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Abstract 

Fracture mechanics is mainly concerned with the analysis of fracture-dominant 

failure. Various methods of analyses for cracks are used in the determination of 

fracture characterizing parameters, which in turn can be used to predict loads and 

crack sizes at which failure would occur. 

In engineering practice, robust methods for estimating fracture parameters are 

useful, given the lack of details of material data, geometric configuration and com­

putational sophistication in an operational industrial plant. This thesis focuses on 

the approximate methods for the determination of (1) crack tip plastic zone size, (2) 

the J of circular-ended notches and (3) the J for three-dimensional pressure vessels 

and piping components. Furthermore, this thesis focuses on design perspectives 

based on robust methods. 

The assessment of the integrity of structures and components with defects has 

been shown to be possible using the robust methods developed in this thesis. The 

robust method for estimating the elastic-plastic energy release rate has been pre­

sented which is suitable for the purpose of design. In order to estimate the effect 

of out-of-plane loading which is parallel to the crack front, the so-called "2~-D" 

model is proposed in this thesis. This model has been developed to evaluate J 

for three-dimensional pressure vessels and piping components with defects such as 

pressure vessels and piping with a circumferential flaw or a longitudinal flaw. 
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Chapter 1 

Introduction 

1.1 Objectives 

The primary set of objectives of this thesis is to develop robust assessment meth­

ods for evaluating the integrity of structures and components with defects, and 

to characterize fracture behavior of cracked components under three-dimensional 

loadings. 

The current fracture assessment procedures rely on analytical methods which 

are subjected to limitations in terms of material specification, loading and geo­

metric configuration. For more complex situations, numerical methods such as the 

finite element or the boundary element methods are routinely used. Inelastic finite 

element analysis, although accurate, can often be quite elaborate, time-consuming 

and possibly expensive. Furthermore, the need for detailed numerical analysis has 

to be judged on account of the presence of scatter in material data and the diffi­

culty in obtaining a suitable constitutive relationship. Therefore, any effort directed 

towards developing approximate methods that are simple, direct and yet reason­

ably accurate would be of importance from a design standpoint. Such methods are 

designated as robust methods. 
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In the purview of this thesis , the term "robustness" implies the ability to pro­

vide acceptable results based on less than reliable input, together with conceptual 

insight and economy of computational effort (Marriott , 1992). Robust methods are 

appropriate for the following situations: 

(i) initial scoping and feasibility studies, based on preliminary information; 

(ii) screening of critical situations in large complex systems for further 

detailed analyses; and 

(iii) "sanity" checks or benchmarking of results obtained by detailed 

nonlinear analysis. 

1.2 Fracture Parameters 

Strength failures of load-carrying structures can be due to either dominant yielding 

or dominant fracture. For failures that are fracture-dominant, i.e., where fracture 

precedes net-section yielding, the defects are essentially macroscopic, and only the 

local stress-strain fields that are associated with the defects are involved. 

Fracture mechanics is concerned almost entirely with fracture-dominant fail­

ures. Based on the dominant behaviors, fracture mechanics is classified as: (1) 

linear elastic fracture mechanics (LEFM), (2) elastic-plastic fracture mechanics 

(EPFM), and (3) dynamic and time-dependent fracture mechanics. Usually, G 

(linear elastic energy release rate) and K (stress intensity factor) are considered 

as fracture characterizing parameters in LEFM, while J-integral (inelastic energy 

release rate) and COD (crack opening displacement) for EPFM. The C*-integral 

has found use in estimating steady-state creep crack growth. Fracture mechanics 
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essentially predicts the condition under which a load-carrying structure can fail in 

a load-controlled manner due to the enlargement of a dominant crack in a given 

structure or component. 

A majority of the literature on fracture mechanics focuses on two-dimensional 

idealizations that involves approximations such as plane-stress and plane-strain 

stress states. Real life components or structures, on many occasions, do not lend 

themselves to such simplifications. Three-dimensional influences can be prevalent 

in many situations and there is therefore a need to characterize fracture parameters 

for such configurations and come up with robust assessment methods that can be 

used by design engineers. 

The current literature assumes that the stress system parallel to the crack front 

does not influence the crack behavior for, say, the mode I specimen. Therefore, 

the fracture parameter calculations in the neighborhood of the crack are primarily 

based on a biaxial loading condition with a loading plane perpendicular to the crack 

face. In order to estimate the effect of out-of-plane loading which is parallel to the 

crack front, the so-called "2~-Dimensional" model is developed. This model, which 

essentially incorporates simple distributions of the three-dimensional remote stress 

field into a two-dimensional geometry, can find widespread use in practice. 

1.3 Organization of the Thesis and Major Con­
tributions of the Research 

The related literature is reviewed and presented in Chapter 2. A discussion of the 

theoretical basis of J -integral in two-dimensional and three-dimensional configura-

tions is contained in Chapter 3. An approximate method for the determination of 
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mode I crack tip plastic zone is introduced in Chapter 4 in conjunction with the use 

of the Generalized Local Stress and Strain (GLOSS) analysis. Chapter 5 describes 

J-estimation of circular-ended notches, wherein edge-crack problems are viewed as 

the limiting case. A simplified three-dimensional model, designated as the 2~-D 

model, is proposed in Chapter 6 that is applicable to practical pressure vessels and 

piping configurations with defects. Robust J design method, which is useful in the 

integrity assessment of industrial equipment and systems, is presented in Chapter 

7. The concluding chapter, Chapter 8, contains the contributions of this thesis and 

a discussion on future research. 

The key aspects of the research in this thesis are: 

1. the development of a simplified three-dimensional model for analyzing prac­

tical pressure vessels and piping components with defects; and 

2. the development of robust methods for the analysis and design of linear elas­

tic, elastic-plastic and perfectly plastic components. The effects of strain-hardening 

and creep on fracture assessments are also considered. 

The significance of the research lies in the recognition that neglecting the "out­

of-plane" remote stress can be unconservative and can lead to premature failures 

and potential loss of human life, human injury, loss of production capability and 

environmental damage. The development of robust methods should provide the 

practitioner with an assessment tool that can be used to evaluate the integrity of 

structures and components with defects. 
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Chapter 2 

Literature Review-

2.1 Approximate Methods for Notch Root Strain 
Concentration 

A crack can be considered as a limiting case of a smooth-ended notch in notched 

components. Approximate analytical methods for determining the notch strain 

concentration have been discussed by Stowell (1950), Hardrath and Ohman (1953), 

and Neuber (1961). 

The Neuber's formula which is given by 

(2.1) 

postulates that, during plastic action in the vicinity of the notch, the product of the 

stress concentration factor (Ku) and the strain concentration factor (I< f) remains 

constant, and is equal to the square of elastic stress (or strain) concentration factor 

The approximate formula proposed by Stowell (1950) for predicting stress con­

centration factors has been modified by Hardrath and Ohman (1953) as: 
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I<u = 1 + (I<T- 1)EEs . 
ns 

(2.2) 

Here, Es = O"rnax/ Ernax is the secant modulus at the point of maximum local notch 

deformation, and Ens = an/ En is the nominal secant modulus. Both Neuber's and 

Hardrath and Ohman's formulae are known to consistently overpredict notch root 

strains. 

Based on the energy method, a relationship for determining the elastic-plastic 

notch root stress and strain has been proposed by Molski and Glinka (1981), of the 

form 

(2.3) 

where Wn is the nominal elastic strain energy density, and w;ax is the actual 

maximum strain energy density at the notch root. Strictly speaking, their method 

is valid only in the elastic range. Based on the assumption that localized plasticity 

at notch root does not significantly affect the energy distribution, equation (2.3) 

can also be used for determining the notch root stress and strain even in the plastic 

range. As a result, for nominal stress approaching or exceeding the yield stress, 

equation (2.3) tends to underestimate the notch root strain. 

On the basis of the averaged similarity measure of the strain energy density 

along a smooth notch boundary considered in the path-independent J-integral, 

Ellyin and Kujawski (1987) have presented an approximate method for a material 

stress-strain relationship of the form 
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E = o-j E +(a/ K')lfn' (2.4) 

where n' is the cyclic (or monotonic) strain hardening exponent and f{' is the 

strength coefficient such that the notch root stress, O"max, and notch root strain, 

Emax, can be related by the equation 

(2.5) 

where an and En are nominal applied stress and strain. In deriving equation (2.5) 

it is assumed that the relationship between O"max and Emax is similar to that of 

equation (2.4). Equation (2.5) has been shown to be equivalent to Molski and 

Glinka's method in the elastic range, and equivalent to Neuber's method for high 

strain hardening materials. 

The GLOSS (Generalized Local Stress Strain) analysis (Seshadri and Kizhatil, 

1993) is a practical compromise between the elaborate methods (i.e. the inelastic 

finite element technique) and the approximate analytical techniques. In GLOSS 

method, described by Seshadri (1991), the mechanical component or structure is 

divided into the local and remainder region. The local region typically experi-

ences the largest inelastic effect and is often of interest from a design standpoint. 

The GLOSS theory essentially relates the multiaxial stress distribution in the lo-

cal region to the uniaxial redistribution process. The varying degree of interaction 

between the local and remainder regions is characterized by a "constraint parame­

ter" which can be used in conjunction with the uniaxial model to generate inelastic 
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results. 

2.2 Approximate Methods for Inelastic Fracture 
Parameters 

The J-integral procedure is used widely in characterizing inelastic fracture. By 

idealizing elastic-plastic deformation as nonlinear elastic, Rice (1968a) provides the 

basis for extending fracture mechanics methodology well beyond the validity of the 

limits of LEFM. 

The J-integral is given by the expression 

J= £(way-T,~~ as) (2.6) 

where r is an arbitrary counter-clockwise path around the tip of a crack as illus-

trated in Fig. 2.1, W is the strain energy density, Ti are components of the traction 

vector, ui are displacement vector components, and ds is a length increment along 

the contour r. 

Alternately, the J-integral can be calculated by using the expression (Broek, 

1986) 

J = _.2:_ diT 
B da 

(2.7) 

where II is the potential energy in an edge-cracked specimen and B is the thick­

ness of the specimen. Equation (2. 7) shows that J-integral is equal to the energy 

release rate in a nonlinear elastic body that contains a crack and is interpreted as 
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y 

Figure 2.1: Arbitrary Contour around the Tip of a Crack 
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the potential energy difference for identically loaded elastic-plastic configurations 

having neighboring crack sizes a and a + da. 

Bucci et al. (1972) have developed a method to approximately estimate J­

integral by making use of plastically adjusted linear elastic Je, and the perfectly 

plastic JP. For the elastic material behavior, 

(2.8) 

For the perfectly plastic material idealization, 

(2.9) 

where a is the crack length, B is the specimen width, K is the stress intensity 

factor' 8 the load line displacement, PL the limit load, and cl and c2 are constants 

depending on the geometry of the cracked component and the material behavior. 

The approximate method is developed on the basis of linear elastic fracture analysis 

and limit load solutions. The results obtained by Bucci et al. compare well with 

the experimental test data. 

Based on the results by Shih and Hutchinson (1976), Rice et al. (1973) and 

Bucci et al. (1972), Kumar et al. (1981) have developed an engineering procedure 

for estimating the elastic-plastic J. The main objective is to obtain elastic-plastic 

J by simply combining the linear elastic analysis results and fully plastic analysis 

results. For a material satisfying the Ramberg-Osgood stress-strain law 

10 



(2.10) 

where 

for linear elastic case 

for fully plastic case, 

the Jefp is expressed as: 

(2.11) 

where ae is an effective crack length, P is the applied load and P0 is the limit 

load. For various cracked configurations , the material and the geometry dependent 

function , h1 (a/w, n) , has been tabulated by fully plastic finite element analysis. 

Based on the reference stress method , Ainsworth (1984) modifies the expression of 

Kumar et alas follows: 

(2.12) 

where O"ref = (P / P0 )ao and Po is a characteristic load that attempts to minimize 

the dependence of h1 on n. The following approximation is then proposed: 

11 



(2.13) 

where h1 ( n) is the geometry constant for a material with a strain hardening ex­

ponent of n, and h1 (1) is the corresponding constant for a linear elastic material. 

Thus, equation (2.12) is not only simpler than equation (2.11 ), but also is more 

widely applicable. 

Based on the results of elastic-plastic plane strain finite element analyses of 

shallow cracks (a/W<0.1) in a variety of different geometries and loading configu­

rations, Turner (1981) has described a J design curve. The design curves enable J 

to be estimated as a function of an effective structural (nominal) strain. 

Region I LEFM: 

Region II NSY (Net Section Yielding): 

for 0.85 < e/ ey < 1.2 

Region III GSY (Gross Section Yielding): 

J = 2.5(( e/ ey) - 0.2]Gy, 

12 

for e/ ey > 1.2 

(2.14) 

(2.15) 

(2.16) 



12 

10 

8 

JIG y 

6 

4 

2 

0 

Gross-Section Yielding 

Linear Elastic 

~----- Net-Section Yielding 

0 1 2 3 4 5 

Applied Strain I Yield Strain 

Figure 2.2: Turner 's Engineering-J Design Curve (Turner, 1981) 
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In these equations, e is remote (nominal) strain for the uncracked body, ey is yield 

strain, and Gy is the elastic energy release rate at the yielding point. This relation 

is shown in Fig. 2.2. 

2.3 Fracture Design Methods 

When designing a structure against fracture, there are three variables that need 

to be considered: stress, flaw size, and toughness. Fracture mechanics provides a 

mathematical relationship between these quantities. The fracture design methodol­

ogy should be selected based on the available data, material properties, environment 

and loading on a structure. Only quasi-static methodologies are covered in this sec­

tion. However, such approaches can be extended to rapid loading and crack arrest 

problems. 

A short description of the COD, R-6, EnJ and EPRI methods are presented by 

Turner (1984a). Unlike the EPRI method, which seeks to provide an estimate of 

crack tip severity reflecting different material behaviors of various degrees of strain­

hardening, the COD, R-6 and EnJ methods attempt to provide a single simple curve 

of crack tip severity versus the applied load in the component. The crack opening 

displacement, and not J, forms the basis for the COD method. However, the EPRI 

and EnJ methods use J, and not the crack opening displacement. Although the 

evolution of the R-6 method can be attributed to the COD concept, presently it is 

viewed more in the light of a J-based theory. 
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The following are the equations for COD (ferritic material) (PD6493, 1980): 

(ejey)-0.25 for ejey>0.5 

(2.17) 

(2.18) 

where ey = ay/ E, 8 = COD, and a = equivalent crack length. Equation (2.17), 

which is derived from LEFM theory, includes a safety factor of 2.0 on the crack 

size. Equation (2.18) represents an upper envelope of the experimental data. In 
. 

1980, the COD design curve approach was incorporated into the British Standards 

document PD6493. 

The equation for R-6 (Dowling and Townley, 1975) can be written as 

[ 
8 7r ] -1/2 

I<r = Sr 1r2 ln sec( 
2 

Sr) (2.19) 

where Kr = I<I/Kic (or JG/Jic), Sr = S/Sc (Sis the applied load and Sc the 

nominal collapse load). The curve essentially represents the locus of predicted 

failure points. If the toughness is very large, the structure fails by collapse when 

Sr = 1.0. On the other hand, a brittle material will fail when Kr = 1.0. In the 

intermediate cases, collapse and fracture modes interact, and both Kr and Sr are 

individually less than 1.0 at failure. All points inside the failure assessment diagram 

are considered safe, and points outside the diagram are considered unsafe. 

15 



The following are the equations for EnJ (Turner, 1984b ): 

(2.20) 

JjGy 2.5[( ej ey) - 0.2] for e/ ey > 1.2 

This method results in J-estimation curves which are the revised forms of equations 

(2.14), (2.15) and (2.16). 

The EPRI (Kumar et al., 1981) procedure provides a means for computing the 

applied J integral under elastic-plastic conditions. 

The procedure makes use of the Ramberg-Osgood constitutive relationship [Eq. 

(2.10)] where a and n are material parameters, specifically n is the strain-hardening 

index. The elastic and plastic components of J are computed separately and added 

together in order to obtain the total J, i.e. , 

(2.21) 

The EPRI estimation, which is given by equation (2.11), can also be expressed in 

terms of a failure assessment diagram. The J-ratio and the stress-ratio are defined 

as follows: 

(2.22) 

and 

16 



(2.23) 

The equivalent I<r is equal to I<I/ I<Ic· The shape of EPRI failure assessment 

diagram depends not only on the geometry of the cracked body, but also on the 

material behavior (Fig. 2.3). 

2.4 Three-Dimensional Consideration for Frac­
ture Parameters 

The previous sections are primarily limited to two-dimensional conditions. Only 

the effects of in-plane dimensions (e.g. crack length, ligament length) and in-plane 

loadings are considered. However, the dimensions and loadings along the crack 

front direction can also play a major role while determining fracture parameters. 

Although three-dimensional geometric effects are investigated, most of the early 

work on this subject was performed under plane strain, plane stress or antiplane 

shear assumptions. In the recent years, however, more investigations have been 

carried out in the area of three-dimensional fracture. 

Narasimhan and Rosakis (1988) have performed three-dimensional experimental 

and numerical investigation on a ductile three-point bend specimen (considering 

the effect of three-dimensional geometry only). It is found that the average J 

and COD from the three-dimensional analysis are bounded by those obtained from 

two-dimensional (plane stress and plane strain) analyses. The three-dimensional 

numerical results indicate that the plane strain HRR field dominates very near the 

crack front in the interior of the specimen. On the other hand, the plane stress 

HRR field agrees well with the three-dimensional numerical results obtained on the 
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surface layer of elements. 

Dai (1989) has worked on fracture assessment of mechanical components un­

der multiaxial loading. An approximate three-dimensional theory for expressing 

the crack-tip triaxiality in terms of the component dimensions and the multiaxial 

remote-field loadings was established. 

Newman et al. (1993) have studied the stresses and deformations around a 

straight-through crack in finite-thickness plates for an elastic perfectly-plastic ma­

terial under monotonic and cyclic loading using three-dimensional nonlinear finite 

element analysis. Constraint variations in cracked bodies have also been investi­

gated. 

In order that the physical meaning of potential energy is retained with refer­

ence to elastic (linear or nonlinear) bodies, several proposals have been made for 

three-dimensional integrals (Amestoy et al., 1981; Kishimoto et al., 1980; Kikuchi 

and Miyamoto, 1982; Bakker, 1984). The components of these three-dimensional 

contour integrals are written as: 

(2.24) 

where k=1, 2 or 3, 8k3 stands for the Kronecker delta, s is the path length along 

r , and A is the area within the contour. Based on equation (2.24), Chiarelli and 

Frediani (1993) have computed the three-dimensional J-integral for linear elastic 

material using three-dimensional finite element analysis. 

