








PREDICTION OF PROPELLER PERFORMANCE 

ON A MODEL PODDED PROPULSOR IN ICE 

(PROPELLER-ICE INTERACTION) 

St. John's 

by 

© Jungyong Wang, B. Sc., M. Sc. 

A thesis submitted to the School of Graduate Studies 

In partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

Faculty of Engineering and Applied Science 

Memorial University of Newfoundland 

April2007 

Newfoundland Canada 



1+1 Library and 
Archives Canada 

Bibliotheque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de !'edition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre reference 
ISBN: 978-0-494-31333-6 
Our file Notre reference 
ISBN: 978-0-494-31333-6 

L'auteur a accorde une licence non exclusive 
permettant a Ia Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par !'Internet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

L'auteur conserve Ia propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni Ia these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

Conformement a Ia loi canadienne 
sur Ia protection de Ia vie privee, 
quelques formulaires secondaires 
ant ete enleves de cette these. 

Bien que ces formulaires 
aient inclus dans Ia pagination, 
il n'y aura aucun contenu manquant. 



Abstract 

With the increase in popularity of podded propulsors and arctic navigation, 

understanding the interaction between a podded propulsor and ice has become more 

important. Propeller-ice interaction itself is a complicated process resulting from the 

variations associated with the properties of the ice and with the propeller-ice interaction 

conditions. Model tests provide relatively well-controlled ice properties and interaction 

conditions to reduce these variations. 

The objective of this work is to understand propeller-ice interaction phenomena and 

develop a numerical method to predict the interaction ice loads. A model podded 

propulsor was tested in an ice tank with scaled model ice. Three six-component 

dynamometers and six single-axis dynamometers measured the ice loads acting on 

various positions of the experimental model. In order to achieve the desired numerical 

simulations, both a Panel method and empirical formulae were used. The Panel method 

was suitable for predicting the hydrodynamic loads acting on the propeller blades. The 

empirical formulae for the ice milling loads were also implemented into the Panel method, 

thus the hydrodynamic loads and ice milling loads were calculated simultaneously. The 

ice milling loads model takes into account geometric and kinematic considerations. 

Numerical results were compared and validated with the experimental results. The 

numerical model was valid for the first quadrant operating conditions with various 

azimuthing (yaw) angles. The numerical results showed a good agreement with 

experimental results. The findings from this work were then presented and discussed. 
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Chapter 1 Introduction 

l.l.Motivation 

1.1.1. The Interest in Ice Covered Waters 

Ice covered polar oceans occupy about 7 % of the total ocean area on the planet Earth, or 

an area greater than that of Europe and North America combined. With the rise of energy 

prices, the demand is growing for the development of new resources of energy, and 

developers are exploring non-hospitable areas, including polar oceans. In the Arctic 

Ocean including Russian territories, vast energy resources have been discovered and 

developed. For example, the development of oil and gas fields has already been started in 

the Barents Sea and the Sea of Okhotsk around Sakhalin Island, which are ice covered 

areas in winter. As a result of the prescribed circumstances, ice class vessels are necessary 

for transportation of these natural resources all year round. Consequently, a large number 

of ice class vessels are either being constructed or their construction is expected in the 

near future. 
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The Northern Sea Route (NSR) development is also a positive component to increase the 

interest in the Arctic Ocean. In the 1990s, Russia, Japan and several northern European 

countries composed a joint project, the International Northern Sea Route Programme 

(INSROP). One of the missions of the INSROP was to evaluate the NSR as a commercial 

shipping route. It found the NSR to be about 60 % of the distance of a typical southern 

sea route when the vessels navigate between the Far East and Europe. This translates to 

enormous potential economic benefits. When the NSR becomes one of the commercial 

shipping routes, a significant number of ice class vessels for shipping purposes will be 

expected. 

1.1.2. Propeller in Ice 

As the number of vessels capable of navigating in ice covered seas increases, further 

understanding of propeller-ice interaction becomes important. Most decisions regarding 

scantlings for an ice class propeller are made by the Arctic Shipping Pollution Prevention 

Regulations (ASPPR), the Finnish-Swedish Ice Class Rules and various classification 

society rules. Most ice class rules for a propeller were formulated on the basis of a 

prescribed ice torque depending on the vessel's particular ice class. Propeller failures, 

however, are still reported. Nowadays, Finite Element Methods are being used to estimate 

the stress level of the ice class propeller, but they have not been fully developed due to 

the weakness of the numerical modeling of ice. As well as the scantling of the ice class 

propeller, the propeller's performance in ice has not been evaluated clearly. 
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Propeller-ice interaction may cause problems such as noise, vibration, or even severe 

bending or failure of the propeller blades. During navigating in ice covered waters, a 

propeller can be stopped due to various reasons: ice ramming, maneuvering (turning or 

crash stop) or severe ice loads acting on the propeller. If the vessel has a forward or 

backward speed without any propeller rotation, the propeller may encounter extremely 

high ice bending loads. This is one of the exceptional cases and the forward or backward 

bending moment on the blade may exceed the propeller blade strength. 

Besides general strength fixed pitch propellers, controllable pitch propellers have been 

widely used for ice class propellers because ice class vessels need to operate in both open 

water and ice covered water. Greater pitch of the propeller in open water provides more 

speed because of its higher efficiency at lightly loaded conditions, and smaller pitch in ice 

covered water provides more power because a higher efficiency can be obtained at 

heavily loaded conditions. Ducted propellers have also been frequently installed in ice 

class vessels. The duct plays a major role in the protection of the propeller from ice. 

However, ice blocks sometimes get jammed inside the duct and the blockage effect 

occurs consequently. Highly skewed controllable pitch propellers have also been used as 

unconventional propellers for several ice class vessels because highly skewed propellers 

can reduce propeller-induced noise and vibration so that the propeller performance can be 

improved. 

As electric propulsion is developed, podded propulsors have been highlighted for modem 

propulsion systems. Especially, azimuthing podded propulsors provide excellent 
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maneuverability in ice covered waters as well as in open water. In particular, a Double 

Acting Tanker (DAT), which has an optimized bow and stern shapes for open and ice 

covered sea respectively, employed the azimuthing podded propulsors. The DAT 

navigates ahead direction in open water and in the astern direction during operation in ice 

covered water. 

1.2. Objectives 

Many studies on propeller-ice interaction have been carried out including full-scale 

measurements, model tests, and numerical calculations. Ice loads acting on a propeller 

blade are the result of complex processes due to the high rate of revolution of the 

propeller, the complex flow at the circumference of the propeller, and the random shape 

of the ice contacting with the propeller. Insufficient information on ice properties and 

interaction conditions increase the variation of data. Conducting model tests provides 

more accurate information regarding ice properties and interaction conditions. 

The objective of this thesis is to predict the performance of the propeller on a model 

podded propulsor in ice covered water. From both experimental and numerical points of 

view, a comprehensive examination about propeller-ice interaction has been performed. 

The experimental model, a scaled azimuthing podded propulsor, was tested in an ice tank 

and ice loads acting on the various parts of the model were measured. The numerical 

model for the propeller-ice interaction loads was developed by using geometric and 
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kinematic considerations. Both hydrodynamic loads and ice related loads were calculated 

simultaneously and the results were compared with those from experiments. 

This study enables us to predict the ice loads on the propeller with various azimuthing 

angles during propeller-ice interaction (especially ice milling conditions). This study also 

helps us to understand how propeller interacts with ice at given operating conditions. 

Although new propulsion technologies including podded propulsors have become more 

and more widespread in application for Arctic vessels, the regulations for classifying their 

use have not kept pace. Consequently, this study will help regulating bodies to update 

their regulations. 

1.3.Approach and Methodology 

For better understanding of ice loads acting on a propeller, the author hypothesizes that 

the loads from ice covered water consist of three components: separable hydrodynamic 

loads, inseparable hydrodynamic loads and ice milling loads. The separable 

hydrodynamic loads imply the loads from open water conditions. During the interaction 

between propeller blade and ice, however, as the blade lift may not fully develop when 

the blade is in the ice or immediately after the blade exits the ice, the separable 

hydrodynamic loads are only approximated values. The inseparable hydrodynamic loads 

are mainly generated by a blockage effect, proximity effect, and cavitation due to the 

presence of ice. The ice milling loads are the contact loads when the blade physically 
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contacts with ice. The inseparable hydrodynamic loads and ice milling loads combined 

are called ice related loads and they are defined when the blades are in contact with ice. 

This classification helps not only to evaluate accurate ice loads on the blade, but also to 

develop the ice contact model. 

Total Loads in ice (Propeller-Ice Interaction loads)= Ice Milling Loads 

+Separable Hydrodynamic Loads+ Inseparable Hydrodynamic Loads 

Ice Related Loads= Ice Milling Loads+ Inseparable Hydrodynamic Loads 

1.3.1. Experiments in Ice Tank 

The experiments were carried out in the ice tank at the National Research Council 

Canada's Institute for Ocean Technology. The objective of the experiments was to 

accurately measure the ice loads acting on the propeller blade and podded propulsor. As 

an experimental methodology for assessment of ice loads during propeller-ice interaction, 

steady milling conditions were designed and performed by using pre-sawn ice sheets. 

Model ice properties including flexural and compressive strength were measured 

approximately every two hours. The information about forces and moments acting on one 

of the propeller blades, forward and aft bearings of the propeller drive shaft, and the 

whole system was provided by three six-component dynamometers and six one-axis 

dynamometers. Parametric tests were carried out regarding key parameters such as depth 
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of cut, azimuthing angle, carriage speed and propeller rotating speed. The key parameters 

were found from a dimensional analysis. Most results are presented with non-dimensional 

force and moment coefficients against advance coefficients. 

1.3.2. Numerical Considerations 

The objective of the numerical calculations is to provide an appropriate method to 

estimate the propeller-ice interaction loads. The numerical study takes into account 

crushing pressure and shearing force due to ice. A mesh of each propeller blade was 

generated. The crushing pressure and shearing force were calculated at each panel, and 

summed up for total forces and moments. In order to decide the magnitude of crushing 

pressure and shearing force, a constant ice reference pressure, which was same as the ice 

compressive strength measured during experiments, was used with multiplying empirical 

factors. The present numerical model is able to calculate the ice loads on the propeller at 

any azimuthing angle (yaw angle) of the podded propulsor in the first quadrant operating 

condition. The numerical results provided in this thesis are for the limited ice condition 

(steady ice milling condition in the first quadrant) and do not consider the kinetics of ice 

(e.g. ice mass and inertia forces). Fracture and cracking of ice are also ignored. 

1.3.3. Scope 

In Chapter 2, a historical review of podded propellers and a review of ice-propeller 

interaction are shown. Several existing theoretical models are introduced. In Chapter 3, 

7 



the experimental test concepts and procedures are described. In order to compare ice 

loads with hydrodynamic loads, open water tests without ice were carried out as well. The 

methodology of data analysis is explained and results are shown. In Chapter 4, a 

numerical model for propeller-ice interaction is introduced. The detailed procedure for the 

model is addressed. In Chapter 5, comparisons between numerical results and 

experimental results are made. Finally in Chapter 6, conclusions of the present study are 

provided. 

8 



Chapter 2 Literature Reviews 

The objective of this chapter is to introduce the podded propulsion system and review 

propeller-ice interaction studies. The characteristics of the podded propulsion system are 

shown. Full-scale measurements, model tests and theoretical calculations for the 

propeller-ice interaction loads are reviewed. 

2.1. Podded Propulsors 

In the middle of the 1980s, an attempt to use a podded propulsion system was performed 

by ABB Industry of Finland and K vaerner Mas a-Yards Inc. A podded propulsion system 

consists of three parts: a strut, a pod with electric motor, and one or two propellers. The 

propeller is on the end of the pod and the pod is connected to the strut. The strut is 

attached under a vessel. An azimuthing podded system is designed to be able to rotate the 

whole system through 360 degrees by a gear box within a vessel. In Figure 2-1, a full­

scale podded propulsion system which is used in a Russian ice-going tanker (Double 
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Acting Tanker), Norilskiy Nickel, navigating in ice covered water and conceptual sketch 

are shown. 

Figure 2-1: Full-scale podded propulsion system, sea trial and conceptual design (after 
ABB, personal communication) 

The azimuthing podded propulsion system is a fully assembled propulsion unit and is also 

a steering unit without a general rudder. Inside the pod, there is an electric motor, which 

receives power and signals from the ship through the strut. A vessel with a pod system 

can be designed with more flexible machinery arrangement within the hull because it may 

not need shaft units, rudders and assisting thrusters. The azimuthing podded system 
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provides outstanding maneuvering capability through the ability to deliver full thrust in 

any direction. Also, space saving is another benefit. In addition, the pod system provides 

reduced noise and vibration, because this system would be isolated somewhat from the 

vessel's hull. Operating costs (fuel, lubricate oil, maintenance and repair costs) of podded 

system have been compared with those of typical operating system for a chemical tanker. 

The results showed the reduction of podded system operating costs would be at least 5 % 

per annum; for maintenance costs, the reduction of podded system could be about 6 - 8 % 

because the podded system may not need many traditional components such as reduction 

gear, propeller pitch control system and auxiliary system for main engine. General 

benefits of azimuthing podded propulsion systems are as follows: high steering ability, 

low level of noise and vibrations, increased payloads, lower operating cost, and high ice 

going capability in astern direction (Niini, 1997; Muller, 1999; Kron and Holmstrom, 

1999; Van Terwisga, 2001). 

In terms of cavitation, full-scale propeller blade cavitation patterns of a podded propeller 

were observed by Pustoshny and Kaprantsev (2001). They provided photographs and 

results of the actual observations. They reported that the dominant pattern of cavitation 

for a podded propeller was a tip vortex while a vessel was accelerating, turning or 

performing a crash stop. The thickness of the cavitating vortex was significantly 

increased in proportion to the loading of the propeller. Several model tests for cavitation 

in ice were reviewed in Section 2.5.1 
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There are some restrictions regarding speed and power due to the capability and size of 

the electric motor and high manufacturing costs. In 2001, the maximum installable power 

and speed was 21 MW and 26 Knots, respectively. In the future, it is likely to be 

increased to 32 MW and 30 Knots (Mewis, 2001). 

One of the commercial pod systems is the Azipod® which was developed by ABB 

Industry and Kvaerner Masa-Yards Inc. The Azipod® system is an azimuthing electric 

propulsion drive where the propulsion motor is installed inside a submerged azimuthing 

(unlimited 360 degrees) pod and coupled directly to an extremely short propeller shaft. 

Niini (1995) and Laukia (1996) reported the performance of the Azipod® which was 

installed in the product tanker, MIT Uikku, in 1993 and tested in ice regions in 1994. 

Originally, this tanker had a controllable pitch propeller and rudder. These propulsion 

units, main engines, and shafting had been removed and the Azipod® system including 

new main propulsion machinery was installed. The reports showed the differences 

between the previous propulsion units and the newly installed podded propulsion system. 

The turning radius of the Azipod® system in open water was the same with an 

azimuthing angle of 30 degrees when the previous controllable pitch propeller and rudder 

units had the maximum rudder angle which was 35 degrees. When the azimuthing angle 

was equal to 60 degrees, the turning radius was less than the LwL (Length of waterline) of 

the tanker. 

As introduced in the previous chapter, a podded propulsion system was used for a DAT 

(Double Acting Tanker), which was designed to run astern in ice covered water while 
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maintaining hydrodynamic efficiency for ahead propulsion in open water (Juurmaa et aL, 

2001; Sasaki et al, 2004). Representative commercial podded propulsion systems for ice­

going vessels are Azipod® of ABB, SPP of Siemens-Schottel, Dolphin of STN ATLAS 

Marine Electronics, and Mermaid™ of Rolls-Royce. 

2.2. Full-Scale Measurements for Propeller-Ice 

Interaction Study 

Studies on the interaction between ice and propeller using full-scale measurements have 

been performed by many researchers (Lewis et al., 1982; Jussila, 1983; Laskow and 

Revill, 1986; Kannari, 1988; Jussila and Koskinen, 1989; Keinonen et al., 1990; Williams 

et al., 1992; Cowper, 1992; Cowper et al., 1992). None of these full-scale measurements 

provided sufficient information to evaluate ice loads acting on a propeller in terms of ice 

properties, operational and environmental conditions. Full-scale trials are also expensive. 

In 1991, in order to establish the magnitude of the loading regime during propeller-ice 

interaction, with a goal of updating the Canadian Arctic Shipping Pollution Prevention 

Regulations and the Swedish-Finnish Rules for Baltic Navigation, the governments of 

Canada and Finland entered into a Joint Research Project Arrangement (JRPA #6). As a 

part of the JRP A #6, the interaction between ice and propeller was studied from both 

theoretical and experimental points of view (Keinonen et al., 1990; Jussila and Soininen, 

1991; Newbury et al., 1993, 1994; Jones et al., 1997; Browne, 1997; Browne et al., 1998). 
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Browne (1997) reported the results of the re-analyzed propeller.,.ice interaction data 

obtained from the original records of six selected full-scale trials; two of them used open 

propellers with a diameter of 4.8 meters and the rest of them were ducted propellers with 

various diameters between 3 and 4.5 meters. Browne used shaft torque, positive and 

negative shaft thrust, and reported parametric trends on the propeller-ice interaction loads 

with regard to the primary parameters, which are propeller rpm (revolution per minute), 

propeller pitch angle and ship speed. The reported ice conditions were a mixture of first­

and multi-year ice including ice ridges. The range of ice thicknesses was from 0.6 to 8 

meters, and the crushing strength was from 200 kPa to 2300 kPa. Ship speeds were up to 

5.5 m/s, and the range of rpm was between 120 and 220. The pitch angles of the 

propellers varied from negative 23 degrees to positive 27 degrees. 

Generally, full-scale trials did not provide precise information for environmental 

conditions and ice interaction conditions. Their conclusions, therefore, showed only 

general trends: (1) for both open and ducted propellers, the ice loads increased with the 

increase in ice thickness and strength, (2) for open propellers, if forward speeds increased 

then the ice loads decreased, (3) for ducted propellers, the ice loads increased with the 

increase in pitch angles and the ice thrust increased with the square of propeller diameters. 

One year later, Browne et al. (1998) reported results from seven selected full-scale trials 

(five trials were same as those from Browne, 1997) considering blade forces, parametric 

analysis and long-term prediction. They explained that the differences between blade 

loads and shaft loads are due to a shaft dynamic effect. They corrected the shaft loads for 
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the influence of shaft dynamics by using Duhamel's convolution theorem so that the 

corrected shaft loads can be compared with their unified load model or other directly 

measured blade load data. The reported ratios between propeller and shaft were 0.99- 1.7, 

0.4 - 0.65 and 0.49 - 0.63 for the maximum propeller torque over shaft torque, positive 

propeller thrust over shaft thrust, and negative propeller thrust over shaft thrust, 

respectively. 

Generally for both open and ducted propellers, propeller torque increased with the 

increase in pitch angles, and the ice loads are most likely directly proportional to ice 

strength (Browne et al., 1998). For long term predictions, an operating time of 10,000 

hours was assumed and three-parameter Weibull distributions were used. From the long 

term predictions, propeller thrust and torque varied approximately with the square and 

cube of propeller diameters for the ducted propellers during the propeller interaction with 

thick ice. The maximum negative and positive propeller thrust for the open propellers 

were approximately four and two times those of ducted propellers with similar diameters. 

From their parametric analysis, negative ice loads (negative thrust) were larger than 

positive ice loads (positive thrust) for open propellers, but positive ice loads (positive 

thrust) were larger than negative ice loads (negative thrust), for ducted propellers. 

The design of ice class propellers was introduced by Bose et al. (1998). The proposed 

method takes into account four limit states for design loads: (1) non-ice loading, (2) 

contact and hydrodynamic ice loads, (3) ice loads from full-scale data (from Browne 

(1997)) and (4) exceptional load limit state. The first three states are combined in an 
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interaction equation but the forth is applied independently. This design method can 

provide the position and magnitude of the maximum principal stresses in the blade of 

conventional propellers (non-highly skewed propellers) and proposed the interaction 

equation for the blade design. One year later, Doucet et al. (1999) reported this design 

method for an ice class propeller for MV IKALUK. The detailed calculations for the 

scantling of the propeller are presented in their report. 

2.3. Model Tests in Laboratories for Propeller-Ice 

Interaction Study 

As mentioned in the previous section, the drawback of full-scale measurements is the lack 

operational and environmental information. The cost of carrying out full-scale 

measurements for propeller-ice interaction is often prohibitive. In order to overcome these 

difficulties and to provide controlled conditions, model tests in laboratories have been 

designed and performed. Several model tests with both sea ice and artificial refrigerated 

ice were carried out (Veitch, 1995; Jones et al., 1997; Tamura et al., 1997; Soininen, 

1998; Searle, 1999; Varma, 2000; Mintchev et al., 2001; Moores, 2001; Akinturk et al., 

2003, 2004a, 2004b; Wang et al., 2004, 2005, 2006). Model tests provide more precise 

information in terms of ice properties, the interaction conditions, and the data collected 

compared with full-scale measurements. 
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In general, model tests in laboratories for propeller-ice interaction can be classified into 

two categories: (1) compressive/swing tests with simplified blade-like tools and (2) actual 

rotating tests with model propellers in ice covered water. Veitch (1995), Jones et al. 

(1997), Soininen (1998) and Varma (2000) did tests in the first category, and Tamura et al. 

(1997), Searle (1999), Mintchev et al. (2001), Moores (2001) and the present tests 

(Akinturk et al.,2003, 2004a, 2004b; Wang et al., 2004, 2005, 2006) did tests in the 

second category. 

Veitch (1995) used a wedge shape indenter to simulate a propeller blade and performed 

high speed compressive tests which simulated propeller blades in contact with ice. 

Soininen (1998) used a full-scale blade-like model and carried out swing tests to simulate 

propeller-ice interaction. Both Veitch (1995) and Soininen (1998) established empirical 

ice load models from their results. Detailed explanations are given in the next section. 

Searle (1999) tested both an R-Class icebreaker propeller and a highly skewed propeller 

in four quadrants. Model tests were carried out in the lOT ice tank with EG/ AD/S model 

ice. Searle measured the shaft thrust, shaft torque, rps, carriage speed, and ice properties. 

Sampling rate for the thrust and torque measurements was 5000 Hz. Searle reported that 

the increase in the depths of cut (penetrated distances of a blade into ice) resulted in an 

increase in the propeller thrust and torque and the propeller loads due to ice were strongly 

dependent on the propeller's operating conditions. As the advance coefficient increased, 

the thrust and torque increased until the advance coefficient was reached at certain values 

(J = 0.3 - 0.4) then they started to reduce above this range (J > 0.4). From the 
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comparisons of four quadrants tests, quadrants two and three experienced larger ice loads 

than those in quadrant one. In the quadrants two and three, the propeller blade may 

experience exceptional out-of-plane bending moments as off-design conditions. The 

effect of variation of compressive strength did not play a major role in the thrust values 

(for example, in the first quadrant a 27 % change in compressive strength resulted in a 

3 %change in mean thrust values) but the torque values were sensitive to the variation of 

compressive strength (for example, in the first quadrant a 38 %change in compressive 

strength resulted in a 32 %change in mean torque values). Searle observed oscillatory ice 

loads, which varied approximately equal magnitude of maximum and minimum from 

mean value. 

