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Abstract 

Predispersal seed predation is a critical factor limiting population recruitment 

among a number of coniferous species in natural systems. Introduced species, a major 

threat to biodiversity, can cause high levels of predispersal seed predation. Balsam fir 

(Abies balsamea) regeneration and establishment has been an ongoing challenge for land 

managers on the island of Newfoundland due to paucity of adult trees producing female 

cones, and the fact that fir recruitment requires annual seed production as there is no seed 

banl<. This study focused on the combined impact of a mammal and a suite of insects on 

pre-dispersal cone and seed mortality of balsam fir through investigation of ecological 

impacts of non-native red squirrels (Tamiasciurus hudsonicus) and a variety of pre­

dispersal cone/seed insects on this dominant tree species. Specifically, the impact of red 

squirrels and cone/seed insects were compared between balsam fir stands with different 

disturbance types and stem densities: Intact sites with no recent history of insect­

infestation; and Insect Kill sites with recent history of insect infestation, around a range of 

stem densities (286-31 00 trees/ha). The study was conducted within Terra Nova National 

Park and the surrounding forest management area in the southern Bonavista Bay region of 

the island ofNewfoundland, Canada. 

The percentage of pollen cones lost to red squirrels (3.5 ± 7.3% to 84.6 ± 9.3%), 

with an average loss of 47.6 ± 3.9%, was significantly higher in study sites with low 

balsam fir stem densities (229 ± 76 trees/ha) than in sites with high balsam fir stem 

densities (826 ± 189 trees/ha). Pollen cone loss to red squirrels showed no significant 

variation between disturbance types and among sites with respect to tree height and 

diameter at breast height (DBH). The percentage of seed cone loss to red squirrels (33.0 ± 
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15.7% to 93.5 ± 3.3%), with an average loss of58.9 ± 15.5%, was not significantly 

between high and low stem density sites, nor between disturbance types. The number of 

female cones taken by red squirrels also did not vary among trees with respect to DBH, 

height and cone crop size of trees. All cones san1pled in the study showed some signs of 

insect damage with 21.4 ± 5. 9% of sampled seeds in balsam fir stands showing signs of 

insect infestation. However, stem densities of study sites did not significantly influence 

seed loss to insects among trees. Furthermore, seed loss to insects did not appear to be 

influenced by age class, DBH, height, and average cone size of trees. However, the 

proportion of viable seeds prior to seed release was stem density-dependent and increased 

with increasing balsam fir stem density. 

The results of the study suggest that red squirrel and insect populations were high, 

and hence were ubiquitous across the landscape. The combined effect of red squirrel and 

cone/seed insect predation resulted in over 2/3 reduction in potential seed production in all 

study sites combined. This may pose challenges to natural recruitment of balsan1 fir in the 

area, and a combination of Assisted Natural Regeneration, and seedling planting should be 

investigated as remedial options by managers ofthis area. 
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Chapter 1: Introduction 

1.1 Description of vegetation in Newfoundland and Labrador 

The province ofNewfoundland and Labrador falls within the Canadian Boreal 

Shield ecozone and is part ofthe southern-most range of the boreal forest biome. This 

region's canopy (overstory) is characterized by coniferous trees including black spruce 

(Picea mariana), white spruce, balsam fir, larch (Larix laricina) and the pines (Pinus spp.) 

which dominate the vegetation (Scott, 1994). These coniferous forests are interspersed with 

stands of broad-leaf deciduous trees, including trembling aspen (Populus tremuloides), 

balsam poplar (Populus balsamifera) and white birch (Betula papyrifera) (Ryan, 1995). 

The understory is represented by shrubs and herbs in families including willows (Salix 

spp.), Ericaceae, Liliaceae, Orchidaceae, Rosaceae, Asteraceae, Cyperaceae, a variety of 

ferns, club-mosses, and horsetails, as well as members of the bryophytes which dominate 

the mosaic of wetlands including bogs and fens that are typical of boreal ecosystems 

(Charest et al., 1999). Insular Newfoundland itself is demarcated into 9 ecoregions 

reflecting subtle differences in vegetation structure across the island influenced by varying 

microclimatic and soil conditions, and disturbance regimes (Meades and Moores, 1989). 

The region's boreal forests, as in similar biomes on the mainland, are continuously shaped 

by naturally recurrent disturbances including fire, wind, and insects (Diotte and Bergeron, 

1989; Johnson eta!., 1998; Payette and Delwaide, 2003; Schulte and Maddenoff, 2005). 

The Province of Newfoundland and Labrador has established national parks with 



representative vegetation structure of typical boreal forests in several locations within its 

boundaries; these include Gros Morne and Terra Nova national parks (Charest eta!., 2000). 

1.2 Terra Nova National Park: Challenges to the Ecological Integrity Mandate 

With the 1988 and 2001 amendments to the National Parks Act, the prime 

mandate of national parks has focused on the maintenance of ecological integrity using 

ecosystem management, so that natural areas are protected unimpaired into the future 

(Keith, 1996). The 2002 Report ofthe Panel on the Ecological Integrity of Canada' s 

National Parks highlighted the need to examine Parks Canada' s approach to maintaining 

ecological integrity and provide recommendations for improvement (Parks Canada, 2002). 

Hence, present challenges to ecological integrity in national parks on the island of 

Newfoundland have focused attention on the impacts of non-native and invasive herbivore 

species, including moose, snowshoe hare, red squirrel and other small mammals on 

vegetation; seedling predation by slugs, and impacts of non-native/native cone and seed 

insects on conifer species in these parks (Bergerud and Manuel, 1968; West, 1989; Connor 

eta!. , 2000; Gosse eta!., 2002; McLaren eta!. , 2004; Noel, 2004; Tulk, 2004; Kasimos, 

2007; Holloway, 2008). 

1.3 An introduction to invasive species 

Non-native species are one of the most serious threats to biodiversity, second only 

to habitat degradation (Clout and Lowe, 1996; Crooks and Soule, 1996; Illueca, 1996; 

Everett, 2000). There is wide agreement among ecologists and conservation biologists that 

invasions by non-native species are a major cause of species extinctions in recent times 
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(Rhymer and Simberloff, 1996; Wilcove, 1998), although Gurevitch et al. (2004) have 

challenged this assertion. Increased level of predation, competition, introduction and 

transmission of diseases, disruption of food webs, physical alteration of natural habitats and 

ecosystem dynamics are some of the issues associated with species introductions (Lever, 

1994; Elton, 2000), and collectively impact on native plant and animal populations. Insular 

ecosystems, especially islands and protected areas, are particularly vulnerable to introduced 

species because ofthe potential to deplete unique local flora and fauna populations (L6vel, 

1997). 

Non-native species introductions have been responsible for significant economic 

losses in agriculture, forestry, and several other sectors ofthe global economy (Pimentel et 

al., 2005). Over 400 of 958 species listed as threatened or endangered under the 

Endangered Species Act of the United States of America are considered to be at risk mainly 

because of competition with or predation by non-native species (Wilcove et al. , 1998). A 

preliminary report on economic cost resulting from invasive alien species in Canada 

conservatively estimates cumulative costs for 16 species at between $13.3 and $34.5 billion 

(Environment Canada, 2004). 

Around the world, as many as 80% of endangered species are threatened and at risk 

due to the impact of non-native species (Armstrong, 1995). Invasive species have been 

implicated in various reviews of particular taxa by expert groups as the leading cause of 

extinction of birds and the second cause of extinction ofNorth American and world fish 

species as well as mammals (Clavero and Garcia-Berthou, 2005). Numerous cases of local 

extinctions of plant species have also been attributable to invasive species (Drake, 1990; 

Huxel, 1999). Climate change may result in the expansion of the latitudinal and elevational 
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range of some invasive insects as formerly inhospitable parts of the forest become more 

attractive (Caroll, 2003). Invasive small mammals are also known to negatively impact on 

natural ecosystems (Bobrov et al. 2008). Squirrels, for example, often prey on other 

animals as well as plants (O'Donoghue, 1994). In particular, nesting birds and their 

offspring are especially vulnerable to squirrel predation (Sullivan, 1991 ; Willson and 

Comet 1996, Darveau et al. , 1997; Lewis, 2004). It is predicted that introduced gray 

squirrels (Sciurus carolinensis) on Vancouver Island will not only result in displacement of 

native rodents which share similar niches, but will also negatively impact the threatened 

Garry oak (Quercus garryana) ecosystem in the region through prevention of natural 

regeneration, bark stripping damage, predation, and food competition with other native 

seed-eaters (Lurz et al, 1999). 

1.4 Squirrel biology and impact on forest regeneration 

The North American red squirrel (Tamiasciurus hudsonicus) is a forest generalist 

found in a wide variety of forest types, but is particularly abundant in conifer-dominated 

forests (Rusch and Reeder, 1978; Burt and Grossenheider, 1980). Red squirrels exhibit 

territoriality, with males and females typically occupying non-overlapping territories with 

densities of 1-2 individuals per hectare (Larsen and Boutin, 1995; Corkum et al. , 1999). 

One or two litters with three or four offspring are common (Kemp and Keith, 1970; Miller, 

1970), depending on food resource availability (West, 1989). Life expectancy of90% of 

individuals in the wild is less than three years although ages of over eight years have been 

documented (Davis and Sealander, 1971). Territorial behaviour by red squirrels enables 

them to secure limited food resources in the form of conifer cone caches, which are critical 
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to survival during winter (Kemp and Keith, 1970; Smith, 1968). Previous studies have 

documented reduced mobility of red squirrels and other sciurids in fragmented habitat, as 

they are reluctant to cross open fields or clear-cuts between forest patches (Henderson et 

al., 1985; Delin and Andren , 1999; Wauters et al. , 1994; Sheperd and Swihart, 1995). 

Red squirrels feed on a variety of foods (Smith, 1968), with harvested conifer seeds 

providing half of the annual energy requirements (Finley, 1969), and buds eaten during 

winter and early spring (Rusch and Reeder, 1978). Their higher growth rates and larger 

litter sizes relative to other North American squirrel species allow their populations to react 

to environmental variability more quickly than other species (Swihart and Nupp, 1998; 

Reale et al. 2003). 

Squirrels are generally regarded as important seed predators and may potentially 

influence the recruitment of trees, which in turn, may alter habitat structure for other 

animals (McCarthy, 1994; Hutchins et al. , 1996). The North American red squirrel, for 

example, is the major vertebrate predator of white spruce (Picea glauca) and other conifer 

seeds because of its efficiency in harvesting cones (Halvorson, 1986). Cones cached by 

squirrels do not contribute significantly to natural regeneration, because most cached seeds 

lose their viability, and therefore are not suitable for germination (Brink and Dean, 1966; 

Nienstaedt and Zasada, 1990; DeLong et al. , 1997; Tulk, 2004). Red squirrels may not only 

retard natural regeneration from cone harvesting activities (Finley, 1969), but may also 

affect growth of conifers by debarking and girdling (Sullivan and Sullivan, 1982; Brockley 

and Elmes, 1987), as well as through bud and shoot removal (Viidik, 1973; Prevost et al. , 

1988). 
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Seed source strength, the number of seeds per unit area, and seedbed conditions are 

important to natural recruitment of many conifers including white spruce and balsam fir, 

which both lack seed banks (Coates et al. , 1994; Purdy et al. , 2002; Messaoud et al. , 2007). 

Hence spatial and temporal factors may have significant impact on regeneration such as 

density of cone-producing trees, annual cone crop size, and seed predation (Peters et al. , 

2003). Foraging behaviour of red squirrels is influenced by tree height and stem density, 

with a preference for tall trees in high stem density sites (Summers and Proctor, 1999). 

There is also documented evidence of preference of squirrels for cones of some conifer 

species over others, which could impact on natural regeneration potential of targeted tree 

species by forming a natural sieve which could affect future forest dynamics (Brink and 

Dean, 1966). Studies have documented squirrels selecting between trees for cone harvest 

on the basis of level of secondary chemical production or protective tissue of host plants 

(Smith, 1970; Elliott, 1973 ). Studies suggest evolutionary responses of trees to heavy seed 

predation by squirrels. For example, lodgepole pine (Pinus contorta) has increasing 

amounts of protective tissue particularly cone scales, with a reduction in number of seeds 

per cone suggesting a trade-off for the energy expenditure in enhancing defence structures 

(Elliott, 1973). The predator satiation hypothesis of Janzen (1971) suggests that plant 

species subjected to heavy seed predation may evolve ways to escape total seed loss by 

producing a large cone crop in mast years thereby overwhelming the potential seed 

predators, and hence leaving enough seeds for recruitment (Peters et al. , 2003). Conifers 

such as white spruce and balsan1 fir (Abies balsamea) rely on annual seed production for 

regeneration, due to lack of a persistent seed bank. Hence, cone (seed) predation 

(Nienstaedt and Zasada, 1990), as well as male (pollen) cone predation, may be 
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impediments to the regeneration process. The production of an abundant cone crop offilled 

seeds requires that large quantities of conspecific pollen are in the air during the short 

period of strobili (female flower) receptivity (Greene et al., 1999), as self-pollination 

among many coniferous species generally results in high rates of ovule abortion (Dogra, 

1967). Therefore, herbivory of pollen cones could potentially reduce pollen density and 

impact pollination success rate, and has been cited as one of the major sources of non­

viable seeds in some conifer species (Owen and Molders, 1980; Singh and Owens, 1981 ). 

