 1]) and [72, The­

orem 2.3.2], as applied to [E-, EO] and [EO, CX)), respectively, it follows that 

and 

where w(t, wo) is the solution to (4.3.15) with w(O, wo) = Wo E lRt. 

Let X := BUC(lR, lR2
) be the Banach space of all bounded and uniformly con-

tinuous functions from lR to lR2 with the usual supreme norm. Let 
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It is easy to see that Xt- is a closed cone of X and its induced partial ordering makes X 

into a Banach lattice. Denote the partial orders by " <x, <x, «x". For 'ljJl, 'ljJ2 E X 

with 'ljJl <x 'ljJ2, denote order intervals by ['ljJ1, 'ljJ2]X = {'ljJ EX: 'ljJl <x 'ljJ <x 'ljJ2}. 

To prove the global attractivity and uniqueness of traveling waves, we need a 

series of lemmas. The following lemma shows the existence, uniqueness and the 

strong monotonici ty of solutions to system (4.3.14). 

Lemma 4.3.1 For any 'ljJ E Xt-, system (4.3.14) has a unique, bounded and non­

negative solution U(x, t, 'ljJ) with U(·, 0, 'ljJ) = 'ljJ, and the solution semifiow of (4.3.14) 

is monotone. Moreover, U(x, t, 'ljJl) « U(x, t, 'ljJ2) for t > 0 and x E JR whenever 

'ljJl, 'ljJ2 EXt-with 'ljJl <x 'ljJ2. 

Proof. Let Tl (t) be the analytic semigroup on BUC(JR, JR) generated by ~~ = ~:~, 

and T2(t)'ljJ2 = e- f3t 'ljJ2, V'ljJ2 E BUC(JR, JR). Clearly, T(t) = (T1(t), T2(t)) is a linear 

semigroup on X. Let B( 'ljJ)(x) = (Fl ('ljJl (x), 'ljJ2 (x)), g( 'ljJl (x))), V'ljJ = ('ljJl, 'ljJ2) EXt-. 

Then system (4.3.14) can be rewritten as as the following integral equation 

U(t) = T(t)U(O) + l' T(t - s)B(U(s))ds, 

whose solutions are called mild solutions for system (4.3.14). It is easy to check the 

quasi-monotonicity of B('ljJ). By [64, Corollary 5] (taking delay as zero, also see [88, 

Corollary 8.1.3]), it then follows that for any 'ljJ EXt-, system (4.3.14) has a unique 

nonnegative and noncontinuable mild solution U(x, t, 'ljJ) satisfying U(·, 0, 'ljJ) = 'ljJ. 

Moreover, by [88, Corollary 2.2.5], U(x, t, 'ljJ) is a classical solution for t > o. Note 

that [64, Corollary 5] also implies that the comparison principle holds for system 

(4.3.14). By the comparison argument, solutions of (4.3.14) on Xt- are uniformly 

bounded. Therefore, system (4.3.14) defines a monotone solution semiflow on Xt-. 
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Suppose that 'ljJl, 'ljJ2 EXt-with 'ljJl <x 'ljJ2. Then U(x, t, 'ljJi) > 0, \Ix E lR, t > o. 

Let U(x, t) = U(x, t, 'ljJ2) - U(x, t, 'ljJl). Then U(x, t) > 0, \Ix E lR, t > 0, and U(·, 0) ~ 

O. Note that the first component U1 (x, t) of U(x, t) satisfies 

2 1 

dU"xx + ~ Ui 1 F,' (sU(x, t, 'l/J2) + (1 - s )U(x, t, 'I/J' ))ds (4.3.16) 

> dU"xx + u, l' F,'(sU(x, t, 'l/J2) + (1 - s )U(x, t, 'I/J') )ds, ( 4.3.17) 

and the second component U2 (x, t) of U(x, t) satisfies 

where U1(x, t, 'ljJl), U1(x, t, 'ljJ2) are the first components of U(x, t, 'ljJl) and U(x, t, 'ljJ2), 

respecti vely, and 

A(x, t) = l' g' (sU, (x, t, 'l/J2) + (1 - s )U, (x, t, 'I/J') )ds. 

It then follows that 

U2 (x, t) = e-fJt U2 (x, 0) + 1t e-fJ(t-s) A(x, s)U, (x, s)ds. ( 4.3.18) 

In the case where U1 (., 0) ~ 0, the strict positivity theorem ([85, Theorem 5.5.4]) 

and inequality (4.3.17) imply that U1 (x, t) > 0, \Ix E lR, t > O. Since g'(z) > 0 for 

z > 0, (4.3.18) implies U2(x, t) > 0, \Ix E lR, t > O. Thus, U(x, t, 'ljJl) « U(x, t, 'ljJ2) 

for x E lR, t > O. 

In the case where U2 (·, 0) ~ 0, it follows from (4.3.18) that U2 (·, t) ~ 0 for t > O. 

Since Fi > 0 on lR~, the equality (4.3.16) implies that U1 (·, t) ~ 0 for t > 0, and 

hence by the inequality (4.3.17) and [85, Theorem 1.4.5], we must have U1 (x, t) > 0, 
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\:Ix E IR, t > O. Therefore, it follows from (4.3.18) that U2(x, t) > 0, \:Ix E IR, t > O. 

Thus U(x, t, 'ljJl) ~ U(x, t, 'ljJ2), \:Ix E IR, t > o. • 

In view of Section 4.2, we suppose that cp(x - ct) = (CPl(X - ct), CP2(X - ct)) is 

a strictly increasing traveling wave solution of (4.3.14) connecting E- and E+. By 

the moving coordinate z = x - ct, we transform (4.3.14) into the following system 

(4.3.19) 

Then cp(z) is an equilibrium solution of system (4.3.19). In what follows, we denote 

by u(z, t, 'ljJ) = (Ul(Z, t), U2(Z, t)) the solution of system (4.3.19) with u(·, 0, 'ljJ) = 

'ljJ E J4. Clearly, the solution U(x, t, 'ljJ) of (4.3.14) with initial value 'ljJ is given 

by U(x, t, 'ljJ) = u(x - ct, t, 'ljJ). As noted before, the comparison principle holds for 

(4.3.14) and hence for (4.3.19). For convenience, we set 

Lemma 4.3.2 If'ljJ = ('ljJl, 'ljJ2) E J4 satisfies 

lim sup 'ljJ(~) « EO « lim inf 'ljJ(~), 
';-+-00 ';-+00 

(4.3.20) 

then, for any c > 0, there exist z = z(c,'ljJ) > 0 and a large time i = i(c,'ljJ) such 

that cp(z - z) - c < u(z, i, 'ljJ) < cp(z + z) + c. 

Proof. Without loss of generality, we assume that 'ljJ(~) < ll' \:I~ E IR and 'ljJ(~) < l2' 

\:I~ < 0, where h, l2 E IR~, h > E+, E- < l2 «Eo. Let v+(t) = (vt(t), vt(t)) := 
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w(t,2h - l2) and v-(t) := w(t, l2) be the solutions of the reaction system (4.3.15) 

with v+(o) = 2h -l2' v-(o) = l2. Define ((8) = ~(I+tanh ~). Then (' = ((1-(), (" = 

('(I - 2(). Let 

c = c+d+sup{(vt(t) -v1 (t))2 IFi (0)1 + (vt(t) -V2 (t))2
1
F.i (0)1 

v:(t) - vi(t) 11 v:(t) - Vi(t) 22 

+2(vt(t) - Vj(t))IF{2(0)1 : t E [0, +00), 0 E (v-(t), v+(t)), 1 < i i= j < 2}. 

Set c > c be a fixed number, and define the function 

v(z, t) = v+(t)((z + ct) + v-(t)(1 - ((z + ct)), Vz E lR, t > 0. 

It easily follows that v(·, 0) > 'ljJ(.). We further claim that v(z, t) is a super-solution 

of system (4.3.19). Indeed, by Taylor's expansion, we have 

1 + -2i 1 + -2i "2((I-()(VI -VI) F11 (O) + "2((I-()(v2 -v2 ) F22 (0) 

+((1 - ()(vt - v1)(vt - v2 )F{2(0), 

where 0 E (v-(t), v+(t)). For each i = 1,2, and (z, t) E lR x ~, we have 

(Fi( v+) + (1 - ()Fi( v-) - Fi( v(z, t)) 

+((1 - ()[(c - c) (v: - vi) - di(l - 2()(v: - vi)] > 0, 

where d l = d, d2 = 0, and Vi(Z, t) is the i-th component of v(z, t). Therefore v(z, t) 

is a super-solution of system (4.3.19). 