Moores (2001) tested a highly skewed propeller and measured the forces and moments 

due to ice acting on a propeller blade. Moores did the first successful tests to accurately 

measure blade loads during ice milling using a dynamometer at the root of one of the 

blades. The dynamometer was designed to distinguish the blade load in six components. 

The model tests were carried out with different pitch angles, depths of cut, ice strength, 

and advance coefficients. As results, Moores presented the maximum thrust and torque on 

the blade, and in plane and out of plane bending moments were also shown. The general 

trends from the results are: 

1. As the pitch angles decreased, the shaft/blade thrust and torque coefficients 

decreased; 

2. As the depth of cut and ice strength increased, the shaft/blade thrust and torque 

coefficients increased. 
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In plane bending moment and out of plane bending moment in ice conditions were 

approximately 2 to 4 times larger than the open water results. The results from Moores 

are similar to those from Searle; the thrust and torque values increased at a certain value 

of advance coefficient (J = 0.3- 0.4) then started to decrease. Some ofMoores' studies 

regarding compressive tests with high strain rate are presented in Section 2.5.2. 

Both Searle and Moores did their work as master degrees, and some papers of their results 

have been published in the public domain (Searle et al., 1999, 2001; Moores et al., 2001a, 

2001b, 2002). 

2.4. Propeller-Ice Interaction Models 

In the early 1990s, two literature reviews discussed the work done in the field of 

interaction between ice and propellers, Jussila and Soininen (1991) and Veitch (1992). 

These reviews described previous theoretical studies (Jagodkin, 1963; Ignatjev, 1964; 

Ignatjev, 1966; Wind, 1983; Belyashov and Shpakov, 1983; Kotras et al., 1985; Chernuka 

et al., 1989). 

In the following years, Veitch (1995) and Soininen (1998) developed more precise and 

elaborate models than existed before. Veitch (1995) considered the dynamics between the 

ice block and the propeller, and simulated the process of contact based on the model test. 

Soininen (1998) carried out laboratory tests with a full-scale blade-like tool attached to a 
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pendulum at high speed. Based on these results and failure modes of the ice, a prediction 

model was developed. In this chapter, three previous propeller-ice interaction models are 

reviewed. 

2.4.1. Prediction with the Model of Kotras et al. 

Kotras et al. (1985) studied the prediction of ice milling loads from a simple wedge 

shaped tool. They considered blade shadowing and four quadrant operating conditions 

(Figure 2-2). Blade shadowing is caused by the interference between each blade path. The 

blade shadowing is when the propeller blade interacts with part of the path generated by 

the previous blades. Consequently, the consecutive blade does not fully contact with ice. 
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Figure 2-2: Four quadrants operating condition and blade shadowing phenomena (after 
Kotras et al., 1985) 

In order to calculate the intersection (x, y) between ice and tool, Equation (2-1) is used, 

when the propeller contacts with continuous ice (Figure 2-3): 

_ hs- Yt ( ) x- x2 -x1 +x1 
Yz- Yt (2-1) 

Y =hs 

where hs is the depth of the blade shadowing. 
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Figure 2-3: Intersection shape of the propeller blade (after Kotras et al., 1985) 

The forces on each blade section are evaluated by volumetric crushing consideration 

(Figure 2-4 ). The volume of the ice, Vo is a function of 8, L, 11t and Llx. Work done on 

the deformation of the volume by crushing is equal to O'c Vo , where O'c is the crushing 

stress of the ice. In other words, the work, W , done on the blade section consists of 

normal forces and tangential forces: 

W = (Nsin8+Tcos8)Llx. (2-2) 

Figure 2-4: Acting stress calculation (after Kotras et al., 1985) 
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It is assumed that the tangential force ( T) is due only to a friction that behaves in a 

simple Coulomb fashion: 

where J1 is the friction coefficient. 

Finally, the normal force N; is derived from Equation (2-4): 

N. = acL/!!t.t; sin 8; . 
' sin 8; + J1 cos 8; 

(2-3) 

(2-4) 

The forces and moments acting on the blade can be estimated by integrating the sum of 

each blade strip component. 

2.4.2. Prediction with Veitch's Model 

A contact model was developed following a test series with a two-dimensional blade 

shaped cutting tool and a numerical calculation. The basic concept of this model was 

based on the model ofBelyashov and Shpakov (1983), which was extended by Veitch 

(1995). The ice load acting on the blade was predicted at each local cutting angle. The 

procedure for the prediction of the ice loads is as follows: (1) determine a blade-ice 

intersection, (2) calculate a local cutting angle, (3) find a contact length of the tool, ( 4) 

evaluate an ice pressure, and (5) calculate a force and moment. 
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Figure 2-5: Cutting geometry (after Veitch, 1995) 

Table 2-1: List of symbols for Veitch's method 

a : Angle of attack, also cutting tool's clearance angle 

¢ : Geometric pitch angle 

f3: Hydrodynamic pitch angle 

y : Local cutting angle 

h 

ICE 

A. : Local blade section angle from the pitch datum line to the tangent line at the point 

of interest on the section 

h : Thickness of the ice to be removed by cutting 

c : Last contact point on the section 

P : Point of interest on the section 

s : Subscript denotes suction side of blade section 

p : Subscript denotes pressure side of blade section 
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Figure 2-5 shows the cutting geometry, which provides the intersection shape, local 

cutting angle and contact length. The local cutting angle can be found from Equations (2-

5) and (2-6): 

(2-5) 

Jr r =--+1 -a 
s 2 s ' 

(2-6) 

where a = ¢- f3. 

When the y values are known, pressure at each point can be calculated from Equations 

(2-7) and (2-8): 

(2-7) 

(2-8) 

where coefficients m and k can be determined, which are geometric parameters of blade 

and ice, symbols IP and Is are the length of contact between ~ and cat each side. 

Equations (2-7) and (2-8) originated from Hertzian pressure distributions and were 

modified for the propeller. Finally, forces at each point are evaluated from Equation (2-

9): 
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M=-p·M·n, (2-9) 

where the symbol of M indicates the incremental area of the blade. 

Equations (2-1 0) and (2-11) give the total forces and moments acting on the blade of two­

dimensional shape: 

F=LLM', 

M=L:L:crxM), 

where the symbol of r indicates the moment arm of interest. 

(2-10) 

(2-11) 

In Veitch's works, numerical simulation including motion equation of submerged ice was 

developed. Simplified hydrodynamic loads were also added. Veitch emphasized the ice 

failure during propeller-ice interaction: ice chipping process with maximum pressure at 

leading edge and coalescence of small cracks at back side of the propeller. Although 

Veitch assumed an appropriate propeller-ice interaction scenario, blade dynamics 

including effect of interaction between propeller blades was ignored; only spherical shape 

of ice was considered; and changes of ice shape and mass during propeller-ice interaction 

were neglected. 
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2.4.3. Prediction with Soininen's Model 

Soininen (1998) carried out experiments with a full-scale blade-like tool which 

represented the propeller of MS Gudingen. The tool was attached to a pendulum and 

impacted with ice sheets at a maximum tangential speed of about 8.3 m/s (Figure 2-6). Ice 

pressures were measured at different positions over the tool; 21 pressure sensors were 

used to measure the pressure distributions along the center line and leading edge of the 

tool. Global loads were measured from the top of the tool. The ice failure process 

observed from the experiments was a cyclic failure by cracking and extrusion of the ice. 

In order to evaluate the failure of solid ice, the Mohr-Coulomb failure criterion with slip­

line theory was studied. The pressure distributions due to the extrusion of crushed ice 

were considered using both viscous and granular models. A model for effective load was 

developed and validated. 
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Figure 2-6: Test concept (after Soininen, 1998) 

When the blade is in contact with the ice sheet, the flaking of the ice on the face side is 

formed by a tensile crack with transversal direction in which the blade is proceeding 

(Figure 2-7). The face side, therefore, does not experience significant contact loads with 

the ice. The spalling is formed in the back side of the blade and crushing is generated 

within the spall, while the leading edge is proceeding into the ice (Figure 2-8). 
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Figure 2-7: Ice flake on face side (after Soininen, 1998) 

Crushed ice 
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Figure 2-8: Ice crushing on back side (after Soininen, 1998) 

Figure 2-9 shows a combination of the granular model at the leading edge extrusion and a 

viscous model for the compact crushed ice extrusion towards the trailing edge. Soininen's 

model is based upon a series of spalls in the profile direction, crushing within the spalls, 

and the extrusion process. 
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Figure 2-9: Crushed ice (after Soininen, 1998) 

Figure 2-10 shows the pressure distribution on the blade. In this figure, pressure at each 

point can be calculated from Equations (2-12) to (2-18), which are based on the test 

results and the numerical considerations. The value of PL was measured from the profile 

pressure distribution tests. 

X 

E 
Back Side 

(Suction Side) X 

Pressure 

Leading 
Edge 

-X 

Face Side 
(Pressure Side) 

Figure 2-10: Pressure distributions (after Soininen, 1998) 

PLE =4.5+26w, 

p -100'03 
MA- ' 
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(2-13) 



where a is the uniaxial compressive strength of the solid ice, w is the cut width (m), PLE 

is the mean pressure (MPa), and PMA is the maximum value of average pressure 

distribution along a section (MPa). 

(2-14) 

where PwA is the average pressure at a wedge tip (MPa), and PMAX is the maximum 

pressure (MPa). 

Po = 0.54PWA + 0.33PLE . (2-15) 

From A to C, 

P = P, -( PMA -Po J(x -x)z. 
MA (X -A0)2 

(2-16) 

FromCtoD, 

(2-17) 

In the tip radius area, 

P=0.6aA( 2ccosf/JJ,when a <5° 
5 1- sin¢ A 

P = 0.6(2ccosf/JJ, when aA >SO 
1- sin fjJ 

(2-18) 
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where a A is the angle of attack of a section (degrees), c is the cohesion, and tjJ is the 

internal friction angle. 

The total load acting on the blade was calculated from the integration of the effective load 

at each section. From Soininen's work, detailed ice failures were studied by using both 

theoretic and experimental methods. Soininen used the full-scale blade-like tool, so that 

there was no scale effect. However, hydrodynamic loads and dynamic effect between the 

blades and ice were not considered and only milling type contacts on the leading edge 

were taken into account. 

2.5. Theoretical Consideration for Propeller-ice 

Interaction Study 

As introduced in the first chapter, three types of loads may act on the propeller blade 

during propeller-ice interaction: separable hydrodynamic loads, inseparable 

hydrodynamic loads, and ice contact loads. The inseparable hydrodynamic loads occur 

mainly due to the disturbance of the inflow of ice blocks and result in a blockage effect, a 

proximity effect, and cavitation. Ice contact loads are caused by the physical contact of 

ice. The ice contact loads are significantly varied depending on the ice properties, 

interaction conditions, and ship operating conditions and they can be much higher than 
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separable hydrodynamic loads. In this chapter, inseparable hydrodynamic loads and ice 

contact loads are reviewed. 

2.5.1. Inseparable Hydrodynamic Loads 

Inseparable hydrodynamic loads are the loads from a blockage effect, proximity effect or 

cavitation due to the presence of ice. The blockage and proximity effect are explained as 

follows. The blockage effect is mainly due to the wake from the ice and reduced inflow. 

When ice blocks interrupt the inflow of a propeller, this simulates low advance coefficient 

conditions. Based on a typical thrust-torque versus advance coefficient curve, the thrust 

and torque coefficients are expected to increase. This is called the "blockage effect." The 

"proximity effect" is mainly due to the presence of ice (in other words, a boundary effect). 

This effect influences the propeller loads by means of increased gap flow and the effect 

on unsteady loads between a propeller blade and ice block. In blocked flow, cavitation 

can occur even at atmospheric pressure because high local flow speeds and hence low 

pressures are generated, which affect the thrust and torque. 

Regarding non-contact hydrodynamic loads, the effects of blockage and proximity in 

blocked flow have been studied (Shih and Zheng, 1992, 1993; Yamaguchi, 1993; Bose, 

1996; Robbins et al, 1998; Liu et al., 2000). Shih and Zheng (1992) calculated propeller 

performance in blocked flow by using a two-dimensional boundary element method. The 

calculated maximum lift and drag coefficients of the blade in the blocked conditions were 

5.78 times that in open water conditions. One year later, they extended from a two-
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dimensional to a three-dimensional boundary element method in order to simulate more 

realistic propeller blades (Shih and Zheng, 1993). They reported that the calculated 

maximum thrust/torque in the blocked conditions were 1.6 times higher than open water 

conditions; which showed that the results were significantly lower than those predicted by 

their two-dimensional method. However, the local loadings at certain blade section were 

sometimes more than 5 times higher than open water results. 

Yamaguchi (1993) developed a lifting surface method for the numerical prediction of 

propeller performance in blockage conditions and the numerical results were compared 

with the experimental results from an ice tank and cavitation tunnel. The effect of blocked 

flow was considered as two components: a flow separation effect and potential wake 

/displacement effect. The flow separation effect behind an ice block was considered in the 

calculation by using a zero axial velocity. However, the displacement effect (proximity 

effect), which was caused by the increased flow velocity between the propeller blade and 

ice block, was not considered due to the limitation of the lifting surface method. The 

experimental results showed that the thrust and torque in blocked conditions were much 

larger than those in open water conditions. For example, when the advance coefficient 

was 0.4, the loads in the blocked conditions were approximately 100 percent higher than 

those in the open water conditions. The comparison of thrust and torque between the 

experimental and numerical results showed a discrepancy because the effect of 

displacement had been ignored. 
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Bose (1996) used a three-dimensional unsteady panel method to predict propeller 

performance in blocked flow and the numerical results were compared with experimental 

results provided by Luznik et al. (1995). The numerical calculations used two conditions 

to simulate an ice block: a simplified inflow which represented the wake behind an ice 

block and the same inflow condition (simplified inflow) with the ice block geometry 

upstream of the propeller. The velocities of the freestream and the ice wake behind the 

blockage were 1.0 (one) and 0.01 respectively. The target advance coefficient was 0.4 

with an axial wake velocity for the propeller, which was 1.46 times that of the freestream. 

The numerical results showed the sensitivity of the gap between the propeller and ice 

block. If the gap was more than 5 mm, then the prediction with only simplified inflow 

showed a good agreement with experimental results. If the gap was less than 5 mm, then 

the prediction using the block face with a simplified inflow gave more realistic trends for 

the thrust quantitatively than that with only simplified inflow. The torque prediction, 

however, showed opposite trends when the gap was less than 5 mm. Also the study 

emphasized a significant variation in the thrust during the blockage, and consequently 

suggested that the strength and fatigue of the blade should be taken into account. 

Later, Liu et al. (2000) used panel method package, called PROPELLA, with three 

different ice shapes to simulate blocked flow conditions: ice with a blade milling contour, 

a wedge and a sphere shape. The numerical results showed the high blade loads during 

the blockage and similar performance trends to those of experimental results in terms of 

mean values. 
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The cavitation of an ice class propeller has been studied (Walker, 1994a, 1994b, 1994c 

and 1996; Doucet, 1996; Mintchev et al., 2001; Atlar et al., 2003). Walker (1996) 

conducted model tests with an open and ducted propeller in both a general towing tank 

and cavitation tunnel to investigate hydrodynamic loads and cavitation due to a blockage. 

The main conclusions derived from Walker's work were: 

1. In blocked flow, cavitation could occur even at atmospheric pressure; 

2. The blocked flow increased the propeller thrust and decreased total system 

thrust/efficiency due to the drag load imposed by the blockage; 

3. The cavitation reduced the mean of both thrust and torque values; 

4. In blocked flow, cavitation started as stable sheet/vortex cavitation and developed 

as cloud cavitation. Extensive cloud cavitation results in significantly increased 

vibration; 

5. As the cavitation number was decreased, an unstable load feature was found (e.g. 

increase in noise, vibration and oscillation). 

Mintchev et al. (2001) and Atlar et al. (2003) carried out model tests with Styrofoam 

model ice (compressive strength reported was 170 kPa) in a cavitation tunnel for an R­

Class propeller and podded propeller, respectively. Atlar et al. (2003) simulated both 

milling and blockage conditions, and measured axial induced velocities and loads 

including thrust and torque. In conclusion, they explained that cavitation during milling in 

the recess should provide additional thrust and torque whereas Walker (1996) proposed a 

decrease in thrust and torque because of the cavitation in blockage conditions. Doucet 
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(1996) conducted propeller erosion tests in a cavitation tunnel and reported that erosion 

could occur in blocked flow even at atmospheric pressure. 

2.5.2. Ice Contact Loads 

In addition to three ice loads models described in Section 2.4, Veitch's model had been 

extended to be incorporated with the calculations of hydrodynamic loads using panel 

methods (Veitch et al., 1997; Doucet et al., 1998). Doucet et al. (1998) used the panel 

code, PROPELLA, to predict the hydrodynamic loads including blockage effect and ice 

contact loads. Their attempt was the first numerical prediction for propeller-ice 

interaction taking into account the hydrodynamic loads and ice contact loads 

simultaneously. 

Studies on the ice loads acting on structures have been performed extensively. In this 

section, several structure-ice interaction studies, which take into account crushing failure 

in a brittle regime with relatively high strain rates (generally more than 10-3/s), are 

reviewed (Tuhkuri, 1995; Sodhi, 1998; Sodhi et al., 1998; Sodhi, 2001; Sodhi and 

\ 

Haehnel, 2003). Sodhi (1998) performed indentation tests at different contact speeds 

(from 0.002 to 0.5 m/s). The results showed that an effective pressure, which was affected 

by the different failure modes (ductile and brittle), was mainly caused by the contact 

speed: at a low speed, simultaneous crushing failure occurred with a ductile behavior. 

Simultaneous crushing failure with a ductile behavior was reported at a low speed, 

whereas random or non-simultaneous failure due to a brittle flaking was reported at a high 
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speed. From the tests, the effective pressure of failure at a low speed was higher than that 

at a high speed of indentation; for example, the peak effective pressures for the 

indentation speeds of 8 mrn/s and 409 mrn/s were approximately 5.5 MPa and 1.8 MPa, 

respectively. The estimated strain rates for these two speeds, 8mrn/s and 409 mrnls, are 8 

X 10-3 /s and 4 X w-1 /s, respectively. 

Especially, at a high strain rate such as a propeller blade/ice impact, the ice failure mode 

is most likely brittle and may include a non-simultaneous crushing. Several experiments 

with high strain rate have been carried out in laboratories (Jones, 1997; Moores et al., 

2001a; Dutta et al., 2004). Jones (1997) conducted high-speed uniaxial compression tests 

at different strain rates (from 10-1 to 10 1 /s) with freshwater ice and Baltic Sea ice. The 

strain rate was calculated by the speed of an actuator divided by the original length of the 

specimen ice. Most of the previous results of compressive tests were carried out until the 

strain rate reached about 10-1 /s, and a typical stress-strain rate curve has convex shape 

which has maximum strength at the strain rate of approximately 1 o-2 
- 1 o-3 Is. In the range 

of the strain rate between 10-2 /s and 10-1 /s, strength decreased as the strain rate increased. 

Jones found that if the strain rate was higher than 10-1 /s, then the strength increased as 

the strain rate increased up to 101 /s, although there were significant data variations. The 

effect of strain rate is discussed in Section 3.7. 

Moores et al. (2001a) showed similar results to the work done by Jones (1997). The 

compressive tests with a high speed Material Testing System (MTS) were carried out 

with EG/AD/S model ice at different strain rates (from 4.6 x 10-8 to 4.6 x 10°/s). The 
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effect of temperature was taken into account: -2, -5 and -8 °C. The results showed that the 

low temperature ices ( -8 °C) were about 17 % stronger than those at a high temperature (-

2 °C). In conclusion, three different failure modes were found: a ductile creep failure at 

low strain rates (about 4.6 X 10-8
- 4.6 X 10-4 /s), a failure through the shear plane at an 

angle between 30° and 60° at intermediate strain rates (about 4.6 X 10-3 - 4.6 X 10-2 /s) and 

brittle failure at high strain rates (about 4.6 X 10-1 
- 4.6 X 10° /s). The compressive 

strength had been compared with previous test results (Jones, 1982; Jones 1997; Meglis et 

al., 1998), and results showed similar trends: results with the Baltic Sea ice had good 

agreement of those with EG/AD/S CD (Correct Density) model ice; results with 

polycrystalline ice had two to five times those of EG/ AD/S model ice. At high strain rates 

(about 4.6 x 10-1 
- 4.6 x 10° /s) the strength increased as the strain rate increased. 

Significant variation of the strength was also found; the compressive strength at the 

highest strain rate (4.6 x 10° /s) varied from 1.5 to 8.0 MPa. 

The friction of ice was considered through experimental tests with various strain rates 

(Gagnon and Molgaard, 1991). The tests were carried out by using a steel wheel which 

drove up to 40 rpm, and a fixed frame to support an ice specimen. The results showed that 

friction coefficients decreased as the increase in the sliding speeds (0.06 to 0.82 m/s) and 

temperatures (from -19 to -5 °C). At high sliding speeds, e.g. more than 0.4 m/s, the 

friction coefficients appeared to asymptotically approach constant values, between 0.02 

and 0.04. 
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Chapter 3 Experiments 

The objective of this chapter is to introduce test facilities, experimental models, and 

methodology of data analysis and to provide test results and comparisons with similar 

studies. Experiments were carried out in the Ice Tank at the Institute for Ocean 

Technology (lOT) of the National Research Council Canada (NRC). A model podded 

propulsion system was manufactured and fitted with several dynamometers at various 

positions by Akinturk et al. (2003, 2004a, and 2004b ). The aim of the present tests was to 

evaluate the performance of the propeller on a podded system in ice, and to investigate 

the effect of ice properties and interaction conditions (depth of cut, rps, carriage speed 

and azimuthing angle) on the ice loads experienced by the pod system, shaft and propeller. 

3.1. Overviews of Test Facilities and Model Ice 

3.1.1. Ice tank 

The useable area of the tank for ice testing is 76 m long, 12 m wide and 3 m deep. In 

addition, a 15 m long setup area is separated from the ice sheet by a thermal door to allow 
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equipment preparation while the test ice sheet is prepared, as shown in Figure 3-1 (Jones, 

1987). The towing carriage is an 80 tonne steel structure and the range of operating speed 

is from 0.0002 to 4.0 m/s. The test frame of the carriage can move transversely and 

vertically in order to control the test position. The service carriage is an independent 

hydraulically operated unit and it is useful for ice control and sampling. 

MFLT PTT 
SET-UP AREA 

THERMAL BARRIER --_____,_ 

TOWING CARRIAGE DOOR 

USABLE ICE SHEET 

SERVICE j 
CARRIAGE 

~------------------~M------------------~--15M 

ICE TANK 
3.0 METRES DEEP 

Figure 3-1: Schematic diagram of the ice tank (after Jones, 1987) 

3.1.2. Model ice 

For model ice, a diluted aqueous solution of ethylene glycol (EG), aliphatic detergent 

(AD), and sugar (S), which is called EG/AD/S ice, was used in the present experiments. 