19 



Chapter 3 

Theoretical Analysis of J-lntegral 

3.1 Analysis of Two-Dimensional J-Integral 

3.1.1 Rice's Original Analysis 

Rice (1968a) has presented a path-independent contour integral, equation (2 .6 ), for 

the analysis of cracks. A homogeneous body of linear or nonlinear elastic material 

free of body forces is subjected to a two-dimensional deformation field. All stresses 

O'ij which are dependent on the cartesian coordinates X 1 (=X) and X 2 ( =Y) are 

considered in this section. Let the cartesian displacement vector field, its associated 

strain tensor field and its equilibrium stress tensor field in the absence of body 

forces, and for zero initial strains, be represented by the differentiable functions u, 

f. and a, respectively. The infinitesimal strains imply that: 

(3.1) 

Due to moment equilibrium, the stress tensor is symmetric, i.e., 

(3.2) 
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The equilibrium equations in the absence of body forces are given by the three 

equations: 

O"ij,j = 0. (3.3) 

As well, a- and t: are related by an elastic (linear or nonlinear) constitutive law, with 

the associated energy density W given by: 

(3.4) 

In the absence of initial strains, stresses can be obtained from the expression: 

(3.5) 

since, the existence of an elastic constitutive law implies that W is a function of 

strains alone. Rice then shows that the J-integral, defined by equation (2.6), is 

path-independent and is equal to the energy release rate in an elastic body that 

contains a crack. A somewhat different explanation can be attributed to the concept 

of energy release rate, while applying J to elastic-plastic materials. When the crack 

extends or when the specimen is unloaded, much of the strain-energy absorbed by 

an elastic-plastic material is not recovered. Thus J is viewed as the difference of 

potential energy between two identical specimens, but with neighboring crack sizes. 

For the purpose of extending to generalized two-dimensional and three-dimensional 

situations, Rice's J-integral is discussed in detail. 
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Rice's analysis considers a crack extension along the crack line (X direction) only. 

The crack sizes of two specimens considered are l and l + /)../, respectively with /)..[ 

along the X direction (Fig. 3.1). The crack tip is assumed to move "virtually" 

from the initial location o to the final location o', with the distance oo' being 

infinitesimally small. Here, the coordinate system o-X - Y is the fixed frame and 

the coordinate system o' - x - y is the moving frame. 

The fixed coordinate (o-X - Y) is related to the moving coordinate ( o'- x - y) 

according to the relations: 

X X-!)..! 

and (3.6) 

y = Y. 

A mathematical proof for the path independence of the J contour integral has 

been presented by Rice (1968a). Along a closed contour, r* (Fig. 3.2), J can be 

expressed as: 

J* = [. ( W dY - T, ~~ ds) . (3.7) 

Converting equation (3. 7) into an area integral by using the divergence theorem, 

the following expression can be obtained: 

(3.8) 

where A* is the area enclosed by r*. Using equations (3.1) through (3.5), the first 
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term is equal to the second term in equation (3.8) and thus J = 0 for any closed 

contour and therefore, 

J* = 0. (3.9) 

Two arbitrary contours, r 1 and r 2 around a crack tip are considered, as ill us-

trated in Fig. 3.3. If r 1 and r 2 are connected by segments along the crack face (f 3 

and r 4 ), a closed contour is formed. On the crack face, Ti = 0 and dY = 0, thus, 

Jr3 = 0 and Jr4 = 0. 

From equation (3.9), we have 

(3.10) 

Any arbitrary (counter-clockwise) path around a crack tip will yield the same value, 

and therefore J is path-independent. 

Two bodies of elastic material (linear or nonlinear), each containing a crack 

(Fig. 3.1), are considered. The same systems of loads, consisting of tractions 

and/or displacements are prescribed on both the bodies. Except for the crack size, 

both the bodies are identical in composition, overall geometrical shape, and in 

every other aspect (Rice, 1968b ). Under quasistatic conditions, and in the absence 

of body forces, the potential energy is given by 

IT U-F 

j W dA - { Tiui ds 
A lrT (3.11) 

where fr is the portion of the contour on which tractions are defined. 
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Figure 3.3: Two Arbitrary Contour, r, and r2 around a crack tip 
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From equation (3.11 ), the potential energy of the two bodies in Fig. 3.1 can be 

expressed as: 

IT(l) 

(3.12) 

IT(l+~l) 

Therefore, the difference of potential energy is : 

(3.13) 

where the third integration can be performed over the entire contour' r' because 

~ui = 0 over the region where the displacements are specified. The energy release 

rate can now be obtained as: 

dll 

d( 6.l) 
lim ~IT 

- Ll.l-+0 ~l 

Considering equation (3.6), it can be seen that: 
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aui aui 
8(6.!) - ax . (3.15) 

By using the divergence theorem, in conjunction with equations (3.1) through (3.5), 

the energy release rate can be obtained as: 

(3.16) 

From equation (3.6), the relationship can be expressed as: 

dy = dY 

and (3.17) 

au-t 
ax 

Furthermore, 

diT f aui 
- d(6.l) = lr[W dY- Ti ax ds] = J. (3.18) 

Therefore, the J contour integral is equal to the energy release rate for a linear or 

nonlinear elastic material under quasistatic conditions. 

3.1.2 Generalized Two-Dimensional J-lntegral 

Rice's J-integral formula supposes that the virtual crack extension is along the crack 

line in two-dimensional deformation fields. Considering the defect of materials and 
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manufacturing processes, crack propagation may not be exactly along the crack line. 

For example, a brittle material with a crack meandering and branching (Anderson, 

1991) is shown in Fig. 3.4. In this sense, Rice's idealization of propagation of the 

crack along the crack line is just an assumption. 

Similar to the analysis of Kishimoto et al. (1980), we next consider the crack 

tip virtual translation being along with the line oo' which has an angle () with the X 

direction (Fig. 3.5). The initial crack tip o is assumed to move too', and the length 

of oo' is represented by ~~- The dashed curve indicates the virtual translation. 

As done for equation (3.6), the fixed coordinate (o-X - Y) is related to the 

moving fr arne ( o' - x - y) according to: 

x X cos () + Y sin() - ~~ 

y -X sin () + Y cos () (3.19) 

or 

X x cos() - y sin()+ ~~cos() 

y x sin()+ y cos()+ ~~sin B. (3.20) 

Making use of the equations (3.11) through (3.16), the relationship from equa­

tion (3.19) can be rewritten as 

dy - sin () dX + cos () dY 

(3.21) 
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Figure 3.4: Crack Meandering and Branching 

30 



\ 

I 
I 

/ y 
I 

I 
I 
I 
I 
I 
I 

I 
I 

" ' ' ' ...... 

' ........ ....... 
.............. 

--------..._ 

---------

--,,X/:). A R 

\ 

/ 
/ 

\ 
\ 
\ 

~ 
\ 

' 

I 
I 

/ 

\ 
\ 
\ 
I 
I 
I 
I 
I 
I 

I 

/ 

Figure 3.5: General Crack Extension in 2-D 

31 



By comparing equation (3.21) with (3.17), the energy release rate can be obtained 

as 

diT 
-- = J1 cosO+ J 2 sinO 
d( !:l.l) 

(3.22) 

where 

(3.23) 

and 

(3.24) 

The above may also be written as 

k = 1, 2 (3.25) 

where Jk (k=1, 2) are termed as generalized two-dimensional J-integrals. J1 cor-

responds to the energy release rate due to a virtual translation in the X direction, 

and J 2 in the Y direction. 

Similar to equation (3.9), the following integrands over a closed contour, r• , are 

obtained as ( Jt)* = 0 and ( J 2 )* = 0. From Fig. 3.3, dX is not equal to zero 

on r 3 and r 4 . Therefore, J1 is path-independent (equation (3.10)], but J 2 is path­

dependent. The result here is an extension of Rice's J -integral in the generalized 

two-dimensional deformation fields. 
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3.2 Analysis of Three-Dimensional J-Integral 

3.2.1 First Conservation Law 

The path independent integrals play a significant role in the evaluation of stress and 

deformation at a discontinuity by way of determining integrals over a path, away 

from the discontinuity and nonlinearity. In essence, J integral is a specialization 

of Knowles and Sternberg's (1972) first conservation law for linear and nonlinear 

elastic media (Bakker (1984). For a complete surface, E, of a cracked body, the 

conservation law can be expressed as: 

(k = 1, 2 or 3) (3.26) 

where n stands for the unit outward normal onE (therefore Ti = O"ijnj)· The prin­

ciple of minimum potential energy and the invariance of strain energy density with 

regard to some classes of coordinate mappings form the basis of the conservation 

law as derived by Knowles and Sternberg (1972). 

Fig. 3.6 shows a domain, R, in a cartesian space, representing the interior of a 

solid body. The divergence theorem can be applied to a regular subregion, n, of 

R with a closed piecewise differentiable surface E. Under quasistatic conditions, 

and in the absence of body forces, the potential energy of the subregion n can be 

expressed as: 

II U-F 

L W dV - h Tiui dA. (3.27) 
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The variation of the potential energy can be expressed as 

(3.28) 

where xk (k=l, 2, 3) are three-dimensional cartesian coordinates. By m1n1mum 

potential energy principle, 

Since the variation in Xk given by 8xk is chosen arbitrarily, it follows that 

an 
--0 
axk- . 

Combining equations (3.27) and (3.29), we obtain 

(3.29) 

(3.30) 

The first conservation law given by equation (3.26) is then obtained by invoking 

the divergence theorem. 

The first conservation law, equation (3.26), corresponds to Eshelby's (1956, 

1970) energy momentum tensor equation. Rice's J-integral, defined to derive en-

ergy release rates for planar growth of two-dimensional defects in the xl direction, 

corresponds to the two-dimensional version of equation (3.26) and for k = 1 only. 
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Generalized two-dimensional ]-integral expressed by equation (3.25) then corre-

sponds to values of. k = 1, 2. 

3.2.2 Application to Three-Dimensional Cracked Bodies 

For applying the integrals of equation (3.26) to cracked bodies, a part of the bound-

ary of a subregion extending from one crack surface to the other, enclosing the crack 

tip, is considered. Equation (3.26) does not anymore represent the complete bound-

ary of the subregion. The resulting values, generally non-zero, may be assigned to 

the components of vectors, denoted as J: 

( k = 1, 2 or 3). (3.31) 

The symbol tilde is used to distinguish the integrals from identical integrals subse-

quently to be defined per unit length of crack fronts. 

Consider next a subregion n (Fig. 3.7) such that: 

'Eb: set of boundary points of n. 

'E: set of boundary points of n, excluding the defect surface. 

'Ed: set of defect boundary points of n. 

'Et: set of defect tip boundary points. 

'Es: set of defect boundary points, excluding the defect tip: separated by 'Et 

into two disjunct subsets. 

The first conservation law, equation (3.26), is expressed as 
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Figure 3.7: Typical Subregion in Relation to a Defect with an Associated Boundary 
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Furthermore, 

{ (Wnk- Tiui,k) dA- f (Wnk- Tiui ,k) dA 
}E }Ed 

0 (3.32) 

h (Wnk- Tiui ,k) dA 

f (Wnk- Tiui,k) dA 
}Ed 

h! (Wnk- Tiui ,k) dA + ht (Wnk- Tiui,k) dA (3.33) 

A surface integral according to equation (3.33) is termed path independent if the 

integrand is unconditionally zero on L: 5 , such that equation (3.33) reduces to: 

j h(Wnk- Tiui,k) dA 

ht (Wnk- Tiui,k) dA. (3.34) 

This implies that the integrals are equal for all subregion n. If the integrand on L:s 

is not equal to zero, the integral is termed to be path dependent. 

Fig. 3.8 shows a typical example of a subregion n that encloses a smoothly 

curved crack-tip. The coordinate axes are oriented in such a way that the fiat 

notch surfaces are parallel to the x 1-x3 plane, and the notch front is perpendicular 

38 



Figure 3.8: Subregion of Infinitesimal Thickness with a Smoothly Notched Defect 
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to the x1-x 2 plane at x 3 = 0. The dimension of the subregion in the x 3 direction 

is now reduced to an infinitesimal size, dl. A contour in the x1 -x2 plane defines 

the boundary of this subregion which is bounded by two surfaces A and A' parallel 

to this plane at x 3 = 0 and x 3 = dl, respectively. The contour is divided into 

three parts r h r s and r' representing the notch tip, the flat notch surfaces and the 

remaining interior contour, respectively. 

Application of equation (3.33) to this subregion yields: 

dl [ (Wnk- Tiui,k) ds + [ (Wnk- Tiui,k) dA Jr }A+A' 

dl [£
5 

Wnk ds + tt Wnk ds]. (3.35) 

The integrals over A and A' are related according to: 

where, the negative signs are due to opposite positive normal directions on A and 

A'. Substituting into equation (3.35) and dividing the result by dl, we find the J 

per unit crack-tip front length, denoted as J: 

Jk £ (Wnk- Tiui,k) ds + i (W 8k3- O"i3Ui,k),3 dA 

[ Wnk ds + [ Wnk ds lrs lrt 
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where, as n 1 = n 2 = 0 and n 3 = -1 on A, the normal component in the surface 

integral is replaced by 8k3 (Kronecker's delta) and the traction component by -(TiJ· 

Therefore, equation (3.37) may be viewed as three-dimensional J-integral. 

3.2.3 Energy Release Rate in Three-Dimensional Field 

Based on the concept of energy release rate, the aspect pertaining to the path­

independence of J-integral (Bakker, 1984) may be described as follows: 

(i) The energy release due to a virtual translation of r d ( = r s + rt) in the 

XI direction is denoted by Jl. Since only the notch tip part r t of r d is 

affected, there is no energy flow through the flat defect surface r s' and the 

energy release is independent of r s· Thus J 1 is path-independent. 

(ii) The energy release arising because of a virtual translation of r d in the X2 

direction is denoted by J2 . Since both r t and r s are affected, energy flows 

through both the surfaces, thus making J2 path-dependent. 

(iii) A virtual translation of r d in the XJ direction, denoted by J3, is 

path-independent since no energy flow exists through r d· Thus J3 is 

unconditionally zero. 

Given that a path-independent value is determined for the integral, a character­

istic meaning can be associated with the three-dimensional formulations based on 

the potential energy rate. For the example discussed above, the vector components 

J1 and J3 are found to be path independent, i.e., the integrals over the contour 

r and associated area A are independent of the choice of r, while J3 is always 
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equal to zero. Hence the J 1 component of equation (3.37) may be referred to as a 

three-dimensional J value. 

Following the same procedure as the analysis of generalized two-dimensional 

]-integral, consider next the crack extension problem in a three-dimensional con-

figuration as shown in Fig. 3.9. The solid curve represents the crack front contour 

in the initial state, while the dashed curve is the final crack front contour after a 

virtual crack extension has taken place. Let O-XrX2-X3 denote the fixed frame, 

with the origin 0 being at an arbitrary point along the crack front, and 0'-xrx2-x3 

be the moving frame, with the origin 0' being at the point on the dashed curve, 

where the length of 00' is represented by 13.1. Furthermore, the fixed coordinate 

system ( 0 - xl - x2 - X3) is related to the moving system ( 0' - Xt - x2 - x3) as 

follows: 

(3.38) 

where ( li, mi, ni) are the direction cosines of the moving system axes Xi. For in-

Similarly with equation (3.22), the energy release rate in three-dimensional con­

figurations in terms of O-X1-X2-X3 can be expressed as: 

(3.39) 
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where ()o, ¢Yo and '1/Jo are the angles of line 00' with xl' x2 and x3 respectively. 

For a straight-through cracked body (i.e. a finite-thickness plate with a through­

crack) where the crack front is a straight line, it can be expected that 00' extends 

along X 1 direction and therefore, 00 = 0 and ¢Yo = '1/Jo = 1r /2. From equation (3.39), 

the energy release rate can be written as: 

dii 
= Jl. 

d(~l) 
(3.40) 

From the aforementioned discussions it is clear that J1 for three-dimensional load­

ings can be viewed as energy release rate for a finite-thickness cracked body. Equa­

tion (3.40) is central to the development of the 2~-Dimensional theory for practical 

pressure components with defects which would be described later in this thesis. 
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Chapter 4 

Estimation of Mode I Crack Tip 
Plastic Zone Size 

4.1 Introduction 

Most of the classical methods of solution in fracture mechanics reduce a problem 

to two dimensions, i.e., plane stress or plane strain. A straight-through crack 

in finite-thickness plates may be viewed as a plane stress case when the thickness 

B < 3~ ( ~ ) 2
, or as a plane strain case when B > 2.5( ~rc ) 2 (Ewalds and Wanhill, 

y y 

1986). In general, the conditions at a crack tip for a specimen of finite-thickness 

indicate that there is neither plane stress nor plane strain condition present. The 

crack tip stress and strain are three-dimensional in such cases, the three-dimensional 

effects being essentially geometric. 

It has been demonstrated that the plastic zone size at a crack tip is influenced by 

the crack tip constraint parameter (Wu and Seshadri, 1995a). The GLOSS method 

of analysis can also be used to evaluate the three-dimensional crack tip constraint 

parameter A. The GLOSS technique is briefly discussed in the next section. 
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4.2 GLOSS Analysis 

The GLOSS analysis, described by Seshadri (1991), is a simple and systematic 

method for carrying out inelastic evaluations of mechanical components and struc-

t ures on the basis of two linear elastic finite element analyses. The mechanical 

component or structure is divided into "local" and "remainder" regions. Typically, 

"local" regions are subjected to a high strain concentrations while the "remainder" 

regions are predominantly elastic. The GLOSS method determines the constraint 

parameter, .\, which characterizes the manner in which the remainder region inter-

acts with the local region. 

A linear elastic finite element analysis of the structure is first carried out, and the 

elements with equivalent stress, ae, above the material yield stress, ay, are identified. 

The elastic modulus of each of these elements is modified from its original value of 

( 4.1) 

The elastic moduli of all the other elements are kept unchanged. 

A second linear elastic finite element analysis is then carried out with the mod-

ified set of moduli. H the highest stressed element in the structure has equivalent 

stress and strain [(aeh, (t:eh] from the first analysis, and [(aeh, (t:eh] from the sec­

ond analysis, for example, then the normalized relaxation modulus Er is given by 

(4.2) 
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The GLOSS theory essentially relates the multiaxial stress distribution in the local 

region to the uniaxial redistribution process. The varying degrees of interaction 

between the local and remainder regions are characterized by a "constraint param-

eter" which can be used in conjunction with the uniaxial model to generate inelastic 

results. 

Key to GLOSS evaluations is the determination of the local region relaxation 

modulus. This can be accomplished by studying the relaxation locus on the GLOSS 

diagram. For small-to-moderate plastic zone sizes, the relaxation locus is almost 

linear in many practical component configurations. In other words, the local region 

relaxation modulus is dependent, to a first approximation, on the response of the 

remainder region. The local region response would therefore appear to be insensitive 

to the precise nature of the local region nonlinearity and the material constitutive 

relationship. The implication is quite significant in that the relaxation modulus can 

be determined using any convenient constitutive relationship that allows progressive 

relative softening of the local region. Therefore, GLOSS analysis can be used to 

predict inelastic response whether the inelasticity arises due to first stage creep, 

steady state creep, or even time-independent plasticity. Local region softening by 

systematically reducing the elastic modulus, for instance, is therefore an attractive 

prospect. The constraint parameter ,\ at local region may be then derived as (Fig. 

4.1): 

(4.3) 
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The factor ,\ can be evaluated for any element in a similar manner. 