Thus, by the comparison principle we have u(z, t, 'ljJ) < v(z, t), Vt > 0. Note that 

lim v±(t) = E±. It then follows that for any c > 0, there exist i = i(c, 'ljJ) > 0, and 
t-+oo 
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Z = Z(e,1/J) E JR such that u(z, t, 1/J) < cp(z + z) + e, Vz E JR. A similar estimate on 

the lower bound of the solution completes the proof. • 

Note that E± are stable nodes for the reaction system (4.3.15), i.e., the Jacobian 

matrices (FJ(E±)) have only negative eigenvalues. Let A± = (Mt) be the constant 

matrices so that FJ(E±) < Mt, 1 < i, j < 2, and that A± are irreducible and have 

only negative eigenvalues. Denote by p± = (pt, p~) the positive eigenvectors cor­

responding to the principle eigenvalues of A±. Let Pl(~),P2(~) be smooth positive 

functions such that p(~) = (PI (~), P2 (~)) -t p± in ((:2 -topology as ~ -t ±oo. Moti­

vated by [69], we have the following result on super- and sub-solution for (4.3.19). 

Lemma 4.3.3 There exist positive numbers a and <;0 such that for any <; > <;0, any 

Z E JR, and e E (0, eo(<;)), 

are super- and sub-solutions of system (4.3.19), respectively. 

Proof. Clearly, there exist 6, k > 0 such that 

FJ(u) < Mt for Ilu - E±II < 6,u E JR2, 1 <i,j< 2, 

2 ( 4.3.21) 
I: Mtpj < -kPi for P = (PI, P2) E JRt with lip - p± II < 6, i = 1,2. 
j=l 

Since cp(~) -t E±, p(~) -t p±, p'(~), p"(~) -t 0 as ~ -t ±oo, there exist el, M > 0 

such that 

k - eel - del> 0; 

I p~ ( 7] ) I, I p~' ( 7] ) I < e 1 Pi ( 7] ), V 17] I > M - 1, i = 1, 2; 
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Z = Z(c, 'l/J) E JR such that u(z, t, 'l/J) < cp(z + z) + c, \/z E JR. A similar estimate on 

the lower bound of the solution completes the proof. • 

Note that E± are stable nodes for the reaction system (4.3.15), i.e., the Jacobian 

matrices (Fj(E±)) have only negative eigenvalues. Let A± = (J1~) be the constant 

matrices so that Fj(E±) < J1~, 1 < i, j < 2, and that A± are irreducible and have 

only negative eigenvalues. Denote by p± = (pt, p~) the positive eigenvectors cor­

responding to the principle eigenvalues of A±. Let PI (C;) , P2(c;) be smooth positive 

functions such that p( c;) = (PI (C;) , P2 (c;)) --t p± in ([:2 -topology as c; --t ±oo. Moti­

vated by [69], we have the following result on super- and sub-solution for (4.3.19). 

Lemma 4.3.3 There exist positive numbers (J and C:;o such that for any c:; > C:;o, any 

Z E JR, and c E (O,co(C:;)), 

are super- and sub-solutions of system (4. 3.1 g), respectively. 

Proof. Clearly, there exist 0, k > 0 such that 

2 

2: J1~Pj < -kpi for P = (PI, P2) E JR~ with lip - p± II < 0, i = 1,2. 
j=1 

(4.3.21 ) 

Since cp (C;) --t E±, p( c;) --t p±, p' (C;) , P" (C;) --t 0 as c; --t ±oo, there exist c I, M > 0 

such that 
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IIp(17) - p+11 < 6, \/17 > M - 1; IIp(17) - p-II ~ 6, \/17 < -M + 1; 

Ilcp(~) + cP(17) - E+II < 6, \/6 E (0, cl], ~ > M - 1, 'T] > M - 1; (4.3.22) 

IIcp(~) + cP(17) - E-II < 6, \/6 E (0, el], ~ < -M + 1,17 < -M + 1; 

Let Bl > 0 so that IIp(17)II, IIp'(17)II, IIp''(17)II < Bl for aU 17 E JR. Define 

B2 = sup{IFj(u)1 : u E [E- - 6e, E+ + B l e1}, Bs = 11~~ftM Ilcp'(~)II· 

Choosing 0 < (J < k - eel - d Cl, set 

Bl 
<; > <;0 = -B (B2 + (J + C + d), 

(J 3 

With q = e-ut , the argument of cp and CPi being ~ = ~ + z + <;c(1 - e-
ut

) and p, Pi 

being 17 = z + z, for any c E (0, co), we have 

i + 
wZt(z, t) _ cwZz(z, t) - diwZzz(z, t) - F (w (z, t)) 

Fi(cp) _ Fi(cp + cpq) + c<;(Jqcp~ - (Pi(J + cp~ + diP~')cq. 

where d l = d, d2 = O. We distinguish arnong three cases. 

Case (i): I~I < M. Note that FJ > 0 for i 1= j, FJ < 0 for i = j, and cp~ > O. By 

the choice of co, <;, and (J, we have 

Fi(<p) _ Fi(<p + cpq) = -11 cq (t pjF}(<p + cSpq)) ds > -Bl B 2cq, 
o J=l 

and hence 

Case (ii): ~ > M. Since ~ _ 17 < <;c < 1, ~ > 17 > M - 1. Thus, by the group of 

inequalities (4.3.22), we have 
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Therefore, by (4.3.21), there holds 

Hence, 

pi(cp) - pi(cp + cpq) = -l\q (i~ PjPj(cp + Scpq)) ds 

2 

> -cq L J-lijPj > kcqPi· 
j=l 

> (k - a - C£l - diCl)cqPi > 0. 
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Case (iii): f; < -M. By an argument similar to case (ii), we have Ni(w+(z, t)) > 

0. 

Combining cases (i)-(iii), we have Ni(w+(z, t)) > ° for all c E (0, co) and t > 0. 

Thus w+(z, t) is a super-solution of system (4.3.19). By a similar argument, we can 

prove that w- (z, t) is a sub-solution. • 

Lemma 4.3.4 The wave profile cp(z) is a Liapunov stable equilibrium of (4.3.19). 

Proof. Let co and w±(z, t, c) be defined as in Lemma 4.3.3 with z = ° and c; = C;o. 

It then follows that there exists K > 0, independent of c, such that Ilw±(z, t, c) -

cp(z) II < Kc, Vz E JR, t > 0, c E (0, co). For any c E (0, co), let 6 = c inf p(z). Thus, 
zElR 

for any given 11'ljJ - cpll < 6, we have 

w-(z, 0, c) = cp(z) - cp(z) < 'ljJ(z) < cp(z) + cp(z) = w+(z, 0, c), Vz E JR. 

Then the comparison principle implies that w- (z, t, c) < u(z, t, 'ljJ) < w+ (z, t, c), 

Vz E JR, t > 0, and hence Ilu(·, t, 'ljJ) - cp(·)11 < Kc, Vt > 0. • 

Now we are in a position to prove the main result of this section. 
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Theorem 4.3.1 Let <p(x - ct) be a monotone traveling wave solution of system 

(4·3.14) and U(x, t, 'ljJ) be the solution of (4.3.14) with U(·, 0, 'ljJ) = 'ljJ(.) E J4. Then 

for any 'ljJ E J4 satisfying (4.3.20), there exists s'lj; E JR such that 

lim II U ( x, t, 'ljJ) - <p (x - ct + s'Ij;) II = 0 
t-++oo 

uniformly for x E JR. Moreover, any traveling wave solution of system (4.3.14) 

connecting E- and E+ is a translate of <po 

Proof. We will apply the notations in Lemma 4.3.3. Let 60 = minp(z), and choose 
zElR 

<; > max{<;o, 8~}. For c E (O,co(<;)), by Lemma 4.3.2, there exists t such that 

<p(z - z) - c60 < u(z, t, 'ljJ) < <p(z + z) + c60, Vz E JR. 

Let f(z) = u(z, t, 'ljJ). Then, from the construction of w±(z, t) in Lemma 4.3.3, we 

have w-(z,O) < u(z, 0, f) < w+(z, 0), Vz E JR. By the comparison principle, we 

have w-(z, t) < u(z, t, f) < w+(z, t), Vz E JR, t > o. Note that u(z, t + t, 'ljJ) = 

u(z, t, u(z, t, 'ljJ)). We then have 

<p(z - z - c<;) cp(z - z)e-ut < u(z, t + t, 'ljJ) 
(4.3.23) 

< <p(z + z + c<;) + cp(z + z)e-ut , Vt > o. 

Define cI>t ('ljJ) := u(·, t, 'ljJ), V'ljJ E J4, t > O. By the estimate (4.3.23), the positive 

orbit ,,+('ljJ) := {cI>t('ljJ) : t > O} is bounded in Cl(lR, JR2). Note that lim <p(z) = 
z-+±oo 

E±. Consequently, the positive orbit ,,+ ('ljJ) is precompact in X, and hence its omega 

limit set w( 'ljJ) is nonempty, compact and invariant. 