EG/AD/S ice is specifically designed to provide the scaled flexural strengths of columnar 
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se~ ice (Timco, 1986; Spencer and Timco, 1990). It is The procedure to produce an ice 

sheet is: 

• First, the ice sheet is grown by cooling the tank water and room to approximately 

0 and -20 °C, respectively (this process is called cooling); 

• Second, the tank is seeded by spraying warm water into the cold air in a thin mist, 

allowing it to form ice crystals with uniform grain size (this process is called 

seeding); 

• Third, the ice is allowed to grow at approximately -20 °C until it has reached the 

desired thickness (this process is called growing); 

• Fourth, the temperature of the tank is raised to above freezing and the ice is 

allowed to warm up and soften, until the target ice strength is reached (this 

process is called tempering). 

In order to provide uniform properties of the model ice, micro-bubbles for the 

corrected density were not included in the ice sheets, although they are normally used 

in ship/ice interaction tests. Table 3-1 shows the average values of the modulus of the 

elasticity (E), density (pi) and thicknesses (hi) of the model ice for the 35 and 15 

mm depths of cut (the depth of cut is amount of the blade penetration into ice and this 

refers different test conditions). Figure 3-2 and Figure 3-3 show the variation of the 

compressive strength, flexural strength and shear strength against the passing time. 

Table 3-1: The properties of the model ice and their standard deviations (STDs) 

Depth of Cut E!STD Pi/ STD 
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Figure 3-2: Model ice properties at the depth of cut of 35 mm with error bars ( ± 2 times 
standard deviations) 
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Model ice properties at 15 rnrn depth of cut with eiTOr bars 
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Figure 3-3: Model ice properties at the depth of cut of 15 mm with error bars(± 2 times 
standard deviations) 

The early trials for the present tests used level ice, as shown in Figure 3-4. The ice loads 

acting on the strut, however, exceeded the maximum capacity of the dynamometers, thus 

the ice sheets were pre-cut to reduce the breaking loads on the strut, which was called 

pre-sawn ice. Although the ice sheets were pre-sawn, the ice segments were in place, thus 

the ice conditions were assumed uniform (providing constant depth of cut), as shown in 

Figure 3-5. Figure 3-6 shows the trajectory of the blades passing in the ice block from 

underwater milling tests. 
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Figure 3-4: Picture of level ice 

Figure 3-5: Picture of pre-sawn ice 
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Figure 3-6: Ice sample after underwater milling tests 

3.2. Overview of Model Podded Propulsor 

The general arrangement of the model podded propulsor with model stem is shown in 

Figure 3-7. 
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Figure 3-7: Sketch for the model podded propulsor system with measurement devices 

The model stern was supported independently of the podded propulsor system. A 

lubricated slip joint was fitted where the strut passed through the model stern, thus loads 

from the model stern did not affect the global dynamometer. This also allowed 

adjustments to the distance between the propeller and the model stern in order to change 

the depth of cut. The live load plate supported the pod housing, strut and propulsion unit 

inside the pod and strut. The live load plate was fitted with a rotary bearing to facilitate 

the change of azimuthing angle. The azimuthing angle could vary from zero to 180 

degrees. A vertically mounted motor provided the power (3.3 kW) for the propeller. In 

Figure 3-8, the live load plate, azimuthing gear, lubricated slip joint and some of the 

global dynamometers are shown. 
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Figure 3-8: Apparatus of global dynamometer and azimuthing gear 

The global dynamometers measured the loads on the whole unit including pod and strut. 

As shown in Figure 3-8, the global dynamometer used is a pancake style and tension/ 

compression unit with single axis, manufactured by Interface Advanced Force 

Measurement. A total of six global dynamometers were used: three of them were installed 

vertically and the rest of them were installed horizontally. Two of the horizontal 

dynamometers measured drag forces at each side from the centerline and one horizontal 

dynamometer measured side forces. The maximum capacity of each global dynamometer 

was 8896N. 

48 



The model podded propulsor had three six-component dynamometers installed to measure 

blade loads and shaft-bearing loads. The blade dynamometer was attached to one of the 

blades inside the hub, and aft and forward dynamometers were mounted on the shaft 

bearings, as shown in Figure 3-9. These three dynamometers were identical, as shown in 

Figure 3-10. Shaft thrust was calculated by using the information obtained from the aft 

and forward dynamometers. They were manufactured by Advanced Mechanical 

Technology Inc. (AMTI) and were capable of measuring forces/moments in six degrees 

of freedom. They could measure forces up to 2224 N in x- andy- directions, 4448 N in 

the z- direction, and moments up to 56.5 Nm about all three axes. The AMTI load cell 

model number for all three dynamometers was MC2.5-6-1000. The axis for the blade 

dynamometer is shown in Figure 3-11. 

Figure 3-9: Dynamometers on the blade and shaft inside the pod 
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Figure 3-10: Dimension of AMTI dynamometer 

X 

Figure 3-11: Axes for blade dynamometer 

Figure 3-12 shows the model podded propulsor with wooden model stern as installed to 

the carriage frame during the tests. The picture shows the port side of the experimental 

model, which was in the tractor mode. Additionally, strain gauges were mounted on the 
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shaft for shaft torque measurement (model number was BLH FAED-07-35-6SE-P). Blade 

angular position was measured by a rotary position transducer, Waters WPM Model 18-

09. 

Figure 3-12: Experimental model 

The present propeller design chosen was the propeller for the Canadian Coast Guard 

Gulf/River Class Medium Icebreaker, R-Class propeller, as shown in Figure 3-13. The 

model propeller was scaled to 13.7 and it had a diameter of 0.3 m and four blades. Mean­

pitch/diameter ratio (P/D) was 0.76 and expanded blade area ratio (EAR) was 0.669. The 

diameter of the hub was 0.11 m. The blade design was based on the Stone Marine 

Meridian series, but with thickened blades for operation in ice (Emerson and Sinclair, 

1978). 
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Figure 3-13: Hub with one ofthe blades mounted on 
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3.3. Test Procedure 

The experiments were carried out in open water and ice covered water at the lOT ice tank. 

Measurements were recorded through the Data Acquisition System (DAS) with 33 

channels, which were time, forces and moments at various locations, shaft torque, 

propeller rotational speed, propeller blade angular position, azimuthing angle, carriage 

speed, carriage position, test frame height and motor current. The sampling rate was 5000 

Hz for most channels, but some of the channels, e.g. azimuthing angle, carriage speed, 

carriage position, test frame height and motor current, used 50 Hz. 

Table 3-2 shows the test matrix for the present experimental tests. The tests were 

performed with two different modes of the pod system, tractor and pusher mode. Each 

group of tests had three different propeller rotational speeds (5, 7 and 10 rps), three 

different carriage speeds (0.2, 0.5 and 0.8 m/s), two different depths of cut (15mm and 35 

mm), and different azimuthing angles from zero to 180 degrees in 30 degrees intervals. 

The azimuthing angle of non-azimuth condition (normal condition) is zero and 180 

degrees for the pusher and tractor mode, respectively. 
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Table 3-2: Test matrix 

Pod Mode Tractor Mode, Pusher mode 

Carriage Speed 0, 0.2, 0.5, (0.8) m/s 

Propeller Rotating Speed 5, 7, 10Hz 

Depth of Cut 15mm, 35mm 

Azim. Angle (Pusher Mode) 0, 30, 60, 90, 120, 150 degrees 

Azim. Angle (Tractor Mode) 180, 150, 120, 90, 60, 30 degrees 

Ice Condition Pre-sawn Ice, Pack Ice 

Ice Thick. I Flex. Strength 60mm/ 80kPa 

The tractor mode has been mainly studied in this thesis, because it provides uniform ice 

conditions, e.g. depth of cut. The propeller in tractor mode is placed in front of the pod 

and strut, thus the propeller experiences undisturbed ice blocks. Whereas, the propeller in 

pusher mode is placed at the back of the pod and strut so the propeller may experience 

broken or damaged ice pieces. Therefore, the results shown here are from the tractor 

mode and pre-sawn ice condition. Open water tests were carried out in the same 

conditions as ice covered water tests. In the ice covered water tests, some of the runs at 

the carriage speed of 0.8 m/s had to be cancelled because several channels of the 

dynamometers exceeded their maximum capacities. 

Most ice covered water tests were carried out in a pre-sawn ice. In order to prepare the 

pre-sawn ice, level ice sheets were cut in longitudinal and diagonal directions, as shown 

in Figure 3-14. This figure shows the azimuthing angle of 180 degrees for the tractor 
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. mode in the pre-sawn ice. The target thickness and flexural strength of the model ice for 

the ice covered water tests were 60 mm and 80 KPa, respectively. 

lE--t-- Model stern 

v 

South quarter point Center point North quarter point 

Thermal Barrier Door 

Figure 3-14: Sketch of pre-sawn ice sheet with 180 degrees tractor mode 
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3.4. Data Analysis 

As introduced in the previous chapters, the author hypothesized that the ice loads acting 

on the model podded propeller blades in ice covered water have three components: 

separable hydrodynamic loads, inseparable hydrodynamic loads and ice contact loads. 

Total loads from the ice covered water tests are sum of the three components, and the ice 

related loads are the sum of the inseparable hydrodynamic loads and ice milling loads. In 

this thesis, the ice related loads are mainly focused and explained in detail, but the results 

of total loads and separable hydrodynamic loads are also shown and discussed. 

The data were analyzed with regard to three different measured points, as shown in 

below: 

(1) Global Loads: Global loads were measured by three horizontal dynamometers and 

three vertical dynamometers from the top of the model podded propulsor. Two horizontal 

dynamometers measured the longitudinal forces ( GFX ) and one horizontal dynamometer 

measured the transverse forces ( GFY ). Three vertical dynamometers measured the 

vertical forces ( GFZ ). 

(2) Shaft Loads: Shaft thrust ( TsHAn) was measured from the forward dynamometer and 

aft dynamometer on the shaft. Shaft torque ( QsHAn) was measured on the shaft very close 

to the hub by the torque transducer. 

(3) Blade Loads: Blade thrust ( TBIADE) and torque ( QBIADE) were measured inside the hub 

by the blade dynamometer, which was attached to the root of one of the blades. 
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3.4.1. Consideration of Separable Hydrodynamic Loads 

Separable hydrodynamic loads are the hydrodynamic loads without any effect due to the 

presence of ice such as a blockage, proximity or cavitation and they can be obtained from 

open water tests. Once the data were acquired, they were analyzed by using a data 

analysis package, Generalized Experiment Control and Data Acquisition Package 

(GEDAP), for general statistical calculations including maximum, minimum, average, 

and standard deviation. The results in this thesis provide the thrust of the model podded 

propulsor (unit thrust), transverse/vertical forces acting on the model podded propulsor, 

shaft thrust/torque and blade thrust/torque at different azimuthing angles. Most results are 

presented with non-dimensional coefficients for thrust and torque against advance 

coefficients. 

3.4.2. Consideration of Total Loads in Ice 

The total loads in ice were obtained from the ice covered water tests. The data were 

acquired and analyzed using the same process as the separable hydrodynamic loads. In 

addition, propeller-ice interaction conditions and ice properties were measured and 

recorded. The results provide the thrust of the model podded propulsor (unit thrust), 

transverse/vertical forces acting on the model podded propulsor, shaft thrust/torque and 

blade thrust/torque at different azimuthing angles. Most results are presented with non­

dimensional coefficients for thrust and torque against advance coefficients. 
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3.4.3. Consideration of the Ice Related Load (during milling period) 

Ice related loads need additional calculations because they are considered only when the 

blades are in contact with ice, which is called the milling period. In order to find the 

appropriate milling period, the milling angle (am) that corresponded to the depth of cut 

was considered (Figure 3-15 and Table 3-3). 

ICE 

Figure 3-15: Depth of cut and milling angle 

Table 3-3: Depth of cut vs. milling angle 

Depth of cut Milling angle (am) 

15mm 63 degree (10- -53 degrees) 

35mm 105 degree (36- -69 degrees) 

Two FORTRAN programs (DANRA.F and DRSUM.F) were coded, in order to calculate 

the ice related loads from time series data of the experiments. Table 3-4 shows the 

summary of DANRA code. Once the DANRA code provides the ice related loads, 

DRSUM code uses them as the input data and carries out additional/optional calculations 
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including general statistical calculations (mean of maximum, mean of minimum, etc.), 

uncertainty analysis and extreme probability calculations. 

Table 3-4: Overview of DANRA.F (Data Analysis aNd Re-Arrangement) 

Aim 

Input 

Procedure 

Ice related loads calculation during the milling period 

~ The milling period is determined by the milling angle (am)~ 

~ Data ranges and other input data corresponding to the milling 

period are determined~ 

~ All input data are stored at Data_range.xls [Appendix A]. 

~ All data point is read from time series data (ASCII file); 

~ Tare values from ballard condition are subtracted from the region 

for analysis (milling period); 

~ Another subtraction due to certain advance coefficient is applied; 

~ Statistical calculations (maximum, average and minimum) are 

performed. 

Figure 3-16 shows the time series data obtained from the experiments as an example. The 

blade thrust, carriage speed and rps against time are shown. From a time of 48 to 58 

seconds, the test condition shows the ballard condition (5 rps and zero carriage speed). In 

the tractor mode, the propeller rotated counter-clockwise, thus the rps was shown as a 

negative value. 
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Figure 3-16: Time series data for blade thrust vs. rps & carriage speed 

If Figure 3-16 is zoomed in, for example at the 65th second segment, then the enlarged 

segment is given in Figure 3-17. In the graph shown in Figure 3-17, the separable 

hydrodynamic loads have already been removed and the ice-related loads are shown by 

open triangles. The separable hydrodynamic loads were the values from the open water 

tests corresponding test conditions. As explained in Section 1.3, the separable 

hydrodynamic loads used during the milling period were only approximated due to ice. 

The figure shows that the blade enters the ice block at the blade angular position of 36 

degrees and exits at negative 69 degrees. This period is defined as the milling period. 
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Figure 3-17: Blade thrust during ice milling periods based on the ice milling angle (am : 

from 36 degrees to -69 degrees, 35mm depth of cut and 5 rps) 

It is noted that the blade angular position was measured up to positive and negative 180 

degrees. From approximately - 160 degrees to - 180 degrees, the blade angular positions 

could not be measured because of limitations of the sensor. 
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3.5. Test Results: 

3.5.1. Sign Conventions for GlobaVShaft Forces and Azimuthing Angles 

Figure 3-18 and Figure 3-19 present the sign conventions for shaft thrust, blade thrust and 

global forces with two different azimuthing angles ( ¥1 ), which are 180 and 150 degrees. 

The figures show a tractor mode from the top. The reference frame for global loads 

( GFX and GFY ) is fixed to the carriage, therefore its orientation does not change 

throughout the tests. 

Figure 3-18: Tractor mode with an azimuthing angle of 180 degrees, Vis the carriage 
speed, top view 
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'1'=90° 

'P= 180° 

Figure 3-19: Tractor mode with an azimuthing angle of 150 degrees, Vis the carriage 
speed, top view 

3.5.2. Sign Conventions for Shaft/Blade Forces and Moments 

Figure 3-20 shows the sign conventions for the forces and moments acting on the blade 

(measured from one of the blades): blade thrust, torque, in-plane bending moment, out-of 

plane bending moment and spindle torque. The shaft thrust and torque measured from the 

shaft are also shown for a reference. The positive shaft thrust and blade thrust have the 

same direction as the forward advance direction. The sign of the positive shaft torque and 

blade torque is opposite to the direction of the shaft rotating. The positive in-plane 

bending moment means the case when the leading edge is compressed and the trailing 

edge is tensed. The positive out-of plane bending moment means the tip of the blade 

bends backwards (backwards means the opposite direction of the thrust/advance). The 

positive spindle torque means the leading edge twists backwards. The direction of the 

positive moments is defined by the right hand rule. 
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Figure 3-20: Sign conventions for the loads acting on the blade (look from the center of 
hub) 

3.5.3. Separable Hydrodynamic Loads (Open Water Characteristics) 

Figure 3-21 shows the open water characteristics in a tractor mode at an azimuthing angle 

of 180 degrees. Due to the increase in drag forces including other possibly associated 

effects (such as noise from the propeller) against a podded propulsor, the unit thrust 

coefficient (Kr_uNrr) is approximately 28% lower than that of shaft thrust coefficient 

(Kr_sHAFT) at the advance coefficient of 0.2. 

Due to the limitation of an equipped motor, the maximum propeller rotating speeds was 

10 rps (revolution per seconds). The range of the Reynolds number (Re) for the present 
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experiments was from 1.2 X 105 to 2.4 x 105 
, whereas the Re, recommended from ITTC, 

was over l.Ox 106 (ITTC, 2002). 

Open Water, Tractor Mode, 180 Azimuthing Angle 
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Figure 3-21: Open water characteristics of the model podded propulsor with a tractor 
mode 

Figure 3-22 to Figure 3-24 show the effect of an azimuthing angle on the unit thrust, shaft 

thrust and shaft torque. As the azimuthing angle decreases (from 180 to 120 degrees), the 

unit thrust decreases because of two reasons: (1) the increase in the resistance forces 

against the pod and strut and (2) the decrease in the contribution from the shaft thrust to 

the unit thrust due to the azimuthing angles; the shaft thrust through the cosine of the 

angle between the azimuthing angle and center (180 degrees for a tractor mode) 

contributes to the unit thrust. The shaft thrust and shaft torque increase as the azimuthing 

angle decreases up to 120 degrees. 
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It is noted that the advance coefficients used in this study do not consider the effect of an 

azimuthing angle. When the azimuthing angles are taken into account (150 or 120 

degrees), the axial velocity reduces with the cosine of the azimuthing angle from the 

centerline of the pod unit. Consequently, the propeller thrust and torque increase since the 

rps remains the same. The effective advance coefficient decreases due to the decrease in 

effective axial inflow speed. 

In addition, a complex feature for the shaft thrust and shaft torque is observed when the 

azimuthing angle is less than 90 degrees because of the side force of the propeller blade, 

reversing wake, and unsteady axial inflow. 

In Appendix B, results for the separable hydrodynamic loads are shown in detail 

including unit thrust, transverse/vertical force on unit, shaft thrust/torque and blade 

thrust/torque at the different azimuthing angles (from 180 to 30 degrees). 
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Figure 3-22: K r_uNrr vs. J at different azimuthing angles ( 180-120 degrees) 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

0 

Kr_sHAFT' Tractor Mode, 180-120 Azimuthing Angle 

~~ ~~- _ .. 'If • A ~ -· 1-·-·-~ 
~~.e.. X ........ '! .. 

~.-·- ... ·-...... 
1 ~ k~ 

,.. l!M! ....... 
'-A . """' .... 
i'.. .... 

~ ....... 

~ 
... .... 

~'" 
~ ~ ~ ... ... .. 
~ 

I 
0 0.1 0.2 0.3 0.4 0.5 

J 
0.6 0.7 0.8 

... ... 
......... 

0.9 

',f'.. 
1 ... 

1 

Figure 3-23: Kr_sHAFr vs. J at different azimuthing angles (180-120 degrees) 
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Figure 3-24: KQ_SHAFT vs. J with different azimuthing angles (180-120 degrees) 

3.5.4. Ice Related Loads (During Milling Period) 

In this thesis, a propeller-ice interaction process is called a milling process. The failure 

modes of ice in this milling process are assumed to be composed of a crushing and 

shearing failure. As the propeller blade interacts with ice in the first quadrant operating 

conditions (positive ship speeds and positive propeller rotating speeds), pure crushing 

failure can be expected in the vicinity of the leading edge, where the region of the blade 

contacts with ice perpendicularly. Pure shearing failure, however, would occur at the 

pressure side of the propeller (if the angle of attack is positive and operating conditions 

are in the first quadrant), where the region of the blade contacts with ice in parallel. The 

propeller blades, interacting with ice, mainly experience a mixture of crushing and 

shearing failures during propeller-ice interaction. 
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The next set of figures, from Figure 3-25 to Figure 3-28, show the results for the 35 mm 

depth of cut in a tractor mode with an azimuthing angle of 180 degrees. Figure 3-25 and 

Figure 3-26 represent the shaft thrust and shaft torque coefficients versus the advance 

coefficient. Figure 3-27 and Figure 3-28 represent the blade thrust and torque coefficients 

measured from one of the blades versus the advance coefficient. In the figures, the open 

squares, open triangles and open deltas represent the maximum, average and minimum 

values respectively. The lines of fit through these points are 2nd order polynomials. Error 

bars at each symbol represent the range of the confidence level at 95 %. During propeller­

ice interaction, large variations were observed with significantly increased magnitude of 

maximum and minimum values about the average values for both shaft and blade 

thrust/torque values. For example, the magnitudes of the maximum and minimum shaft 

thrust were approximately 400 % and 200 % larger than that of the average value at the 

advance coefficient of 0.4. 

In the figures, the positive values mean that the additional thrust and torque, besides the 

separable hydrodynamic loads, are provided due to ice. The possible reasons are: 

1. The pressure side of the blade interacts with ice physically; 

2. Blockage effects occur (the blocked inflow simulates low advance coefficient 

conditions and hence the thrust and torque increase based on a typical thrust­

torque-advance coefficient curve at the low advance coefficient); 

3. Cavitation may increase the thrust and torque (Atlar et al., 2003). 
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With the increase in the advance coefficient, the maximum/average thrust and torque 

coefficients increase. This phenomenon can be explained by the combination of effect of 

advance coefficient, shadowing, depth of cut, and angle of attack. Detailed explanations 

about these effects are given in the following sections. 

It is also found that the ratio between average shaft thrust and average blade thrust is 

approximately one during the milling period. The ratio between average shaft torque and 

blade torque, however, is about 1.7 (average blade torque is 1.7 times of the averaged 

shaft torque). The difference between shaft torque and blade torque may be influenced by 

the effect of shaft dynamics in the present experimental model. 
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Figure 3-25: Kr_SHAFT, ice related loads at azimuthing angle of 180 degrees (tractor mode) 
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Figure 3-26: KQ_SHAFT, ice related loads at an azimuthing angle of 180 degrees (tractor 
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Figure 3-27: Kr_BLADE, ice related loads at an azimuthing angle of 180 degrees (tractor 
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KQ_BLADE' Ice Related Loads, Tractor Mode, 180 Azimuthing Angle 
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Figure 3-28: KQ_BLADE, ice related loads at an azimuthing angle of 180 degrees (tractor 
mode) 

3.5.4.1. Effect of Advance Coefficient/ Shadowing 

As the advance coefficient increases, the average and maximum ice related loads increase. 

One of the possible reasons is a shadowing effect. When the propeller interacts with ice, 

the propeller blade experiences the part of the path generated by the previous blades and 

the consecutive blade does not fully contact with ice, as shown in Figure 3-29, which is 

called the shadowing effect. The figure is a top view, tractor mode and azimuthing angle 

of 180 degrees in ice covered water (the propeller mills the ice block from underwater). 