1.5 Impact of cone insects on forest regeneration and seed productivity 

Nearly 2000 insect species have invaded North America over the past 500 years 

(Sailer, 1983; Kim and McPheron, 1993; Stuckey and Barkley, 1993), and some are 

important predators of seed cones prior to seed dispersal. More than 100 genera of insects 

infest conifer cones (Rouault, 2004); however, the number of non-native cone insects in 

North America is not known. 

Predation by insects is an important factor limiting coniferous seed production, and 

responsible for close to 100% seed loss in coniferous trees, with 25% being a rough 

average (Knight, 1952; Tripp and Hedlin, 1956; Mattson, 1978; Can1eron, 1981; Miller, 

1986). Entomologists first documented insect predation on cones and seeds ofNorth 

American conifers over 100 years ago (West, 1989). The leaffooted pine seed bug 

(Leptoglossus corculus) was first described in 1831 , but only becan1e a pest in North 

America during the early 1900s (Debarr, 1967). Problems of poor natural regeneration of 

forest trees were first linked to cone and seed insects; for example, Harrington (1902) 

reported that "the ground beneath the trees was strewn with aborted and undeveloped 
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cones ... " killed by the white pine cone beetle (Conophthorus coniperda). Whiles some 

cone insects known to cause significant seed mortality, including the Jack pine budworm 

(Choristoneura pinus) and Douglas-fir seed chalcid (Megastigmus spermotrophus), are 

native to North America (Volney, 1994; Roques et al. , 2006), significant numbers of cone 

insect species have wide distribution from Europe to North America, and may have crossed 

continents with commercial activity (Turgeon et al. , 1994). 

Alternating good and poor cone crop sizes in natural forest stands is a major factor 

regulating populations of cone and seed insects (Mattson, 1971 , 1980; Hedlin, 1964; Shea, 

1989). Periodic synchronized large cone crop production (masting) among many conifer 

species may be an adaptation to cone and seed insect predation, and affords the possibility 

of avoiding total seed loss by overwhelming predators (Janzen, 1971). Frequently, a 

lagged, density-dependent relationship exists between annual cone crop size and insect 

population size, with a trend of insect populations increasing when good cone crops occur 

for 2 or more consecutive years, and crashing in years when few cones are produced (West, 

1989). In white spruce, for instance, insect damage is high in poor cone crop years due to 

the upsurge of insect numbers in preceding mast years, whereas the reverse is often the 

case in good crop years (Werner, 1964). Similar relationships have been documented in 

other conifer trees (Mattson, 1971 ; Shea et al. , 1984). 

Many insects adapt strategies over time to improve their chances to survive years of 

low cone production or low pollination success. The seed chalcids (Megastigmus spp.), for 

instance, have evolved prolonged diapause and parthenogenesis in their life cycles to adapt 

to host plants (Hussey, 1955; Roques, 1981 ; 1989; Annila, 1982). Also very few insects 

adapt to just one plant species: even the more specialized monophagous feeders can feed on 
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congeneric species (Niemela and Mattson, 1996). Insects, in general, may show a 

preference for larger fruits which have higher seed densities (Kirkland and Goeden, 1978; 

Marshall et al., 1986). Monterey pines (Pinus radiata) in natural stands had higher level of 

infestation of spider mites (Oligonychus spp.) on younger trees, suggesting an age­

dependent relationship (Landwehr, 1979, Landwehr and Allen, 1982). 

Insect feeding affects strobili production both directly, by the destruction of cones 

and cone buds, and indirectly, through other types of damage that reduce bud production or 

bud burst (Crawley, 1990). Female cone loss in conifers attributable to insects commonly 

averages about 20% (Hedlin, 1964; Dewey, 1986; Miller, 1986; Mattson, 1986; Frank and 

Jenkins, 1987). This is, however, substantially lower than female cone losses in conifers 

attributable to mammals, especially red squirrels, which is between 40% to over 80% 

(Benkrnan et al., 1984; Halvorson, 1986; West, 1989; Peters et al. 2003). Insect predation 

of ripening fruits and seeds prior to dispersal is responsible for substantial losses in 

reproductive ability in many plant species (Crawley, 1989). A recent study on impact of 

invasive pests of eastern hemlock (Tsuga canadensis) dominated forest in New England 

suggest that the decline associated with chronic hemlock woolly adelgid (Adelges tsugae) 

infestation is causing significant changes in structure, composition, and ecosystem function 

in these forests through the gradual thinning of canopies, replacement of eastern hemlock 

by black birch (Betula lenta) with associated changes in the composition of forest 

understory (Kizlinski et al. , 2002). Such shifts in forest species composition impact on the 

ecosystem in many ways because tree species vary in their properties of nutrient and water 

uptake, growth rate, litter quality, soil organic matter production, and habitat and food 

quality for animals (Lovett et al. , 2006). 
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1.6 Introduced Terrestrial Fauna of Newfoundland 

Insular ecosystems, especially islands and protected areas, are particularly 

vulnerable to introduced species because ofthe potential to deplete unique local flora and 

fauna populations (L6vel, 1997). Over the past century there has been a steady introduction 

of terrestrial animals to the island. Although a number of such introductions have been 

unsuccessful, such as bison (Bison bison) in 1964, several others have resulted in the 

establishment of viable populations, including a number of rodent species such as the 

eastern chipmunks (Tamias straitus) introduced in the 1960's (Northcott et al. , 1974), and 

snowshoe hare (Lepus americanus) (Environment and Conservation, Newfoundland and 

Labrador, 2008). However, moose (Alces alces) introduced in 1904 and red squirrels have 

had the most impact on terrestrial vegetation and native fauna on the island (Bateman, 

1977; Reynolds, 1997; West, 1989; Connor et al. , 2000; Tulk, 2004; Lewis, 2004). 

1. 7 Red Squirrel Introduction to Newfoundland 

Red squirrels have a wide distribution throughout North America (Wilson and Ruff, 

1999) and are the only known squirrels in Newfoundland, with a recent history of 

introduction. There were likely three successful introductions to the island of 

Newfoundland in 1963, 1964 and 1974, and have entirely populated insular Newfoundland 

since then (Northcott et al., 1974; Payne, 1976; Goudie, 1978; Reynold, 1997). Red 

squirrel population densities on the island are presently believed to be twice that on the 

mainland (Benkman, 1989; Pimm, 1990), although it has been suggested that a tenfold 

difference in population densities is closer to reality (Benkman, 1992). However, two 
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recent studies estimated red squirrel population density in black spruce habitat in Terra 

Nova National Park at between 0.5-2.3/ha (Lewis, 2004) and 0.4-3.7/ha (Reynolds, 1997). 

Red squirrels are a major vertebrate cone predator (Halvorson, I986) and are known 

to feed on large numbers ofthe cone crops of numerous North American conifers (Hurley 

et al. , 1987). They were first documented as mass consumers of black spruce cones in 

Newfoundland in the mid I980s (West, 1986), and it has been suggested that red squirrels 

are capable of consuming anywhere between 60% and 100% of cone crop, especially in 

moderate or poor seed years (West, 1989; Tulk, 2004). 

1.8 Cone insect infestation in Newfoundland 

Insects of at least five orders (Coleoptera, Homoptera, Hymenoptera, Diptera and 

Lepidoptera) feed on conifers, including spruce, fir and hemlock on the Canadian mainland 

(Hedlin et al. , I980; Rose and Lindquist, 1994) and on the island ofNewfoundland. Some 

cone insects that are pests of spruce and fir in eastern Canada, including Newfoundland, are 

the spruce seed moth ( Cydia youngana), fir coneworm (Dioryctria abietivorella), balsam 

fir seed chalcid (Megastigrnus specularis), larvae of the midges (Dasineura spp. and 

Mayetiola spp.), and spruce cone maggot (Hylernya anthracina) (Rose and Lindquist, 

1994). Cone and seed insects may be the most important impediment to seed availability in 

genus Abies (Owens and Morris, 1998). 

1.9 Project Goals 

Cone and seed herbivory by insects together with activities by the other 

aforementioned biological agents are collectively influencing plant species composition 
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and forest successional patterns: selective browsing of moose on balsam fir and some 

deciduous species resulting in asymmetrical regeneration; selective browsing by non-native 

snowshoe hare and slugs; cone caching by non-native red squirrel; and reproduction 

suppression by non-native/native cone and seed insects by their influence on seed rain and 

recruitment (Hermanutz et al. unpublished data). The cumulative effect of these impacts is 

the suppression of balsam fir advanced regeneration, resulting in the inability of boreal 

forest in these parks to regenerate new, dense stands, and possibly eliminating a broad 

range of indigenous plant and animal species from the landscape (West, 1989). 

My research focused on cone mortality of an indigenous coniferous species, balsam 

fir, in Terra Nova National Park and surrounding forests, including investigation of the 

ecological impacts of non-native/native cone and seed insects, level of impact of red 

squirrel populations on seed availability, and how they collectively affect seed availability 

for recruitment and hence advanced regeneration of balsam fir. The combined impact of 

these pests may result in the inability of fir to maintain healthy advanced regeneration, 

resulting in challenges to naturally produce healthy forests . The objectives of this study 

were therefore: (1) to quantify the impact of red squirrels on male and female cones of 

balsam fir in the study area; (2) to detern1ine whether male and female cone losses to red 

squirrels are: (i) density dependent, (ii) influenced by height, diameter at breast height 

(DBH), and cone crop size, (iii) influenced by recent history of insect disturbance among 

balsam fir stands; (3) to quantify cone/seed Joss to insects in the study sites; (4) to assess 

whether proportion of cones/seeds infested with insects: (i) is dependent on stem densities 

of study sites, (ii) varies significantly among sites depending on recent history of insect 

disturbance, (iii) is influenced by tree size (height and DBH), (iv) is influenced by cone 
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size and weight, (v) varies significantly among trees depending on age-group; (5) to 

determine whether proportions of viable seeds among trees are influenced by the stem 

densities of study sites; and (6) to explore the cumulative impacts of these sources of cone 

loss on balsam fir forest stands in the region, which will contribute to management of 

forests, particularly with respect to forest renewal, in Terra Nova and Gros Marne national 

parks, and provincially managed forests. 
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Chapter 2: Materials and Methods 

2.1 Study Area 

Terra Nova National Park (TNNP) is located on the east coast ofNewfoundland 

(ca. 48° 30'N, 54°00' W) (Charest et al. , 2000). It lies within the southern Bonavista Bay 

and preserves a representative sample of Eastern Newfoundland Island Atlantic Region, 

which is characterized by real maritime forest (Keith, 1996). The park has a maritime 

climate with precipitation of 900-1200 mm/year, mild winters, cool and late spring, with 

ice and snow persisting until mid-May, with generally warm and fairly sunny summers. 

July is the driest and warmest month (16.4 °C) and November the wettest. Geologically, the 

Park belongs to the A val on Zone, in the Appalachian Mountain System, with elevations 

ranging from sea level to 278m (Colman-Sadd et al., 1990). The forests in TNNP vary 

from dense in the western part to open with numerous rock outcrops in the east. 

Approximately 70% of the land area is covered by forest, with barrens occupying the 

remainder (Charest et al. , 2000). The major forest types are black spruce - moss, kalmia ­

black spruce, and balsam fir. Deciduous forests , usually of white birch, or trembling aspen, 

are successional (Charest, et al. 2000). Major bog-fen complexes are distributed throughout 

the park but are more prevalent in the western zone, and are often ombrotrophic (rain-fed). 

Heathlands are dominated by ericaceous shrubs and may appear after disturbances such as 

fire or logging (Meades, 1983). Natural disturbances including fire, wind, and insects play 

a major role in shaping forest structure within the park. Documented history of insect 

infestation of balsam fir stands within the park and surrounding forests in central 

Newfoundland include infestations by Spruce budworm (Choristoneurafumiferana), 
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Hemlock looper (Lambdinafiscellariafiscellaria), and Balsam fir sawfly (Neodiprion 

abietis) (Dept. ofNatural Resources, Newfoundland and Labrador). 

Natural stands of balsam fir, one of the dominant phanerophytes in the coastal areas 

in and bordering TNNP were selected for study, beginning in late May 2007 (Fig 2.1 and 

Fig 2.2). Sites of varying levels of insect disturbance and stem densities were selected to be 

representative of balsam fir forests types within the study area. The study consisted of three 

components: quantifying male and female cone herbivory by red squirrels among study 

sites; and the level of insect predation of female cones. Study sites used to assess level of 

insect predation of female cones had to be located outside TNNP, as female cone sample 

collection involved felling of selected trees, which is prohibited within the park boundaries. 

Balsam fir and other tree species densities in each of the study sites were estimated using 

the point-centered quarter analysis method (PCQ); (Mitchell, 2001 ). For this method, data 

collection points were randomly generated along two 50 m transects placed 50 m apart. 