Letting Zo = z + c<; and t --+ 00 in (4.3.23), we then have 

w ( 'ljJ) c I : = [<p (. - zo), <p (. + zo)] x . 
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Let h(s) = cp(. + s), Vs E [-zo, zo]. Then h is a monotone homeomorphism from 

[-zo, zo] onto a subset of I. Let V = [E-, E+]:%:. Then <Pt : V -7 V is a monotone 

autonomous semiflow. By Lemma 4.3.4, each h(s) is a stable equilibrium for <Pt. 

Clearly, each cP E I satisfies condition (4.3.20) and hence, by the above proof, ,+(cp) 

is precompact. By Theorem 1.2.2, it suffices to verify the condition 3(a) to obtain 

the convergence of ,+ ( 'ljJ ) . 

Assume that for some So E [-zo,zo) and CPo E I, cp(. + so) <:%: cp(.) for all 

cP E w(CPo); that is, cp(. + so) <:%: w(CPo). By Lemma 4.3.1, cp(z + so) « <Pt(CP)(z) , Vz E 

JR., t > 0, and hence, by the invariance of w(CPo), cp(z+so) « cp(z), Vcp E w(CPo), z E JR.. 

Since lim cp'(z) = 0, we can choose a large positive number Zl E (zo, +00) 
Z~±OO 

such that 5 = sup Ilcp'(z)11 < 4~2' By the compactness of w(CPo), there exists 
Izl~Zl-ZO 

Sl E (so, zo) such that Sl - So < 2£0<;, and 

For any fixed cP E w( CPo), there exists a time sequence {t j } such that ~im tj = +00, 
J~OO 

and Fm <Pt -(CPo) = cp. Fix a tj such that II<pt - (CPo) -cpll < 5(Sl -so). Since CP(Z+Sl) « 
J~OO J J 

cp(z) for z E [-Zl' Zl], and cp(z + so) - cp(z + Sl) « cp(z) - cp(z + Sl) for Vz E JR., we 

have 

> -5(Sl - so)e + cp(z) - cp(z + Sl) 

> -5(Sl - so)e - sup IIcp(z + so) - cp(z + Sl) lie 
Izl~Zl 

> -5(Sl - so)e- (Sl - so) sup Ilcp'(z)lle 
Izl~Zl 
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Let h(s) = cp(. + s), Vs E [-zo, zo]. Then h is a monotone homeomorphism from 

[-zo,zo] onto a subset of I. Let V = [E-,E+]x. Then <Pt : V -t V is a monotone 
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Iz12z1-Z 0 
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where eis the unit vector in JR2, C1 = ;~;::;. Note that C1 < co and C1e:;- < ~(Sl-SO). 

By the construction of w-(z, t) in Lemma 4.3.3, we have w-(z, 0) < <I>tj (¢>o)(z). It 

then follows that 

Setting t = ti-tj and ti ---+ 00, we then obtain that <p(.+~(Sl +so)) <x ¢>(.). Denote 

S2 = ~(Sl + so). Then S2 E (so, Sl) C [so, zo] and <p(. + S2) <x ¢>(.). Since ¢> E w(¢>o) 

is arbitrary, we have <p(. + S2) <x w(¢>o). 

By Theorem 1.2.2, there exists s'IjJ E [-zo, zo] such that w('ljJ) = h(s'IjJ) = <p(·+s'IjJ). 

Then lim <I>t('ljJ) = <p(. + s'IjJ). Since U(x, t, 'ljJ) = u(x - ct, t, 'ljJ) = <I>t('ljJ)(x - ct), we 
t-H:X) 

have lim IIU(x, t, 'ljJ) - <p(x - ct + s'IjJ)11 = 0 uniformly for x E JR. 
t---+oo 

Let <j;(x - ct) be a traveling wave solution of system (4.3.14) connecting E- and 

E+. Then <j; satisfies condition (4.3.20). By what we have proven above, there 

exists s'IjJ E JR so that lim 11<j;(· - ct) - <p(. - ct + s'IjJ)11 = O. By a change of variable 
t---+oo 

Z = X - ct, we have lim 11<j;(· + (c - c)t) - <p(. + s'IjJ)11 = O. Since <j;(±oo) = E±, and 
t---+oo 

<p(.) is strictly increasing on JR, we must have c = c, and hence, <j;(.) = <p(. + s'IjJ). • 

4.4 Global Exponential Stability 

In the last section we proved that for a large class of initial values, solutions of 

(4.3.14) converge to translates of the traveling wave front. In this section, we will 
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show that this convergence is also uniformly exponential via the spectrum analysis. 

A standard technique for determining stability (exponential) of traveling waves 

is to use the linearization criterion. As in the last section, we assume that system 

(4.3.14) admits a strictly increasing traveling wave solution 

U(x, t) = rp(x - ct) = (rpl(X - ct), rp2(X - ct)), c -# o. 

If the right-hand side of (4.3.19) is linearized about its equilibrium solution rp(z), 

the resulting linear operator is 

dUI zz + CUI z , , 
Lu= 

where Jcp(z) = (Fj(rp(z))), u(z) = (UI(Z), U2(Z)) E X. 

The linearization criterion for stability of the traveling wave front is that the 

spectrum 0" (L) of L (except for zero) lies in a left-half complex plane and is bounded 

away from the imaginary axis, and zero is a simple eigenvalue. Note that zero is 

always an eigenvalue of L because of the translation invariance of traveling waves. 

For the point spectrum O"p(L) of L, we have the following result. 

Lemma 4.4.1 Assume that A is an eigenvalue of L with eigenfunction U E Xc, 

complexified X. If U ¢ span{ rp' ( .) }, then ReA < o. 

Proof. Let D = diag(d, 0), C = diag(c, c), B(z) = (Fj(rp(z))) and B± = (Fj(E±)). 

We claim that there exist positive vectors q± such that B±q± < o. Note that the 

reaction system (4.3.15) is cooperative and E± are stable nodes. Since B+ is ir-

reducible, we can choose q+ as a positive eigenvector associated with the negative 
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principle eigenvalue of B+. Thus, B+q+ < o. If g'(O) > 0, then B- is an irreducible 

matrix. Therefore, a positive eigenvector q- can be chosen such that B-q- < o. 

If g'(O) = 0, let q- = (1, c). Then B-q- < 0 for some sufficiently small positive 

number c. 

Let Zo > 0 be a sufficiently large number so that B(z)q+ < 0 for z > zo, and 

B(z)q- < 0 for z < -zoo Set E > 0 be small so that (E2 D + EC + B(z))q+ < 0 for 

z > zo, and (E2D+EC+B(z))q- < 0 for z < -zoo Letting Q±(z) = e±EZq±, we have 

LQ+ < 0 for z > zo, and LQ- < 0 for z < - Zo. 

Assume that A is an eigenvalue of L with eigenfunction u E Xc and u tf. 

span{cp'(·)}. Rewrite A = Al +A2i, u = u 1 +u2i, where A1,A2 E JR, u\u2 E X, 

and u 2 = 0 if A2 = O. Consider the Cauchy problem: 

Vt (z, t) = Lv (z, t) - A 1 V (z, t), v (z, 0) = U 
1 (z) . 

The function v(z, t) = u 1(z) cos A2t - u 2(z) sin A2t is a solution of this problem. We 

require that at least one of the elements of the vector-valued function v(z, t) takes 

on a positive value (otherwise, we can consider -v(z, t)). Let 'IjJ(z) = cp'(z) > O. 

Since v(z, t) is periodic and bounded, we can choose a positive number r such that 

v(z, t) < r'IjJ(z) for Izl < Zo and t > 0, ( 4.4.24) 

where for at least one k = 1 or 2, and one IZ11 < Zo and t1 > 0, we have the following 

equality for the k-th components 

(4.4.25) 

We proceed the proof by contradiction. Suppose that Al > o. Then there hold 

the following two claims. 
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We proceed the proof by contradiction. Suppose that Al > O. Then there hold 

the following two claims. 
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Claim 1. v(z, t) < r'ljJ(z) for all z E IR, t > o. 