This figure shows one propeller at two time steps, which represent that the propeller 

rotates by 90 degrees. The colored area represents the ice block and the white area in the 

middle of the figure represents the milled area by the propeller blade. The propeller in the 
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right hand side (ice blocked is milled by the "Blade 2") is the previous time step, and the 

propeller in the left hand side (ice blocked is milled by the "Blade 3") is the present time 

step. As shown in the figure, the "Blade 3" in the present time step (left hand side) 

experiences white area (groove) created by the previous blade (the "Blade 2" in the 

previous time step, right hand side). The white area is called shadowing area. It is 

assumed that the "Blade 2" of the propeller in the right hand side contacts with the ice 

block for the first time (the propeller starts to rotate with "Blade 2"), so there is no 

shadowing area presented in the "Blade 2." 

Figure 3-29: Shadowing area (Z is the number of the blades) 

Figure 3-30 explains the effect of the advance coefficient using the shadowing and angle 

of advance. Three key blades demonstrate the blade's position at three different advance 

coefficients. /3; j is the angle of advance as defined in Equation (3-1) for each rps value. 
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/3;. =arc tan (~J =arc tan( Jij J, 
1 2mvj :r( rj I R) 

(3-1) 

where VA is equal to V, n is rps, r is the radius of the propeller, J is the advance 

coefficient, i is the index for rps (1,2 and 3 are for 10, 7 and 5 rps) andj is the index for 

radial distance of each section. For simplicity, same blade section (same rj values) is 

considered in the next paragraph. 

While the distance between two consecutive blades of the propeller are the same, the 

axial ice contact length, V I(ZnJ, between the two consecutive blade passes varies 

because of the differences in the propeller rotational speeds for a given advance velocity. 

As shown in Figure 3-30, the blade with the higher J (slower rps) experiences the larger 

angle of advance, f3, thus the longest axial ice contact length among the three and this 

may be the reason for the largest torque measured in the highest J (slowest rps) case. As 

this distance increases, the area of the blade in contact with ice increases and the 

likelihood of encountering the groove made by the preceding blade pass decreases as 

depicted in Figure 3-30. 
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vsmp 

L 
Figure 3-30: Conceptual sketch for propeller-ice interaction with top view, where fJis the 
angle of advance, r is the radius of the propeller (0.15 m), Z is number of blades ( 4), Vis 

carriage speed, n1, n2 and n3 is 10, 7, and 5 rps respectively. 

Therefore, the cases with higher J values result in higher torque values. Again other 

effects such as depth of cut or angle of attack need to be considered simultaneously to 

explain this trend. Once J passes the critical value at which the shadowing effect 

disappears, the blades are not affected by the shadowing effect. For example, when J is 

over 0.4 for 35 mm depth of cut, the shadowing effect is almost diminished. Detailed 

shadowing effect is explained the next paragraph. 

The shadowing coefficient is defined by the ratio between shadowing area and blade area 

at the maximum blade section contacting with ice. When the depths of cut are 15 and 35 

mm, the maximum blade section contacting with ice should be at 0.135 meter from the 

hub (0.9 R; R is radius of the propeller which is 0.15 meter) and at 0.115 meter from the 

hub (0.76 R), respectively. 
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The shadowing coefficient is estimated based on the chord length at the maximum blade 

section contacting with ice and the thickness of the section is ignored. The shadowing 

coefficients are calculated by Equation (3-2) and shown in Figure 3-31. 

. . . Shadowing Area 
Shadowmg coefficient ( Cs) = . 

Blade Area 
(3-2) 

Figure 3-31 shows shadowing coefficients against the advance coefficient at two different 

depths of cut. For the depth of cut of 15 mm, the shadowing area disappears when the 

advance coefficient is 0.3 or more. Whereas, for the depth of cut of 35 mm, the 

shadowing area is still valid until J = 0.4. 
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3.5.4.2. Effect of Depth of Cut 

Figure 3-32 and Figure 3-33 show the blade thrust/torque coefficients from a depth of cut 

of 15 mm. The tests were repeated three times with identical test conditions (tractor mode 

and azimuthing angle of 180 degrees). The solid squares, solid triangles and solid deltas 

represent the maximum, average and minimum values respectively. The lines of fit 

through these data points are 2nd order polynomials. Again, in the ice related loads 

presented, the separable hydrodynamic loads have been removed. 

When the advance coefficients increase from zero to about 0.33, the blade thrust and 

torque coefficients increase. This is because the shadowing effect decreases as described 

in the previous section (the shadowing effect can be diminished at J = 0.3 for a depth of 

cut of 15 mm case). When the advance coefficients are larger than 0.33, however, the 

thrust and torque values start to decrease. This can be explained by the angle of attack. 

For 15 mm depth of cut, the pitch angle is less than that of 35 mm depth of cut, 

consequently decreasing trends due to the less angle of attack occur at a lower advance 

coefficient (between the advance coefficients of 0.35 and 0.4) than that in 35 mm depth of 

cut (the advance coefficient that shows decreasing trends is not found from the present 

experimental tests). The effect of angle of attack is also discussed in the next section. 
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KT_BLADE' Ice Related Loads, 180 Azirnuthing Angle, Repeat Runs (15rnrn) 
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Figure 3-32: KT_BLADE, average ice related loads, tractor mode, repeat runs (15mm) 
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Figure 3-33: KQ_BLADE, average ice related loads, tractor mode, repeat runs (15mm) 
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3.5.4.3. Effect of Geometric Angles of Attack 

Since the ice sheets are assumed to be stationary, the induced velocities due to the 

propeller suction are assumed to be zero. Consequently, the geometric angle of attack can 

be used as an effective angle of attack. Based on the pitch angle at the maximum blade 

section contacting with ice, the geometric angles of attack are calculated and shown in 

Figure 3-34. 

Geometric Angles of Attack vs. Advance Coefficients at Two Depths of cut 
20r-~--~r--~----r---~===c==~====~===c==~~ 

-5~~--~~--~~--_.~--~----._--~~--~~--~----~~ 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

J 

Figure 3-34: Geometric angles of attack vs. advance coefficients at two depths of cut 

As J increases, the geometric angle of attack decreases. As the depth of cut increases 

from 15 to 35 mm, geometric pitch angle at the section contacting with ice increase and 

the geometric angle of attack decreases consequently. Therefore, the depth of cut of 15 

mm shows decreased trend of blade thrust/torque coefficients due to the less angle of 
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attack occur at a lower advance coefficient (between the advance coefficients of 0.35 and 

0.4) than that in 35 mm depth of cut. 

In Appendix C, results for the ice related loads are shown in detail: shaft loads including 

thrust and torque measured from the shaft, and blade loads including thrust, torque, in­

plane bending moment, out-of plane bending moment and spindle torque measured from 

one of the blades for various azimuthing angles (from 180 to 30 degrees). The results of 

the repeat runs for the tractor mode with 15 mm depth of cut are also given. 

3.5.5. Total Loads in Ice (Ice Covered Water Characteristics) 

The total loads consist of the separable hydrodynamic loads and ice related loads. Figure 

3-35 through Figure 3-37 are some of the results for the total loads in ice covered water at 

a tractor mode with a 35 mm depth of cut. The solid squares, open triangles, solid deltas, 

open left triangles and solid diamonds represent the azimuthing angles of 180, 150, 120, 

90 and 60 degrees, respectively. The curves fitted through these points are 2nd order 

polynomial lines of best fit. 

Figure 3-35 shows the unit thrust coefficient versus the advance coefficient at five 

different azimuthing angles. As the azimuthing angle decreased from 180 to 120 degrees, 

the unit thrust decreased due to the similar reasons described in Section 3.5.3. The 

qualitative trends, however, are similar to those in separable hydrodynamic loads, but the 

magnitude in ice covered water is significantly higher. In addition to the separable 
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hydrodynamic loads, ice loads (resistance) acting on the strut play a major role in the 

increase of the magnitude at given azimuthing angles. 

At the azimuthing angles of 90 and 60 degrees, the average unit thrust values are higher 

than those in any other azimuthing angles used in the experiments, i.e. 180, 150 and 120 

degrees. This may be due to the reverse wake of the propeller; the reverse wake tends to 

push the ice blocks out of its direction and acts to reduce the ice contact forces on the 

strut. 

KT_UNIT' Average, Total Loads in Ice Covered Water, 35mm, Tractor Mode 
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Figure 3-35: KT_UNIT, total loads at various azimuthing angles in ice covered water 

The next two figures, Figure 3-36 and Figure 3-37, show the average shaft thrust and 

torque coefficients against the advance coefficient at five different azimuthing angles. 
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The general trends of the total loads are similar to that of the ice related loads reported in 

Section 3.5.4. When the azimuthing angles are between 180 and 120 degrees, similar 

trends are shown. As the azimuthing angle decreases from 180 to 90 degrees, the 

geometric angle of attack increases. Accordingly, the failure mode of ice on the pressure 

side could change from a shearing failure to a crushing failure mode. The loads due to the 

crushing are generally two to four times higher than those due to the shearing, 

consequently this can explain the increased thrust at the decreased azimuthing angle until 

90 degrees. In addition, the effect of shadowing area and oblique inflow could influence 

the results. Once the azimuthing angle is less than 90 degrees, e.g. 60 degrees, the 

reversing wake and unstable inflow may drop the shaft thrust and torque. 

In Appendix D, results for the total loads in ice covered water are shown in detail: unit 

thrust, transverse/vertical force on unit, shaft thrust/torque and blade thrust/torque at the 

different azimuthing angles (from 180 to 60 degrees). 
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KT_SHAFT' Average, Total Loads in Ice Covered Water 35mm, Tractor Mode 

<I / • 180 / 
0.7 --.6- 150 

120 
90 

0.6 60 

... <I 
~ 0.5 .... 
"' 

.... 
r,..,l 

~ 0.4 

0.3 

0.2 ........... ..... 
0 0.1 0.2 0.3 0.4 0.5 

J 

Figure 3-36: KT_SHAFT, total loads at various azimuthing angles in ice covered water 

KQ_SHAFT' Total Loads in Ice Covered Water, Average, 35mm, Tractor Mode 
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Figure 3-37:KQ_SHAFT, total loads at various azimuthing angles in ice covered water 
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3.6. Comparisons with Previous Studies 

In this section, results from the previous studies are compared with those from the present 

experiments. Two previous studies, Moores (2001) and Luznik et al. (1995), are presented 

for the ice related loads and blockage loads respectively. 

As introduced in the previous chapter, Moores used a highly skewed propeller, which is 

significantly different shape from the present model. Data analysis methods employed 

were also different, because Moores' model did not have the capability to measure the 

angular position of the blade(s); the milling period was estimated based on the variations 

in the measured loads. Test conditions including model ice, however, are similar to those 

in the present tests. 

In Figure 3-38, the results of the 15 mm and 35 mm depth of cut from the present tests are 

compared with the results of Moores with different depths of cut: 20.5 mm, 34 mm, and 

43 mm. The figure illustrates that the average blade thrust coefficients (KT_BLADE) increase 

with advance coefficients up to a certain value of advance coefficient (between 0.3 and 

0.4), after which a decrease is observed. Moores' results also show that the magnitudes of 

the blade thrust increase with the increase in the depth of cut and their peak points 

corresponding to higher depths of cut are found at higher advance coefficients. In the case 

of the 35 mm depth of cut from the present experiments, however, the results do not seem 

to ever reach the peak value similar to the others for the advance coefficient range given 

in the figure. 
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KT_BLADE' Average, Ice Related Loads 

0.5 8 15 mm (Ave., present) ... 
I> 35 mm (Ave., present) V' 

- -·- • 20.5 mm (Ave., Moores(2001)) 
_....., __ 34 mm (Ave., Moores(2001)) 
... _,....,._ 43 mm (Ave., Moores(2001)) 0.4 

I> 

0.2 --"' - -·~ [c::4 ~ ;;...-. ., n..;,- ~----
::-=~ ---- ~:::~ ... u n ---0.1 

0.1 0.2 0.3 0.4 
J 

0.5 

~ -., ~ 
0.6 0.7 0.8 

Figure 3-38: Comparison of average blade thrust coefficient (Kr_sLADE, one blade only) 
with previous test results (ice-related loads+ separable hydrodynamic loads during a 

milling period). The lines are the 2nd order polynomial lines of best fit 

With respect to a blockage effect, Luznik et al. ( 1995) presents the experimental results 

using very similar propeller geometry to the one used in the present study operating in the 

vicinity of an ice block. They reported an increase of 65-75 percent in the shaft thrust 

coefficient from the uniform flow performance. Figure 3-39 shows the comparison of the 

shaft thrust coefficients from open water, ice blockage and ice milling conditions. The 

solid line shows the thrust coefficient in open water conditions, and the dashed line shows 

the maximum possible thrust coefficient in blocked flow. Solid triangles and solid circles 

show the maximum total loads in ice for the 15 mm and 35 mm depths of cut, 

respectively. Generally, the maximum shaft thrust coefficients in ice covered water are 

higher than those in open water. For example, the maximum shaft thrust coefficients from 
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35mm, 15mm depths of cut, blockage are about 70%,200%, and 700% higher than the 

average open water results at the advance coefficient of 0.4. 

Kr_sHAFT, Maximum, Open Water, Blockage, and Ice Milling Conditions 
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Figure 3-39: Thrust coefficient comparison among open water, ice blockage and ice 
milling conditions (for 15 and 35 mm depth of cut: ice-related loads+ separable 

hydrodynamic loads during a milling period) 

It is noted that the highest three values of the shaft thrust coefficients corresponding the 

advance coefficients of 0.133, 0.33 and 0.53 are performed at 5 rps with the 35 mm depth 

of cut tests (Figure 3-39). The effect of rps during propeller-ice interaction is discussed in 

the next section. 

86 



3. 7. Discussion of Experimental Results 

3. 7 .1. Effect of RPS 

3.7.1.1. Effect of Strain Rate 

The effect of rps can be interpreted as the effect of strain rate. As mentioned in Section 

2.5.2, Jones (1997) reported that the compressive strength increased as strain rate 

increased for the two types of ice. Later, Jones (2006) collected uniaxial compressive 

strength data from the various sources and compared various types of ice against strain 

rate (Figure 3-40). Although the present model ice (EG/AD/S) is not the same as any 

types of ice, its trends (compressive strength vs. strain rate) are similar (Moores et al., 

200la; see Section 2.5.2). For EG/AD/S model ice at high strain rate, t > 0.51 s, Moores 

et al. reported that the compressive strength showed increased trends with strain rate, 

though the results included a lot of scatter. Similar works were done by Varma (2000) 

with blade shaped indentation at various indentation speeds (from 0.5 to 1 m/s) using 

EG/AD/S model ice. Varma reported that there were not any particular trends of the 

effect of indentation speed but higher indentation speeds minimized the data variation. 

Based on the results from Jones (2006) and Moores et al. (2001a), the ice compressive 

strength has generally increase trends as the strain rate increase at the high strain rate 

region such as t > 0.5 Is . 

87 



100.00 

+Iceberg 

ra 111!1 Freshwater 
fl. 
:s 

J::. - 10.00 C) 
c 
Cl) ... -Ill 
Cl) 

> 
'iii 
Ill 
Cl) ... 
a. 
E 
0 1.00 u 

~-' :~ ~ ..... 
111111!-.c ... '..-ullt ..II ..... Jll ........ -. -

II. IlL • ........ ~ !":: .. , ~ . ~ ~ 1111!1 
t • ! II' 1111 IIIII • • ~ ~·~ ~'Ill .111'!1 • 111 

~Ji~. : ~~ 4., :. • 
~IIIII • ~ • ! ~ • =ill 'IIIII + ~ 

'iii ·;: 
ra 
'2 
::;) 

0.10 
1.0E-Q8 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 

Strain-rate s-1 

Figure 3-40: Uniaxial compressive strength vs. strain rate (after Jones, 2006) 

The effect of the shaft speed on the maximum thrust and torque coefficients is 

investigated in Figure 3-41 and Figure 3-42. Three different propeller speeds were used in 

these tests: 5, 7 and 10 rps. Solid squares with solid line, solid squares with dotted line 

and open squares with solid line denote the shaft torque coefficients based on the 

maximum values measured during the ice milling periods for 5, 7 and 10 rps, respectively. 

Solid line without symbols shows the average shaft values from open water tests. These 

tests were carried out within an hour after the first test in this series in the same ice 

channel. The range of measured compressive strength values for ice varied from 210 to 

190 kPa. The results show that the case with lower rps requires a higher shaft torque. A 

possible explanation is given below. 
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As explained in 3.5.4.1, the increase in the advance coefficient results in the increase in 

the ice related loads. Since the rps is in inverse proportion to the advance coefficient, the 

increase in the rps causes a decrease in the ice related loads. However, at the same 

advance coefficient value (for example, J = 0.133 at Figure 3-42), the rps seems relatively 

distinguished from each other (lOKQ_SHAFT are 2.06, 1.16 and 0.64 for 5, 7 and 10 rps). 

For the shaft thrust curve in Figure 3-41, the ice related loads at 5 rps are about three 

times higher than those at 7 or 10 rps. This is contrary to the general trend of compressive 

strength against strain rate as discussed in the beginning of this section. The present test 

results cannot be explained clearly, but they may include uncertainties associated with ice 

fracture, ice failure mechanism and ice crack propagation. 
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Figure 3-41: Maximum, minimum and average Kr_sHAFT for the 35mm depth of cut (ice­
related loads+ separable hydrodynamic loads during milling period) and open water 
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Figure 3-42: Maximum, minimum and average KQ_SHAFr for the 35mm depth of cut (ice­
related loads + separable hydrodynamic loads during milling period) and open water 

3.7.1.2. Strain Rate vs. Propeller Rotating Speed 

In this section, a relationship between strain rate and propeller rotating speed is discussed. 

For indentation tests (Jones, 1997 and Moores et al., 200la), strain rate was defined as 

shown in Equation (3-3). 

ill . e ill v 
e=-, e=-=-=-, 

1
0 

t l) 1
0 

(3-3) 

where e is strain, e is strain rate, ill is deformed length, l)s undeformed length, t is 

total contacting time and v is indentation speed. 
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For the engineering points of view such as ship-ice or structure-ice interactions, various 

empirical formulae are widely used for their convenience. One of the typical empirical 

formulae is shown in Equation (3-4) (Cammaert and Muggeridge, 1988, p. 228). 

. v 
t:=-

4D' 
(3-4) 

where V is the contact speed and Dis the width of the indentor. 

Since there are no formulae for high contact speed such as propeller rotating speed, 

Equations (3-3) and (3-4) were modified for propeller-ice interaction. For Equation (3-3), 

l1l and l
0 

are same as the length of blade traveling into ice at the maximum blade section 

contacting with ice and t is time of contacting with ice. For Equation (3-4), Vis the 

propeller rotating speed ( V = 2mzr where r = radius of the propeller or V = 2muj where 

lj =distance between hub to center of the ice contact point and n =rps) and Dis the 

diameter of the propeller or the thickness of the propeller blade at lj . The expected strain 

rates with modified strain rate calculations for 35 mm depth of cut are shown in Table 3-5. 

Based on Table 3-5, the strain rate for propeller-ice interaction can be ranged from 4x 10° 

to 1.6x 102 Is. 
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Table 3-5: Estimated strain rate for propeller-ice interaction 

Strain rate from Strain rate from Equation (3-4) 

RPS Equation (3-3) D = diameter, r = radius D = thickness, r = r1 

5 17/s 4/s 78/s 

7 24/s 6/s 109/s 

10 34/s 8/s 156/s 

3. 7 .2. Effect of Compressive Strength of Model Ice 

From the repeat tests at 15 mm depth of cut, the effect of the compressive strength was 

investigated, as shown in Figure 3-43. The symbols represent the maximum values 

observed during milling periods for each test, and the lines through these points represent 

2nd order polynomial lines of the best fit. Each case in the figure, base case and the two 

repeats, consisted of three different carriage velocities (0.2, 0.5 and 0.8 m/s) conducted at 

two different rps values: 5 and 7. Since the time each case done and the section of the ice 

sheet used for each case were different, ice properties encountered during the tests were 

possibly different. This is because of the spatial and temporal variations of the model ice. 

The "Base case" and "Repeat 1" were tested consecutively in the Centre Channel of the 

same ice sheet, and "Repeat 2" was tested an hour later in the South Channel. The 

estimated compressive strengths for "Base case", "Repeat 1" and "Repeat 2" were 131.2, 

129.0 and 107.4 kPa, respectively. The results show that the compressive strength of the 

ice over this range does not have significant effect on the magnitudes of the ice milling 

loads. 
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Figure 3-43: Maximum Kr_BLADE from the repeat tests (an azimuthing angle of 180 
degrees, a depth of cut of 15 mm) 

3. 7 .3. Variation of Experimental Results 

Some results show their maximum and minimum as well as average values. It is easily 

found that the maximum or minimum values are sometimes significantly higher than the 

average values; for example, the maximum shaft thrust in ice related loads at J = 0.4 are 

approximately four times higher than the average values. 

The large scatter in the measurements may have been caused by the way interaction with 

the ice occurred. It was observed during the experiments that some pre-sawn ice blocks 

accelerated and moved towards the propeller causing additional impact loads rather than 
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pure milling loads only. Note that the ice sheet was pre-sawn to reduce the crushing loads 

on the strut of the model propulsor. 

The variation of the measurements also results in a spalling, cracking or damage of the ice 

sheets from the previous blade( s) as well as the nature of the ice loading. The other 

possible reasons are: (1) Ice properties may vary depending on location across the ice 

sheet, (2) The irregularity in the ice thickness along the path of the propeller may lead to a 

changing depth of cut. Generally, a large variation of the measurements is a typical 

feature for propeller-ice interaction tests (Searle, 1999 and Moores, 2002). 

3. 7 .4. Deterministic Design Loads 

In order to decide the design loads for the propeller that is operating in ice covered water, 

the maximum or minimum values (whichever, the bigger magnitude) from the present 

tests may be more important than average values. An extreme probability method might 

be useful for the deterministic ice design loads with appropriate reliability. 

3.7.4.1. Extreme Probabilistic Methods 

For extreme probability, there are three classical asymptotic models depending on the 

parent distribution. These are expressed as follows: 

Type 1: F(x)=exp[-exp(-x)] for -oo<x<oo, (3-5) 
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Type 2: F(x) = exp( -x-a) with a> 0 for - oo < x < oo, (3-6) 

Type3: F(x)=exp[-(-x)a] with a>O for-oo<x<oo. (3-7) 

Types 1, 2 and 3 are normally named as Gumbel, Frechet and Weibull distributions, 

respectively. For the maxima, the Type 1 distribution is the most useful because it is the 

natural extreme for most parent distributions (Jordaan, 2004). 

3.7.4.2. Basic Concepts 

At first, all events are assumed to have independent and identically distributed (iid) 

random quantities. The set of random quantities is, for example, 

The extreme value Z can be defined as 

The cumulative density function, F2 (z), can be written as 
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(3-10) 

3.7.4.3. Application to Propeller-Ice Interaction 

Propeller-ice interactions can be explained by the Poisson process because the events 

assumed to be iid and interaction would not occur continuously. For the extreme 

probability method, the only interesting region is the tail of the probability distribution 

and it may follow an exponential or double exponential form (Type 1, Gumbel 

distribution). In order to use the extreme statistics, the data set was ranked in descending 

order from order statistics (Castillo, 1988). The Weibull plotting position [il(n+ 1)] was 

used for the exceedance probability and double exponential form was used for the tail 

distribution. Therefore, the exceedance probability was defined as a double logarithm. In 

the Weibull plotting, n is the total number of interactions and i is the sequence number. 

