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Abstract

‘Transshipment is the practice of sharing common resources among supply chain mem-
bers in order to mitigate the risks of uncertain demands. The main theme of this thesis
is the transshipment problem in decentralized supply chains. The members of decen-
tralized supply chains are self-interested agents who do not necessarily consider the
efficiency of the whole chain, and need contracts that specify the details of their coop-
eration. We provide a systematic overview of coordinating contracts in supply chains

before focusing on pecific questions .

problem.

The first problem addressed by this thesis is to find coordinating transshipment con-
tructs for supply chains with two agents. We propose a transshipment contract that
always coordinates the general two-agent supply chains. This mechanism relies on

an implicit pricing mechanism, i.c. agents initially agree on a formula for setting the

transshipment prices, and once quantity decisions have been made and prior to the

realization of demands, they fix the transshipment prices.

The second problem is to find coordinating contracts with a pricing mechanism in

supply chains with more than two agents. We propose a mechanism for deriving the

prices based on i llocation rule introduced by Anupindi

et al. (2001). With the transshipment prices being set, the agents are free to match

their residuals based on their individual preferences. It has been shown that with the

transshipment prices derived from the proposed mechanism, the optimum transship-
ment patterns are always pair-wise stable, ic. there are no pairs of agents that can be

jointly better off by unilaterally deviating from the optimum transshipment patterns.

The third problem pertains to the effects of cooperation costs on transshipment games.

Despite its practical relevance, the issue of cooperation costs has not been addressed



in the supply chain contracting literature thus far. We study the cooperative trans-

shipment game with symmetri having normally distributed i

demands. We provide characterization of optimal individual quantities, the maximum
expected profits, and individual allocations for these games. These results, though
interesting by themselves, are only a point of departure for studying the games with
cooperation costs. We provide conditions for stability (non-emptiness of the core) of

these games under two governance network structures, i.e. clique and hub.
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Chapter 1

Introduction

A supply chain is the set of entities involved in the design of new products and services,
procuring raw materials, transforming them into semi-finished and finished products,
and delivering them to the end customer (Swaminathan and Tayur, 2003). In a broad
sense a supply chain consists of two or more legally separated organizations, being
linked by material, information and financial flows. These organizations may be firms
producing parts, components and end products, logistic service providers and even
the ultimate customer, and in a narrow sense the term supply chain is also applied
to a large company with several sites often located in different countries (Stadtler

and Kilger, 2008). The main underlying tenet of Supply Chain Management (SCM)

is that organizations can improve their performance in terms of higher profit levels
and customer satisfaction, and lower lead-times and uncertainties through integration
and collaboration with other organizations who are parts of the same supply system.
Therefore, as discussed by Lee (2004), top-performing supply chains possess three

qualities: (1) great supply chains are agile and they react speedily to sudden changes

in demand or supply, (2) they adapt over time as market structures and strategies

evolve, and (3) they align the interests of all the firms in the supply chain so that



companies optimize the chain’s performance when they maximize their interests.
‘The ultimate goal in managing supply chains is to better serve the market. In a recent
study, Faweett et al. (2008) found that the top four perceived benefits of SCM are
improvements in responding to customer requests, on-time delivery, customer satis-
faction, and order fulfillment lead-time. The same study also highlights that after the
inadequacy of required information systems, the most important barrier to achieving
the SCM benefits is the lack of clear supply chain guidelines. Therefore, the chal-
lenge in managing supply chains is not just the aspiration to improve the efficiency of
the whole supply chain, but the mechanisms to actually coordinate the many complex
processes spanning across it. Without appropriate mechanisms, uncoordinated supply
chains may suffer drastic inefficiencies. Narayanan and Raman (2004) elaborate the
example of Cisco Systems, Inc. and show how the lack of coordination mechanisms
resulted in 2.5 billion dollars of inventory write-offs.

Transshipment is the practice of sharing common resources among different agents
in supply chains in order to mitigate the risks associated with uncertain demands
In manufacturing, transshipment is typical in industries wherein the volatile market
demands should be met by utilizing pre-specified production capacities/quantities. In
retailing, transshipment of inventories can also boost the service level while reducing
inventory costs. The time lag between decisions on production/order quantities and
the realization of random demands—which could be due to long procurement lead-
times or technological constraints—makes the initial decisions an inflexible parameter
at the time of demand realization. The option to transship provides the agents with
the opportunity to improve efficiency both at the individual and network levels.

can be in a variety of ci when

about external factors cannot be adequately handled in advance. For many production

supply chains, procurement of raw materials and parts with long lead-times in antic-



ipation of random market demand is a major concern, both for supply chain agents
and ultimate customers in some cases such as HIN1 vaccines (Hirschler and Kelland,
2009). As the volatility of market demand increases, the risk of mismatch between
the stacked resources and actual demand escalates. An example of transshipment
practice is discernible in the oil industry where volatility of demands and limitation
of regional refinery capacities make transshipment a reasonable practice (Dempster
et al., 2000). Other examples of transshipment in the retailing industry come from
automobile dealer networks (Zhao et al., 2005), computer retailing (Shao et al., 2008),
construction machinery (Rao et al., 2000), and apparel (Mogre et al., 2009). Although
in most cases transshipment is done by physically moving products and inventories
from one agent to another, this feature is not necessary. In virtual transshipment,
the customers of one agent may be served directly from another agent. This type of
transshipment is common in the electricity markets (Yang and Qin, 2007).

Traditionally, operations management deals with centralized systems where it is as-
sumed that a single agent chooses all the necessary actions and makes all the relevant
decisions for the whole system. Therefore, optimization is the primary concern for de-
cision makers. However, decisions in real supply chains are usually decentralized. This
is either because the supply chain is comprised of agents with different preferences
(e different ownerships), or a large number of decisions add to system complexity to
the point that centralized decision making and control are infeasible—so the decisions

must be distributed among autonomous agents. The issue here is that, when agents

individually optimize their decisions, supply chain efficiency is not necessarily maxi-
mized. Hence, coordination becomes a major problem. In decentralized systems, the
major goal is to design appropriate coordinating mechanisms so that individual deci-
sions are coordinated. These mechanisms are cither contractual mechanisms (among

separately-owned interacting agents) or performance evaluation measures (among in-




teracting agents with the same ownership structure). In both cases, a coordinating
mechanism transforms the agents’ objectives so that they would be aligned with the

integrated supply chain objectives. The fundamental working hypothesis is that each

agent, being rational, maximizes its individual objective. Therefore, a coordinating
mechanism needs to ensure that individual decisions result in supply chain’s maximum
efficiency. The main tool for studying the decision making processes of rational agents

is game theory. The analysis of the i problem

in ized supply chains where i are done among self-interested
rational agents. The purpose of this thesis is to study the contractual mechanisms for

the i in supply chains.

When supply chain agents intend to cooperate with each other, they need contracts
that specify the details of their cooperation. Although contracts have been studied in

law, economics, and marketing disciplines, their study in operations management and

SCM takes a rather different approach: “What distinguishes SCM contract analysis

may be its focus on operational details, requiring more explicit modeling of materials

flows and complicating factors such as uncertainty in the supply or demand of prod-
ucts, forecasting and the possibility of revising those forecasts, constrained production
capacity, and penalties for overtime and expediting” (Tsay et al., 1999, p. 302). In
SCM, the issue of contracts and their effects on agents’ decisions becomes central
once one approaches a supply chain as the nezus-of-contructs (Whang, 1995). This
emphasizes that a supply chain is a collection of self-interested agents bound together
through a set of contracts. This thesis mainly investigates transshipment contracts
and their effects on the supply chain efficiency.

When optimization of the system’s total efficiency is (at least partially) in conflict
with agents' incentives, reconciliation of these conflicts is the goal of coordinating

contructs. A coordinating contract has three characteristics:



(a) the set of supply chain optimum decisions should be a pure Nash equilibrium;
(b) it should divide the supply chain profits arbitrarily among the agents; and
(c) it should be worth adopting (Cachon, 2003)

Supply chain coordination through contracts has been a burgeoning area of research in
recent years. In spite of rapid development of research, there are only a few structured

analyses of ions, methods, and real-lif of results in this field. In

Chapter 2, a systematic framework of contracting in supply chain context is presented.
The aim of that chapter is to provide a systematic overview of coordinating contracts
in supply chains through highlighting the main concepts, assumptions, methods, and
presenting the state-of-the-art research in this field.

The first question addressed by this thesis is to find coordinating transshipment con-

tracts for a supply chain with only two agents. In Chapter 3, we study a supply chain

with two independent agents producing a similar product and cooperating through
transshipment. Previous research shows that only under a certain range of problem
parameters, a set of linar transshipment prices (i.e. transshipment prices that are
fixed before the decisions on production/order quantities have been made) could be
found which induce the agents to decide their production quantities so that the total
expected profit of the two agents equals the maximum expected profit of the central-

ized supply chain. However, even though such transshipment prices do exist, they

result in exclusive divisions of total expected profits and thus they cannot accommo-
date the arbitrary division of total expected profits due to different bargaining powers
of the agents (the second coordination requirement in Cachon's definition (Cachon,
2003)). Using the Generalized Nash Bargaining Solution, we model the negotiation
between the agents over the division of total expected profit resulting from their co-

operation, and derive a coordinating contract for this setting, This contract has an




implicit pricing mechanism and should be carried out in two rounds. In the first
round, the agents set the transshipment prices as an implicit function of their pro-
duction quantities, and in the second round, after the agents individually decide their
quantities, they fix the negotiated transshipment prices by selecting them among all
the possible transshipment prices.

The second question is to investigate the coordinating contracts with pricing mecha-

nisms in supply chains with more than two agents. This question is studied in Chapter
4. The contracts which are based on allocation rules require agents to be able to take
advantage of side payments (which may be infeasible in some situations). From the
implementation point of view, these contracts also need a governing agent to collect
and redistribute the realized profits among the members of the coalition. In order
10 avoid these difficulties, the agents can turn to the contracts with pricing mecha-
nisms. Then, whenever a transshipment between an agent with surplus and another
one with outstanding demand happens, the latter pays the former a sum proportional
to the amount transshipped. The advantage is that the additional institution required
for redistribution of extra profits becomes unnecessary—agents who are involved in a
transshipment, transaction can handle the redistributions without incentive-aligning
side payments. As this thesis’ main contribution to this question, we show that trans-
shipments among several agents resembles a matching game in a two-sided market
where the supply and demand values are real numbers. We have derived a pricing
‘mechanism with which optimal transshipment patterns are always pair-uwise stable so-
lutions to the corresponding matching process, i.e. given the transshipment prices, no
pairs of agents can simultaneously improve their profits by mutually deviating from

the optimal transshipment patterns.

The third pertains to P games.

Chapter 5 addresses th game with i



having independent and normally distributed demands. The cooperative transship-
‘ment game without cooperation costs has been well studied in the literature, however,
general analytical results for it seem out of reach at the moment. We provide char-
acterizations of optimal individual quantities, the maximum expected profits, and
individual allocations for these games. In particular, we prove that though individual
allocations grow with the coalition size they diminish at the same time according to
two laws of diminishing individual allocations. These results though interesting by
themselves are only a point of departure for studying the games with cooperation
costs. In reality, when agents seck to cooperate with each other, they have to incur
negotiation and governance costs, e.g. monitoring and infrastructure. The coopera-
tion costs depend on the cooperation network structure. We consider two: (1) Clique
network structure, where all the agents in the coalition are directly linked to cach
other; and (2) Hub network structure, where the agents are linked to a designated
coordinator agent. We provide the necessary and sufficient conditions for the cost per
link necessary to render the core of the game non-empty for both network structures.
These maximum admissible costs are always decreasing for cliques, however, increas-
ing or exhibiting a unimodal pattern for hubs. To the best of our knowledge, these
results are the first to incorporate cooperation costs in the analysis of transshipment

games in the operational research and operations management literature.

1.1 Transshipment Games

At this point, it is worthwhile to distinguish among the variations of transshipment
games which are analyzed in different sections of the thesis. The notation used in this

thesis is listed on pages xi and xii.



1.1.1  Non-cooperative Transshipment Game

A non-cooperative transshipment game is a stochastic game. In a two-agent non-

cooperative transshipment game, it will be shown that agent i’s expected profit equals

JPC(s,X) = E[rmin{X;, D) + villi - X+ (s = g - vy min{(D - X;)°, (X - Di)')

i) min[(Di - X)*, (X; - D;)']] (1)

(-

Chapter 3 analyzes this game for a supply chain with two agents.!

1.1.2 N i ive T i Game

A non-cooperative/cooperative transshipment, game is a two-stage game. The first
stage game is a stochastic non-cooperative game, and the second stage game, which
is played after the realization of demands, is a deterministic cooperative game. This
game was first formulated by Anupindi ct al. (2001). The profit function for each

individual agent is
JPE(X) = E[rimin{X;, D} + H, - e.X; + (X, D)] (12)

where a,(X, D) represents agent i's allocation of the second stage deterministic coop-
crative game, i.e., ez post cooperative transshipment game. For given X and D, the
ez post cooperative transshipment game assigns to any sub-coalition Q € N the value

TThe original game considered in Chapter 3 also incorporates the lost-sale penalties which, for
the ease of comparison, are excluded from this formulation.



Rq(X.D) = maxY Yp,W,
*QQ
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The ex post cooperative transshipmest game is also known as the Owen Game
(Owen, 1975). Chapter 4 analyzes the non-cooperative/cooperative transshipment
game.

1.1.3 Cooperative Transshipment Game

A cooperative transshipment game (or the ez ante cooperative transshipment game
when the reference is not immediately clear from the context) is a cooperative game
‘with a stochastic characteristic function (Sliker et al., 2005). The ex ante cooperative
transshipment game assigns o any coelition Q € N the value Jo which is given by

Jg = mgx Jo(X) = mgxE| T (remin(X,, D.) + vl ~:Xo) + Rq(X.D)] a4
£



Rg(X.D) = max} 3 p,W, (13)
)

YW, sH. vieQ
<
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<

Wy 20,¥i,jeQ

Chapter 5 studies thi in supply chains with sy ic newsvendor agents facing

independent and normally distributed demands.

1.2 Centralized Transshipment Problem

In Chapters 3, 4, and 5, all transshipment games are compared with the central-
ized transshipment problem. The centralized transshipment problem is the following
stochastic optimization problem:

e J(X) = mg<E| 2 (rimin(X, ) + vl =X0) ¢ nN(x.D)] (16)
‘where for given X and D,

Ry(X.D) = max YW, (1%
o
st
T Wy sH.YieN
&
S WysE.VieN
&

W, 20,¥ijeN.
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Chapter 2

Coordinating Contracts in Supply
Chain Management: A Review of

Methods and Literature

Summary: Supply chain coordination through contracts has been a
burgeoning area of research in recent years. In spite of rapid development
of research, there are only a few structured analyses of assumptions, meth-
ods, and applicability of insights in this field. The aim of this chapter is to
provide a systematic overview of coordinating contracts in supply chains
through highlighting the main concepts, assumptions, methods, and present

the state-of-the-art rescarch in this field.



2.1 Introduction

‘The Supply Chain Management (SCM) paradigm asserts that when making decentral-
ized decisions, the efficiency of the whole system should be taken into consideration
When decision making is decentralized, i.e. decisions are made by independent agents

comprising the chain, optimizing the system’s total efficiency might be in conflict with

the agents’ incentives. Therefore, coordinating the agents’ decisions becomes a major
issue. By viewing a supply chain as a nexus-of-contracts (Wang and Parlar, 1994),
ie. a group of rational agents interacting with each other according to pre-specified
rules, more efficient SCM is achieved by designing appropriate contracts coordinating
the agents’ decisions. This is the main objective of research on coordinating con-
tracts in supply chains. Although contracts have been studied in law, economics, and

marketing disciplines, their study in SCM takes a rather different approach:

What distinguishes SCM contract analysis may be its focus on oper-
ational details, requiring more explicit modeling of materials flows and
complicating factors such as uncertainty in the supply or demand of prod-
uets, forecasting and the possibility of revising those forecasts, constrained
production capacity, and penalties expediting (Tsay et al.,

1999).

A contract specifies the mechanism for governing the interaction contingencies among
agents. It manifests the exchange of promises regarding the actions which are to be
done in time. Necessarily, contracts must be enforceable, ic. the agents’ refrainment
from fulfilling their promises should be ruled out (or made highly improbable). For a
contract to be enforceable, its terms (the mutual promises), should be verifiable by an
enforcing body. However, the verifiability of a contract’s terms is dependent on the

enforcing body. If a contract’s terms are verifiable by a court of law, that contract

13



would be a legal contract.

Supply chain contracts are not always required to be legal. Several papers in the
literature consider contracts among independent agents that are divisions of the same
company and a higher level manager can verify the rendition of lateral promises (e.g.
Chen (1999), Lee and Whang (1999), and Zhang (2006)). Nevertheless, the process of
contract design should explicitly point out the verifying ability of the enforcing agent.
‘Two approaches to verification are detectable in the literature: direct, and indirect
In direct verification, the conditions regarding the fulfillment of contract terms must
be observed. However, in indirect verification, the aforementioned conditions may be
inferred. In reality, the verification process is a mixture of the two approaches. An
example of direct verification is the delivery of the products ordered from a supplier

retailer. The retailer can observe, i.e. count, the mumber of products received.

Indirect verifications are achieved when a certain action is considered to be necessary
(or self-enforcing) for a rational agent. For example, a manufacturer can verify that
if the market selling price is greater than the total production cost and salvage value,
the retailer would satisfy market demand as much as it can.

The study of supply chain contracts is an interdisciplinary research area. For the
most part, it is a synthesis of inventory theory (e.g. Zipkin (2000)), game theory (e.g.
Owen (1995)), and contruct economics theory (e.g. Brousseau and Glachant (2002)).
In spite of rapid development of reseach on supply chain contracting and coordina-
tion, there are only a few structured analyses of the assumptions, methods, and the
implications of insights in this field. Relevant examples include Li and Wang (2007),
Chan et al. (2004), Li and Wang (2007}, and Gomez-Padilla et al. (2005). The aim of
this chapter is to provide a general overview of coordinating contracts in supply chains
through highlighting the main concepts, assumptions, methods, and presenting the

state-of-the-art research in this field. The chapter intends to provide a non-technical

1
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framework encompassing the most important components of these theories.
‘The rest of this chapter is organized as follows. In Section 2.2, the concept of coordi-
nation in SCM contracting is elaborated. Section 2.3 provides a classification scheme
for coordinating contract in supply chains. Some of the well-known contractual mech-
anisms in SCM are introduced in Section 2.4. Section 2.5 contains a review of recent
literature based on the proposed classification scheme. Section 2.6 discusses several
issues with regard to coordinating contracts in SCM and finally, Section 2.7 introduces

some directions for future research in this area.

2.2 Coordination and Supply Chain Contracts

As a rule of thumb, the efficiency of a centralized decision making system is supe-
rior to that of a decentralized system, all other things being equal. A well-known
justification of the latter is the double marginalization conundrum (Spengler, 1950)
The incompatible incentives of agents in a decentralized system make the decisions
that are optimal for the agents sub-optimal for the whole chain. In the decentralized
supply chain literature, coordination refers to the equivalence of agents’ individually-
optimal decisions? with the optimal decisions of the (centralized) supply chain®. The

compatibility of incentives in decentralized supply chains stems from the funda-

mental characteristic of agents, i.c., rationality. The rationality of individuals implies
that each agent seeks to maximize its own utility, and moreover, each agent is able to
calculate its optimal decisions, which lead to the maximization of its utility, given the

We have elaborated on various supply chain decisions in Section 2.
*Note that in the centralized supply chain , coordination o derivation of

supply chais 6) for
in centralized supply chains). Therefore, in centralized supply chains, coordination is in [ncllxl(»\ml
optimization problem, while in




information it has®. As the result, the agents do not undertake the supply chain op-
timal decisions unless they know that those decisions are also optimal for themselves.
In order to coordinate a supply chain, a contract must transform the agents' utility
functions in a way that the supply chain optimal decisions would also be optimal
for the agents. However, this is only one necessary condition for a contract to be
coordinating. Another necessary condition is that a contract must not be forced
upon agents; they must willfully accept the contract. The literature contains at least
two approaches to formulating the acceptability condition of a contract. The first
approach implies that a contract is acceptable if it leads to the utility of cach agent
being above a certain acceptable level for that agent. These levels can be interpreted
differently, e.g. reservation profits, opportunity costs, outside options, or status quo
utilities. The second approach demands that not only should an acceptable contract
guarantee minimum amounts of utilities to the agents, but it also must divide the
extra utilities in a fair manner among them®. Cachon (2003) states three conditions

that & coordinating contract should meet:

(1) with a coordinating contract, the set of supply chain optimum decisions should

be a pure Nash equilibrium;

(2) it should divide the supply chain profits (utilities in general) arbitrarily among

the agents; and
(3) it should be worth adopting.

The first condition is concerned with the transformation of agents’ utility functions
Although this definition does not directly specify the acceptability condition, the

“For further discussions on the concept of rationality and proposed critiques see Osborne and
Rubinstein (1994).

One approach to fairness is to consider it as the correspondence between the bargaining powers
(vet another hard-to-define concept) and the agents’ utilities. See Nagarajan and Sosi¢ (2008) for
elaboration on this issue.

16



second condition implies that if a contract can divide the supply chain profits among
agents in any manner, at least one of those division schemes should be acceptable
to all agents®. Unfortunately, the criteria for assessing the third condition are rather
vague, but it could be taken as the combination of other qualitative acceptability
conditions yet to be formalized.