4.3 Multiaxial Constraint 

The concepts of load and deformation control can be illustrated on the GLOSS 

diagram (Fig. 4.1). For deformation control action, the relaxation locus AC in 

Fig. 4.1 would be vertical and therefore the value of ,\ would be equal to one. The 

implication is that a highly localized inelastic zone is surrounded by an entirely 

elastic remainder. It is precisely due to this reason that "shakedown" action occurs 

in mechanical components and structures. For load control action, on the other 

hand, the relaxation locus AC would be horizontal and hence the value of ,\ would 

be equal to zero. This situation is usually associated with a statically determinate 

action such as incipient collapse or net section yielding. 

In most cases, however, the local region would exhibit a mixed-mode response, 

and the value of ,\ would vary between zero and one. A constant value of ,\ implies 

that the principal stress ratios are invariant along the relaxation line. For small 

to medium amounts of follow-up, the stress ratio changes are not significant. The 

assumption of proportional loading is implied along a relaxation line for which ,\ is 

constant, although in reality some departure from this is expected. 

4.4 Normalized Constraint Parameter A 

By stipulating the ideal plane strain conditions as a reference, the normalized con­

straint parameter .X can be defined as the ratio of the three-dimensional constraint 

parameter to the plane strain constraint parameter (no crack-tip deformation in 

the thickness direction) for a finite-thickness specimen: 
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- .\ 
.\=-

.\= 
( 4.4) 

where .\= represents the plane strain constraint parameter ( corresponding to 

Bla ~ oo). 

Based on two linear elastic finite element analyses (GLOSS analysis), for the 

three-dimensional finite element model illustrated in Fig. 4.2, a family of curves 

depicting:\ vs. (Bia) is obtained for various loading conditions (Fig. 4.3). 

It can be seen that when B I a is very small (i.e. B I a < 0.05), the plane stress 

condition is approached, i.e., :\0 is almost a constant, for constant loading. The sub­

script '0' adjacent to X corresponds to the plane stress case (Bia ~ 0). The three-

dimensional crack-tip constraint parameter is bounded by the two-dimensional lim­

iting cases of plane stress and plane strain. Therefore, the value of X is between Xo 

and one. 

4.5 Approximate Method for Determining Crack­
Tip Plastic Zone Size 

It can be seen that the three-dimensional crack tip plastic zone size along () = 0 of 

the mid-section plane, ry, meets the requirement that r= < ry < r 0 , where r 0 and 

r = are plastic zone sizes along crack plane ( () = 0) for plane stress and plane strain 

conditions, respectively. 

For plane stress and plane strain conditions, the plastic zone sizes at the crack 

plane (0 = 0) for mode I specimen with small-scale yielding are as follows (Ander-

son, 1991): 
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Figure 4.2: 3-D Finite Element Model 
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( 4.5) 

and 

roo= (4.6) 

where I<r is the mode I stress intensity factor, and v is the Poisson's ratio. 

Assuming that the crack-tip plastic zone size is influenced by the crack-tip 

constraint parameter, the three-dimensional plastic zone size ( r y) can be estimated 

by the expression 

(4.7) 

where J(5..) is, as yet, an undetermined function of the three-dimensional normalized 

crack tip constraint parameter ..\. 

Equation ( 4. 7) is prompted by the observation that when ..\ = 1 the plane-

strain condition is achieved, and the plastic-zone size ry = r 00 • As well, when 

..\ = ..\0 corresponding to plane stress, ry = r 0 . 

Comparing equation (4.7) with equations (4.5) and (4.6), we have: 

!(1) = 1 . (4.8) 

and 

(4.9) 
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With an increase in the load, yielding at the crack plane becomes extensive and 

spreads to the lateral boundary ahead of the crack resulting in uncontained plastic 

flow. For this limiting case, ry is identified with the crack ligament length (W- a). 

Therefore, 

f(O) ~ (W- a)/roo. ( 4.10) 

A simple relationship between J(5.) and ~ can then be expressed as, 

( 4.11) 

where Ct, C 2 and C3 can be determined from equations ( 4.8), ( 4.9) and ( 4.10). The 

constants are dependent on the specimen geometry, the material property and the 

loading conditions. 

Therefore, equations ( 4. 7) and ( 4.11) can be seen to provide an approximate 

estimation of the three-dimensional crack tip plastic zone size along () = 0 at the 

mid-section for mode I crack specimens. The procedure can also be used for eval­

uating the three-dimensional crack tip plastic zone size for different crack plane 

orientations ( 0 < () < 1r). 

4.6 Remarks 

An approximate method to evaluate the three-dimensional crack tip plastic zone 

size has been presented in this chapter. The expression for the estimation is based 

on LEFM results and therefore, the plastic zone size is small in comparison with 

the specimen crack ligament. The method presented in this chapter can be used to 

evaluate crack-tip plastic constraint parameters for many practical components. 
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Chapter 5 

J-Estimation of Circular-Ended 
Notches 

5.1 Introduction 

An edge-crack problem can be viewed as the limiting case of circular-ended notch. 

Therefore, the edge-crack tip J-estimation may be obtained through the analysis 

of J for circular-ended notches. Approximate methods proposed here are based on 

the concept of the GLOSS technique. Following the approximate J-estimation of 

circular-ended notches, the edge-crack tip J in the limiting case is evaluated. 

Key to this analysis is to determine the notch root stress and strain. Usually, 

numerical techniques, such as the inelastic finite element method and the boundary 

element method are used for obtaining the strain concentration at notches. How­

ever, numerical analysis can be time-consuming and expensive. From an engineering 

standpoint, a quicker and less expensive method is often preferable. 

A commonly used method for the estimation of notch stress and strain is the 

Neuber's rule (Neuber, 1961). However, this rule has been shown to overestimate 

the strain concentration at notches. The GLOSS method of analysis is a practical 
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compromise between the elaborate methods (such as the inelastic finite element 

method) and the approximate analytical techniques. In this chapter, the notch 

root stress and strain are obtained for strain-hardening material behavior using 

GLOSS analysis and further, J-integral for smooth-ended notches is derived. 

5.2 Notch Root Stress and Strain 

For the sake of generality, the strain-hardening material behavior as governed by 

the modified Ludwik equation is assumed, i.e., 

a 
E 

Eo 
E < Ey 

(5.1) 

E Ban E > Ey 

where B = a;-n /Eo and ay = EoEy· For a linear elastic material, n = 1 whereas 

for an elastic perfectly-plastic material, n -+- oo. 

The underlying principle behind GLOSS evaluations lies in the determination 

of the relaxation modulus of the local region. The relaxation locus on the GLOSS 

diagram (Fig. 4.1) serves as an indicator for such a study. For small-to-moderate 

plastic zone sizes (i.e., follow-up angle 0 < 60°), the relaxation locus is found to be 

almost linear. The local region constraint can be characterized by the relaxation 

line AC, and therefore the constraint parameter, .X. The equation of line AC is: 

(5.2) 
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where CT ei is the highest equivalent stress in the first linear elastic finite element 

analysis and Eei = CTed E 0 • The factors CTr and Er correspond to the notch root stress 

and strain. 

Based on the intersection of the local region relaxation line and strain-hardening 

material curve, the notch root stress and strain can be determined. By combining 

equations (5.1) and (5.2), notch root equivalent stress and strain can be obtained 

as 

and (5.3) 

Particularly, for the linear material, CTr = CTei and Er = CTed E 0 • For the elastic 

perfectly-plastic material, CTr = ay and Er = [CTy + (aei- ay)/ .A]/ E 0 • 

5.3 J-Integral for Smooth-Ended Notches 

Considering a fiat-surfaced notch in a two-dimensional deformation field (Fig. 5.1), 

the J-integral may be evaluated along the curved notch tip rr (Rice, 1968a). 

The expression for two-dimensional J-integral is written as equation (2.6). Along 

the notch surface, since there is no traction, Ti = 0. This leads to 

J - { Wdy 
Jrr 
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j +7r/2 
-1r/

2 
W[E(</>)] Pt(</>)cos(</>) d</> (5.4) 

where W[E(</>)] is the strain energy density of the notch end, Pt(<l>) is the radius of 

curvature of the notch end, and </> is the angle included between the tangent to the 

notch end edge and the y-axis. 

Considering strain-hardening material behavior, equation (5.1), the strain en-

ergy density is given by 

w 

or w (5.5) 

where a > ay. For a linear elastic material, the strain energy density We is equal 

to ~aE. For a rigid plastic material, the strain energy density WP is equal to aE. 

For approximations to the strain concentration through equation (5.4), Rice 

(1968a) considers a feature of the linear elastic problem of an ellipsoidal inclusion 

in an infinite matrix subjected to a uniform remote stress state. An ellipsoidal void 

in a material can be assumed to be an imagined inclusion with zero elastic moduli. 

Therefore, the surface strains for an elliptical hole in a linear elastic plate, loaded 

symmetrically so as to cause no shear or rotation of the imagined inclusion can be 

given by the expression (Eshelby, 1957): 

(5.6) 
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Figure 5.1: Typical Flat-surfaced Notch in a Two-dimensional Deformation Field 

59 



Here the ¢Y notation is as in Fig. 5.1, Emax is the strain at the sernimajor axis 

( ¢Y = 0, 7r), and Em in at the serniminor axis ( ¢Y = 7r I 2, 37r I 2). Assuming Em in to be 

small compared to Emax' and postulating that the same interpretation of the surface 

strains holds good for the other cases also, equation (5.6) can be rewritten as: 

(5.7) 

where the notch root strain Er corresponds to the maximum surface strain. Further, 

by combining equations (5.7) and (5.1), the corresponding expression for the surface 

stresses can be obtained as: 

(5.8) 

The J-integral for notches can be derived from equations (5.4) through (5.8) as: 

J - 1-n (ay)
2 f n f 

- ( ) 1 + 2 0" r Er 1 
2 1 + n Eo 1 + n 

(5.9) 

where 

j +'lr/2 
!1 = Pt(¢J) cos(¢Y) d¢Y 

-'lr/2 
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Particularly, for a semi-circular end notch, Pt( ¢) = p and therefore !I = 2p, f 2 = 

..Ji 1~~~~~{/l)P· · On the basis of equations (5.3) and (5.9), J-integral for strain 

hardening material at the circular-ended notch can be evaluated. 

5.4 J-Estimation Methods 

A robust approximation is one which may seldom give an exact solution, but will 

be close enough for practical purposes. The solution will be relatively insensitive 

to inadequacies, uncertainties or variability in the input data which is typical of an 

industrial operating plant environment. Two approximate methods for the deter­

mination of J -integral are discussed here: 

Method 1: For the elastic perfectly-plastic material, notch root equivalent 

stress ar is equal to ay and equivalent strain tr is equal to [ay + (aei- ay)/ _A.)/ E 0 • 

From equation (5.9) (when n ~ oo ), elastic perfectly-plastic Je-p of circular-ended 

notches can be obtained as 

(5.10) 

Comparing the elastic perfectly-plastic case with the linear elastic case in the 

notch root stress-strain curve (Fig. 5.2), the strain energy density We-p should be 

larger than We and therefore, the area (AI) of rectangle BC FE should be larger 

than the area ( A 2 ) of triangle AB D. 

Based on the linear relaxation locus AC, following equation (5.3), the areas AI 

and A2 are obtained as: 
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Figure 5.2: Notch Root Stress-Strain Curve 
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(5.11) 

and 

(5.12) 

The GLOSS constraint parameter A is then obtained as 

(5.13) 

For the condition A > 2/(0"ei/O"y + 1), Je-p can be calculated from the constraint 

parameter A= 2/(uei/O"y + 1). Therefore, equation (5.10) can be rewritten as 

for 

(5.14) 
for 

Based on finite element evaluation (Wu and Seshadri, 1995b,c), it has been 

found that J for elastic perfectly-plastic material is larger than J for general strain­

hardening material (Fig. 5.3). Considering strain-hardening material behavior in 

practice, for the purpose of safe design in engineering, equation (5.14) can be used 

for the elastic-plastic J-estimation of circular-ended notches. 
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Method II: Following the procedure used by Seshadri and Kizhatil (1995), 

an estimate of the elastic-plastic J based on the GLOSS constraint parameter, )., 

is obtained as 

(5.15) 

Equation (5.15) is prompted by the observation that when the constraint parameter 

). = 0, i.e., large plastic zone size is attained, J -----? Jp, and when ). = 1, i.e., for 

constrained plasticity, J = Je· 

On the basis of equations (5.5) and (5.9), Je and Jp are expressed as: 

For linear elastic material: 

(5.16) 

For rigid plastic material: 

( 5.1 7) 

Combining equations (5.15), (5.16) and (5.17), the elastic-plastic J can be obtained 

as follows: 

(5.18) 
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Equation (5.18) is another J-estimation of circular-ended notches. Equations (5.14) 

and (5.18) can, therefore, be considered as approximate J-estimations. The con-

straint parameter A can be evaluated by GLOSS analysis for the notch root accord-

ing to equations ( 4.1), ( 4.2) and ( 4.3). 

Consider that the assumption of a linear relaxation locus is only suitable for 

small-to-moderate plastic zone sizes, i.e. , follow-up angle is 0 < 1J < 60°. From 

the GLOSS diagram (Fig. 4.1), the angle 1J can be calculated by the following 

expressiOn 

- ~ -
() = - -arctan( -Er ). 

2 
(5.19) 

Following equation ( 4.3), for a linear relaxation locus, the GLOSS constraint pa-

rameter is given by, 

v'3-1<).<1. 
2 - - (5.20) 

From Fig. 5.3, it is seen that J estimated by equation (5.18) is conservative 

up to loads close to limit loads. This corresponds to normalized load value of 

0.9. Beyond this loading, the estimate given by equation (5.18) underestimates J. 

However, well-designed structural components rarely undergo such high loading, 

and hence this part of the curve should not be used in practice. 

If a bilinear strain hardening material behavior is assumed for the numerical ex-

amples considered above, it is found that the elastic-plastic J estimated by nonlinear 

finite element analysis is lower than that for an elastic perfectly-plastic material as 
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shown in Fig. 5.3. An elastic perfectly-plastic curve can be defined by a slope of 

Ep = 0, whereas, a slope of Ep = Eo/5 depicts strain hardening. For the latter 

case, equation (5.18) would be conservative for larger values of load. For these 

reasons, equation (5.18) is recommended as the approximate estimation of J for 

circular-ended notches. 

Based on equation (5.18), the J estimation for various notch sizes, pj a, is ob­

tained and plotted in Fig. 5.4, and the edge-cracked components or structures are 

viewed as the limiting case of notched specimens. From Fig. 5.4, J-estimation 

for cracked components and structures can be approximately obtained from J of a 

small notch size (i.e., pja = 0.05). 

5.5 Remarks 

Approximate methods for evaluating the elastic-plastic J for circular-ended notches 

are presented. The estimation of notch stress and strain is based on GLOSS lin­

ear relaxation locus, thus, the method proposed herein is applicable for small to 

medium amounts of local plastic zone at the notch root. The results obtained by 

these methods compare well with nonlinear finite element analysis for the numeri­

cal example considered. The methods presented in this chapter propose one simple 

way for evaluating the elastic-plastic J for cracked components and structures, and 

should also find use in performing quick design evaluations. 
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Chapter 6 

A Simplified Three-Dimensional 
Model for Analyzing Pressure 
Vessels and Piping Components 
-with Defects 

6.1 Introduction 

The current J -estimations for crack tips are based primarily on a biaxial load­

ing condition in that a state of plane stress or plane strain is assumed depend­

ing on the physical situation. The appropriateness of the plane stress or plane 

strain approximations for practical three-dimensional configurations is an open is-

sue. Surprisingly, very little of this work has been explored by fracture mechanics 

researchers. Dai (1989) has shown that a three-dimensional analysis which consid-

ers the specimen geometries and multiaxialloadings is necessary if one is to assure 

conservativeness of design. Recently, Schwartz (1993) has analyzed a circumferen­

tial flaw in a pressure vessel and has p roposed that it is reasonable to expect that 

the tensile strain parallel to the crack front as opposed to zero (plane strain) or 

compressive (plane stress) could influence the constraint at the tip of the flaw. 

69 



The notion of 2~-Dimensional speCimen proposed in this chapter is useful in 

representing cracked-components and structures that are subjected to special but 

common cases of practical three-dimensional loadings (Fig. 6.1) (Wu and Seshadri, 

1996). The term "2~-Dimensional" implies that only partial three-dimensional 

effects are incorporated into the traditional two-dimensional cracked component 

models. Specifically, the remote loading in the direction along the crack front is 

considered in this chapter since this would cover many practical situations. The 

term 2~-D is borrowed from the "wire-frame graphics" terminology. The study 

essentially investigates the influence of out-of-plane loading on the crack tip con-

straint. 

The effect of the remote field stress in the direction of the crack front on crack-tip 

constraint is examined for linear elastic materials. Appropriate correction factors 

that could be used in conjunction with existing experimental data are provided. 

Finally, pressure vessel and piping configurations with circumferential and longitu-

dinal flaws are analyzed on the basis of the simplified theory developed here. 

6.2 Crack Tip Constraint Parameter for 2~-D 
Specimens 

The 2~-D model is used to describe a cracked body of finite-thickness subjected to 

three-dimensional remote loadings ( O'f, O'f and O'f). The remote stress O'f would 

have a smaller influence on the stress field at the crack tip than O'f and O'f (Dai, 

1989). We therefore assume that the influence of O'f can be ignored. In order to 

investigate the influence of out-of-plane loading ( O'f) on crack tip constraint, the 

GLOSS method can be used to evaluate crack tip constraint parameter for 2~-D 
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specimens. 

The Generalized Local Stress Strain (GLOSS) method, based on reduced mod-

ulus technique, is a simple and systematic method for carrying out inelastic eval-

uations of mechanical components and structures on the basis of two linear elastic 

finite element analyses (Seshadri,1991 ) . 

From the GLOSS diagram (Fig. 4.1), the strains In equation (4.2) may be 

expressed by 

and 

Combining equations ( 4.2) and ( 4.3), the constraint parameter A at crack tip 

can be obtained as 

A= (a-e)II(a-e)2- 1 
(a-e)I/a-y- 1 

(6.1) 

where (a-e)I, (a-e)2 are maximum equivalent stresses at the crack tip element from 

the first and second linear elastic finite element analyses, respectively, and O"y is 

yielding stress. Following the procedure described in Chapter 4, the normalized 

constraint parameter, .\, can be defined as described by equation ( 4.4). For a 2~-D 

single-edge cracked plate, the constraint parameter (A) can be obtained for various 

geometric configurations (i.e., B I a) and remote field loadings ( a-{i and a-f) using 

the GLOSS method. 

For the purpose of illustrating the influence of o-f on the constraint parameter, 

the loading o-f is set at a-f = 113. The results are shown in Table 6.1 where the 

normalized loadings are a-f = o-f I a-y and o-f = o-f/ a-y. 
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From Fig. 6.2, it is seen that .X approaches a constant value when the specimens 

are very thin (i.e., B / a=O .05), and plane stress condition is said to have been 

attained. Furthermore, the value of .X increases with the tensile out-of-plane loading 

crf , but decreases with the compressive loading crf. 

6.3 J-Estimation of 2~-D Specimens for Linear 
Elastic Materials 

From the analysis of crack tip constraint parameter, it can be seen that the ). curves 

for the 2~-D component can be approximately viewed as the translation of the .X 

curve for the 2-D component according to the out-of-plane loading crf (Fig. 6.2). 

