
The University of Chicago

Uneven Sampling and the Analysis of Vocal Performance Constraints.
Author(s): David R. Wilson, Pierre-Paul Bitton, Jeffrey Podos, and Daniel J. Mennill
Source: The American Naturalist, Vol. 183, No. 2 (February 2014), pp. 214-228
Published by: The University of Chicago Press for The American Society of Naturalists
Stable URL: http://www.jstor.org/stable/10.1086/674379 .

Accessed: 25/08/2015 08:53

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

The University of Chicago Press, The American Society of Naturalists, The University of Chicago are
collaborating with JSTOR to digitize, preserve and extend access to The American Naturalist.

http://www.jstor.org 

This content downloaded from 134.153.188.68 on Tue, 25 Aug 2015 08:53:20 AM
All use subject to JSTOR Terms and Conditions

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Memorial University Research Repository

https://core.ac.uk/display/33558452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstor.org/action/showPublisher?publisherCode=ucpress
http://www.jstor.org/action/showPublisher?publisherCode=amsocnat
http://www.jstor.org/stable/10.1086/674379?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


vol. 183, no. 2 the american naturalist february 2014

Uneven Sampling and the Analysis of Vocal

Performance Constraints

David R. Wilson,1,* Pierre-Paul Bitton,1 Jeffrey Podos,2 and Daniel J. Mennill1

1. Department of Biological Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada; 2. Department of Biology, University
of Massachusetts, Amherst, Massachusetts 01003

Submitted June 6, 2013; Accepted September 25, 2013; Electronically published December 10, 2013

Online enhancement: appendix. Dryad data: http://dx.doi.org/10.5061/dryad.36847.

abstract: Studies of trilled vocalizations provide a premiere illus-
tration of how performance constraints shape the evolution of mating
displays. In trill production, vocal tract mechanics impose a trade-
off between syllable repetition rate and frequency bandwidth, with
the trade-off most pronounced at higher values of both parameters.
Available evidence suggests that trills that simultaneously maximize
both traits are more threatening to males or more attractive to fe-
males, consistent with a history of sexual selection favoring high-
performance trills. Here, we identify a sampling limitation that con-
founds the detection and description of performance trade-offs. We
reassess 70 data sets (from 26 published studies) and show that
sampling limitations afflict 63 of these to some degree. Traditional
upper-bound regression, which does not control for sampling lim-
itations, detects performance trade-offs in 33 data sets; yet when
sampling limitations are controlled, performance trade-offs are de-
tected in only 15. Sampling limitations therefore confound more than
half of all performance trade-offs reported using the traditional
method. An alternative method that circumvents this sampling lim-
itation, which we explore here, is quantile regression. Our goal is
not to question the presence of mechanical trade-offs on trill pro-
duction but rather to reconsider how these trade-offs can be detected
and characterized from acoustic data.

Keywords: birdsong, correlated evolution, quantile regression, trade-
off, trill, upper-bound regression.

Understanding the evolution of organismal traits requires
attention to proximate mechanisms that shape phenotypic
variation, since phenotypic variation constitutes the raw
material on which selection can act (Darwin 1859). Many
studies on organismal evolution seek to understand how
phenotypic variation is generated and maintained, yet it
is equally important to understand how the expression of
phenotypic variation can be constrained (Futuyma 2009).
Constraints on trait expression often manifest as trade-
offs (Arnold 1992). This is because when multiple traits
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are functionally coupled, either because of mechanical re-
lationships, dependency on common underlying resources,
or common developmental pathways, the expression of
one trait should limit the expression of the other (Roff
and Fairbairn 2007). A classic example is the trade-off
between gametic and somatic growth (MacLeod and
MacLeod 2009; see also Stearns 1992).

In animals, the expression of behavioral traits can be
circumscribed by performance constraints, which are lim-
its on animals’ abilities to execute the motor patterns that
constitute behavior. As an example, differential investment
in fast, fatigue-sensitive muscles versus slow, fatigue-
insensitive muscles can create a performance constraint
on an animal’s capacity for both speed and endurance (van
Damme et al. 2002). Performance constraints should be
particularly evident for mating displays subject to sexual
selection, which we expect should evolve to high levels of
performance to ensure their reliability (Searcy and Now-
icki 2005; Byers et al. 2010). If some aspect of an indi-
vidual’s quality limits its ability to perform a mating dis-
play well, then the individual’s maximum performance of
that display should provide an accurate indication of their
quality to rivals and prospective mates. Studies of trilled
vocalizations in vertebrates provide some of the strongest
evidence that performance constraints affect the evolution
of animal displays (reviewed by Podos et al. 2004a, 2009).
In brief, trills are structurally simple vocalizations that
consist of rapid repetitions of frequency-modulated syl-
lables. Descriptive analysis of the trills of songbirds across
the family Emberizidae revealed a trade-off between the
range of frequencies contained in each syllable (i.e., fre-
quency bandwidth) and the rate at which syllables are
uttered in succession (Podos 1997; fig. 1). The same trade-
off has since been shown in a wide range of taxonomic
groups (table 1) and has been attributed to vocal me-
chanics. Specifically, broad modulations of the vocal ap-
paratus, especially the vocal tract (trachea, mouth, beak,
and associated structures), are required to produce trills
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Figure 1: A performance trade-off on the trills of 34 songbird species
in the family Emberizidae. The trade-off between syllable repetition
rate and frequency bandwidth in trills results in a triangular distri-
bution, with both narrow and wide frequency bandwidths possible
at low syllable repetition rates yet only narrow frequency bandwidths
possible at high syllable repetition rates. The inverse regression be-
tween syllable repetition rate and frequency bandwidth values in the
upper tail of the frequency bandwidth distribution is a manifestation
of the expected performance constraint on trill production. Data are
from Podos (1997), and the regression line is calculated using the
traditional upper-bound regression technique (see text for more
details).

with wide frequency bandwidths that maintain the tonal
purity of vocalizations across varying frequencies (West-
neat et al. 1993; Hoese et al. 2000; Beckers et al. 2003;
Podos et al. 2004b; Riede et al. 2006; Pasch et al. 2011).
Because it is physically challenging to execute large vocal
tract modulations both quickly and repetitively, the mag-
nitude of frequency modulation necessarily limits the max-
imum rate of syllable repetition that an animal can pro-
duce.