Alternatively, Gan et al. (2004) define coordinating contract as

a contract which the agents of a supply chain agree upon and the
optimizing decisions of the agents under the contract satisfy each agent’s
reservation payoff [minimum acceptable utilities| constraint and lead to

Pareto-optimal decisions and Pareto-optimal sharing rule.

‘This definition formulates the acceptability condition according to the first approach
stated earlier (satisfaction of minimum acceptable utilities). One drawback of this
approach is that it does not indicate how one contract should be agreed by the agents
in cases where there exists multiple contracts with Pareto-optimal sharing rules which
satisfy the agent’s minimum acceptable utilities. Gan et al. (2004) also define flerible
coordinating contract as a coordinating contract such that by adjustment of some
parameters, it could lead to any Pareto-optimal sharing rule.

Despite the different of ity condition of a inating con-

tract in Cachon (2003) and Gan et al. (2004), the fundamental notions in both defi-
nitions are similar. That is, with a coordinating contract, agents’ optimum decisions
must be the same as the supply chain’s optimum decisions, and the contract should
divide the resultant payoffs among them so that all agents are satisfied and as the
result they would accept the contract. We provide two variations of the concept of
" PFor the cases with two agents, there is always an acceptable division schemes among all the
possible divisions. However, for the cases with more than two agents, this might not hold. In

pasticular, this definition does not address the possibility of coalition formation among the agents.
‘This issue is further discussed in Section 3.2.2.



coordination:

« Weak Coordination: If a contract could achieve the equivalence of agents’ opti-
‘mal decisions (pure Nash equilibrium) and the supply chain’s optimal decisions,
and at the same time it satisfies the minimum acceptable utilities for all agents,

then the contract is weakly coordinating.

« Strong Coordination: If a contract could achieve the equivalence of agents’ opti-
‘mal individual decisions (pure Nash equilibrium) and the supply chain’s optimal
solution, and at the same time it could divide the total supply chain payoff in

any manner among the agents, then the contract is strongly coordinating.

The relationship between the two definitions is that if a weakly coordinating contract

is also flexible, then it is strongly coordinating as well.

2.3 Methodology of Coordinating Contracts

The purpose of this section is to provide a taxonomy of supply chain contracting
problems and an overview of methods used in analyzing the coordinating ability of

contracts.

2.3.1 Classification of Problems

N how ts aff supply
chain agents. However, in order to retain tractability, only a few of those parameters

can and investigated inamodel. The result is a plethora

of models with various combinations of parameters. Here, we present a list of the most

important classes of parameters which have been considered in the literature.



Supply Chain Topology

A supply chain consists of several business entities (agents) with certain kinds of flows
‘among them (such as material, information, and money) that can be represented by a
network. Despite the complex structure of an average-sized real world supply chain,
the contracting literature focuses on small chunks of such networks comprising of
few nodes (representing supply chain agents) and the flows between them. In many
cases, supply chain contracts are considered to be centered around a focal node and
the immediate predecessors and/or successors which form a hierarchy of tiers. We
refer to this aspect as supply chain topology. The common topologies in supply chain

contracting literature are as follows

+ Two-tier topology with two nodes: The majority of studies in the supply
chain contracting literature consider this topology. The nodes might represent
a supplier and a manufacturer, or a producer and a retailer, etc. This topology
resembles a bilateral monopoly” The well-known coordinating contracts for

supply chains mainly address this topology (see Section 2.4)

+ One-tier topology with several nodes: The contracts with this topology
deal with horizontal collaboration among several independent agents that are
in the same supply chain tier (all retailers, or manufacturers for instance). The
collaboration is through pooling resources in order to balance the outstand-
ing demands and surplus resources. In sub-contracting literature, the flow of
resources among any two agents are only in one way. However, in the transship-

ment literature, the flows are bilateral. Although the agents collaborate with

A bilateral monopoly consists of two vertically-dependent agents: an upstream supplier (n
SmonopolistT) that sels all its output to a downstream buyer (» Smonopsonist

its supply of an essential input from the monopolist. Their relationship is
market power, and neither can survive without the other; therefore, the agents ne
each other, negotiate and conclude contracts, and settle prices and quantities (Ingene and Parry,
2004, p. 32).
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one another, still, they may compete over some aspects of their business, e.g. or-
der quantities (Rudi et al., 2001) or their market selling prices (Zhao and Atkins,
2009). An important aspect of the supply chain models with this topology is
whether the collaboration among the agents happes prior to the realization of

the demand afterwards,

Two-tier topology with several nodes: The contracts with this topology
address the interactions among a focal node and several other nodes all being
located in an adjacent tier. Therefore this topology is comprised of either one
upstream node that supplies several downstream nodes, or one downstream
node that is being supplied from several upstream nodes. The nodes in the
same tier may compete with one another over the limited capacity of the other
tier’s resources (as in Cachon and Lariviere (1999)), or on market prices (as in
Deneckere et al. (1997)), ete. In more elaborate models the nodes in the same

tier are assumed to pool resources, e.g. Ulku et al. (2007).

More general topologies Assuming more than two tiers in an independently
owned serial supply chain system will drastically increase the complexity of
analysis of coordinating contracts. To the best of our knowledge there are
only a few papers which consider these topologies. As an example, Zijm and

‘Timmer (2008) study the coordination problem in a three-tier supply chain with

three nodes. However, they

between the node in adjacent tiers.

Supply Chain Environment.

The supply chain environment is the collection of external factors affecting the supply

chains’ decisions. Some of the most relevant dimensions of supply chain environment
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are as follows:

« Certainty/Uncertainty of environment: Usually, the uncertainty of sup-
ply chain environment refers to the market demands. Two broad categories
are deterministic and stochastic market demands. Sarmah et al. (2006) review
the contracts with quantity-discount policies in deterministic demand environ-
ment. In deterministic systems, the coordination might pertain to the timing
of orders (Klastorin et al., 2002). The coordinating contracts with uncertain
market demand environment mostly consider continuous probability functions
An example of coordination with discrete demand distributions is Zhao et al.
(2006) which consider a one-tier supply chain with two nodes and Poisson de-
mand arrival rates. Recently, Xu and Zhai (2010) study the general properties
of coordination in a two-tier, two-node topology with fuzzy demands. The other
source of uncertainty about the supply chain environment is associated with the
supply chain’s input. The supply chain contracting literature has considered un-
certain delivery times (c.g. (Zimmer, 2002)) and uncertain delivered quantities

(e.. (He and Zhang, 2008)). The latter is also referred to as random yield.

+ Sensitivity of environment to supply chain decisions: In many supply
chain models, market demands are assumed to be sensitive to some decision
variables internal to the chain. Among others, the decision on market selling
price and marketing efforts are the most addressed. For example, in addition to

choosing the order size, a retailer facing price-sensitive market demand should

also decide its selling price. This, in turn, affects the coordinating ability of
the contract between the retailer and its supplier. Yano and Gilbert (2005) and
Chan et al. (2004) review the literature on supply chain contracts with price sen-
sitive market demands. When the market demand is affected by the marketing

effort of a downstream agent—which is unverifiable by the chain—a coordinat-
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ing contract should induce the supply chain’s optimal level of marketing effort
He et al. (2009) explore coordinating contracts for a two-tier, two-node topology
with both price and marketing effort sensitive market demand. Another factor
that could affect the market demand is the stock level. Sajadieh et al. (2010)
address the issue of coordination in the supply chain where the amount of stock

displayed to customers has a positive effect on demand

+ Dependencies among agents in the same tier: The individual decisions of
agents who operate in the same supply chain tier may affect each other. These
dependencies add another dimension to the complexity of models. Competition,
and correlated market demands are among factors that amount to dependen-
cies among agents in the same ticr. Multiple nodes in a particular tier may

compete over their market shares (when they are operating in the same mar-

ket), or supplier's quotas (when the supplier’s capacity is restricted), or fill
rates. Cachon and Lariviere (1999) investigate the supply chain coordination in
the supply chain where the downstream agents compete over the limited sup-
plier’s capacity. Hartman and Dror (2005) analyze the cooperation among many

newsvendors with dependent demands.

Length of Contract

The length of a contract is the duration of time that the contracting agents are
assumed to uphold the contract. Therefore, the contract terms are not re-negotiated

during the length of a contract. This has a crucial effect on modeling the underlying

supply chain problem. Th igth of a supply ch p
with the number of inventory replenishment periods. Accordingly, there is a close
affinity between the length of a supply chain contract and the modeling approach.

The two main classes are:



+ Single period models: A large mumber of supply chain contracts has been
devised for the single period supply chain model, i.e. the newsvendor model with
its numerous variations (Khouja, 1999). This family of supply chain models
is specially appropriate for the supply chains with perishable products, short
selling seasons, and long procurement lead-times. Nevertheless, the analytical
simplicity of single period supply chain models has given rise to the popularity of
contracts with one period length. Cachon and Lariviere (2005) outline several
coordinating contracts for the standard newsvendor model. Hu et al. (2007)
consider a single period model with limited and uncertain supplier’s capacity.
Cachon (2003) provides an excellent literature review on coordinating contracts
for this family of models. Cachon (2004) addresses coordination in a single-

period model with two repleni ities for the agent.

+ Multi-period models: The multi-period models could simply be the combi-
nation of two consecutive newsvendor models (Barnes-Schuster et al., 2002), or
they might consist of several stocking periods. The multi-period models are
‘mainly based on the multi-echelon model of Clark and Scarf (1960). Among the
early papers that address the multi-period supply chain contracts is Cachon and
Zipkin (1999) which offers a coordinating contract based on the end-of-period

inventory information at different agents.

Supply Chain Decisions

Among the mmerous decision variables that are critical in managing supply chains,

the supply chain contracting literature commonly concentrates on those that are re-

lated to capacity, order size, market selling price, marketing efforts, contract type,

lead-times, quality, review period, and stocking policy. For a more detailed analysis

of supply chain decision variables see Tsay et al. (1999). Considering the multiplic-

23



ity of decision makers in decentralized supply chains, an important aspect of supply
chain decisions is the distribution of decision making responsibilities among supply
chain agents. Although traditionally some decision variables are attributed to certain
supply chain entities, e.g. responsibility of deciding the order size to the downstream
agent (buyer), many cases with less conventional approaches have also been inves-
tigated in the literature. For example, in an insightful paper Lariviere and Porteus
(2001) assume that the upstream agent chooses the order size while the downstream
agent. picks the buying price. Hence, the distribution of decision rights among supply
chain agents falls, at least partially, within the purview of the modeler.

Another aspect of this issue is related to the right of non-compliance among supply
chain agents. Generally, whenever one contracting agent requests something from
another agent, the latter may have the right to not comply with the former's request,
In supply chain contracting literature, the allotment, of compliance rights is, in fact,
the choice of the modeler. Cachon and Lariviere (2001) refer to this issue as compliance
regimen. Accordingly, there are two classes of compliance regimes: voluntary and
Jorced. Cachon and Lariviere (2001) use these terms with respect to the responsibility
of a supplier to completely fill the manufacturer’s order. In this context, if the model
gives the supplier the right to decide the fraction of manufacturer’s order to deliver,
then the system would be under voluntary compliance regimen. In other words,
under voluntary compliance regimen, an agent has the right to decide whether to
fulfll or not to fulfil the requests it receives. Under the forced compliance regime,
on the other hand, an agent is obligated to fulfill the requests it receives * Therefore,

whether explicitly or implicitly, the compliance regimens of all the mutual promises

ina supply chain contract should be indicated. If a contract can coordinate a specific
supply chain setting under a voluntary-compliance regime, it could coordinate under

¥It is because non-compliance would be penalized. The penalties (or other forms of threats) are
implicitly assumed to be large enough so that, in theoty, non-compliance never occus.
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the forced-compliance regime as well. The opposite might not be the case.

Characterization of Supply Chain Agents

Earlier in this chapter, rationality has been addressed as an underlying characteristic
of the agents. Two other aspects of supply chain agents’ characteristics pertain to
their utility functions and attitudes toward risk. Utility functions reflect preferences
of agents which, in tum, determine their decision making criteria. In the supply
chain contracting literature, it is conventional to assume that the utilities of agents
are solely a function of monetary payoffs. That is, agents only care about the amount
of profit they make. Nevertheless, there has been a recent trend in considering utility
functions which reflect agents’ social preferences as well. For instance, supply chain
agents may also care about fairness in a mutual business relationship (Cui et al.,
2007). Other examples include inequity aversion (Cui et al., 2007) and status secking
among agents (Loch and Wu, 2008).

In decision making in uncertain environments, the analysis of agents’ decision making
process requires knowledge about their attitudes toward risk. Two types of such

attitudes have been considered in the literature: risk-neutrality, and risk-aversion.”

For a risk-neutral agent, a certain payoff of M is equally preferred as an uncertain
payoff with the same expected value M, while a risk-averse agent prefers the certain
payoff M. Hence, the objective of a risk-neutral agent is to maximize its expected
profit (or equivalently to minimize its expected cost). While there is only one measure
for risk-nentrality, risk-aversiveness can be reflected in many (theoretically infinite)
ways. Among the objectives studied for risk-averse agents are the minimization of
variance of profits (Chen and Parlar, 2007)), and the minimization of mean-variance
difference (Gan et al., 2004; Choi et al., 2008). Van Mieghem (2003) reviewed the

To the best of author's knowledge, risk-taking attitudes have never been considered in supply
chain contracting literature.
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literature on capacity investments considering the issue of risk-aversion. The general
characteristics of supply chain contracts with risk-averse agents are studied in Gan

et al. (2004).

Information Structure in Supply Chains

Information structure pertains to the agents’ knowledge in comparison to the collective

knowledge of agents in the supply chain. When all the information about supply

chain is simultancously known by every agent, the information structure s said to
be complete or symmetric. On the other hand, if some agents have some information
that the other agents o not, the information structure is incomplete or asymmelric.
The pieces of information that are known only by an agent is that agent’s private
information.

In general, coordination under incomplete information is more complex than coordina-

ncomplete information

tion under complete information. One approach to deal wi
structure is to assume certain fypes of agents each with known characteristics (c.f
Harsanyi and Selten (1972)). Although the agents do not know what types of agents

they are facing, the probability that an unknown agent is of a particular type is as-

sumed to be common knowledge. A coordinating contract in these supply chains is

comprised of a menu of contracts designed in a way that will make the agents with

private information choose the only contract that result in the supply chain optimum
decisions. Therefore, a coordinating contract in an incomplete information setting
will result in the truthful revelation of private information. Several papers study
supply chain contracts under asymmetric information. Corbett and Tang (1999) as-
sume a two-tier, two-node supply chain with deterministic and price-sensitive de-
mand function where the upstream agent does not know the exact cost structure of

the downstream agent. They investigate the effect of contracts with different pricing
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‘mechanisms on the overall efficiency of the chain. Corbett et al. (2004) study a supply
chain with two agents where the supplier does not know the retailer’s internal cost
Cachon and Lariviere (2001) analyze a supply chain contracting problem where the
information regarding the probability distribution of market demand is the private
information of the downstream agent. Burnetas et al. (2007) introduce a coordinating
quantity-discount policy in a two-tier two-node topology where the upstream agent
does not have the information regarding the demand distribution of the downstream
agent. The risk sharing contract of Gan et al. (2003) can coordinate when the up-
stream agent does not know how risk averse the downstream agent is. Burnetas et al.
(2007) introduce an all-unit discount policy that results in coordination of a two-tier
two-node topology supply chain in one period. Sucky (2006) analyzes a two-tier two-
node supply chain in a deterministic environment under a forced compliance regimen.
Assuming that the upstream agent is uncertain about the downstream agent's cost
structure, he shows that coordination can be achieved through bargaining and with

the help of side payments.

2.3.2  Analytical Methods of Coordinating Contracts

The ability of a contract n ly chain i

Contracts can be distinguished at two layers: the contract template, and the contract
setup. At the outer layer, the contract template provides a holistic view of interactions
among the agents involved in a contract and points out the variables that the contract
is based upon. The second layer, i.e. the contract setup, specifies the particular setup
of contract variables for a given contract template. Consider the famous wholesale-
price contract as an example. The contract template declares that the buyer should
pay the seller a fixed price for a unit of ordered product. The contract setup, on the

other hand, specifies the exact unit price in the contract. The goal of this section is
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to answer two important questions:
(1) How is contract template obtained? and
(2) How is the coordinating ability of a contract analyzed?

In most cases, the contract templates are inspired by the structure of contracts which
are being used in practice. The alternative approach requires more creativity; that is,
the modeler invents a contract template by specifying the hypothetical interactions

among the agents. However, justifying the practicality of such a contract template is

rather challenging. Some of the most well-known contract templates are introduced
in the next section.

Game theory is the tool for the i ability of a

contract, with specified template and setup, in a given supply chain setting. For a
brief review of related game theory concepts in supply chain contracts see Cachon
and Netessine (2006) and Chinchuluun et al. (2008). Accordingly, one should analyze

lect the

whether the contract can be set up so that it could induce all the agents to s

ion, and whether the resultant division scheme of supply

supply chain’s optimal de

chain profits are acceptable to them. The latter is addressed in two different cases:

contracts between two agents, and contracts among more than two agents,

Contracts Between Two Agents

When there are only two agents involved in a contract, an assessment of the coordi-
nating ability of a contract should concentrate on two issues: first, the negotiation
process over a contract, and second, the effect of the negotiated contract on agents’ de-

iterature is the Stackelberg game.

cisions. The most common procedure used in the
This approach simplifies the analysis of negotiation process between the agents by

assuming that one agent (the leader) gives a take-it-or-leave-it offer, including the
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contract template and setup, to the other agent (the follower) who has the right to
cither accept or reject the offer. A Stackelberg supply chain game s played as follows.
Aunticipating the follower’s minimum acceptable (expected) profit, the leader offers
a contract setup that (1) induces the follower to choose the supply chain optimum
decisions and (2) results in the follower’s minimum acceptable (expected) profit level.
‘This approach s suitable for situations where the leader has significantly more power
and the interactions between the agents are restricted. In general, the idea of the
follower either completely accepting the contract or wholly rejecting it without any

further negotiations may seem 0o restri

ive.
Another approach to analyze the negotiation process over a contract is to consider an
explicit bargaining process. The bargaining process shall specify the exact contract
setup which leads to an acceptable split of the maximum supply chain profits. Two ap-
proaches which have been used in the literature are Strategic Negotiation (Rubinstein,
1982) and Axiomatic Negotiation (Nash, 1050). With Strategic Negotiation (Sequen-
tial Bargaining), after a contract has been offered by an agent, the other agent could
offer a new contract (counter-offer) if it is not acceptable to the latter. Considering
the value of time (or agents’ patience), this bargaining process has been proven (Ru-
binstein, 1082) to converge to a mutually acceptable contract setup. For a review of
the implementation of strategic negotiation in supply chain contracts see Wu (2004).
With Axiomatic Negotiation approach, the bargaining solution is developed by con-
sidering axioms that correspond to the desirable properties of negotiation outcomes.
The bargaining solution can be thought as the suggestion of an unbiased arbitrator.
Hence, a contract is proven to be coordinating if the underlying negotiation prob-
lem has a feasible solution. A recent example of implementation of this approach is
Hezarkhani and Kubiak (2010b) which uses the generalized Nash bargaining solution
(Muthoo, 1996) in & transshipping supply chain (see Chapter 3). Nagarajan and Sosi¢
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(2008) review the literature of bargaining and negotiation in supply chains.

Contracts Among Several Agents

The analy contracts becomes as the number of partic-

ipants in the contract increases. The principle approach to study the contracts among
several agents is cooperative game theory. The cooperative game theory approach to
contracts provides mechanism for the distribution of total payoff that is generated
by the coalition of all supply chain agents, i.e., grand coalition. The acceptability of
a contract to the agents implies that not only should it provide each agent with its
minimum acceptable payoff, but also it must eliminate the incentives for the agents to
form sub-coalitions and gain more profits in that way. In other words, in the n-agent
case, the coordinating contract should meet some stability criteria with regard to the
distribution of grand coalition’s payoff among the agents.

One of the most natural stability concepts is the concept of core (Peleg, 1995). If
a contract could distribute the grand coalition’s payoff among the agents so that no
subset of agents could be better off by forming a sub-coalition, then that distribution
mechanism would be in the core of the corresponding cooperative game. However, it
might be the case that no such distribution mechanism can be found. Nevertheless,
there are alternative stability concepts that can be used in conjunction with other
solution concepts in cooperative game theory, e.g. Shapley value, nucleus, bargaining
set, ete. (Owen, 1995). Slikker et al. (2005) study the stochastic cooperative games
with newsvendors who can also pool resources through transshipments and show that
the core of this class of supply chain problems is non-empty. Ozen et al. (2009)
provide a general framework for cooperation under uncertainty. Brandenburger and
Stuart (2007) study bi-form games. The bi-form games are to model the supply

chains wherein a set of agents face individual and correlated decision making problems
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followed by a cooperative stage. In a one-tier several agent topology, Anupindi et al.

(2001) i llocation rule in the core of game.

An alternative allocation rule has been proposed in Sosié (2006) which redistributes
the extra profit generated through the transshipments according to the Shapley value.
Although the resultant allocation is not necessarily in the core, it could result in the
Jarsighted stability of the grand coalition, i.e. the agents do not form sub-coalitions
since they take into the consideration other agents’ reactions as well. Chen and Zhang
(2009) approach the transshipment problem as a two stage cooperative game, and
show that the problem of finding an allocation in the core of n-agent transshipment
game is NP-hard. Hezarkhani and Kubiak (2010a) adopted the concept of pair-wise
stability (Baiou and Balinski, 2002), a non-cooperative solution concept derived from
the matching problem in two-sided markets, into the transshipment problem with

many agents (Chapter 4 is an edited version of this paper).