Each point along the transect, at least 5 m apart, was divided into 4 quarters, and the 

distance to the nearest tree with a minimum diameter at breast height (DBH) of 4 em within 

each quarter was measured. The minimum distance of 5 m between data collection points 

was selected to avoid measuring the same trees repeatedly. Also, the data points were 

divided into quarters by running an imaginary line perpendicular to the transect. This line 

and the transect divide the area into four quarters at each point. The sum of the distances of 

trees from the collection points was divided by the total number of quarters to generate A 

meters, which represents the mean distance between trees for the site. Total density in 

hectares is then equal to: (1 0,000 m2 I ha) I {(A m)2 I tree}; and balsam fir stem density is 

equal to the product of total density and the fraction of quarters in which balsam fir trees 
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were measured. The heights, DBHs, and GPS coordinates of all trees involved in all three 

studies were also recorded. 
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Figure 2.1. Location of study sites for red squirrel male and female cone 
predation study in TNNP, Newfoundland. 
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2.2 Balsam Fir Male Cone Predation by Red Squirrel Study 

The male/pollen cone study commenced in late May 2007, when cones were large 

enough to be counted with a spotting scope, and involved random selection of focal trees 

from ten sites of varying balsam fir tree densities (Table 3.1 ), and different histories of 

insect infestation from across the breadth of the park. One group of sites (n=5) had a 

history of insect infestation in the last 20 years, and the other group (n=5) had no such 

history in the same time period (J. Gosse, 2007. pers. comm.). For site delineation two 

parallel 50 m transects were established, at least 50 m apart, to cover each study site. Four 

balsam fir trees were selected from each study site for pollen cone counts, with 

consideration given to the visibility of the tree crown for pollen cone observations and 

counts. Focal branches in the selected trees were photographed (refer to attached Compact 

Disc) and their locations identified relative to other branches in each tree crown by 

markings on the photographs, which afforded easy location during subsequent counts. All 

counts were performed with a Bushnell spotting scope with maximum magnification of 

60X from marked points where initial pictures were taken for each tree. The positioning of 

the spotting scope and height of the supporting tripod from the ground were also recorded 

to reduce variation in counts. Five sets of counts were perfom1ed for each of four trees in 

the ten sites, from late May to mid June just before pollen dispersal, for a total of 200 

counts. 

2.3 Balsam Fir Female Cone Predation by Red Squirrel Study 

The female cone removal study commenced in mid June 2007 when cones were 

large enough to be counted with binoculars, and involved study sites of varying balsan1 fir 
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densities and history of insect infestations: Intact (n = 6) and Insect Kill (n = 4) sites (Table 

3.1); (J. Gosse, 2007. pers. cornrn.). The sites were demarcated using same method as in the 

male cone study, and four focal seed trees were selected, based on visibility of female 

cones in crowns oftrees, from ten sites of varying balsam fir stem densities. The year of the 

study was a good crop year with high cone crop production (J. Gosse, 2007. unpublished 

data). Hence in some cases, the same trees used in the pollen cone study were u ed as focal 

trees in the female cone counts. The study ended in mid-October when seeds began to 

disperse. The crowns of focal trees involved in the counts were initially photographed 

(refer to attached Compact Disc) from one aspect before commencement of counts. The 

counts were performed with Bushnell binoculars with maximum magnification of 42X 

rather than the spotting scope used in the male cone counts because of the comparatively 

larger female cones. The counts were conducted from marked spots used for taking 

photographs. Each count was the average of two separate counts except when there was 

greater than a ten percent variation between counts, that then necessitated a third count 

before taking the average. Seventeen sets of counts for all focal trees in the ten sites were 

undertaken over the period of the study. Blind tests were performed to determine 

repeatability of counting procedure, and involved two persons conducting counts on same 

set of 10 focal trees at different study sites. Individual counts showed less than 5% 

variation between counts over 90% of the time. 

A supplementary observation of female cone loss to red squirrels, albeit on a much 

smaller scale, was conducted in 2008 (a low crop year; J. Gosse, 2008, pers. conun.) on 36 

of the 40 trees involved in the 2007 study, as 4 trees could not be located. This study 

involved all ten sites with 5 sets of cone counts conducted from June to eptember 2008. 
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As in the 2007 study, cone loss was quantified for all ten sites to compare level of cone loss 

between high and low cone crop years. 

2.4 Balsam Fir Female Cone Predation by Insect Study 

The insect predation study, which commenced in mid June and ended in late 

August 2007, involved the harvesting of female cones from randomly selected trees in 

eight different sites ofvarying balsam fir stem densities (Table 3.2), and history of insect 

infestations (Intact sites, n = 4; Insect-Kill sites, n = 4) (S. Avery, 2007. pers. comrn.), in 

the Bonavista Peninsula adjacent to the park in Forest Management District 2. Cones from 

four trees, two old and two young, from each of the eight sites for each of four harvesting 

periods were harvested from mid-June to late August. A sample of between 1 0 and 40 

female cones was collected, depending on tree crop size and cone availability, from all 

aspects of the tree crowns of each tree. The two age groups were used in the study to assess 

whether the level of cone insect infestation was age-dependent. The age categories of trees 

were determined by texture of tree bark: "young" trees have smooth barks dotted with resin 

blisters; and "older" trees have rough, indented barks. The samples of the collected cones 

were then dissected from base to tip and examined using microscope and magnifying glass 

for signs of insect infestation. This process was repeated monthly for each harvest from 

mid June to late August, thereby tracking insect infestation through the various 

developmental stages: pre-poll ination stage; pollination stage; and stage just prior to seed 

dispersal. The proportion of viable seeds was estimated from cone samples in final harvest 

in late August, just before seed dispersal, via tetrazolium tests, which is a biochemical test 

used to differentiate live from dead tissues of seed embryos on the basis of dehydrogenase 

21 



enzyme activity (AOSA., 2000). Voucher specimens of insects collected from cones and 

seeds were identified using two identification manuals: Cone and Seed Insects of North 

American Conifers (Hedlin et al. , 1980); and Insects of Eastern Spruces, Fir and Hemlock 

(Rose and Lindquist, 1994). 

2.5 Statistical Analyses 

Multiple linear regression analysis (a = 0.05) was used to test relationship between 

(1) percent pollen cone loss per tree, balsam fir stem density per site, and height and DBH 

of focal trees; (2) percent female cone loss per tree, balsam fir stem density per site, heights 

of focal trees, DBH of trees, and cone crop per tree for both study years; (3) percent of 

seeds per cone infested with insects per tree, balsam fir stem densities per site and heights 

of focal trees; and ( 4) percent of seeds infested with insects per cone per tree, average cone 

length, average cone width, and average cone weight of focal trees in study sites. Nested­

analysis of variance (ANOVA, a = 0.05) was used to test whether there were differences 

between disturbance types (Insect kill; lntact forests) and among sites, nested within 

disturbance types in the following dependent variables: (1) percent male cone loss per tree 

in 2007; (2) percent female cone loss per tree in both 2007 and 2008; and (3) percent seeds 

infested by insects per tree in 2007. Nested ANOY A was further used to test whether there 

were differences in percent seeds infested by insects among tree age groups. Tests were 

performed on data gathered from subsample of female cones from fourth (final) tree 

harvest in 2007. Nested ANOVA was used in these analyses to account for variation in 

seed and cone loss, to insects and red squirrels respectively, among individual trees at study 

sites. 
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Examination of residual plots of nested ANOV A analyses showed that residuals 

did not depart from normality; however, residuals did not appear to be independent based 

on divergent plots. This necessitated arcsine-transforming cone and seed loss data for 

analysis. Residual plots and residual versus fit plots for all regression analyses showed that 

residuals were independent and homogeneous, and did not depart from normality (Sakal 

and Rohlf, 1995). 

Binary logistic regression (a = 0.05) was used to test the relationship between 

proportion of viable seeds, a binomial response variable, and balsam fir stem densities of 

each study site, as well as weight of seed lots (5 seeds per lot) for subsample of cones from 

the fourth (final) cone harvest. No assumptions about the independence and normality of 

residuals were made for binary logistic regression analysis (Sakal and Rohlf, 1995). 

Mini tab 15 Statistical Software® was used for all statistical analyses. 
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Chapter 3: Results 

3.1 Pollen cone predation by red squirrel study 

Height and DBH offocal trees ranged from 7.6-15.6 m and 8.5-31.5 em, 

respectively (Appendix: Table A.1 ). The absolute stem densities of study sites ranged from 

285-1528 trees/ha at Ochre Hill Insect Kill and Blue Hill Intact sites, respectively. The 

balsam fir densities ranged from 29 trees/ha and 1528 trees/ha at Blue Hill Insect Kill and 

Blue Hill Intact sites, respectively (Table 3.1 ). 

Percent change in final pollen cone counts in mid June from initial counts in late 

May on focal branches ranged from 100% decrease to 12.5% increase (Appendix: Table 

A.1). The average decrease in cone numbers was 54.2 ± 7.0% (n = 5) and 43.1 ± 5.0% (n = 

5) across Insect Kill and Intact sites respectively (Table 3.2). With the exception of Blue 

Hill Intact site, all sites showed net loss of pollen cones, with a decrease in final pollen 

cone numbers in mid July just before pollen release from initial counts in late May (Figure 

3.1a; b). 

There is a very strong positive correlation between absolute stem density per site 

and balsam fir density per site (r = 0.948 n = 10 p < 0.001), therefore only balsam fir stem 

density was used in the regression analysis so as to assess the direct relationship between 

pollen cone loss and balsam fir stem density of study sites. There was a significant 

difference in pollen cone losses among trees with respect to balsam fir stem density per site 

(Fp ,361 = 6.51 , p = 0.015), with low density sites suffering a higher loss than higher density 

sites (Figure 3.2; Appendix: Table A.2). There also is a positive correlation between 

heights and DBHs of focal trees (r = 0.600 n = 40 p < 0.001); however, tree size (height 

and DBH) did not affect number of cones lost to squirrels (F[1,36J = 0.001 , p = 0.969) and 
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F[1 ,36J = 0.86, p = 0.36 respectively, see Appendix: Table A.2). Disturbance types (Intact; 

Insect Kill sites) did not differ in the percent cone loss per tree (Fp ,&J = 0.25, p = 0.632) as 

there was significant site to site variation (Frs,30J = 3.27, p = 0.008, see Appendix: Table 

A.3). 
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Table 3.1. Total and balsam fir stem densities of study sites for male (n = I 0) and female (n 
= I 0) cone predation study*. Total and balsam fir stem densities were computed using 
Point-Centered Quarter method with 50 m transects (Mitchell, 200I). Total density refers 
to number of stems of all tree species with minimum DBH of 4 em in a hectare; and balsam 
fir stem density refers to number of balsam fir trees with minimum DBH of 4 em in a 
hectare. 

Total stem Balsam fir stem 
Study Sites density(trees/ha) density(trees/ha) 
Louil Hill Insect Kill 473 378 
Blue Hill Insect Kill 290 29 
Blue Hill Intact 1528 1528 
Newman Sound Coastal Trail 
Intact 633 395 
Terra Nova Town Road Intact 577 317 
Ochre Hill Insect Kill 286 200 
Ochre Hill Intact 1238 1052 
Sandy Pond Intact 1425 1033 
Platter's Cove Insect Kill 1151 633 
Bread Cove Insect Kill 441 308 
Outport Trail Intact 296 81 

*Same study sites for both male and female cone study with the exception of Louil Hill 
(used in male cone study only), and Outport Trail (used in female cone study only). 
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Table 3.2. Percent male cone loss* to red squirrels averaged for 
each site (n = 1 0), with significant site variation in cone loss but 
not disturbance types (Insect Kill vs Intact). 

No. of %cone Std 
Study Sites trees loss Error 
Louil Hill Insect Kill 4 42.7 11 .8 
Blue Hill Insect Kill 4 57.5 20.4 
Blue Hill Intact 4 -3.5 7.3 
Coastal Trail Intact 4 84.6 9.3 
Terra Nova Intact 4 64.9 10.4 
Ochre Hill Insect Kill 4 43.9 10.2 
Ochre Hill Intact 4 33.5 15.8 
Sandy Pond Intact 4 46.5 14.2 
Platter's Cove Intact 4 32.8 6.2 
Bread Cove I. K 4 72.7 8.8 

* %cone loss = {(X - Y)/ X} x 100 
Where, X represents initial male cone count, and Y represents final cone count. 

Exan1ple: X = 100 male cones 
Y = 20 male cones. 
Therefore, % cone loss = [(1 00 -20)11 00] x 100 = 80% male cone loss. 

27 



VI 
Q) 
c 
0 
u 
Q) 

""iij 
E -0 .... 
Q) 
~ 

E 
::J z 

6000 

5000 

4000 

3000 

2000 

1000 

0 

M ay 
26th 
2007 

(a) Insect Kill sites 

7000 

6000 

VI 
Q) 5000 c 
0 
u 

~ 4000 111 

E -0 3000 .... 
Q) 
~ 

E 
::J 2000 z 

1000 

0 

(b) Intact sites 

Muy 
26th 
2007 

June 
3rd 

2007 

June 
3rd 

2007 

June 
8th 

2007 

June 
9th 

2007 

June 
12th 
2007 

June 
13th 
2007 

June 
15th 
2007 

June 
16th 
2007 

~Average for all sites 

- Louil Hills Insect Ki ll 

.....-Blue Hill Insect Kill 

- ochre Hill insect Kill 

~Bread Cove Insect Kill 

~Average for all si tes 

- Blue Hill Intact 

....,.._ Newman Sound Coastal 
Tra il Intact 

- Terra Nova Town Road 
Intact 

- o chre Hill intact 

_._ Sandy Pond Intact 

- Platter' s Cove Intact 

Fig 3.1. Balsam fir male cone removal curves for individual study sites with: (a) 
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Refer to Table 3.2 for sample sizes. 
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3.2 Female cone predation by red squirrel study 

The height and DBH of focal trees ranged from 6.6-18.1 m and 12.1-41.3 em 

respectively (Appendix: Table A.4). The stem densities were, however, the same as in the 

male cone study as the same sites were used, with the exception of Outport Trail site which 

replaced Louil Hill site in this study. 