The one percent exceedance probability (for example "1 00 year" load case if the 

distribution is based on one year), can be written as 

-In( -ln(Pe' )) = 4.6, (3-11) 

where ~'=1-~, and~ =0.01. 

When a propeller blade contacted ice, the ice-related loads were calculated, i.e. the total 

number of events was the same as the number of the ice contacts. The decision of a 

milling period was made by using blade angular position as shown in Section 3.4.3. 
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Although blade angular position is within the target range of am , a non-contact may 

occur because of the shadowing of the blades or the irregularity of the ice feeding. 

Therefore, the number of interactions (hits) is counted only when the ice-related loads are 

larger than the maximum loads measured in open water tests (no ice case). 

The Poisson distribution can be written as 

e -p (J.l)n 
P(n: JL) = , n = 0, 1, 2 ... , 

n! 
(3-12) 

where J.l is the expected number of interactions (hits) per unit time for future estimation 

(J.l = ry, where r is the proportion of hits and y is the total expected number of events). 

For most practical cases, the distribution of the tail can be represented by an exponential 

or double exponential form (Jordaan et al., 1993), which is 

1- Fx (z) = exp(-[az +b]). 

A new Poisson process of tail for random quantities is: 

JL'= !1(1- Fx (z)), 

P(n': J.l') = e-ll'(J.l'r· n' = 0, 1, 2 .... 
n'! 
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If n' is assumed to be equal to zero for the extreme case, then 

Fz (z) = exp(-,u') = exp{-,u[l- Fx (z)]} 

= exp{-,u(exp[-(az +b)])} 

= exp{-exp(-[az + b] + ln,u)}. (3-16) 

Jordaan (2004, p. 501) shows the full derivation of equations with detailed explanation. 

3.7.4.4. Test Matrix and Results 

The present extreme probability analyses use the ice related loads from experimental 

results and test matrix is shown in Table 3-6. "Case 1" shows the results when the 

azimuthing angle is between 180 and 150 degrees. "Case 2" shows the results when the 

azimuthing angle is less than 150 degrees. 

Table 3-6: Test conditions for extreme probability analysis 

Tractor Azimuthing 
Carriage Velocity RPS Ice Conditions 

Mode Angles C) 

easel 180 and 150 0.2, 0.5, and (0.8) 5, 7, and 10 Pre-sawn 

Case2 120, 90, and 60 0.2, 0.5, and (0.8) 5, 7, and 10 Pre-sawn 
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In the calculations, the following assumptions are used as below: 

• All events are independent and identically distributed (iid); 

• Same contacting area (for a given test run, i.e. constant propeller rotational and 

advance velocities, the area of the blade contacting the ice during milling is 

assumed to be the same for each rotation of the propeller. Though, this area might 

vary during a test run); 

Figure 3-44 shows the shaft thrust distribution in time series acting on the propeller blade 

in pre-sawn ice with 35 mm depth of cut. In order to use the extreme probability method, 

an appropriate return period must be defined. For simplicity, it is assumed that the return 

period is the time it took for the test run under consideration. This is called a unit time for 

the sake of argument. For the purpose of illustrating the concept, number of hits is then 

projected to a time scale equal to the 100 times of this unit time. This return period, 

however, can be controlled using a proper interaction scenario. 

Figure 3-45 shows the total force on the blade, presented in Figure 3-44, against 

exceedance probability. If the "100 unit times" loads of the total force were considered, 

the exceedance probability value would be 4.6 from Equation (3-11 ). If the exceedance 

probability is determined, the design loads can be chosen. 
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Figure 3-44: Measured maximum total force values for the assumed ice interaction 
segments in the time series for the selected test run (Case 1) 
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Figure 3-45: Data in Figure 3-44 ranked and plotted with exceedance probability (Gumbel 
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In Figure 3-46, shaft thrust coefficients (Kr_SHAFT) are plotted for azimuthing angles of 

150° and 180°. If we consider the "100 unit time" loads, the maximum Kr_SHAFT for 35 

mm and 15 mm depths of cut are 2.56 and 1.4, respectively. It is noted that trend lines 

are started from thrust coefficient of 1 (one) in order to consider extreme values more 

accurately. 
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Figure 3-46: Exceedance probability against shaft thrust coefficients at two different 
depths of cut in "Case 1" 

Figure 3-47 shows the relationship between the shaft thrust and blade thrust coefficients 

at 35 mm depth of cut in "Case 1." As shown in Figure 3-25 and Figure 3-27, the 

maximum values of shaft thrust coefficients are generally higher than those of blade 

thrust coefficients. Consequently, deterministic maximum values of shaft thrust 
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coefficient are higher than those of blade thrust coefficients. For example, the maximum 

KT_SHAFT for and KLBLADE are 2.56 and 1.53, respectively at the "100 unit time" loads 

(exceedance probability= 4.6). 
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Figure 3-47: Comparison between shaft thrust and blade thrust coefficients with 
exceedance probability in "Case 1" 

In Figure 3-48, shaft torque coefficients are plotted with the exceedance probability for 35 

mm depth of cut. Comparisons are made with "Case 1" and "Case 2." It is concluded that 

"Case 2", which is sort of off-design condition, shows the less torque coefficients before 

the exceedance probability reaches between 5 and 6. Once the exceedance probability is 

over 6, shaft torque coefficient from "Case 2" is slightly bigger than those from "Case 1." 
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The extreme probability method is important to evaluate the maximum ice loads in terms 

of their frequencies and variations. From this method, the maximum values can be 

predicted statistically. This extreme probability method is also useful for the decision of 

the ice loads in ice-class propeller design. The same method can be applied to any other 

parameter, such as total forces/moments on the propeller blade or shaft to assess the 

design loads. Based on an appropriate propeller-ice interaction scenario and 

corresponding return period, the extreme probability method could be one of the useful 

tools to evaluate the propeller-ice interaction loads. 
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Chapter 4 Numerical Predictions 

In this chapter, the methodology for the numerical prediction of propeller performance in 

ice covered water is presented; in particular, the prediction of ice related loads is mainly 

described. Special attention has been given to the effect of shadowing and azimuthing 

angle. Hydrodynamic loads, including separable and inseparable hydrodynamic loads, are 

calculated by a three-dimensional unsteady panel method. The process for the ice milling 

loads calculations is implemented in the panel method, and that is incorporated with both 

separable and inseparable hydrodynamic loads in ice covered water conditions. 

4.1.0verview of the Panel Method (Code Name: 

PRO PICE) 

The general explanation of the panel method is not provided in this thesis. The code used 

in this study was originally developed at the NASA Ames, and was called PMARC. Bose 

(1996) modified this code for propeller performance in blocked flow. This modified code 

was called PROPS. In this study, the PROPS code was used as the basic frame and some 
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parts were modified and developed to include the ice milling loads calculations; this 

modified code is called PRO PICE. The basic features of this code are: 

Unsteady code with time stepping calculation, 

Calculations were made over three revolutions of the propeller with 10 degree 

angular intervals, and the mean values for thrust and torque were calculated from 

the values obtained in the third full cycle, 

Influence coefficients were calculated by using constant doublet distributions 

over hyperboloidal shaped panel elements, 

A rigid wake model was used, 

Morino's Kutta condition was used (Morino et al., 1975), 

The hydrodynamic friction force was estimated using the friction coefficient 

values of 0.005, 

Process for the ice milling loads calculation was implemented, 

The Hi-Conjugate Gradient Stability (BICGSTAB) matrix solver was used (Van 

der Vorst, 1992; Subroutine from Liu, 1996). 

The flowchart for the hydrodynamic calculation is shown in Figure 4-1 and Figure 4-2. 

The process for the ice related loads calculation was implemented into one of the 

subroutines, called AERODAT.F., and a detailed explanation is presented in Section 4.4. 
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Figure 4-1: Flowchart for PRO PICE 
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4.2. Consideration of Separable Hydrodynamic Loads 

The aim of the separable hydrodynamic load calculations are: first, to access the 

effectiveness of the code; second, to predict the separable and inseparable hydrodynamic 

loads. For the separable hydrodynamic loads, the process for the ice related loads was not 

activated. In the PROPICE code, propeller blades only were modeled by using 44 

chordwise and 18 spanwise panels, as shown in Figure 4-3. 

Figure 4-3: Geometry and paneling of the propeller 

The numerical results from the PROPICE code in open water conditions, i.e. the 

separable hydrodynamic loads, are compared with the experimental results in Figure 4-4. 

The thrust and torque coefficients from PROPICE are somewhat higher than the 

experimental results. For the present experimental set up, the propeller rotational speeds 
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were up to 10 rps and the highest Re was 2.4 x 105
; as discussed in previous chapters. It is 

noted that the propeller performance at low Reynolds numbers can show underestimated 

thrust and torque coefficient values (ITTC, 2002). In addition, when the tip of the blade 

was approaching towards the bottom of the model stem, the distance between the blade 

tip and model stem was not far enough away to ignore the blockage effects on the 

propeller and this may cause some of the variations between the two results. For example, 

the closest distance between the blade tip and model stem was approximately 25 mm, 

which is the condition for 35mm of depth of cut. 

Tuning a panel method for the hydrodynamic calculations is an extensive task and it was 

not the aim here to do that, but to focus on the ice related components which are at a 

much higher level. With regard to a panel method, no hub and cone may affect significant 

effect on the results as well as wake panel geometry, first wake panel, panel size and 

discretization. 
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Figure 4-4: Comparison of results from panel method with those from the experiments in 
open water conditions 

4.3. Consideration of Blockage/Proximity & Shadowing 

Effects 

When the blade contacts with ice, the process for the ice related loads calculation is 

activated. The panels of the blade within the ice block experience either inseparable 

hydrodynamic loads or ice milling loads and they should be identified; this identification 

procedure is addressed in the next section. In this section, numerical considerations of the 

inseparable hydrodynamic loads are mainly discussed. As mentioned in the previous 
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chapters, the inseparable hydrodynamic loads are generated due to the presence of ice 

without any physical contact; for example, blockage, proximity and cavitation. 

For the numerical calculation in blocked flow, a simplified ice wake model was used in 

this study. The ice block itself did not need to be modeled physically in the code, but it 

was considered conceptually. The blockage model was assumed that the propeller was 

rotating in a simplified wake behind the ice; the simplified ice wake was defined such that 

the downstream velocity of the wake was 0.01 times that of the free stream (similarly to 

that done by Bose (1996)). 

When the propeller is in contact with the ice block, the shadowing effect must be 

considered, particularly at low advance coefficients. Again, the shadowing effect refers to 

the situation when a blade encounters part of the path created by the previous blade, as 

described in Section 3.5.4.1. For example, if the propeller operates in the first quadrant 

(positive ship speed and positive propeller rotating speed), the blockage and the 

shadowing effect can be found on the suction and pressure side of the blade, respectively 

(Figure 4-5). The shadowing area is treated as the blockage condition. 
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Figure 4-5: Conceptual sketch of the blockage and shadowing area (pis the angle of 
advance, V is the carriage speed, and Z is the number of blade) 

In the blockage condition, the effect of the gap between the blade surface and ice block is 

not considered, even though the blockage loads vary depending on the size of the gap 

(Bose, 1996). The effect of proximity and cavitation is not considered in this thesis. 

4.4. Consideration of Ice Milling Loads (Including 

Implementation Procedure into a Panel Method) 

The numerical procedure for the ice related load calculation is presented in this section. 

When the propeller blades contact with the ice, the process for the ice related load 

calculations is activated and the ice related loads are calculated at the blade panels which 

are in contact with ice. The compressive strength of the model ice measured during the 

experiments is taken into account as the ice reference pressure for the numerical 

calculation. The procedure of the ice milling loads calculation is addressed below. 
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[Step.l] Determination of a depth of cut, an ice reference pressure ( PREFUCE)) and an 

azimuthing angle ( ljl ) of the system as input data. In order to provide the uniform 

interaction conditions between the propeller and ice, the calculations were performed in 

the tractor mode only; for the pusher mode, the pod and strut interact with the ice block 

before the propeller, so ice blocks can be disturbed. The azimuthing angles used in this 

calculation are 180, 150, 120 and 90 degrees in the tractor mode. Two different depths of 

cut, 15 and 35 mm, were considered. The ice reference pressure of the calculation for the 

15 mm and 35 mm depths of cut were 120 kPa and 195 kPa respectively. 

[Step.2] Determination of the panels which are in contact with the ice block. Once the 

coordinate of the bottom of the conceptual ice block is defined, the blade panels can be 

identified with their radial components; if the radial component of the blade is larger than 

the bottom line of the conceptual ice block, then the panel is assumed to be in contact 

with the ice block. The positive direction of the radial component of the blade is from the 

root to the tip of the blade. 

[Step.3] Determination of the geometric angle of attack ( aG ) and the angle of 

advance ( f3 ). The ice block is assumed stationary and the induced velocities are ignored 

(Figure 4-6). 

aG = tan-t(_!_J-tan-1
( V J, 

2trr 2trnr 
f3 = tan-1

( V J. 
2trnr 

(4-1) 
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Figure 4-6: Velocity diagram for a propeller blade section, fJ is the angle of advance, /.3; 

is the hydrodynamic pitch angle, ¢ is the geometric pitch angle, ac is the geometric 

angle of attack, V is the carriage speed, VA is the advance speed, U T and U A are the 
tangential and axial induced velocities, and Pis the pitch at 0.7R 

[Step.4] Choice between the milling and blockage area at each panel which contacts 

with ice. Depending on the angle of advance, panels can be identified as either the 

milling or blockage area (including shadowing), as shown in Figure 4-7. If the interacting 

angle ( 0 ), which is the angle between the normal vector of the panel and the directional 

vector of the angle of advance, is greater than 0 degrees and less than 90 degrees, then 

this panel is involved in the milling area; if this interacting angle ( 0) is more than 90 

degrees or less than 0 degrees, then this panel is involved in the blockage area. 
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Figure 4-7: Geometrical consideration for the ice contact area ( 8 : the interacting angle) 

[Step.S] Correction of the shadowing area. Once the panel is identified as the milling 

area, the shadowing area should be checked. If the panel is within the shadowing area, 

then the panel must be considered as blockage area (shadowing and blockage in Figure 

4-5). When a certain azimuthing angle, which is less than 180 degrees and more than 90 

degrees, is given, additional kinematic considerations are made, as shown in Figure 4-8. 

In particular, Figure 4-9 shows the shadowing area when the azimuthing angle is equal to 

90 degrees. Once the shadowing area is determined, the calculation is performed in the 

same manner as the blockage area. 

The principle to calculate the shadowing area is: 

115 



1. Relative motion between the propeller and carriage (ship) is taken into account 

with two directions, which are axial (perpendicular to the propeller rotating 

direction) and radial directions (same as propeller rotating direction, n = nPROP ); 

V(=Vh.) 
2. The advance distance at each blade is to be s 'P based on the angle of 

Zn 

advance ( f3 ); 

3. Once the azimuthing angle is less than 180 degrees (tractor mode), contribution 

of the azimuthing angle ( 1f1) on the axial and radial direction must be 

considered; i.e. the advance and radial distances are V sin(ljl) and V cos(ljl) , 
Zn Zn 

respectively; 

4. If the panels are placed out of the advance or radial distances then the panels are 

finally identified as the shadowing area, even though the panels belong to the 

milling area, as shown in [Step.4] 

Figure 4-8: Shadowing area at various azimuthing angles 
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Figure 4-9: Shadowing area at an azimuthing angle of 90 degrees 

[Step.6] Determination of the pressure coefficient at each panel. The total pressure 

coefficient ( C P<TOTALJ) is sum of the hydrodynamic pressure and ice crushing pressure 

coefficients, as shown in Equation (4-2): 

CP(TOTAL) = CP(HYDRODYNAMIC) + CP(CRUSHING). (4-2) 

The hydrodynamic pressure values can be calculated by using the panel method and the 

ice crushing pressure coefficient can be evaluated by empirical formulae based on 

geometric and kinematic considerations. If the interacting angle ( e ) is 0 degrees, then 

the panel interacts with the ice perpendicularly, which is called pure crushing. On the 

other hand, if the interacting angle (e) is 90 degrees, then the panel interacts with the ice 

in parallel, which is called pure shearing. The crushing pressure is calculated based upon 

the ice reference pressure and the interacting angle ( e ).The empirical factor for the 
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crushing (EFC), four, is multiplied by the ice reference pressure, which may represent 

effect of high strain rate. For the maximum values, a weight factor ( W) is used: W = 1 for 

average value and W = 6 for the maximum value of the propeller thrust and torque. It is 

assumed that the crushing pressure is distributed with a cosine distribution regarding the 

interacting angle (e). The ice crushing pressure coefficient can be calculated by 

CP<cnusHINGJ = (w xEFCx PREFUCEJ xCOS(8)){~ PIVref 
2
), (4-3) 

where PREF(ICE) is the ice reference pressure, e is the interacting angle, PI is the ice 

density, W is the weight factor, EFC is the empirical factor for crushing, and Vref is the 

local inflow velocity (inflow velocity ( V) +propeller rotational velocity ( Q x r )). 

Shearing forces are considered independently, because they cannot be presented in the 

pressure term. Constant shearing forces are applied to the milling area, which are the ice 

reference pressure divided an empirical factor for shearing (EFS), four. From the ice 

samplings during the tests, the compressive strength was two to four times shear strength. 

Equation (4-4) shows the shearing force: 

F PREF (ICE) RE' A 
(SHEARING) = X A rl ' 

EFS 
(4-4) 

where EFS is the empirical factor for shearing and AREA is an area of the panel. 
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The discussions of these empirical factors are presented in Section 5.5. It is noted that the 

frictional force in ice is not considered because the shearing force can include the friction; 

the ice frictional coefficient is as small as 0.02 (Gagnon and Molgaard, 1991). 

[Step. 7] Calculation of the total forces from the hydrodynamic loads and the ice 

related loads. Thrust and torque coefficients are calculated from the total forces. 
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Chapter 5 Comparisons 

The objective of this chapter is to compare the results from the numerical code 

(PROPICE) with the experimental data, in order to validate PROPICE. All numerical 

results were obtained from the average values from the last full cycle of a total of three 

rotations; one full cycle consists of 36 time steps corresponding to 10 degrees angular 

intervals and a total of 108 time steps for three rotations were performed for each 

calculation. The ice related loads and total loads in ice covered water are mainly 

considered. 

5.1. Comparison of Ice Related Loads on Propeller 

Blade 

5.1.1. Time Series Comparison 

In order to verify the numerical calculation, time series data of the ice related loads from 

the PROPICE are compared with those from the experiments in Figure 5-1 through 
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Figure 5-4. The ice related loads in the experiments were rearranged and superimposed 

relative to the blade angular positions. The number of data points at the same blade 

angular position from the experiments is mainly more than a hundred, so basic statistics is 

applied to find an average value. The uncertainty levels in the experimental results 

represent the 95 % confidence levels and are shown as error bars on the figures. 

In these comparisons, the depth of cut was 35 mm and the azimuthing angle was 180 

degrees. The propeller rotated counter-clockwise and the milling angle was from 36 

degrees to -69 degrees. For convenience, the origin of the blade angular positions was 

shifted by 180 degrees so that the propeller blade entered the ice block at the blade 

angular position of 216 degrees and exited at 111 degrees. In the figures, the inner part of 

the box shows the milling period. 

In Figure 5-1, blade thrust coefficients in time series from the experiments and PRO PICE 

are plotted against the blade angular position. The comparison for the numerical blade 

thrust coefficients presents a good agreement both quantitatively and qualitatively. In the 

experimental results, a trough between the two peaks during the milling period is found. 

This may be caused by the pre-sawn ice; i.e. the ice sheet was cut in center, as shown in 

Figure 3-5. 

Figure 5-2 shows the x-direction moment of the blade (Blade Mx), which represent the 

negative blade torque (Q__]]IAD£). The sign conventions are given in Section 3.5.2. 

Because of the effect of the shaft dynamics observed in the experiments, the numerical 
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results were multiplied by 1.7; as mentioned in Section 3.5.4, the blade torque is 1.7 times 

the shaft torque during the milling period. In Figure 5-2 the comparison is generally 

encouraging, even though the numerical results show at most 50 percent lower values 

than the experimental results during the milling period. 

For the blade My and Mz, comparisons are presented in Figure 5-3 and Figure 5-4, 

respectively. The numerical results for the blade My show slightly higher values than the 

experimental results, but the trends are similar. The blade Mz represents a positive spindle 

torque. In Figure 5-4 the trends of the numerical results are slightly different from those 

in the experiments, but the magnitude of these values is relatively small compared to 

other components (Mx and My). 

In general, ice loads experienced by the blade are well predicted by the PROPICE code in 

terms of overall trends. It is noted that the experimental results shown in the figures are 

ice related loads, thus the separable hydrodynamic loads are removed. For the numerical 

calculations, separable hydrodynamic loads are set to be zero, but the inseparable 

hydrodynamic loads are calculated and included in the results. 
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Blade Fx ( KT_BLADE), Time Series Comparison (Ice Related Loads on the Blade) 
J = 0.238, 35mm Depth Of Cut, Tractor Mode, 180 Azimuthing Angle 
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Figure 5-l: Time series comparison for Kr_BLADE (ice related loads, 1= 0.238, 35mm) 

Blade Mx (KM_Mx), Time Series Comparison (Ice Related Loads on the Blade) 
J = 0.238, 35mm Depth Of Cut, Tractor Mode, 180 Azimuthing Angle 
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Figure 5-2: Time series comparison for KM_Mx after multiplying 1.7 for the blade torque 
(ice related loads, 1= 0.238, 35mm) 
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Blade My (KM_MY), Time Series Comparison (Ice Related Loads on the Blade) 
J = 0.238, 35mm Depth Of Cut, Tractor Mode, 180 Azimuthing Angle 
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Figure 5-3: Time series comparison for KM_MY (ice related loads, J= 0.238, 35mm) 

Blade Mz (KM_Mz), Time Series Comparison (Ice Related Loads on the Blade) 
J = 0.238, 35mm Depth Of Cut, Tractor Mode, 180 Azimuthing Angle 
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Figure 5-4: Time series comparison for KM_Mz (ice related loads, J= 0.238, 35mm) 
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5.2. Comparison of Ice Related Loads in Ice Covered 

Water 

5.2.1. Ice Related Loads on the Blade 

The experimental results measured from the blade dynamometer are compared with the 

numerical results, in which only the key blade loads have been calculated. From Figure 

5-5 to Figure 5-9, coefficients of blade thrust, blade torque, in plane bending moment, out 

of plane bending moment and spindle torque against the advance coefficient are presented. 

The test conditions are: tractor mode, an azimuthing angle of 180 degrees, and a 35 mm 

depth of cut. The solid circles represent experimental results, and the open squares 

represent numerical results. 