2.4  Well-known Contract Templates for Supply Chains

The typical solution to incompatible incentives in a supply chain is for the agents to

agree to a set of transfer payments that modifies their incentives, and hence modifies

their behavior (Cachon, 1999). Additionally, the flow of goods and materi

s might
also be subject to modification (as in a buyback contract). This section addresses some
of the well-known contract templates in supply chains. We start with one of the most
basic supply chain contracts, i.e. wholesale-price contract, in a basic supply chain
(single-period model with risk-neutral agents, independent demands, and symmetric
information structure) and address the coordinating components which can be added

to it in order to achieve coordination in various supply chains.



2.4.1 Wholesale-price Contracts

In the simplest supply chain, the wholesale-price contract requires the buyer to pay a
fixed and quantity-independent price to the seller for each unit purchased. Although
the wholesale-price contract, fails to coordinate supply chains in a simple two-tier
topology with two nodes, it is the most commaon contract in practice—perhaps because
of its simplicity.

In the standard newsvendor supply chain, two types of wholesale-price contracts are
possible. First, the downstream agent has to place orders before the realization of
uncertain market demand and the upstream agent provides products accordingly.
Second, the downstream agent can place its order after observing the actual market
demand while the upstream agent should prepare itself in advance for meeting it.
Although in both cases the integrated system is a standard newsvendor model, they
are different with respect to allocation of risk between the two agents. Cachon (2004)
calls the first type push and second type pull wholesale-price contracts. Lariviere and
Porteus (2001) analyze the properties of push wholesale-price contracts where the
upstream agent can satisfy all the downstream agent’s orders and it acts as the Stack-
elberg leader offering the wholesale price to the downstream agent who determines
the order quantity. Note that with this contract, the seller gets a risk-less sum of
money before realization of market demand and the buyer faces all the risk associated
with the uncertainty market demand. Cachon and Netessine (2004) analyze the pull
contract where the upstream agent has to decide its capacity level before receiving the

downstream agent’s orders. As the authors conclude, both types of wholesale price

contracts fail to coordinate the supply chain. In fact, the only wholesale-price in the
push setting which induces the downstream agent to place the optimal centralized

order size, leaves the upstream agent with no profit, thus, the wholesale price con-

tract cannot satisfy the acceptability condition of coordination, i.e., it cannot result
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in weak coordination.

2.4.2 Contracts with Discount Polici

Discount policies, i.e. quantity-dependent unit prices, are well-known coordinating
components in supply chain contracts. There are several forms of discount policies;
see Dolan (1987) for a review. Discount policies are the main coordinating components
in supply chains with deterministic demand. Jeuland and Shugan (1983) address the

problem of coordination in the two-tier two-node topology and propose a coordinat-

ing quantity-discount contract. As they show, there are several coordinating quan
discount contracts which lead to different split schemes for extra profits generated
through cooperation. Klastorin et al. (2002) consider a two-tier supply chain with
one upstream agent and several downstream agents and show a discount policy that

can coordinate the ordering times of downstream agents so that the supply chain can

save holding costs at the upstream level. Cachon (2003) incorporates the quantity
discount component in a standard newsvendor supply chain and demonstrates its
coordinating ability in a two-tier topology with two nodes. In his model, the mutu-
ally acceptable division of supply chain profits is determined by a Nash bargaining

mechanism between the two agents.

2.4.3 Contracts with Return Policies

With the return policies the seller promises to compensate the buyer for unsold quan-

tities. One might ask why contracts with return policies are needed while quan

discount contract are just as well coordinating. First,

[bJuy-back payments play a very important role in channel coordina-

tion when the multi-retailer supply chain is considered. When retailers
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serve markets of different sizes, the manufacturer can attain the profits
of a coordinated channel only if he can charge different wholesale prices
to cach outlet. However, in the US such a practice is restricted by the
Robinson Patman Act which protects the retailers against price discrimi-
nation by the manufacturers. It is shown that the buy-back payments for
used products provide a second degree of freedom for the manufacturer to
differentiate the average wholesale price charged to each retail outlet, and
thereby attain the coordinated channel profits in a decentralized supply

chain. (Debo et al., 2004)

Second, with the return policies the upstream agent is also bearing the risk associated
with the market demand so the downstream agent prefers it to a quantity discount
contract with the same expected profit.

The variations of return policies depend upon the amount of leftover inventory which
can be returned and the amount of compensation—the ratio of unit compensation fee
t0 the original purchase price. Pasternack (1985) shows that in a single-period supply
chain with risk-neutral agents, the return policies that allow for full leftover return
and partial compensation can coordinate the supply chain. Other variations of return
policies are (1) unlimited return and full compensation, (2) limited return and full
compensation, and (3) limited return and partial compensation. In the newsvendor
supply chain, Pasternack (1985) also proves that the return policies that allow for full

return and full compensation cannot be coordinating. In the same setting, Cachon

(2003) shows that partial return and full compensation policy cannot be coordinating,

while partial return and partial compensation can. Su (2009) study the impact of

full returns policies and partial returns policies on supply chain performance. He
demonstrates that consumer returns policies may distort incentives under common

supply contracts and proposes strategies to coordinate the supply chain.
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2.4.4 Revenue Sharing Contracts

In revenue sharing contracts, the downstream agent commits to return a pre-negotiated
portion of its realized profits to the upstream agent. The successful implementation
of these contracts is reported in the video rental industry (Cachon and Lariviere,
2005). The revenue sharing contract can also coordinate the price-sensitive newsven-
dor supply chain (Cachon and Netessine, 2004). Qin and Yang (2008) consider a
two-tier, two-node topology and analyze the revenue sharing contract as a Stackel-
berg game and conclude that, in order to achieve coordination, the agent that keeps
more than half the revenue should serve as the leader of the Stackelberg game. Yao
et al. (2008b) study a two-tier, three-node topology where the downstream agents
compete over setting the market selling prices. They combine the Stackelberg game
among the upstream and downstream agents and the Bayesian Nash game between
the two downstream agents and investigate the effect of different revenue-sharing con-
tracts on supply chain performance.

A particular case of revenue sharing—widely known as consignment contracts (Wang
et al., 2004)—is the instance where the ownership of goods do not change with their
delivery to the downstream agent, i.e. the upstream agent remains the owner. Then,
the upstream agent pays the downstream agent a commission for each sold item.
Wang et al. (2004) investigate the performance of consignment contracts, i.e. supplier
and retailer’s respective shares of total profit, when the demand is sensitive to the

market selling price.

2.4.5 Rebate Contracts

In rebate contracts, the upstream agent rewards the downstream agent for every unit

sold. Therefore, in some sense, a rebate policy resembles a return policy: while in



buyback contracts the downstream agent is compensated for unsold units, in rebate

contracts the latter is rewarded for the units sold. Accordingly, different rebate polici

can be implemented: (1) policies that reward for all units sold, and (2) policies that

reward for sold units only above a threshold. In single-period supply chains, Taylor

(2002) shows that the second class of rebate policies can achieve coordination. Chen
et al. (2007) consider the rebate contract in a two-tier, two-node topology with price-
sensitive demands and find that the mail-in rebates (which is payed upon request) may
benefit the upstream agent while instant-rebates (which includes every interaction)

may not.

2.4.6 Contracts with Side Payments
Although the notion of side payment has a clear definition in game theory", its use
in supply chain contracting literature is somewhat inconsistent!!. We define side

payments as the lump-sum monetary transfers among the contracting agents which

are independent of amount of trade and used as compensation and incentive alignment
‘mechanisms. In order to clarify the issue consider two contracts introduced earlier: the
wholesale-price, and the revenue sharing contracts. In the wholesale-price contract,
the amount of money transferred from the buyer to the seller is a linear function of
units purchased. On the other hand, in the revenue sharing contract the downstream
agent pays the upstream agent a lump-sum of money after the realization of its profts.

According to this definition, the latter is a side payment while the former is not.

Examples of side-payment contracts among two agents include two-part tariff (where

limited side-payments are allowed, e.g. Zaccour (2008)) and option contracts (e

Barnes-Schuster et al. (2002). In general, the contracts that rely on allocations of

Tl game theory terminology, side payment is el 8 th exchang o & perectly diidble
comtaon o et o capalie o icacaferiag 18y (Au 00)
“Iwo alternative definitions are proposed i

d Cartr (1960) and Taylor (202)




realized profits take advantage of side payments. Hence, almost all the contracts
with more than two contracting agents, which utilize profit-allocation mechanisms,

are contracts with side payments. Although the inclusion of side payments in supply

chain il ination, they may in

e.g. in some cases they might be prohibited by law (Leng and Zhu, 2009)

2.5 Literature Review and Discussion

This section classifies the recent literature on coordinating supply chain contracts.
The classification scheme has been explained in earlier sections. The papers wherein

the analysis does not result in coordination have not been considered. The lite

ature review is presented through extensive tables (Table 2.1 and 2.2). In order

to summarize the information in the tables, we use the following notation. In the

Topology column, the #T/yN represents the number of tiers and nodes of the topol-
ogy. For instance, 2T/2N represents two tiers with two nodes topology. In the Con-

tract Length column, z-p shows the number of periods in the model (n-p stands for

Liiple-periods). In the Agent C column, Risk-N and Risk-A represent
risk-neutral and risk-averse agents respectively.
‘The large number of variables that can be included in analyzing the contractual sit-
uation limits the comprehensiveness of this classification scheme. Morcover, several
other important aspects of supply chain contracts cannot be quantitatively analyzed.
Some of those aspects are: the applicability, i.e. the possibility of implementation of a
contract in a given real world context, the verifiability, ie. availability of mechanisms
for verifying the lateral promises stated in the contract, and the ease of implementa-
tion, i.e. the effort which is required to apply a contract in real world supply chains. In

fact, there is no known measure to compare coordinating contracts for specific supply
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chains.

One of the weak points of coordinating supply chain contracts is their sensitivity to
context. In this respect, the over-simplification of a problem may result in serious
flaws. In fact, the supply chain contracts which coordinate in a particular theoretic
supply chain (under certain simplifications), may lead to very different results when
implemented in real world situations. Cachon and Kok (2010) show that well-known

contracts such as q i and two-part tariffs could worsen

the performance of supply chain when applied in a two-tier topology with multiple
competing suppliers. Accordingly, one should be very cautious when implementing
these insights into practice.

A common assumption in the supply chain contracting literature is that the process
of contracting does not have any significant costs. However, there are several costs
associated with the contracting process, e.g. costs related to writing down the con-
tracts and their monitoring and enforcements costs. In addition, the literature does
not consider the costs that the contracting agents incur in order to collaborate with
each other. Many studies have shown that cooperation among supply chain agents
requires costly infrastructure for information sharing, process and resource coordina-
tion, and performance measurements (c.f. McLaren et al. (2002)). Therefore, without
considering such realistic costs, the practical benefits of coordinating contracts would
be unclear and inconclusive. The research must find the conditions under which ad-
ditional profits which result from implementing a coordinating contract are actually
significant. Chapter 5 in this thesis incorporates the concept of cooperation costs into
the analysis of transshipments in supply chains.

Despite the growing number of analytical studies on supply chain contracts, there are
only a few empirical studies aiming at validation of the theoretical predictions i this

area. In a laboratory study, Katok and Wu (2009) show that the effect of coordinating
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contracts on supply chain efficiency is smaller than what is predicted analytically. On

the other hand, the small number of empirical research papers in this area almost

certainly indicates that the actual decision making process in supply chains is hugely

influenced by bounded rationality, anchoring, experience, and insufficiently adjusted
Schweitzer and Cachon (2000), Bolton and Katok (2008), and Ben-

zion et al. (2008)). Additionally, the empirical studies of supply chain contracts do

not reach beyond the laboratory tests—perhaps due to the sensitivity of necessary

The main focus of this thesis is coordination in transshipment problems. Table 2.3

depicts the contributions of different chapters of this thesis to the existing literature on

supply chain contracting, according to the proposed classification scheme. Chapter 3

addresses a single tier supply chain problem with two agents. Under the assumption

of risk neutrality, we propose a contract which, drawing upon an implicit pricing

‘mechanism, coordinates the production/Inventory quantities. Chapter 4 studies the

transshipment. problem with n agents. The decision variable to coordinate is again

production/inventory quantities. Finally, Chapter 5 address the coordination in n-

agent transshipment problem with positive cooperation costs.



The following chapter is an edited version of:

B. Hezarkhani and W. Kubiak. A coordinating contract for transshipment in a two-

company supply chain. European Journal of Operational Research, 207(1):232-237,

20106



Chapter 3

Coordinating Transshipment

Problem With Two Agents

Summary: This chapter studies o supply chain with two indepen-

dent agents producing/ordering an homogeneous product and cooperating

through transshipment. Previous studies of this chain show that only under
certain conditions, lincar transshipment prices could be found that induce
the companies to choose the first best production quantities. Moreover,
even if such transshipment prices do exist, they result in a unique division

of total expected profit and thus they cannot accommaodate arbitrary divi

sions of the profit. Using the Generalized Nash Bargaining Solution, w

derive coondinating transshipment prices that always give rise to a coordi-
nating contract for the chain. This contract relies on an implicit pricing

‘mechanism.




3.1 Introduction

Generally, cooperation between agents in a supply chain falls into two major cate-
gories: vertical and horizontal. The vertical cooperation is defined as concerted prac-
tices between agents operating at different levels of supply chain, e.g. manufacturer-
wholesaler, supplier-retailer (Cruijssen et al., 2007). Most of the previous research on
supply chain contracts addresses vertical cooperation. In wholesale price contracts,
the seller offers a wholesale price to the buyer. If the buyer accepts the contract, it
will pay the seller for each purchased unit (Lariviere and Porteus, 2001). Quantity
discount contracts are generally similar to the wholesale price contracts except that
the seller offers a price which is dependent on the buyer’s order quantity (see Cachon
(2003)). In buyback contracts the seller offers a contract with a fixed unit price along
with a buyback unit price. With this contract, the buyer pays the seller for each
unit purchased, and after the resolution of uncertainties, the seller compensates for
the buyer’s unsold units (Pasternack, 1985). In revenue sharing contracts, the buyer
receives a unit wholesale price (which is less than its marginal cost) before the real-
ization of demand, and then it gets a portion of retailer’s profit after the realization
of demand. Except for the wholesale price contract, the rest of these contracts can
be designed as coordinating contracts.

On the other hand, the horizontal cooperation is defined as the collaboration between
agents operating at the same level(s) in the supply chain, e.g. retailers, distribu-
tors, or transportation agencies (Cruijssen et al., 2007). An instance of horizontal
cooperation is {ransshipment. Whenever agents have to stock up their resources in
anticipation of uncertain demands, they might end up in two situations. First, in case
of high demands they encounter unsatisfied demand which causes either lost sales or
backorder costs. Second, in case of low demands, they confront the costs of surplus

resources, e.g. holding costs or reduced sale prices. By transshipment an agent has
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the chance to use another agent’s surplus resources whenever it faces unsatisfied de-
mand. An example of this practice is discernible in the oil industry where volatility
of demands and limitation of regional refinery capacities make transshipment a rea-
sonable practice (Dempster et al., 2000). The popularity of this practice is growing
thanks to advances in information and communication technologies. To the best of
our knowledge, previous research does not provide any coordinating contract for the
transshipment problem. This chapter proposes such a contract for a supply chain
with two agents.

The main question addressed in this chapter is the existence of transshipment prices

which
() rational agents can agree upon prior to the realization of demands; and
(b) give rise to the coordination of production decisions.

We use the Generalized Nash Bargaining Solution (Roth, 1979; Nagarajan and Sosi¢,
2008) to develop a model for the negotiation over the division of total expected profit
resulting from the agents’ cooperation. We prove that there exists a contract for

the prices which coord; the production decisions, and

also divides the total expected profit between the agents based on their bargaining
powers. Our approach implies that this contract must have two rounds (see Figure
3.1). In the first round, the agents accept a condition, i.e. a pricing formula which
is an implicit function of their quantity decisions, for determining the transshipment
prices which is an implicit function of later decisions on their production quantities,
In the second round, after the agents individually made their production decisions,
they fix the negotiated transshipment prices by selecting them among all the possible
coordinating transshipment prices. The pricing mechanism in this contract is, in fact,

an implicit pricing mechanism. We show that the proposed contract is a coordinating
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Figure 3.1: Sequence of Actions in the Proposed Two-agent Contract

contract
The rest of this chapter is organized as follows. Section 3.2 provides a brief literature
review and the chapter's motivation; Section 3.3 presents the basic framework and no-

tation; Section 3.4 formulates the mathematical model of the transshipment problem;

Section 3.5 illustrates the details of the proposed contract; Section 3.6 compares our
mechanism with the mechanisms previously proposed for this problem; and finally,

Section 3.7 contains concluding remarks.

3.2 Literature Review

Horizontal cooperation has been explored previously in different forms, e.g. subcon-
tracting and outsourcing (Van Mieghem, 1999), lateral capacity or resource exchange
(Chakravarty and Zhang, 2007; Krajewska et al., 2007), and transshipment. There
are two main streams of research in the transshipment problem. In the ez post trans-
shipment, it is assumed that the transshipment is done after the demand realization
(Krishnan and Rao, 1965; Tagaras, 1989; Herer and Rashit, 1999; Rudi et al., 2001; Hu
et al., 2007). The other stream assumes that agents transship based on their updated
demand forecasts and before the observation of actual demands, i.c., ez ante trans-
shipment (Das, 1975; Gross, 1963; Chod and Rudi, 2006). We focus on the former in
this chapter.

Traditionally, most of the rescarch on the transshipment problem assume a central-
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ized supply chain with a single decision maker (Krishnan and Rao, 1965; Tagaras,

1989; Herer and Rashit, 1099). In the decentralized supply chain, agents are owned
or managed independently, and there are potential conflicts of interests. Thus, the
main instrument for analyzing the decentralized supply chains becomes game theory.
Perhaps one of the first papers which utilize the game theory concepts in operations
‘management context is Parlar (1988). He developed a model for the single-period
transshipment. problem and derived the ordering quantities using the Nash Equilib-
rium. However, this research does not consider any transshipment prices other than
the market selling prices.

Using game theory in a decentralized supply chain, Van Mieghem (1999) examines the
subcontracting problem where an agent can use the subcontractors capacity when its
demand exceeds its own capacity. He analyzes the initial investment decisions un-
der three different contract types: price-only contracts, incomplete contracts, and
state-dependent price-only contracts. In his analysis of the state-dependent price-
only contracts (states are defined with respect to the actual demands) he suggests a
‘mechanism for deriving the transshipment prices that can result in the initial invest-

‘ment levels which maximize the centralized profit. However, with his state-dependent

price-only contracts, th i of the i i knowled;
about the actual demands.

Rudi et al. (2001) study a single-period transshipment problem with two independent
retailers. They derive the transshipment prices that cause the independent retailers

to choose the supply chain optimal production/order quantities. However, Hu et al

(2007) prove that such transshipment prices may exist only under certain con

thus not always. Therefore, Hu et al. (2007) conclude that

firms that would like to coordinate multiple locations may have to

resort. to other mechanisms than solely relying on linear transshipment
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prices (p. 1204

This conclusion motivates the development of the implicit pricing mechanism in this
chapter. Morcover, even if such transshipment prices exist, they lead to a singular

division of total expected profit that might be unacceptable to at least one of the

5. Hence, these transshipment prices do not give rise to a coordinating con

to Cachon’s definition. Instead of assus

prices, we model the 1

ing

tion over the total expected profit

eration between agents. We propose a cg ating contract with an imp}

mechanism that always leads to the first best quantities being the Nash equilibriur

and accommodates the division of total expected profit according to the agents’ bar-
gaining powers. Finally, we show that the agents may have several choices when fixing
the transshipment prices.

An alternative approach to coordinate the transshipment problem employs coopera

tive game theory. This approach advocates that once the agents have decided their
uantities and the market demand has been observed, they form coalitions, transship
he s if any, and divide the extra profits resulting from the t pment

Anupindi et al. (2001) provide an allocation rule based on the dual prices of residuals

i.e. the dual allocation rule, in the core of corresponding

cooperative game. Still, as
Huang and Sosi¢ (2010b) show, the dual allocation rule is unable to coordinate the

general supply chain with two agents.

hough most of the previous research on supply chain contracts use the Stackelberg
game for analyzing the dynamics between the parties (see Cachon (2003)), this chapter
uses the concept of Generalized Nash Bargaining Solution. The rationale is that prior

surplus products. Therefore, the Stackelberg game is not suitable in the supply chain

where neither agent has some distinctive characteristics for being the leader. Clearly
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if the agents wait until they receive some updated information about their demands,
they might be able to later distinguish the leader as the seller (or alternatively as the

buyer) as in Chakravarty and Zhang (2007)

3.3 Notation and Framework

Consider a system with two risk-neutral newsvendor agents (i,j = 1,2) producing an
homogeneous product (i # j throughout the chapter). The agents decide their pro-
duction/order quantities, X = (X, X2), prior to the realization of random demands,
D = (D), Dy). The D has a bivariate continuous and twice differentiable density func-

tion with its support on positive reals. The unit production costs, selling prices, and

salvage values are denoted by ¢ = (c1,c2), 1 = (r1,2), and v = (11, v2) respectively.
We assume 0 < v < c <r. The agents are penalized at the rate h = (hy, o) for each
unit of unsatisfied demand.