Suppose, by contradiction, that there exist some z > zo, t > 0 such that v(z, t) > 

r'ljJ(z). Since Q+(z) = etZq+ --+ +cx::> as z --+ +cx::>, there exists f > 0 such that 

v(z, t) < r'ljJ(z) + fQ+(z) for z > zo, t > 0, where at least for one j, one Z2 > Zo and 

t2 > 0, we have the equality for j-th component: 

Let y(z, t) = r'ljJ(z) + fQ+(z) - v(z, t). Then the j-th component Yj(z, t) satisfies 

Yj(Z2, t2) = 0, Yj(zo, t) > 0, Yj(z, t) > 0 for z > zo, t > o. Therefore, Yj,t(Z2, t2) < 0, 

Yj,z(Z2, t2) = 0, and if j = 1, then Yj,zAZ2, t2) > O. Since L'ljJ(z) = 0, and LQ+(z) < 0 

for z > zo, Yj(z, t) satisfies 

> (-Lv + AIV + Lr'ljJ + LfQ+ - Al(r'ljJ + fQ+))j 

(Ly - AIY)j 

djYj,zz + cYj,z + Fi (cp(z) )Yl + Fd (cp(z) )Y2 - AIYj, 

where dj = d if j = 1 and dj = 0 if j = 2. Evaluating the above inequality at 

(Z2' t2) and using the positivity of FI (cp(z)) for i #- j, we then have a contradiction 

in signs. Thus v(z, t) < r'ljJ(z) , Vz > zo, t > O. Using the same argument, we obtain 

that v(z, t) < r'ljJ(z) , Vz < -Zo, t > O. Thus the claim is established. 

Claim 2. v(z, t) _ r'ljJ(z), Vz E IR, t > O. 

Suppose, by contradiction, that v(z, t) t= r'ljJ(z). Then there exist t > 0, z E IR 

and k = 1 or = 2, such that v/C(z, t) < r'ljJ(z). Let Y(z, t) = r'ljJ(z) - v(z, t). Then 

Y(z, t) > 0 for z E IR, t > 0, and Y/C(z, t) > O. Moreover, the components Yi(z, t) of 
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Y(z, t) satisfy 

( 4.4.26) 

By a similar argument as in Claim 1, it follows from the inequality (4.4.26) that 

Yi(z, f) > 0 for each i = 1,2. Applying the strict positivity theorem ([85, Theorem 

5.5.4]), we have Yl (z, t) > 0 for z E lR, t > t. By the periodicity of Y in t, we have 

Yl (z, t) > 0 for z E lR, t > O. Therefore, if k = 1, defined by (4.4.25), we then have 

a contradiction. Let us consider the case where k = 2. Since Y2(Zl, t l ) = 0 and 

Y2(z, t) > 0 for z E lR, t > 0, it follows that Y2,t(Zl, t l ) < 0, Y2,z(Zl, t l ) = O. Note that 

Yl(Zl,tl ) > O. Evaluating (4.4.26) with i = 2 at (Zl,tl ), we have a contradiction in 

signs. This established the claim. 

For A2 -# 0, Claim 2 implies that Lv(z, t) = Lr'lj;(z) = 0, i.e., LUI (z) cos A2t -

Lu2(z) sin A2t = 0, Vt > O. Hence Lul(z) = 0 and Lu2(z) = O. Therefore, Lu = 0, 

which contradicts the fact that Lu = AU -# O. For A2 = 0, we have U2 0 and hence 

u(z) = ul(z) = v(z, t) = r'lj;(z) , which contradicts our assumption that u rf. span{ 'lj;}. 

Therefore, Al = ReA < O. • 

To show that the essential spectrum ae(L) of L satisfies the linearization criterion, 

we will use the results in Section 1.3 developed in [46]. 

Let T be the following linear operator: 

Tu= 
dUl zz + CUI z , , 

+ J(z) 

where J(z) (Fj(E+)) for z > 0, J(z) (Fj(E-)) for z < 0, and u(z) 
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Y(Z, t) satisfy 

Yi,t > (LY - AIY)i 
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(Ul(Z), U2(Z)) E X. Consider the eigenvalue problem of T 

(T - AI) 
P 

= 0, ( 4.4.27) 

r 

P 
where (z) E Xc, complexified X. Rewrite (4.4.27) as a system 

r 

p' (z) q, 

q'(z) -~(cq + J l1 (z)p + J 12 (z)r - Ap), 

r'(z) -~(J21(Z)P+ J22 (z)r - Ar), 

where J(z) = (Jij(z)). Let y = (p, q, r) E <c3 , and write the above system as 

y' = A(z, A)y, ( 4.4.28) 

where 

o 1 o 

A(z, A) = 

Define A+(A) := A(I, A), A-(A) := A( -1, A), and S± = {A E <C : A± = A±(A) have 

imaginary eigenvalues}, which will provide the necessary information about O"e(L). 

Lemma 4.4.2 <C \ S± has an open connected set G for which there exists a AO < 0 

such that {A : ReA> AO} C G. 
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Proof. Let P(A) = det(A± - j1iI). Then 

1 o 

P(A) 

o 

Setting P(A) = 0, we have 

where ~ = (F:j(E±) - Fl(E±) + dj12)2 + 4F;(E±)F.] (E±), which is positive since 

FJ(U1' U2) > 0 for i i= j, 1 < i, j < 2. Let A = Al + A2i, where AI, A2 E JR. Then 

Eliminating the parameter j1, we have 

Al = ~(Fl(E±) + Fi(E±) - ~AD 

±~ (F:j(E±) - Fl(E±) + :'A~)2 + 4F;(E±)F.] (E±). 

Thus the set S± is symmetric about the real axis in the complex plane. It is easy 

to obtain that the derivative dA1/ dA2 < 0 for A2 > O. Therefore, the maximal real 

part of the point in S± is one of the following values 
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Note that .\± are exact eigenvalues of the Jacobian matrix of the reaction system 

(4.3.15) at E±. Thus.\± < O. Therefore, the curves 8± are bounded uniformly away 

from the imaginary axis. This proves the lemma. • 

The implication of Lemma 4.4.2 is that there is no essential spectrum point of L 

in G. 

Lemma 4.4.3 a(L) n G c ap(L). 

Proof. Define the differential operator L(.\)y = y' - A(z, .\)y. Then, by Theorem 

1.3.1, one of the following cases holds: (i). 0 E a(L(.\)) for all .\ E G (defined by 

Lemma 4.4.2); (ii). 0 E p(L(.\)) for all .\ E G except for isolated points, and the 

exception points are poles of L(.\)-l of finite order. Therefore, the set G consists 

either entirely of spectral points a(T) of T (case (i)), or entirely of normal points of 

T (case (ii)). Here a normal point is a resolvent point or an isolated eigenvalue of T 

with finite multiplicity. It is not difficult to see that large positive numbers are not 

eigenvalues of T (see, e.g., the proof of Lemma 4.4.1). Thus, G consists entirely of 

normal points of T. Let 8 = Jcp(z) - J(z). Then L = T + 8. It is easy to show that 

8(.\01 - T)-l is compact for large positive .\0. By Theorem 1.3.2, G consists either 

entirely of normal points of L, or entirely of eigenvalues of L. Hence, Lemma 4.4.1 

implies that a(L) n G c ap(L). • 

Now we know that ae(L) causes no problem for linear stability. Hence, we can 

draw the following conclusion about the global exponential stability. 

Theorem 4.4.1 Let <p(x - ct) be a monotone traveling wave solution of (4.3.14) 

with c i= o. Then there exists a positive constant J-l > 0 such that for every 'Ij; E ~ 
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satisfying (4.3.20), the solution U(x, t, 'ljJ) of (4.3.14) satisfies 

II U(x, t, 'ljJ) - cp(x - ct + s1/J) II < C1/Je-J1-t, V'x E IR, t > 0, 

for some constant S1/J E IR and C1/J > o. 

Proof. By Lemma 4.4.1 and 4.4.3, it follows that zero is a simple eigenvalue of L 

and the rest of the spectrum a(L) lies in the left-hand complex plane and is bounded 

away from the imaginary axis. Thus, by the main theorem in [32], zero solution is 

stable for the linearized PDE system of (4.3.14) at the traveling wave solution. Then 

by the result in [30], the traveling wave solutions are locally exponentially stable for 

the original system (4.3.14), and hence, Theorem 4.3.1 completes the proof. I 

4.5 NUlllerical Silllulations 

By Theorems 4.2.1,4.3.1 and 4.4.1, we know that the epidemic model (4.2.2) admits 

a unique monotone bistable traveling wave solution (up to translation), which is 

globally exponentially stable with phase shift. In order to check this result, we 

numerically simulate solutions of system (4.2.2). Assume that d = 0.2, a = 2.3, f3 = 

1 and g(z) = 1~:2. Then, a = 0.5821, b = 1.7179, and the integral (4.2.13) is 

0.07521 > O. Hence, Theorem 4.2.1 implies that the wave speed c* is positive. 

System (4.2.2) is discretised by using the finite difference method on a finite spatial 

interval [-L, L] with the Neumann boundary condition, where L > 0 is sufficiently 

large in comparison with the domain in which the solutions rapidly change shapes. 