Therefore, 2~-D normalized constraint parameter can be expressed as 

(6.2) 

where ~.X is due to the loading crf. It follows that the energy release rate J is 

also influenced by the crack-tip constraint parameter. Therefore, the 2~-D energy 

release rate ( J) can be expressed as 

(6.3) 

where ~J depends on the out-of-plane loading crf. 

On the basis of the theoretical analysis of 3-D J-integral discussed in Chapter 3, 

the path-independent integral J1 can be viewed as the energy release rate for 2~-D 

specimens (i.e. a through-cracked body where the crack front is a straight line). 
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From equation (3.37), the path-independent integral J 1 of the 2~-D configuration 

can be expressed as 

where the first term is a line integral and the second term is a surface integral. 

On the surface A, where the remote stress af is applied, the stress state can be 

described as: 

0"13 = 0, 

and nk, Tk along the path r can be represented by: 

and 

Therefore, the energy release rate for 2~-D specimens can be expressed as 

(6.5) 

where E~s) is the strain on the surface A along the af direction. 
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The identity 

a (s) 

J O"R~ dA = 0 
A 3 ax1 (6.6) 

holds for any 2-D problem (uf- = 0). Therefore, the 2~-D energy release rate can 

be approximately expressed as 

(6.7) 

The above equation is valid for inelastic materials in the sense of Rice's original 

development. 

Equation (6. 7) calculates the energy release rate on the surface A only. Although 

J has a small variation along the thickness , J based on equation (6.7) can be 

approximately viewed as an averaged 2~-D energy release rate. 

For linear elastic materials, the strain E1s) on the surface A can be expressed as: 

E1s) = ~ [u33- v(un + 0"22)](s) = ~ [uf- v(un + 0"22)(s)] (6.8) 
0 0 

where O"n and (]"22 are normal stresses in the xl and x2 directions on the surface 

A, respectively. 

Traditional fracture mechanics methods have been confined primarily to two-

dimensional configurations. For the two-dimensional mode I cracked specimens, 

the crack-tip stress state within the J( -dominated zone near crack tip is given as 

(Anderson, 1991): 
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I{ I ( ()) [ . ( ()) . ( 3() )] a-11 = ~ COS 2 1 - Sln 2 Sln 2 

I< I ( ()) [ . ( ()) . ( 3() )] 
0"22 = ~ COS 2 1 + Sln 2 Sln 2 

a33 = { 
plane stress 
plane strain 

(6.9) 

where K I is the mode I stress intensity factor, and r and () are polar coordinates, 

where the origin is located at crack tip. KI depends on the remote stress af and 

the geometry only. 

In most of the current literature, the stress system parallel to the crack face is 

assumed not to disturb the crack. Therefore, only the uniaxial remote stress af is 

considered to be important in the traditional analysis (Broek, 1986). However, for 

2~-D specimens, the remote stress af could have significant influence on the stress 

state at the crack tip as will be shown next. 

In a manner similar to the analysis of two-dimensional linear elastic fracture 

mechanics, the stress state near the crack tip for 2~-D specimens can be expressed 

as: 

(6.10) 

where the parameter C would depend on the loading condition and the crack ge-

ometry. 
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Although the geometric configuration of a 2~-D specimen is the same as a 2-D 

specimen, the loading conditions are different in that af is applied. Therefore, the 

stress state near the crack-tip in the proposed 2~-D configurations can be expressed 

as: 

]{j (()) [1 . (()) . (3())] a 11 = ~ cos 2 - s1n 2 s1n 2 

(6.11) 

f{j (()) [ . (()) . (3())] 
0'22 = ~ COS 2 1 + Slll 2 Sill 2 

where Kj represents the equivalent stress intensity factor for 2~-D specimens and 

depends on af, af- and the geometric configuration. 

For the linear elastic material behavior, E~5 ) within the crack tip K -dominated 

zone can be obtained by combining equations (6.8) and (6.11) as: 

(6.12) 

Since J1 is independent of the path, for the sake of convenience, r may be 

chosen as a circle of radius IK with its center being at crack tip (Fig. 6.3). The 

relationship of coordinate systems is given by 

X1 I cos( fJ) 

1 sin( 0). (6.13) 
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The strain E~s) can be estimated by equation (6.12) when the radius rK is confined 

within the ]{-dominated zone. 

Therefore, if af- is considered to be a constant, the surface integral can be 

expressed as: 

(6.14) 

where a small circle with radius r 0 is assumed to be located at the crack tip that 

excludes the crack tip itself and hence singular points in the stress-strain field from 

the subregion (Fig. 6.3). 

Substitution of equation (6.14) into equation (6.7) leads to the expression: 

(6.15) 

where the subscript 'e' represents validity for linear elastic range. 

In the two-dimensional linear elastic fracture mechanics, the normal stress along 

() = 0 can be obtained as: 

CT22 = K1/~ + af = af (!3{[;. + 1) 

where f3 is the geometric factor (/3 > 1). The radius r must be small when compared 

79 



Radius of K-dominated 

Radius of assumed crack tip 
small circle, r 0 

Figure 6.3: Consideration of Crack Tip Singularity 
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to the crack length, a, in order for the singular term to dominate. If the f{-

dominated zone is defined as the region where the first term is at least 5 times the 

second term, the size of this zone is r K = a I 50. 

For the 2~-D situation, the same ]{-dominated zone size can be assumed and 

substituted into equation (6.15) since the stress state distributions near the crack 

tip would be similar. Therefore, the linear elastic energy release rate for 2~-D 

specimens can be obtained as: 

(6.16) 

where JJ2D) = (!{ 1 ) 2 I Eo (for plane stress). 

The crack tip stress distribution for the two-dimensional geometry is given by 

equation (6.10) as CTij = K1r-t fij(B). The introduction of the remote field stress 

CT{i is assumed not to affect the distribution fij(B). Rather, it is anticipated that 

the magnitude of K1 would be affected. Therefore, it is postulated that the crack 

tip stress distribution for 2~-D configuration would be given by CTij = Kjr-t fij(B). 

In effect, self-similarity of the stress distribution is preserved. 

In equation (6.16), K1 is the traditional two-dimensional crack-tip stress in­

tensity factor which depends on the geometry and the remote field loading CTf. 

However, Kj represents 2~-D crack-tip equivalent stress intensity factor which de­

pends on the geometry and the simplified remote field loadings CT[l and CT{i. 

For the special case of a linear elastic material, J = G. Also, 
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(6.17) 

for 2 ~-D mode I loading ( O"f and O"f present). 

Combining equations (6.16) and (6.17) , the equivalent stress intensity factor for 

2~ -D is obtained as 

(6.18) 

wherein K1 = {3 O"f ~and K 0 = 
1
2;7!" j3 O"f- ~. Equation (6.18) can be used to 

evaluate the crack tip stress intensity factor for practical 2~-D configurations such 

as pressure vessels or piping with a circumferential or a longitudinal flaw. 

If f.l is defined as the ratio of O"f to O"f in the 2~-D model, with f{j = '1/Jk K1 

in equation (6.18), the parameter '1/Jk is equal to [0.014~-L + )1 + (0.014f.-L) 2 ] when 

v = 0.33. Therefore, '1/Jk can find use in the adaptation of ASTM E-399 f{ Ic tests 

for the 2~-D specimens. 

6.4 Size Requirement For Plane Strain :Fracture 
Toughness Testing 

Based on the ASTM Standard Test Method for Plane-Strain Fracture Toughness 

(ASTM Standard E 399-83, 1984) , the specimen size requirement in the traditional 

two-dimensional model is: 

a, B, W- a > 2.5 ( ~:) 
2 

(6.19) 
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where a IS the crack length, B is the thickness of cracked speciinen, and W-a 

is the crack ligament length. However, for 2~-D specimens , the specimen size 

requirement would be influenced by the loading af as compared to the traditional 

two-dimensional situation. 

The von Mises yield criterion states that yielding will occur when 

(6.20) 

where a 1 , a 2 and a 3 are the principal stresses. For 2~-D specimens, the principal 

stresses on surface A are: 

f{* () . () 
~ COS - ( 1 + Sill -) 

V L.7rT 2 2 
Kj () . () 

--===COS -(1 -Sill-) 
~ 2 2 

R a3 . 

(6.21) 

Therefore the plastic zone size can be derived by substituting Eq. ( 6.21) into Eq. 

(6.20): 

r(O) = 
Kj(1 +cos()+ ~(sin 0) 2

) 

[ ]

2 

(6.22) 

Along the crack plane, () = 0, the 2~-D plastic zone size can be obtained as: 
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1 ( ]{* ) 2 

r; = 21r a!}-: ay (6.23) 

Comparing with the traditional two-dimensional plastic zone size (for plane stress), 

equation (6.23) can be rewritten as 

1 (]{*) 2 
1 r; = 27r a: (1 + a!}-) 2 · 

(6.24) 

Therefore, similar to equation (6.19), the 2~-D specimen size requirement for 

plane strain f{jc testing can be expressed as: 

a, B* , W- a > __ 2 ._5=-- ( ~yj) 
2 

(1 + a-!}-)2 
v 

(6.25) 

Let Be be termed as the critical thickness for plane strain in the fracture tough-

ness testing. The thickness size requirement in order to obtain a valid ]{I c for the 

traditional two-dimensional specimens is given by: 

2.5 ( ~:) 
2 

(6.26) 

The critical thickness in the traditional specimens can therefore be obtained as: 
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(6.27) 

For the 2~-D specimen, combining equations (6.18) and (6.25), the critical thickness 

in 2~-D can be obtained as: 

_e = 2.57r /32 1 1571" 3 1571" 3 
(

B ) * ( j(a-R)2 + (:k_a-R)2 + :k_a-R) 
2 

a 2tD 1 +a!} 
(6.28) 

The theoretical expressiOn, Eq. (6.28), can be verified by using the GLOSS 

analysis, the results of which are presented in Table 6.1. For the single-edge cracked 

specimen ( a/W = ~ ), the geometry factor f3 is approximately equal to 1. 78. From 

Eq. (6.27), ( ~ hn is 2. 76 when a{l is fixed at 1/3. From Fig. 6.2, it is seen that the 

curve 3 corresponds to the 2-D situation (af = 0), and Be/a = 2.76 corresponds 

to.:\ = 0.92. However, the same value of 0.92 for .:\ corresponds to Be/a= 1.45 in 

curve 1 (af = 1/3) and Be/a= 1.75 in curve 2 (af = 1/4). Based on Eq. (6.28), 

the theoretical values of Be/ a are 1.59 and 1.80 for af= 1/3 and 1/4, respectively. 

It can therefore be seen that the theoretical estimates of the critical thickness for 

the 2~-D configurations compare well with the results of the GLOSS analysis. 
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6.5 Numerical Examples 

6.5.1 Analysis of Practical Pressure Vessels and Piping 
Components with Defects 

Three-dimensional pressure vessels and piping components with defects (i.e., a cir-

cumferential or a longitudinal flaw in a pressure vessel) differ from the conventional 

fracture specimens in one significant manner: the stresses parallel to the crack 

front are tensile. The analysis of such flaws is of importance in the evaluation of 

the fracture integrity of welds in nuclear reactor pressure vessels, which contain 

only circumferential welds. Some practical three-dimensional pressure vessels and 

piping components (2!-D model) are analyzed in this section to illustrate the effect 

of stresses parallel to the crack front. 

The ANSYS (1992) finite element computer-program has been used for perform-

ing linear as well as nonlinear analyses. While the ANSYS finite element program 

has been used in fracture mechanics, it has mainly been based on the traditional 

two-dimensional fracture mechanics results. The crack tip element is only valid 

for the two-dimensional in-plane loading conditions (i.e., af=O). Therefore, com-

mercia! finite element programs are not suitable for calculating fracture parameters 

(i.e., K and J) of the 2!-D model. 

Theoretical estimates of Je for the 2!-D model are compared with the theoretical 

results of Je for the traditional two-dimensional fracture model. For elastic-plastic 

materials, the robust estimate of Jefp for 2~-D model is also presented. 
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6.5.2 Circumferential Flaw in a Pressure Vessel 

In this study, a pressure vessel with a circumferential flaw is treated as a cylinder 

having an internal radius, Ri, of 100 mm and a wall thickness, W, of 10 mm. The 

flaw with a crack length, a, of 2.5 mm in the radial direction ( a/W = 0.25) is 

assumed to be circurnferentially continuous. 

The material behavior is assumed to be elastic perfectly-plastic. The following 

values of material constants are used in all analyses: Young's modulus ( E 0 ) = 2.11 x 

105 MN/m2
, Poisson's ratio (v) = 0.3, and yield stress (ay) = 488.43 MN/m2 . The 

traditional fracture model considers the longitudinal loading only (2-D model), and 

the proposed 2~-D model considers the combined circumferential and longitudinal 

loadings. 

For the limiting case of a continuous circumferential flaw, the problem can be 

considered as a plane strain case. Therefore, theoretical linear elastic Je of the 

traditional 2-D model (longitudinal loading condition) is: 

(6.29) 

R 2 2 where K1 = (3 Pi R 2 -R2 .JiG, and (3 = 1.12 - 0.231(a/W) + 10.55(a/W) -
0 I 

21.72(a/W)3 + 30.39(a/W)4 (Ewalds and Wanhill, 1986). 

Based on the proposed J theory for 2~-D specimens, 

( 6 .30) 

where the subscript 'e' stands for the linear elastic behavior. For the combined 
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loading (circumferential and longitudinal) condition, the equivalent stress intensity 

factor J(j is given by Kj = J KJ + KJ + Ko and I<o = 12~ {3 Pi W .JiG,. Therefore 

linear elastic le can be obtained by Eq. (6.30). 

The inelastic energy release rate ( J) is calculated by the ANSYS finite element 

program for the traditional 2-D fracture model, and by robust approximate method 

(Seshadri and Kizhatil, 1995) for the 2~-D configuration. 

The finite element model for the two-dimensional cracked specimen of the as-

sumed geometry is generated by using ANSYS software. Only the upper half of 

the vessel is considered because of symmetry conditions. The computed ]-integral 

values are normalized with the value of (aay), i.e., J = Jl(aay), and normalized 

load is designated as Pal ay, where Pa is the remote axial stress applied on the top 

of the model. For the axisymmetric combined load case, Pa is a function of the 

internal pressure (Pi) of the vessel, and can be expressed as Pa = Pi Rt I ( R~ - Rt) 

in which Ri and Ro are the inner and outer radii of the vessel. 

The robust approximate method for estimating J (Seshadri and Kizhatil, 1995) 

is based on the concepts of the GLOSS (Seshadri, 1991) and the GLOSS R-Node 

(Seshadri and Fernando, 1992) techniques. An estimate of the elastic-plastic J 

based on the GLOSS constraint parameter (.\) is obtained as 

(6.31) 

or 

( 6.32) 
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where <}(l) is the load-point displacement from a linear elastic finite element analysis 

at some arbitrary load (P), 8(2
) is the load-point displacement from the second lin-

ear elastic finite element analysis with the moduli of all element modified according 

to 

(6.33) 

The equivalent reference stress, (a e)ref, can be approximately obtained by us1ng 

the engineering beam theory as (Appendix C.l) 

(6.34) 

The intersection of the equivalent stress distributions from the two analyses gives 

the r-node stress (which will be discussed later in this thesis), G"r-n, which can then 

be used to scale the applied load (P) in order to obtain the limit load (PL); i.e., 

The r-node stress is obtained as G"r-n = 82 MN /m2 for an internal pressure of 

Pi = 10 MN/m2
, and the corresponding limit load, (Pi)L = 59.56 MN/m2

. The 

load-point longitudinal displacements from two linear elastic finite element analyses 

are 8(1) = 3.03 x 10-3 mm and 8(2) = 3.21 x 10-3 mm. 

Although the constraint parameter (A) can be obtained for small to medium 

plastic zone sizes using GLOSS analysis, it is possible to obtain robust approxima-
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tions for the variation of A with the normalized load (P/ PL), and the relationship 

can be expressed as (Seshadri and Kizhatil, 1995): 

{ 

1 
,\-

2 (1- (P/ PL)] 

for 0 < P / PL < 0.5 
(6.35) 

for 0.5 < P/PL < 1.0 

or 

(6.36) 

Robust estimates of the 2~-D configuration and the inelastic finite element anal­

ysis results of the 2-D model are shown in Fig. 6.4. 

6.5.3 Longitudinal Flaw in a Pressure Vessel 

A pressure vessel with a longitudinal flaw is also treated as a cylinder having an 

internal radius, Ri, of 100 mm and a wall thickness, W, of 10 mm. The longitudinal 

flaw with a crack length, a, of 2.5 mm in the radial direction ( a/W = 0.25) is 

assumed to be continuous and present in the inner surface of the vessel. The length 

of the crack is assumed to be equal to the meridional length of the vessel. Therefore, 

the problem can be viewed as one of plane strain. 

The material behavior is assumed to be elastic perfectly-plastic. The material 

constants used for the present analysis are the same as those defined in the case 

of the problem with a circumferential flaw. The traditional fracture model con­

siders the circumferential loading only (2-D model), and the proposed 2~-D model 
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Figure 6.4: Cylinder or Pipe with a Circumferential Flaw Subjected to Internal 
Pressure- Jj(acry) vs. Pa/cry 
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considers the combined circumferential and longitudinal loadings. 

The theoretical linear elastic Je under the circumferential loading (2-D model) 

can be expressed as: 

J(2D) = KJ(l - v2) 

e ~o 

where K1 = f3 Pi~ y1Fa and f3 = 1.12-0.231(a/W)+l0.55(a/W)2 -21.72(a/W) 3 + 

30.39( ajW) 4 (Ewalds and Wanhill, 1986). 

For the combined loading (circumferential and longitudinal) case, the eqUiv­

alent stress intensity factor f{j is given by Kj = J Kj + KJ + ]{0 and ]{0 = 

1
2;7rf3Pi (R;+R~o)Wyl7ra. The linear elastic Je for the 2~-D configuration can therefore 

be obtained by Eq. (6.30). 

For the traditional 2-D model, inelastic energy release rate ( J) can be obtained 

by nonlinear finite element analysis. Again, the finite element model of the assumed 

geometry is generated by using ANSYS software. Only the symmetric half of the 

vessel is considered. The eight-noded isoparametric elements are selected and six 

crack tip elements are used. The radius of the first array of elements at the tip of 

crack is 0.5 mm ( =0.2a ), and the ratio of size of the second row of elements to the 

first row is 0.5. 

The computed J-integral values are again normalized with the value of (aa-y) 

and normalized load is designated as a-8 /a-y, in which a-8 is the applied hoop stress. 

The factor a-e is a function of the internal pressure (Pi) of the vessel, and can be 

given by ao == p;Ri/W. 

The robust approximate procedure for estimating J of 2~-D configuration is the 

same as the one discussed in the case of the circumferential flaw. Based on the limit 
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analysis of a thick-walled cylinder subjected to an internal pressure, the equivalent 

reference stress, ( ae)ref, can be approximately obtained as (Appendix C.2) 

(6.37) 

The r-node stress is obtained as ar-n = 165 MN /m2 for an internal pressure of 

Pi= 10 MN/m2
, and the corresponding limit load, (Pi)L = 29.6 MN/m2

. The load-

point circumferential displacements from two linear elastic finite element analyses 

are 8(1 ) = 3.40 x 10-2 mm and 8(2 ) = 3.51 x 10- 2 mm. 