We study a single-period model with two stages. At the beginning of stage one, agents
agree on the way to set the transshipment prices, s = (si2, 521), where s, is the unit
price that 2 should pay in order to receive a unit of 1's surplus product. The agents
decide their quantities individually and independently afterwards. At the beginning
of stage two, demands are realized and agents carry out the transshipments. When i
transships to j, the former incurs a unit transportation cost, t;; 2 0. Let t = (12,t2).
To assure that the transshipment occurs only if one agent has unsatisfied demands
and the other has surplus, it is commonly assumed (see Rudi et al. (2001) for example)
that ¢ < ¢ + L, v < vy + Ly, and vy + by <y + by + L for 4, = 1,2. The transshipment
is feasible if neither agent is worse off by doing it. From the transshipment-receiver
agent’s viewpoint, a transshipment price is feasible if it is less than or equal to the

‘market selling price plus the lost sale penalty. From the transshipment-sender agent’s




viewpoint, a transshipment price is feasible f it is greater than or equal to the trans-
portation cost plus the salvage value. Therefore, transshipment prices are feasible
if

Ly Ssysrivh @31)

for i,j = 1,2. We assume that t,; + v, <7+ hy for i,j=1,2.

3.4 The Model

We formulate the individual expected profits, J = (Jy,Ja), in the non-cooperative
mode (without transshipment) and the decentralized cooperative mode (with trans-
shipment). NCand DC to distinguish between i

and decentralized cooperative modes respectively.

Non-cooperative mode The individual expected profits in the non-cooperative

mode are
IYE(X) = Erimin(Dy, X0) + w(Xi= D) = Di= Xi) = aiXi] (32)
for i = 1,2 where r* = max(z,0). The optimum quantities in this mode, X*¢ =
(X¥¢, XJ€), are simply the critical fractiles of the corresponding newsvendor prob-
lems. Therefore, for all X, J¥C(X,) € J¥(X}C) with i = 1,2. The total expected
profit in this mode is denoted by

JFEX) = IYE(X) + IFX)-

Cooperative mode In the cooperative mode, after the realization of demands, if
one agent has some unsatisfied demand and the other has some surplus products,
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they carry out the transshipment. Similar to Hu et al. (2007), we use the following
Wi(X) = min[(D; - X;)*.(X; -~ D;)°): transshipment quantity from i to j after the
realization of demands. It is the smaller of the two values of the unsatisfied demand
of agent j, (D, - X;)", and the surplus products of agent i, (X, - D))",

D}(X) = min(D;, X;)+Wy(X): the demand that agent i can satisfy after transshipment.
1(X) = (X, - D))" = Wiy(X): surplus products of agent i after transshipment.

DYX) = (D= X)* = Wy(X): unsatisfied demand at i after transshipment. The
individual profit functions are

JP(5,X) = E[rD](X) - 85W(X) + (5 = ig)Wes(X) + wili(X) - b D} (X) - i Xi]
(33)
for i,j = 1,2. By some rearrangement and simplification (see Appendix) we have

IPC.X) = (2~ trz - n)lu(X) + (n + by —en)Tn(X) + SFOCK) (39)

JPC(9,X) = (r2 + ha = 512)F12(X) + (21 - o - 2)Tm (X) + YO (X, (35)

where Ii2(X) = E[Wia(X, D)] and Iy (X) = E[Wa (X, D)]. The total expected profit
in the cooperative mode is independent of the transshipment prices and equals

JPE(X) = (ra+ ha =iz =) 012X+ (ry ¢ by =ty -1 Eas (X) + JYO(X)) 0 FC(X). (36)
The optimum quantities, ie. the first best quantities, are X© = (X£,X{). The

concavity of JPC(X) with respect to X is shown in Pasternack and Drezner (1991)
where a method for calculating XC is also given.
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3.5 The Contract

Axiomatic bargaining was first proposed by John Nash (1951). Consider two players
(here 1 and 2) who either fail to do so and then

occurs. A bargaining problem is a pair (F,d) where F is a closed convex subset of
R? consisting of the set of all utility pairs, u = (uy,u,), that are the utilities of the

bargaining scenarios, and d = (dy, ) are the utilities in the disagreement scenario.
I for both players the utilities of agreement scenarios are greater than that of the
disagreement scenario, then players have an incentive to reach an agreement and
cooperate with each other. Nash proves that by considering certain axioms about
players' preferences and utility functions as well as the bargaining outcomes, the
bargaining solution can be uniquely determined. These axioms are (Osborne and
Rubinstein, 1990):

(a) individual rationality,

(b) Pareto-efficiency,

(c) invariance to equivalent utilty representations,

(d) independence of irrelevant alternatives, and

(¢) symmetry.

The Nash Bargaining Solution (NBS), denoted by f(F.d), can then be derived
through solving the following system

S(Fd)= agmax (u-di)(u2-d2). @7
o Fd
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By relaxing the symmetry axiom, the remaining Nash Bargaining axioms determine
a bargaining solution derived by solving the following system.

Sp(F.d)=  amgmax  (ui-di)'(uz-d2)'" 38)
e )P, wrd

where 0 <7 <1 is the player 1's bargaining power and 1~ is player 2's bargaining
power (Roth, 1979). Note that in this model the 7 is assumed to be known a priori.
The solution to (3.8) is called the Generalized Nash Bargaining Solution (GNBS)
(Nagarajan and Sosié, 2008).

3.5.1 The Implicit Pricing Mechanism

In (38), set u; = JPC(s,X) and d; = JNC(X]C) for i = 1,2, Observe that for all
s we have JP€(s,XNC) 2 JNC(XNC). Thus, there are always s and X such that
JPC(s,X) 2 JNC(XNC). For those s and X the GNBS can be formulated ns

Jy= argamax 1P (0, X) - SOOI [0 - FCOFD) . @9)

Lemma 3.1 (The GNBS condition). For any X, the transshipment prices which solve
(3.9), 8" = (siz.53,), satisfy the following condition
Tra(X)siz - Tn(X)sh =[a(ra + ha) + (1 =3) (013 + ) [Faa(X) = [(1 =) + ) + (ks + o) [T (X)
20X - HCXFOY)] - (- - SN

@10
Proof. First, we note that (3.9) is concave on s (see Appendix). If both [i2(X) and
T'2y(X) are nonzero, the GNBS condition can be obtained by setting either of the
first order conditions, which are provided in the proof of concavity of (3.9) in the
Appendix. to zero and solving it. If either of the Tya(X) and I3 (X) is zero, then
either of the first order conditions is always zero and the GNBS condition can be
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abtained by setting the other equation to zero and solving it o

Note that the transshipment prices which meet the GNBS condition in (3.10) are im-
plicit functions of X. Therefore, s*(X) is an implicit pricing mechanism. This implies
& two-round contract detailed in Figure 3.1. In round one, the agents accept s*(X)
and then individually decide their quantities; in round two, they fix the transshipment
prices by selecting a point using the implicit pricing mechanism. By Lemma 3.1, for
any X, if both Ty3(X) # 0 and Iy(X) # 0, the agents will have several alternatives
for fixing s*(X) since s3,(X) and s3,(X) lie on the line defined by (3.10). However, if

either ['p(X) =0 or [yy(X) = 0 (but not both), then one of the transshipment prices

disappears from the equation (3.10) and consequently there will be only one choice
for s*(X). The case with T'j(X) = ['yy(X) = 0 is trivial because then neither agent
expects any transshipments. The resultant transshipment prices will be referred to as

the negotiated transshipment prices.

3.5.2 Deciding the Quantities

When individually deciding their quantities, the agents undergo a game. The in-
dividual optimum quantities are thus determined by the Nash equilibrium, X2€ =
(XPC,XPC), which is the intersection point of the agents’ reaction functions'? (Fu-
denberg and Tirole, 2002).

Rudi et al. (2001) argue that there is a unique set of linear transshipment prices
(transshipment prices that are fixed before the decisions on production/order quan-
tities has been made) that results in the Nash equilibrium being equal to the first
best quantities. Hu et al. (2007) refute this claim by proving that these special linear
transshipment prices do not necessarily exist (we shall return to their counter-example
in Section 3.6). Morcover, even if such linear transshipment prices do exist, they can

X reaction

inction specifies the decision of an agent as a function of other agents’ decisions.
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only divide the supply chain profit betveen the agents in one way for there is a one-
to-one correspondence between linear transshipment prices and the division of total
expected profit (Hu et al., 2007)

We now show that with the implicit pricing mechanism, for any combination of bar-
gnining powers, the game to select the quantities always results in the first best
quantities.

Lemma 3.2. With s*(X), the expected individual profits are
IPE(s°(X),X) =1 IPOX) + [(1- NI X)) @)

JPO(s°(X),X) = (1=9)IPEX) - [(1-DIFCNO) -] @42

Proof. At the point 8*(X), (3.4) can be rewritten as

2P (8*(X), X) = Fya(X)sis - Paa(X)ads - ttaz +9)0s2(X) + (ry + B (X) + SFE(X) (313)

Substituting (3.10) in (3.13) one obtains (3.11). By applying the same procedure to
(3.5) one can get (3.12). o

Lemma 3.2 states that with s*(X), the expected individual profit for cach agent
equals its maximum expected profit in the non-cooperative mode, J¥¢(X¥), plus a
fraction (v for agent 1 and 1~ for agent 2) of expected extra profit resulting from
the cooperation, i.e., JO(X) - JFC(X¥C). We have the following theorem.

Theorem 3.1. With 5*(X), X2 = X
Proof. The agents’ reaction functions are XP€ = argmax JC(X) for i, =1,2. The
0
solution to the system of first order conditions,
{DIPC(X, 8)/0X, = 0,0JPC(X.,5)/0X2 =0},
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is the Nash equilibrium, By substituting (3.11) and (3.12) and simplification, the

latter is equivalent to
{BIR(X)/0X, = 0,02°(X)/3X, = 0}

‘The solution to the last system is XC. o

Thus, if the implicit pricing mechanism is implemented, the Nash equilibrium quan-

tities equals the first best quantities

3.5.3 Fixing the Negotiated Transshipment Prices

After the quantities have been decided, the agents should fix the negotiated trans-
shipment prices—according to the implicit pricing mechanism in (3.10)—so that they
also meet the feasibility conditions given in (3.1). Let 2(X) be the set of all such

transshipment prices for a given X.

Lemma 3.3. For a given X,

max(L, b+ 1) € 3 Smin(La,ry +h) i T1a(X) + 0 and T (X) £ 0

X =1 by smsay srieh YT1a(X) =0 and T2y (X) #0

tia+m<sipsrathy i T12(X) # 0 and Iz (X) =0
(3.14)

where
202+t =1) PG (=) ) 3+ 22)
_ AlIC(Xa) - JYOXEO) - (1 - DX - X))
T (X)

Tu(X) faan)

Ly=(1-7)(ra+ ha - tiz -1) +(1=7)(r1 +ha) +9(t2s +v2)

Ta(X)
_ Al (Xa) - IYOXYO) - (1 - ) - VX))
n
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Proof. (X) is defined by the GNBS condition and the feasibility constraints for
the transshipment prices. For the first case, substituting the s, from the GNBS
condition into the feasibility condition for sz, the (X) becomes the intersection of
LS55, S Ly and t + 03 S 83, S 71 + hy. The latter is equivalent to

max(La,ta +v2) € 83, € min(La,ry + by).

The second and third cases follow subsequently. o

Note that when either Ty2(X) = 0 or Tz (X) = 0 the feasibility condition in (3.1) solely
determines the boundaries. However, when both Pz(X) and I3 (X) are positive, the

NBS conditi cti ies. The following theorem
ensures that for the first best quantities, i.e. X, feasible negotiated transshipment
prices can always be found.

Theorem 3.2. U(XC) is non-empty.

Proof. Assume that T12(X) # 0 and [3y(X) # 0. In order to prove that f(XC) is
non-empty, it is sufficient to show that

max(Ly, by + 1) < min(La,ry + hy)
for X = XC. From the assumptions of our model, we know that fi + v, <+ hy
and tz + vy <y + hy. This directly results in L; < L. To show that Ly < ry+ hy is

equivalent to show that

JPE(XE) - J¥C(XE) 4 5 (IFCX) - IFO(XE)) >0.
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‘We know that
JPEXE) > JFE(XC).
IYE(XC) - IFO(XF) 20,
we have L; <1y + hy. To show that ty, + vy < Ly is equivalent to show that

IPEXE) = INCXE) 4+ 1 (JFCXPO) - IFO(XE)) >0,

With
HREXE) > JFOXE)

JFEXFC) - JFOXE) 20,

we can see that £y + 14 < Ly. Now consider that I'y(X) = 0. In this case, it needs to
be shwn that
o+ 1 $85,(XO) Sy + b

Based on the previous part, the proof is straightforward. The case where Iy (X) =0
is similar, o
Whenever there are multiple possibilities for selecting the transshipment prices, the
choice among them does not affect the individual expected profits and can be dane
arbitrarily and possibly by using a secondary criterion, for instance the variances of
the agents’ individual profits.




&

i Agent T Agent 2
Demand Distribution  Truncated Normal Dist.(100,50) Truncated Normal Dist.(200,100)
Selling Price n=20 vz

Lost Sale Penalty
Transportation Cost

Unit Cost of Production

‘Table 3.1: Description of Example 1

Optimum quantities XTC=160.02 T=316.43
Maximum Individual Expected Profit JNVO(X]C) = 864.34 J,“'(X"C) 21910
Maximum Total Expected Profit IS (XNC,

Table 3.2: Example 1: The Outcome in the Non-Cooperative Mode

Special Case: Symmetric Agents

when all the parameters as well as the

For two completely symmetric agents, ie.

bargaining powers are equal, we have
LX) = IO O] = LX) - )]
in (3.10). Therefore, when the agents fix the transshipment prices, they can always

pick them equal
rrhivet rvhivety

which is independent of the realization of demands.

3.5.4 An Example
Consider two agents described in Table 3.1. We assume that they have independent
truncated Normal demand distributions. Table 3.2 yields their expected profits in the

non-cooperative mode. In the cooperative mode, the negotiated transshipment prices



Optimum Quantities (Centralized) XP=18L14_ XY =260.01
Maximum Total Expected Profit (Centralized) JPE(XC) = 3181.1

Table 3.3: Example 1: Centralized Solution
meet the following GNBS condition:
T Tl = y LB ) )
13(X)sfa~Tar (X)s5; = 235T12(X) - 2001 (X) + 5[ (X) -1 (X2) -1326.66] (3.16)

Table 3.3 shows the optimum quantities and the total expected profit in the cen-
tralized supply chain. By Theorem 3.1, the optimum individual quantities with the
negotiated transshipment prices in (3.16) are those in Table 3.3. Next, the agents
could choose a specific st of transshipment prices by picking any point on the line

812~ 007453, = 19.435 with 15.< 83, < 25 (e.8. 5° = (20.915,20)).

3.6 Linear versus Implicit Pricing Mechanism

We are now ready to illustrate the difference between the linear pricing mechanism
presented by Rudi et al. (2001) and Hu et al. (2007), the dual allocation mechanism

of Anupindi et al. (2001) and Huang and Soic (2010b), and our implicit pricing

mechanism. We use the example proposed in Hu et al. (2007) as an the instance

where no linear transshipment prices could be found that induce the agents to choose

the first best quantities. We also show how our implicit pricing mechanism leads to

the coordination of this system.

Consider two agents with the characteristics given in Table 3.4. In the non-cooperative

mode, the agents’ expected profit would be JPC (X, = (1,2,3)) = (6,9,8.8) and JP€ (X = (1,2,3)) =
(6,5,4). Therefore, X7 = (2,1). Now assume that the two agents can transship.

The best policy in the centralized supply chain is X = (1,3) which gives rise to the

total profit of 16.48.
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¢ i Agent 2
Demand Distribution (1,2,3) with probabilities (0.3,0.32,0.38) Deterministic (1)
Selling Price 1
Lost Sale Penalty
Transportation Cost
Salvage Value
Unit Cost of Production

X2 Xz

i 7 3 Hiy 7 3
1 6 13.7-.07sy;  17.88 - 1.08s2) 1 6 15+.07s; ~-14+1.08sy
2 9 13.18-0.38sy 13.18-0.38sy 2 6 31+038sy 0.58+0.38sy

3 88 8.8 8.8 3 6 5 4

(@) (b)

Tuble 3.5: Individual Expected Profits with Linear Transshipment Prices

Now consider the i ized system with i Table 35

shows the expected profits for the two sgents as o function of the transshipment price,

s, and the quantities, X. The linear transshipment price is by definition the same for
cach entry of the Tables 3,5(a) and 3.5(b) (see Hu et al. (2007)).

Hu et al. (2007) prove that there is no linear transshipment price, s, that induces
the agents to set their quantities as the first best. In fact, when sy € [5,145/19), the
Nash equilibrium is XPC = (2, 1) with joint profits of 15, and when s; € [145/19,11),

XP€ = (2,2) with joint profits of 16.28,

Table 3.6 shows the individual expected profits ealeulated according to the dual al-
location mechanism of Anupindi et al. (2001). Thus, this mechanism results in the
Nash equilibrium XP€ = (2,2) with joint profits of 16,28, Therefore, the condition
for the existence of coordinating dual allocation for two agents given in Huang and
Sosic (2010b) is not satisfied. Thus, the agents are unable to attain JP°(X®) = 16.48
cither with the linear transshipment prices or the dual allocation mechanism.

Now assume that s, is set as by our implicit pricing mechanism. The implicit pricing
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Xz
i v Y;

T 6 102 592

2 6 728 4
36 5 4
®)

Table 3.6: Individual Expected Profits with Dual allocation Mechanism

X Xz
Eoc o s X7 w3
6 1 6 61 674
2 9 964 914 2 6 664 462
3 88 88 88 3 6 5 4
@ ®

Table 3.7: The Agents’ Expected Profits with s3,(Q)

mechanism is obtained form the GNBS condition in (3.10). In this example Io(X) = 0
thus Ty (X) is equivalent to the coefficients of sp; in Table 3.5(b). Assuming 7 = 0.5,
the GNBS condition becomes

SO - JNC(X) -3

A8 TS0

Substituting the respective values of 53,(X) in Table 3.5, one obtains the expected
1,3)

individual profits in Table 3.7(a) and 3.7(b). Then, the Nash equilibrium is X#
that is exactly the same as the first best solution. The total expected profit in this
case is also 16.48. Therefore, it can be seen that this implicit pricing mechanism leads

to the coordination of the system.

3.7 Comments

The contract proposed in this chapter is limited to the two-agent supply chain. A

possible extension to the supply chain with 7 > 2 agents needs to deal with two new



key features: (1) the sensitivity of optimal transshipment patterns to actual demands,
and (2) the possibility of coalitions formed by subsets on n agents. The coordination
of transshipment. problem with these two new features remains a challenging open
problem. We leave these questions for the future research.

Recently, Huang and Sosié (2010b) developed several heuristics for setting the trans-
shipment prices in a general n-agent supply chain. Those heuristics are developed
5o that the extra profits from transshipments mimic the allocations in the core of
the ez post cooperative transshipment game. A centralized depot handles the trans-
shipments in their contract. In the next chapter, we address this problem in detail
and introduce a mechanism for coordinating the transshipment problem in a general

n-agent supply chain.



The following chapter is an edited version of:

B. Hezarkhani and W. Kubiak. Transshipment prices and pair-wise stability in coor-
dinating the decentralized transshipment problem. In BQGT '10: Proceedings of the
Behavioral and Quantitative Game Theory, pages 1-6, 2010a



Chapter 4

Coordinating the Multi-agent

Transshipment Problem

Summary: The decentralized transshipment problem is a two-stage
decision making problem where the agents first choose their individual pro-
duction levels in anticipation of mandom demands and after demand real-
izations they pool residuals via transshipment. The coordination will be
achieved if at optimality all the decision variables, i.e. production/order
quantities and transshipment patterns, in the decentralized supply chain
are the same as those of centralized supply chain. This chapler studics

the coondination via transshipment prices. We propose a procedure for de-

riving the prices based on the allocation rule
introduced by Anupindi et al. (2001). With the transshipment prices being
set, the agents are free Lo match their residuals based on their individual
preferences. We draw upon the concept of pair-wise stability to capture the
dynamics of corresponding matching process. As the main result of this

chapter, we show that with the derived transshipment prices, the optimum
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transshipment patterns are always pair-wise stable, i.e. there are no pairs
of agents that can be jointly better off by unilaterally deviating from the

optimum transshipment patterns.

4.1 Introduction

The multi-agent transshipment problem is coordinated if (a) every agent sets its pro-
duction/order quantity equal to the centrally optimum amount for that agent, and
(b) the transshipment pattern, i.e. the union of individual transshipments among
the agents, in the decentralized problem is the same as the optimum transshipment
patterns.

Under some conditions on the demand distribution functions, Anupindi et al. (2001)
propose a coordinating contract that operates upon an allocation rule that specifies
cach agent’s share of the extra profit generated through the transshipments. They
argue that if an allocation rule in the core of the ez post transshipment game could
be found, the optimum transshipment patterns would be also optimal for all the
agents involved. Granot and Soié (2003) show that this contract may not support
the voluntary engagement of all the surplus products and unsatisfied demands in the
transshipment stage. In other words, some agents might be better off by announcing
only a portion of their surplus products or unsatisfied demands at the time of trans-
shipments. However, in a repeated setting, the agents are willing to share all of their
residuals in an equilibrium whenever the discount factor is large enough (Huang and
Sosié, 2010a). An alternative allocation rule has been proposed in (Sofi¢, 2006). The
rule redistributes the extra profit generated through the transshipments according to
the Shapley value. Although the resultant allocation is not necessarily in the core, it

could result in the farsighted stability of the grand coalition.