The biomechanical trade-off in trill production yields a
triangular distribution on the bivariate plot of syllable rep-
etition rate versus frequency bandwidth, with both narrow
and wide frequency bandwidths possible at low syllable
repetition rates, yet only narrow frequency bandwidths
possible at high syllable repetition rates (fig. 1). An inverse
relationship between syllable repetition rate and frequency
bandwidth values found in the upper tail of the frequency
bandwidth distribution (i.e., the triangle’s hypotenuse;
Podos 1997) is an expected manifestation of the perfor-
mance constraint; trills with relatively high syllable repe-
tition rate and relatively wide frequency bandwidth are

thought to be more difficult to produce because they re-
quire greater neuromuscular performance from the vocal
apparatus (Podos 2001). Accumulating evidence from
many vertebrate taxa suggests that trill performance can
reflect signalers’ condition, life-history stage, and genetic
quality (Janicke et al. 2008; Araya-Ajoy et al. 2009; Bal-
lentine 2009; Juola and Searcy 2011; Vehrencamp et al.
2013; but see Cardoso et al. 2012), and that receivers in-
deed attend to variations in trill performance and mod-
ulate their responses accordingly (Draganoiu et al. 2002;
Ballentine et al. 2004; Christensen et al. 2006; Illes et al.
2006; Cramer and Price 2007; Schmidt et al. 2008; deKort
et al. 2009; Caro et al. 2010; DuBois et al. 2011; Pasch et
al. 2011; Moseley et al. 2013). It is important to note,
however, that many individuals and taxonomic groups
produce trills that are well below the expected performance
limit (note the prevalence of trills in the lower left corner
of fig. 1), suggesting that selection for high-performance
trills may not be universal.

Studies of trill performance can provide insight into how
animal signals are shaped not just by sexual selection, but
also by natural selection. Given the central role of vocal
tract modulations in trill production, if components of the
vocal apparatus are also involved in nonsignaling func-
tions, then natural selection could affect vocal modulation
and performance indirectly (Nowicki et al. 1992; Podos
1997). In Darwin’s finches, for example, beak morphology
is known to evolve precisely in response to interspecific
competition and local foraging conditions, and these spe-
cies have evolved remarkable diversity in beak form and
function (e.g., Schluter and Grant 1984; Gibbs and Grant
1987; Herrel et al. 2005). Producing trills with high vocal
performance requires birds to open and close their beaks
widely and quickly, yet this is physically incompatible with
a large beak specialized for high-force application (Hoese
et al. 2000; Podos and Nowicki 2004). Consequently, the
divergence of beak morphology via natural selection has
indirectly affected the performance of mating signals in
these species and, as a result, provided an evolutionary
mechanism for promoting speciation, preventing hybrid-
ization, and maintaining species diversity (Podos 2001,
2010; Podos and Nowicki 2004; Herrel et al. 2009). Evi-
dence for parallel beak-related trade-offs on song evolution
are now available for a number of other avian taxa (e.g.,
Seddon 2005; Ballentine 2006; Huber and Podos 2006;
Derryberry 2009; Sockman 2009; Derryberry et al. 2012;
but see Slabbekoorn and Smith 2000).

Our ability to detect and characterize the expected trade-
off between trill rate and frequency bandwidth depends,
in part, on the analytical methods used. Following Black-
burn et al. (1992), Podos (1997) and many subsequent
studies of performance constraints in trills have estimated
performance trade-offs using upper-bound regression. The
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Analyzing Vocal Performance Constraints 219

Figure 2: Upper-bound regression is the standard method for measuring performance trade-offs (Blackburn et al. 1992). In this simulation,
we plotted frequency bandwidth by syllable repetition rate for 200 hypothetical trills with randomly generated x and y values. More specifically,
bandwidth values were drawn at random from a normal distribution ( Hz, Hz), and syllable repetition rates weremean p 5,000 SD p 500
drawn at random from the skewed distribution shown beneath the abscissa ( Hz, Hz). We binned trills according tomean p 7 SD p 3
their syllable repetition rates using 10 bins of equal width and then regressed maximum frequency bandwidth values in each bin (filled
circles) by their corresponding syllable repetition rates. The resulting upper-bound regression shows a significant negative relationship and
therefore implies a significant performance trade-off ( , , , , ). However,2slope p �115.4 y-intercept p 7,035.6 F p �4.6 P p .002 R p 0.731, 8

given that these data were generated randomly, the performance trade-off is an artifact of the inherent sampling limitation, which is defined
by the slope of the simple linear regression between bin number and the number of data points in each bin ( ,slope p �5.7

, , , and ).2y-intercept p 51.0 F p �3.81 P p .005 R p 0.641, 8

traditional upper-bound regression method plots the fre-
quency bandwidth of trills versus syllable repetition rate,
divides the syllable repetition rate axis into equal-width
bins of arbitrary size, and regresses the maximum band-
width value from each bin against its corresponding syl-
lable repetition rate (detailed description in fig. 2). A sig-
nificant negative upper-bound regression has been

regarded as evidence of a performance constraint (Podos
1997).