Robust estimates of the 2~-D configuration and inelastic finite element analysis 

results of the 2-D configuration are shown in Fig. 6.5. 

6.6 Remarks 

In this chapter, a 2~-D model that accounts for the remote field stress af is devel­

oped. The stress intensity factor corresponding to the aforementioned configuration 

is also derived. A correction factor that can be used in conjunction with the avail-

able two-dimensional results and the ASTM E-399 formula is provided. 

The results obtained by the postulated 2~-D theory and the robust approximate 

method are given for practical 2~-D configurations such as pressure vessels and 

piping that contain a circumferential or a longitudinal flaw. 

It can be seen that the remote field stress af has a significant effect on the 

crack-tip constraint, and neglecting its influence would likely lead to unconservative 

situations. 
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Figure 6.5: Cylinder or Pipe with a Longitudinal Flaw Subjected to Internal Pres­
sure- Jj(arJy) vs. rJo/ay 
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Table 6.1: Constraint Parameter A of 2~-D Specimens 

a= 2 in, W = 6 in, H= 12 in 
Eo = 30 x 106 psi, v = 0.3, cry = 60 x 103 psi 

LOADING 
GEOMETRY -R 1 

CT1 = 3 
Bja 

-R 1 
cr3 = 3 

-R 1 
cr3 = 4 a-fi = o -R 1 

cr3 = -4 -R 1 
cr3 = -3 

0.03 0.470 0.443 0.371 0.309 0.292 
0.05 0.470 0.443 0.372 0.310 0.293 

0.075 0.482 0.458 0.389 0.327 0.309 
0.125 0.512 0.490 0.424 0.363 0.345 
0.25 0.550 0.534 0.481 0.425 0.406 
0.5 0.569 0.562 0.531 0.484 0.468 
1.0 0.581 0.576 0.559 0.531 0.519 
2.0 0.591 0.585 0.572 0.557 0.548 
4.0 0.623 0.612 0.593 0.577 0.572 
(X). 0.631 0.631 0.631 0.631 0.631 

• B /a --+ CX> represents ideal plane strain condition (all u3 = 0) 
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Chapter 7 

Robust J Estimation 
Perspectives 

7.1 Introduction 

Design 

Two approaches are commonly administered for analyzing problems in elastic­

plastic fracture mechanics. One approach expresses the inelastic energy release 

rate ( J) or the crack opening displacement ( C 0 D) as a function of the behavior of 

the uncracked component or structure. Typical examples of such methods are the 

COD method (PD6493, 1980) and the EnJ method (Turner, 1984b). An alternate 

approach is to express J or COD as a function of the stress-strain behavior. In this 

case, the load-deflection behavior of the cracked component or structure would be 

required. Evidently, the former approach is similar to conventional structural anal­

ysis and is usually restricted to linear elastic analysis augmented by rigid plastic 

limit analysis. Computational fracture studies fall under the category of the latter 

approach (Turner, 1984a). United Kingdom's R6 (Dowling and Townley, ' 1975) 

and EP RI (Kumar et al., 1981) approaches, however, are based on the analyses of 

cracked specimens. 
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There is a correlation between the extent of crack-tip plasticity and the load­

deflection behavior of a cracked component. For small-scale yielding at the crack­

tip, the load-deflection behavior is linear and the linear elastic fracture mechanics 

(LEFM) theory applies. When the plastic zone surrounding the crack tip becomes 

larger , the LEFM assumptions do not strictly apply since the load-deflection be­

havior is nonlinear. When plasticity spreads across the cross-section and large de­

formation occurs , then the concept of limit loads for rigid plastic materials becomes 

useful. 

Determination of inelastic energy release rate ( J) for a cracked component in­

volves the use of inelastic finite element analyses, and can be time-consuming and 

possibly expensive. From a design standpoint there is an incentive to develop robust 

approximate methods that are simple to use and yet provide acceptable results. A 

robust method is presented here that is based on the GLOSS method (Seshadri, 

1991) and the r-node concept (Seshadri and Fernando, 1992). 

The robust design method is applied to a single-edge crack specimens (SEC) , 

compact tension specimens (CT) and single edge notched bend specimens (SENB). 

The effect of strain-hardening and creep is also addressed in this chapter. 

7.2 Redistribution Nodes (R-Nodes) 

The apparently disconnected concepts of the reference stress, limit load and ASME 

stress classification can be unified by using the idea of redistribution nodes (r-nodes) 

(Seshadri and Marriott, 1993). Redistribution nodes are load-controlled locations 

in a structure. On the GLOSS diagram, Fig. 4.1, these can be identified as locations 

where the follow-up angle iJ is equal to 90 degrees (Seshadri, 1991; Seshadri and 
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Fernando, 1992). On account of the load-controlled nature, the equivalent stress 

values at the r-nodes are linearly proportional to the external tractions irrespective 

of the material constitutive relationships. In other words, any two stress distribu­

tions satisfying equilibrium with externally applied tractions will intersect at the 

r-nodes. This feature is useful in the practical determination of the r-nodes and the 

corresponding r-node equivalent stress. 

For a component or a structure that develops a single r-node prior to collapse, it 

is possible to obtain the limit load by simply scaling the external load or moment. 

For a component or a structure that requires formation of a discrete number of 

independent plastic zones to cause collapse, an equal number of r-node peaks can 

be considered (Seshadri, 1996). 

In the former case, the r-node can be represented by a uniaxial bar of a pre­

scribed material behavior. It is, however, assumed here that the material is elastic 

perfectly-plastic. Since O"r-n is load-controlled, it would be linearly proportional to 

the externally applied tractions (Seshadri and Fernando, 1992), 

O"r-n = J-LP (7.1) 

where f-L is a constant of proportionality that would depend on the geometry of the 

component or structure. Plastic collapse would occur when O"r-n reaches yield, 

(7.2) 

By eliminating J-L between equations (7.1) and (7.2), the limit load can be obtained 
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as 

(7.3) 

In the case of combined remote field loadings, equation (7.3) can be written as 

(P, M)L = (P, M) ..!!.L. 
O"r-n 

The r-nodes can be approximately located by using the following procedure: 

• A linear elastic finite element analysis is carried out for the mechanical com-

ponent or structure. 

• The elastic moduli of all elements are modified according to the equation 

(7.4) 

where "j" stands for the element number and O"arb is an arbitrary stress value. 

A second linear elastic finite element analysis is then carried out. 

• On the basis of the two linear elastic analysis, the r-nodes are identified. 

Limit loads can then be determined by using the expression 

where O"n, referred to as the "combined r-node stress", can be defined as the aver-

age of the peak r-node stresses. The number of r-node peaks corresponds to the 
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number of independent plasticity nucleation centers responsible for the collapse of 

the mechanical component or structure. Seshadri (1996) has developed guidelines 

for determining the r-node peaks that lead to collapse. 

7.3 Robust Determination of J 

From the LEFM analysis, elastic energy release rate for a component or structure 

can be expressed as (Anderson, 1991) 

(7.5) 

where E' is equal to Eo for plane stress case while E' is equal to Eo/ (1 - v 2
) for 

plane strain situation. Equation (7 .5) can be rewritten as (Seshadri and Kizhatil, 

1995) 

where af is the remote field stress, usually load-controlled in nature. af can 

be replaced by the r-node equivalent stress for multiaxial remote stress field. By 

introducing the concept of r-nodes, equation (7.5) can be expressed as 

(7. 7) 

where the r-node equivalent strain Er-n = O"r-n/ E 0 , and the parameter Re can be 

expressed as: 
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(7.8) 

The general expression of energy release rate for elastic, elastic-plastic and plas-

tic domains can be expressed as: 

(7.9) 

where Re, Refp, and Rp are defect-size parameters for linear elastic, elastic-plastic, 

and fully plastic situations, respectively. The challenge now is to determine the 

defect size parameters Re, Refp and RP for a range of plastic-zone sizes. 

The quantity Re can be readily obtained from equation (7 .8) as 

(7.10) 

It can be seen that the Je( Er-n) curve is a parabola. As well, the fully plastic JP( 8) 

can be shown to be a straight line that passes through the origin (Bucci et al., 

1972). Similarly, the fully plastic Jp(Er-n) is also a straight line passing through 

the origin (Fig. 7.1). If the two curves intersect at Er-n = E;_n, where E;_n is as 

yet undetermined, we can stipulate that 
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Figure 7.1: Energy Release Rate (J) vs. R-Node Strain (Er-n) 
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The method of establishing the value of E;_n will be discussed later. 

The fully plastic JP can therefore be expressed as 

(7.11) 

Comparing with the general expression, JP = Rpar-nEr-n, Rp can be expressed as: 

t* 
where P* =PL-.!:..=.!!.· 

fy 

(7.12) 

It can be seen that the elastic-plastic Jefp is related to the linear elastic Je and 

the fully plastic JP at the two extremities. Based on the constraint parameter (.\), 

robust estimates of Jefp can be obtained as: 

Je/p <I>(.\)Je + \li(.\)Jp 

<I>(.\)Je + [1- <I>(.\)]Jp 

where <I>(.\) is as yet an undetermined function of,\. 
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It is known that when the constraint parameter .A = 0, corresponding to net 

section yielding, J --+ Jp; and when .A = 1, corresponding to small-scale crack-tip 

plasticity, J = Je· Therefore, we have 

ci>(1) = 1 and ci>(O) = 0. 

Although the constraint parameter .A can be obtained for small to medium 

plastic zone sizes using the GLOSS analysis, it is possible to obtain robust ap­

proximations for the variation of .A with the normalized load PIP£. Based on 

the load-displacement curves for many cracked component configurations, these 

curves can be bounded by two extremes, i.e., linear elastic response and rigid 

plastic response. Even at a load corresponding to one-half of the limit load, the 

global load-displacement behavior is essentially linear (Fig. 7.2). The linear be­

havior corresponds to small-scale plasticity and LEFM assumptions. Therefore for 

0 < PI PL < ~, the value of constraint parameter .A can be assumed to be equal 

to one. When PI PL --+ 1, net section yielding is assumed to occur and .A becomes 

equal to zero. 

Another interpretation IS that if the load at first yield is Py1 (on the global 

P- 8 curve), the shakedown load would be approximately Ps = 2Pyl· For practical 

components with cracks, Ps < PL, so that the first yield load can be approximated 

as Py1 = PLI2. Therefore until a load of PLI2 is reached, the global P- 8 behavior 

can essentially be assumed to be linear elastic. 

For 0.5 < PI PL < 1, the actual load versus displacement curve is a smooth­

curve bounded by linear elastic (.A = 1) and rigid plastic (.A = 0) load-deflection 

responses. 

For a given component, let the loading path 0-1-2 along path @ (Fig. 7.2) 
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Figure 7.2: Typical Load-Displacement (P- 8) Record 
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correspond to the actual curve, while 0-1-2 along path @ describe the postulated 

linear approximation. For a given value of PI PL, 8 computed along path @ is 

greater than 8 computed along path @. Therefore the computation of J using 

path @ would be more conservative than other actual P - 8 paths. 

Thus, normalized load PI PL is linearly related to normalized load point dis­

placement 8, and can be expressed as: 

0.5 8181 

0.5 (8- 281 + 1)1(1- 81) 

1.0 

for 0 < 8 < 81 

for 81 < 8 < 1 

for 8 > 1. 

(7.14) 

Fig. 7.3 shows the variation of >. with normalized deflection 8. In comparison 

with actual curve @, curve @ implies a softer crack-tip constraint, and therefore 

a large plastic zone, except at 8 = 81 and 1.0 . 

These variations can be expressed as 

>.= 

1.0 

( 1 - 8) I ( 1 - 81) 

0 

for 0 < 8 < 81 

for 81 < 8 < 1. 0 

for 8 > 1.0. 

(7 .15) 

Using equations (7.14) and (7.15) , a relationship between the constraint param­

eter (.A) with normalized load (PI PL) can be obtained by eliminating 8, and can 

be expressed as: 
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Figure 7.3: Constraint Parameter (,\) vs. load point displacement (8) 
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A= 

1 

2 (1- (PI PL)] 

0 

for 0 < PI PL < 0.5 

for 0.5 < PI PL < 1.0 

for PI PL > 1.0. 

(7.16) 

The variation is shown in Fig. 7.4. It is postulated that the variation described by 

equation (7.16) bounds real A- PI PL curve for practical mechanical components 

and structures, such that the J-estimates are conservative. 

Consider next the variation of ci> (A) with PI PL. For loads below the shakedown 

threshold, the crack-tip plastic-zone is small and the load-deflection behavior is 

almost linear. Therefore, for 0 < PI PL < ! , ci> (A) = 1. Beyond PI PL = ! , the 

ci>( A) versus PI PL would be smooth for well-designed components and structures. 

As well, the first derivative would be continuous and the second derivative negative, 

in order to incorporate the convexity of the curve (Fig. 7.5). 

Prescribing a linear variation of ci>( A) versus PI PL, i.e., 

ci>(A) =A= 2(1- PIPL) (7 .17) 

would lead to a conservative estimate of J, evaluated by the expression 

(7.18) 

Combining equations (7.16) and (7.18), Refp can be expressed as: 
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Re/p = { 
Re[P*(2- ~) + 2(1- P)] 

for 0 < P < 0.5 
(7.19) 

for 0.5 < P < 1.0 

where P = PI PL and P* = P* I PL are the normalized loads. 

7.4 Estimation of J and C* for Design Purposes 

It can be seen from Fig. 7.1 that the parabolic curve Je( Er-n) intersects the straight 

Refpl Re = [F*(2- ~) + 2(1- F)] for 0.5 < P < 1.0 . (7.20) 

The defect-size parameters for elastic, elastic-plastic and fully plastic fracture pro-

cesses can be expressed as follows: 

For P < 0.5, 

(a) 

For 0.5 < P < 1.0, 

- 1 -
Re fp IRe = [ P * ( 2 - p ) + 2 ( 1 - P)] . (b) 

For P ~ 1.0, 

(c) 

It is clear from the robust construction that Refp < Rp, leading to the inequality: 
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P· > 2P. (7 .21) 

Given that P < 1, the above inequality is satisfied if P• > 2. This leads to the 

relationship 

(7 .22) 

For the purpose of design, we can set 

(7 .23) 

The defect-size parameters can be obtained by modifying equation (7.19) using 

the relationship given by equation (7.23), i.e., 

0 < p < 0.5 
(7.24) 

The elastic-plastic energy release rate can now be expressed as: 

0 < p < 0.5 
(7.25) 

or 

112 



0 <Er-n < 0.5 

(7 .26) 

where J = J/Je(ty) and Er-n= Er-n/ty. Equation (7.26) is the robust design curve 

for the analysis and design of elastic-plastic fracture problems and is illustrated in 

Fig. 7.6. 

There is a direct analogy between sub-creep temperature fracture and time­

dependent creep crack growth. The parameter C* is defined by replacing the strains 

with strain rates. Following equation (7.9), the parameter C* can be expressed as 

(7 .27) 

where Er-n = A(ar-n)n for second stage creep. Using equations (7.24) and (7.27), 

the foregoing expression becomes 

c· = { 

ReA( O"r-n)n+l 

ReA(a-r-nt+1(6- 2P- 2/ P) 

for 0 < P < 0.5 

for 0.5 < P < 1.0 

where equation (7.28) corresponds to the second stage creep. 

(7 .28) 

Just as J characterizes the crack tip fields in an elastic or elastic-plastic mate­

rial, the C* uniquely defines crack tip condition in a viscous material. Thus the 

time-dependent crack growth rate in a viscous material should depend only on the 

value of C*. Experimental studies (Landes and Begley, 1976, Nikbin el al., 1976, 
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Riedel, 1989) have shown that creep crack growth rates correlate very well with 

C*, provided steady ·state creep is the dominant deformation mechanism in the 

specimen. The creep crack growth rate follows a power law: 

where rand mare material constants. In many materials, m ~ n/(n + 1). 

7.5 Numerical Examples 

7.5.1 Single-Edge Crack Specimen 

(7 .29) 

Analysis Model: A single-edge crack specimen under tension with width W =50 

mm, height H =100 mm in plane strain is analyzed. There are two different crack 

lengths considered in the analysis: crack length a = 10 mm ( a/W = 0.2) and 

a = 20 mm ( a/W = 0.4). Elastic perfectly-plastic material behavior is assumed 

with O"y = 488.43 MN /m2 and Eo = 2.11 x 105 MN /m2
• 

The finite element model of an assumed geometry is generated using the ANSYS 

software. Only the symmetric half of the specimen is considered. Eight-noded 

isoparametric elements are chosen and eight fans of elements cover the crack tip. 

All finite element calculations are performed using the ANSYS software program. 

The GLOSS R-Node analyses are performed, and the equivalent stress distri­

butions obtained along the symmetry plane from the first and second linear elastic 

finite element analyses are plotted in Fig. 7.7 and Fig. 7.8. Since failure by plastic 

collapse occurs by net section yielding along the symmetry plane, the r-node stress 

along this section is used in the calculations. For the configuration with a/W = 0.2, 
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the r-node stress is obtained as O'r-n = 119 MN /m2 for an external tensile load of 

P = 80 N /mm, and the corresponding limit load , PL = 328 N /mm. For the config­

uration with a/W = 0.4 , the r-node stress is obtained as O'r-n = 139 MN /m2 for an 

external tensile load of P = 80 N / mm, and the corresponding limit load , PL = 281 

Njmm. 

The normalized J / Je( Ey) values corresponding to normalized r-node strain Er- n / Ey 

obtained by nonlinear finite element analyses and robust J design method are plot­

ted in Fig. 7.9. It can be seen that the robust J design estimates are conservative 

up to loads close to net section collapse. This corresponds to normalized r-node 

strain values of 0.88 and 0.93 for crack lengths a/W = 0.4 and 0.2 , respectively. 

Beyond this strain threshold, the robust design curve underestimates J. Well­

designed structural components , however, rarely undergo such extensive yielding 

and this part of the curve would not be relevant in practice. 

7.5.2 Compact Tension Specimen 

Analysis Model: A standard compact tension specimen subjected to a tensile 

load, with width W=100 mm, height H=120 mm, and thickness B=50 mm and in 

plane strain is analyzed. Two different crack lengths are prescribed: crack length 

a = 50 mm (a/W=0.5) and a = 55 mm (a/W=0.55). Elastic perfectly-plastic 

material behavior is again assumed with ay = 488.43 MN/m2 and E 0 = 2.11 x 105 

MN/m2
. 

The finite element model for the assumed geometry is generated by using the 

ANSYS software. Only the symmetric half of the specimen is considered. Eight­

noded isoparametric elements are chosen and nine crack tip elements are used. 
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Similar to the analysis of single-edge crack specimen, r-node stresses along the 

symmetry crack plane can be obtained using the GLOSS R-Node analyses. 

Fig. 7.10 shows normalized J / Je ( Ey) values corresponding to the normalized 

r-node strain Er-n/ Ey computed by the nonlinear finite element analyses and ro­

bust J design method. It can be seen that the proposed robust J design curve is 

conservative. 