The contracts based on the allocation mechanisms require that the agents be able to
take advantage of side payments (which may not be possible in all situations). From
the implementation point of view, these contracts also need a governing party to
collect the realized profits and redistribute them among the members of the coalition
In order to avoid these difficulties, the agents can turn to the contracts with pricing
mechanisms. Then, whenever a transshipment between an agent with surplus and
another agent with unsatisfied demand happens, the latter pays the former a sum
proportional to the amount transshipped. The advantage of the pricing mechanism is

that tional institution for redistribution of extra profits i y—agents

who are involved in a transshipment transaction can handle the “redistributions”
without incentive-aligning side payments. Morcover, in this way, the amount of extra
profits that is generated through transshipments between any two agents is divided

completely betsveen them,

Despite the appealing properties of pricing mechanisms, finding coordinating con-
tracts based on them s challenging. Hu et al. (2007) show that linear transshipment
prices, i.e. the transshipment prices which are fixed before the decisions on production
quantities are made, may not be coordinating even with only two agents participating.
In the general case with more than two agents, Huang and Sosi¢ (2010b) show that
the transshipment prices which are fixed before the decisions on production quan-
tities cannot coordinate the system. They also propose some heuristic approaches
for finding the transshipment prices which result in better performance in the decen-
tralized system. In Chapter 3, a contract based on an implicit pricing mechanism
that could coordinate the transshipment problem with two agents has been proposed.

With an implicit pricing mechanism, agents initially agree on a formula for setting

the transshipment prices as a function of their decisions on production quantities, and

s have been made and prior to the realization of demands, they

once those deci
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fix the transshipment prices. As they prove, this postponement in fixing the trans-
shipment prices give rise to the coordination of the system. In this chapter, we take
the coordinating allocation rule introduced in Anupindi et al. (2001) and introduce
an equivalent pricing mechanism based on this rule. With the transshipment prices
being set, the agents are free to match their surplus products and unsatisfied demands
based on their individual preferences. This resembles a matching game in a two-sided
market where the supply and demand values are real numbers (see Baiou and Balinski
(2002)). We show that with the derived pricing mechanism the optimal transshipment
patterns are always pair-wise stable solutions to the corresponding matching process,
i.e. given the transshipment prices, no pairs of agents can simultancously improve
their profits by mutually deviating from the optimal transshipment patterns.

The rest of this chapter is organized as follows. Section 4.2 provides a detailed de-

seription of the problem. In Section 4.3 the optimal solution in the centralized system

is addressed. Section 4.4 addresses the decentralized system with the allocation rule
‘mechanism. Section 4.5 presents the transshipment prices derived from the coordi-
nating allocation rule of Anupindi et al. (2001). Section 4.6 discusses the matching
process that results in the formation of transshipment patterns and introduces the

concept of pair-wise stability. It also demonstrates the pair-wise stability of the opti-

mum i patterns with the i in the preceding
sections. An example has been given in Section 4.7. Finally, Section 4.8 gives some
concluding remarks

4.2 Problem Statement

n of

There are n newsvendor agents producing a homogeneous product in anticipa

random demands. We index the agents with i € N = {1,..,n}. The parameters r,,




i, and , respectively represent the unit selling prices, production costs, and salvage
values for the agents. We study a single period production-transshipment model. We
assume that there is no competition over setting the selling prices during the course
of our analysis. We represent the veetar of random demands by D = (D,fi € N). The
joint PDF of demand is continuous and twice differentiable. Before the realization
of market demands, the agents decide on their production quantities denoted by
the vector X = {Xi[i € N). After the realization of market demands, each agent

encounters either surplus products, F, = max{X; - D,,0}, or unsatisfied demand,

E, = max{D, - X,,0}. Accordingly, the agents with surplus products transship to
the agents with unsatisfied demands. The amount of products transshipped among
agents is denoted by W = {W,Ji,j € ¥} where W, is the amount that i transships
to j (i # j throughout this chapter). When products are transshipped from i t0 j, a

unit transportation cost, £, is incurred by agent i

4.3 Centralized Mode

If the aforementioned system is managed by a single decision maker, the optimal deci-
sions will be obtained by analyzing the two stage stochastic decision making problem
Following the backward induction process, the system’s total profit for given values

of X, D, and W is
7°(X,D,W) = ¥ (remin{X;, Di} + vy - X)) + ¥ 3 pWis (1)
i i

where py; = r; = v = t; is the marginal profit due to a unit of transshipments from i

to j. The optimal transshipment pattern is obtained by solving the following linear




F(X.D) = mwer(X.D.w)
st
Y WysH.YieN
&
Y WysE,VjeN
I
Wy 20,VijeN. (42)

The optimal solution of (4.2) is referred to as the optimal transshipment pattern and
denoted by W*.

The optimal production quantities then can be found by first calculating the expected
value of #°(X, D) over D, ie. JO(X) = E[#(X,D)], for each given X, and second
finding the value of X which maximizes the J°(X). Note that the latter is a concave
function with respect to X (see Huang and Sosié (2010b)). The vector of system
optimal production quantities is denoted by X*.

4.4 Decentralized Mode

In the decentralized mode, the agents are considered to be sell-interested and indi-
vidually managed. The outcomes of collaborations among the agents in this mode
are specified by the collaboration mechanism, i.e. the contract. Following the non-
cooperative/cooperative framework in Anupindi et al. (2001), we consider contracts
with the allocation mechanisms where the agents individually and non-cooperatively
decide on their production quantities and after the realization of demand, coopera-
tively decide the transshipment patterns. The contract specifies a rule for redistribut-
ing the maximum attainable profits due to transshipments among the agents in the
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second stage.

The acceptability of allocations to the agents can be analyzed through the concept
of core. Assume that after the realization of demand, the agents can form coalitions
and carry out the transshipments among them in the best possible way, and then
redistribute the resulting profits in any way. Let Q € N be a sub-coalition of agents.
For given values of X and D, the maxinum attainable profit through transshipments
for the coalition Q is

Ro(X.D) = maxy ¥ psWy
“Qq

T WysH.¥ieQ

YW, <E; VjeQ

<

Wy 20.%i5€Q. (43)

We call this the ex post cooperative transshipment game. For the grand coalition
(Q = N), the optimal transshipment pattern obtained from the latter is equivalent
to those in (42). An allocation rule a,(X,D), ¥i € N is in the core of cooperative

game—a game with istic function given in (4.3)—if
Y alX, D)2 Ro(X,D).¥Q<c N, (4.4)
<
E';m(X‘D!: Rx(X.D). (43)

The concept of core is perhaps the most appealing stability concept in the cooperative
game theory: given an allocation rule in the core, the formation of grand coalition is
guaranteed. Because the transshipments in a coalition are carried out to maximize
the coalition's total profit, whenever the grand coalition is formed, the transshipment
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patterns would be the same as thase of W*. Hence, an allocation rule in the core
will result in the coordination of transshipment patterns. Following the results of
Owen (1975), the following allocation rule is always in the core of the coperative
transshipment game:

o¥(X.D) = A H, + i B, ¥i e N (46)

where for i € N, A{ and i} are the optimal dual solution of (4.3) with Q = N. This
allocation rules is referred to as the dual allocation rule Amupindi et al. (2001).

In order to find the individually optimum decisions on production quantities, first
note the individual profit functions for given values of X and D, that is

PO(X. D) = rymin{ X, D} + v H, - X, + a,(X, D), “n

where ,(X, D) represents the agent i's allocation of the second stage cooperative
game (not necessarily in the core). Let JPC(X) = E[zP(X,D)] as the expected
profit to agent i in the decentralized mode given X. The optimal policy for the agents
is the Nash Equilibrium (NE) on X in the corresponding non-cooperative game.'?
Anupindi et al. (2001) construct an allocation rule which results in the coordination
of decisions on production quantities. Theorem 4.1 follows from their Corollary 5.1.
It introduces an allocation rule in the core of the second stage cooperative game which
also coordinates the production quantities in the decentralized mode.

Theorem 4.1. Consider the following allocation rule:

0§(X.D) = o (X.D) - af (X", D) + a{(X", D) (48)

Equilibrium production quantities, X¥&, -gmj"‘(x")uﬂqx"n
X).¥X, VllN'hnX_‘ s the vector of production quastities Fth element removed.




of(X,D) = %#°(X, D) - (remin{X,, D} + vl - X,). (19

and for all i, %2 0 and Tiey v = 1. Then, this allocation rule is in the core of ex
post cooperative transshipment game. Also, if JPC(X) is simultancously continuous
in X, the demand densities belong to the class of Polya Frequency Functions of onder
2, and xPC(X, D) is unimodal in X; for every X, then with this allocation rule the
Nash equilibrium on production quantities will be unique and the same as the optimal

production quantities.

Therefore, the allocation rule af(X, D) is coordinating the two stage transshipment

problem.

4.5 Transshipment Prices Based on Coordinating
allocation Rule

One of the major practical drawbacks of contracts which solely rely on the allocation
rules is the need for a governing party to collect and redistribute the profits due to
transshipments. A more convenient and practically appealing mechanism is a pricing
mechanism. With a pricing mechanism (i) the total profit generated by transship-

ments between two agents is distributed only between those two, and (ii) the sum

of money paid by the i iver to the is a linear
function of the amount transshipped. In this section we propose a procedure to derive
a pricing mechanism for the transshipment game based on the coordinating allocation
rule in Theorem 4.1. The derived pricing mechanism can facilitate the implementation
of the contract.

After the realization of demand, the set of newsvendor agents, N, can be divided into
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the set of transshipment sellers S = {ilH, > 0}, and the set of transshipment buyers
B = {j|E; >0}. The following lemma was shown in Sinchez-Soriano (2006).
Lemma 4.1. (Proposition 5 in Sinchez-Soriano (2006)) If z = {;
cation in the core of ex post cooperative transshipment game, and W* is an optimal
solution of the transportation problem in (4.2), then the following system will have a
solution with Uy >0 and Vs 20 for alli €S and j € B

2.} is an allo-

z=Tunly VieS
2=TusViy VieB
Uy +Viy=pyWj, YieS,VjeB (4.10)

The U, and V;, are in fact pair-wise allocations of profit that is generated by trans-
shipments between i and j (see Sanchez-Soriano (2006)). The idea is to divide the
profit generated by each buyer-seller pair solely between them so that the total profit
gained by every. s i ion in the core.

Corollary 4.1. Let W* be an optimal primal solution of (4.2). The following system
has a solution with Uyy 20 and Viy 20 for all i€ S and j € B:

af(X",D) = Eynly, VieS
a5(X*,D) = EusViy, YieB
Uy+Vy=pyW;, VieS¥jeB (411

The latter is straightforward by noting that according to Theorem 4.1, af(X",D) is

an allocation in the core of ex post cooperative transshipment game.

‘The pair-wise allocations can be used to develop a pricing mechanism. Let s, be the

transshipment price which is paid by j to f for a unit transshipment. With a unit
1



transshipment from i to j, the marginal profit to agent i would be the transshipment
price minus the i's salvage value minus the transportation cost from i 0 J, ie. uy =
5=~ ty. Thus, g is the marginal profit to agent i when transshipping a unit 0 j.
On the other hand, the agent j resells the product acquired through the transshipment
toits customers. Thus t;, =r, s is the marginal profit to the agent j when receiving
a unit from i. The transformation

Wi = (s - v ty)W5

vy W = (ry = s )W5

with v, +1,, < 8, S 7; counects the pair-wise allocations and the transshipment prices.
We have the following lemma.

Lemma 4.2. Let Uy, =

(sig=vi=tis)W,5 and Viy = (rj=s55)W;;. A solution to the system

(4.11) is as follows: for i €S and j € B such that W3 >0, 55, = X + v+ ty =

-
Proof. First, note that for all i €S, af(X*,D) = ; H; and for all j ¢ B, af(X",D) =
155 E;. Second, from the complementary slackness we have

,\:(ll.-;w‘;) =0,

XHi= A:glv.;



WE, =5 W
&

Also, by definitions of Uy; and Vi, for i €S and j € B, we have

Ui+ Vig = Wi,

Therefore, (4.11) is equivalent to

N Z W= B - v t)W VieS
B 7

YW= ;(y‘ - 8y)W;.VieB. (412)
=

This in turn implies

oy = TN s ust,) Wy, vies
»B B

gs.,lv.;= ;(r, - ;) Wi, ¥j€B. (4.13)

Therefore, for i € § and j € B such that W}; > 0, the solution of the latter system
of equations is 5§ = Af + v+t or, equivalently i, = r; = ;. The complementary
slackness conditions of the dual guarantee that for i € and j € B such that Wj; >0,
we have A; + i = r; - v~ ti; and therefore both ways for defining s will result in the

same values. =}

Note that for i € S and j € B such that W} = 0 any value of s, is part of the optimal
solution of (4.13). Next, we analyze the transshipment patterns that will result from
these transshipment prices.
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4.6 Formation of Transshipment Patterns

Cooperative game theory requires that the individual players in the coalition grant

their decision making rights to the coalition. An alternative approach to anal
the n-player transshipment game is to consider that the sellers and buyers are free
to search the market and match their surplus products and unmet demands based
on their individual preferences that stem from the given transshipment prices. Then
the question is “what would be the outcome of this matching process in terms of
transshipment patterns?”

Th

problem is an instance of network formation in the two-sided markets where
buyers and sellers match their trade quantities. In this supply chain, any transship-
ment requires the mutual decision of a buyer and a seller with respect to the amount
transshipped. The fact that mutual consent is needed to form a single transshipment
is generally a hurdle for trying to use any off-the-shelf non-cooperative game theoretic
approach Jackson (2005). There are several approaches to model these game situa-
tions. In the supply chain where each seller has a unit of product and each buyer
needs a unit of product, Jackson (2005) summarizes the approaches taken in the lit-
erature. In spite of the multiplicity of approaches, the concept of pair-wise stability
is perhaps the most tractable.

In the context of transshipment problem where the buyers and sellers can transship
any amounts between themselves, Baiou and Balinski (2002) develop the concept, of

pair-wise stability. In short, this h proposes that the f matching sur-

plus products and unsatisfied demands between buyers and sellers should necessarily

be pair-wise stable with regards to the individual preferences:

a solution is stable if no pair of opposite agents can increase the number

of units they exchange, perhaps by giving up trades with less preferred
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agents (Baiou and Balinski, 2002).1

Although their definition of stability is based on the ordinal preferences of agents, we
propose an altemative cardinal approach to reflect the preference orderings via the
transshipment prices.

Let us assume that the agents are provided with a set of transshipment prices, s =
{suli €S, € B}. We define the preferences of each agent over the agents on the
opposite side of the transshipment market as follows.

« For i € S, transshipping to j' is preferred over j (j' >; j) if uy > wy 2 0. 1f
Uiy =ty 2 0, then i is indifferent between transshipping to j or j. The set
7%= {J" € Blj’ 2, j} contains all the buyers that are at least as preferable as j
toi.

« For j € B, receiving transshipments from i" is preferred over i (i >, ) if vy >
0y 2 0. Iy = vy, 20, then j is indifferent between receiving transshipments
from i or i". The set i = {i" € i 2, i} contains the sellers that are at least as
preferable as i o j.

Here we present the definition of pair-wise stability's:

Definition 1. A transshipment pattern W = {Wyli €S, € B} is pair-uise stable if
Jor every i and j with u; 20 and vy 2 0:

W, <min{H, E,} implies Z Wy=H, or ¥ W, =E, (4.14)
-~

Although Haiou and Balinski (2002) e Lhe term “stability”, we use the term “pair-wise sta-
bility™ i order Lo avoid confusion between different types of stability, . core stability, farsighted
stabilty ctc.
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This definition states that with a stable transshipment pattern, if the amount of
transshipments between i and j is less than the maximum amount that they can
transship between themselves, i.e. min{H;, E;}, then it must be the case that either i
has transshipped its surplus products to the agents which it considers to be at least
as preferable as , or j has received transshipments from the agents which it considers
to be at least as preferable as i. If for some i and j the latter does not hold, they can
together unilaterally improve their individual marginal profits. Specially, the value of
Wi, may be increased by & > 0, and Wiy for some j' <; j and Wy; for some i <; i may
both be decreased (if necessary) by & Baiou and Balinski (2002).

Remark 1. For pair i € S and j € B such that either w; < 0 or vy < 0, Wy = 0
is the only pair-wise stable transshipment pattern. One side can aluays improve by

refraining from participating in the transshipment.

At this point, one may ask whether there are transshipment prices with which the

timal solution, W*, is & pair-wise stabl ipment pattern for th

system. The answer to this question is affirmative.

vty =

Theorem 4.2. Fori €S and j € B, if W > 0, define s
and if W,

i
. Then, the optimal solution, W*, is a pair-uwise stable

, define s;;

pattern for the i i ipment system.

Proof. 1t is straightforward to check that with these transshipment prices, for i € S

and j € B such that Wy >0, uj = X;

=X, and v,

Also, for i €S and j € B such that Wj =0, uj;

452 and vy
Next, we analyze the preference orderings that result from s;;. For any given seller

i €S, forall j € B such that W >0 we have uj; 20, and for all j € B such

that W =0 we have u}, < (0. Therefore, i has no preference for the buyer j such that




W; =0 and is indifferent to all the other buyers, ie.
=i >0}
With respect to buyers, for any given buyer j ¢ B, for all i ¢ S such that Wj >0

we have v, = 4} 2 0. For all # such that W = 0 we have v, = r; > 4}, Therefore, if
W >0, then i = S and if W =0, then

Wy =0).

In order to prove the pair-wise stability of W* with propased transshipment prices,

= 0. In this case, since u;; <0,

W =0 s stable (see Remark 4.1).
For the buyer-seller pairs with W;; > 0, we proceed by contradiction. Suppose W;; >0
is not pair-wise stable. Then

W <min{H,, E;)

and both £y, Wy < Hyand £, Wj < ). Thus, i and j can simultaneously improve
by transshipping an additional amount of

Wu=min{ ¥, “’-'rEr):WG]

0 =
between themselves. Note that i and j can transship W, without altering their
the system's total profit by p,W,,. The latter contradicts the optimality of W,
Therefore, W* must be pair-wise stable. o




H,

now

S T i
J=1 j=2 j=3 j-=4
0 1 2 0
50 1 0 15 15

70 09 11 0 12
i=4 8 0 2 07 18 0
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Tuble 4.1: An Example of Transshipment Among Four Agents
4.7  An Example

We illustrate our approach to derive the transshipment prices in the second stage
through an example. Consider the supply chain with four agents. Since we focus on
the sccond stage, we assume that the decisions on production quantities have been
already made and the demands have also been realized. Accordingly, there are two
sellers and two buyers in the system. The parameters are given in Table 4.1 The
optimal transshipment pattern in the centralized mode is

W= (Wi =1, Wi =9, W =5}

‘The dual optimal solution is A} = 4.3 and p3 = 0,43 = 1. The dual allocation
for this problem is A = {40,0,9,21.5). Following the Theorem 4.2, we set 512 = 5,513 =

6,542 = 5, and a3 = 0. With these transshipment prices, the marginal profits due to
transshipments are shown in Figure 4.1, The preference ordering for the agents are
thus as follows: agent 1 is indifferent between transshipping to 2 or 3, agent 4's only
preferred partuer is agent 2 (since ug < 0), agent 2 is indifferent between receiving
transshipments from 1 or 4, and finally, agent 3 prefers 4 over 1. To check the stability
of optimal solution with the above mentioned transshipment prices see figure below.
The numbers on each link show the unit profit to the corresponding agent. Ope can

81



@‘i
) @
Figure 4.1: Optimal and Pair-Wise Stable Transshipment Patterns

check that with
W= (W= 1, Wiy =9, W =5},

10 pairs of sellers and buyers can improve their profits by unilateral deviation from
the optimal transshipment pattern.

4.8 Comments

One of the main assumptions in this model is that the agents do not incur any cost
when deciding to cooperate with each other, However, in reality, there are several
types of costs that have to be incurred in order to establish and main relationships
between independent agents. In the next chapter, we explicitly include the coopera-
tion costs into the analysis of decentralized transshipment problem.



The following chapter is an edited version of:

B. Hezarkhani and W. Kubiak. Symmetric newsvendor transshipment games with

cooperation costs. To be submitted



Chapter 5

Symmetric Newsvendor
Transshipment Games with

Cooperation Costs

Summary: In a transshipment game, supply chain agents cooperate
Lo transship surplus products after demand realization. The problem has
been well studied in the literature, however, general analytical results for
it seem out of reach at the moment. In this chapter, we study the coop-
erutive transshipment game with symmetric newsvendors having normally
distributed independent demands. We provide characterization of optimal
individual quantitics, the mazimum crpected profits, and individual allo
cations for these games. In particular, we prove that though individual
allocations grow with the coalition size they diminish at the same time ac-
conding to two laws of diminishing individual allocations. These results
though interesting by themselves are only a point of departure for study-

ing the games with cooperation costs. The cooperation costs depend on.




the cooperation network structure. The chapter considers two, the cligue
and the hub, and provides the necessary and sufficient conditions for the
cost per link necessary to render the core of the game non-empty for ei-
ther. These mazimum admissible costs are aluways decreasing for cliques,

however, increasing or ezhibiting a unimodal pattern for hubs.