Over 70% of focal trees from 2007 (good cone crop year) did not produce cones in 

2008 (poor cone crop year). The percentage change in final female cone counts in early 

October 2007 from initial cone counts for individual trees in late June 2007 ranged from 

0% to 100% decrease, and 25% to 100% decrease for a similar period in 2008 (Appendix: 

Tables A.4 and A.5). The average female cone loss for the 2007 study was 47.2 ± 9.9% (n 

= 4) and 63.9 ± 5.3% (n = 6) across Insect Kill and Intact sites (Table 3.3 ; Figure 3.3a; b). 

For the 2008 study, the average cone loss was 81.9 ± 18.1% (n = 3) and 82.2 ± 13.4% (n = 

5) across Insect Kill and Intact sites respectively (Table 3.4; Figure 3.4 a; b). Disturbance 

types (Intact; Insect Kill sites) did not differ in percent cone loss per tree (F[l ,8] = 3.50, p = 

0.098, see Appendix: Table A.8). 

The 2007 study data showed a positive correlation between height and DBH of 

focal trees (r = 0.593 , n = 40, p < 0.001), and a very strong positive correlation between 

balsan1 fir stem density and absolute stem density per site (r = 0.956, n = I 0, p < 0.001), 

that permitted using one of the variables, balsam fir stem density, in the regression analysis 

to assess the direct relationship between female cone loss and balsam fir stem density of 

study sites. There was no significant differences in female cone loss among individual trees 

with respect to balsam fir stem density per site (Fp ,3SJ = 0.22, p = 0.642); and tree size did 

not affect female cone loss (Fp ,JSJ = 0.18, p = 0.675 and Fp,Js) = 0.44, p = 0.51 2 ) for height 
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and DBH respectively. Cone loss to red squirrels was not affected by cone crop size of 

trees (F[1,351 = 0.25, p = 0.621, see Appendix: Table A.6). Disturbance types (Intact; Insect 

Kill sites) did not differ in percent cone loss per tree (F[t ,SJ = 3.50, p = 0.098, see Appendix: 

Table A.8). 

Multiple regression analysis of data from 2008 showed no significant differences in 

female cone loss among individual trees in relation to heights of focal trees (F[I .6J = 4.75 n 

= 11 p = 0.072), balsam fir stem densities per site (F[t ,6J = 0.95 n = 11 p = 0.367), DBH of 

focal trees (F[1 ,6J = 1.94 n = 11 p = 0.213), and cone crop size oftrees (F[1 ,6J = 2.78 n = 11 

p = 0.342, see Appendix: Table A.7). There also was no significant variation in percent 

cone loss per tree between disturbance types (F[1,31 = 0.00, p = 0.992, see Appendix: Table 

A.9). There was no correlation between percent cone loss of focal trees in 2007 study, and 

percent cone loss among same set of trees in 2008 study (r = 0.100 n = 11 p = 0.1 00). 
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Table 3.3. Percent female cone loss* to red squirrels averaged 
for each site (n = 1 0) for 2007 study. 

No. of %cone Std. 
Study Sites trees loss Error 
Outport Trail Intact. 4 93.5 3.3 
Blue Hill Insect Kill. 4 42.5 6.0 
Blue Hill Intact. 4 65.6 14.7 
Newman Sound Coastal Trail 
Intact. 4 56.0 18.7 
Terra Nova Town Road Intact. 4 64.1 19.0 
Ochre Hill Insect Kill. 4 33.0 15.7 
Ochre Hill Intact. 4 58.6 16.2 
Sandy Pond Intact. 4 49.8 15.2 
Platter's Cove Intact. 4 59.8 9.6 
Bread Cove Insect Kill. 4 66.3 22.6 

* %cone loss = {(X - Y)/ X} x 100 
Where, X represents initial female cone count, and Y represents final cone count. 

Exan1ple: X = 100 female cones 
Y = 20 female cones. 
Therefore, % cone loss = [(1 00 -20)11 00] x 100 = 80% female cone loss. 
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Table 3.4. Percent female cone loss to red squirrels averaged 
for each site* (n = 8) for 2008 study. 

No. of %cone 
Study Sites Trees loss Std. Error 
Outport Trail Intact. 
Blue Hill Insect Kill . 
Blue Hill Intact. 
Newman Sound Coastal Trail 
Intact. 
Terra Nova Town Road Intact. 
Ochre Hill Insect Kill. 
Platter's Cove Intact. 
Bread Cove Insect Kill. 

1 
2 
2 

1 
1 
1 
2 
1 

100 
45.8 
80.0 

30.9 
100 
100 
100 
100 

20.8 
20.0 

0.0 

*Focal trees in Sandy Pond and Ochre Hill Intact sites had no female cones. 
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Figure 3.3 a; b. Balsam fir female cone removal curve for individual study sites in 
2007: (a) Insect Kill; (b) Intact sites. Note: Y-axis scale changes between panels. 
Refer to Table 3.3 for sample sizes. 
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3.3 Insect Predation of Female Cones Study 

Total stem density of study sites ranged from 454 - 3104 trees/ha at White Hills 

Insect Kill and White Hills Intact sites respectively. Balsan1 fir stem density was lowest at 

White Hills Insect Kill site, 431 trees/ha, and highest at White Hills Intact site, 2949 

trees/ha (Table 3.5). Out of29 balsam fir trees sampled across the eight sites in late August 

2007 just before seed release, 100% of sub-sampled cones (n = 444) showed signs of 

insect infestations such as entry/exit holes, insect larval activity in cones including 

tunnelling, and presence of larvae in seeds. The percentage of sub-san1pled balsam fir seeds 

eaten or with insect larvae present per cone in the 2007 study ranged between 6. 7 ± 1.52% 

(n = 12,311) at Spracklins Intact site, and 63 .37 ± 8.87% (n = 13,200) at Boy Scout Insect 

Kill site with an overall average of21 .35 ± 5.91% (n = 96,932) (Figure 3.5). 

There was a strong positive correlation between balsam fir stem density and 

absolute stem density per site (r = 0.904 n = 8 p < 0.001) which permitted using one of the 

variables, balsam fir stem density, in the regression analysis so as to assess the direct 

relationship between percent cone/seed infestation by insects and balsam fir stem density of 

study sites. Percentage of seeds infested per cone per tree did not depend on balsam fir 

stem density per site (F(I ,261 = 3.15, p = 0.087, see Appendix: Table A.l2). Cone/seed 

infestation did not differ between disturbance types (F(I ,l iJ = 0.96, p = 0.365) or between 

age groups (F(I ,l iJ = 0.01 , p = 0.926, see Appendix: Tables A.14 and A.15). There was a 

strong correlation between height and DBH of trees (r = 0.746 n = 8 p < 0.001), which 

allowed the use of the height variable to represent tree size. Percentage of seeds infested by 

insects per tree was not affected by tree size (F[I ,l 6J = 0.39, p = 0.540, see Appendix: Table 

A.12). Percent of seeds infested per cone per tree also showed no significant differences 
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with respect to cone length (F[ 1,251 = 1.20, p = 0.283), cone width (F[I ,2s1 = 0.01 , p = 0.937), 

and cone weight (F[I ,2s1 = 1.26, p = 0.272, see Appendix: Table A.13). Proportion ofviable 

seeds was low (0-20%), but varied significantly between sites with respect to balsam fir 

stem densities (G1 = 3.940, p = 0.047, Figure 3.6; Appendix: Tables A.16 and A.18), 

illustrating a density-dependent relationship, with the proportion of viable seeds among 

trees increasing with increasing balsan1 fir stem density of study sites. No significant 

difference, however, was detected in proportion of viable seeds and average weights of 

seed lots (G1 = 0.049, p = 0.825, see Appendix: Tables A.l6 and A.l9). 
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Table 3.5. Total and balsam fir stem densities of study sites for female cone insect 
predation study (n = 1 0). Total and Balsam fir stem densities were computed using Point­
Centered Quarter method with 50 m transects (Mitchell, 2001). Total density refers to 
number of stems of all trees species with minimum DBH of 4 em in a hectare; and balsam 
fir stem density refers to number of balsam fir trees with minimum DBH of 4 em in a 
hectare. 

Balsam fir stem 
Study Sites Total stem density trees/ha density trees/ha 
Boy Scout Camp Insect Kill 801 481 
Boy Scout Camp Intact 1342 839 
White Hills Insect Kill 454 431 
White Hills Intact 3105 2949 
Spracklins Intact 2153 2153 
Spracklins Insect Kill 1180 929 
Hatchet Cove Insect Kill 1060 822 
Hill View Intact 2989 1569 
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level of insect infestation in all study sites and across disturbance types. 
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3.3.1 Summary of Cone/Seed Insect Activity in Study Sites 

All study sites showed signs of external and internal insect damage to balsan1 fir 

female cones, with 21.35% ± 5.91% of balsam fir seeds sampled (n = 96,932) in late 

August just before seed release either eaten or showing presence of insect larvae. However 

these estimations of insect damage did not include the many seed cones totally destroyed 

during development. 

Signs of early insect damage in the form of entry holes, premature browning of 

cone bracts and internal tissue damage were observed in cones sampled in some sites in 

first cone harvest from late May to early June 2007 (Figure 3. 7). 

41 



30 

25 

Ul 20 
Q) 

~ 15 

~ 10 

5 

0 

Boyscout Boyscout IMlrre Hills Vv'hrre Hills Spracklins Sprac~ins Hatchet Hillview 
Carrp I.K Carrp I.K Intact Intact I.K Cove I.K. Intact 

Intact 

o bianaJ Damage 

llnternaJ Damage 
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among study sites (Intact and Insect Kill) in first cone harvest between late May and early 
June 2007. 
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The second harvest in late June 2007 had a variety of insects and signs of insect 

activity an1ong cones sampled. Coneworms (Lepidoptera) were found between cone bracts 

in all eight sites involved in the study. The average percentage of cones with signs of 

external dan1age ranged from 8.8 ± 3.4% for intact sites and 9.6 ± 4.5% for insect kill sites. 

One site, Hatchet Cove, had significant presence of common thrips (Thysanoptera); (Figure 

3.8). Coneworms responsible for most external insect damage to the balsam fir cones 

peaked in activity during this stage of cone development with numbers dropping drastically 

in subsequent weeks, and virtually non-existent in the latter stages of cone maturation in 

late August just prior to seed dispersal (Figure 3.9). Although the trend was of increasing 

percentage of female cones showing signs of external damage in the third and fourth 

harvests (Figure 3.1 0), this was most likely due to sampling of remnant insect-dan1aged 

cones from earlier stages of cone development. 
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Heavy infestation of cones with insect larvae was observed in the cone samples 

collected from all sites in the third harvest in early August 2007. The main insects were 

Diptera: cone maggots, Hylemya spp., found tunnelling in mid-rib of some cones sampled; 

and cone midge, Dasineura spp., located within seeds in cone samples from most sites 

(Figure 3.11). Cone seed insect damage, however, was most pronounced in the fourth 

harvest in late August with all sites showing significant presence of cone midge larvae in 

seeds. Many sites also showed signs of seed chalcid infestation (Hymenoptera, 

Megastigmus spp.) with characteristic white coma-shaped larvae present in about half of 

the sites studied. The cone resin midge (Diptera, Asynapta spp.) was present between seed 

wings in most sites (Figure 3.12), and looper moth larvae (Lepidoptera, Geometridae) were 

recovered from the mid-rib of cone samples collected from the two Boyscout Camp sites. 
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Figure 3 .12. Percentage of cones with cone midge; seed chalcid; and cone resin midge 
infestations for individual sites (Intact site and Insect Kill) in fourth harvest. 

48 



3.4 Cumulative Assessment of cone/seed losses to Red Squirrels and Insects 

The percent female cone loss to red squirrels ranged from 50.4 ± 7.5% in Insect 

Kill sites to 64.6 ± 6.3% in Intact sites, and the percentage of seeds lost to insect 

infestations ranged from 16 ± 3.1% in Intact sites to 25.0 ± 7.3% in Insect Kill sites. The 

cumulative seed loss ranged from 60-85% and 73.4-89.4% in Insect Kill and Intact sites 

respectively. The maximum and minimum cumulative seed loss computations are based on 

whether or not red squirrels discriminate between cones with no external damage but with 

internal seed infestation, and cones with no external and internal damage. I observed that 

red squirrels avoided cones with disfigurement, holes, and other external signs of insect 

infestation. 
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Chapter 4: Discussion 

Neither male nor female cone predation by red squirrels was affected by tree size or 

disturbance type. Foraging on female cones did not appear to be influenced by cone crop 

size of trees. However, foraging on male cones was density-dependent. Levels of seeds 

infested or eaten by insects were not affected by stem density or disturbance type. Size and 

age group of trees also did not affect seed infestation levels, nor did the size of cones. 