This article is motivated by our observation that max-
imum bandwidth values in each bin of upper-bound re-
gression analyses might be influenced not just by the ex-
pected mechanical trade-off but also by variation in the
number of data points contained within each bin. Statis-
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220 The American Naturalist

tical theory mandates that the maximum value of a ran-
dom sample drawn from any frequency distribution
should increase, on average, with sample size (fig. A1; figs.
A1, A2 available online; Hartley and David 1954; Sokal
and Rohlf 1995). Bins containing many data points should
therefore have higher maximum bandwidth values than
bins containing few data points, simply as a result of sam-
pling effort and the natural variation inherent in the dis-
tribution of bandwidth values. If bins associated with high
syllable repetition rates systematically contain fewer data
points than bins associated with low syllable repetition
rates, as would be expected when the distribution of syl-
lable repetition rates is positively skewed, then negative
slopes from upper-bound regression analyses could be, at
least in part, a sampling artifact caused by the diminishing
sample sizes among the bins (figs. 2, A2). Yet no study on
performance trade-offs in trills has accounted for this po-
tentially confounding effect of uneven sampling. This lim-
its our understanding of the prevalence with which per-
formance constraints have shaped the evolution of animal
vocal signals.

The potentially confounding effects of sampling limi-
tations on upper-bound regression analysis are likely not
limited to the trade-off between syllable repetition rate
and frequency bandwidth in trilled vocalizations, though
this particular trade-off is the most widely documented in
the literature (table 1; Blackburn et al. 1992). For example,
upper-bound regression has been used to calculate per-
formance trade-offs among other trait pairs that might be
linked mechanically, such as maximum frequency and du-
ration in the songs of ocellated antbirds (Phaenostictus
mcleannani; Araya-Ajoy et al. 2009) and syllable repetition
rate and call duration in the advertisement calls of gray
tree frogs (Hyla versicolor; Reichert and Gerhardt 2012).
Upper-bound regression has also been used outside of the
context of performance trade-offs to evaluate duetting be-
havior (e.g., Logue et al. 2008), plumage divergence (e.g.,
Price and Whalen 2009), social networks (e.g., Roberts et
al. 2009), and the relationship between animal abundance
and body size (e.g., Blackburn et al. 1992; reviewed in
Scharf et al. 1998).

In this study, we focus on the effects of uneven sampling
on the detection and quantification of frequency band-
width versus syllable repetition rate trade-offs in trills. Our
objective is to better understand the prevalence with which
this performance trade-off is expressed and to explore and
recommend unbiased analytical techniques for detecting
and quantifying performance trade-offs in this rapidly
growing field of research. We review the literature and
identify all data sets containing frequency bandwidth and
syllable repetition rate data. For each data set, we measure
the degree to which data are distributed asymmetrically
among the bins used in a traditional upper-bound re-

gression; we refer to this as the “sampling limitation” of
each data set. We then compare the measurement of the
performance trade-off derived from traditional upper-
bound regression analysis to those derived from three al-
ternative analytical techniques that alleviate or control for
sampling limitations. Taken together, these analyses help
us produce more valid estimates of when performance
trade-offs are being expressed. More generally, our study
reveals the potentially confounding effects of sampling
limitations on upper-bound regression analysis and high-
lights alternative methods for analyzing trade-offs and
other biological phenomena that might be affected by un-
even sampling.

Material and Methods

Data Collection

We used ISI Web of Science and Google Scholar to identify
all published papers citing Podos’s (1997) study of per-
formance constraints (searches conducted in August
2013). We identified papers containing data sets with in-
formation on the syllable repetition rate and frequency
bandwidth of trills. To be comprehensive, we included all
published data sets, whether based on single or multiple
species and irrespective of whether performance trade-offs
had been assessed as part of the original study. We included
multiple data sets from the same species if they were de-
rived from different individuals and different published
articles. We included multiple data sets derived from the
same individuals if those data sets had been used in the
original article to assess trade-offs at different taxonomic
levels. For example, we included the species-level, genus-
level, and family-level data sets presented in Podos (1997),
even though the same individuals were sometimes rep-
resented in multiple data sets. When a data set was sub-
divided by population, subspecies, sex, morph, or record-
ing year, we conducted analyses only on the pooled
species-level data set. For one data set (Maddison et al.
2012), trills had been subdivided into slow “trills” and fast
“buzzes,” and each had been analyzed separately; we also
analyzed these data separately because trills and buzzes are
thought to involve different respiratory mechanisms and
thus be subject to different performance trade-offs (Hart-
ley and Suthers 1989; Podos 1997). Finally, there was one
single-species data set and one multispecies data set where
outliers were removed before analysis (Cardoso and Hu
2011; Kagawa and Soma 2013). To minimize assumptions
about outliers, we analyzed these data sets twice, excluding
and then including the outlying data points.