The detailed explanations for the trend of the blade thrust are addressed here. Most trends 

in the figures are similar to those from the shaft loads. From the numerical calculations, 

the shadowing effect occurred at low advance coefficient (J < 0.4). For example, at an 

advance coefficient of 0.1, approximately 23 % of the pressure side panels of the blade 

within the ice block experience the ice contact loads due to the shadowing effect (see 

Sections 3.5.4.3 and 4.4); most of the suction side of the blade experiences the blockage 

effect (Figure 4-5). When the advance coefficient is 0.4, approximately 94 % of the 

pressure side experience the ice milling loads. 
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As the advance coefficient increases to 0.4, the thrust coefficients show the increased 

trends. This is caused by the combinative effect of the angle of attack and shadowing. 

Generally, as the angle of attack is decreased, the thrust coefficients decrease; as the 

shadowing effect is decreased, the thrust coefficients increase. When the advance 

coefficient is 0.4, the shadowing effect is almost negligible. As the advance coefficient 

increases over 0.4, the angle of attack decreases, thus the thrust coefficient starts to 

decrease. 

In the figures, the numerical results are fairly well predicted, particularly at lower 

advance coefficients (J < 0.4). As the increase in advance coefficients over 0.4, blade 

thrust, out of plane bending moment and spindle torque coefficients are underestimated in 

terms of the absolute magnitude. This may be explained by the variation of the depth of 

cut. As the model stern slightly pushes down the ice sheet, depths of cut may be changed 

due to the inertia, especially at the high carriage velocities. It was also found that ice 

pieces sometimes cumulated in front of model stern, thus the depth of cut could be 

changed. 

It is noted that the blade torque coefficients from the PROPICE are multiplied by 1.7, 

which represent the effect of shaft dynamics. 
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Figure 5-5: Kr_BLADE comparison (ice related loads, azimuthing angle of 180 degrees, 35 
mm depth of cut, key blade only) 
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Figure 5-6: KQ_BLADE comparison (ice related loads, azimuthing angle of 180 degrees, 35 
mm depth of cut, key blade only) 
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KM_IPLANE' Ice Related Loads, Tractor Mode, 180 Azimuthing Angle 
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Figure 5-7: KM_IPLANE comparison (ice related loads, azimuthing angle of 180 degrees, 35 
mm depth of cut, key blade only) 
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Figure 5-8: KM_OPLANE comparison (ice related loads, azimuthing angle of 180 degrees, 35 
mm depth of cut, key blade only) 
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KQ_SPINDLE' Ice Related Loads, Tractor Mode, 180 Azimuthing Angle 
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Figure 5-9: KQ_SPINDLE comparison (ice related loads, azimuthing angle of 180 degrees, 35 
mm depth of cut, key blade only) 

5.2.2. Ice Related Loads on the Shaft at Various Azimuthing Angles 

From Figure 5-10 to Figure 5-17, comparisons between numerical results from the 

PROPICE and experimental results are made regarding average shaft thrust coefficients 

and average shaft torque coefficients against the advance coefficient at various 

azimuthing angles. Inseparable hydrodynamic loads and ice milling loads are considered. 

A total of four different azimuthing angles (180, 150, 120 and 90 degrees) are presented. 

For the azimuthing angle of 120 and 90 degrees, the experiments were limited until the 

advance coefficient was 0.33. The maximum shaft thrust and torque coefficients from the 

PROPICE are presented in Appendix E. 
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For the average shaft thrust coefficients (from Figure 5-10 through to Figure 5-13), most 

numerical results have a good agreement with experimental results at the lower advance 

coefficients (J < 0.4); at the azimuthing angle of90 degrees (in Figure 5-13), one 

extraordinary point is found at J = 0.33. When the advance coefficients are over 0.4, 

qualitative trends are similar, whereas the magnitudes are slightly different. It can be 

explained by the variation of the depth of cut, as described in the previous section. 

With respect to the average shaft torque coefficients (from Figure 5-14 to Figure 5-17), 

numerical results are corresponding well with the experimental results at the low advance 

coefficients (J < 0.4). When the advance coefficients are over 0.4, discrepancies between 

numerical and experimental results are also found. 

Average KT_SHAFT' Ice Related Loads, Tractor Mode, 180 Azimuthing Angle 
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Figure 5-10: Kr_SHAFT comparison (ice related loads, azimuthing angle of 180 degrees, 35 
mm depth of cut) 

130 



Average Kr_sHAFT' Ice Related Loads, Tractor Mode, 150 Azimuthing Angle 
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Figure 5-11: Kr_sHAFr comparison (ice related loads, azimuthing angle of 150 degrees, 35 
mm depth of cut) 
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Figure 5-12: Kr_SHAFr comparison (ice related loads, azimuthing angle of 120 degrees, 35 
mm depth of cut) 
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Average KT_SHAFT' Ice Related Loads, Tractor Mode, 90 Azimuthing Angle 
0.7 

0.6 

0.5 

!;; 0.4 

~ 
<Zl 0.3 ...,, 
~ 

0.2 

0.1 

0 

-0.1 

• D 

• r: Iii • 
0.1 

EXP. (Ave) 
PRO PICE 

-• o 
D 

0.2 0.3 
J 

• 
D 

[] 

0.4 

D 

0.5 0.6 

Figure 5-13: Kr_sHAFT comparison (ice related loads, azimuthing angle of90 degrees, 35 
mm depth of cut) 

Average lOKQ_sHAFT' Ice Related Loads, Tractor Mode, 180 Azimuthing Angle 
4 

3.5 

3 

2.5 
!;; 
~ 2 
d 
~ 1.5 
Q 
~ 

1 

0.5 

0 

-0.5 

-

-~ 
0.1 

• EXP. (Ave) 

D PRO PICE 

• --o• 

0.2 0.3 

rh .. 
u 

[] 
LJ 

• 
q.J -C!:l 

0.4 0.5 0.6 0.7 0.8 
J 

Figure 5-14: 10KQ_SHAFT comparison (ice related loads, azimuthing angle of 180 degrees, 
35 mm depth of cut) 
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Average 10KQ_SHAFr' Ice Related Loads, Tractor Mode, 150 Azimuthing Angle 
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Figure 5-15: 10KQ_sHAFT comparison (ice related loads, azimuthing angle of 150 degrees, 
35 mm depth of cut) 
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Figure 5-16: 10KQ_SHAFT comparison (ice related loads, azimuthing angle of 120 degrees, 
35 mm depth of cut) 
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Average lOKQ_SHAFT' Ice Related Loads, Tractor Mode, 90 Azirnuthing Angle 
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Figure 5-17: 1 OKQ_SHAFT comparison (ice related loads, azimuthing angle of 90 degrees, 
35 mm depth of cut) 

5.3. Comparison of Total Loads in Ice Covered Water 

Figure 5-18 and Figure 5-19 present the average shaft thrust and torque coefficients 

versus the advance coefficient from the experiments and the PROPICE in ice covered 

water. The total loads present here consist of separable hydrodynamic loads and ice 

related loads. The comparisons are made under the following test conditions: an 

azimuthing angle of 180 degrees, a tractor mode and depth of cut of 35 mm. The solid 

circles represent the experimental results and the open squares represent the numerical 

results. 
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The experimental results for the average thrust coefficient, KLsHAFr, correspond closely 

with the numerical results (PROPICE), as shown in Figure 5-18. The trends are similar to 

those for the ice related loads on the blade, as described in 5.2.1 

In Figure 5-19, the average shaft torque coefficients, 10 KQ_SHAFr, from the PROPICE 

present a good agreement with those from the experiments. In the numerical results, as 

the advance coefficients increase until J = 0.7, the torque coefficients show the increased 

trends. Due to the limitation of the model tests, comparisons are made until J = 0.53. 
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Figure 5-18: Kr_SHAFTcomparison (Total loads, azimuthing angle of 180 degrees, 35 mm 
depth of cut) 
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Total Loads in ice, Average lOKQ_SHAFT' 180 Azimuthing Angle, Tractor Mode 
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Figure 5-19: 1 OKQ_SHAFT comparison (Total loads, azimuthing angle of 180 degrees, 35 
mm depth of cut) 

At the depth of cut of 15 mm, the average shaft thrust and torque coefficients from both 

numerical calculations and experiments are shown in Figure 5-20. For the ice load 

calculations, 120 kPa, measured from the experiments, was used for the ice reference 

pressure for the PROPICE. In the experiments, repeat runs were carried out three times at 

15 mm depth of cut. Although the test condition was identical, variation in the loads was 

observed, particularly in the shaft torque coefficients. Detailed explanations regarding 

experimental results are shown in Section 3.5.4. The overall trends for the calculated shaft 

thrust and shaft torque values have a good agreement with those of the experiments. 
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Figure 5-20: Kr_sHAFT and 10KQ_SHAFrcomparison (Total loads, azimuthing angle of 180 
degrees, 15 mm depth of cut) 

Figure 5-21 shows the distribution of the calculated pressure coefficient on both the 

pressure and suction sides of the propeller blade for 35 mm depth of cut. In the two 

pictures at the top, the advance coefficient is 0.133 and 0.238, and the shadowing areas 

are clearly visible. In the two pictures in the middle, the advance coefficient is 0.4 and 

0.533, and the shadowing areas have almost disappeared. The geometric angle of attack is 

still positive up to advance coefficients of0.7. In the two pictures at the bottom, the 

advance coefficient is 0.7 and 0.8, and the ice loads gradually move from the pressure 

side to the suction side of the propeller due to the negative geometric angle of attack. At 

the advance coefficient of 0. 7, even most pressure side is in contact with the ice, the 

interacting angle ( e ) is closed to the 90 degrees, so the crushing forces contribute to the 

blade or shaft thrust are minimized. 
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Figure 5-21: Calculated pressure distribution on the pressure and suction side of the blade 
(from top left, J = 0.133, 0.238, 0.4, 0.533, 0. 7 and 0.8) 
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5.4.Comparison with Available Ice Loads Formulae 

In this section, two ice load models are introduced. The objective of this section is to 

provide comparisons between experimental results and existing ice load models. The 

experimental results are scaled up to full~scale by using Froude scaling law with a scale 

factor of 13.733. Certain conditions for the ice load models are addressed. The symbols 

for the JRP A #6 and lACS model are shown in Table 5-l. 

Table 5-l: List of symbols for the JRPA #6 and lACS ice load models 

JRPA#6 lACS 

Fb1 : maximum blade force [kN] 

J : advance coefficient 

Qav: average shaft torque [kNm] 

Qmax: maximum shaft torque [kNm] 

a : angle of attack [degrees] 

a: uniaxial compressive strength of ice 

[MPa] 

Fb : maximum backward blade force [kN] 

F1 : maximum forward blade force [kN] 

Qmax: maximum propeller torque [kNm] 

sice : ice strength index for blade ice force 

(for PC7, Sice = 1.) 

S qice : ice strength index for blade ice torque 

(for PC7, Sqice= 1.) 

d- hub diameter [m]; D- propeller diameter [m]; EAR- expanded area ratio; 

Hi- Ice block thickness [m]; n- propeller rotating speed [rps]; 

PI D = Po.7 I D - pitch ratio at 0. 7 R; tID= t0.7 I D - blade thickness ratio at 0. 7 R; 

Z - number of blades 
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5.4.1. JRP A #6 Design Loads 

As a part of the JRPA #6 project, a simulation model for propeller-ice interaction loads 

was developed. After parametric studies with the simulation model, a simple regression 

type dimensioning model was presented (Koskinen et al., 1996; Jones et al., 1997). The 

limitations of this model are: 

1. Valid for open propellers such as fixed pitch and controllable pitch propellers 

( ducted propellers can be calculated, but the formulae are not shown in this 

thesis); 

2. Valid for the first quadrant operating condition and limited use of negative angles 

of attack. 

In this thesis, only shaft thrust and torque calculations are shown. The ice block thickness 

for the JRPA # 6 model used the depth of cut of 35 mm multiplied by scale ratio (13.733). 

Minimum blade force ( Fb1 ), which represent backward bending, is 

( 
EAR)

0

·

2866 (H) Fbi=-92.9717X axz X ; xe<--o.I830aJx(nD)o.7126XD2.023s. (5-1) 

Maximum blade force ( Fb1 ), which represent forward bending, is 

Fb1 = 400x(EARI Z)xtr(D/2)2
• (5-2) 
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Shaft thrust is 

T = 1.1304 x Fbi" 

Maximum shaft torque is 

Q= = -234.3560x(l-d I D)xo-0
·
1948 x(; r"" x(-{).9026xJ 2 + J +0.4384) 

x (P 1 D)o.J62o x (t 1 D)o.6o47 x (nD)o.ms x D3.042I 

Average shaft torque is 

Q~ =-!52.0408x(!-dl D)xo-0
.
1825 x(; f"' x(-{).8811xJ2 +1 +0.5198). 

x (P 1 D)0.2747 x (t 1 D)o.5624 x (nD)o.2oo9 x D3.0413 

5.4.2. lACS Design Loads 

The International Association of Classification Societies (lACS) design loads are 

(5-3) 

(5-4) 

(5-5) 

addressed in this section (lACS, 2006). The lACS requirements are composed of seven 

different ice classes: PC1 to PC7; for which increasing number indicates that the ice 

properties including thickness and strength become thinner and weaker. For the present 

comparison, the PC7 ice class (ice thickness is 1.5 meter) is considered. 

The formulae provided here are suitable for the present experimental model only because 

lACS formulae can be different depending on interaction conditions. The rps used for the 

lACS model was 1.35, which is equivalent to 5 rps case in the model tests based on 

Froude scaling law. The effect of shaft dynamics is not considered. 
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Maximum backward blade force is 

[EAR]0
·
3 

Fb =-27xS;cJnD]0
·
7 z [D]2 kN. (5-6) 

Maximum forward blade force is 

(5-7) 

Maximum propeller torque is 

Q = 105 x (1- dID) x S . x (P I D)0
.1

6 x (t I D)0
·
6 x (nD)0

'
17 x D 3 kNm (5-8) max qtce 0.7 0.7 • 

Finally, maximum forward and backward thrust values ( T1 and ~) on the shaft during 

propeller-ice interaction are 

(5-9) 

~ = l.1xFb kN. (5-10) 

5.4.3. Comparisons of Experimental Results with Ice Loads Formulae 

With respect to the present test results, non dimensional shaft thrust and torque 

coefficients were calculated from the total loads (sum of the ice related loads and 

separable hydrodynamic loads) during the milling period. Both JRPA #6 and lACS 
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models consider the effect of rps; as the rps increases, the magnitudes of the thrust/torque 

coefficients decrease. As the ice class number in the lACS model decreases, the 

maximum thrust values remain constant (only minimum thrust values vary). The effects 

of angle of attack and advance coefficient are taken into account for the thrust and torque 

calculations in the JRP A #6 model except for the maximum thrust value. 

In Figure 5-22, the gray area shows the range of the JRPA #6 model. For most values of 

advance coefficient, our measurements fall within the JRP A #6 range. At the advance 

coefficient of 0.53, both the maximum and minimum shaft thrust magnitudes from the 

JRP A #6 are slightly lower than those from the measurements. The lACS model shows 

somewhat underestimated maximum and overestimated minimum shaft thrust values in 

terms of the magnitude. 
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Figure 5-22: Kr_sHAFr comparison among the present tests (maximum, minimum and 
average values), the JRPA #6 (maximum and minimum), and the lACS (maximum and 

minimum for the PC7) 

In Figure 5-23, the maximum torque values from the lACS shown are slightly lower than 

those from the present measurements at the advance coefficient of 0.53, but the average 

or maximum torque values from the JRP A #6 are lower than the most average torque 

values from the present measurements. Although the JRP A #6 model gives 

underestimated torque coefficient values, the trends of lower rps causing higher torque 

values are similar as the findings of this study. 
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Figure 5-23: KQ_SHAFT comparison among the present tests (maximum, minimum and 
average values), the JRPA #6 (maximum and average), and the lACS (maximum for the 

PC7) 

S.S.Discussion of Numerical Results 

5.5.1. Sensitivity Analysis 

In order to verify the sensitivity of the empirical factors to affect the results, various 

empirical factors were used. As explained at [Step.6] in Section 4.4, for ice crushing 

pressure, an empirical factor (EFC) of 4 was used. For ice shearing force, ice reference 

pressure was divided by an empirical factor (EFS) of 4 was used. In this section, 

determination of these empirical factors is explained and the effects of these empirical 

factors on the numerical results are assessed by using sensitivity analyses. 
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5.5.1.1. Empirical Factor for Ice Crushing Pressure (EFC) 

For the present numerical study, the EFC was estimated from Moores (2002) results 

because Moores used EG/AD/S model ice same as present model ice. The compressive 

strength of EG/ AD IS model ice was measured from in-situ test which used the 

compression speed of 0.004 m/s and strain rate is approximately 4x 10-3
. At this strain 

rate, compressive strength is about 2 - 3 MPa. When the strain rates are from 1 to 10, 

compressive strength is about 4.5 - 8 MPa without error bar. As discussed in Section 

3. 7 .1.2, expected strain rate for present tests would be up to 102 Is range, so the 

compressive strength at this strain rate could be reached at 4 times of that of strain rate of 

0.1 -!-. -.......;..-.......;.. _ _.;..._.......;.._.......;.. _ _.;..._.......;.. _ __,__.......;.._-l 

1.E·08 1.E·Ol 1.E·06 1.E·05 U:4J4 1.E·03 1.E·02 1.E·01 1.E+00 1.E+01 1£+02 

Measured Stram Rate [s-1] 

Figure 5-24: EG/AD/S compressive strength with three different temperatures and other 
types of ice from literatures against strain rate (after Moores, 2002) 
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5.5.1.2. Empirical Factor for Ice Shearing Force (EFS) 

Since there were no references for shearing strength against strain rate, EFS was 

estimated from in-situ measurements. During the present model tests, model ice 

properties were measured and shown in Figure 3-2 and Figure 3-3. From the figures, the 

shearing strength was about 25 % to 50 % of the compressive strength. If the strain rate 

increases, shearing strength may be changed. In this thesis, EFS of 1/4 (25 %) was used. 

5.5.1.3. Sensitivity of Empirical Factors 

Sensitivity analyses are carried out with various empirical factors in this section. Three 

different empirical factors for crushing pressure (EFC): 3, 4, and 5 and three different 

those for shearing force (EFS): 1/2, 1/4, and 1/8 are combined. Numerical results are 

compared with experimental results at 35 mm depth of cut. From Figure 5-25 to Figure 

5-29 and from Figure 5-30 to Figure 5-34, differences of shaft thrust and shaft torque 

coefficients between experimental and numerical results are compared respectively . 

.:1Kr_SHAFT and .:1KQ_SHAFT are defined as Equations (5-11) and (5-12) . 

.:1Kr_sHAFT = Kr_SHAFT from experiments- Kr_SHAFT from numerical calculations. (5-11) 

.:1KQ_SHAFT = KQ_SHAFT from experiments- KQ_SHAFT from numerical calculations. (5-12) 

From Figure 5-25 to Figure 5-28, .:1 Kr_sHAFT decreases when the EFC increases or EFS 

decreases. Once the EFC increases, numerical Kr_sHAFT increases because most crushing 

pressure will be acting on the pressure side of the propeller blade if J is less than about 
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0.8 as shown in Figure 5-21 and Figure 3-34. Once the EFS increases, numerical Kr_sHAFr 

decreases because drag on the pressure side increases. 

Figure 5-29 shows ~Kr_sHAFr for 15 mm depth of cut with 180 degrees of azimuthing 

angle. Effect of various empirical factors is not obvious because ice loads may not 

significantly affect the total shaft thrust coefficient due to small ice contact area in 15 mm 

depth of cut case. 

MT_SHAFT at V arlo us Empirical Factors (EFC by 1/EFS), 180 Degrees 
0.4 

0 KT_SHAFT' 3 by 2 
0.3 6. KT_SHAFT' 3 by 8 

+ KT SHAFT' 4 by 4 - KT~SHAFT' 4 by 6 
0.2 <l K T_SHAFT' 4 by 8 

~ ~ 53 0 KT SHAFT' 5 by 2 0 
"-' 0.1 0 KT~SHAFT' 5 by 8 .... I 

~ 0 
0 

-0.1 

-0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 
J 

Figure 5-25: ~Kr_sHAFr at various empirical factors (EFC by 1/EFS) with 180 degrees 
and 35 mrn depth of cut 
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Mr_sHAFT at Various Empirical Factors (EFC by 1/EFS), 150 Degrees 
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Figure 5-26: LlKr_sHAFT at various empirical factors (EFC by 1/EFS) with 150 degrees 
and 35 mm depth of cut 
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Figure 5-27: LlKr_SHAFT at various empirical factors (EFC by 1/EFS) with 120 degrees 
and 35 mm depth of cut 
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Mr_sHAFT at Various Empirical Factors (EFC by 1/EFS), 90 Degrees 
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Figure 5-28: ~Kr_sHAFT at various empirical factors (EFC by l!EFS) with 90 degrees and 
35 mm depth of cut 

MT_SHAFT at Various Empirical Factors (EFC by 1/EFS), 180 Degrees, 15 mm 
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Figure 5-29: ~Kr_SHAFT at various empirical factors (EFC by 1/EFS) with 180 degrees 
and 15 mm depth of cut 
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From Figure 5-30 to Figure 5-33, ~KQ_SHAFrdecreases when the EFC increases or EFS 

increases. Once the EFC increases, numerical KQ_SHAFT slightly increases as compared 

values for 3 by 2 with 5 by 2. Once the EFS increases, numerical Kr_sHAFr sensitively 

increases because shearing forces are directly corresponding to shaft torque. Again, 

values of ~KQ_SHAFr for 15 mm depth of cut with 180 degrees of azimuthing angle do not 

show the effect of various empirical factors clearly because of small ice contact area 

(Figure 5-34). 
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Figure 5-30: ~KQ_SHAFr at various empirical factors (EFC by 1/EFS) with 180 degrees 
and 35 mm depth of cut 

151 



MQ_SHAFT at Various Empirical Factors (EFC by 1/EFS), 150 Degrees 
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Figure 5-31: ~KQ_SHAFT at various empirical factors (EFCby 1/EFS) with 150 degrees 
and 35 mm depth of cut 
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Figure 5-32: ~KQ_SHAFT at various empirical factors (EFC by 1/EFS) with 120 degrees 
and 35 mm depth of cut 
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MQ_SHAFT at Various Empirical Factors (EFC by 1/EFS), 90 Degrees 
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Figure 5-33: L1KQ_SHAFT at various empirical factors (EFC by 1/EFS) with 90 degrees and 
35 mm depth of cut 
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Figure 5-34: L1KQ_SHAFT at various empirical factors (EFC by 1/EFS) with 180 degrees 
and 15 mm depth of cut 
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Figure 5-35 shows Root Mean Square (RMS) of AKr_sHAFT and AKQ_SHAFT for four 

azimuthing angles at 35 mm depth of cut and for 180 of azimuthing angles at 15 mm 

depth of cut with various empirical factors (Equations (5-13) and (5-14)). 

RMS of AKT_SHAFT= 
1 N 2 

-'"" AKT SHAFT i ' N~ -
l 

(5-13) 

(5-14) 

where N is the number of conditions (30). 