The numerical wave profile is shown as solid lines in Figure 4.3 and 4.4. Figure 4.5 

and 4.6 provide the evolution of the solution with initial function being the dashed 
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lines In Figure 4.3 and 4.4. We can see that the solution rapidly converges to the 

wave profile. 
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Chapter 5 

Spreading Speed and Traveling 
Waves for a Nonlocal Epidemic 
Model 

This chapter will investigate the asymptotic speeds of spread for solutions and travel­

ing wave solutions to the integral version of the epidemic model studied in Chapter 

4. We will establish the existence of minimal wave speed for monotone traveling 

waves, and show that it coincides with the asymptotic speed of spread for solutions 

with initial functions having compact supports. 

This chapter is organized as follows. Section 5.1 presents the nonlocal epidemic 

model. In Section 5.2, we first reduce the system into an integral equation, and then 

obtain the asymptotic speed of spread under appropriate assumptions. Section 5.3 is 

devoted to the existence and nonexistence of monotone traveling wave solutions. Our 

results show that the asymptotic speed of spread is exactly the minimal wave speed 

for monotone traveling waves. Finally, some numerical simulations are provided to 

illustrate the asymptotic speed of spread and monotone traveling waves. 
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5.1 Introduction 

Recall that, in Chapter 4, we investigated the existence, uniqueness and exponential 

stability of bistable traveling waves for the epidemic model: 

8tUl(t, x) 

8tU2(t, x) 

d6ul(t,X) - allUl(t,X) + a12U2(t,X), 

-a22U2(t, x) + g( Ul (t, X)), 

(5 .1.1) 

where Ul(t, x) and U2(t, x) denote the spatial densities of infectious agents and the 

infective human population at time t > 0, respectively, d, all, a12 and a22 are positive 

constants. This model has some basic assumptions: (i) the total susceptible human 

population is large enough, with respect to the infective population, to be considered 

as constant; (ii) the infectious agents diffuse randomly in the habitat n due to a 

particular transmission mechanism; (iii) the infective population at x E n only 

contributes to the infectious agents at the same spatial point. 

As mentioned in [6], to deal with indirect transmission diseases, typical of in­

fectious diseases transmitted via the pollution of the environment due to the infec­

tive population (typhoid fever, schistosomiasis, malaria, etc.), a different approach 

should be used to model the mechanism of production of the pollutants. A possi­

ble model is the one proposed in [14]. Assume that the growth rate of bacteria or 

pollutants due to the infective population can be modeled by 

1. K(x, Y)U2(t, y)dy, t > 0, x E n, 

where K(x, y) describes the transfer kernel of infectious agents produced by the 

infective humans located at y and made available at x. From the viewpoint of 

statistics, normal distribution is one of the most common probability distributions. 
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5.1 Introduction 
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stability of bistable traveling waves for the epidemic model: 
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particular transmission mechanism; (iii) the infective population at x E n only 
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As mentioned in [6], to deal with indirect transmission diseases, typical of in­

fectious diseases transmitted via the pollution of the environment due to the infec­

tive population (typhoid fever, schistosomiasis, malaria, etc.), a different approach 

should be used to model the mechanism of production of the pollutants. A possi­

ble model is the one proposed in [14]. Assume that the growth rate of bacteria or 
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Many phenomena generate random variables with probability distributions which are 

very well approximated by a normal distribution. Therefore, it is natural to assume 

that the transfer kernel K(x, y), just like the standard normal density function, 

is only contingent on the distance between the two spatial points x and y, i.e., 

K(x, y) = K(x - y), and K(u) = K(v) if lui = lvi, \:ju, v E 0, where I . I denotes 

the usual norm on ]Rn, n = 1,2,3. This kind of function is said to be isotropic. A 

typical isotropic function is the standard normal density function. The whole model 

system is then governed by 

8tUl (t, x) 

8tU2(t, x) 

d6ul(t, x) - anUl(t, x) + In K(x - y)U2(t, y)dy, 

-a22U2(t, x) + g(Ul(t, x)). 

(5.1.2) 

For the monotone increasing infection rate 9 and a general kernel K(x, y), the 

stabilities of trivial solution and the unique nontrivial equilibrium solution of (5.1.2) 

were studied in [14], and [6] provides conditions for exponential decay of the epi­

demics for (5.1.2). Here, we want to study the asymptotic speed of spread, traveling 

waves and the minimal wave speed for system (5.1.2) with 0 = ]Rn. 

The existence of Fisher type monotone traveling waves and minimal wave speed 

of (5.1.1) were obtained in [97] via the method of upper and lower solutions. In 

Chapter 4, bistable monotone traveling waves of (5.1.1) were established. Recently, 

the theory of asymptotic speeds of spread and monotone traveling waves, developed 

in [8, 3, 13, 7, 9, 26, 28, 27, 79, 80, 71, 90], has been generalized to a large class 

of scalar nonlinear integral equations in [83]. As an application example, a time­

delayed version of (5.1.1) was also analyzed in [83]. We will use this theory to 

obtain the asymptotic speed of spread for solutions and the minimal wave speed of 
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monotone traveling waves for (5.1.2). 

5.2 The Asymptotic Speed of Spread 

Recall that a number c* > 0 is called the asymptotic speed of spread for a function 

u : Il4 x IRn -+ Il4 if lim u( t, x) = 0 for every c > c*, and there exists some 
t-too,lxl2':et 

il > 0 such that lim u(t, x) = il for every c E (0, c*), where I . I denotes the 
t-too,lxl :Set 

usual norm in IRn. In this section, we will find such c* for solutions of system (5.1.2). 

For system (5.1.2), scaling the space variable, we can assume that d = 1. Scaling 

time and absorbing the appropriate constants into U2 and g, we can rewrite system 

(5.1.2) as 

6Ul(t, x) - Ul(t, x) + flRn K(x - y)U2(t, y)dy, 

-(3U2(t, x) + g(Ul(t, x)), x E IRn, 

(5.2.3) 

where (3 = !!ll, and 9 is the _1 times of 9 in system (5.1.2). System (5.2.3) IS 
all all 

supplemented by initial conditions 

(5.2.4) 

In what follows we reduce system (5.2.3)-(5.2.4) into an integral equation for 

Ul. Let r(t, x) and r 1 (t, x) be the Green's functions associated with the parabolic 

equations OtU = 6u and OtU = 6u - u, respectively. Then r 1 (t, x) = r(t, x)e-t . 



124 

monotone traveling waves for (5.1.2). 
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Integrating system (5.2.3) together with (5.2.4), we have 

Ul(t,X) = r r1(t,X-y)¢1(y)dy+ iJRn 

125 

rt 

ds { r 1 (t - S, x - y) r K(y - Z)U2(S, z)dzdy, (5.2.5) io iJRn iJRn 
U2(t, x) = e-fJ'¢2(X) + l' e-fJ('-r) g(Ul(r, x))dr. (5.2.6) 

Changing the order of spatial integration in (5.2.5), 

After a substitution, 

Let 

(5.2.7) 

Then 

Inserting (5.2.6) into the above equation, 

Ul(t, x) = uo(t, x) + rt 
ds ( k1(t - s, x - z) {S e-{3(s-r)g(ul(r, z))drdz, 

io ~n io 
where 



Integrating system (5.2.3) together with (5.2.4), we have 

UI(t,X) = r r I (t,x-y)</h(y)dy+ 
J'R.n 

125 

rt 

ds r r I (t - s, x - y) r K(y - Z)U2(S, z)dzdy, (5.2.5) 
Jo J'R.n J'R.n 

U2(t, x) = e-P'¢2(X) + l' e-P('-r) g( U, (r, x) )dr. (5.2.6) 

Changing the order of spatial integration in (5.2.5), 

After a substitution, 

Let 

(5.2.7) 

Then 

Inserting (5.2.6) into the above equation, 

UI(t, x) = uo(t, x) + rt 

ds r k I (t - s, x - z) rs 
e-f3 (s-r)g(uI(r, z))drdz, Jo ~n Jo 

where 
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Changing the order of the time integration, 

Ul(t, x) = UO(t, x) + r
t 

dr r jt k1(t - s, x - z)e- f3 (s-r)g(Ul(r, z))dsdz io iIRn r 

uo(t, x) + r
t 

dr r rt-r k1(t - r - s, x - z)e- f3S g(Ul(r, z))dsdz. io iIRn io 
After a substitution, we have 

(5.2.9) 

where 

(5.2.10) 

Before making some assumptions on system (5.2.3), we need to compute some 

Laplace-like transforms of integral kernels. Define k(t, x) = g'(0)k2 (t, x), f(u) = 

:,(~). For any function 'ljJ : Il4 x JRn -+ JR, let 

where Yl is the first coordinate of y. By [83, Proposition 4.2], we have 
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Changing the order of the time integration, 