Proportion of viable seeds per cone in trees was, however, significantly higher in study 

sites with higher balsam fir stem densities. The combined effect of red squirrel and 

cone/seed insect predation resulted in over 2/3 reduction in potential seed production in all 

study sites combined. 

4.1 Squirrel predation of male cones 

Blue Hill intact site was the only site that showed a net increase in final pollen cone 

counts in mid-June from counts in late May. This site had the highest balsam fir stem 

densities among study sites, with site-unique characteristics of a large pollen cone crop, 

which may have afforded some branches with pollen cones to escape red squirrels 

herbivory. 

Red squirrel predation accounted for average pollen losses ranging from 32.8 ± 

6.2% to 84.5 ± 9.3% among the study sites, with an average decrease of 47.6 ± 3.9% across 

sites. Although evidence exists of red squirrels and other squirrel species feeding on pollen 

(Price and Boutin, 1993; Maser, 1998), little information is available on the magnitude of 

pollen cone losses to scuirids in natural systems and their resultant impact on pollination 

success. This limitation, notwithstanding, such high pollen losses to red squirrels may 
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influence pollination success, especially if pollen grain densities are low (Owens and 

Molders, 1980; Singh and Owens, 1981 ; Greene et al. , 1999). Although pollination does 

not appear to limit seed production within TNNP due to long distance-dispersal (Noel, 

2004), it is predicted that as pollen bearing trees decrease pollen may become limited; 

therefore pollination success should be monitored in future years. 

The study results suggest that selection of pollen cone-bearing trees for foraging by 

red squirrels is not influenced by tree heights. In contrast, Eurasian red squirrels (Sciurus 

vulgaris) prefer tall trees in natural stands of Scots pine (Pinus sylvestris); (Summers and 

Proctor, 1999). In this study, pollen cone predation by red squirrels was higher in low 

balsam fir stem density stands than in high balsan1 fir stem density stands, implying that 

pollen cone removal is negatively density-dependent. The sites with high stem densities 

had higher number of pollen cone bearing trees per hectare than low stem density sites. 

This afforded the possibility of some cones escaping predation by overwhelming the 

predator with their large numbers (Janzen, 1971). The high pollen cone losses recorded 

across the study sites suggests that red squirrels in this study area are not reluctant to forage 

in disturbed, low density stands, as has been previously reported for red squirrels and other 

sciurids in earlier studies (Henderson et al. 1985; Fisher and Holler, 1991 ; Andren and 

Delin, 1994; Wauters et al. , 1994; Sheperd and Swihart, 1995). Bayne and Hobson (2000), 

suggest that red squirrels have fairly general habitat requirements in terms of forest 

structure and have no problem moving in open areas. There was no significant difference in 

pollen cone predation intensity among trees in sites with or without recent history of insect 

infestation, suggesting that balsam fir stem density of forest patches is more critical to 
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predictions oflevels of pollen cone predation by red squirrels than is a forest's recent 

history of insect infestation. 

4.2 Squirrel predation of female cones 

The average cone loss to red squirrels for study sites ranged from 32.9 ± 15.7% to 

93.5 ± 3.3% and 39.1% to 100% for 2007 and 2008 studies respectively. Cone loss to red 

squirrels in other forest systems varied from 19% to 82% of ponderosa pine (Pinus 

ponderosa) cone crop (Halvorson, 1986), 4 7% to 58.3% of white spruce cone crop (Peters 

eta!., 2003), 80% of limber pine (Pinus flexilis) and southwestern white pine (Pinus 

strobiformis) cone crops (Benkman eta!. , 1984), and 54% of sugar pine (Pinus 

lambertiana) cone crop (Tevis, 1953). Hence, although red squirrels are not native to 

Newfoundland their level of impact on conifer cone crop was similar to their impact in the 

aforementioned forest systems where they are considered native. Although no significant 

variation in red squirrel predation of female cones among seed trees in the study sites was 

observed, red squirrels, on the whole, consumed a large percentage of female cones that 

were monitored, with an average decrease of 58.9 ± 5.1% and 74.8 ± 8.9% across sites in 

2007 and 2008 respectively. The results, suggests that although cone crop declined in the 

second year, there was no significant increase in percentage of cones harvested by red 

squirrels, as was also found by Peters eta!. (2003). 

Red squirrels, in my study, did not seem to select seed trees for foraging based on 

tree heights as was suggested by Summers and Proctor (1999). Unlike in the male cone 

study, female cone predation levels did not vary significantly among sites, and site stem 

densities did not influence red squirrel foraging intensity. This result contradicts those of 
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Peters et al. (2003), who observed lower cone losses to red squirrel in industrial forests 

than in intact white spruce forests due to the reluctance of squirrels to move in open areas 

with heightened exposure to potential predators. Summers and Proctor (1999) also 

observed a foraging preference of red squirrels for dense stands where they could move 

among trees without exposing themselves to predation on the ground. The northern 

goshawk (Accipiter gentilis) and the American marten (Martes americana) are predators of 

red squirrels in Newfoundland and on the mainland (Price et al. , 1990; Whitaker et al. 

1996; Sturtevant et al. 1996), however, results of this study may imply that in TNNP, 

predator avoidance may not be as important in influencing red squirrel foraging behaviour 

as in other boreal regions especially considering the low populations of American marten 

on the island (Bergurud, 1969; Snyder, 1984; Thompson, 1991 ; Forsey et al. 1995; 

McGowan et al. 1999). Also, the hypothesis that red squirrels will select trees with large 

cone crop sizes for foraging so as to conserve energy in locating cones was unsupported, as 

their foraging intensity varied little between trees with large and small crop sizes. 

Red squirrels in this study commenced intensive harvesting of female cones, based 

on level of cone loss, in mid August, when energy content and nutrient value was highest, 

and continued well into the seed dispersal stage in early September through October. The 

average female cone loss to red squirrel for all sites in 2007 was high, especially 

considering that the study was undertaken in a large cone-crop year. Similar results were 

recorded in other conifer species in the region albeit in low and moderate cone crop years 

(West, 1989; Tulk, 2004). Ultimately, the loss of cones to red squirrels is one of a number 

of factors that may act as a bottleneck in the natural regeneration of some conifers (Peters 

et al. , 2003). 
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4.3 Insect herbivory of female cones and seeds 

The average percent of seed loss to insects across study sites ranged from 6. 7 ± 

1.5% to 63.4 ± 8.9%. Previous studies on seed loss to insect among conifers range from 

12.5% to 47% of seeds ofwhite fir (Abies concolor), 32% to 39% of seeds ofPacific silver 

fir (Abies amabilis) (Owens and Morris, 1998), 40% of seeds of Douglas-fir (Pseudotsuga 

menziessi) (Dewey, 1986), and Mattson (1978) reporting a range of 10-100% with an 

average of 25% cone loss from a number of earlier studies. 

The suite of insects implicated in cone and seed loss in this study included members 

of at least four (Lepidoptera; Diptera; Hymenoptera; and Thysanoptera) of the seven orders 

with phytophagous insects known to feed on seed cones of conifers (Turgeon eta!. 1994). 

The genera identified in this study could be divided into three feeding guilds: the seed­

mining guild, seed chalcid, Megastigmus spp. (Hymenoptera: Torymidae), cone midge, 

Dasineura spp. (Diptera: Cecidomyiidae); the cone-and seed-mining guild, fir coneworm, 

Dioryctria spp. (Lepidoptera: Pyralidae); the scale-and bract-feeding guild, common thrips, 

Frankliniella spp. (Thysanoptera: Phlaeothripidae ), cone maggot, Hylemya spp. (Diptera: 

Anthomyiidae). This diversity was reflected in a similar study of cone insects of white fir 

(Shea, 1989). Other studies on boreal forest systems have implicated one or more of these 

insects in cone mortality and seed damage (Mattson, 1978; Mosseler eta!., 1992; Owens 

and Morris, 1998; Rouault eta!., 2004) 

It has been suggested from earlier studies that cone and fruit losses to insects 

portray an inverse density-dependent relationship, that is, larger fruit crops suffer lower 

loss rates than small ones (Solomon, 1981; Miller eta!. , 1984; Borowicz and Juliano, 1986; 

Randall, 1986). However, I found no significant variation in insect infestation rates among 
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trees in the study sites despite the sites having a potentially wide range of cone crop sizes 

based on balsam fir stem densities. Insect infestation did not differ between sites with 

respect to their recent history of insect disturbance, nor did insects show a bias for larger 

sized cones as has been documented in earlier studies (Kirkland and Goeden, 1978; 

Marshall et al. , 1986). There are three possible explanations for these results: 1. the 

cone/seed insect populations were large enough to mask possible influences of the tree and 

site characteristics, 2. the sites chosen for the study were not of a spatial scale large enough 

to detect the relationship between insect predation levels and the site characteristics used in 

the models and, 3. the presence of cone bearing trees of other species at some study sites, 

especially black spruce, may have attracted a higher population of cone insects to the study 

sites than attributable to balsam fir stands alone. The intensity of insect infestation did not 

differ between young and old trees, which supports Karban' s study in 1987, but contrasts 

with the age-dependent relationship reported by Landwehr and Allen (1982). 

All study sites showed signs of external and internal insect damage to balsam fir 

female cones, with 21.4% ± 5.9% of sampled seeds either eaten or showing presence of 

insect larvae. It must be stressed, however, that this represents a minimal estimate of loss, 

as it did not include the many seed cones totally destroyed by insects in early development 

or abscised by the time counts were done. 

4.4 Cumulative impacts of red squirrel and cone insects on balsam fir seed production 

Feeding on ripening fruits/cones and on seeds, prior to dispersal, can account for 

massive losses in reproductive potential in many plant species (Crawley, 1989). Balsam fir 

cone and seed losses in the 2007, a large cone crop year, were moderately high. Cone and 
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seed losses, especially to red squirrels, were even higher in 2008, a lean crop year, and are 

comparable to previous studies (Janzen, 1971; Sivertown, 1980; Kelly, 1994; Houle, 1999; 

Koenig and Ashley, 2003). A similar study in the same region that assessed squirrel 

predation predicted that balsam fir releases sufficient seedfall for regeneration in a mast 

year (Tulk, 2004). However, in spite of2007 being a mast year, the combined effect of 

both red squirrel predation of female cones and insect predation of cones and seeds resulted 

in over 2/3 reduction in potential cone and seed production for all sites combined. It 

appears that red squirrels and cone insects have similar impact on balsam fir seeds in all 

study sites, with none of the distinct site characteristics associated with less predation. This 

is likely because the red squirrels and cone insects are so pervasive in this study area and 

impact all available seeds. That is, the populations "blanket" the area, and will hunt until 

they find all available food resources. Another possible explanation for the results is that 

both red squirrels and insects respond to multiple factors at multiple scales across the 

landscape which makes developing predictive models challenging. 

I observed during that red squirrels avoided cones with external signs of insect 

infestation. It is however, unknown whether they discriminate among cones with no 

external or internal insect damage, and cones with no external damage but with internal 

insect infestation. 

The results of the cumulative seed Joss to red squirrels and insects did not take 

into account the actual proportion of seeds that escape predation that are viable: 4.8% and 

8.9% in Insect Kill and Intact sites respectively. Hence based on these results, for every 

1 00,000 seeds produced in an Insect Kill site, the actual number of seeds that escape 

predation and potentially add to the seedling recruitment pool range from 713-1 ,900; and 
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for the Intact sites, from 963-2,328 (see Appendix B for details). This estimation, however, 

does not include the number of seeds that actually germinate and survive seedling stage, 

which is known to be low for balsam fir (Hedlin, 1974; Hedlin et al. , 1980; Calogeropoulos 

et al. 2004; Parent et al. , 2006). For instance, a study in the general area by Noel (2004) 

elaborated on the negative impact of slug herbivory on seeds after release, and attributed 

greater than 90% of balsam fir seedling mortality to small rodents including meadow voles 

(Microtus pennsylvanicus). A recent study by Holloway (2008), also reported post­

dispersal seed predation by ants in the study area. 

The cumulative assessment is based on results from 2007 study, which was a good 

cone crop year. Considering that good crop seasons in balsam fir occur in 2-5 year intervals 

(Jolmston, 1986), the impact of red squirrels and insects on cone/seed numbers may be 

even higher when studied over a number of sequential seasons. Also this assessment does 

not take into account cones destroyed by insect and red squirrels at the bud and pre­

pollination and fertilization stages of development which were not available for 

assessment. Hence impact of red squirrels and insects on seed potential may be even 

greater than these results suggest. 

It has been documented from earlier studies that red squirrel densities as low as 2 

squirrels/ha have significant impact on availability of mature cones in a year with a small 

cone crop (West, 1 989). Although a significant proportion of mature balsam fir cones 

harvested by red squirrels are cached, these do not contribute significantly to seed dispersal 

of balsam fir (Tulk, 2004). Red squirrel population in TNNP and swTounding areas are 

estimated at between 0.5 and 2.3 squirrels/ha (Lewis, 2004), well within densities of 

concern. Hence, the combined effect of both red squirrel cone predation and insect 
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herbivory of cones and seed predation was high enough to pose serious challenges to 

natural recruitment even in the mast year. Unlike pollen cones, most seeds of wind 

dispersed trees are not expected to move great distances because of their considerably 

greater mass (Latta eta!. 1998). Therefore local seed production may be an important 

limiting factor affecting the regeneration of balsam fir (Noel, 2004) especially considering 

that balsam fir does not have a persistent seed bank. 