7.5.3 Single Edge Notched Bend Specimen 

Analysis Model: A single edge notched bend specimen with crack length a=50 

mm, width W =100 mm, S=400 mm in plane stress with thickness B=3 mm is 

analyzed. Elastic perfectly-plastic material behavior is assumed with ay = 488.43 

MN/m2 and Eo= 2.11 x 105 MN/m2
. 

The finite element model for the assumed geometry is generated by considering 

the symmetric half of the specimen. Eight-noded isoparametric elements are chosen 

and eight crack tip elements are used. 

Normalized J / Je( Ey) values corresponding to the normalized r-node strain Er-n/ Ey 

obtained from inelastic finite element analyses and the robust J design method are 

plotted in Fig. 7.11. It is seen that robust J design point is conservative up to loads 

close to net section collapse. This corresponds to normalized r-node strain value of 

0.95. 

7.6 Consideration of the Effect of Strain-hardening 

In the development of the robust J design method, the material behavior is assumed 

to be elastic perfectly-plastic (no strain-hardening). However, if the material be-
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havior is elastic-plastic (strain-hardening) then the approach needs to be modified. 

For many strain-hardening materials, the stress-strain behavior can be repre-

sented by using the Ramberg-Osgood relationship: 

(7.30) 

where a 0 is a reference value stress that is usually equal to the yield strength, 

E0 = a 0 / Eo, a is a dimensionless constant, and n is the strain hardening exponent. 

By equating the strain energy densities, the strain-hardening curve can be rep-

resented by an equivalent elastic perfectly-plastic curve in which a; is the assumed 

yield stress (Fig. 7.12), i.e., area of A 1 should approximately be equal to the area 

of A 2 . Therefore, a; can be determined by the equation: 

(7.31) 

where (a;, c;) and (a, c) are satisfied with strain-hardening curve, and EJ is the 

fracture strain. 

Another method for determining a; is akin to the K Ic test procedure. For 

several strain-hardening materials, there is a gradual increase in the non-linearity. 

In Fig. 7.13, the load P5 is determined by drawing a secant line from the origin 0, 

with a slope 5 percent less than that of the tangent 0 A to the initial part of the 

load-displacement curve. The corresponding stress is then assumed to be equal to 

the assumed yield stress a;. 
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7.7 Remarks 

A robust method for estimating the elastic-plastic energy release rate has been 

presented in this chapter which is suitable for the purpose of design. The method 

is based on the results of LEFM (linear elastic fracture mechanics) analysis and 

limit analysis. 

The estimations of J made by the robust method are compared with inelastic 

finite element analysis results for the single-edge crack specimen (SEC), the compact 

tension specimen (CT) and the single edge notched bend specimen (SENB). The 

comparisons are reasonable from a design standpoint. 

The method is suitable for complex geometries and multiaxialloading conditions 

that are often encountered in practice. 
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Chapter 8 

Conclusions 

8.1 Contributions of the Thesis 

Although fracture is one of the principle modes of failure when the material is 

brittle and the temperature is low, there is considerable design interest in ductile 

materials and at high temperatures. Evolving methodologies for evaluating fracture 

assessment parameters for various geometries, loading conditions and materials thus 

become key ingredients for designing mechanical components and structures. 

This thesis lays emphasis on developing simpler and cost efficient techniques, 

otherwise termed as "robust methods", for providing conservative fracture assess­

ments. Especially where the operational overheads such as computational time 

and cost of analysis warrant a high premium, robust techniques serve as viable 

alternatives over conventional analyses. 

Most of the research work that has been carried out so far focuses on two­

dimensional idealizations such as plane stress and plane strain. Such idealizations, 

though may appear to be seemingly simple, yet might not replicate the in-situ 

conditions with the required accuracy. For instance, conventional understanding 

has been that the out-of-plane loading ( af) parallel to the crack front does not 
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have any effect on the crack growth in a two-dimensional fracture model. It is 

demonstrated in this thesis that such an assumption might lead to unconservative 

results. To this end, a simplified three-dimensional model that incorporates the out­

of-plane loading and is applicable to practical pressure vessels and piping component 

configurations is proposed. The results of the study confirm that the remote field 

stress, a{i, has a significant effect on the crack-tip constraint and therefore, should 

not be neglected. 

A robust design method for estimating the elastic-plastic energy release rate 

based only on linear elastic fracture analysis and limit analysis is presented in this 

thesis. The proposed design curves are applicable for elastic, elastic-plastic and 

perfectly plastic components with defects. 

In essence, the following are the original contributions made by this thesis: 

• The GLOSS analysis is used for determining the mode I three-dimensional 

crack-tip plastic zone size. The crack-tip constraint parameter is determined 

on the basis of two linear elastic analyses. Based on this, the three-dimensional 

crack-tip plastic zone size can be approximately evaluated. The proposed 

methodology is suitable for complex geometry and multiaxial loading condi­

tions. 

• Approximate methods for determining the J of circular-ended notches are 

developed. The notch root stress and strain are obtained in conjunction 

with the GLOSS technique. In this context, an edge-cracked component or 

structure is viewed as the limiting case of a circular-ended notched specimen. 

The methods suggested provide a simple way for evaluating elastic-plastic J 

for cracked components and structures. 
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• A 2~-D model that accounts for the out-of-plane remote stress-field , CT{; , is 

developed. The model can be used for analyzing practical pressure vessels 

and piping components with a circumferential flaw or a longitudinal flaw. A 

correction factor is recommended so that the conventional two-dimensional 

results can be adapted, taking into account the out-of-plane remote stress­

field. 

• A robust method for estimating the elastic-plastic energy release rate has 

been developed. The method is suitable for analyzing complex geometries and 

multiaxial loading conditions that are often encountered in real life situation. 

The effects of strain-hardening and creep are also included. 

• The proposed methods are validated by means of a number of numerical 

examples of practical significance and the results are found to be encouraging. 

The robust methods developed in this thesis demonstrate a simple and system­

atic approach for performing the integrity assessments of structures and compo­

nents with defects. The proposed methods come in handy for practising engineers 

involved in routine design and analysis. Since the methods proposed in this the­

sis do not require high cost, time and computer memory, they also pave way for 

quick and conservative design assessments. Research in this thesis points out that 

neglecting the out-of-plane remote stress is unconservative and would likely lead to 

premature failures and potential damage. The effect of out-of-plane loading should 

be considered in the related design codes. 
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8.2 Future Research 

The usefulness of robust techniques has been asserted in the previous chapters. 

As engineers spend most of their time in improving existing designs, apart from 

evolving newer designs, robust methods would serve as an effective means to keep 

pace with the "design - redesign - improve" cycle. It would be therefore highly 

rewarding to pursue research in this area. The methods developed can be applied 

to configurations that are not specifically addressed in this thesis. This would 

further serve for benchmarking and validating the application of these methods. 

Further experimental study should focus on three-dimensional pressure vessels 

and piping components with defects. The J estimates based on the research in this 

thesis should compare with the experimental results, and some design perspectives 

should emerge from the work. 
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Appendix A 

Implementation of GLOSS 
Analysis 

A.l GLOSS Method 

This appendix describes the procedure for implementing the GLOSS method into 

the ANSYS (1992) finite element software. After performing a linear elastic finite 

element analysis, the user file GLOSS-MAC is input for performing the elastic 

modulus corrections. Subsequently, a second linear elastic finite element analysis is 

carried out. The user file GLOSS-MAC also performs the necessary post-processing 

for extracting the equivalent stress from the first and second linear elastic analyses, 

from which the constraint parameter .A can be obtained. The user file is listed in 

the following sections. 
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A.l.l 3-D Mode I Single Edge Through-Cracked Speci­
men 

The input file consists of geometric and material data, and the loads and boundary 

conditions of the problem. The problem of 3-D Mode I cracked specimen is discussed 

in Section 4.3. The macro FRACT is used to create the SOLID95 crack tip elements 

from the SOLID45 elements using a weighted midside node position (quarter point 

location). 

!ANSYS INPUT FILE 

!3D MODE I SINGLE EDGE THROUGH-CRACKED SPECIMEN 

*SET,YM,30e06 

*SET,YS,60e03 

*SET,NU,0.3 

*SET,C,0.15 

*SET,DB,6 

*SET,RB,3 

*SET,B,-1 

*SET,W,6 

*SET,H,6 

*SET,A,2 

*SET,Div1,4 

*SET,Div2,6 

Young's Modulus 

Yield Stress 

Poisson's Ratio 

Geometric Parameters 
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*SET,Div3,6 

*SET,PX, 

*SET,PY,20e03 

*SET,PZ, 

/title, 3 D Mode I fracture model 

/prep7 

shpp,off 

antype, static 

et,1,45 

et,2,45 

et,3,95 

MP,ex,1,YM 

MP,ex,2,YM 

MP,ex,3,YM 

MP,NUXY,1,NU 

MP,NUXY,2,NU 

MP,NUXY,3,NU 

KB=RB**(1/(DB-1)) 

SK=1 

*DD,i,i,DB-1 

SK=SK+KB**i 

*END DO 

mb=O 

*DD,m,O,DB,1 

Load 

Pre-processing 

SOLID45 element 

SOLID95 element 

Geometry 
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n, 1 + 18*m, , , mb 

n, 11+18*m,, ,mb 

n, 12+18*m,, ,mb 

n, 13+18*m,, ,mb 

n, 14+18*m,, ,mb 

n, 15+18*m,, ,mb 

n, 16+18*m,, ,mb 

n,17+18*m,, ,mb 

n, 18+18*m,, ,mb 

n,2+18*m,-C/2,,mb 

n,6+18*m,O,C/2,mb 

n,10+18*m,C/2,,mb 

csys,1 

fill,2+18*m,6+18*m 

fill,6+18*m,10+18*m 

csys,O 

mb=mb+B/SK*(KB**m) 

*END DO 

type,2 

*DO,i,1,DB,1 

cc=18*(i-1) 

en,1+8*(i-1),2+cc,3+cc,11+cc,1+cc,20+cc,21+cc,29+cc,19+cc 

*DO,j,1,7,1 

ccl=cc+j-1 
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en,1+8*(i-1)+j,3+cc1,4+cc1,12+cc1,11+cc1,21+cc1,22+cc1,30+cc1,29+cc1 

*END DO 

*END DO 

ib=O 

*DO,i,O,DB,1 

csys,O 

k,1+6*i,-C/2,,ib 

k,2+6*i,,C/2,ib 

k,3+6*i,C/2,,ib 

k,4+6*i,-5*C,,ib 

k,5+6*i,,5*C,ib 

k,6+6*i,5*C, ,ib 

l,2+6*i,5+6*i,5,2.5 

1,1+6*i,4+6*i,5,2.5 

l,3+6*i,6+6*i,5,2.5 

csys,1 

1,1+6*i,2+6*i,4 

1,2+6*i,3+6*i,4 

1,4+6*i,5+6*i,4 

1,5+6*i,6+6*i,4 

csys,O 

ib=ib+B/SK*(KB**i) 

*END DO 

*DO,i,1,DB,1 
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*DD,j,0,5,1 

1,1+6*(i-1)+j,7+6*(i-1)+j,1 

*END DO 

*END DO 

ib=O 

*DD,i,O,DB,1 

k,1+6*(DB+1)+7*i,-A,O,ib 

k,2+6*(DB+1)+7*i,-A,h,ib 

k,3+6*(DB+1)+7*i,O,h,ib 

k,4+6*(DB+1)+7*i,W-A,h,ib 

k,5+6*(DB+1)+7*i,W-A,O,ib 

k,6+6*(DB+1)+7*i,-A,2*h/7,ib 

k,7+6*(DB+1)+7*i,W-A,2*h/7,ib 

1,5+6*i,3+6*(DB+1)+7*i,Div2,3 

1,4+6*i,1+6*(DB+1)+7*i,Div1,3 

1,1+6*(DB+1)+7*i,6+6*(DB+1)+7*i,4,2 

1,6+6*(DB+1)+7*i,2+6*(DB+1)+7*i,Div3,1.5 

1,3+6*(DB+1)+7*i,2+6*(DB+1)+7*i,Div1,1.5 

1,3+6*(DB+1)+7*i,4+6*(DB+1)+7*i,Div2,1.5 

1,7+6*(DB+1)+7*i,4+6*(DB+1)+7*i,Div3,1 

1,5+6*(DB+1)+7*i,7+6*(DB+1)+7*i,4,2 

1,6+6*i,5+6*(DB+1)+7*i,Div2,2.5 

1,5+6*i,6+6*(DB+1)+7*i,Div1,2 

1,5+6*i,7+6*(DB+1)+7*i,Div2,2 
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ib=ib+B/SK*(KB**i) 

*END DO 

*DD,i,1,DB,1 

l,1+6*(DB+1)+7*(i-1),1+6*(DB+1)+7*i,1 

l,2+6*(DB+1)+7*(i-1),2+6*(DB+1)+7*i,1 

l,3+6*(DB+1)+7*(i-1),3+6*(DB+1)+7*i,1 

l,4+6*(DB+1)+7*(i-1),4+6*(DB+1)+7*i,1 

l,5+6*(DB+1)+7*(i-1),5+6*(DB+1)+7*i,1 

l,6+6*(DB+1)+7*(i-1),6+6*(DB+1)+7*i,1 

l,7+6*(DB+1)+7*(i-1),7+6*(DB+1)+7*i,1 

*END DO 

type,1 

*DD,i,1,DB,1 

dd=6*(i-1) 

dd1=6*(DB+1)+7*(i-1) 

v,1+dd,2+dd,5+dd,4+dd,7+dd,8+dd,11+dd,10+dd 

v,2+dd,3+dd,6+dd,5+dd,8+dd,9+dd,12+dd,11+dd 

v,4+dd,5+dd,11+dd,10+dd,1+dd1,6+dd1,13+dd1,8+dd1 

v,6+dd,5+dd,11+dd,12+dd,5+dd1,7+dd1,14+dd1,12+dd1 

v,5+dd,3+dd1,10+dd1,11+dd,6+dd1,2+dd1,9+dd1,13+dd1 

v,5+dd,3+dd1,10+dd1,11+dd,7+dd1,4+dd1,11+dd1,14+dd1 

*END DO 

vmesh,all 

nummrg,node 



nsel,s,loc,x,O 

nsel,r,loc,y,O 

cm,cracktip,node 

/nerr,O 

fract,2 

/nerr,defa 

/output 

outpr,, all 

fini 

/solu 

nsel,s,loc,x,O,W-a 

nsel,r,loc,y,O 

d,all,uy,O 

nsel,all 

nsel,s,loc,z,B 

d,all,uz,O 

nsel,all 

nsel,s,loc,y,O 

nsel,r,loc,x,O 

nsel,r,loc,z,B 

d,all,ux,O 

nsel,all 
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MACRO TO CREATE 3D SOLID95 CRACK TIP ELEMENTS FROM 3D SOLID45 ELEMENTS 

MAKE A COMPONENT CONTAINING THE CRACK TIP NODES (CRACKTIP) 

THE CRACK TIP IS BETWEEN NODES K AND 0 

SET ELEMENT TYPE TO POINT TO SOLID95 

SET ARG1 TO n (the type of the elements around the crack tip) 

/NOPR 

NSEL,ALL 

*GET,N,NODE,,NUM,MAX 

CMSEL,S,CRACKTIP 

ESLN 

*GET,ELMAX,ELEM,,NUM,MAX 

*DO,IEL,1,ELMAX 

ELMI=IEL 

*IF,ELMI,LE,O,EXIT 

*GET,ELTYPE,ELEM,ELMI,ATTR,TYPE 

*IF,ELTYPE,NE,ARG1,CYCLE 

N3 = NELEM(ELMI,3) 

*IF,NSEL(N3),LE,O,CYCLE 

N7 = NELEM(ELMI,7) 

*IF,NSEL(N7),LE,O,CYCLE 

N1 = NELEM(ELMI,1) 

N2 = NELEM(ELMI,2) 

N5 = NELEM(ELMI,5) 

147 

CURRENT MAXIMUM NODE NUMBER 

SELECT THE TIP NODES 

ANY ELEMENTS ATTACHED 

CURRENT MAXIMUM ELEMENT NUMBER 

LOOP ON MAX ELEMENT 

NO MORE SELECTED 

GET ELEMENT TYPE 

CHECK FOR OLD ST85 

GET NODE 3 (K) 

IT MUST BE SELECTED 

GET NODE 7 (L) 

IT MUST ALSO BE SELECTED 

GET NODE 1 (I) 

GET NODE 2 (J) 

GET NODE 5 (M) 



N6 = NELEM(ELMI,6) GET NODE 6 (N) 

X3 = 0.75*NX(N3) WEIGHTED POSITION OF N3 

Y3 = 0.75*NY(N3) 

23 = 0.75*N2(N3) 

X = 0.25*NX(N2) + X3 QUARTER POINT LOCATION ( NODE (R) ) 

y = 0.25*NY(N2) + Y3 

2 = 0.25*N2(N2) + 23 

N = N + 1 NEXT NODE 

N10 = N 

N,N10,X,Y,2 MIDSIDE NODE LOCATION 

X = 0.25*NX(N1) + X3 

y = 0.25*NY(N1) + Y3 

2 = 0.25*N2(N1) + 23 

N = N + 1 

N12= N 

N,N12,X,Y,2 

X7 = 0.75*NX(N7) 

Y7 = 0.75*NY(N7) 

27 = 0.75*N2(N7) 

X = 0.25*NX(N6) + X7 

y = 0.25*NY(N6) + Y7 

2 = 0.25*N2(N6) + 27 

N = N + 1 

148 



N14 = N 

N,N14,X,Y,Z 

X = 0.25*NX(N5) + X7 

y = 0.25*NY(N5) + Y7 

z = 0.25*NZ(N5) + Z7 

N = N + 1 

N16 = N 

N,N16,X,Y,Z 

N4=N3 

N8=N7 

NSEL,ALL 

TYPE,3 

EN,ELMI,N1,N2,N3,N4,N5,N6,N7,N8 

EMORE,O,N10,0,N12,0,N14,0,N16 

EMORE, 

*END DO 

CMSEL,U,CRACKTIP 

NUMMRG,NODE 

NSEL,ALL 

ESEL,ALL 

/GOPR 

*END 
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REDEFINE THE ELEMENT 

UNSELECT THE TIP NODES 

MERGE MIDSIDE NODES 

SELECT ALL ELEMENTS 

SELECT ALL ELEMENTS 



The GLOSS-MAC file modifies the moduli of all elements above the material 

yield , a-y , 

where Es is the modified modulus , Eo is the original modulus , and O"e is the cen­

troidal equivalent stress. The file GLOSS-MAC also performs post-processing cal­

culation. It obtains the equivalent stress in the local element after two linear elastic 

analyses. These values are then used to calculate the constraint parameter ,\. 