For AKT_SHAFT, EFC of 4 seems appropriate. At EFC of 4, 1/EFS of 8 can reach the 

minimum RMS of AKr_sHAFT· For AKQ_SHAFT, l!EFS of 8 shows minimum RMS of 
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Root Mean Square of Mr_sHAFT and MQ_SHAFT at Various Empirical Factors 
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Figure 5-35: RMS of ~KT_SHAFrand ~KQ_SHAFT at Various Empirical Factors (EFCby 
1/EFS) 

As shown in Figure 5-35, the empirical factors used in this thesis may not the best 

combination, but RMS differences for shaft thrust and shaft torque coefficients between 

"4 by 4" and "4 by 8" cases are as small as 0.001 and 0.009, respectively. It is also 

expected that the shearing strength of the model ice at high strain rate such as propeller 

rotating speed can be as small as 13% (1/8 of EFS) of compressive strength measured 

from in-situ tests. 
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Chapter 6 Conclusions 

This thesis provides the results of an investigation for the propeller-ice interaction 

phenomenon through model tests in an ice tank with a model podded propulsor. A 

numerical model has been developed to predict ice loads acting on a propeller during 

propeller-ice interaction and this has been validated with experimental results. For the 

numerical model, a pod, strut, and hub were not considered. In this chapter, some major 

findings from this work are summarized. 

6.1. Conclusions 

In the first chapter, the author hypothesized that the ice loads acting on the propeller 

during propeller-ice interaction consist of separable hydrodynamic loads, inseparable 

hydrodynamic loads, and ice milling loads; ice related loads are the sum of the 

inseparable hydrodynamic loads and ice milling loads. This hypothesis is useful to assess 

individual load components, but this includes several assumptions: 1. Three components 

can be calculated by linear superposition; 2. Separable hydrodynamic loads experienced 
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partially on the blade during the milling period are the same as separable hydrodynamic 

loads from open water condition; 3. Inseparable hydrodynamic loads are calculated by 

using only simplified blockage condition (cavitation or proximity effects are not taken 

into account). Inseparable hydrodynamic loads did not measured separately by using such 

as cavitation tunnel or physical blockage model but these loads were estimated from 

previous results and numerical calculations. Calculated ice related loads and total loads 

have a good agreement with experimental results at lower J (J < 0.4). Inseparable 

hydrodynamic loads from ice blockage (Luznik et al., 1995) also showed reasonable 

values (about 170% of separable hydrodynamic loads). This hypothesis is important 

especially for the milling period because three load components are acting on the blade 

simultaneously. From this hypothesis, it is concluded that the ice milling loads are much 

higher than inseparable hydrodynamic loads or approximated separable hydrodynamic 

loads as shown in Figure 3-39. The ice related loads during the milling period are useful 

to present and understand the propeller-ice interaction loads because the position of the 

propeller blade contacted with ice can be identified. 

6.1.1. Ice Related Loads during Milling Period 

Ice related loads on the blade and shaft were investigated during the milling period. The 

major findings from the ice related loads in the present model tests and numerical model 

are: 
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1. Propeller-ice interaction loads are strongly dependent on the advance coefficient ( J ), 

pitch angle ( fjJ ), and their combinations and they can be determined by using kinematic 

and geometric considerations, as explained in Sections 4.3 and 4.4. As the advance 

coefficient increases, propeller-ice interaction can be explained with three periods as 

below: 

• First period ( 0 < J ~ 0.4 for a 35 mm depth of cut)- the shadowing area starts to 

decrease and the ice milling area on pressure side increases due to the increase in 

the angle of advance, f3 ; 

• Second period ( 0.4 < J ~ 0. 7 for a 35 mm depth of cut)- the ice milling area on 

suction side increases and ice milling loads on the pressure side decrease (the ice 

failure mode partially changes from crushing to shearing on the pressure side) 

due to the decrease in the angle of attack; 

• Third period ( J > 0.7 for a 35 mm depth of cut)- the milling area on the suction 

side increases and the milling area on the pressure side almost disappears. 

As a result, it is concluded that the performance of the propeller during the milling period 

is: 

• Non dimensional coefficients of the ice related loads acting on the shaft and 

blade increase as the advance coefficient ( J ) increase until J reaches certain 

value, which can be determined by the shadowing effect and the angle of attack. 

Once the J goes over the certain value, the shaft and blade thrust start to 

decrease. 
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• As the depth of cut increases, the ice related loads increase. This is because of the 

increase in the contacting area and higher pitch angle at lower blade radii. Deeper 

depth of cut leads to a higher pitch angle, consequently the angle of attack 

increases positively as shown in Figure 3-34. 

• At lower advance coefficient regions (J < 0.1 - 0.2), the ice milling loads are not 

as significant as at higher advance coefficient regions because the shadowing 

effect mainly occurs at low advance coefficient. 

2. From the numerical model, it is assumed that the crushing force during propeller-ice 

interaction is approximately four times the compressive strength from in-situ tests (EFC = 

4), while a shearing force is 25% of the compressive strength from in-situ tests (EFS = 

1/4) as discussed in Section 5.5. Based on the sensitivity analyses for empirical factors in 

Section 5.5, these empirical factors are well matched with experimental results in terms of 

shaft thrust and shaft torque coefficients. For the maximum loads, the crushing force is 

multiplied by weight factor of 6. Effect of azimuthing angle ( lj/) is also taken into 

account by using geometric and kinematic considerations, as explained in Section 4.4. For 

example, the shadowing criteria for the advance and radial distances are V sin(lj/) and 
Zn 

V COS(Ifl) 
---'--- respectively. Most numerical results for non-dimensional force/moment 

Zn 

coefficients show a good agreement with experimental results. 
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3. For the present experimental tests, the average shaft thrust values are almost equal to 

the average blade thrust values, while the average blade torque values are 1. 7 times higher 

than the average shaft torque values. A possible reason is the shaft dynamic effects due to 

the ice torque excitation. 

4. At the advance coefficient of 0.4, which may be a maximum value when a ship 

navigates in ice covered water, the maximum shaft thrust values (separable hydrodynamic 

loads+ ice related loads during the milling period) for 35mm and 15mm depths of cut are 

about 800% and 300%, respectively, of the average shaft thrust value in open water. At 

the same condition, the maximum shaft torque values for 35mm and 15mm depths of cut 

are 1100% and 400%, respectively, of the average shaft torque value in open water. 

5. As the azimuthing angle decreases from 180 to 90 degrees, the shaft/blade thrust 

increase due to the increase in the angle of attack; which can increase the force acting on 

the pressure side of the blade because the ice failure mode can be changed from shearing 

to crushing modes. 

6. For ice related loads during a milling period, the maximum and minimum loads with 

large magnitude from average loads are observed from the experimental results, as shown 

in Table 6-1. For both thrust coefficients, the average values are similar (the shaft thrust 

coefficient is 83 % of blade thrust coefficient) but the maximum shaft thrust coefficients 

can be varied about two times of the variation of the maximum blade thrust coefficients. 

This is because the shaft thrust coefficients can be affected by the ice loads acting on the 

160 



other blades except the key blade even though ice related loads are considered during the 

milling period. For torque coefficients, though blade torque coefficients are 1. 7 times of 

shaft torque coefficients, the variations of the magnitude for maximum and minimum are 

similar. It is noted that the values in Table 6-1 were calculated from ice related loads 

during the milling period; at each milling event, statistics (maximum, minimum and 

average) were compiled and took an average over the total milling events for each 

maximum, minimum and average. 

Table 6-1: Variations of the maximum and minimum about average values at J = 0.4. 

Kr_sHAFr KQ_SHAFf Kr_BLADE KQ_BLADE 

Maximum (%) 489 228 269 210 

Minimum (%) -98 -12 -36 -22 

6.1.2. Total Loads in Ice Covered Water 

For the experimental results, total loads in ice covered water have been calculated by 

general statistics to present the maximum, minimum, and average values. This procedure 

does not take into account the milling period, so the results show a general trend of the 

propeller-ice interaction loads. The major findings are: 

1. Overall trends are similar to those for ice related loads; the magnitudes of most average 

values are similar to those of ice related loads; maximum values for the blade loads are 

slightly different. For the shaft thrust case, the maximum Kr_sHAFr from the total loads is 
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over 6, while the value from the ice related loads is approximately 2. It cannot be 

explained clearly, but the uncertainty related problems may result in. 

2. As the azimuthing angle decreases from 180 to 120 degrees, the unit thrust decreases 

due to the increase in the resistance. When the azimuthing angle is less than 120 degrees, 

the unit thrust increases again, because the reversing wake can push the ice away from the 

pod and strut. 

6.2.Recommendations 

6.2.1. Model test in ice 

1. The model tests were designed for constant milling conditions in pre-sawn ice. Tests in 

level ice would provide more accurate values than those from pre-sawn ice. In order to do 

so, the unit system including strut and sensors should be designed to withstand the level 

ice loads. 

2. In order to distinguish inseparable hydrodynamic loads and ice milling loads, air 

milling tests (with the propeller rotating above the ice, i.e. in the air, and milling the ice at 

the same depth of cut as those of underwater milling) were carried out. The air milling 

test results, however, were not useful because the extensive vibration seemed to disturb 

the sensors when the blade contacted with the ice in air. 
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3. Furthermore, unsteady propeller ice interaction tests need to be designed and tested 

based on the present experimental set up. Propeller interaction with moving ice pieces 

with given size, mass, and shape would be necessary in order to simulate "real" propeller 

ice interaction phenomena. 

4. The shaft dynamic effects need to be studied. From the present experiments, the ratio 

between blade torque and shaft torque is 1.7. It needs to be identified more precisely by 

using shaft dynamic analysis or dynamic calibration. It is noted that the static calibration 

had been carried out and applied to the sensors prior to the tests. 

6.2.2. Numerical prediction of propeller ice interaction loads 

1. For more accurate hydrodynamic load prediction, the present panel method needs to be 

improved. In addition, the hub and cone should be modeled. 

2. If the ice block is modeled, the blockage effect can be more precisely predicted 

because the blockage effect is varied depending on the gap between the ice and propeller. 

3. Consideration of cavitation would be important since cavitation in blocked flow can 

occur even at atmospheric pressure. 

4. In order to avoid using empirical factors or weight factors, the mechanics of damage 

and fracture of ice needs to be studied and implemented especially at high strain rate. 
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Appendix A Example of Input Data for 

DANRAcode 

RUN number: 392-406: various azimuthing angles (180- 60 degrees), tractor mode, 

presawn ice, depth of cut of 35 mm 

RUN number: 410- 424: various azimuthing angles (180- 60 degrees), tractor mode, 

pack ice condition, depth of cut of 35 mm 

RUN number: 435-445: various azimuthing angles (180- 150 degrees), tractor mode, 

presawn ice, depth of cut of 15 mm, repeated in three times 
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Run Number Tare for Blade Dynamometer (Bollard Condition) 
Fx Fy Fz Mx My 

&R392 tO= 392 ,tl= 25.1 ,t2= 48.9 ,t3= -12 ,t4= 3.01 ,t5= -1.8 
&R393 tO= 393 ,tl= 42.3 ,t2= 67.4 ,t3= -99 ,t4= 5 ,t5= -2.4 
&R394 tO= 394 ,tl= 78.3 ,t2= 106 ,t3= -278 ,t4= 9.4 ,t5= -3.7 
&R395 tO= 395 ,tl= 25.3 ,t2= 50.3 ,t3= -8.4 ,t4= 3.13 ,t5= -1.8 
&R396 tO= 396 ,tl= 42.3 ,t2= 68.8 ,t3= -101 ,t4= 5.14 ,t5= -2.4 
&R397 tO= 397 ,tl= 78.6 ,t2= 108 ,t3= -279 ,t4= 9.58 ,t5= -3.7 
&R398 tO= 398 ,tl= 25.5 ,t2= 51.5 ,t3= -9.9 ,t4= 3.21 ,t5= -1.9 
&R399 tO= 399 ,tl= 42.5 ,t2= 69.6 ,t3= -95 ,t4= 5.25 ,t5= -2.5 
&R400 tO= 400 ,tl= 68.3 ,t2= 72.2 ,t3= -272 ,t4= 5.28 ,t5= -2.8 
&R401 tO= 401 ,tl= 24.7 ,t2= 50.4 ,t3= -9.6 ,t4= 3.07 ,t5= -1.8 
&R402 tO= 402 ,tl= 41.5 ,t2= 68.6 ,t3= -91 ,t4= 5.14 ,t5= -2.4 
&R403 tO= 403 ,tl= 70.9 ,t2= 77.9 ,t3= -271 ,t4= 5.83 ,t5= -3 
&R404 tO= 404 ,tl= 24.8 ,t2= 50.2 ,t3= -8.2 ,t4= 3.02 ,t5= -1.8 
&R405 tO= 405 ,tl= 41.2 ,t2= 68.5 ,t3= -96 ,t4= 5.1 ,t5= -2.4 
&R406 tO= 406 ,tl= 77.3 ,t2= 98.2 ,t3= -273 ,t4= 8.18 ,t5= -3.6 
&R410 tO= 410 ,tl= 24.9 ,t2= 50.4 ,t3= -8.7 ,t4= 3.06 ,t5= -1.8 
&R411 tO= 411 ,tl= 40.3 ,t2= 60.7 ,t3= -97 ,t4= 3.98 ,t5= -2.3 
&R412 tO= 412 ,tl= 77.6 ,t2= 107 ,t3= -277 ,t4= 9.39 ,t5= -3.7 
&R413 tO= 413 ,tl= 24.8 ,t2= 51.6 ,t3= -14 ,t4= 3.15 ,t5= -1.8 
&R414 tO= 414 ,tl= 41.2 ,t2= 64.1 ,t3= -97 ,t4= 4.42 ,t5= -2.4 
&R415 tO= 415 ,tl= 76 ,t2= 92.1 ,t3= -273 ,t4= 7.35 ,t5= -3.5 
&R416 tO= 416 ,tl= 25 ,t2= 51.6 ,t3= -13 ,t4= 3.14 ,t5= -1.8 
&R418 tO= 418 ,tl= 42 ,t2= 69.1 ,t3= -99 ,t4= 5.09 ,t5= -2.4 
&R419 tO= 419 ,tl= 72.1 ,t2= 81.7 ,t3= -273 ,t4= 6.2 ,t5= -3.1 
&R420 tO= 420 ,tl= 24.4 ,t2= 49.8 ,t3= -5.4 ,t4= 2.96 ,t5= -1.8 
&R421 tO= 421 ,tl= 41.1 ,t2= 68.5 ,t3= -99 ,t4= 5.03 ,t5= -2.4 
&R422 tO= 422 ,tl= 68.7 ,t2= 74.6 ,t3= -272 ,t4= 5.44 ,t5= -2.8 
&R423 tO= 423 ,tl= 24.3 ,t2= 51.2 ,t3= -14 ,t4= 3.1 ,t5= -1.8 
&R424 tO= 424 ,tl= 40.7 ,t2= 65.1 ,t3= -98 ,t4= 4.61 ,t5= -2.4 
&R435 tO= 435 ,tl= 25.6 ,t2= 50.2 ,t3= -0.6 ,t4= 3.1 ,t5= -1.8 
&R436 tO= 436 ,tl= 42.6 ,t2= 68.1 ,t3= -88 ,t4= 5.08 ,t5= -2.4 
&R437 tO= 437 ,tl= 26 ,t2= 50.8 ,t3= -3.2 ,t4= 3.15 ,t5= -1.8 
&R438 tO= 438 ,tl= 42.8 ,t2= 68.1 ,t3= -89 ,t4= 5.06 ,t5= -2.4 
&R439 tO= 439 ,tl= 25.9 ,t2= 50.7 ,t3= -4 ,t4= 3.12 ,t5= -1.8 
&R440 tO= 440 ,tl= 42.7 ,t2= 68.8 ,t3= -89 ,t4= 5.15 ,t5= -2.4 
&R441 tO= 441 ,tl= 25.6 ,t2= 50.4 ,t3= -5.6 ,t4= 3.07 ,t5= -1.8 
&R442 tO= 442 ,tl= 42.1 ,t2= 64.4 ,t3= -92 ,t4= 4.5 ,t5= -2.4 
&R443 tO= 443 ,tl= 25.3 ,t2= 51 ,t3= -10 ,t4= 3.11 ,t5= -1.8 
&R444 tO= 444 ,tl= 43 ,t2= 68.7 ,t3= -92 ,t4= 5.12 ,t5= -2.4 
&R445 tO= 445 ,tl= 26.3 ,t2= 50.6 ,t3= -4.5 ,t4= 3.1 ,t5= -1.8 
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Total Time 
Tare for Shaft Thrust 

RPS am start 
and Shaft torque (Bollard) 

Mz sec T Q rps angle 
&R392 ,t6= 1.12 ,t7= 103 ,t8= 500 ,t9= -2.2 ,t10= 5 ,tll= 216 
&R393 ,t6= 1.58 ,t7= 79 ,t8= 433 ,t9= -4.6 ,tlO= 7 ,t11= 216 
&R394 ,t6= 2.54 ,t7= 103 ,t8= 281 ,t9= -9.7 ,t10= 10 ,t11= 216 
&R395 ,t6= 1.1 ,t7= 71 ,t8= 492 ,t9= -2.3 ,t10= 5 ,t11= 216 
&R396 ,t6= 1.6 ,t7= 111 ,t8= 425 ,t9= -4.7 ,t10= 7 ,t11= 216 
&R397 ,t6= 2.66 ,t7= 79 ,t8= 271 ,t9= -9.9 ,t10= 10 ,t11= 216 
&R398 ,t6= 1.18 ,t7= 77 ,t8= 488 ,t9= -2.4 ,tlO= 5 ,t11= 216 
&R399 ,t6= 1.66 ,t7= 103 ,t8= 420 ,t9= -4.8 ,t10= 7 ,t11= 216 
&R400 ,t6= 2.17 ,t7= 93 ,t8= 399 ,t9= -6.8 ,t10= 10 ,t11= 216 
&R401 ,t6= 1.09 ,t7= 82 ,t8= 492 ,t9= -2.3 ,t10= 5 ,t11= 216 
&R402 ,t6= 1.65 ,t7= 91 ,t8= 427 ,t9= -4.6 ,t10= 7 ,t11= 216 
&R403 ,t6= 2.42 ,t7= 88 ,t8= 381 ,t9= -7.5 ,tlO= 10 ,t11= 216 
&R404 ,t6= 1.12 ,t7= 84 ,t8= 492 ,t9= -2.2 ,t10= 5 ,t11= 216 
&R405 ,t6= 1.65 ,t7= 81 ,t8= 426 ,t9= -4.6 ,t10= 7 ,t11= 216 
&R406 ,t6= 2.82 ,t7= 87 ,t8= 310 ,t9= -9.4 ,t10= 10 ,t11= 216 
&R410 ,t6= 1.13 ,t7= 64 ,t8= 496 ,t9= -2.2 ,t10= 5 ,t11= 216 
&R411 ,t6= 1.63 ,t7= 76 ,t8= 462 ,t9= -4 ,t10= 7 ,t11= 216 
&R412 ,t6= 2.7 ,t7= 74 ,t8= 279 ,t9= -9.6 ,t10= 10 ,t11= 216 
&R413 ,t6= 1.16 ,t7= 72 ,t8= 489 ,t9= -2.3 ,t10= 5 ,t11= 216 
&R414 ,t6= 1.68 ,t7= 73 ,t8= 440 ,t9= -4.5 ,t10= 7 ,t11= 216 
&R415 ,t6= 2.73 ,t7= 73 ,t8= 320 ,t9= -9.5 ,tlO= 10 ,t11= 216 
&R416 ,t6= 1.17 ,t7= 69 ,t8= 490 ,t9= -2.3 ,tlO= 5 ,t11= 216 
&R418 ,t6= 1.67 ,t7= 89 ,t8= 427 ,t9= -4.6 ,tlO= 7 ,t11= 216 
&R419 ,t6= 2.5 ,t7= 71 ,t8= 366 ,t9= -8 ,tlO= 10 ,t11= 216 
&R420 ,t6= 1.19 ,t7= 67 ,t8= 495 ,t9= -2.2 ,t10= 5 ,t11= 216 
&R421 ,t6= 1.65 ,t7= 69 ,t8= 427 ,t9= -4.6 ,t10= 7 ,tll= 216 
&R422 ,t6= 2.3 ,t7= 79 ,t8= 400 ,t9= -6.6 ,t10= 10 ,t11= 216 
&R423 ,t6= 1.17 ,t7= 72 ,t8= 491 ,t9= -2.2 ,t10= 5 ,tll= 216 
&R424 ,t6= 1.69 ,t7= 73 ,t8= 438 ,t9= -4.4 ,t10= 7 ,t11= 216 
&R435 ,t6= 0.98 ,t7= 66 ,t8= 507 ,t9= -2.3 ,tlO= 5 ,tll= 196 
&R436 ,t6= 1.5 ,t7= 65 ,t8= 441 ,t9= -4.6 ,t10= 7 ,t11= 196 
&R437 ,t6= 0.97 ,t7= 69 ,t8= 503 ,t9= -2.3 ,t10= 5 ,t11= 196 
&R438 ,t6= 1.51 ,t7= 72 ,t8= 440 ,t9= -4.6 ,t10= 7 ,tll= 196 
&R439 ,t6= 1 ,t7= 62 ,t8= 503 ,t9= -2.3 ,tlO= 5 ,t11= 196 
&R440 ,t6= 1.53 ,t7= 87 ,t8= 437 ,t9= -4.7 ,t10= 7 ,t11= 196 
&R441 ,t6= 1.02 ,t7= 68 ,t8= 506 ,t9= -2.2 ,tlO= 5 ,t11= 196 
&R442 ,t6= 1.55 ,t7= 76 ,t8= 456 ,t9= -4.3 ,tlO= 7 ,tll= 196 
&R443 ,t6= 1.07 ,t7= 81 ,t8= 504 ,t9= -2.3 ,t10= 5 ,t11= 196 
&R444 ,t6= 1.58 ,t7= 75 ,t8= 438 ,t9= -4.6 ,tlO= 7 ,t11= 196 
&R445 ,t6= 1 ,t7= 69 ,t8= 504 ,t9= -2.3 ,t10= 5 ,tll= 196 
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amend 
Azimuthing 

Data Range (data point) 
Carriage 

angle speed 
degree start data finish data (1st data set) 