Following this trend, coupled with the fact that such mast events, which offer 

potential for some seeds to escape predation (Janzen, 1971), are infrequent at best (Fowells, 

1965), it is likely that balsam fir natural recruitment in the study area will continue to be 

insufficient to meet requirements to maintain healthy balsam fir stands as was supported by 

Noel (2004). This has potential ramifications in the ecosystem at large and may lead to 

further reductions in populations of listed endangered species heavily reliant on balsam fir 

forests. For example, lower density of balsam fir stands may result in lower seed 

production and an1plify the present intense competition of the endangered red cross bills 

(Loxia curvirostra) and red squirrels which both use balsam fir seeds as a prime food 

source (Parchman and Benkman, 2002). Reduction in mature balsam fir forest also puts 

endangered Newfoundland subpopulation of American marten and boreal felt lichen 

(Erioderma pedicellatum), as well as other organisms that rely on healthy balsam fir forests 

in the region at even greater risk of local extinction (Sturtevant eta!., 1999; Environment 

Canada, 2007). 
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4.5 Management Implications 

Based on the results of this study, percent cone loss to both red squirrels and insects 

in balsam fir stands appear to vary little over the landscape at the spatial scale examined in 

this study. 

The combined impact of red squirrels and insects together with previously 

documented herbivory by non-native moose on different stages of balsam fir development 

(Bergerund and Manuel, 1968; Thompson et al. , 1989; McLaren et al., 2000; 2004) may 

pose significant challenge to natural recruitment of balsam fir in the study area. The results 

of the study suggest that balsam fir recruitment may be seed limited. Therefore, barring red 

squirrel population reduction measures, which may be difficult to implement, a 

combination of Assisted Natural Regeneration (which involves removing barriers to 

seedling growth such as soil degradation, competition, and recurring disturbances); 

(Leinonen et al. , 2007; Chazdon, 2008), and seedling planting should be investigated by 

management ofTNNP and Newfoundland Forest Service as a potential strategy to reverse 

the current trajectory. The availability of suitable microsites for seed gem1ination (Place, 

1950; McLaren et al. 1996; Duchesneau and Morin, 1999; Noel, 2004) should, however, be 

investigated as should the proportion of post-dispersal seed and seedling predation prior to 

any large scale direct seeding or planting exercise. 

Long-tenn studies on suite of cone/seed insects and their annual impact on seed 

production, in high, moderate and low cone crops seasons, are also necessary to better 

understand effects of the insects on the population dynamics of balsan1 fir. 
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Appendix A: Data and Statistical Analyses for Focal Trees 

Table A. I . Balsam fir male cone study: individual tree (n = 40) heights in meters (Height), 
DBH in centimeters, balsam fir stem densities in (BDen, trees/ha), absolute stem densities 
in (AbsDen, trees/ha), percentage cone loss per tree (%cone loss), and disturbance type, 
DT, ( 1 = Insect Kill (n = 5); 2 = Intact (n = 5)) are given for study sites (n = I 0). 

o/ocone 
Stud:y Sites DBH Height AbsDen Bden loss Regime 

Louil Hill Insect Kill 14.9 9 473 378.4 69.2 I 

Louil Hill Insect Kill 25.9 10.8 473 378.4 11.8 

Louil Hill Insect Kill 26.9 12.3 473 378.4 47.4 

Louil Hill Insect Kill 15.4 10.2 473 378.4 42.4 

Blue Hill Insect Kill 29.4 8.4 290 29 46.4 

Blue Hill Insect Kill 25.3 10.6 290 29 77.8 

Blue Hilllnsect Kill 18.3 7.8 290 29 5.9 

Blue Hill Insect Kill 28 9 290 29 100 

Blue Hill Intact 23 8.6 1528 1528 -I 0 2 

Blue Hill Intact 16.3 10.7 1528 1528 -9.7 2 

Blue Hill Intact 16 7.6 1528 1528 18.4 2 

Blue Hill Intact 22 9.3 1528 1528 - 12.5 2 

Newman Sound Intact 27.3 12.6 632.5 395.3 86.2 2 

Newman Sound Intact 22 10.6 632.5 395.3 100 2 

Newman Sound Intact 18 9.3 632.5 395 .3 57.6 2 

Newman Sound Intact 19 10.2 632.5 395.3 94.1 2 

Terra Nova Rd. Intact 25 11.4 577 317.35 47.7 2 

Terra Nova Rd. Intact 3 1.5 15.4 577 3 17.35 46.8 2 

Terra Nova Rd. Intact 22.2 11.2 577 317.35 87.9 2 

Terra Nova Rd. Intact 26 13.6 577 3 17.35 77.1 2 

Ochre Hill Insect Kill 20 10 285.5 199.5 50.8 

Ochre Hill Insect Kill 28 12.6 285 .5 199.5 22.6 

Ochre Hill Insect Kill 19 10.6 285.5 199.5 33.3 

Ochre Hill Insect Kill 26 11.6 285 .5 199.5 68.9 

Ochre Hill Intact 15.8 6 1237.5 1052 62 2 

Ochre Hill Intact 13 7.6 1237.5 1052 7. 1 2 

Ochre Hill Intact 8.5 5.2 1237.5 1052 5.3 2 

Ochre Hill Intact 13.5 8.3 1237.5 1052 59.4 2 

Sandy Pond Intact 17.5 15.6 1425 I 033 .13 16.7 2 

Sandy Pond Intact 23 10.5 1425 1033. 13 38.6 2 

Sandy Pond Intact 21 12 1425 1033 .13 85 2 

Sand~ Pond Intact 30.8 16 1425 1033.13 45 .5 2 
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Table A.l continued. 

%cone 
Stud_y Sites DBH Height AbsDen Bden loss Regime 
Platter's Cove Insect 
Kill 23 10.8 1151 633.05 26.1 
Platter's Cove Insect 
Kill 21 10.8 115 1 633.05 51.4 
Platter's Cove Insect 
Kill 24 11.3 1151 633.05 27.3 
Platter's Cove Insect 
Kill 16.5 9.75 1151 633.05 26.4 

Bread Cove Insect Kill 25.5 11.1 440.5 308.35 79.8 

Bread Cove Insect Kill 23.5 9.75 440.5 308.35 74.3 

Bread Cove Insect Kill 32 10.5 440.5 308.35 88.9 

Bread Cove Insect Kill 21 11.3 440.5 308.35 47.8 

Table A.2. Balsam fir male cone study: Summary of regression analysis (a. = 0.05) used to 
test relationship between percent pollen cone loss per tree and balsam fir stem density per 
site(BDen), focal tree height (height), and DBH of trees. Residual plots showed residuals to 
be independent, homogeneous and have normal distribution (Sokal and Rohlf, 1995; 
MINITAB 15®). 

Source OF 
height 
OBH 
Bden I 
error 36 

Seq SS 
I 061.6 
3161.9 
4454.1 

24629.5 

Adj SS 
1 

587.6 
4454.1 

24629.5 

Adj MS F P-value 
1 0.001 0.969 

587.6 0.86 0.36 
4454.1 6.51 0.015 
684.2 

Table A.3. Balsam fir male cone study: Summary ofNested-ANOVA, (a= 0.05) used to 
test relationship between percent male cone loss per tree per site and the disturbance type 
(Intact; Insect-kill) per site (DT), based recent history of insect infestation for each site (J. 
Gosse, pers. comrn. 2007). Residual plots showed residuals are normally distributed but not 
independent, and were arcsine-transformed before for analysis (Sokal and Rohlf, 1995; 
MINITAB 15®). 

Source OF Seq SS Adj SS Adj MS F P-value 
OT I 0.0902 0.0902 0.0902 0.25 0.632 
site(OT) 8 2.9096 2.9096 0.3637 3.27 0.008 
Error 30 3.3334 3.3334 0.1111 
Total 39 6.3332 
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Table A.4. Balsam fir female cone study in 2007: individual tree (n = 40) he ights in m eters 
(H eight), DBH of trees in centimeters, cone crop s ize per tree (Ccrop), ba lsam fir s tem 
densities in (BDen, trees/ha), absolute stem densities in (AbsDen, trees/ha), and dis turbance 
type, DT, (1 = Insect Kill (n = 4); 2 = Intact (n = 6)) as given for study sites (n = 10). 

0/ocone 
Stud:y Sites Height DBH Cro~ size loss BDen AbsDen regim 

Outport Trail Intact 10 22 168 97.02 81.6 295.5 2 

Outport Trail Intact 13 .8 4 1.3 36 97.2 81.6 295.5 2 

Outport Tra il Intact 16 38.5 9 1 83.52 81.6 295.5 2 

Outport Trail Intact 13.4 32.5 186 96.24 81.6 295.5 2 

Blue Hilllnsect Kill 10.6 25.3 20 30 29 290 

Blue Hill Insect Kill 8 17.7 75 45 .33 29 290 

Blue Hill Insect Kill 9.6 20.5 19 36.84 29 290 

Blue Hill Insect Kill 7.2 22.2 19 57.89 29 290 I 

Blue Hilllntact 10.4 15.2 20 100 1528 1528 2 

Blue Hill intact 11.6 2 1 10 80 1528 1528 2 

Blue Hill Intact 13.2 24 32 37.5 1528 1528 2 

Blue Hill Intact 11.6 17 62 45 .16 1528 1528 2 

Newman Sound Intact 12.6 26.7 95 9.47 395.3 632 2 

Newman Sound Intact 12.6 27.3 91 98.9 395.3 632 2 

Newman Sound Intact 10.2 19 28 67.86 395.3 632 2 

Newman Sound Intact 9.3 18 42 47.62 395.3 632 2 

Terra Nova Rd. Intact 11 .4 25 8 50 317.35 577 2 

Terra Nova Rd. Intact 9 23.2 35 17. 14 3 17.35 577 2 

Terra Nova Rd. Intact 9.3 18 5 100 317.25 577 2 

Terra Nova Rd. Intact 15.4 3 1.5 132 89.39 3 17.35 577 2 

Ochre Hill Insect Kill 10.6 17.3 64 3.1 3 199.5 285.5 

Ochre Hill Insect Kill 12.6 28 85 24.7 1 199.5 285.5 

Ochre Hilllnsect Kill 10.6 19 22 77.27 199.5 285.5 

Ochre Hill Insect Kill 10 20 122 26.69 199.5 285.5 

Ochre Hill Intact 13 17.5 28 100 1052 1237.5 2 

Ochre Hilllntact 11 .4 28 30 66.67 1052 1237.5 2 

Ochre Hilllntact 14.8 35 47 42.55 1052 1237.5 2 

Ochre Hill Intact 13 27 80 25 1052 1237.5 2 

Sandy Pond Intact 12.5 18 6 32.61 1033. 13 1425 2 

Sandy Pond Intact 13.4 20.5 78 48.72 1033 .13 1425 2 

Sandy Pond Intact 7.4 12.5 4 25 1033. 13 1425 2 

Sand~ Pond Intact 12.9 12. 1 57 92.98 1033 .13 1425 2 
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Table A.4 continued 

0/ocone 
Study Sites Height DBH Cro(! size loss BDen 
Platter's Cove Insect 
Kill 11.3 20 7 42.86 633.05 
Platter's Cove Insect 
Kill 18.1 28 237 55 .27 633.05 
Platter's Cove Insect 
Kill 11.3 24 56 53 .57 633 .05 
Platter's Cove Insect 
Kill 9.8 16.5 16 87.5 633.05 

Bread Cove Insect Kill 10.2 23.5 21 76.19 308.35 

Bread Cove Insect Kill 10.2 21 4 0 308.35 

Bread Cove Insect Kill 6.8 22.5 32 100 308.35 

Bread Cove Insect Kill 6.6 19 9 88.89 308.35 

Table A.5. Balsam fir female cone study in 2008 of individual trees (n = 11 ): Percentage 
cone loss per tree (o/ocloss 211d), tree heights in meters (Height), DBH of trees in 
centimeters, cone crop size per tree (crop size), balsam fir stem densities in trees/ha 
(BDen), and disturbance type (1 = Insect Kill (n = 4); 2 = Intact (n = 4)) of study sites (n = 
8). 

%doss 
Study Sites 2nd Height 
Outport Trail Intact 100 16 

Blue Hill Insect Kill 66.66 9.6 

Blue Hill Insect Kill 25 7.2 

Blue Hill Intact 100 13 .2 

Blue Hill Intact 60 11.6 

Newman Sound Intact 30.91 9.3 

Terra Nova Rd. Intact 100 11.4 

Ochre Hill Insect Kill 100 10.6 
Platter's Cove Insect 
Kill 100 11.3 
Platter's Cove Insect 
Kill 100 9.8 

Bread Cove Insect Kill 100 10.2 
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crop 
size 

2 

6 

4 

9 

10 

55 

2 

24 

Bden 

81.26 

29 

29 

1528 

1528 

395 .3 

317.35 

199.5 

633.05 

633 .05 

308.35 

DT 
2 

2 

2 
2 

2 

2 

2 

AbsDen regimt: 

1151 2 

1151 2 

1151 2 

1151 2 

440.5 

440.5 

440.5 

440.5 



Table A.6. Balsam fir female cone study in 2007: Results of regression analysis (a = 0.05) 
to test relationship between percent female cone loss per tree, and balsam fir stem density 
per site (BDen), focal tree height (Height), DBH of trees, and cone crop size per tree (crop 
size). Residual plots showed residuals to be independent, homogeneous and have normal 
distribution. (Sokal and Rohlf, 1995; MINITAB 15®). 