5.1 Introduction

A transshipment game is concerned with a group of newsvendors who sell a similar
product in separate markets and who are willing to reduce their uncertain demand
isks by participating in agreements that allow them to share unsold products among
themselves. In responsive transshipment, which s the focus of this chapter, newsven-
dors have the option to transship surplus products, if any, after the realization of
market demands to other newsvendors. The individual newsvendors thus need to de-
cide their optimal production /order quantities, and then to decide how to transship
surplus products after the realization of market demands. In a decentralized supply
chain, these decisions are functions of a cooperation mechanism that newsvendors
agree upon. The efficiency of such a mechanism is determined by comparing the
quantity decisions that the mechanism leads to with the quantity decisions that are
optimal for the centralized system. A mechanism that makes the decentralized system
quantity decisions the same as those of the centralized system is called a coordinat-
ing mechanism. A mechanism is essentially a contract in a supply chain viewed as
nexus-of-contracts. As it is discussed in Chapter 2, the growing literature on sup-
ply chain contracts seeks to design coordinating contracts (see also Hezarkhani and
Kubiak (2010c), Li and Wang (2007), or Gomez-Padilla et al. (2005))

A common assumption made in previous studies of the transshipment game is that




cooperation among newsvendors is costless. However, in reality, when newsvendors
cooperate with each other, they incur costs associated with negotiations and gov-
ernance, e.g. common infrastructure and monitoring. The aim of this chapter is to
include cooperation costs into the analysis of cooperative transshipment game.

“[Clollective decision making processes are often relatively costly” (Williamson, 1975,
p. 45). The crucial importance of cooperation costs in economic analysis has been
known for a long time. The pioneering paper of Coase (Coase, 1937) on transac-
tion costs and the works of Williamson (e.g. Williamson (1975))—that have given
rise to the transaction cost theory—attest to this claim. The costs that are incurred
whenever economic agents cooperate with each other will determine the nature of
their mutual operations. Adrian and Press (1968) introduce eight cost groups that
are inherent, in collective decision making: (1) information costs, (2) responsibility
costs, (3) inter-game costs, (4) costs of division of payoffs, (5) dissonance costs (6)
inertia costs, (7) time costs, and (8) persuasion costs. To the best of our knowledge,
the costs of cooperation among agents have been assumed away from all the supply
chain contracting models, including transshipment models, in the literature thus far
Nevertheless, a number of studies point to the importance of this issue. In an empiri-
cal study, Grover and Malhotra (2003) examine the drivers and effects of transaction
costs on supply chains and emphasize underutilization of the transaction cost theory
in supply chain literature. Vo and Schneidereit (2002) provide a classification scheme
for supply chain contracts and consider their interdependencies with transaction cost
economics. In another empirical study, Artz and Brush (2000) examine the factors
affecting cooperation costs. They show that asset specificity and environmental un-

certainty directly increase cooperation costs, and also that by altering the behavioral

orientation of the coalition, the relational norms lower exchange costs.

The transshipment game without cooperation cost has been well studied in the liter-
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ature (Paterson et al. (2011) provide a review of the literature). Rather than using

non-cooperative game theory and drawing upon pricing mechanisms as the primary

» hich is applied in two-agent supply chains,

(2010b), Hezarkhani and

eg. Rudi et al. (2001), Hu et al. (2007), Huang and Sosi

Kubiak (2010b) (Chapter 3), and Hanany et al. (2010)—we employ cooperative game

theory and its allocation rule mechanisms in this chapter. The main advantage in so

doing is that cooperative game theory simplifies the analysis of cooperation among
the agents by taking a holistic approach. Chapter 4 shows an example of implemen-
tations of price mechanisms in multi-agent transshipment game (see also Hezarkhani
and Kubiak (2010a)). An allocation rule specifies each agents’ share of total profit
generated by agents’ coalition. Then, if all agents are satisfied with their allocations,
the coalition is stable. Thus, it is beneficial to all agents to maximize the coalition's
total profit. Although there are various interpretations of the stability concept in

game theory (see Jackson (2005) for a review of literature), we use the concept of core

as the measure of stability in transshipment coalitions (Owen, 1995). Nagarajan and
Sodié (2008) provide a survey of applications of various game theoretic concepts in

oM.

Theli i fferent game setups. Anupindi
et al. (2001) study a two-stage non-cooperative/cooperative setup where they give an

allocation rule to distribute the profits realized by transshipments after the demand

realization among newsvendors. However, with this rule the newsvendors have incen-

tives to both deviate from the centrally optimal transshipment patterns (Sosic, 2006),

and break apart from the coalition after the realization of demands (Suakkaphong and
Dror, 2010). Another approach to the transshipment problem allows the characteris-
tic function to be expected payoffs. For a general overview of stochastic cooperative

games see Suifs et al. (1999). Slikker et al. (2005) prove the core non-emptiness for
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the transshipment games with the characteristic function being expected payoffs, and
Chen and Zhang (2009) generalize this result to games with concave ordering cost.
‘The translation of expected allocations in the core into realized allocations does not
necessarily guarantee stability, however, the distribution of realized allocations can
be done in a way that they remain in sync with the expected allocations. For ex-

ample, Charnes and Granot (1977) introduce a mechanism that minimizes the total

objections of agents to the difference between their expected and realized allocations.
In order to model the impact of cooperation costs in transshipment game, we draw
upon the inter-organizational governance literature which argues that the network of
external contracts is the most important facet of an organization’s environment (c.f.
Smith-Doerr and Powell (2005)), which determines the costs that an organization
incurs to cooperate with its environment. The economic actions are embedded in
networks of relationships among agents. These networks affect the economic perfor-
mance through inter-firm resource pooling, cooperation, and coordinated adaptation
(Uzzi, 1996). Gulati (1998) suggests considering the implications of network struc-
ture. Zaheer and Venkatraman (1995) argue that the cost of coordinating exchange
is a function of both the network structure and the process. As the network structure
is a determinant of the cooperation costs in coalitions, we consider it as a variable in
our model. Rosenkopf and Schilling (2007) study the network structures in different
coalitions across various industries. The network structures differ with respect to the
level of connectedness of their members and the number of connections among them.
Van den Nouweland (2005) studies the strategic formation of cooperative networks
with positive costs for establishing links among agents. We base our analysis in this
chapter on the assumption that cooperation costs in transshipment games is deter-

ned by the structure of a network connecting participating newsvendors. Then

it follows that the total cooperation cost among a coalition of agents is a function
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of total number of links in the network of the coalition. Accordingly, we consider
two different typical structures for networks in transshipment games: (1) Clique net-
work structure where a link needs to be established between any pair of agents in
the coalition, and (2) Hub network structure where the connections among agents
are established through a central coordinator agent, i.c., each agent is linked to the
central coordinating agent.

We demonstrate that, transshipment games with symmetric newsvendor agents facing
independent and normally distributed demands fall into three categories: over-mean,
under-mean, and mean games. The category depends on the critical fractile of a
single newsvendor. We show that individual quantity in over-mean games of any
size is over-mean, optimal individual quantity in under-mean games of any size is
under-mean, and individual optimal quantity in mean games of any size is mean.
As the game size grows these individual optimal quantities get closer to the demand

distribution mean for the over- and under-mean games. However, for cither category

we show a threshold value ¢* of the transportation cost ¢ such that the individual
optimal quantity actually converges to the distribution mean if the transportation
cost does not exceed the threshold, and to a value determined by a t-dependent
critical fractile otherwise. Irrespective of the category, the individual allocations grow
s more newsvendors join in the grand coalition, that s as the size of the game grows
However, we prove two laws of diminishing individual allocations that accompany this
growth. We claim that the absolute individual gain resulting from the grand coalition
being joined in by one more newsvendor strictly decreases. This law is key for the
analysis of games with clique networks, and it does not depend on transportation cost,
£, The other claim s that the absolute gains make up a convex sequence (Hazewinkel,
2002) up to a certain threshold grand coalition size n* and a concave sequence from

that threshold on. The threshold depends on the transportation cost ¢ so that higher
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transportation costs result in a smaller threshold. This law is key for the games with
hub networks. The threshold may not exist in which case the sequence remains convex
for any grand coalition size. We show that this is the case for small transportation
cost, that is ¢ less than (*.

Unlike the transshipment game without cooperation costs, transshipment games with
cooperation costs may have empty cores. This depends both on the network structure
and the cooperation cost per link, K, in the network. We develop a sufficient and
necessary condition for non-emptiness of the core of games with cooperation costs,

and give a sufficient and necessary condition for the cost per link to guarantee a non-

empty core in these games. These conditions can be translated into the maximum
admissible cost per link that guarantees a non-empty core. This cost depends on the
network structure. It decreases for the clique so that for any given cost per link K
one can determine the largest game with non-empty core, all larger games would not
be stable as their cores would be empty. The cost s either increasing or unimodal for
the hub. In the latter case it actually increases up to the critical grand coalition of
size n** and then decreases from that size on. Consequently, with the hub network,
newsvendors may look for a critical mass in terms of their number first in order to

be able to guarantee non-empty core for their game for a given cost per link. This

may, however, only happen prior to n**, which always happens if n** = oo. Morcover,

we show that n** > n*. Thus, if a finite n* does not exist, then neither does a finite

. Finally, we show that for costless transportation n** does not exist, that is n
happens at infinity. Thus, the maximum admissible cost increases asymptotically to
a certain finite value which it never attains. We show a similar result for the mean
games. In both these cases, the grant coalition size must be large enough to be able
to afford a given cooperation cost per link below the limit. However, if the cost per

link is at the limit or above it any game’s core is empty. We illustrate these results
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nents.

with some computational expes
The rest of this chapter is organized as follows. Section 5.2 briefly introduces the
general transshipment game, and Section 5.2.1 tailors it to symmetric newsvendors.
Section 5.3 demonstrates the general properties of optimal quantities in symmet-

ric newsvendor transshipment games with independent and normally distributed de-

‘mands. Section 5.4 studies the general properties of maximum expected profits in sym-

metric newsvendor transshipment games with independent and normally distributed

demands. It determines the characteristic functions of these games as well as in-

dividual allocations in the cores of the games. It then proceeds to show that the

individual allocation, though growing with the size of coalitions, are subject to two
laws that diminish the growth. These two laws are key to the transshipment games
with cooperation costs studied in Section 5.5. The section determines the character-
istic functions of symmetric newsvendor transshipment games with cooperation costs
for the clique and the hub and gives a necessary and sufficient condition for non-empty
core in these games. This condition is then studied in Section 5.5.1 with the aim to
determine the maximum admissible cost per link that renders a non-empty core for
positive transportation costs. Section 5.5.2 studies the same problem under the as-
sumption of costless transportation, and Section 5.5.3 does it for mean newsvendors,

Finally, Section 5.6 provides some directions for further research.

5.2 The Transshipment Game

Consider a set N of n newsvendors agents. The agents need to decide their produc-
tion/order quantities (simply quantities hereafter), X;, in anticipation of a continuous
and twice differentiable random demand D; with mean i and standard deviation o,

i€ N. For each newsvendor, the market selling price, purchasing cost, and salvage



value are ry, ¢, and v, respectively (v, < <r;). The newsvendors have the option to
form a transshipment coalition to transship their otherwise surplus products to other
members of the coalition after the realization of demands. In order to transship one
unit of product from newsvendor i to newsvendor j, both members of the same coali-
tion, the transportation cost ¢ is incurred by either i or j. The W, is the quantity
transshipped from newsvendor i to j. In order to avoid trivial scenarios, we assume
that for all i,j € N, ¢ <5+ s, vy <y + by, 7y <1+ L, and by <1y - . We denote
by X, D, and W vectors of production quantities, random demands, and quantities
transshipped, respectively, for newsvendors in N.

‘The transshipment game without cooperation costs (Slikker et al., 2005) is a cooper-
ative game (J, N), with the characteristic function J : 2% — R, which assigns to any
sub-coalition Q € N the value Jg of that sub-coalition equal to

Ja= mgx Jo(X) = m;-s[_);v.mm(x D)+ ull—-eX)+ nq(x.m] 1)
where for given X and D,

Ro(X.D) = max¥ ¥y, (52)
“wQQ
st

Wy s HoVieQ

,-Zq < Hi

TW,<E vieQ

&

W, 20.¥ij¢Q,

and H, = max(X; - D,,0) is newsvendor i surplus, E, = max(D, - X,,0) is newsvendor
i unsatisfied demand, finally py; = r, - v~ t;; is the marginal transshipment profit
resulting from transshipping one unit from newsvendor i to newsvendor j.




Let f,, i € N, be the individual allocation that newsvendor i receives in a grand

coalition, that is the coalition containing all newsvendors in N. The allocations

i€ N, are said to be in the core of the transshipment game if and only if g /i 2 Jo
for all Q € N, and Sey f; = Jy. That is, a coalitional game has a non-empty core if
allocations can be found such that for any subset of agents, the sum of their allocations
is at least as much as the value of the sub-coalition made of that subset of agents.
The following key theorem by Slikker et al. (2005) ensures a non-empty core for any

transshipment game.

Theorem 5.1. (Slikker ct al., 2005) The transshipment game with the charucteristic

Junction defined in (5.1) has a non-empty core.

This theorem implies that it is always to the benefit of individual newsvendors, more
precisely never to their disadvantage, to form infinitely large coalitions as long as

there is no cooperation costs involved in forming the coalitions.

521 T i Games with ic

The transshipment game with symmetric newsvendors, being a special case of the

transshipment games, has always non-empty core by Theorem 5.1. By the newsvendor
symmetry any individual allocations i, i € N, in the core of the cooperative game
played by n newsvendors must equal 1/n-th share of the grand coalition maximum
expected profit Jy = J,. Therefore, we need to study this profit to determine the
core of the game. This is done in Sections 5.3 and 5.4. However, we need to derive a
formula for Jy(X) = J,(X) for symmetric newsvendors from (5.1) first. This is done
in this section.

The symmetry of ensures that any unit i between any two

v=1>0 for the coalition, which al-

newsvendors results in the same profit p =
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lows us to suppress the newsvendor indices in py;. Therefore, the R(X.D) in (5.2)
is maximized by transshipments that result in either no surplus or no unsatisfied
demand in the coalition. Thus maximum extra profit obtained through transship-
ments equals R.(X,D) = pmin (S #, Sy E) - Therefore, the expected profit of
the grand coalition, J,(X) can be simplified as following.

J(X)= E[i‘(rmn(x..u.y vH, - X)) .,m()':lu,,i,a)] (53)

The following lemma allows for further simplification of J,(X).
Lemma 5.1.
min(i:H..iE,)=min(i¢\'”ib.)4imin(x,,ﬂ,) (54)
Lty H*exP)

Proof. First note that min(A, B) + C = min(A+C, B +C). Then,

m:..()": uis) +3min (X, D) =

m(iu_ +Fomin (X, D0, B+ )":min(x.ﬂ.)) -
0)])-
win(§ x.in.) ©3)

2%k

min(il[mx(x. -D,.u)-mu:(X.,D.)].)":x[m.ux(DnX.,n)'min(

The last step can be verified as follows. Suppose X; > Di. Then max(X, - D,,0) =
X, - D, and min(X,, D;) = D; and they sum up to X;. Similar argument holds for the
case where X, < D; o




The expected profit of the grand coalition, Ju(X), can be simplified to

Ja(X) = i‘;(-f_x. +(r - p)E [min(X,, )] + vE[H.]) +

(o)) oo

Due to the anonymity and symmetry of newsvendors, the production quantities X,
making up the vector X can be replaced by the single variable quantity X, similarly
he random demands D, making up D can be replaced by the single
variable D, and thus the expected profit can be further simplified to

J4(X) = -neX + n(r - p)E [min(X, D)] + vk [max(X - D.0)] + p [min (nX,nD)]. (5.7)

Furthermore, we have (see Appendix for detailed derivations)

Efmin(X, D)] = X - “XF,,(e)d:aul,,(x), (58)
"

Efmax(X - D,0))= [ Fo(€de = Io(X) + X =t (59)

Efmin(nX, 2)) =X - [ Fa(€e =mu-Lz(aX) ©.10)

where Fp (fp) and Fz (fz) are CDFs (PDF5) of the random demand variables D and
Z = nD respectively, and

100X = [T (€~ X)fole)a

1) = [ (€e-nX)fa0)e

are the well known loss functions (see (Porteus, 2002)). The equation (5.7) can then




be simplified to
B ==X nt [ Folic—p [ Fa(e)ie (1)

which is used in deriving the key condition for optimal production quantities in Section
5.3, or equivalently to,

Ju(X) = n( - )X + n(r - v)p ~ntlp(X) - plz(nX), (5.12)

which is used in deriving a formula for the maximum expected profit J, in Section
54

5.3 Optimal Quantities with Independent and Nor-
mally Distributed Demands

From now on we assume that newsvendor demands are independent and normally
distributed. The main motivation behind this assumption comes from the fact that
normal distribution is  strietly stable distribution (Fristedt and Gray, 1997), that
is the total demand Z = E2, D, = nD is normally distributed with iz = nu and
03 = no®, with a closed formla for density. Moreover, Alfaro and Corbett (2003)
show that normal distribution is a good imation of general distribution func-
tions in transshipment problem. Dong and Rudi (2004) also restrict their analysis to

normal distributions when analyzing the effect of transshipment among two agents
and the upstream supplier. Our main goal in this section s to characterize the op-
timal production levels for transshipment games with n symmetric newsvendors, or

just games of size n for simplicity.
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Figure 5.1: Functions $(Y) and ®(y/AY)

It can be observed from (5.11) that, since the second derivative of J,(X) with respect
to X is always negative, the optimal quantity can be found from the first order
condition

Qo (X)/dX =n(r - ) ~ntFp(X) - npFz(nX) =0 (5.13)

Let X, be a solution to (5.13). Also, let ¢ and @ be the PDF and CDF of the standard

normal distribution respectively. Using the transformation

Yo = (Xa-p)fo

for n2 1, and (5.13), the equation

r—c=t8(¥,) + pb(vaYs), (5.14)

characterizes the optimal quantity for a transshipment game of size n (see Appendix
for the detailed derivations). Figure 5.1 depicts the relative behavior of functions

(Y) and B(J/AY).



A game of size one is equivalent to a single newsvendor for which the optimal quantity
is obviously ¥; = ®-1 (). If the fraction £ is less than 0.5, ie. r-c < c- v, then
the optimal quantity for a single newsvendor is less than the demand mean 4, hence
we refer to this type of newsvendor as an under-mean newsvendor. 1f r-c > c-v,
then the optimal quantity for a single newsvendor is larger than demand mean 4,
hence we call this type of newsvendor an over-mean newsvendor. The case with
r-c=c-vimplies ¥; = 0. Then, the optimal quantity for a single newsvendor equals
the demand mean 1, hence we call this type of newsvendor a mean newsvendor. We
extend these three categories of newsvendors to the transshipment games by saying
that the transshipment game of size n is under-mean, over-mean, and mean if Y;, <0,

Y, > 0, and ¥, = 0 respectively. Observe that by (5.14), we have ¥, = %)‘/. for

0. Then, the grand coalition of n newsvendors boils down to a single newsvendor
with demand of Z = nD. Therefore, from this point on we exclude ¢ = 0 from our
analysis in this section. The following lemma shows that the game category for any n
is determined by the category of a single newsvendor game, and remains unchanged
for all size games.
Lemma 5.2. Fornz1,

o IfYi>0, then ¥, >0.

« IfYi <0, then ¥, <0.

o IfYi=0, then Y, =0.
Proof. The proof is by contradiction. Consider the first proposition. Suppose that

Yy > 0 and Y, < 0 for some n’ > 2. Then, either 0 < ®(VA"Y,) < $(Yo) < § or
D(V'Yor) = ®(Yar) = . In the former case, let ®(vn'Y,y) = pib(Yv) where 0< p < 1.

The equation (5.14) then simplifies to (V) = 5=, and thus, 755 < 1. On
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the hand, since v~ >0, then 2 < =< However, for ¥; >0 we have &

Np(vf o]

and thus } which leads to a contradiction. In the latter case, equation

(5.14) simplifies to

4 which also leads to a contradiction since Y; > 0. Therefore,
iV, >0 then ¥, >0 for all n2 2.

Now, consider the second proposition. Suppose that ¥; < 0 and Yy 2 0 for some
n' 2 2. Then, either § < ®(Y) < ®(vVn'Yy) < 20(Yy0) or (V'Y

In the former case, let ®(v/n'Yy) = x®(Y,s) where 1 < & < 2. The equation (5.14)

then simplifies to ®(V) = =y, and thus, 7= > §. On the hand, since

T

rv=t>0, then =5y < 5. However, since Y; < 0, then 2 < J, which leads to a

contradiction. In the latter case, the equation (5.14) simplifies to =

1 which also
leads to a contradiction since ¥; < 0. Therefore, if Y; <0 then ¥, <0 for all n>2

Finally, consider the last proposition. Suppose that. ¥; = 0 and ¥; # 0 for some n’ > 2.
Then, either B(VA'Y) < ®(Yi) < § or § < B(Yar) < D(VAVy) < 28(Y,y). Since

Np(r-c 0

-1 >0, then we have

<1, in the former case, and §

in the latter case. On the other hand, since ¥; = 0, then Z=£ = § which leads to a

contradiction in both cases. Therefore, if ¥; =0 then ¥, = 0 for all n.>2. o

We now show that the over-mean games reduce their optimal quantities as their size
grows. These optimal quantities get closer to the demand mean 4. Similarly, the
under-mean games increase their optimal quantitics as their size grows again getting
closer to the demand mean i, Finally, the mean games keep their optimal production
levels equal u for all game sizes which follows from Lemma 5.2. We have the following

theorem.
Theorem 5.2. We have the following:

« For over-mean games, Vi > Yy > .. > Y > .. >0,

o For under-mean games, Vi < Y3 < ... < Yy < ... < 0.
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Proof. The proof is by contradiction. The system of equations obtained from the

equation (5.14) for any pair n and n -1, n > 2 implies that
1O(Y,y) + pR(VI = 1Y0) = 1D(Y,) + p(V/nY,,)

First, consider over-mean games. Suppose that Y.y < V. for some n’ > 2. Since ® is
strictly increasing, we have #(Y;_;) < ®(Y;). By Lemma 1, ¥, >0 for all n> 1, thus
we also get V'~ 1¥;-y < /¥y, which implies ®(v/n'—1¥,1) < ®(v/a¥,0). Hence,
E0(Yyoy) + pP(VIT = 1¥,0-1) < t8(Y,e) + p®(V/77Y,y) which leads to a contradiction.
Therefore, ¥, >V, for alln > 2.