Many data sets identified in our literature search were
presented not as raw numerical data but as scatterplots.
To quantify these data, we converted scatterplots to digital
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image files using Preview software (ver. 4.2; Apple, Cu-
pertino, CA). We opened image files in ImageJ software
(ver. 1.47d; W. Rasband, National Institutes of Health),
calibrated the software using the scatterplot axes, and mea-
sured values of syllable repetition rate and frequency band-
width for every data point. Analyses confirmed that our
data extraction approach was accurate (see appendix, avail-
able online). For several scatterplots, data points were too
clumped to be resolved with this approach, and we instead
requested the data from the authors. In total, we obtained
70 data sets for our analysis (68 data sets were unique,
but two were analyzed twice for a total of 70; see “Analysis”
below), including 19 that we extracted from scatterplots,
six that were published as raw numerical data, and 45 that
were provided to us by the authors. To the best of our
knowledge, our data set includes all published data sets
with information on the frequency bandwidth and syllable
repetition rate of trilled vocalizations (data for each trill
are available in the appendix table in Dryad: http://
dx.doi.org/10.5061/dryad.36847; Wilson et al. 2013). Orig-
inal studies varied in whether they coded frequency band-
width in hertz or kilohertz; here we coded all data sets in
hertz.

In addition to values of frequency bandwidth and syl-
lable repetition rate, we noted whether trills were recorded
in the laboratory or the field (see appendix table in Dryad:
http://dx.doi.org/10.5061/dryad.36847). High-frequency
sound attenuates more quickly than low-frequency sound,
so it is possible that the more variable recording distances
associated with field recordings affected measures of max-
imum frequency and caused the distributions of frequency
bandwidth to become positively skewed (Naguib et al.
2008). Only four data sets were derived from the labo-
ratory, so it was not possible to compare recording en-
vironments statistically. However, the average skew of fre-
quency bandwidth distributions (as estimated by g1, a
conventional measure of skew; Sokal and Rohlf 1995) was
greater for data sets derived from the laboratory (g p1

, ) than for data sets derived from0.50 � 0.49 mean � SD
the field ( ), suggesting that recording ing p 0.32 � 0.581

the field did not increase the skew of frequency bandwidth
distributions. In addition to the recording environment,
we noted whether frequency bandwidth was measured rel-
ative to a standardized amplitude or energy threshold. Pre-
vious research shows that not measuring frequency band-
width relative to standard thresholds can exaggerate the
range of frequencies reported, thereby causing the distri-
bution of frequency bandwidth values to become positively
skewed (Zollinger et al. 2012). In total, 11 of 70 data sets
did not measure frequency bandwidth relative to a spec-
ified quantitative energy or amplitude threshold. As pre-
dicted, the average skew of these distributions was greater
( , ) than for data sets whereg p 1.01 � 0.85 mean � SD1

a threshold was used ( ; independentg p 0.35 � 0.591

samples t-test: , ; data used in all meta-t p 3.21 P p .00268

analyses are available in the appendix table in Dryad:
http://dx.doi.org/10.5061/dryad.36847).

Analysis

For each data set, we applied the traditional upper-bound
regression analysis (sensu Blackburn et al. 1992), which
aims to detect the presence of performance trade-offs be-
tween syllable repetition rate and the frequency bandwidth
values found in the upper tail of the frequency bandwidth
distribution (Podos 1997). We applied the binning
schemes used in the original articles when that information
was available. For two data sets (Illes et al. 2006; Cramer
2013), the authors had combined certain bins because of
a paucity of data points; however, since we are specifically
testing for the effect of uneven sample sizes among bins,
we analyzed each of these two data sets twice, once with
the bins combined and once without. When the upper-
bound regression had not been calculated in the original
article ( of the 70 data sets), we divided syllableN p 15
repetition rate into 10 bins of equal width along the X-
axis, with the first bin beginning with the lowest value of
syllable repetition rate and the last bin ending with the
highest value. We selected 10 bins because this was similar
to the number of bins used in previous studies, and gen-
erally ensured adequate statistical power in the upper-
bound regression calculations.

We quantified each data set’s “sampling limitation” as
the slope of a simple linear regression between bin order
number (independent variable) and the number of data
points in each bin (dependent variable). Bin number 1
was always associated with the lowest syllable repetition
rate and the last bin with the highest syllable repetition
rate. We expect the sampling limitation to become more
negative as the distribution of syllable repetition rates be-
comes more positively skewed (Sokal and Rohlf 1995; see
figs. 2, A1).

As we report below, sampling limitations were detected
in the majority of data sets. We thus applied three alter-
native, complementary analytical approaches that allowed
us to control for sampling limitations. These three alter-
native approaches have all been used in other contexts to
calculate regressions near the upper boundaries of bivar-
iate scatterplots (e.g., Scharf et al. 1998), but have not been
used previously to analyze performance trade-offs in trilled
vocalizations.

1. Equal samples per bin method. For our first alter-
native analytical approach, we calculated new bin sizes for
the original data and then reran the upper-bound regres-
sion analysis. Within each data set, we varied the width
of individual bins so that each bin contained the same
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number of data points, thereby removing a priori the sam-
pling limitation. Whereas the traditional upper-bound re-
gression technique applies bins of equal width yet variable
sample size, this first alternative technique applies bins of
variable width yet equal sample size. We divided data
points into the same number of bins as in each original
analysis to ensure similar statistical power between the
equal samples per bin method and the traditional upper-
bound regression.

2. Quantile regression method. For our second alter-
native analytical approach, we estimated performance
trade-offs using quantile regression (Koenker and Bassett
1978). Unlike simple linear regression, which describes
how variation in an independent variable affects the mean
of a dependent variable, quantile regression describes how
variation in an independent variable affects other aspects
of the dependent variable’s distribution. It is a powerful
approach because, unlike upper-bound regression, it uses
all of the original data and does not require that data be
assigned to arbitrarily delimited bins. Here, we used quan-
tile regression to estimate how changes in syllable repe-
tition rate affected the ninetieth percentile of the frequency
bandwidth distribution. We could have chosen a higher
percentile, but given the mechanics of quantile regression,
a percentile beyond 90% begins to be less resistant to
outliers and to suffer reduced precision in estimating rates
of change in the upper tail of dependent variable distri-
butions (Cade et al. 1999). We computed confidence in-
tervals for the ninetieth percentile slope coefficient using
the rank method (Gutenbrunner and Jureckova 1992).