Ul(t,X) = UO(t,X) + it dr r it k1(t - s,X - z)e- f3 (s-r)g(Ul (r,z))dsdz 
o JIRn r 

uo(t, x) + it dr r It
-

r 
k1(t - r - s, x - z)e- f3S g(Ul(r, z))dsdz. 

o JIRn 0 

After a substitution, we have 

Ul(t,X) = uo(t,x)+ltdr r It
-

r 
k1(t-r-s,y)e- f3S g(Ul(r,X-Y))dsdy 

o JIRn 0 

uo(t, x) + it dr r l r 

k1(r - s, y)e- f3S g(Ul(t - r, X - y))dsdy. 
o JRn 0 

Ul(t, x) = uo(t, x) + it ds r g(Ul(t - S, x - y))k2(S, y)dy, 
o JIRn 

(5.2 .9) 

where 

(5.2.10) 

Before making some assumptions on system (5.2.3), we need to compute some 

Laplace-like transforms of integral kernels. Define k(t, x) = g'(O)k2(t, x), f( u) = 

:,\~). For any function 'ljJ : 114 x lRn --+ lR, let 

lCp(c, >.) := 100 r e-)"(cs+Yd 4>(s, y)dyds, c, >. > 0, 
o JIRn 

where Yl is the first coordinate of y. By [83, Proposition 4.2], we have 



127 

By [83, Proposition 4.1 (1)], we further obtain 

g'(O)Krl (c, A) roo ( e->.(es+yI) K(y)e-(3sdyds 
Jo JIRn 

g'(O) 
AC + /3K(A)Krl (c, A), (5.2.11) 

g' (0) Y( ') L k* 
(1->.2)(3 f'.., /\. et = 

Kk(c,O) = g'hO) K(O). We now can make the following assumptions on system (5.2.3). 

(M1) K: lRn ---+ ~ is continuous, and K is isotropic, i.e., K(x) = K(y) if Ixl = IYI, 

where I . I is the usual norm on lRn. 

(M2) K(O) > 0, and there exists some AO > 0 such that K(AO) = 00, and K(A) < 00 

for all A E [0, AO), where AO may be infinity. 

(M3) 9 : ~ ---+ ~ is Lipschitz continuous with g(O) = 0, differentiable at 0, and 

satisfies g'(O)K(O) > /3, 0 < g(u) < g'(O)u, Vu > O. 

Since K(O) > 0 and r 1 (t,·) > 0, Vt > 0, k(t,·) > 0 for all t > O. One can easily check 

that (M1)-(M3) imply the assumptions (B) and (C) in Section 1.1 with F(u, s, y) = 

f(u)k(s, y). Our assumptions also imply that system (5.2.3) is quasi-monotone. By 

[64, Corollary 5] (see also [88, Corollary 8.1.3]) and [88, Corollary 2.2.5], for any 

bounded, uniformly continuous and nonnegative function ¢(x) = (¢1(X), ¢2(X)), 

system (5.2.3) with (5.2.4) admits a unique and nonnegative mild solution u(t, x) = 

(U1(t, x), U2(t, x)), and it is a classic solution for t > O. Note that U1(t, x) is also a 

solution of (5.2.9). 

With assumption (M2), the expression (5.2.11) shows that if A~(C) = min(~ + 

. Ie; + 1, AO), then Kk(c, A) < 00 for all A E [0, A~(C)), and lim Kk(c, A) = 00 for V >,/,>.U(e) 
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every C > O. Define 

c* := inf{c > 0: JCk(c, A) < 1 for some A > O}. 

According to Lemma l.4.1, c* can be uniquely determined as the solution of the 

system 

That is, (c*, A *) is the unique positive solution of the system 

((3 + AC) (1 + AC - c2
) = g' (O)JC(A), 

2A - c c _ 1 r -.\Yl 

1 + AC - c2 - (3 + AC - JC(A) JIRn Yle K(y)dy. 

The following theorem shows that c* is the asymptotic speed of spread for solu­

tions of system (5.2.3) with initial functions having compact supports. In order to 

obtain the convergence for 0 < c < c*, we need the following additional conditions. 

(M4) lim g(u) = 0, and there exists u* > 0 such that 9 is increasing on [0, u*], 
u-+<x> u 

g(u)JC(O) > (3u for u E (0, u*), and g(u)JC(O) < (3u for u > u*. 

(M5) lim sup gLu) < !cO), gLu) is strictly decreasing, and ug( u) is strictly increasing 
u--+<X> 

for u > o. 

Theorem 5.2.1 Let (Ml)-(M3) hold and c* be defined as above. Denote by u(t, x, ¢) 

the unique solution of system (5.2.3)-(5.2.4). Then the following statements are 

valid: 

(i) For any continuous function ¢ = (¢I, ¢2) : lRn -7 lRt with the property that 

¢I (.) + ¢2 ( .) t=. 0, and that for every I'CI > 0, there exists 1'C2 > 0 such that 
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every c ~ O. D e fine 

c* := inf{c > 0: lCk(c, A) < 1 for some A > O}. 
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Theorem 5.2 . 1 Let (Ml)-(M3) hold and c* be defined as above. Denote by u(t, x, ¢) 

the unique sol'Ution of system (5.2.3)-(5.2.4). Then the following statements are 

valid: 

(i) For any continuous function ¢ = (¢l, ¢2) : IRn ~ IR~ with the property that 

¢l (.) + 1>2 ( .) =1= 0, and that for every ~l > 0, there exists ~2 > 0 such that 
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lim u(t, x, cP) = (0,0), Ve > e*. 
t-+oo, Ixl~ct 

(ii) Assume in addition that either (M4) or (MS) holds. Then for any bounded and 

uniformly continuous function cP = (cPI, cP2) : lRn --+ lR~ with cPI(·) + cP2(·) =t 0, 

we have 

lim u(t, x, cP) = (u*, v*), Ve E (0, e*), 
t-+oo,lxl:Sct 

where u* is the unique solution of g(u)K(O) = /3u, and v* = g(~ .. ). 

Proof. Let cP = (cPI, cP2) : lRn --+ lR~ be a bounded continuous function with 

cPI(-) + cP2(·) =t 0. For convenience, we let u(t, x, cP) = (UI(t, x), U2(t, x)). Note 

that rl(t,·) > 0, Vt > 0, and K(O) > 0. We have uo(t,·) > ° for t > 0. Let 

uo(t, x) = UOl(t, x) + U02(t, x), where 

UOl (t, x) 

In what follows, we show that lim Uo (t, x) = ° uniformly in x E lRn. In view of 
t-+oo 

(5.2.7) and the fact that flRn r(t, x - y)dy = 1, Vt > 0, x E lRn , we have 

U02(t, x) = rt ds r r rl(t - s, x - y - z)K(z)e(3scP2(y)dzdy 
Jo JlRn JlRn 

rt 
ds r e-(3s K(z) r e-(t-s)r(t - s, x - y - z)cP2(y)dydz 

Jo JlRn JlRn 

< MI rt 
e-t-(3s+sds r K(z)dz 

Jo JlRn 

M,JC(O) l' e-t-PS+Sds, 
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lim u(t, x, cP) = (0,0), Ve > e*. 
t-too, Ixl2:ct 

(ii) Assume in addition that either (M4) or (M5) holds. Then for any bounded and 

uniformly continuous function cP = (cPl, cP2) : Rn --+ R~ with cPl (.) + cP2 (.) =/= 0, 

we have 

lim u(t, x, cP) = (u*, v*), Ve E (0, e*), 
t-too,lxl:Sct 

where u* is the unique solution of g(u)JC(O) = /3u, and v* = g(~*). 

Proof. Let cP = (cPl, cP2) : Rn --+ R~ be a bounded continuous function with 

cPl(') + cP2(') =/= O. For convenience, we let u(t,x,cP) = (Ul(t,X),U2(t,X)). Note 

that r1(t,') > 0, Vt > 0, and JC(O) > O. We have uo(t,') > 0 for t > O. Let 

uo(t, x) = U01(t, x) + U02(t, x), where 

In what follows, we show that lim Uo (t, x) = 0 uniformly in x E Rn. In view of 
t-too 

(5.2.7) and the fact that flRn r(t, x - y)dy = 1, Vt > 0, x E Rn, we have 

U02(t,X) = rtdSI. I. r 1 (t-s,x-y-z)K(z)e/3scP2(y)dzdy io lRn lRn 

rt ds I. e-/3s K(z) I. e-(t-s)r(t - s, x - y - z)cP2(y)dydz 
io lRn lRn 

< Ml rt e-t-/3s+sds I. K(z)dz 
io lRn 

M11C(O) it e-t-P'+'ds, 
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where M1 = sup cP2 (y). Therefore, lim U02 (t, x) = 0 uniformly in x E ]Rn. Since 
yEIRn t-+oo 

fIRn r 1(t,y)dy = e-t , it follows that lim UOl(t,X) = 0, and hence lim uo(t,x) = 0 
t-+oo t-+oo 

uniformly in x. By Proposition 1.4.1, U1(t,x) is the unique solution of (5.2.9). 