Second, consider under-mean games. Suppose that Yy_; 2 Y, for some n’ 2 2.
We have (Vi) > ®(Yye). By Lemma 1, ¥, < 0 for all n 2 1, thus we also get
V= 1oy > /'Y,y which implies ®(v/n7 = 1Y) > ®(V/n'Y,). Hence, td(Y,_1) +
POV 1Y) > t(Y,) + pB(v/AY,) which leads to a contradiction. Therefore,

Yot < Yo foralln22. o

Figure 5.2 shows the values of ¥, for two instances of transshipment games. Obviously,
the optimal quantities are decreasing for the over-mean game (Figure 5.2 (1)) and
increasing for the under-mean game (Figure 5.2 (b).

Although the risk pooling mechanism naturally embedded in a coalition—revealed
in Lemma 5.2 and Theorem 5.2—makes the mean j: a natural target for the optimal
production quantity in a coalition, this optimal quantity does niot necessarily converge
1o the mean u as the coalition size grows. This is shown in Theorem 5.4 presented
later in this section. Before proving this theorem one needs to investigate the sequence

/Ay, first

Theorem 5.3. For games of sizen and n~1, n 22 and 1< <n, other things being

equal, we have 134 <7
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(@) r=d0,c=15,0=10,t=10 (B) r=40,

Figure 5.2: Values of ¥, for Two Instances of Transshipment Games

Proof. The system of equations obtained by considering the equation (5.14) for any

pair nand n -1, n>2and 1<1<n, leads to

B(¥) - 0(Yi) >0
B(Vn— o) - B(VAYa) E

By Theorem 5.2, if ¥; >0, then we have ®(,) - ®(¥,.1) <0 for 1 < <n. Therefore,
the denominator must be negative as well, thus ®(vi—1¥,1) - ®(y/¥,) < 0. Since
@ is strictly increasing, we get %=t < (/7. 1f Y1 <0, then again by Theorem 2 we
have ®(Y;) - ®(Y,) > 0 for 1< 1 <n. Hence, the denominator must be positive as

well, thus ®(v/7T=1¥;.1) - (/) > 0 which result in %2 <

This leads to the following corollary.
Corollary 5.1. We have the following:
« For over-mean games, 0< Yy < v2V3 < ... < /a¥, <.

> /iYa>

« For under-mean games, 0> Y; > v/2Ys >

Theorem 5.2 and Corollary 5.1 show a “complementary” behavior of the sequences

¥, and /iY; whenever one of them is descending the other must be ascending. This
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must be so in order to satisfy the equation (5.14). We now focus on the question:
where do these two sequences tend 1o as the game size grows? We begin with the
following technical lemma.

Lemma 5.3. If limy—a[Va| = 2> 0, then limy|\/aYa| = co.

Proof. If a sequence a,, diverges to oo and a sequence b, is bounded below by K.
then a,b, diverges to oo, provided K > 0 (Kosmala, 1998). Since limy.../A = oo, if
[y a|Ya] = @ >0 then it must be the case that limy..o|y/AY,| = %0. o
We are now ready to prove the main result.

Theorem 5.4. Let limy e Yo = a and lim, e /i¥a = b. Then for over-mean games,
we have t <r v <2(r~c), 2Ac-v) <r-v and

a=0b=0"(52) < ift<Ac-v)
a= o1 (S)20b= f122c-v)

and for under-mean games, we have t <~ < Ac—v), 2r—c) <r-v and

a=0b=91(5L)> 00 ft<Ar—c)
a=9t(55)<0b=-00  ft22(r—c)

Proof. Proof by contrapositive. A contrapositive proof of A - B is ~B = ~A. That
is A B <> B ~A. For the purpose of our proof assume that B; v B; (only one
can be true). Then ~B, +~A < By~ ~A.

First, consider over-mean games. Then, we have £ <r-v < 2(r—c) and 2(c-v) <r-v.
By Lemma 5.3, there are only two possible scenarios for a and b as n tends to infinity:
{a=0and b< o), or {a20and b= oo}.

To prove that if £ < 2(c-v), then a =0 and b < oo, it must be shown that if a 2 0
and b= oo, then t 2 2(c-v). Ifa20and b= oo then the equation (5.14) becomes
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r-c=t®(a)+(r-v~t), or (a) = =, By Lemma 5.2, V1 > V2> ..> V. 2020,

and (0) = 1/2, thus a must satisfy § < $(a) < Z5. The

and moreover $(Y,) = =5
right hand side always holds since ¢ <7 v In order for the left hand side to hold, we
must have ¢ 2 2(c - v). This proves if ¢ <2(c - v) then a = 0 and b < oo. In this case

the equation (5.14) becomes r - ¢ = £/2 + (r v~ )(b), or b= &1

To prove that if ¢ 2 2(c~v), then a 2 0 and b = co, we must show that if a = 0
and b < oo, then ¢ <2(c-~v). If a =0 and b< oo, then the equation (5.14) becomes
12+ (r=v=1) B(b), or () = Z52£. By Corollary 5.1, ¥, < V32 < .. <

r

VAY ... € b< 00, and #(c0) = 1, thus b must satisfy 25 < #(5) < 1. The left hand side
holds since for over-mean games ¢ < r-v. In order for the right hand side to hold, we

must have ¢ < 2(c - v). This proves that if ¢ 2 2(c - v) then a 2 0 and b= oo. In this

case the equation (5.14) becomes 7~ ¢ = t9(a) + (r - ~t), or a= &1
Now consider coalitions of under-mean games. Then, we have t <7 -1 < 2(c - ) and

2(r-c) <r-v. By Lemma 5.3, there are only two possible scenarios for a and b as n

tends to infinity: {a =0 and b> oo}, or {a <0 and b=

To prove that if t < 2(r - c), then a =0 and b> oo, it must be shown that if a < 0

and o0, then the equation (5.14) becomes
r=c=td(a), or ®(a) = 5<. By Lemma 5.2, Y, <V <... <V, Sa s 0, (Vy)

The left hand side holds

oo, then t22(r ~c). fa<0and b

and moreover ®(0) = 1/2, thus a must satisfy £ < ®(a)

since ¢ < r - v. In order for the right hand side to hold, we must have ¢ 2 2(r - c).
This proves that if £ < 2(r ~c) then a = 0 and b> ~co. In this case the equation (5.14)

c0, it must be shown that if a = 0

becomes 7 ¢ = t/2+ (r - v - )B(b), or b= -1

To prove that if ¢ 2 2(r - c), then a < 0 and b=

and b> -oo, then t <2(r - c). If a =0 and b> -co then the equation (5.14) becomes
rc=t/2+(r-v-t) ®(b), or B(b) = =S4, By Corollary 5.1, ¥y > V2¥3 > ... >
VAY ... 2b> =00, and $(-o00) =0, thus b must satisfy 0 < ®(b) < Z=£. Since t <r-v,
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(8) Over-mean games (b) Under-mean games
Figure 5.3: lim,,...Y, as a function of ¢

then for the left hand side to hold we must have £ <2(rc). The right hand side holds
for the under-mean games. This proves that if ¢ 2 2(r ~c) then a < 0 and b= 0. In

this case the equation (5.14) becomes ¢ ¢ = td(a), or a= -1 (5¢). o

Figure 5.3 shows the limit @ = lifmy..., Yy, 85 a function of ¢ for over-mean and under-
mean games. It follows from Theorem 5.4 that sufficiently low transportation cost,
that is the cost not ezceeding 2(c - v) for the over-mean games and not ezceeding
2(r - ¢) for the under-mean games, allows the optimum quantity to converge to the
demand mean i as the game size grows. Therefore, sufficiently large games become
practically mean games for these sufficiently low costs.

On the other band, for the over-mean games, the more the transportation cost ex-
ceeds 2(c - v), moving up towards r - v, the closer the optimal quantities become to
Vi = 1 (=) for sufficiently large games. Then, the optimal quantities of newsven-
dors in sufficiently large games become practically indistinguishable from the optimal
quantities for a single over-mean newsvendor game. Therefore, other newsvendors
in a sufficiently large game make ever-disappearing difference in setting up optimal
quantity for any individual newsvendor who sets it close to ¥i.

Similarly, for the under-mean newsvendors, the more the transportation cost exceeds
2(r~c), moving up towards r -, the closer the optimal production quantities become
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t0 V3 = @1 (£2) for suffciently large games. This time, the optimal production quan-
tities of individual newsvendors in sufficiently large games become practically indistin-
guishable from the optimal quantities for a single under-mean newsvendor. Therefore,
again, other newsvendors in a sufficiently large game make ever-disappearing differ-
ence in setting up optimal quantity for any individual newsvendor who sets it close

to Y.

5.4 Characteristic Functions and Individual allo-
cations

We now derive a formula for the maximum expected profit J,, and the individual

allocation 8, in the game of size n. Let 1(X) = [ (€ = X)$(€)d¢ be the unit normal

loss function. Using the transformation ¥ = (X - #)/a, we have

Ip(X) = E[max(D - X,0)] = uE[xm\x (T" Ly n)] - ol(Y),

LX) =E[nmx(Z—7lXJ))]:\/7ToE[ nx(z\k:“—\/ﬁy‘u)] N

Then, (5.12) can be rewritten as
Ja(Y) = n(r = )~ n(e-v)aY - ntal(Y) - p/aol(/aY). (5.15)
For standard normal distribution, we have

1Y) = () - Y (1-0(¥)) (5.16)
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(Porteus, 2002; Hartman and Dror, 2005). This relation is easily verifiable by noting
that ¢(¥) = -Ye(Y). By applying (5.16) to (5.15) we get

Ju(¥) = n(r =)+ oY) - nto (6(Y) + Y(Y)) - npo (4.,(&)') + m(ﬁy)).

(5.17)
Finally, by setting ¥ to ¥, in (5.17), and then applying the optimality conditions
in (5.14), a closed form expression for the maximum expected profits for normal
distributions s follows

Ju = n(r - e)u -0 (nta(¥a) + Vaps(vaYa)) . (5.18)

Although in general finding an sllocstion in the core of a transshipment game is
NP-hard (Chen and Zhang, 2009), for symmetric newsvendors there is only one core
allocation possible, the one with all individual allocations equal to 1/n-th of the J,.
That is

e dln= (o 10050 Lot ©19)

The following result follows from Thecrem 5.1.
Lemma 5.4. For all 151 <n, to(Ya)+ 7I:M,/EY’.)51¢()",)’ ﬁpa(»ﬁm.

Proof. To any coalition of size | we allocate 18, = I4. Therefore, in order for the
allocation /3, o be in the core of this transshipment game, we must have (3, > Jj,
for any 151 <n. Since the allocation 4, is unique, and by Theorem 1 the core is
non-empty, the lemma follows. o
A technical note is in order at this point. Equation (5.18), for large values of o/,
does not gusrantee that the J, is positive. This is due to the fact that under normal

distribution with relatively large standard deviations, negative market demands are
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likely to oceur which is not quite meaningful in our setting. In order o avoid such

circumstances, it suffices to assume that
wst-onfo-n(o ()]

From Lemma 5.4 it is straightforward to check that this assumption leads to J, 2 0
for all n.

5.4.1 The Laws of Di ivi

In this section, we show that the individual allocation 3, increases as n grows, that is

Brefac < r<on (5.20)

However, there are two laws of diminishing individual allocations that accompany this

growth. The first is concerned with the absolute gains

By =B Faa

which diminish as the size of grand coalition n grows, that is

83> 85> .5 8,5 (5:21)

The second impases a lower bound of 22} on the ratio of the absolute gains A, over
Ay, that is
A, el
AT

While the first law ensures that these ratios are always higher than 1, the second
sharpens this lower bound showing that the absolute gain A, is at least 3;100%

(5.22)
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higher than A,.;. More precisely, the second law states that if there exists the grand
coalition size n* such that
& el

Aeatwer
then the sharper lower bound of (5.22) holds for all n > n*. This critical grand
coalition size n* depends on the transportation cost ¢ and the ratio p/t. The critical

size is studied later in the section. It suffices to say for now that our computational
experiments, see Table 5.1, show that the critical n* decreases as ¢ grows. However, we
show that the critical n* does not exist for { < 2(c~v) in the case of over-mean games,
and for t <2(r~c) in the case of under-mean games (we return to the examples in Table
5.1 after we define n** in Section 55.1). These observations indicate that the high
transportation costs precipitate the eritical grand coalition n*, and consequently the
second lnw of diminishing individual allocations. We prove later that the critical n*
does not exists for either ¢ = 0 or mean games. We leave the case of ¢ = 0 for Section 5.5
and assume that ¢> 0 in this section. Both laws of diminishing individual allocations
are key for determining the cooperation costs newsvendors can afford to pay to form
 grand coalition in Section 5.5. The first is key for the clique cooperation network,
the second for the hub. We now prove the two laws. Let 5(z) be the extension of 4,
to the sct of positive real numbers. We begin with the following result.

Theorem 5.5. 3(z) is a strictly increasing and strictly concave function of x.

Proof. The first derivative of 3(z) is

B _ ldog z:f«fy)'_ddn))] (5.23)
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“Tuble 5.1: Values of n* and n** for some Instances of Transshipment Game

‘We have
SR (Lo v,
Therefore,

“* . ﬂ,[-x—v.«v.h-(

= 1[4%!’.‘(%)-!‘(@-)(57‘ . #

= ..[." »] ®24)
From equation (5.14), we define G(¥;,2) = t9(Y;) + pB(V/Z¥2) - (r—c) as the implicit
function which obtains ;. Figure 5.4 shows the graph of this function for an instance
of transshipment game. As it is observable in Figure 5.4 and according to (5.25),
Y, is continuous on  and always has finite slope which allow us to use the Implicit



Figure 5.4: G(Y;,z) for an Instance with 7 = 40, ¢ = 15, v = 10, and ¢ = 10
Function Theorem. We have

av,

Yy PYad(VaYs) (525)
i

2/zA,

where A, = t¢(Y,) + /apd(y/z¥z). Note that 92, <0. Hence, the first derivative of

A(x) is simplified to

dz N -

LEICI 7”[7"'.%”(\/7).) Po(VaYe) nY}«H(ﬁY?)] _ opd(VaYe) (5.26)
2/z 22/x 2/ 22/T :

The latter equation is obviously positive which proves that 3(x) is strictly increasing

110



The second derivative of 5(z) is
#5(z) (o(fY )
s

pryEEhl - 3 (V)

é(xﬁ[ﬂp(ﬁf’,)(zlﬁox )| S
%%(z[%}"‘oz%Y]¢%)

Note that by replacing the 9= with its explicit formula we get

i PHoVE) L 1o VER(VEY.)) | t¥2e(Y)
K e
. o
Thus, £24) < 0 which shows that 8(z) is strictly concave. o

We have the following first law of diminishing individual allocations.
Theorem 5.6 (First Law of Diminishing Individual allocations). 2% > 1 for n>2.

Proof. By Theorem 5.5, (z) is strictly concave. Thus, 28, > Bu.y + A,y of equiva-
lently 3~ a1 > fuss ~ B which proves the theorem. o
In order to prove the second law of diminishing individual allocations we need to
consider the sequence J, = nd,. By introducing J(z) = z3(x) as the extension over
positive real numbers, we have the following result.
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Lemma 5.5. Let S(z) = (27 - 1) 7228~ J(x) is concave if S(z) 2 plt, and
strictly convez if S(z) <plt.

Proof. First note that 260 - 29 , ;£5) By substituting (5.26) and (5.27) we
have

-i“dl;:ﬁ _ (vp(\/'Y)) (vaYl(nY’o(Y.) 3))

. m(fv. _atVe(v)
20,
Therefore, J(z) is concave if and only if 2 <0, that is if and only if V26(Y,) 2
A. which is equivalent to

' o(%a) 2
S(a) = (a¥2-1) =225 E
Gl )\/'w(x/'Y)

Finally, J(x) is strictly convex if and only if 222 > 0, that is if and only if S(z) <

Pt o

‘The function S(z) is not monotone in general. Its behavior depends on the parameters
pand t. Figure 5.5 depicts S(z) for some values of these parameters. Although in
all instances S(z) starts as an increasing function, it does not necessarily remain
increasing as x grows. In Figure 55 (a) and (e), the function becomes decreasing
afiter a certain value of z. If S(x) is an increasing function for some p and ¢, and it
reaches the critical value of p/t, then it remains above this value. The key observation
shown in Lemma 5.6 is that, if S(x) is not monotone, then it never reaches the critical
value p/t. This trait of behavior is also observable in Figure 5.5. In Figure 5.5 (a),
S(x) reaches its maximum of « 0.16 at z = 10 while the critical value is p/t = 5 for
this instance. Also, in Figure 5.5 (e), the function S(x) reaches its maximum of = 4.4
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at z =5 while the critical value is p/t = 25 for this instance. Lemma 5.6 formalizes
Lemma 5.6. At any x such that L2 =0, S(z) <pjt.

Proof. First note that at any z such that z¥7 < 1, $(z) is non-positive and thus
S(x) < pt. Therefore, we assume without loss of generality that 27 > 1 for the rest
of the proof. We have 6(V)/é(v/ZYz) = 11" Hence

FrO. (-y' n.w--w)
3

n——v.)e!" e ~(’Y' oo, y)(:v’—xki"'

[ovmvzeanmgen s (392 e n s )w‘v’ va- ¥

¥

[vv2oaevaenae (3920
i

- [gvj.m
L e e
(e-1)¥7 Y,
e R R |
Using (5.25) the latter simplifies to

dS(z) ebtei?
dr  2zyzA,

[VEpe(Vaye) (V2 -1) (2¥2 - 1) + to(Ya) (2V 4 1)] .

I (Y2-1)(2¥2-1) 20, then % > 0. Therefore, we assume without loss of gen-
erality that Y2 < 1 for the rest of the proof. Next, we have 2 = 0 if and only
i -
o) w1l p
VRV (1) (@7-1) ¢
‘Thus to complete the proof its suffices to show that the following inequality holds for
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Figure 5.5: The Function S(z) with Respect to Different Parameters
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G E 0 G Ty

This simplifies to
PV (192 (V2 -1)

or
~2?V 42wV - (2241) <0

which holds for z 2 0 since Y2 < 1. This proves that for any z such that & =0, we
have S(z) < p/t. o

Lemma 5.7, If $(z*) = p/t for some z* > 1, then S(z) 2 p/t Jor all £ > z* and
S(x)<pft for1 sz <ar.

Proof. From the proof of Lemma 5.6, we have

(=)

35 [PoO%) (V2
=_’T.[,,(;‘f,ul)h,()",u1)]>c

PeVia1) () (4 1)]

e

1052 2 0 for 2.2 1, then the lemma obviously holds. Otherwise, let (£

for some &/ > 1. Then by the Intermediate Value Theorem for Derivatives we have
(%ﬂ) =0 for some 1< ¢<z'. Thus by Lemma 5.6 S(c) < ¢ for any such ¢ which

s 1<a<bsuch

implies S(1) < 2. Therefore, * > 1 if 2* exists. Now for any two poi
that S(a) = S(b) = # we have, by the Rolle's Theorem, a point a < d < b such that
(*2),_, = 0. For any such point we have S(d) < by Lemma 5.6. Consequently,
()

Theorem 5.7. If S(z*) = p/t for some z* 2 1, then J(z) is concave for z 2 z* and

0 which leads to a contradiction by Lemma 5.6. o

conver for 1 Sz <z



Proof. The proof directly follows from Lemma 5.6 and Lemma 5.7. o
We have the following second law of diminishing individual allocations.

Theorem 5.8 (Second Law of Diminishing Individual allocations). If $(z*) = p/t for

fa > 2 forn2n, and 1< £ < 2 for 2<n < n*, where n*

some 2 > 1, then s

equals either |a] or [a*] or [a*] + 1.

Proof. By Theorem 5.7, we have 2J, 2 Ju. + Jpy for n 2 [2*] + 1. Thus, 2nf, 2
(n+1) Baer + (n=1) By and consequently (n=1) (B = Bu-t) 2 (n+1) (Buor = Ba)
Therefore 2= > 2 for n 2 [2*] + 1. Also, by Theorem 5.7, we have 2J, < Jy1 +
Jney for 2 s n < 2] = 1. Thus, 20, < (n+1) Bunr + (= 1) -y and consequently
(n=1)(Bu = Ba1) < (n+1) (Buur = f). Therefore, by Theorem 5.6, we have 1 <
- < &4 for 25 n < |2*] - 1. It remains to consider [z*| and [z°]. Assume, z*
is not an integer, thus [2*] # [2*]. Let L(z) be the straight line connecting points
(la*),J(|2*])) and ([z*]+1,J([2*]+1)), and let M(x) be the straight line connecting
points (|z*] - 1,4(|2*] - 1)) and ([z*],J([2*])). we have the following four cases to
consider.