3. Sample size as covariate method. For our third al-
ternative analytical approach, we reran the original upper-
bound regression analysis with bins of equal width, as in
traditional upper-bound regression, but incorporated into
the analysis the number of data points in each bin as a
covariate. We log10 transformed the number of data points
in each bin before analysis because the relationship be-
tween the expected maximum value in a random sample
and sample size is logarithmic (see fig. A1). The main
advantage of this method is that it uses the same values
of syllable repetition rate and frequency bandwidth that
had been used in the traditional upper-bound regression.
It also calculates the independent effects of syllable rep-
etition rate and the sampling limitation on the observed
maximum frequency bandwidth distribution.

We conducted an additional set of analyses to explore
how the number of bins affects the slopes derived from
traditional upper-bound regression, the equal samples
per bin method, and the sample size as covariate method.
For each method, we applied three standard binning
schemes to each of the 70 data sets, including 8-bin, 10-
bin, and 12-bin schemes. We report the slopes of each
method and each binning scheme in the appendix table

in Dryad: http://dx.doi.org/10.5061/dryad.36847. For
each method, we compare the slopes among the three
binning schemes using repeated-measures ANOVA.
Given that the three binning schemes produce similar
results within each method (see results below), we con-
sider only those results derived from the original binning
schemes (i.e., the same binning schemes that were used
in the original articles, or 10 bins when that information
was unavailable) when assessing the presence and
strength of potential performance trade-offs.

All analyses were conducted using R (R Development
Core Team 2013). The 90% quantile regression analyses
were conducted using the quantreg package (Koenker
2012).

Results

Analysis of Performance Trade-Offs

The past 16 years have witnessed significant interest in the
study of acoustic trade-offs in trill structure. Overall, we
found 70 data sets on acoustic trade-offs reporting values
for syllable repetition rate and frequency bandwidth, in-
cluding 55 within-species data sets and 15 between-species
data sets (table 1). The data sets were derived from 26
unique published studies and represented a diverse range
of animal taxa. Those that focused on a single species
represented two classes, four orders, 11 families, 29 genera,
and 40 species (39 avian, one mammalian). Those data
sets that focused on multiple species represented six fam-
ilies, 48 genera, and a total of 146 avian species. Our search
also revealed that interest in performance constraints has
increased over time; publication year and the number of
published studies showed a significant positive correlation
(Pearson correlation analysis: years (i.e., 1997–N p 16
2012), , ).r p 0.60 P p .013

We detected sampling limitations (i.e., negative rela-
tionships between bin order number and the number of
data points per bin; see “Material and Methods”) in 63 of
the 70 data sets analyzed (90%). The median slope of the
regression between bin order number and the number of
data points per bin was �2.0 (interquartile range: �4.5
to �0.7; range: �127.7 to 3.0). A total of 26 data sets
(37% of all data sets) had sampling limitations with sta-
tistically significant negative slopes (simple linear regres-
sion: all ; table 1).P ≤ .05

Before controlling for sampling limitations, the average
slope (�SD) of performance trade-offs among the 70 data
sets was , as determined by the upper-�164.4 � 612.2
bound regression method (table 1). When we removed or
controlled for sampling limitations, the average slope of
estimated trade-offs was , as calculated us-�55.7 � 448.5
ing the quantile regression method. The number of data

This content downloaded from 134.153.188.68 on Tue, 25 Aug 2015 08:53:20 AM
All use subject to JSTOR Terms and Conditions

http://dx.doi.org/10.5061/dryad.36847
http://www.jstor.org/page/info/about/policies/terms.jsp


Analyzing Vocal Performance Constraints 223

sets that exhibited statistically significant regression slopes
also decreased when we controlled for sampling limita-
tions. Using the traditional upper-bound regression
method, 33 of the 70 published data sets showed statis-
tically significant regression slopes. When sampling limi-
tations were controlled, the consensus of our three alter-
native analytical techniques showed that only 15 of those
33 data sets, and no additional data sets, exhibited statis-
tically significant regression slopes (table 1). Each of our
three alternative analytical approaches produced results
similar to the overall consensus: 17 data sets retained sta-
tistically significant regression slopes with the equal sam-
ples per bin method; 14 data sets retained statistically sig-
nificant regression slopes with the quantile regression
method; and 14 data sets retained statistically significant
regression slopes with the sample size as covariate method.
We conclude that sampling limitations therefore accounted
for approximately one-half of all statistically significant
estimates of performance trade-offs in the published lit-
erature (i.e., 48%–58%, or 16 to 19 of 33 data sets; table
1).