&R392 ,t12= 111 ,t13= 180 ,t14= 548 ,t15= 840 ,t16= 0.5 
&R393 ,t12= 111 ,t13= 179 ,t14= 254 ,t15= 461 ,t16= 0.2 
&R394 ,t12= 111 ,tl3= 179 ,t14= 4 ,t15= 150 ,t16= 0.2 
&R395 ,tl2= 111 ,tl3= 150 ,t14= 640 ,t15= 933 ,t16= 0.5 
&R396 ,t12= 111 ,tl3= 150 ,t14= 108 ,t15= 317 ,t16= 0.2 
&R397 ,t12= 111 ,t13= 150 ,tl4= 257 ,t15= 403 ,t16= 0.2 
&R398 ,t12= 111 ,tl3= 120 ,t14= 330 ,t15= 622 ,t16= 0.2 
&R399 ,t12= 111 ,t13= 120 ,t14= 583 ,t15= 792 ,t16= 0.2 
&R400 ,tl2= 111 ,t13= 120 ,tl4= 466 ,t15= 761 ,t16= 0.2 
&R401 ,tl2= 111 ,tl3= 90 ,t14= 487 ,t15= 779 ,t16= 0.2 
&R402 ,t12= 111 ,t13= 89.4 ,t14= 276 ,t15= 485 ,t16= 0.2 
&R403 ,t12= 111 ,t13= 89.4 ,t14= 326 ,t15= 472 ,t16= 0.2 
&R404 ,t12= 111 ,t13= 60 ,t14= 328 ,t15= 621 ,t16= 0.2 
&R405 ,t12= 111 ,tl3= 60.1 ,t14= 573 ,t15= 782 ,t16= 0.2 
&R406 ,t12= 111 ,t13= 60.6 ,t14= 148 ,t15= 294 ,t16= 0.2 
&R410 ,t12= 111 ,t13= 180 ,tl4= 679 ,t15= 972 ,t16= 0.5 
&R411 ,t12= 111 ,t13= 180 ,t14= 337 ,t15= 546 ,t16= 0.5 
&R412 ,t12= 111 ,tl3= 180 ,t14= 30 ,t15= 175 ,t16= 0.5 
&R413 ,tl2= 111 ,t13= 150 ,tl4= 234 ,t15= 527 ,t16= 0.5 
&R414 ,t12= 111 ,t13= 150 ,t14= 450 ,t15= 658 ,t16= 0.2 
&R415 ,tl2= 111 ,t13= 150 ,t14= 114 ,t15= 260 ,t16= 0.2 
&R416 ,tl2= 111 ,t13= 120 ,tl4= 84 ,t15= 377 ,t16= 0.2 
&R418 ,t12= 111 ,t13= 120 ,tl4= 112 ,t15= 320 ,t16= 0.2 
&R419 ,t12= 111 ,tl3= 120 ,t14= 484 ,t15= 630 ,t16= 0.2 
&R420 ,tl2= 111 ,t13= 90 ,t14= 56 ,t15= 348 ,t16= 0.2 
&R421 ,t12= 111 ,tl3= 89.4 ,t14= 700 ,t15= 909 ,t16= 0.2 
&R422 ,tl2= 111 ,t13= 89.4 ,t14= 423 ,t15= 569 ,t16= 0.2 
&R423 ,tl2= 111 ,tl3= 60 ,t14= 559 ,t15= 853 ,t16= 0.2 
&R424 ,t12= 111 ,tl3= 60.4 ,t14= 531 ,t15= 740 ,t16= 0.2 
&R435 ,t12= 127 ,tl3= 180 ,t14= 637 ,t15= 830 ,t16= 0.5 
&R436 ,t12= 127 ,t13= 180 ,t14= 435 ,t15= 572 ,t16= 0.5 
&R437 ,tl2= 127 ,t13= 180 ,tl4= 236 ,t15= 429 ,t16= 0.5 
&R438 ,tl2= 127 ,t13= 180 ,t14= 59 ,t15= 195 ,t16= 0.5 
&R439 ,t12= 127 ,t13= 150 ,t14= 519 ,t15= 712 ,t16= 0.5 
&R440 ,t12= 127 ,t13= 151 ,t14= 128 ,t15= 264 ,t16= 0.5 
&R441 ,t12= 127 ,t13= 180 ,t14= 275 ,t15= 468 ,t16= 0.5 
&R442 ,t12= 127 ,t13= 180 ,t14= 248 ,t15= 385 ,t16= 0.5 
&R443 ,t12= 127 ,t13= 150 ,t14= 109 ,t15= 301 ,t16= 0.5 
&R444 ,t12= 127 ,t13= 150 ,t14= 139 ,t15= 276 ,t16= 0.5 
&R445 ,t12= 127 ,t13= 150 ,t14= 937 ,t15= 1129 ,t16= 0.5 
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1st data set (time) Carriage 
2"d data set (time) 

speed 
start end (2"d data set) start end 

&R392 ,t17= 61 ,t18= 67 ,t19= 0.8 ,t20= 69 ,t21= 75 
&R393 ,t17= 36 ,t18= 45 ,t19= 0.5 ,t20= 47 ,t21= 54 
&R394 ,t17= 41 ,t18= 51 ,t19= 0.5 ,t20= 55 ,t21= 61 
&R395 ,t17= 28 ,t18= 34 ,t19= 0.8 ,t20= 36 ,t21= 42 
&R396 ,t17= 37 ,t18= 43 ,t19= 0.5 ,t20= 45 ,t21= 51 
&R397 ,t17= 32 ,tl8= 44 ,t19= 0.5 ,t20= 46 ,t21= 53 
&R398 ,t17= 25 ,t18= 37 ,t19= 0.5 ,t20= 39 ,t21= 46 
&R399 ,t17= 34 ,t18= 43 ,t19= 0.5 ,t20= 45 ,t21= 52 
&R400 ,t17= 31 ,t18= 42 ,t19= 0.5 ,t20= 45 ,t21= 51 
&R401 ,t17= 25 ,t18= 37 ,t19= 0.5 ,t20= 39 ,t21= 46 
&R402 ,t17= 29 ,t18= 40 ,t19= 0.5 ,t20= 42 ,t21= 49 
&R403 ,t17= 28 ,t18= 39 ,t19= 0.5 ,t20= 42 ,t21= 48 
&R404 ,t17= 27 ,t18= 38 ,t19= 0.5 ,t20= 41 ,t21= 47 
&R405 ,t17= 29 ,t18= 40 ,t19= 0.5 ,t20= 43 ,t21= 49 
&R406 ,t17= 32 ,t18= 42 ,t19= 0.5 ,t20= 45 ,t21= 51 
&R410 ,tl7= 25 ,t18= 31 ,t19= 0.8 ,t20= 33 ,t21= 39 
&R411 ,t17= 31 ,tl8= 36 ,t19= 0.8 ,t20= 39 ,t21= 44 
&R412 ,t17= 29 ,t18= 34 ,t19= 0.2 ,t20= 46 ,t21= 50 
&R413 ,t17= 28 ,t18= 33 ,t19= 0.2 ,t20= 45 ,t21= 48 
&R414 ,t17= 36 ,t18= 46 ,t19= 0.5 ,t20= 48 ,t21= 54 
&R415 ,t17= 28 ,t18= 39 ,t19= 0.5 ,t20= 42 ,t21= 48 
&R416 ,t17= 28 ,t18= 38 ,t19= 0.5 ,t20= 40 ,t21= 47 
&R418 ,t17= 47 ,t18= 56 ,t19= 0.5 ,t20= 59 ,t21= 65 
&R419 ,t17= 30 ,t18= 40 ,t19= 0.5 ,t20= 42 ,t21= 49 
&R420 ,t17= 29 ,t18= 41 ,t19= 0.5 ,t20= 43 ,t21= 49 
&R421 ,t17= 32 ,t18= 42 ,t19= 0.5 ,t20= 44 ,t21= 50 
&R422 ,t17= 35 ,t18= 45 ,t19= 0.5 ,t20= 48 ,t21= 54 
&R423 ,t17= 28 ,t18= 37 ,t19= 0.5 ,t20= 40 ,t21= 45 
&R424 ,t17= 32 ,t18= 41 ,t19= 0.5 ,t20= 44 ,t21= 50 
&R435 ,tl7= 26 ,tl8= 31 ,t19= 0.8 ,t20= 34 ,t21= 39 
&R436 ,t17= 29 ,t18= 34 ,t19= 0.8 ,t20= 37 ,t21= 42 
&R437 ,t17= 32 ,t18= 37 ,t19= 0.8 ,t20= 39 ,t21= 44 
&R438 ,t17= 32 ,t18= 36 ,t19= 0.8 ,t20= 40 ,t21= 44 
&R439 ,t17= 27 ,t18= 32 ,t19= 0.8 ,t20= 35 ,t21= 40 
&R440 ,t17= 35 ,t18= 40 ,t19= 0.8 ,t20= 30 ,t21= 32 
&R441 ,t17= 33 ,t18= 38 ,t19= 0.8 ,t20= 41 ,t21= 46 
&R442 ,t17= 33 ,t18= 38 ,t19= 0.8 ,t20= 41 ,t21= 46 
&R443 ,t17= 37 ,t18= 43 ,t19= 0.8 ,t20= 45 ,t21= 50 
&R444 ,t17= 31 ,t18= 37 ,t19= 0.8 ,t20= 39 ,t21= 44 
&R445 ,t17= 34 ,t18= 39 ,t19= 0.8 ,t20= 42 ,t21= 47 
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Carriage speed 3rd data set (time) 
(3rd data set) start end 

&R392 ,t22= 0.2 ,t23= 79 ,t24= 83 &end 
&R393 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R394 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R395 ,t22= 0.2 ,t23= 45 ,t24= 50 &end 
&R396 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R397 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R398 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R399 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R400 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R401 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R402 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R403 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R404 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R405 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R406 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R410 ,t22= 0.2 ,t23= 43 ,t24= 47 &end 
&R411 ,t22= 0.2 ,t23= 48 ,t24= 52 &end 
&R412 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R413 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R414 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R415 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R416 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R418 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R419 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R420 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R421 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R422 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R423 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R424 ,t22= 0 ,t23= 0 ,t24= 0 &end 
&R435 ,t22= 0.2 ,t23= 43 ,t24= 47 &end 
&R436 ,t22= 0.2 ,t23= 46 ,t24= 50 &end 
&R437 ,t22= 0.2 ,t23= 49 ,t24= 52 &end 
&R438 ,t22= 0.2 ,t23= 49 ,t24= 52 &end 
&R439 ,t22= 0.2 ,t23= 44 ,t24= 48 &end 
&R440 ,t22= 0.2 ,t23= 43 ,t24= 48 &end 
&R441 ,t22= 0.2 ,t23= 50 ,t24= 54 &end 
&R442 ,t22= 0.2 ,t23= 50 ,t24= 54 &end 
&R443 ,t22= 0.2 ,t23= 55 ,t24= 59 &end 
&R444 ,t22= 0.2 ,t23= 49 ,t24= 53 &end 
&R445 ,t22= 0.2 ,t23= 51 ,t24= 55 &end 
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Appendix B Separable Hydrodynamic L 

oads (Experimental Results in Open Wa 

ter) 

Experimental results for the separable hydrodynamic loads are shown including unit 

thrust, transverse/vertical force on unit, shaft thrust/torque and blade thrust/torque with 

maximum, minimum, and average in tractor mode at the azimuthing angle of 180 degrees. 

The results are plotted with non-dimensional coefficients. 
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Figure B-1: Kr_VNIT vs. J at an azimuthing angle of 180 degrees in open water 
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Figure B-2: KT_GFY vs. J at an azimuthing angle of 180 degrees in open water 
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Figure B-3: KT_GFzVS. J at an azimuthing angle of 180 degrees in open water 
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Figure B-4: KT_SHAFT vs. J at an azimuthing angle of 180 degrees in open water 
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Figure B-5: KQ_SHAFT vs. J at an azimuthing angle of 180 degrees in open water 
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KT_BLADE' Tractor Mode, 180 Azimuthing Angle 
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Figure B-6: Kr_BLADE vs. J at an azimuthing angle of 180 degrees in open water 
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Figure B-7: KQ_BLADE vs. J at an azimuthing angle of 180 degrees in open water 
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B.l. Separable Hydrodynamic Loads at Various 

Azimuthing Angles 

Experimental results for the average separable hydrodynamic loads are shown including 

unit thrust, transverse/vertical force on unit, shaft thrust/torque and blade thrust/torque in 

tractor mode at various azimuthing angles (180- 60 degrees). The results are plotted with 

non-dimensional coefficients. 
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Figure B-8: Kr_vNrr vs. J at various azimuthing angles (180-120 degrees) in open water 
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Figure B-9: Kr_UNIT vs. J at various azimuthing angles (90-30 degrees) in open water 
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Figure B-10: Kr_GFY vs. J at various azimuthing angles (180-120 degrees) in open water 
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Figure B-17: Kr_BLADE vs. J at various azimuthing angles (180-120 degrees) in open 
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Figure B-18: Kr_BLADE vs. J at various azimuthing angles (90-30 degrees) in open water 
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Figure B-20: KQ_BLADE vs. J at various azimuthing angles (90-30 degrees) in open water 
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B.2. Performance Characteristics in Open Water at 

Various Azimuthing Angles 

Experimental results for the average separable hydrodynamic loads are shown including 

unit thrust, shaft thrust/torque, and efficiency on the shaft in tractor mode at various 

azimuthing angles (180-60 degrees). The results are plotted with non-dimensional 

coefficients 
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Figure B-21: Open water characteristics for tractor mode at 180° azimuthing angle 
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Figure B-22: Open water characteristics for tractor mode at 150° azimuthing angle 
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Figure B-23: Open water characteristics for tractor mode at 120° azimuthing angle 
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Appendix C Ice Related Loads (Experim 

ental Results in Ice Covered Water) 

Experimental results for the ice related loads are shown including shaft thrust/torque and 

blade thrust/torque with maximum, minimum, and average in tractor mode at the 

azimuthing angle of 180 degrees and depth of cut of 35 mm. The results are plotted with 

non-dimensional coefficients with error bars, which represent the confidence level of 

95%. 
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Figure C-1: Kr_sHAFT vs. J, maximum-average-minimum ice related loads with error bars 
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C.l. Average Ice Related Loads at Various Azimuthing 

Angles (35mm Depth of Cut) 

Experimental results for the average ice related loads are shown including shaft 

thrust/torque and blade thrust/torque, and blade in plane bending moment/out of plane 

bending moment/ spindle torque in tractor mode at various azimuthing angles ( 180-60 

degrees). The results are plotted with non-dimensional coefficients. 

KT_SHAFT' Ice Related Loads, Average 

~ ~ ......---

• 180 / ~ ,~ --A-- 150 

0.45 

0.4 

0.35 

0.3 

0.25 
t: 

-·--T·-·- 120 
0 90 

v ~ 
, 150j 

=; 0.2 
Cl:l 

/ ~ 
, 

_ .... __ 60 l 
/, ~==-

,.,· 
~··-' 0.15 

0.1 

0.05 

0 

-0.05 

, 
~~-· ~ ~,·{~ 
~ ..... ~..,.~ ~- t---

~ 

"0'10.05 0.1 0.15 0.2 

-~, 

0.25 0.3 
J 

.. .............. 
0.35 0.4 0.45 0.5 0.55 

Figure C-8: KT_SHAFr vs. J, average ice related loads at various azimuthing angles (180-
60 degrees) 
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Figure C-9: KQ_SHAFT vs. J, average ice related loads at various azimuthing angles (180 -
60 degrees) 
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Figure C-10: Kr_BLADE vs. J, average ice related loads at various azimuthing angles (180-
60 degrees) 
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Figure C-12: KM_IPLANE vs. J, average ice related loads at various azimuthing angles ( 180 
- 60 degrees) 
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Figure C-14: KQ_SPINDLE vs. J, average ice related loads at various azirnuthing angles (180 
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C.2. Maximum Ice Related Loads at Various 

Azimuthing Angles (35 mm Depth of Cut) 

Experimental results for the maximum ice related loads are shown including shaft 

thrusUtorque and blade thrusUtorque, and blade in plane bending momenUout of plane 

bending momenU spindle torque in tractor mode at various azimuthing angles (180-60 

degrees). The results are plotted with non-dimensional coefficients. 
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Figure C-15: Kr_sHAFr vs. J, maximum ice related loads at various azimuthing angles (180 
- 60 degrees) 
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Figure C-17: KT_BLADE vs. J, maximum ice related loads at various azimuthing angles 
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Figure C-18: KQ_BLADE vs. J, maximum ice related loads at various azimuthing angles 
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K M_OPLANE' Ice Related Loads,N egative Maximum 
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Figure C-20: KM_OPLANE vs. J, negative maximum ice related loads at various azimuthing 
angles (180- 60 degrees) 
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Figure C-21: KQ_SPINDLE vs. J, maximum ice related loads at various azimuthing angles 
(180- 60 degrees) 
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C.3. Average Ice Related Loads at Various Azimuthing 

Angles (15mm Depth of Cut, Repeat Runs) 

Experimental results for the average ice related loads are shown including shaft 

thrust/torque and blade thrust/torque, and blade in plane bending moment/out of plane 

bending moment/ spindle torque in tractor mode at various azimuthing angles ( 180-60 

degrees). Tests were repeated three times in 15mm depth of cut. The results are plotted 

with non-dimensional coefficients. 
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Figure C-22: Kr_sHAFr vs. J, average ice related loads at 15mm depth of cut (repeated) 
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KQ_SHAFT' Ice Related Loads, 180 Azimuthing Angle, Repeat Runs (15mm) 
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Figure C-23: KQ_SHAFT vs. J, average ice related loads at 15mm depth of cut (repeated) 
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Figure C-24: Kr_BLADE vs. J, average ice related loads at 15mm depth of cut (repeated) 
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KQ_BLADE' Ice Related Loads, 180 Azirnuthing Angle, Repeat Runs (15rnrn) 
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Figure C-25: KQ_BLADE vs. J, average ice related loads at 15mm depth of cut (repeated) 
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Figure C-26: KM_IPLANE vs. J, average ice related loads at 15mm depth of cut (repeated) 
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KM_OPLANE' Ice Related Loads, 180 Azimuthing Angle, Repeat Runs (15mm) 
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Figure C-27: KM_OPLANE vs. J, average ice related loads at 15mm depth of cut (repeated) 
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Figure C-28: KQ_SPINDLE vs. J, average ice related loads at 15mm depth of cut (repeated) 
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AppendixD Total Loads (Experimental 

Results in Ice Covered Water) 

Experimental results for total loads in ice covered water are shown including unit thrust, 

transverse/vertical force on unit, shaft thrust/torque and blade thrust/torque with 

maximum, minimum, and average in tractor mode at the azimuthing angle of 180 degrees. 

The results are plotted with non-dimensional coefficients. 
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Figure D-1: Kr_uNIT vs. J, an azimuthing angle of 180 degrees in ice covered water 
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KT_GFY' Total Loads in Ice Covered Water, Tractor Mode, 180 Azimuthing Angle 
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Figure D-2: Kr_oFY vs. J at an azimuthing angle of 180 degrees in ice covered water 
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Figure D-3: Kr_GFzVS. J at an azimuthing angle of 180 degrees in ice covered water 
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Kr_sHAFT' Total Loads in Ice Covered Water, Tractor Mode, 180 Azimuthing Angle 
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Figure D-4: Kr_sHAFT vs. J at an azimuthing angle of 180 degrees in ice covered water 
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Figure D-5: KQ_SHAFT vs. J at an azimuthing angle of 180 degrees in ice covered water 
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Kr_BLADE' Total Loads in Ice Covered Water, Tractor Mode, 180 Azimuthing Angle 
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Figure D-6: Kr_BLADE vs. J at an azirnuthing angle of 180 degrees in ice covered water 
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Figure D-7: KQ_BLADE vs. J at an azirnuthing angle of 180 degrees in ice covered water 
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D.l. Total Loads at Various Azimuthing Angles 

Experimental results for the average total loads in ice covered water are shown including 

unit thrust, transverse/vertical force on unit, shaft thrust/torque and blade thrust/torque in 

tractor mode at various azimuthing angles (180-60 degrees). The results are plotted with 

non-dimensional coefficients. 
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Figure D-8: Kr_VNIT vs. J at an azimuthing angle of 180- 60 degrees in ice covered water 
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KT_GFY' Average, Total Loads in Ice Covered Water, 3Srnrn, Tractor Mode 
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Figure D-9: KT_GFY vs. J at an azimuthing angle of 180 - 60 degrees in ice covered water 
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Figure D-10: KT_GFZ vs. J at an azimuthing angle of 180-60 degrees in ice covered 
water 
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KT_SHAFT' Average, Total Loads in Ice Covered Water 35mm, Tractor Mode 
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Figure D-11: Kr_SHAFT vs. J at an azimuthing angle of 180-60 degrees in ice covered 
water 
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Figure D-12: KQ_SHAFT vs. J at an azimuthing angle of 180-60 degrees in ice covered 
water 
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KT_BLADE' Average, Total Loads in Ice Covered Water 35mm, Tractor Mode 
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Figure D-13: KT_BLADE vs. J at an azimuthing angle of 180-60 degrees in ice covered 
water 
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Figure D-14: KQ_BLADE vs. J at an azimuthing angle of 180 - 60 degrees in ice covered 
water 
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D.2. Ice Covered water Characteristics for Tractor 

Mode with Varied Azimuthing Angles 

Experimental results for the average total loads in ice covered water are shown including 

shaft thrust/torque and efficiency on the shaft in tractor mode at various azimuthing 

angles (180-60 degrees). The results are plotted with non-dimensional coefficients. 
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Figure D-15: Ice covered water characteristics for a tractor mode at an azimuthing angle 
of 180 degrees 
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Average, Ice Covered Water, Tractor Mode, 150 Azimuthing Angle 
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Figure D-16: Ice covered water characteristics for a tractor mode at an azimuthing angle 
of 150 degrees 
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Figure D-17: Ice covered water characteristics for a tractor mode at an azimuthing angle 
of 120 degrees 
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Average, Ice Covered Water, Tractor Mode, 90 Azimuthing Angle 
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Figure D-18: Ice covered water characteristics for a tractor mode at an azimuthing angle 
of 90 degrees 
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Figure D-19: Ice covered water characteristics for a tractor mode at an azimuthing angle 
of 60 degrees 
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AppendixE Maximum Ice Related 

Loads from PROPICE 

Numerical results for the maximum ice related loads are shown including shaft 

thrust/torque and blade thrust/torque in tractor mode at various azimuthing angles. The 

results are plotted with non-dimensional coefficients. 
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Figure E-1: Maximum Kr_sHAFr comparison (ice related loads, azimuthing angle of 180 
degrees, 35 mm depth of cut) 
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Maximim KT_SHAFT' Ice Related Loads, Tractor Mode, 150 Azimuthing Angle 
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Figure E-2: Maximum Kr_SHAFr comparison (ice related loads, azimuthing angle of 150 
degrees, 35 mm depth of cut) 
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Figure E-3: Maximum Kr_SHAFr comparison (ice related loads, azimuthing angle of 120 
degrees, 35 mm depth of cut) 
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Maximum Kr_sHAFT' Ice Related Loads, Tractor Mode, 90 Azimuthing Angle 
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Figure E-4: Maximum Kr_SHAFr comparison (ice related loads, azimuthing angle of 120 
degrees, 35 mm depth of cut) 
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Figure E-5: Maximum 10KQ_SHAFr comparison (ice related loads, azimuthing angle of 180 
degrees, 35 mm depth of cut) 
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Maximum 10KQ_SHAFT' Ice Related Loads, Tractor Mode, 150 Azimuthing Angle 
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Figure E-6: Maximum lOKQ_SHAFr comparison (ice related loads, azimuthing angle of 150 
degrees, 35 mm depth of cut) 
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Figure E-7: Maximum lOKQ_SHAFf comparison (ice related loads, azimuthing angle of 120 
degrees, 35 mm depth of cut) 
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Maximum lOKQ_SHAFT' Ice Related Loads, Tractor Mode, 90 Azimuthing Angle 
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Figure E-8: Maximum lOKQ_SHAFT comparison (ice related loads, azimuthing angle of 120 
degrees, 35 mm depth of cut) 
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