!(GLOSS-MAC) 

!THIS USER FILE (GLOSS-MAC) CALCULATES MODIFIED ESEC = EO * SIGY/SIGE 

/post1 

SET,1 

ETABLE,SIGC,S,EQV 

/output,cylg1 

PRETAB,SIGC 

/output 

ESEL,S,ETAB,SIGC,YS,(YS*10E10) 

*SET,MN,2 
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*GET,EL2,ELEM,O,NUM,MAX 

*CFOPEN,SUKUA 

:STA 

*GET,EL1,ELEM,O,NUM,MIN 

*GET,STEQ,ELEM,EL1,ETAB,SIGC 

*SET,ESEC,(YS/STEQ)*YM 

*CFWRITE,EX,MN,ESEC 

*SET,MN,MN+l 

*SET,EL1,EL1+1 

ESEL,R,ELEM,,EL1,EL2 

*IF,EL1,LE,EL2,:STA 

*CFCLOS 

ESEL,ALL 

ESEL,S,ETAB,SIGC,YS,(YS*10E10) 

*SET,MN,2 

*GET,EL2,ELEM,O,NUM,MAX 

*CFOPEN,SUKUB 

:STB 

*GET,EL1,ELEM,O,NUM,MIN 

*CFWRITE,MAT,MN 
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*CFWRITE,EMODIF,EL1 

*SET,MN,MN+1 

*SET,EL1,EL1+1 

ESEL,R,ELEM,,EL1,EL2 

*IF,EL1,LE,EL2,:STB 

*CFCLOS 

EALL 

FINISH 

/PREP7 

RESUME 

MODMSH,DETACH 

EX,l,YM 

*USE,SUKUA 

*USE,SUKUB 

FINISH 

/SOLU 

SAVE 

SOLVE 

FINISH 

/POST1 

SET, 1 
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ETABLE,SIGC,S,EQV 

/output,cylg2 

PRETAB,SIGC 

/output 

FINISH 

The user file GLOSS-MAC is written in a general form and can be used for any 

component geometry. The file is used in conjunction with the ANSYS input files 

for all GLOSS analysis in this thesis. 
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A.1.2 2-D Single-Edge Circular Notch Specimen 

The ANSYS input file for the single-edge circular notch specimen discussed 1n 

Section 5.4 is listed in this section. The user file to perform GLOSS analysis is the 

same as for the example of 3-D Mode I cracked specimen discussed in the previous 

section , and this is not listed here. 

!ANSYS INPUT FILE 

!SINGLE-EDGE CIRCULAR NOTCH SPECIMEN 

*SET,YM,2.11e5 

*SET,YS,488.43 

*SET,NU,0.3 

*SET,W,50 

*SET,H,50 

*SET,H1,12 

*SET ,A, 10 

*SET,R,2.5 

*SET,Div1,6 

*SET,Div2,10 

*SET,Div3,5 

*SET,Div4,5 

*SET,Div5,6 

*SET,Div6,8 
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*SET,Div7,6 

*SET,PX,O 

*SET,PY,90 

*SET,kn,O 

/title, 2 D notch model 

/prep7 

antype, static 

et,1,42,0,0,kn 

MP,ex,l,YM 

MP,NUXY,l,NU 

k,l,a 

k,2,a-r,r 

k,3,a+h1 

k,4,a-r,r+h1 

k,5,,r 

k,6,,r+h1 

k,7,,h 

k,8,a-r,h 

k,9,w,h 

k,lO,w 

csys,l 

1,1,2,Div1 
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l,3,4,Div1 

csys,O 

1,1,3,Div2,4 

1,2,4,Div2,4 

1,5,6,Div2,4 

1,2,5,Div3,2 

1,4,6,Div3,2 

1,8,7,Div3 

1,4,8,Div4,2 

1,6,7,Div4,2 

l,8,9,Div5,2 

1,10,9,Div6,3 

1,3,10,Div7,2 

a,1,2,4,3 

a,2,5,6,4 

a,4,6,7,8 

a,3,4,8,9,10 

amesh,all 

outpr,, all 

fini 

/solu 
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nsel,s,loc,x,a,w 

nsel,r,loc,y,O 

d,all,uy,O 

nsel,r,loc,x,a 

d,all,ux,O 

nsel,all 

nsel,s,loc,y,h 

sf,all,pres,-py 

nsel,all 

nsel,s,loc,x,w 

sf,all,pres,-px 

nsel,all 

nsel,s,loc,x,O 

sf,all,pres,-px 

nsel,all 

save 

solve 

fini 

/input,GLOSS-MAC 

fini 
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A.1.3 2~-D Specimen 

The ANSYS input file of 2~-D specimen, considered in Section 6.2 , is listed here. 

!ANSYS INPUT FILE 

!2 1/2-D SPECIMEN 

*SET,YM,30e06 

*SET,YS,60e03 

*SET,NU,0.3 

*SET,C,0.0125 

*SET,DB,6 

*SET,RB,3 

*SET,B,-2 

*SET,W,6 

*SET,H,6 

*SET,A,2 

*SET,Div1,4 

*SET,Div2,5 

*SET,Div3,5 

*SET,PX, 

*SET,PY,20e03 

*SET,PZ,15e03 

/title, 2 1/2-D fracture model 
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/prep7 

antype, static 

et, 1 ,45 

et,2,45 

et,3,95 

MP,ex,1,YM 

MP,ex,2,YM 

MP,ex,3,YM 

MP,NUXY,1,NU 

MP,NUXY,2,NU 

MP,NUXY,3,NU 

KB=RB**(1/(DB-1)) 

SK=1 

*DO,i,1,DB-1 

SK=SK+KB**i 

*END DO 

mb=O 

*DO,m,O,DB,1 

n, 1+26*m,, ,mb 

n, 15+26*m,, ,mb 

n, 16+26*m,, ,mb 

n,17+26*m,, ,mb 
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n, 18+26*m,, ,mb 

n, 19+26*m,, ,mb 

n,20+26*m,, ,mb 

n,21+26*m,, ,mb 

n,22+26*m,, ,mb 

n,23+26*m,, ,mb 

n,24+26*m,, ,mb 

n,25+26*m,, ,mb 

n,26+26*m,, ,mb 

n,2+26*m,-C, ,mb 

n,8+26*m,O,C,mb 

n, 14+26*m, C, ,mb 

csys,1 

fill,2+26*m,8+26*m 

fill,8+26*m,14+26*m 

csys,O 

mb=mb+B/SK*(KB**m) 

*END DO 

type,2 

*DO,i,1,DB,1 

cc=26*(i-1) 

en,1+12*(i-1),2+cc,3+cc,15+cc,1+cc,28+cc,29+cc,41+cc,27+cc 

*DO,j,1,11,1 

ccl=cc+j-1 
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en,1+12*(i-l)+j,3+cc1,4+cc1,16+cc1,15+ccl,29+ccl,30+ccl,42+ccl,41+ccl 

*END DO 

*END DO 

ib=O 

*DO,i,O,DB,1 

csys,O 

k,1+6*i,-C, ,ib 

k,2+6*i,,C,ib 

k,3+6*i,C,,ib 

k,4+6*i,-50*C,,ib 

k,5+6*i,,50*C,ib 

k,6+6*i,50*C,,ib 

l,2+6*i,5+6*i,12,6 

l,1+6*i,4+6*i,12,6 

l,3+6*i,6+6*i,12,6 

csys,1 

l,1+6*i,2+6*i,6 

l,2+6*i,3+6*i,6 

l,4+6*i,5+6*i,6 

l,5+6*i,6+6*i,6 

csys,O 

ib=ib+B/SK*(KB**i) 

*END DO 
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*DD,i,1,DB,1 

*DD,j,0,5,1 

1,1+6*(i-1)+j,7+6*(i-1)+j,1 

*END DO 

*END DO 

ib=O 

*DD,i,O,DB,1 

k,1+6*(DB+1)+7*i,-A,O,ib 

k,2+6*(DB+1)+7*i,-A,h,ib 

k,3+6*(DB+1)+7*i,O,h,ib 

k,4+6*(DB+1)+7*i,W-A,h,ib 

k,5+6*(DB+1)+7*i,W-A,O,ib 

k,6+6*(DB+1)+7*i,-A,2*h/7,ib 

k,7+6*(DB+1)+7*i,W-A,2*h/7,ib 

1,5+6*i,3+6*(DB+1)+7*i,Div2,3 

1,4+6*i,1+6*(DB+1)+7*i,Div1,3 

1,1+6*(DB+1)+7*i,6+6*(DB+1)+7*i,6,2 

1,6+6*(DB+1)+7*i,2+6*(DB+1)+7*i,Div3,1.5 

1,3+6*(DB+1)+7*i,2+6*(DB+1)+7*i,Div1,1.5 

1,3+6*(DB+1)+7*i,4+6*(DB+1)+7*i,Div2,1.5 

1,7+6*(DB+1)+7*i,4+6*(DB+1)+7*i,Div3,1 

1,5+6*(DB+1)+7*i,7+6*(DB+1)+7*i,6,2 

1,6+6*i,5+6*(DB+1)+7*i,Div2,2.5 
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l,5+6*i,6+6*(DB+1)+7*i,Div1,2 

l,5+6*i,7+6*(DB+1)+7*i,Div2,2 

ib=ib+B/SK*(KB**i) 

*END DO 

*DD,i,1,DB,1 

l,1+6*(DB+1)+7*(i-1),1+6*(DB+1)+7*i,1 

l,2+6*(DB+1)+7*(i-1),2+6*(DB+1)+7*i,1 

l,3+6*(DB+1)+7*(i-1),3+6*(DB+1)+7*i,1 

l,4+6*(DB+1)+7*(i-1),4+6*(DB+1)+7*i,1 

l,5+6*(DB+1)+7*(i-1),5+6*(DB+1)+7*i,1 

1,6+6*(DB+1)+7*(i-1),6+6*(DB+1)+7*i,1 

l,7+6*(DB+1)+7*(i-1),7+6*(DB+1)+7*i,1 

*END DO 

type,1 

*DD,i,1,DB,1 

dd=6*(i-1) 

dd1=6*(DB+1)+7*(i-1) 

v,1+dd,2+dd,5+dd,4+dd,7+dd,8+dd,11+dd,10+dd 

v,2+dd,3+dd,6+dd,5+dd,8+dd,9+dd,12+dd,11+dd 

v,4+dd,5+dd,11+dd,10+dd,1+dd1,6+dd1,13+dd1,8+dd1 

v,6+dd,5+dd,11+dd,12+dd,5+dd1,7+dd1,14+dd1,12+dd1 

v,5+dd,3+dd1,10+dd1,11+dd,6+dd1,2+dd1,9+dd1,13+dd1 

163 



v,5+dd,3+dd1,10+dd1,11+dd,7+dd1,4+dd1,11+dd1,14+dd1 

*END DO 

vmesh,all 

nummrg,node 

nsel,s,loc,x,O 

nsel,r,loc,y,O 

cm,cracktip,node 

/nerr,O 

fract,2 

/nerr,defa 

/output 

outpr, ,all 

fini 

/solu 

nsel,s,loc,x,O,W-a 

nsel,r,loc,y,O 

d,all,uy,O 

nsel,all 

nsel,s,loc,z,B 

d,all,uz,O 

nsel,all 
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nsel,s,loc,y,O 

nsel,r,loc,x,O 

nsel,r,loc,z,B 

d,all,ux,O 

nsel,all 

nsel,s,loc,y,h 

sf,all,pres,-py 

nsel,all 

nsel,s,loc,x,W-A 

sf,all,pres,-px 

nsel,all 

nsel,s,loc,x,-A 

sf,all,pres,-px 

nsel,all 

nsel,s,loc,z,O 

sf,all,pres,-pz 

nsel,all 

save 

solve 

fini 

/input,GLOSS-MAC 

fini 
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A.2 GLOSS R-Node Method 

The GLOSS R-Node method calculates the limit load of a component. A linear 

elastic analysis is first performed, and then the modulii of each element is modified 

according to 

where ( ae)j is the equivalent stress in any arbitrary jth element, and ae is the 

equivalent stress in each element. This is accomplished by the user file RNODE­

MAC. A post-processing is also used to process the results from the first and second 

linear elastic analyses. 
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A.2.1 Single-Edge Crack Specimen {SEC) 

The ANSYS input file to the model of SEC specimen described in Section 7.5.1 is 

listed below. A GLOSS R-Node analysis is performed using the user file RNODE­

MAC. 

!ANSYS INPUT FILE 

!SINGLE-EDGE CRACK PROBLEM- ELASTIC ANALYSIS 

*SET,YM,2.11e5 

*SET,YS,488.43 

*SET,NU,0.3 

*SET,A,7.5 

*SET,W,50 

*SET,H,50 

*SET,PY,80 

/title, 2D SEC Specimen, elastic 

/prep7 

antype, static 

et,1,plane82,0,0,2 

MP,ex,1,YM 

MP,NUXY,l,NU 

K,1,0,0 

K,2,(W-A),O 
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K,3, (W-A) ,H 

K,4,-A,H 

K,5,-A,O 

1,1,2 

1,2,3 

1ES I ZE , 2 , , , 4 

1,3,4 

1ESIZE, 3, , , 4 

1,4,5 

1ES I ZE , 4, , , 6 , . 2 

1,5,1 

ESIZE,,5 

KSCON,1,.15*A,1,8 

A1,1,2,3,4,5 

AMESH,1 

OUTPR,A11 

FIN! 

/S01U 

nsel,s,loc,x,O 

nsel,r,loc,y,O 

D,ALL,UX,O 

nsel,all 
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DL,1,1,SYMM 

SFL,3,PRES,-PY 

SAVE 

SOLVE 

FINI 

/input,RNODE-MAC 

FINI 

The user file RNODE-MAC which modifies the modulii of all the elements is 

listed below. 

!(RNODE-MAC) 

!THIS USER FILE (RNODE-MAC) CALCULATES MODIFIED ESEC = EO * SIGY/SIGE 

!LPATH 1,2 is along crack ligament 

/POST1 

SET, 1 

ETABLE,SIGC,S,EQV 

LPATH,1,2 

PDEF,SIGC1,S,EQV 

/output,cylg1 
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PRPATH,SIGC1 

/output 

ESEL,ALL 

*SET,MN,2 

*GET,EL2,ELEM,O,NUM,MAX 

*CFOPEN,sukua 

:STA 

*GET,EL1,ELEM,O,NUM,MIN 

*GET,STEQ,ELEM,EL1,ETAB,SIGC 

*SET,ESEC,(YS/STEQ)*YM 

*CFWRITE,MP,EX,MN,ESEC 

*SET,MN,MN+1 

*SET,EL1,EL1+1 

ESEL,R,ELEM,,EL1,EL2 

*IF,EL1,LE,EL2,:STA 

*CFCLOS 

ESEL,ALL 

*SET,MN,2 

*GET,EL2,ELEM,O,NUM,MAX 
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*CFOPEN,sukub 

:STB 

*GET,EL1,ELEM,O,NUM,MIN 

*CFWRITE,MAT,MN 

*CFWRITE,EMODIF,EL1 

*SET,MN,MN+1 

*SET,EL1,EL1+1 

ESEL,R,ELEM,,EL1,EL2 

*IF,EL1,LE,EL2,:STB 

*CFCLOS 

EALL 

FINISH 

/PREP? 

RESUME 

MP,EX,1,YM 

*USE,sukua 

*USE,sukub 

FINISH 

/SOLU 

SAVE 

SOLVE 
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FINISH 

/POST1 

RESUME 

SET, 1 

ETABLE,SIGC,S,EQV 

LPATH,1,2 

PDEF,SIGC2,S,EQV 

/output,cylg2 

PRPATH,SIGC2 

/output 

ESEL,All 

FINISH 
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A.2.2 Compact Tension Specimen (CT) 

The ANSYS input file for compact tension specimen described in Section 7.5.2 is 

listed below. 

!ANSYS INPUT FILE 

!ELASTIC ANALYSIS OF A COMPACT-TENSION SPECIMEN 

/title, CT SPECIMEN -- Elastic Analysis, Plane Strain 

/PREP7 

A=0.055 

B=0.05 

W=.100 

W1=.125 

H=.060 

R=0.0125 

E=0.0275 

S=0.003 

01=0.080 

02=0.075 

YM=211e09 

YS=488.43e06 

MP,EX,l,YM 
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MP,NUXY,1,.33 

K, 1 ,A 

K,2,W 

K,3,W,H 

K,4, ,H 

K,5,(W-W1),H 

K,6,(W-W1),S 

K,7,,S 

K,8,(W-D1),S 

K,9,(W-D2) 

K,10,,E 

K,11,,E,E 

CIRCLE,10,R,11,4,,8 

L,1,2 

*REPEAT,8,1,1 

L,9,1 

L ,4, 12 

L,16,7 

KSEL,S,LOC,X,-1E-6,1 

LSLK,S,1 

AL,ALL 

KSEL,S,LOC,X,-1,1E-6 

LSLK,S,1 
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AL,ALL 

KSEL,ALL 

LSEL,ALL 

ET,1,PLANE2,,,2 

ESIZE,A/4 

KSCON,1,A/16,1,9 

AMESH,ALL 

WSORT,X 

FINISH 

/SOLU 

ANTYPE,O 

NSEL,S,LOC,Y 

NSEL,R,LOC,X,A,W 

D,ALL,UY,O 

NSEL,R,LOC,X,A 

D,ALL,UX,O 

NSEL,ALL 

FK,12,FY,80 

SAVE 
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SOLVE 

FINISH 

/INPUT,RNODE-MAC 

FINI 
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A.2.3 Single Edge Notched Bend Specimen (SENB) 

The ANSYS input file for single edge notched bend specimen described in Section 

7.5.3 is listed below. 

!ANSYS INPUT FILE 

!ELASTIC ANALYSIS OF A SENB SPECIMEN 

/title, SENB SPECIMEN -- Elastic Analysis, Plane Stress 

/PREP7 

A=0.05 

8=0.003 

W=.100 

H=.2125 

H1=.2 

S=0.003 

D1=0.080 

D2=0.075 

YM=211e09 

YS=488.43e06 

MP,EX,l,YM 

MP,NUXY,1,.33 
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K, 1 ,A 

K,2,W 

K,3,W,H 

K,4,,H 

K,5,H1 

K,6,,S 

K, 7, (W-D1) ,S 

K,8, (W-D2) 

L,1,2 

*REPEAT,7,1,1 

L,8,1 

AL,ALL 

ET , 1 , PLANE2 , , , 3 

R, 1, B 

ESIZE,A/3 

KSCON,1,A/12,1,8 

AMESH,ALL 

WSORT,X 

FINISH 

/SOLU 

ANTYPE,O 

178 



NSEL,S,LOC,Y 

NSEL,R,LOC,X,A,W 

D,ALL,UY,O 

NSEL,ALL 

NSEL,S,LOC,X,O 

NSEL,R,LOC,Y,Hl 

D,ALL,UX,O 

NSEL,ALL 

FK,2,FX,-100 

SAVE 

SOLVE 

FINISH 

/INPUT,RNODE-MAC 

FINI 
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Appendix B 

ANSYS Input Files for Inelastic 
Analysis 

B.l Elasto-Plastic Analysis for Cracked Speci­
mens 

ANSYS input files to analyze the cracked configurations described in this thesis 

are listed in this appendix. An elastic-plastic analysis is performed using collapsed 

quadrilateral elements, and from the stress, strain and displacement fields, the 

elastic-plastic fracture parameter, J, is evaluated. The macro JINl is used to 

calculate J from Rice's formula which defines it to be a path-independent contour 

integral, however, it is not suitable for 2!-D model. The macro JINl is listed here 

for the sake of completeness. 