It is noteworthy that the number of data sets that
showed a significant performance trade-off after control-
ling for sampling limitations (i.e., 15 of 70, based on a
consensus of the three alternative analytical techniques;
table 1) still exceeded the number that could be attributed
to Type I error (probability of Type I error in each data

; binomial test: ). Similarly, the numberset p 0.05 P ! .001
of data sets that showed a negative regression slope (i.e.,
53 of 70, based on quantile regression method) was sig-
nificantly greater than expected by chance (probability of
slope being negative due to ; binomial test:chance p 0.5

).P ! .001
For methods involving bins, slope estimates did not

differ among three alternative binning schemes (data avail-
able in the appendix table in Dryad: http://dx.doi.org
/10.5061/dryad.36847). For the traditional upper-bound
regression method, the average slope was �213 � 589
(mean � SD) with 8 bins, with 10 bins, and�211 � 615

with 12 bins (repeated-measures ANOVA:�211 � 629
, ). For the equal samples per binF p 0.19 P p .8252, 57

method, the average slope was with 8 bins,�119 � 451
with 10 bins, and with 12 bins�114 � 442 �101 � 445

( , ). For the sample size as covariateF p 2.37 P p .1022, 57

method, the average slope was with 8 bins,�77 � 406
with 10 bins, and with 12 bins�99 � 509 �98 � 478

( , ). In addition to the slope esti-F p 0.31 P p .7392, 57

mates, the number of data sets in which we detected a
statistically significant negative slope was similar among
the three binning schemes for each method; it ranged be-
tween 30 and 35 data sets for the traditional upper-bound
regression method, between 18 and 21 data sets for the

equal samples per bin method, and between 11 and 14
data sets for the sample size as covariate method.

Predictors of Performance Trade-Offs

Taxonomic affiliation did not predict whether our alter-
native analytical approaches detected performance trade-
offs (based on the consensus of the three alternative an-
alytical techniques; table 1). After controlling for sampling
limitations, we detected at least one statistically significant
performance trade-off in a variety of families, including
Cardinalidae, Cricetidae, Emberizidae, Fregatidae, Frin-
gillidae, Parulidae, Stercorariidae, and Troglodytidae.
Within most families, however, our ability to detect per-
formance trade-offs varied by species (i.e., for Cardinali-
dae, Emberizidae, Parulidae, and Troglodytidae). Further-
more, within many species, our ability to detect
performance trade-offs varied among data sets (table 1).

The inclusion of a single species versus multiple species
in a data set did not affect our ability to detect performance
trade-offs. We detected consensus evidence for perfor-
mance trade-offs in 12 of 55 data sets from single species
(22%), and in three of 15 data sets from multiple species
(20%; Fisher’s exact test for a contingency table:2 # 2

, ; table 1).N p 70 P 1 .999
In contrast to taxonomic affiliation, certain statistical

characteristics of the data sets predicted whether perfor-
mance trade-offs were detected by the consensus of the
three alternative approaches. Performance trade-offs were
more likely to be detected for data sets with a large sample
size (logistic regression analysis: , WaldN p 70

, , odds ), when binstatistic p 5.81 P p .016 ratio p 1.002
numbers were large ( , Wald ,N p 70 statistic p 10.56

, odds ), and when the slope of theP p .001 ratio p 1.382
sampling limitation was steeply negative ( , WaldN p 70

, , odds ). We note,statistic p 4.05 P p .044 ratio p 0.971
however, that sample size was positively correlated with
the number of bins (Pearson correlation analysis: N p

, , ) and negatively correlated with the70 r p 0.35 P p .003
slope of the sampling limitation ( , ,N p 70 r p �0.85

). When the independent effects of each variableP ! .001
were assessed with multiple logistic regression, only the
number of bins predicted whether performance trade-offs
were detected (sample size: Wald ,statistic p 1.05 P p

, odds , variance inflation ;.305 ratio p 1.002 factor p 4.6
number of bins: Wald , oddsstatistic p 4.95, P p .026

, variance inflation ; slope ofratio p 1.298 factor p 1.3
sampling limitation: Wald , ,statistic p 0.329 P p .566
odds , variance inflation ). Theratio p 1.031 factor p 4.1
probability of detecting performance trade-offs did not
depend on mean syllable repetition rate, mean frequency
bandwidth, skew of the syllable repetition rate distribution,
or skew of the frequency bandwidth distribution (all
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, all Wald , all ). SlopesN p 70 statistics ≤ 1.37 P 1 .242
calculated using the quantile regression method were not
affected by sample size, mean syllable repetition rate, mean
frequency bandwidth, skew of the syllable repetition rate
distribution, skew of the frequency bandwidth distribu-
tion, slope of the sampling limitation, or the number of
bins used in traditional upper-bound regression (all

, all ).F ≤ 1.26 P ≥ .2651, 69

Discussion

The vast majority (90%) of published data sets analyzed
demonstrate an inherent sampling limitation to some de-
gree, with more data points expressed at low than at high
syllable repetition rates. This pattern is consistent with our
expectation for a performance trade-off that limits the
range of frequency bandwidths that can be achieved at
high syllable repetition rates. Nevertheless, as we argue
here, this pattern could also emerge as a spurious result
of the sampling algorithm (fig. 2). Recognition of this
possibility motivated application of the three alternative
analytical methods featured in this article. Of the 70 pub-
lished data sets analyzed, 47% feature upper-boundary re-
gressions with statistically significant negative slopes, when
analyzed using traditional upper-bound regression. This
implies that about half of all data sets analyzed show sta-
tistical evidence for performance trade-offs. Yet when we
controlled for the sampling limitation, the number of data
sets analyzed that retained statistically significant perfor-
mance trade-offs decreased to only 21% of the 70 pub-
lished data sets (based on the consensus of the three al-
ternative approaches; range among the three alternative
approaches was 20%–24%). We can therefore state that
sampling limitations have confounded the analysis of per-
formance trade-offs in this rapidly expanding body of
literature.