(i). For given c, A > 0 with Kk(c, A) < 1, Krl (c, A) and K(A) are finite numbers. 

Therefore, A2 - AC - 1 < O. Note that for every w E ]Rn with Iwl = 1, -Iyl < 

w . y < IYI, Vy E ]Rn, where . is the inner product on ]Rn. By the assumption on 

cP1 and cP2, there exists , > 0 such that cPi (y) < ,e-A1yl < ,eAW'Y, Vy E ]Rn, i = 1, 2. 

In the following, we show that Uo (t, x) is admissible in the sense that there exists a 

constant,' > 0 such that uo(t,x) < ,'eA(ct-1xl) , Vt > O,x E ]Rn. Note that 

r r(t, y)e-Aw'Ydy = r r(t, y)e-AY1dy = eA2t . 
iIRn iIRn 

We then have 

UOl (t, x) r r 1(t, x - y)cP1(y)dy < r r 1(t, x - y),eAw'Ydy 
iIRn iIRn 

, r r 1(t, y)eAw,(x-Y)dy = ,eAW'X - t r r(t, y)e-Aw'Ydy 
iIRn iIRn 

,eAw,xe(A2-1)t. 

Letting w = -I~I' and using the inequality A2 - 1 < AC, we obtain 

U (t x) < 'VeA(ct-lxl) Vt > 0 x E ]Rn. 01, _ I ,- , 

Applying the similar arguments to U02(t, x), we have 

U02(t, x) = rt 
ds r r e- f3s cP2(y)r1(t - s, x - y - z)K(z)dzdy io iIRn iIRn 

rt 
ds r r e- f3s cP2(y)r1(t - s, x - y - z)K(z)dydz io iIRn iIRn 

< ,rt 
ds r r e-f3seAw·yr1 (t - s, x - y - z)K(z)dydz 

io iIRn iIRn 
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where M1 = sup CP2(y). Therefore, lim U02(t, x) = 0 uniformly in x E ]Rn. Since 
yEIRn t~oo 

fIRn r 1 (t, y)dy = e-t , it follows that lim UOl(t, x) = 0, and hence lim uo(t, x) = 0 
t~oo t~oo 

uniformly in x. By Proposition 1.4.1, U1(t, x) is the unique solution of (5.2.9). 
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In the following, we show that Uo (t, x) is admissible in the sense that there exists a 
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< ,rt 
ds r e-.BSeAWo(X-Z)e(A2-l)(t-S) K(z)dz 

Jo IfRn 

< ,eA(ct+WoX) rt 
e-(Ac+.B)sds r e-AZ1 K(z)dz 

Jo JRn 
< K,()..) A(Ct+WoX) 

)..C + {3e 0 

Letting w = - I~I ' 

U (t x) < K,()..) eA(ct-lxl) 'v't > 0 E ]Rn 
02, -)..c + (3 ,- ,x . 

Therefore, uo(t, x) is admissible. By Theorem 1.4.1, it follows that 

lim Ul (t, x) = 0, for each C > c*, 
t--+oo,lxl~ct 

and hence (5.2.6) implies the result. 
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(ii). Assume in addition that either (M4) or (M5) holds. Then we can find some 

constants Cl, C2 > 0 such that clk* < 1 and g(u) < g'(0)(C2+ClU), 'v'u > O. Therefore, 
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(3w = K,(O)g(v) and (3v = K,(O)g(w). Thus, by Theorem 1.4.2 and 1.4.3, we have 

Therefore, 

lim Ul(t,X)=u*, 'v'cE(O,c*). 
t--+oo,lxl~ct 

100 g(u*) 
lim U2(t, x) = g(u*) e-.Bsds = {3 = v*, 'v'c E (0, c*). 

t--+oo,lxl~ct 0 

This completes the proof. • 

Remark 5.2.1 Theorem 5.2.1 implies that c* is the asymptotic speed for solutions 

of system (5.2.3) with initial functions having compact supports. Let u(t, x) = 



< ,r
t 

ds r e-,Bse>,wo(x-z)e(>.2-l)(t-s) K(z)dz 
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< ,e>'(cHwoX) rt e-(>.c+,B)sds r e->'Zl K(z)dz 
io iITf.n 
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of system (5.2.3) with initial functions having compact supports. Let u(t, x) = 
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(Ul(t, x), U2(t, x)) be such a solution. For any given p E (0, u*), denote by x~(t) and 

x~(t) the most right and left points with Ul(t, x~(t)) = p, respectively. Clearly, x~(t) 

and x~(t) are well defined for all large t because of the two limit formulas in Theorem 

5.2.1. We claim that lim x\(t) = c*. Indeed, by Theorem 5.2.1, it follows that for 
t-+oo 

any 0 < c < min(p, U* - p), there exists some to = to(c) > 0 such that Ul(t, x) < c 

for all t > to, Ixl > (c* + c)t, and IUl(t, x) - u*1 < c for all t > to, Ixl < (c* - c)t. 
x P (t) 

Therefore, x~(t) < (c* +c)t and x~(t) > (c* - c)t, and hence, IT - c*1 < c, for all 

t > to. By a similar argument, we can prove that lim IX~t(t)1 = c*. We will use this 
t-+oo 

observation to compute c* numerically. 

5.3 Traveling "W"ave Solutions 

In this section, we consider the traveling wave solutions of system (5.2.3) with n = 1. 

Recall that a solution u(t, x) of system (5.2.3) is said to be a traveling wave solution 

if it is of the form u(t, x) = U(x+ct). The parameter c is called the wave speed, and 

the function U (.) is called the wave profile. We will impose the following conditions 

on the wave profile: 

U(·) is positive and bounded on lR, and lim U(f,) = o. 
~-+-oo 

Consider the system 

U, (t, x) = LX> ds l f(Ul (t - s, x - y))k(s, y)dy, 

U2(t, x) = 100 

e-PS g(Ul(t - s, x))ds. 

(5.3.12) 

(5.3.13) 

(5.3.14) 

If system (5.3.13)-(5.3.14) admits a solution with the form (U1(x + ct), U2(x + ct)), 

then it is called a traveling wave solution with speed c. The following lemma shows 
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on the wave profile: 
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~-+-oo 

Consider the system 

Ul(t, x) = 1= ds L !(Ul(t - s, x - y))k(s, y)dy, 

U2(t, x) = 1= e-P'g(Ul(t - s, x))ds. 

(5.3.12) 
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then it is called a traveling wave solution with speed c. The following lemma shows 
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that the existence of traveling wave solutions of system (5.2.3) is equivalent to those 

of system (5.3.13)-(5.3.14). 

Lemma 5.3.1 Ifsystem (5.3.13)-(5.3.14) admits a traveling wave U(x+ct) subject 

to (5.3.12), then U(x + ct) is also a traveling wave of (5.2.3) subject to (5.3.12). 

The converse also holds. 

Proof. Let (Ul(t, x), U2(t, x)) = (U1(x + ct), U2(x + ct)) be a traveling wave solution 

of system (5.3.13)-(5.3.14). Then 

In view of (5.2.10), we have 

LX> ds fa f(ul(t - s, x - y))k(s, y)dy 

1= ds fa dy 15 

dr fa9(Ul(t- s,x-y))r1(s-r,y-z)K(z)e-flrdz 

1= dr fa dy 1= ds fa g(Ul (t - s, x - y))rl (s - r, y - z)K(z)e- flr dz 

1= dr fa dy 1= ds fa g(Ul(t - r - s, x - y))r1(s, y - z)K(z)e-flrdz 

1= dr fa dy 1= ds fa g(Ul(t - r - s, x - y))r1(s, z)K(y - z)e- flr dz 

1= ds fa r 1 (s, z) 1= fa g(Ul(t - r - s, x - y))K(y - z)e- flr dydrdz 

1= ds fa r1(s, z) fa 1= g(Ul(t - r - s, x - y))K(y - z)e- flr drdydz 

1= Tl(S) fa K(y - Z)U2(t - s, x - y)dyds, (5.3.15) 

where Tl (t) is the semigroup on BUC(JR., JR.) generated by the parabolic equation 

BtU = Lu - u, and BUC(JR., JR.) is the Banach space of all bounded and uniformly 
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that the existence of traveling wave solutions of system (5.2.3) is equivalent to those 

of system (5.3.13)-(5.3.14). 

Lemma 5.3.1 If system (5.3.13)-{5.3.14) admits a traveling wave U(x+ct) subject 

to {5. 3. 12), then U(x + ct) is also a traveling wave of (5.2.3) subject to (5.3.12). 

The converse also holds. 