!JIN1 MACRO FILE TO CALCULATE THE J-INTEGRAL 
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SEXP,W,SENE,VOLU,1,-1 

LPATH,ARG1,ARG2,ARG3,ARG4 

PDEF,W,ETAB,W 

PCALC,INTG,J,W,YG 

*GET,JA,PATH,O,LAST,J 

PDEF,CLEAR 

PVECT,NORM,NX,NY,NZ 

PDEF,SX,S,X 

PDEF,SY,S,Y 

PDEF,SXY,S,XY 

PCALC,MULT,TX,SX,NX 

PCALC,MULT,C1,SXY,NY 

PCALC,ADD,TX,TX,C1 

PCALC,MULT,TY,SXY,NX 

PCALC,MULT,C1,SY,NY 

PCALC,ADD,TY,TY,C1 

*GET,DX,PATH,O,LAST,S 

DX=DX/100 

PCALC,ADD,XG,XG,,,,-DX/2 

PDEF,UX1,U,X 

PDEF,UY1,U,Y 

PCALC,ADD,XG,XG,,,,DX 

PDEF,UX2,U,X 

PDEF,UY2,U,Y 
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PCALC,ADD,XG,XG,,,,-DX/2 

C=(1/DX) 

PCALC,ADD,C1,UX2,UX1,C,-C 

PCALC,ADD,C2,UY2,UY1,C,-C 

PCALC,MULT,C1,TX,C1 

PCALC,MULT,C2,TY,C2 

PCALC,ADD,C1,C1,C2 

PCALC,INTG,J,C1,S 

*GET,JB,PATH,O,LAST,J 

JINT=(2*(JA-JB)) 

PDEF,CLEAR 

182 



B.l.l Single-Edge Crack Specimen 

The ANSYS input file for SEC specimen discussed in Section 7.5.1 is listed below. 

!2D SINGLE-EDGE CRACK PROBLEM- NONLINEAR ANALYSIS 

*SET,YM,2.11e5 

*SET,YS,488.43 

*SET,NU,0.3 

*SET,A,7.5 

*SET,W,50 

*SET,H,50 

/title, 2D SEC Specimen, nonlinear 

/prep7 

antype, static 

et,1,plane82,0,0,2 

MP,ex,1,YM 

MP,NUXY,1,NU 

TB,BKIN,1,1 

TBDATA,1,YS,O 

K,1,0,0 

K,2,(W-A),O 
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K ,3, (W-A) ,H 

K,4,-A,H 

K,5,-A,O 

L,1,2 

L,2,3 

LESIZE,2,, ,4 

L,3,4 

LES I ZE , 3 , , , 4 

L,4,5 

LESIZE,4,, ,6, .2 

L,5,1 

ESIZE,,5 

KSCON,1,.15*A,1,8 

AL,1,2,3,4,5 

AMESH,1 

OUTPR,ALL 

FINI 

/SOLU 

ANTYPE,O 

NROPT, 1 , , OFF 

AUTOTS,ON 

PRED , ON, , ON 
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NCNV,O 

OUTRES,ALL,ALL 

SIG=50 

nsel,s,loc,x,O 

nsel,r,loc,y,O 

D,ALL,UX,O 

nsel,all 

DL,1,1,SYMM 

TIME, 1E-10 

SFL,3,PRES,O 

SAVE 

SOLVE 

TIME,9 

NSUBST,900 

SFL,3,PRES,-9*SIG 

SAVE 

SOLVE 

FINISH 

/INPUT,POST-MAC 

FINISH 
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Another nonlinear analysis ANSYS input file is listed below. 

!ANOTHER ANSYS INPUT FILE 

!2D SINGLE-EDGE CRACK PROBLEM- NONLINEAR ANALYSIS 

*SET,YM,2.11e5 

*SET,YS,488.43 

*SET,NU,0.3 

*SET,A,7.5 

*SET,W,50 

*SET,H,50 

/title, 2D SEC Specimen, nonlinear 

/prep? 

antype, static 

et,1,plane82,0,0,2 

MP,ex,1,YM 

MP,NUXY,1,NU 

TB,BKIN,1,1 

TBDATA,1,YS,O 
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K,1,0,0 

K,2,(W-A),O 

K,3,(W-A),H 

K,4,-A,H 

K,5,-A,O 

L,1,2 

L,2,3 

LESIZE, 2, , , 4 

L,3,4 

LESIZE, 3, , , 4 

L,4,5 

LESIZE,4,, ,6, .2 

L,5,1 

ESIZE,,5 

KSCON,1,.15*A,1,8 

AL,1,2,3,4,5 

AMESH,1 

OUTPR,ALL 

FINI 

/solu 

antype,O 

nropt,full,,off 
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outres,all,all 

ncnv,1,20 

nsel,s,loc,x,O 

nsel,r,loc,y,O 

D,ALL,UX,O 

nsel,all 

DL,1,1,SYMM 

*DO,i,1,80 

PY=110+5*i 

SFL,3,PRES,-PY 

SAVE 

SOLVE 

*END DO 

FINISH 

/INPUT,POST-MAC 

FINISH 

The user file POST-MAC is used to calculate J values along various contours 

and the averaged value is viewed as elastic-plastic J. 
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!User File POST-MAC 

!Node Numbers are different for different configurations 

/POST! 

SET, LOAD STEP NUMBER 

ETABLE,SENE,SENE 

ETABLE,VOLU,VOLU 

JAVG=O 

*USE,JIN1,5,199,195,64 

J1=JINT 

JAVG=JAVG+J1 

*USE,JIN1,6,211,207,63 

J2=JINT 

JAVG=JAVG+J2 

*USE,JIN1,6,79,76,63 

J3=JINT 

JAVG=JAVG+J3 

*USE,JIN1,7,78,75,62 

J4=JINT 

JAVG=JAVG+J4 

*USE,JIN1,8,214,208,62 

JS=JINT 
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JAVG=JAVG+J5 

JAVG=(JAVG/5) 

/output,temp 

*STAT 

/output 

/sys,cat temp>>jin.out 
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B.1.2 Compact Tension Specimen 

The ANSYS input file for CT specimen discussed in Section 7.5 .2 is listed below. 

!ELASTIC-PLASTIC ANALYSIS OF A COMPACT-TENSION SPECIMEN 

!ELASTIC-PERFECTLY PLASTIC, COLLAPSED QUAD STIF 82 ELEMENTS 

/title, CT SPECIMEN -- Nonlinear Analysis 

/PREP7 

A=0.05 

B=0.05 

W=.100 

W1=.125 

H=.060 

R=0.0125 

E=0.0275 

S=0.003 

D1=0.080 

D2=0.075 

YM=211e09 

YS=488.43e06 

ANTYPE,STATIC 
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MP,EX,1,YM 

MP,NUXY,1,.33 

TB,BKIN,1 

TBDATA,1,488.43E06,0 

K, 1, A 

K,2,W 

K,3,W,H 

K,4, ,H 

K,5,(W-W1),H 

K,6,(W-W1),S 

K,7,S 

K,8, (W-D1) ,S 

K,9,(W-D2) 

K,10,E 

K,11,,E,E 

CIRCLE,10,R,11,4,,8 

L,1,2 

*REPEAT,8,1,1 

L,9,1 

L ,4, 12 

L,16,7 

KSEL,S,LOC,X,-1E-6,1 
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Page 193 

missing from the 
original book 



NSEL,R,LOC,X,A,W 

D,ALL,UY,O 

NSEL,R,LDC,X,A 

D,ALL,UX,O 

NSEL,ALL 

*DO,i,1,120 

PFORCE=(400+70*i)*1000 

FK,12,FY,PFORCE 

SAVE 

SOLVE 

*END DO 

FINISH 

/INPUT,POST-MAC 

FINISH 
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B.1.3 Single Edge Notched Bend Specimen 

The ANSYS input file for SENB specimen discussed in Section 7.5.3 is listed below. 

!ELASTIC-PLASTIC ANALYSIS OF A SENE SPECIMEN 

!SINGULAR STIF 82 ELEMENTS USED AROUND CRACK TIP 

/title, SENE SPECIMEN -- Nonlinear Analysis, Plane Stress 

/PREP7 

A=0.05 

E=0.003 

W=.100 

H=.2125 

H1=.2 

S=0.003 

D1=0.080 

D2=0.075 

YM=211e09 

YS=488.43e06 

ANTYPE,STATIC 

MP,EX,1,YM 

MP, NUXY, 1 , . 33 
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TB,BKIN,1 

TBDATA,1,488.43E06,0 

K, 1, A 

K,2,W 

K,3,W,H 

K,4, ,H 

K,S,,Hl 

K,6, ,S 

K,7,(W-D1),S 

K,B, (W-D2) 

L,1,2 

*REPEAT,7,1,1 

L,8,1 

AL,ALL 

ET,1,PLANE82,,,3 

R, 1 ,B 

ESIZE,A/3 

KSCON,1,A/12,1,8 

AMESH,ALL 

WSORT,X 

FINISH 
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/solu 

antype,O 

nropt,full,,off 

outres,all,all 

ncnv,1,20 

NSEL,S,LOC,Y 

NSEL,R,LOC,X,A,W 

D,ALL,UY,O 

NSEL,R,LOC,X,A 

D,ALL,UX,O 

NSEL,ALL 

*DD,i,1,100 

PFORCE=1000+115*i 

FK,2,FX,-PFORCE 

FK,5,FX,PFORCE 

SAVE 

SOLVE 

*END DO 

FINISH 

/INPUT,POST-MAC 

FINISH 
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B.1.4 Circumferential Flaw in a Pressure Vessel 

The ANSYS input file for circumferential flaw in a pressure vessel discussed 1n 

Section 6.5.3 is listed below. 

!CIRCUMFERENTIAL FLAW- NONLINEAR ANALYSIS 

*SET,YM,2.11e5 

*SET,YS,488.43 

*SET,NU,0.3 

*SET,RI,100 

*SET,W,10 

*SET,A,2.5 

*SET,H,30 

*SET,RO,(RI+W) 

/title, 20 Axisymmetric Circumferential Cracked Specimen, nonlinear 

/prep7 

antype, static 

et,1,plane82,0,0,1 

MP,ex,1,YM 

MP,NUXY,1,NU 

TB,BKIN,1,1 

TBDATA,1,YS,O 
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K,1,(RI+A),O 

K,2,RO,O 

K,3,RO,H 

K,4,RI,H 

K,5,RI,O 

L,1,2 

L,2,3 

LESIZE, 2, , , 8 

L,3,4 

LESIZE,3,, ,6 

L,4,5 

LES I ZE , 4 , , , 1 0 , . 2 

L,5,1 

ESIZE,,6 

KSCON,1,.15*A,1,8 

AL,1,2,3,4,5 

AMESH,1 

OUTPR,ALL 

FINI 

/solu 

antype,O 
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nropt,full,,off 

outres,all,all 

ncnv,1,20 

nsel,s,loc,x,O 

nsel,r,loc,y,O 

D,ALL,UX,O 

nsel,all 

DL,1,1,SYMM 

nsel,s,loc,y,H 

D,ALL,ROTX,O 

D,ALL,ROTY,O 

nsel,all 

*DO,i,1,80 

PI=9+1*i 

SFL,3,PRES,-(PI*RI*RI/(RD*RD-RI*RI)) 

SAVE 

SOLVE 

*END DO 

FINI 

/INPUT,POST-MAC 

FINI 
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B.1.5 Longitudinal Flaw in a Pressure Vessel 

The ANSYS input file for longitudinal flaw in a pressure vessel discussed in Section 

6.5.4 is listed below. 

!LONGITUDINAL FLAW- NONLINEAR ANALYSIS 

*SET,YM,2.11e5 

*SET,YS,488.43 

*SET,NU,0.3 

*SET,RI,100 

*SET,W,10 

*SET,A,2.5 

*SET,RO,(RI+W) 

/title, 2D Longitudinal Cracked Specimen, nonlinear 

/prep7 

antype, static 

et,1,plane82,0,0,2 

MP,ex,1,YM 

MP,NUXY,1,NU 

MP,ALPX,1,0 

MP,ALPY,1,0 
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MP,ALPZ,l,le-5 

TB,BKIN,1,1 

TBDATA,l,YS,O 

K,l,RI+A,O 

K,2,RD,O 

K,4,-RO,O 

K,5,-RI,O 

K,7,RI,O 

CSYS,l 

K,3,R0,45 

K,6,RI,45 

CSYS,O 

L,1,2 

LESIZE,1,,,6 

CSYS,l 

L,2,3 

LESIZE,2,,,24,3 

CSYS,O 

L,3,6 

LESIZE, 3, , , 2 

CSYS,l 
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L,7,6 

LESIZE,4,, ,24,3 

CSYS,O 

L,7,1 

ESIZE,,6 

KSCON,1,.2*A,1,6 

L,4,5 

LESIZE,6,,,2 

CSYS,1 

L,6,5 

LESIZE,7,,,18,3 

L,3,4 

LESIZE,8,,,18,3 

CSYS,O 

AL,1,2,3,4,5 

AL,6,7,3,8 

AMESH,all 

OUTPR,ALL 

FINI 

/solu 

antype,O 

nropt,full,,off 

outres,all,all 
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ncnv,1,20 

nsel,s,loc,x,RI+A 

nsel,r,loc,y,O 

D,ALL,UX,O 

nsel,all 

DL,1,1,SYMM 

nsel,all 

DL,6,2,SYMM 

nsel,all 

*DD,i,1,120 

PI=10+0.5*i 

SFL,4,PRES,PI 

SFL,7,PRES,PI 

SAVE 

SOLVE 

*END DO 

FINI 

/INPUT,POST-MAC 

FINI 
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B.2 Elasto-Plastic Analysis for Notched Speci­
men 

The ANSYS input file for circular-ended notch specimen discussed in Section 5.4 is 

listed here. 

!2D NOTCH PROBLEM- NONLINEAR ANALYSIS 

*SET,YM,2.11e5 

*SET,YS,488.43 

*SET,NU,0.3 

*SET,W,50 

*SET,H,50 

*SET ,Hi, 12 

*SET,A,10 

*SET,R,2.5 

*SET,Div1,6 

*SET,Div2,12 

*SET,Div3,5 

*SET,Div4,5 

*SET,Div5,6 

*SET,Div6,8 

*SET,Div7,6 
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*SET,kn,O 

/title, 2 D notch model-nonlinear analysis 

/prep7 

et,1,42,0,0,kn 

MP,ex,1,YM 

MP,NUXY,1,NU 

TB,BKIN,1,1 

TBDATA,1,YS,O 

k, 1, a 

k,2,a-r,r 

k,3,a+h1 

k,4,a-r,r+h1 

k,5,,r 

k,6,,r+h1 

k '7' ,h 

k,8,a-r,h 

k,9,w,h 

k,10,w 

csys,1 

1,1,2,Div1 
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l,3,4,Div1 

csys,O 

l,1,3,Div2,4 

l,2,4,Div2,4 

l,5,6,Div2,4 

l,2,5,Div3,2 

l,4,6,Div3,2 

l,8,7,Div3 

l,4,8,Div4,2 

l,6,7,Div4,2 

l,8,9,Div5,2 

l,10,9,Div6,3 

l,3,10,Div7,2 

a,1,2,4,3 

a,2,5,6,4 

a,4,6,7,8 

a,3,4,8,9,10 

amesh,all 

fini 

/solu 

antype,O 
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nropt,full,,off 

outres,all,all 

ncnv,1,20 

nsel,s,loc,x,a,w 

nsel,r,loc,y,O 

d,all,uy,O 

nsel,r,loc,x,a 

d,all,ux,O 

nsel,all 

*DO,i,1,40 

PY=76+4*i 

NSEL,S,LOC,Y,H 

SF,ALL,PRES,-PY 

NSEL,ALL 

SAVE 

SOLVE 

*END DO 

FINISH 

/INPUT,POST-MAC 

FIN! 
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Appendix C 

Derivation of Equivalent 
Reference Stress 

C.l A Cylindrical Pressure Vessel with Circum­
ferential Flaw 

Limit Loads for a Rectangular Beam With an Axial Load and Bending 

Moment (Fig. C.l): The expression for the theoretical collapse load can be 

expressed as (Burgreen, 1968) 

M = ~ [1 _ (!:__)2] 
Mo 2 Po 

(C.1) 

where Po = ayh and M 0 = ayh2 /6. For an elastic perfectly-plastic material, while 

the ratio of applied bending moment (M) to applied axial load (P) is constant (e), 

that is, M = P e, the limit axial load (PL) can be obtained as (Fig. C.1) 

(C.2) 
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Based on the reference stress method, the equivalent reference stress, ( cre)ref, 

can be obtained as 

(C.3) 

Cylindrical Pressure Vessel with Circumferential Flaw (Fig. C.2): In 

order to simplify the problem, case (a) can be approximately viewed as case (b) in 

Fig. C.2, that is, P = Pa W and M = P ( i) where Pa is the axial stress. Therefore, 

from Eq. (C.3) (when h = W- a and e =~),the equivalent reference stress can 

be expressed as 

(C.4) 
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-------

1 

(P, M) 
I 
I 
I 
I 
I 
I 

Collapse Curve 

M/M 0 =1.5[1-(P/P 0 )
2

] 

Figure C.l: Collapse Curve for a Rectangular Beam 
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(a) 

~M pH 

W-a - .. -

p, 
~M 

(b) 

Figure C.2: Cylindrical Pressure Vessel with Circumferential Flaw 
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C.2 A Cylindrical Pressure Vessel with Longi­
tudinal Flaw 

Analysis of a Thick-Walled Cylinder Subjected to an Internal Pres-

sure: The stationary creep solution for a thick-walled cylinder under internal 

pressure (Pi) can be expressed as (Seshadri and Fernando, 1992) 

Pi [ 1 + 2 n n ( ~0 ) 
2/nl ae (Y2/n- 1) 

Pi [ 1 + 1 n n ( ~0 ) 
2/nl (C.5) O'z (Y2fn _ 1) 

Pi 
[1- ( ~o tn] O'r (Y2fn _ 1) 

where ae, ar and O"z are circumferential stress, radial stress and longitudinal stress 

respectively, and Y is the ratio of outer radius Ro to inner radius Ri· The forego-

ing expressions have been based on the second-stage creep relationship f.. = Ban. 

The elastic stress distribution can be obtained by setting n = 1. The von Mises 

equivalent stress can be written as 

(C.6) 

Substituting Eq. (C.5) into Eq. (C.6), and simplifying 
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a - ~ Pi (Rro)2/n 
e - n (Y2/n - 1) (C.7) 

The value of the equivalent stress for n ~ cx:l, which corresponds to a rigid 

plastic material, can be expressed as 

~ [ Pi l 
ae = 2 ln(Y) (C.8) 

where, ae is the reference stress. 

Cylindrical Pressure Vessel with Longitudinal Flaw (Fig. C.3): In 

order to simplify the problem, case (a) can also be approximately viewed as case 

(b) in Fig. C.3, that is, Y = Ro/(Ri +a). From Eq. (C.8) the equivalent reference 

stress, (a e)ref, can be obtained as 

~ [ Pi ] (ae)ref = 2 ln(R~+a) . (C.9) 
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• 

(a) (b) 

Figure C.3: Cylindrical Pressure Vessel with Longitudinal Flaw 
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