Consequences of Uncontrolled Sampling Limitations

Once sampling limitations are controlled, 15 of the 70
published data sets (21%; table 1; based on the consensus
of the three alternative approaches; range among the three
alternative approaches was 20%–24%) show statistically
significant negative relationships between syllable repeti-
tion rate and frequency bandwidth. For these taxa, we are
in a strong position to argue that performance constraints
limit animals’ ability to produce broadband syllables in
rapid succession, as originally proposed by Podos (1997).
The animals that show clear evidence for performance
constraints are taxonomically diverse, including one family
of rodent, two families of seabird, and five families of
songbird (table 1). Performance constraints on the pro-
duction of trilled vocalizations are therefore widespread

among animals. This is not surprising; our understanding
of vocal tract mechanics provides a strong a priori as-
sumption that this performance constraint should occur
for all animals that produce trilled vocalizations (Westneat
et al. 1993; Hoese et al. 2000; Beckers et al. 2003; Podos
et al. 2004b; Riede et al. 2006; Pasch et al. 2011).

There are several possible reasons for why many taxa
did not show significant performance trade-offs after con-
trolling for sampling limitations. First, it is possible that
these taxa do not actually experience performance trade-
offs between the two focal song parameters. Although we
expect all trills to be subject to performance constraints
at some level (Podos 1997), the syllable repetition rates
and frequency bandwidths of some taxa may not be suf-
ficiently high for trills to experience the expected trade-
off. In other words, although all trilling species face po-
tential trade-offs on trill structure, realized trill parameters
may fall short of the regions in acoustic space where trade-
offs occur (see fig. 2 in Podos et al. 2004a). Indeed, some
taxonomic groups have probably never experienced selec-
tion for high-performance trills, and consequently, their
trills fall well below the frequency bandwidths and syllable
repetition rates for which trade-offs are expected. In other
cases, selection may favor songs that achieve high perfor-
mance levels, yet not in the two acoustic parameters ad-
dressed here. The original study on this topic (Podos 1997)
included many species precisely because of the expectation
that most individual species would not express enough
acoustic variation to reveal the expected trade-off. Second,
failure to detect performance trade-offs could reflect low
statistical power of some of the data sets, especially those
with small sample sizes. Thirty-one of the 55 data sets that
did not show evidence of performance trade-offs with the
consensus method had fewer than 50 data points each,
whereas most data sets that showed evidence of a perfor-
mance trade-off (14 of 15) had more than 50 data points.
Yet, we also failed to detect performance trade-offs in sev-
eral studies that had large sample sizes of more than 100
data points each (table 1: American sparrows, banded
wrens, buntings and New World sparrows, red-winged
blackbirds, song sparrows, swamp sparrows, yellow war-
blers, woodcreepers, and wood warblers; median N p

data points in these data sets). Third, some studies150
may have not recorded the focal species’ highest perfor-
mance trills in their sample. Since many species produce
multiple types of trill, it is possible that recordings in some
data sets did not contain the trill types that are under the
strongest selection for performance, particularly if those
trill types are rarely used by the species. Fourth, vocal
performance is known to vary according to context, sea-
son, and motivational state (DuBois et al. 2009; Vehren-
camp et al. 2013), suggesting that some studies might have
missed high-performance trills because of when their re-
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cordings were acquired. Fifth, the vocal tract mechanics
responsible for generating rapid broadband trills vary
among species, and not all configurations may be subject
to equal performance trade-offs. For example, canaries
produce broadband notes by producing sequential notes
with the two sides of their syrinx (Suthers et al. 2012),
and as such this species might be able to achieve greater
trill rate and frequency bandwidth values, although they
should still be subject to trade-offs at some level (Podos
1997; Draganoiu et al. 2002; Suthers et al. 2012).

Although our analyses support the hypothesis that per-
formance trade-offs affect trill structure in a wide range
of taxonomic groups, they also reveal limits on our ability
to draw inferences about performance trade-offs based on
comparative analyses of trill structure alone (table 1).
These limits seem particularly stark in the case of swamp
sparrows, a species that fails to demonstrate a performance
trade-off after controlling for sampling limitations, yet for
which experimental studies of song production and learn-
ing have provided strong evidence for the expression of
performance trade-offs (e.g., Podos 1996; Hoese et al.
2000; Lahti et al. 2011).

Many studies on the functional salience of trills have
relied on measures of the orthogonal deviation of points
from the regression line that defines the performance
trade-off (often referred to as “vocal deviation” or “vocal
performance”; Podos 2001; Ballentine et al. 2004). If the
regression line does not have a statistically significant neg-
ative slope after controlling for sampling limitations (i.e.,
if it does not provide statistical evidence of a performance
trade-off), then vocal deviation from that line might not
provide a reliable measure of vocal and neuromuscular
performance—although biomechanical models of sound
production still predict that trills with higher values in
either parameter will be harder to produce. If the slope of
the regression line remains statistically significant yet
changes as a result of controlling for sampling limitations,
then measures of vocal deviation may also need to be
viewed with caution. As an illustration of this problem,
consider two trills with slow and fast syllable repetition
rates and equal deviation below an improperly defined
regression line. If the slope of the regression line becomes
shallower after controlling for a sampling limitation, then
the vocal performance of the slow trill, as determined by
its signed orthogonal distance from the regression line,
will rise relative to that of the fast trill. Consequently,
measures of vocal deviation derived from inaccurately de-
fined performance trade-offs will likewise be inaccurate
and, more problematically, confounded by syllable repe-
tition rate.