Source OF Seg SS Adj SS Adj MS F P-value 
Bden 2 230 230 0.22 0.642 
Height I 126 187 187 0.18 0.675 
DBH 1 362 459 459 0.44 0.512 
crop s1ze I 260 260 260 0.25 0.621 
Error 35 36551 36551 1044 

Table A.7. Balsam fir female cone study in 2008: Results of regression analysis (a = 0.05) 
to test relationship between percent female cone loss per tree, and balsam fir stem density 
per site (BDen), focal tree height (Height), DBH of trees, and cone crop size per tree (crop 
size). Residual plots showed residuals to be independent, homogeneous and have normal 
distribution. (Sokal and Rohlf, 1995; MINITAB 15®). 

Source OF 
Bden 
Height 
DBH 
crop 
s1ze I 
Error 6 

Seg SS 
146.4 
3098 
942.1 

1463.6 
3162 

Adj SS 
502 

2504.2 
1 021.6 

1463.6 
3162 

Adj MS F P-value 
502 0.95 0.367 

2504.2 4.75 0.072 
I 021.6 1.94 0.213 

1463 .6 2.78 0.147 
527 
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Table A.8. Balsam fir female cone study in 2007: Results of nested-ANOVA, (a = 0.05) to 
test relationship between percent female cone loss per tree and the disturbance lype (Insect 
kill = 1; Intact = 2) per site (DT) (J. Gosse, pers. comm. 2007). Residuals were normaly 
distributed but not independent, and were arcsine-transformed for analysis (Sakal and 
Rohlf, 1995; MINITAB 15 ). 

Source OF Seg SS Adj SS Adj MS F P-value 
OT I 0.446 0.446 0.446 3.5 0.098 
site(OT) 8 1.0191 1.0191 0.1274 0.77 0.633 
Error 30 4.9736 4.9736 0. 1658 
Total 39 6.4387 

Table A.9. Balsam fir female cone study in 2008: Results of nested-AN OVA, (a = 0.05) to 
test relationship between percent female cone loss per tree and the disturbance regime 
(Insect kill = 1; Intact = 2) per site (DT) (J . Gosse, pers. comm. 2007). Residuals were 
normally distributed, but were not ind~endent, and were arcsine-transformed for analysis 
(Sakal and Rohlf, 1995; MIN IT AB 15 ). 

Source OF Seg SS Adj SS AdjMS F P-value 
OT I 0.03367 0.00001 0.0000 I 0 0.992 
site(OT) 6 0.68077 0.68077 0.11346 2.04 0.298 
Error 3 0.16678 0.16678 0.05559 
Total 10 0.88122 
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Table A.l 0. Balsam fir female cone insect study of individual trees (n = 29) in study sites 
(n = 8): Percentage seeds per cone infested with insects per tree (%seeds tree), tree heights 
(Height), diameter at breast height of focal trees (DBH),balsam fir stem densities (BDen, 
trees/ha), absolute stem densities (AbsDen, trees/ha). 

%seeds 
Stud~ Sites tree BDen AbsDen Height DBH 

Boy Scout Insect Kill 65.26 480.45 800.75 9.6 15.3 

Boy Scout Insect Kill 78.98 480.45 800.75 10.1 16 

Boy Scout Insect Kill 48.32 480.45 800.75 11.8 22.4 

Boy Scout Intact 27.76 838.75 1342 12.8 25.7 

Boy Scout Intact 42.04 838.75 1342 12.6 24.8 

Boy Scout Intact 15.17 838.75 1342 9.5 18.9 

Boy Scout Intact 26.27 838.75 1342 9.2 17.6 

White Hills Insect Kill 22.01 430.83 453.5 9.4 11.2 

White Hills Insect Kill 6.26 430.83 453.5 9.8 14 

White Hills Insect Kill 12.2 430.83 453 .5 10.4 16.3 

White Hills Insect Kill 13.1 430.83 453 .5 10.9 9.2 

White Hills Intact 19.67 2949.28 3104.5 10.2 15.7 

White Hills Intact 28.63 2949.28 3104.5 10.2 15.5 

White Hills Intact 7.17 2949.28 3104.5 8.8 12.1 

White Hills Intact 15.4 2949.28 31 04.5 10.4 14.4 

Spracklins Intact 8.7 1 2153 2153 8.78 14.5 

Spracklins Intact 7.94 2153 2153 10.3 18.1 

Spracklins Intact 3.81 2153 2153 7.5 15.9 

Spracklins Insect Kill 17.94 928.85 1179.5 10.2 16 

Spracklins Insect Kill 8.5 928.85 1179.5 13.6 2 1.9 

Spracklins Insect Kill 8.9 1 928.85 1179.5 8.23 13.7 

Spracklins Insect Kill 5.94 928.85 1179.5 9.72 14.2 
Hatchet Cove Insect 
Kill 39.03 821.5 1060 7.4 13.6 
Hatchet Cove Insect 
Kill 12.3 1 821.5 1060 9.3 17 
Hatchet Cove Insect 
Kill 8.05 821.5 1060 4. 1 5.3 
Hatchet Cove Insect 
Kill 28.11 921.5 1060 7.4 13 .7 

Hill View Intact 5.76 1568.96 2988.5 11.7 16.4 

Hill View Intact 4.13 1568.96 2988.5 9.8 13.7 

Hill View Intact 11.86 1568.96 2988.5 12.2 18 
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Table All. Balsam fir female cone insect study of individual trees (n = 29): Average 
cone length per tree ( clength tree), average cone width per tree ( cwidth tree), average 
cone weight per tree ( cweight tree), age class of trees (Young = 1; Old = 2), and 
disturbance type (1 = Insect Kill (n = 4); 2 = Intact (n = 4)) of study sites (n = 8). 

clength cwidth cweight 
Stud:y Sites tree tree tree DT age class 

Boy Scout Insect Kill 53 20.33 13.33 

Boy Scout Insect Kill 71.9 20.95 18.4 I 

Boy Scout Insect Kill 76.7 24.1 23.5 I 2 

Boy Scout Intact 67.7 23.7 20 2 2 

Boy Scout Intact 77.2 20 20.35 2 2 

Boy Scout Intact 77.8 23.6 24.8 2 

Boy Scout Intact 96.6 25.3 36.25 2 

White Hills Insect Kill 64.2 23 .08 21.85 I 

White Hills Insect Kill 62.6 24.8 20.4 2 

White Hills Insect Kill 59.9 22 17.55 2 

White Hills Insect Kill 57.55 20.75 14.45 

White Hills Intact 52 22.6 14.5 2 

White Hills Intact 62.83 22.33 18.67 2 2 

White Hills Intact 68.14 23.29 22.71 2 

White Hills Intact 77.4 21.55 21.9 2 

Spracklins Intact 67. 15 20.85 19.6 2 

Spracklins Intact 73 .7 23.35 22.9 2 2 

Spracklins Intact 80.4 21.4 24.3 2 

Spracklins Insect Kill 55.9 2 1.1 14.4 2 

Spracklins Insect Kill 65 .35 22. 15 16.95 2 

Spracklins Insect Kill 64.9 23.8 23.45 
Spracklins Insect Kill 68.7 23.75 24.65 
Hatchet Cove Insect 
Kill 68.9 24.82 26.27 
Hatchet Cove Insect 
Kill 67.75 21.5 21.08 2 
Hatchet Cove Insect 
Kill 83.56 25.89 34.89 
Hatchet Cove Insect 
Kill 65.41 2 1.18 18.47 I 

Hill View Intact 76.45 28 33.1 2 

Hill View Intact 98.88 26 38 2 I 

Hill View Intact 80.4 23 .55 29.75 2 2 
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Table A.l2. Balsam fir female cone insect study: Summary of regression analysis (a. = 
0.05) to test the relationship between percent seed loss per cone per tree and balsam fir 
stem density per site (BDen), and height of focal trees. Residual plots showed residuals to 
be independent, homogeneous and have normal distribution. (Sokal and Rohlf, 1995; 
MINIT AB 15 ). 

Source 
Bden 
Height 
Error 

DF 

I 
26 

Seq SS 
I 051.2 
125.2 

8453.1 

Adj SS 
I 025.4 
125.2 

8453.1 

Adj MS 
I 025.4 
125.2 
325.1 

F 
3.15 
0.39 

P-value 
0.087 
0.54 

Table A.13. Balsam fir female cone insect study: Summary of regression (a. = 0.05) to test 
the relationship between percent seed loss per cone per tree and average cone width per tree 
(cwidth tree), average cone weight per tree (cweight tree) and average cone length per tree 
(clength tree). Residual plots showed residuals to be independent, homogeneous and have 
normal distribution. (Sokal and Rohlf, 1995; MINITAB 15 ). 

Source 
clength 
tree 
cwidth 
tree 
cweight 
tree 
Error 

DF 

I 
25 

Seq SS Adj SS Adj MS 

220.1 

959 

406.6 
8043 .8 

387.4 

2.1 

406.6 
8043.8 

387.4 

2.1 

406.6 
321.8 

F p 

1.2 0.283 

0.01 0.937 

1.26 0.272 

Table A.14. Balsam fir female cone insect study: Summary ofnested-ANOVA, (a. = 0.05) 
to test relationship between percent seed loss per cone per tree and the disturbance type 
(Intact; Insect kill) per site (DT), based on recent history of insect infestation for each site 
(J. Gosse, 2007 pers. comm.; S. Avery 2007 pers. comm.). Residuals were nom1ally 
distributed, but not independent, and were arcsine-transformed before analysis (Sokal and 
Rohlf, 1995; MINITAB 15 ). 

Source DF Seg SS Adj SS Adj MS F P-value 
DT I 582.9 1119.1 1119.1 0.96 0.365 
site(DT) 6 7098.7 7098.7 1183 .1 12.75 0 
Error 21 1948.0 1948.0 92.8 
Total 28 9629.6 
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Table A.15. Balsam fir female cone insect study: Summary of nested-ANOVA, of 
percentage seed loss per cone among trees based on the two age categories, Age, (' Young' ; 
and 'Old') (a = 0.05). Residuals were normally distributed, but not independent, and were 
arcsine-transformed before analysis (Sokal and Rohlf, 1995; MINITAB 15 ). 

Source DF Seg SS Adj SS Adj MS F P-value 
Age 1 0.0018 0.00068 0.00068 0.01 0.926 
site( Age) 14 1.19657 1.19657 0.08547 6.93 0.001 
Error 13 0.16041 0.16041 0.01234 
Total 28 1.35716 

Table A.l6. Balsam fir female cone insect study: Seed viability test data summary for study 
sites (n =8). 

No. of % of 
No. of seeds seeds Average weight of lots of 5 

Site seeds viable viable seeds (mg) 
Boy Scout Camp Rd.Insect Kill 
Site 40 0 0 0.0508 ± 0.0053 
Boy Scout Camp Rd. Intact Site 65 0 0 0.0583 ± 0.004 
White Hills Insect Kill Site 110 7 6.36 0.0436 ± 0.0029 
White Hills Intact Site 80 II 13.75 0.0429 ± 0.0036 
Spracklins Intact 120 6 5 0.0535 ± 0.0035 
Spracklins Insect Kill 80 4 5 0.0718 ± 0.0065 
Hatchet Cove Insect Kill 40 8 20 0.0538 ± 0.001 7 
Hill View Intact 120 18 15 0.0627 ± 0.003 

Table A.l7. Balsam fir female cone insect study: Summary of binary logistic 
regression analysis to test relationship between proportion of viable seeds per cone per tree 
and disturbance regime (Intact; Insect kill) of individual sites (DT). No assumptions about 
the independence and normality of residuals distribution were made (Sokal and RoWf, 
1995; MINITAB 15®). 