Proof. Let (Ul(t,X),U2(t,X)) = (U1 (x+ct),U2(x+ct)) be a traveling wave solution 

of system (5.3.13)-(5.3.14). Then 

U2(t, x) = 100 

e-P'g(u,(t - s, x))ds = U2(x + ct). 

In view of (5.2.10), we have 

100 

ds L /(u,(t - s, x - y))k(s, y)dy 

100 

ds L dy l' dr L g(u,(t - s, x - y))r,(s - r, y - z)K(z)e-Pr dz 

100 

dr L dy 100 

ds L g(u,(t - s, x - y))r,(s - r, y - z)K(z)e-Pr dz 

100 

dr L dy 100 

ds Lg(u,(t-r-s,x-y))r,(s,y-z)K(z)e-prdz 

100 

dr L dy 100 

ds Lg(u,(t-r-s,x-y))r,(s,z)K(y-z)e-prdz 

100 

ds L r,(s, z) 100 L g(u,(t - r - s, x - y))K(y - z)e-Pr dydrdz 

100 

ds L r,(s, z) L 100 

g(u,(t - r - s, x - y))K(y - z)e-
pr 

drdydz 

100 

T,(s) L K(y - Z)U2(t - s, x - y)dyds, (5.3.15) 

where T1 (t) is the semigroup on BUC(JR., JR.) generated by the parabolic equation 

8t u = ~u - u, and BUC(JR., JR.) is the Banach space of all bounded and uniformly 
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continuous functions from lR to itself. By [83, Proposition 4.3], it follows that 

(UI (t, .), U2 (t, .)) satisfies the abstract integral equations 

UI(t) = TI(t - r)uI(r) + l' TI(t - s) L K(y - z)u2(s)dyds, 

U2(t) = e- I1C,-r)U2(r) + l' e-I1C'-')g(UI(S))ds, Vt > r, r E R 

(5.3.16) 

(5.3.17) 

Clearly, U2(t, x) satisfies the second equation of system (5.2.3). By the form UI(t, x) = 

UI (x + ct) and the smoothing property of parabolic operators (see, e.g., [88, Corol­

lary 2.2.5] with r = 0), it follows that UI(t, x) satisfies the first equation of system 

(5.2.3). Thus (UI(t, x), U2(t, x)) = (UI(x+ct), U2(x+ct)) is a traveling wave solution 

of system (5.2.3) with speed c. 

Conversely, let (UI(t, x), U2(t, x)) = (UI(x + ct), U2(x + ct)) be a traveling wave 

solution of system (5.2.3). Then (UI(t, x), U2(t, x)) is a continuous and bounded 

solution of (5.3.16)-(5.3.17) on (-00, +00). By [83, Proposition 4.3], U2(t, x) satisfies 

(5.3.14) and UI(t,X) satisfies 

UI (t, x) = 100 

TI (s) L K(y - Z)U2(t - s, x - y)dyds. 

Since the process in formula (5.3.15) is invertible, UI(t, x) satisfies equation (5.3.13). 

It follows that (UI(t,X),U2(t,X)) is a traveling wave solution of system (5.3.13)-

(5.3.14) with wave speed c. • 

Theorem 5.3.1 Let (M1)- (M3) hold, and let c* ,v* be defined as in Theorem 5.2.1. 

Then the following statements are valid. 

(i) There is no traveling wave solution for system (5.2.3) and (5.3.12) with wave 

speed c E (0, c*). 
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(ii) Assume in addition that (M4) holds, and that Ig(u) _ g(v)1 < g'(O)lu­

vi, \;fu, v E [0, u*], and g"(O) exists. Then system (5.2. 3) 7Jlith (5.3.12) admits 

a monotone traveling wave connecting (0,0) and (u*, 'V ) with speed c > c*. 

Moreover, the monotone traveling wave with speed c > c* is unique up to 

translation. 

Proof. (i). Note that (M1)-(M3) imply the assumption (B) ~nJ (C) in Section 1.3. 

The result is a straight forward consequence of Theorem 1.4'7. 

(ii). Since g"(O) exists, we can find two numbers <5 > 0, b > 0 such that g(u) > 

g'(0)(u-bu2), \;fu E [0, <5]. By Theorem 1.4.5 and 1.4.6, as applted to equation (5.3.13) 

with F(u,s,x) = f(u)k(s,x), it follows that for each c > c*, (5.3.13) admits a 

monotone traveling wave UI (t, x) = UI (x + ct) connecting 0 ~nJ u*. Define U2(t, x) 

as in equation (5.3.14), we then have 

U2(t, x) = 100 

e-P'g(U, (x + c(t - s)))ds := U2(x -l ct), (5.3.18) 

where U2(f;,) = Jooo 
e- f3S g(UI(f;, - cs))ds. Obviously, U~(f;,) > 0, BY the dominant con­

vergence theorem, lim U2(f;,) = 0, and lim U2(f;,) = v*. Ther~fo!e, (UI(t, x), U2(t, x)) 
~-+-oo ~-+oo 

is a traveling wave of system (5.3.13)-(5.3.14), and hence L€)mllla 5.3.1 implies the 

result. The uniqueness of traveling waves with c > c* follo"'.>s from Theorem 1.4.4, 

as applied to (5.3.13) with F(u, s, x) = f(u)k(s, x), and Lerrtmtt 5.3.1. • 

Numerical simulation. We numerically simulate systelb (5.2.3) with n = 1. 

Let the transfer kernel K be the standard normal density fullction, i.e., K(x) 

vke-x2 /2, and set g( u) = I~U' j3 = 1. It is easy to see that syt'tem (5.2.3) satisfies 

assumptions (M1)-(M4) with u* = v* = 1. By Theorem 5· ~ .1, for any continuous 
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initial functions (PI, ¢2 with compact supports, we have 

and 

lim u(t, x) = (0,0), Ve > e*, 
t-+CX),lxl~ct 

lim u(t, x) = (1,1), Ve E (0, e*). 
t-+CX),lxl:Sct 
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We discretise system (5.2.3) by the finite difference method coupled with composite 

integration formulas on a finite spatial interval [-L, L] with the Neumann boundary 

condition, where L > ° is sufficiently large in comparison with the domain in which 

the solutions rapidly change shapes. Let 

0, if x < -7r/2, 

~ cos x, if x E (-7r / 2, 7r / 2) , (5.3.19) 

0, if x > 7r /2. 

Figure 5.1 and 5.2 illustrates the corresponding numerical solution u(t, x) = (Ul(t, x), 

U2(t, x)). Obviously, the result is consistent with the above two limit formulas. In 

order to get the asymptotic speed e*, we use Remark 5.2.1 to approximate e*. Figure 

5.3 shows the curves X~25(t)/t and X~25(t)/t versus t. Thus, e* ~ 1.0. To get a 

traveling wave, we choose the initial condition as 

0, if x < -1, 

~ (1 + x), if x E (-1, 1), (5.3.20) 

1, if x > 1. 

The evolution of the solution is shown in Figure 5.4 and 5.5. The solution becomes 

smooth immediately. The shape of the solution promptly converges to a traveling 



136 

initial functions qh, cP2 with compact supports, we have 

lim u(t, x) = (0,0), \Ie > e*, 
t-too,lxl2:et 

and 

lim u(t, x) = (1,1), \Ie E (0, e*). 
t-too,lxl :Set 

We discretise system (5.2.3) by the finite difference method coupled with composite 

integration formulas on a finite spatial interval [-L, L] with the Neumann boundary 

condition, where L > 0 is sufficiently large in comparison with the domain in which 

the solutions rapidly change shapes. Let 

0, if x < -7r/2, 

~ cos x, if x E (-7r /2, 7r /2), (5.3.19) 

0, if x > 7r / 2. 

Figure 5.1 and 5.2 illustrates the corresponding numerical solution u( t, x) = (Ul (t, x), 

U2(t, x)). Obviously, the result is consistent with the above two limit formulas. In 

order to get the asymptotic speed e*, we use Remark 5.2.1 to approximate e*. Figure 

5.3 shows the curves X~25(t)/t and X?:.25(t)/t versus t. Thus, e* ~ 1.0. To get a 

traveling wave, we choose the initial condition as 

0, if x < -1, 

~ (1 + x), if x E (-1, 1), (5.3.20) 

1, if x > 1. 

The evolution of the solution is shown in Figure 5.4 and 5.5. The solution becomes 

smooth immediately. The shape of the solution promptly converges to a traveling 
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wave. The wave moves in the negative x-direction as the time t increases (shown as 

in Figure 5.6), and the wave speed is about 1.0, which coincides with the spreading 

speed. 
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initial function (5.3.19) 
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initial function (5.3.19). 
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Figure 5.4: The first component of the solution (Ul(t, x), U2(t, x)) with initial func­
tion (5.3.20). 
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