Sources of Sampling Limitations

We have presented evidence that sampling limitations af-
fect the analysis of performance trade-offs. The sampling
limitations we identify here emerge when the distribution
of syllable repetition rates is positively skewed. One pos-
sible reason for the observed positive skew is that syllable
repetition rate, like many biological variables, has a min-
imum value of zero, which truncates the left side of its
distribution. In contrast, there is no theoretical maximum
value for syllable repetition rate, so trills with very high
values will positively skew the distribution.

Another possible reason for positive skew is that per-
formance trade-offs restrict the range of bandwidths avail-
able for trills with high syllable repetition rates. One way
to illustrate this concept is to consider that the area avail-
able in the left half of the triangular frequency bandwidth
by syllable repetition rate distribution (i.e., the area as-
sociated with low trill rates) is three times larger than the
area available in the right half of the distribution (i.e., the
area associated with high trill rates; e.g., fig. 1). If animals
are more likely to produce trills in the larger acoustic space
associated with low syllable repetition rates, then the dis-
tribution of trills along the syllable repetition rate axis
should show positive skew. However, the same logic sug-
gests that performance trade-offs should yield an equally
skewed distribution of frequency bandwidth values, since
the area available in the bottom half of the triangular
distribution (i.e., the area associated with low-frequency
bandwidth) is also three times larger than the area available
in the top half of the distribution (i.e., the area associated
with high-frequency bandwidth; e.g., fig. 1). Yet, among
the 70 published data sets we analyzed here, the average
skew was significantly greater for syllable repetition rate
( , ) than for frequency band-g p 1.15 � 0.93 mean � SD1

width ( ; paired t-test: ,g p 0.45 � 0.67 t p 4.75 P !1 69

), suggesting that performance trade-offs alone cannot.001
account for the sampling limitation. Regardless of the un-
derlying mechanism, it is clear that syllable repetition rate
is commonly skewed, which thus confounds the analysis
of performance trade-offs.

Recommendations for Controlling
Sampling Limitations

Our objective was to illustrate the potentially confounding
effects of sampling limitations on the analysis of perfor-
mance trade-offs and to recommend alternative analytical
techniques for future studies. The three alternative meth-
ods that we employed—equal samples per bin, 90% quan-
tile regression, and sample size as covariate—all controlled
for potential sampling limitations. Of these three, we rec-
ommend quantile regression for future analyses of per-
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formance trade-offs, for four reasons. First, quantile re-
gression does not require assumptions about how to
apportion data among bins, as is necessary for upper-
bound regression. Second, quantile regression uses all of
the original data to estimate the slope, so its statistical
power increases with increasing sample size (Koenker and
Hallock 2001). In contrast, the statistical power of upper-
bound regression techniques is limited by the number of
bins used in the analysis, since only a single data point
from each bin is included in the analysis (Blackburn et al.
1992). Third, of the three alternative analytical techniques
that we explored, quantile regression matched the con-
sensus view most often, with the same conclusion reached
in all but three of the 70 data sets (table 1). Fourth, slopes
derived from quantile regression of the 90th percentile are
resistant to outliers. In upper-bound regression, by con-
trast, outliers have a heavy influence on estimating slopes
(Scharf et al. 1998; Koenker and Hallock 2001).

In using quantile regression, the choice to measure the
slope of the ninetieth percentile is somewhat arbitrary;
however, previous studies suggest that the ninetieth per-
centile is a reasonable choice because its slope can be es-
timated precisely, its slope is resistant to outliers, and its
slope accurately estimates the expected trade-off found
near the upper boundary of a triangular distribution
(Scharf et al. 1998; Cade et al. 1999). Percentiles between
the ninetieth and the hundredth percentiles may also re-
flect the expected trade-off, but ultimately, the maximum
percentile that can be estimated precisely will be limited
by sample size and the characteristics of the distribution
being analyzed (Cade et al. 1999). Researchers might also
consider measuring the slope of the fiftieth percentile and
using it to approximate slopes found in the upper quan-
tiles. This approach might seem particularly appealing be-
cause quantile regression of the median will tend to have
greater statistical power than quantile regression of the
upper quantiles. However, we caution researchers that such
an approach will underestimate the expected upper bound-
ary slopes, since slopes derived from the fiftieth percentile
are predicted to be only half as steep as slopes derived
from the upper quantiles of triangular distributions. Our
data substantiate this concern. Across our 70 data sets, the
average slope of 90% quantile regressions was �56, which
was approximately twice as steep as the average slope de-
rived from 50% quantile regressions (�26; Wilcoxon
signed rank test: , ; data available in2x p 3.30 P p .001
appendix table in Dryad: http://dx.doi.org/10.5061/dryad
.36847). We therefore recommend quantile regression of
the ninetieth percentile for estimating trill performance
trade-offs.

In conclusion, we have shown that sampling limitations
can confound the detection and quantification of perfor-
mance trade-offs in the trilled vocalizations of a wide range

of taxonomic groups. In particular, sampling limitations
have artificially inflated our estimate of the number of
taxonomic groups whose trills show evidence for being
affected by performance trade-offs. Using analytical tech-
niques that control for sampling limitations, we show that
performance trade-offs are manifest across a broad range
of animal taxa but that evidence for performance trade-
offs is less prevalent than indicated by the literature. We
propose quantile regression as an alternative analytical ap-
proach that is unaffected by the sampling limitation and
which has broad applicability to all situations where sam-
pling limitations have confounded upper-bound regres-
sion analysis. Ultimately, comparative analyses of signal
diversity, such as those explored here, are best considered
together with experimental or developmental tests of the
role of constraints and trade-offs in signal expression.
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