Odds 95% CI 
Predictor Coef SE Coef z p Ratio Lower Upper 
Constant -2.85944 0.50783 -5.63 0 
DT 0.278429 0.296722 0.94 0.348 1.32 0.74 2.36 
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Table A.18. Balsam fir female cone insect study: Summary of binary logistic 
regression analysis to test relationship between proportion of viable seeds per cone per tree 
and balsam fir stem densities per site (BDen). No assumptions about the independence and 
normality of residuals distribution were made (Sakal and Rohlf, 1995; MINIT AB 15 ). 

odds 95% CI 
Predictor Coef SE Coef z p ratio lower Upper 
Constant -2.89977 0.297347 -9.75 0 
Bden 0.000329 0.000164 2 0.045 I I I 

Table A.l9. Balsam fir female cone insect study: Summary of binary logistic 
regression analysis to test relationship between proportion of viable seeds per cone per tree 
and weights of lots of five seeds per cone (weight). No assumptions about the 
independence and normality of residuals distribution were made (Sakal and Rohlf, 1995; 
MINITAB 15®). 

odds 95% 
Predictor Coef SE Coef z p ratio lower C l Upper 

-
Constant 2.22596 0.843282 -2.64 0.008 

-
weight 3.35917 15.2385 -0.22 0.826 0.03 0 3.25E+ II 
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Appendix B: Study Site Characteristics and Cumulative Assessment of Cone/Seed 

Losses 

Table B.l Height and diameter at breast height (DBH) averaged for sites (insect kill = 5; 
intact = 5) in male cone predation study. Individual focal tree heights and DBHs were 
estimated using a clinometer and DBH tape respectively. 

average average 
Study Sites height(m) Std.Error DBH(cm) 
Louil Hill Insect Kill 10.58 0.69 20.78 
Blue Hill Insect Kill. 8.95 0.6 25 .25 
Blue Hill Intact. 9.05 0.65 19.33 
Newman Sound Coastal Trail 
Intact. 10.68 0.7 21.56 
Terra Nova Town Road Intact. 12.9 0.99 26.17 
Ochre Hill Insect Kill. 11.2 0.57 23 .25 
Ochre Hill Intact. 6.78 0.71 12.7 
Sandy Pond Intact. 13 .53 1.35 23 .1 
Platter's Cove Insect kill. 10.66 0.33 21.13 
Bread Cove Insect Kill. 10.66 0.35 25.5 

Table B.2. Study sites for male cone predation study (n = I 0). 

Study Sites 
Louil Hill Insect Kill 
Blue Hill Insect Kill. 
Blue Hill Intact. 
Newman Sound Coastal Trail Intact. 
Terra Nova Town Road Intact. 
Ochre Hill Insect Kill. 
Ochre Hill Intact. 
Sandy Pond Intact. 
Platter's Cove Insect kill. 
Bread Cove Insect Kill. 

GPS Coordinates 
N48° 38.750' W053° 57.141 I 

N48° 35.946' W053° 58.068' 
N48° 36.227' W053 ° 56.871 I 

N48° 33.412' W053 ° 57.927' 
N48° 30.813' W054° 00.561 I 

N48° 30.544' W053 ° 57.377' 
N48° 30.555' W053 ° 57.481 I 
N48° 29 .590' W054 o 0 1.234' 
N48° 25 .553' W054° 06.464' 
N48° 28.813' W054° 00.010' 
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Std. 
Error 

3.25 
2.46 
1.84 

2.1 
1.9 

2.21 
1.53 
2.81 
1.66 
2.35 



Table B.3. Height and diameter at breast height (DBH) averaged for sites (insect kill = 5; 
intact = 5) in female cone predation study. Individual focal tree heights and DBHs were 
estimated using a clinometer and DBH tape respectively. 

average Std. 
Study Sites height(m) Error average DBH 
Outport Trail Intact. 13 .3 1.23 33 .58 
Blue Hill insect Kill. 8.85 0.76 21.43 
Blue Hill intact. 11.7 0.57 19.3 
Newman Sound Coastal Trail 
Intact. 11.18 0.84 22.75 
Terra Nova Town Road Intact. 11.28 1.47 24.43 
Ochre Hill insect Kill. 10.95 0.57 21.08 
Ochre Hill intact. 13.05 0.69 26.88 
Sandy Pond Intact. 11.55 1.4 15.78 
Platter's Cove Insect Kill. 12 .63 1.86 22.13 
Bread Cove Insect Kill. 8.45 1.0 I 21.5 

Table B.4. Study sites for female cone predation study (n = 1 0). 

Study Sites 
Outport Trail intact. 
Blue Hill insect Kill. 
Blue Hill Intact. 
Newman Sound Coastal Trail Intact. 
Terra Nova Town Road Intact. 
Ochre Hill Insect Kill. 
Ochre Hill Intact. 
Sandy Pond Intact. 
Platter's Cove Intact. 
Bread Cove Insect Kill. 
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GPS Coordinates 
N48° 32.205' W053° 58.860' 
N48° 35.946' W053° 58.068' 
N48° 36.227' W053° 56.87 1' 
N48° 33.412' W053° 57.927' 
N48° 30.813' W054° 00.561' 
N48° 30.544' W053 °57.377' 
N48° 30.555' W053° 57.481' 
N48° 29.590' W054° 0 1.234' 
N48° 25.553' W054° 06.464' 
N48° 28.813' W054° 00.0 I 0' 

Std. 
Error 

4.27 
1.59 
1.98 

2.46 
2 .77 
2.37 
3.6 

2.07 
2.46 
0.98 



,------------------------- ------

Table 8.5. Height and diameter at breast height (DBH) averaged for sites (insect kill = 4; 
intact = 4) in female cone insect predation study. Individual focal tree heights and DBHs 
were estimated using a clinometer and DBH tape respectively. 

Ave. tree Std. 
Stud~ Sites height (m) Error 
Boy Scout Camp Insect Kill 10.5 0.66 
Boy Scout Camp Intact 11 0.97 
White Hills Insect Kill 10.1 0.33 
White Hills Intact 9.9 0.37 
Spracklins Intact 8.86 0.81 
Spracklins Insect Kill 10.48 1.13 
Hatchet Cove Insect Kill 7.1 1.08 
Hill View Intact 11.2 0.73 

Table B.6. Study sites for cone insect study (n = 8). 

Study Sites 
Boy Scout Camp Insect 
Kill 
Boy Scout Camp Intact 
White Hills Insect Kill 
White Hills Intact 
Spracklins Intact 
Spracklins Insect Kill 
Hatchet Cove Insect Kill 
Hill View Intact 

GPS Coordinates 

N48 24.219' W054 14.900' 
N48 23 .770' W054 13.872' 
N48 LJ 10.632 W054[J 3.644 
N48 D 10.658' W054 3.662 
N48 D 32.970' W054[1 3.787' 
N48 32.900' W054 3.966' 
N48 2.593' W053 [l 50.243' 
N48 4.893' W053 [l 56.517' 

Average. DBH 
(em) Std.Error 

17.9 2.26 
21.75 2.05 
12.68 1.56 
14.3 0.83 

16.17 1.05 
16.55 1.87 
12.4 2 .5 
16 1.25 

Table 8.7. Percentage of seeds eaten or infested with insect larvae averaged for each study 
site (n = 8). 

Study Sites 
Boy Scout Camp Insect Kill 
Boy Scout Camp Intact 
White Hills Insect Kill 
White Hills Intact 
Spracklins Intact 
Spracklins Insect Kill 
Hatchet Cove Insect Kill 
Hill View Intact 

% seeds eaten per site 
63 .37 
30.27 
14.52 
16.64 
6.7 

9.96 
21.75 
7.62 
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Std. Error 
8.87 
5.51 
3.25 
4.47 
1.52 
2.62 
6.53 
2.35 



Cumulative Assessment of cone/seed losses to red squirrels and insects 

(1) Percentage female cone loss per tree to red squirrels in insect kill sites= 50.4 ± 
7.5% 

(2) Percentage female cone loss per tree to red squirrels in intact sites = 64.6 ± 6.3% 

(3) Percentage seeds lost to insects in Insect Kill sites= 25.0 ± 7.3% 

( 4) Percentage seeds lost to insects in Intact sites = 16.0 ± 3.1% 

(5) Percentage cones from 2nd harvest with external cone damage in Insect Kill sites = 
9.6 ± 4.5% 

(6) Percentage cones from 2nd harvest with external cone damage in Intact sites = 8.8 
±3.4% 

Maximum cumulative seed loss to red squirrels and insects in Insect Kill sites (assuming: 

red squirrels avoid cones with no signs of external damage but with internal insect 

infestation of seeds; and do not feed on cones with external signs of insect infestation): 

(1) + (3) + (5) = 85% 

Where (1) = 50.4%; (3) = 25%; and (5) = 9.6%. 

Maximum cumulative seed loss to red squirrels and insects in Intact sites (assuming: red 

squirrels avoid cones with no signs of external damage but with internal insect infestation 

of seeds; and do not feed on cones with external signs of insect infestation): 

(2) + (4) + (6) = 89.4% 

Where (2) = 64.6%; (4) = 16.0%; and (6) = 8.8%. 

Minimum cumulative seed loss to red squirrels and insects in insect kill sites (assuming: 

red squirrels do not discriminate between cones with no external and internal insect 

infestation and cones with no external but with internal insect infestation; and do not feed 

on cones with external signs of insect infestation): 

(1) + (5) = 60% 
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Where (1) = 50.4%; and (5) = 9.6%. 

Minimum cumulative seed loss to red squirrels and insects in insect kill sites (assuming: 

red squirrels do not discriminate between cones with no external and internal insect 

infestation and cones with no external but with internal insect infestation; and do not feed 

on cones with external signs of insect infestation): 

(2) + (6) = 73.4% 

Where (2) = 64.6%; and (6) = 8.8%. 

Percentage of viable seeds per cone in insect kill sites = 4. 75% 

Percentage of viable seeds per cone in intact sites = 8.75% 

Maximum proportion of viable seeds in Insect Kill sites 

100,000 seeds 
60% loss to red squirrels and insects 

40,000 seeds 
4.75% of seeds viable 

Hence, approximately 1,900 seeds viable. 

Minimum proportion of viable seeds in Insect Kill sites 

100,000 seeds 
85% loss to red squirrels and insects 

15,000 seeds 
4.75% of seeds viable 

Hence, approximately 713 seeds viable. 

Maximum proportion ofviable seeds in intact site 

100,000 seeds 
73.4% loss to red squirrels and insects 
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26,600 seeds 
8.75% of seeds viable 

Hence, approximately 2,328 seeds viable. 

Minimum proportion of viable seeds in Intact site 

100,000 seeds 
89.4% loss to red squirrels and insects 

11 ,000 seeds 
8.75% of seeds viable 

Hence, approximately 963 seeds viable. 
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Appendix C: Images and Identity of Cone/Seed Insects Recovered from Study Sites 

Figure C-1. Arrow indicates insect entry hole in cone scales (recovered from Hillview 
Intact site during first harvest). Scale: 14X. 
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Fig C-2. Arrow indicates signs of internal cone damage (recovered from Boyscout Camp 
Insect Kill site during second harvest). Scale: 8X. 
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Fig C-3. Green larva outside cone with distinct head and dark thickening on dorsal side of 
first segment of thoracic region. Three pair of legs in thoracic region, and four or five 
pairs in abdominal segment. Lepidoptera, possibly one of the coneworms (recovered 
from Boyscout Camp Intact site during second harvest). Scale 30X. 
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~------------------------------------------------------------------- -------

Fig C-4. Lepidoptera, one of the coneworms. Fits description for 
fir coneworm, Dioryctria abietivorella with arrows showing 
characteristic row of dark spots on body (recovered from 
Boyscout Camp Intact site). Scale: 30X. 
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Fig C-5. Arrow shows Lepidoptera, coneworm between bracts; signs of webbing and 
frass (recovered from White Hills Insect Kill site). Scale 6X 
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Fig C-6. Lepidoptera, coneworm, with arrows showing 3 pair of legs on thoracic 
segments and 4 pairs on abdominal segments (recovered from White Hill Insect Kill site). 
Scale: 16X. 
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Fig. C-7. Lepidoptera, coneworm. Arrow showing distinct head with characteristic dark 
thickening on dorsal side of first thoracic segment (recovered from Spracklins Intact site). 
Scale 14X. 
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Fig. C-8. Arrow showing tissue damage in L.S. of female cone (recovered from 
Spracklins Insect Kill site). Scale: 15X. 
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Fig C-9. Thysanoptera, common thrips located between cone bracts with arrows showing 
3 pair of relatively long legs and 2 folded antennae in the head region (recovered from 
Hatchet Cove Insect Kill site). Scale: 15X. 
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Fig C-1 0. Arrow shows exit hole in seed recovered from third harvest in 
Boyscout Insect Kill site. Scale: 45X. 

107 



Fig C-11. Arrow showing legless reddish larva (cone midge) exiting single seed. Diptera, 
Dasineura spp. Scale: 42X. 
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Fig. C-12. Egg cluster collected from surface of cone (recovered from Boyscout Camp 
Intact site). Scale: 40X. 
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Fig C-13. Legless larvae with indistinct head recovered tunneling in mid rib of cone. 
Diptera, cone maggot. Possibly, Hylemya spp (Spracklins Intact site). Scale: 25X. 
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Fig C-14: Reddish larva, legless with indistinct head recovered from seed. 
Possibly Diptera, cone midge, Dasineura spp (Spracklins Intact site). 
Scale: 80X. 
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Fig C-15. Reddish larvae with indistinct head and no legs recovered from 
seed. Possibly Diptera, cone midge, Dasineura spp. (Third harvest at Hillview Intact 
site). Scale: SOX. 
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Fig C-16. Coma-shaped larva with no distinct head or legs recovered 
from seed. Hymenoptera, seed chalcid, Megastigmus spp. (Fourth harvest 
at Spracklins Insect Kill site). Scale: 70X. 
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Fig C-17. Larva with indistinct head and no legs recovered between scales. Possibly 
Diptera, cone resin midge, Asynapta spp. (recovered from Spracklins Insect Kill site). 
Scale: 30X. 
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Fig C-18 . Movement involves arcing of body characteristic of Looper moth larvae. 
Arrows show 3 pair of legs on thoracic segments and 2 pairs on the posterior abdominal 
segments (recovered from Boyscout Camp Intact site). Scale: 15X. 
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