10 L([2) € J([2]) and M(la*]) > (12 ), thenggtsk >
Thus, n* = [z].

16 L([z*]) < J([z*]) and M(|z*]) < J(|z*]), then:
Thus, n* = |*)

1f L([z*]) > J([z*]) and M(|z*]) > J(|z*]), then:

2 Ik and

Thus, n* = [2*] + 1

16 L(J2*]) > J([z*]) and M(|2*]) < J([2*]), then there is 2’ > [z*] such that L(z) >
J(@) for [2*] -1 <z < 2/, and 2  [*] such that M(z) < J(z) for 27 <z < |a°).
‘We now show that this leads to a contradiction. First, consider the straight line

P(x) which is the part of L(z) between ([z*], J(|z*])) and ([z*], J([z*])). and the
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ight Q(z) line connecting (|2*] - 1,J(|z*] - 1)) and (|z* ], J(|2*])). The J(z)

st

remains below P(z) for [z*] < z < 2’ by definition of 2, and J(z) remains below
Q(x) for |2°] -1 < z < |z*] because J(z) is convex there. Now consider M(z), it
stays above Q(z) for [2*] -1 <z < |z*] since J(x) is a strictly increasing function and
thus J([z*]) < J([z°]). Therefore, we have 2" > |z*] which leads to a contradiction.
Finally, consider |z*] = [2°], then z* is an integer. we have two cases to consider. If
2. Otherwise, L(z*) > J(z*) and then

o

L(z*) € J(2°), theng >

We have the following result with respect to the existence of n*.

Theorem 5.9. For over-mean games with t < 2(c~v), under-mean games with t <

2(r ), and mean games no n* < oo egists.

Proof. From Theorem 5.7, it s clear that the existence of n* depends on the existence
of 2+, Consider over-mean games with ¢ < 2(c-v) and assume that there exist z* < co.
According to Lemma 5.7, for all z > 2* it must be the case that S(z) 2 p/t > 0.
However, by Theorem 5.4 we have lim, ... S(z) = 0 for ¢ <2(c - v) which leads to a
contradiction. Hence, there exist 1o z* < 0o and thus no n* < oo. A similar argument
proves the theorem for the under-mean games with ¢ < 2(r - c). Moreover, in mean
games we have Y; = 0 and therefore S(z) <0 < p/t. By Theorem 5.8, then there would

be no n* < oo for mean games. o

5.5 Games with Cooperation Costs

In the transshipment game of size n with cooperation cost any coalition of [, 1< < n,
symmetric newsvendors incurs cost K; needed for it to form. The characteristic

function, J : 2¥ - R, of the transshipment game with cooperation costs is defined

u7




by setting J; = J; - K for any coalition of size 1 < I < n. Since the newsvendors are

anonymous and symmetric, there is only one allocation possible in the core, if one

exists, namely the one with all individual allocations equal to 1-th of the J,. Thus,

the individual allocations must be a, = % = 3, - 1K,,. Hence, any coalition of size |

gets la, = 1% allocated. Therefore, in order for the allocation ay to be in the core of

a transshipment game with grand coalition of size n and cooperation costs, we must
have la,, 2 Ji, for any 1< 1 < n, and nay, = J,. The latter condition is satisfied by

definition of a, the former reduces to
anzay Vi<n. (5.28)

Therefore, the core of the transshipment, game with cooperation costs is non-empty
if and only if the condition (5.28) is satisfied. Let W' = {(J,n)ln € N} as the set
of all such transshipment games. We intend to analyze the impact of coalition size
n on the stability of games in ¥’ under the assumption that the total cooperation
cost for a coalition is proportional to the total mumber of links the coalition creates
in its cooperation network. We consider two alternative cooperation networks: (1)
Clique network, and (2) Hub network (Figure 5.6). By abstracting various types
of costs, we presume that the cooperation costs are lump sum monetary amounts
which represent the investments that any given pair of newsvendors make in order to
establish a bilateral link in the network. Let K be the per-link cooperation cost. In
the Clique network, each pair of newsvendors is connected by a separate link. The
total number of links in a clique network with n newsvendors is thus n(n -~ 1)/2 and
the total cooperation cost is K = “=0 k. The condition (5.28) then becomes

fn 12 554K for all 1 < n. Therefore, the core of the transshipment game with the

clique network is non-empty if and only if the cost per link K satisfies the following
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(8) Clique network  (b) Hub network

Figure 5.6: Different Network Structures for Coalitions

inequality

K samin 2B (5:29)
T ol
We define the maximum admissible cost per link for the clique network of size n as

K = 2mis Ll § (5.30)
ta n-l

We prove that the maximum admissible costs K7™ is always attained at [ =n -1
in Section 5.5.1. The Hub network portrays the situation wherein the transshipments

only to that designated newsvendor. The total number of links in the hub network
is then n — 1 and the cooperation cost is KA = (n— 1)K. The condition (5.28) then
becomes A, ~ 5 2 %K for all [ < n. Therefore, the core of the transshipment game
with the hub network is non-empty if and only if the cost per link K satisfies the

following inequality

1(Ba-5)
=, (5.31)

Ksnni o=

We define the maximum admissible cost per link for the hub network of size n as

1B.-5)

n-1

K2 agin (532)
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We show, in Section 5.5.1 that the maximum admissible cast K2* is either always
attained at { = 1 or there is a size n°* such that the minimum is attained at [ = 1
for all games with fewer than n** newsvendors and at { = n~1 for all games with at
least n** newsvendors. This bipolar effect for the hub network is a consequence of the
second law of diminishing individual allocations given in Theorem 5.5,

5.5.1 Positive Transportation Costs

We begin with a theorem that is a consequence of the laws of diminishing individual
allocations, The theorem is key in determining the maximum admissible costs for
both clique and hub networks. Let n° be the smallest n such that =52 < Lo if
such n exists and infinity otherwise

Theorem 5.10. We have

Jorn<n®* andl<n, and

Jornzn** andl<n. Moreover n** > n*,

Proof. We first show that £22 > p2=ks for all n < n** and for all [ <n. The proof is
by induction. Clearly, the inequality holds for n = 2. Assume that it holds for 2 < n
and for all £ < n, and additionally n + 1 <n**, We prove that then it holds for n+ 1.
We have St = Sefa . 2% Since by the inductive assumption S5 > =45




for all 1<, then 8, - B (8 = B1) iy for all L <n. Thus,

n-1

Bua-Bi B... Ba
Ban =

- an*ﬂ (l Baa—Ba) n-l
5-« 5. I(" 1)

)) T(n- 1)

for all  <n. By assumption n+1<n**, thus $=1%2 > % which implies

BuizB, @=1) | n-l _me1-l
Ban-B cwl(n-1) In-1) nl

for all £ < + 1. Thus the inequality holds for n+ 1 and by induction for all n < n**.
“This ends the proof if n** = co. Therefore, let us now assume n** < 0. We now show
that if 28 2 24 for all [ <, and n** = n+1, then 272 > (00 for all L na 1.
To see this, note that §uiod = S - S8 Since 22> px=L for all 1< n, then

#55 <1 2 forall 1< . Thus

.
A.
B
.

=1+

i (a..‘ s ll(n ]
for all I <. However, 2% < & which implies

-5 n-l__(n+i-ln

21+(n? -1),(’l

for all £ < n. Moreover, the last inequality for [ = n— 1 implies 8= 2 224, that is
St 2 2. According to Theorem 8, it must be the case that n°* ~ 12 0. Thus,
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> ne.
Finally, we show that ;253 > (=D for > n** and all < n by induction. We
have just shown that this inequality holds for n = n°
for all n 2 n** and prove that it also holds for n+1, ie., f=icft 5 (20102 for all
lensl

To see this, observe that S = 14 o4 (
inductive assumption 52 > () hen

Bai=Bi 4 (0= 1)(n 1) (Ba- B,..)
Bui—Ba Basr = Bu

) (§=252). Since by the

- ‘)('l~l) A

A

Since n1+1> 7 > n*, then by Theorem 5.8, we have 2% > 221 Therefore,

LE-0@-D(@e) _ (a- lol)n
T (-1

for all I <n + 1. Thus, the inequality holds for n + 1, and by induction for all n 2 n*".
This ends the proof of the theorem. o

‘Table 5.1 also demonstrates the values of n** for some instances of transshipment
games.
Clique Network

We are now ready to determine the maximum admissible cost per link for the clique
network.

Theorem 5.11. K3 =2(3, - f..1).

Proof. By (5.30) we need to show that 5,1 < S for all £ < n, which is equivalent

12



to 72258 > n—1 for all [ <n. We have

Bu=Bi _Ba=Bor , Bur=Bua

i,

Bu=Bur Bn=Bur

Bn

By Theorem 5.6, Ay € Ay < .. € Apy, thus the right hand side sums up to at least

=1, which proves the theorem. o
Furthermore, the maximum admissible cost for the clique networks is decreasing and
tends to 0 as the mumber of newsvendors grows.

Theorem 5.12. Ki*™ is decreasing on n, and lim, .. K3 = 0.

Proof. By Theorem 5.1, it needs to be shown 8, ~ 51 < a1 ~fa 2, for n > 2, which
is equivalent to A, € Ay for n > 2. The latter holds by Theorem 5.6. Morcover, by
Theorems 511 imy-co0 K5 = 2litm o, (B = Fact) = 20iyee B~ 1 B
0. o

The following corollaries follow immediately from Theorem 5.12.

Corollary 5.2. For the clique, given the cooperation cost per link K., there is a maz-
imun transshipment game size S(K) such that all transshipment games larger than
S(K) have empty cores, and all transshipment games of size not exceeding S(K) have

non-empty cores.

Corollary 5.3. For the clique, all transshipment games have non-cmpty cores only

if the cooperation cost per link K =0,

Hub Network

The maximum admissible cost for the hub networks is determined as follows.
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Theorem 5.13. We have

_n(Ba-5)
n-1
fJorn<n™, and
K2 = n(n-1)(8 ~Bas)
Jorn2n.

Proof. It needs to be shown that 222 ¢ 282 for < p** and [ < n, which
is equivalent to 2= > 574k, for all [ < n. The latter holds by Theorem 5.10. For
n2n**, we need to show n(n - 1)(f, - fa-1) € 22520 for I < n, which is equivalent
to 228> 5(n ~ 1) for all I < n. The latter holds by Theorem 5.10. o
Furthermore, we have the following theorem,

Theorem 5.14. K% is increasing on n for n < n**, and decreasing on n for n 2 n**.

Proof. We have
BacBy 1
Baa=B 1-5E

By setting I =n 1 in Theorem 5.10, we obtain &5 > i for n <n**. Thus,

Buhy 1 (a-1)
BB Tk a2

forn <n**. Hence, the last inequality implies immediately that 282  (=-Uah)
for n < n**. Therefore, by Theorem 5.13, K2 > K3% for n <n"*.
In order to have K3 < K}% for n 2 n**, we need n(n ~1)(3a - 1) < (n - 1)(n -
2)(#u-1~Bas) for n 2 n°* by Theorem 5.13. This inequality is equivalent to F2el <
22 for n 2 n**. Thearem 5.10 for n 2 n** and [ =n -2 gives 5252 > %220, Finally,

Bu-Bus | Bua-Boa An-1)

By =Bn-r Bu=Bpr = m-2
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Table 5.2: An Example of Over-mean Games (r = 40, ¢ = 15, and v = 10)
which implies ==L < 222 for n 2 n** as required. o
We have the following asymptotic results about the maximum admissible costs with
positive transportation costs under hub network structure.

Theorem 5.15. We have lim,, .o, Ki* < o [(r - v)o(Y) - to(a)] .

Proof. We have limy,.oe miny, 222720 < Jim,, o, 22200 Also,

=) =

i 1= 1)

a1

[(r-uwm —t9(¥.) - pM‘/_))]
S, ]
Vi

The last converges to o [(r-v)#(¥1) ~té(a)]- o

= o lim | (r-v)é(¥i) - to(Vs) - p=—="

Theorem 5.9 gives sufficient conditions for the inequality in Theorem 5.15 to become
an equality. Table 5.2 and Figure 5.7 show K5 and K" as functions of the number
of newsvendors n for various transportation costs (. The K% may or may not have a

single maximum. If it does the number of newsvendors n** at the maximum depends

=cofort=5.

ont, e.g. n** =10 for £ =15 and n** = 3 for ¢ = 20. By Theorem 5.9, n°

Our experiments up to n = 100 do not yield the n** for ¢ = 10, therefore, it s possible

that for this value the maximum happens at larger values of n or not at all.
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(a) Clique network (b) Hub network

Figure 5.7: Example of Maximum Admissible Cost per Link as a Function of n (r = 40,
=15, and v = 10)

5.5.2 Free Transportations

In this section we assume that the transshipments are free, that is, we let £ = 0. Al
though the assumption of free transshipments is rather restrictive, it portraits virtual
transshipments, where the transportation of goods can be done with no significant
costs, or where the producers re-direct customers to each other instead of transship-
ping the actual product (see Wang and Parlar (1994) for an example of the latter).
By setting ¢ = 0 in (5.14) we obtain

R
v, ﬁo'(r_—”) = (5:39)
and by setting ¢ = 0 in (5.18) and using (5.33) we get
Bu=(r-cJu-alr-v)e(y (534)




Clique Network

‘The maximum admissible cost for cliques with costless transportations is as follows.
Theorem 5.16. K™ = 20(r - v)o(%) (7 - 7’_.).

Proof. By (5.34) and Theorem 5.11. a
Hub Network

By (5.34) the condition (5.32) for the hub networks becomes

Ks mhw(r v)o(¥i! (5.35)

(#%)

Therefore, the maximum admissible ccst for hubs with costless transportations is as
follows.

Theorem 5.17. K3 = o(r - y).(y,)(ﬁ).

Proof. 1t needs to be shown that ¥L s increasing in { and thus attains min t
11, Thus, it suffices to show that 2= > YET. The latter inequality holds since
Vi> VI=T. Therefore, {2 is incressing in { and attains its minimum at 1= 1. 0
Contrary to the clique networks, this cost increases as the game size grows which
follows from the following theorem.

Theorem 5.18. KA is an increasing function of n. Moreover, lim, . KA = a(r~
v)a¥i).

Proof. We need to show that K4 < K34, This inequality holds since 1222 <
Obviously, ltty-+n 7357 = 1, and thus lim .o K1 = 0(r ~1)0(¥3).

Corollary 5.4. If the transshipment game with n newsvendors has a non-empty core
for cost per link K, then 50 do all larger games with the same cost per link.
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Theorems 5.17 and 5.18 also imply that the number of symmetric newsvendors may
be insufficient, for a given cost per link K, to have a stable coalition. In other words,
if n' symmetric newsvendors consider cooperating in a game with cooperation cost
per link K, then K** < K proves that their grand coalition is too expensive to
form for it is simply too small. Therefore, searching for more symmetric newsven-
dors willing to join in and expand the game could make the transshipment game
worth playing. To find the size of this minimal expansion one needs to solve the

n method and

equation K = a(r - v)é(¥;) (.‘6-) 10 determine n using the bisec
then round up the solution to the clossst integer. Finally, subtracting n’ would give
the required expansion size. Clearly, only if the cost per link K does not exceed
o(r=0)é(%) (7225) al size games are worth playing for all of them have non-empty

cores.

5.5.3 Mean Newsvendors

We now consider an important case of mean symmetric newsvendors. For a mean

newsvendor marginal profit equals the marginal loss of unsold items, that is ¢ = c-v.

In this case, by Lemma 1, ¥, =0 for n> 1. Therefore, the maximum expected profit

(¢ + 4») (5.36)

in (5.18) becomes

Bu=(r-chu-

Clique Network

We have the following maximum admissible cost for the clique network of mean

newsvendors.
Theorem 5.19. K7 = 22 (e - 42).
Proof. By (5.36) and Theorem 5.1 o
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The key difference between the maximum admissible cost in this theorem and the one
in Theorem 5.16 is that the former depends on ¢. Therefore, the higher transportation
costs the fewer newsvendors can play a transshipment game with non-empty core for

a given cooperation cost per link K.

Hub Network

We have the following maximum admissible cost for the hub network of mean newsven-

dors.

Theorem 5.20. K = & (5.

Proof. By (5.36), ez - 7';:(7_@“) As shown in the proof of Theorem 5.17,
7_07, is increasing on ! and attains its minimum at { = 1. Therefore, the maxi-
mum admissible cooperation cost per link of the hub network structure for which the
transshipment game with n symmetric newsvendors has non-empty core is K2 =
For any fixed transportation cost t, the counterparts of Theorem 5.18 and Corollary
5.4 hold for mean symmetric vendors. Again, the key difference s that maximum
admissible cost in this case depends on . Therefore, the higher transportation costs
the fewer symmetric newsvendors suffices to play a transshipment game with non-

empty core for a given cooperation cost per link.

5.6 Comments

The stability of the games with asymmetric agents and arbitrary network structures

can only be determined numerically through the examination of all possible sub coali-

tions and their comparison with allocations under grand coalition. This,




even if possible in theory, can only be done for limited game sizes in practice due to
the problem of computational intractability. Therefore, there is a great need for the
insight obtained analytically which this chapter is motivated by.

This chapter is the first to incorporate cooperation costs in the analysis of decen-
tralized transshipment games in the operational research and operations management
literature. We believe that including the cooperation costs into the game theory
based supply chain models provides, and will continue to provide, new and interest-
ing insights into their possible application in real-life supply chain coordination and

‘management.



Chapter 6

Conclusions and Open Problems

The opportunities for research on supply chain contracting and coordination are
numerous—as partly shown in Chapter 2. In fact, the research on supply chain con-
tracts is still in its infancy and there is plenty of room for building upon the current
rescarch and expanding it. The analysis of the literature in Chapter 2 reveals that
most of the coordinating contracts require the following preliminary conditions: (1)
rationality of the players, (2) absence of contracting costs, (3) complete knowledge

structure, (4) risk neutrality, and (5) profit orientedness. However, most of these

assumptions, if not all, do not provide an adequate realistic picture of the supply
chains in which they ought to be applied. Agents might not know how to optimize
their decisions or they may not have the sufficient computational power to actually
calculate them. The information sharing among the agents is very limited. Agents’
behavior s opportunistic and there are various types of agents with regard to their
utilities. Therefore, unless the gap between the theory and the practice does not close,
the insights achicved from the research will be questionable. Among the possibilities
for future research in this area are: (1) incorporating the under-analyzed aspects of

supply chain contracting, e.g. verifiability and compliance; (2) refining the definition
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of acceptability in coordinating contracts; (3) considering more general utility func-
tions of supply chain members in order to capture realistic decision making criteria;
(4) investigating more complex supply chain topologies; and (5) strengthening the
usefulness of theoretical insights through empirical and case-based studies,

With respect to the decentralized transshipment problem, in Chapter 3, we proposed
a contract with an implicit pricing mechanism (demonstrated in Lemma 3.1) that can

coordinate the transshipments in a two-agent supply chain. This contract has several

desirable properties. First, the implicit pricing mechanism gives rise to the choice
of the best production quantities (see Theorem 3.1). This is particularly important
because the linear pricing mechanisms in Rudi et al. (2001), Hu et al. (2007), and
Huang and Sosi¢ (2010b) do not necessarily lead to the Nash equilibrium being the
best production quantities. Second, the implicit pricing mechanism allows for an
arbitrary division of total expected extra profit according to the bargaining powers
Third, when the agents fix the negotiated transshipment prices they usually have
multiple alternatives to choose from (as Theorem 3.2 implies). Thus, a secondary
criterion can also be used to fine-tune the choice of transshipment prices. We suggest
the minimization of the variances of the agents’ individual profits. A direction for
generalization is to include the agents’ competition when they choose their market

selling prices. Recently, Zhao and Atkins (2009) analyze the transshipment prices in a

two-agent supply chain where p demand functions reflect

over the selling prices.

We have addressed the decentralized transshipment, problem with n agents in Chapter
4. The contracts based on allocation rules address the coordination for this problem
but the practical difficulties of allocation rules motivated our approach. The contracts
with transshipment prices provide more flexibility by letting the individual agents

choose their transshipment partners. The allocation rule proposed in Anupindi et al
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(2001) has the desirable property of both being in the core of the second stage coop-
erative game and coordinating the individual decisions on production quantities. For
those reasons, we have constructed our transshipment prices (as shown in Lemima 4.2)
upon those allocations. We showed that with the transshipment prices derived from
this allocation rule, the optimum transshipment patterns are always pair-wise stable
(see Theorem 4.2). Moreover, by carrying out the optimum transshipment patterns,
each agent receives a profit which equals the Anupindi et al. (2001) allocation for that
agent (see Corollary 4.1). The contribution of Chapter 4 s to implement a solution
concept from the network games in two-sided markets for the first time in analyzing
the decentralized transshipment problem.

Chapter 5 of the thesis incorporates the costs of cooperation into the analysis of the
stability of decentralized transshipment games in coordinated supply chains. In order
10 obtain provable results, we have considered supply chains with symmetric newsven-
dors and independent and normally distributed demands. Assuming cooperation cost
to be directly proportional to the number of links in the coalition network, we examine
two general network structures: Cligue, where all agents are connected to each other,

and Hub, where all agents are solely connected to a designated agent. We provide the

conditions for the stability of such games. Drawing upon the two laws of diminishing

individual allocations (Theorem 5.6 and Theorem 5.8), we demonstrate that under

the clique structure, the stability of symmetric transshipment games becomes more
susceptible o the cooperation costs as the number of participating newsvendors in-
creases (sce Theorem 5.12 and Corollary 5.2). However, this effect is bi-polar under
the hub structure, that s, while increasing the size of game, up to a certain size,

enables newsvendors to handle larger cooperation cost per links, and this increase in

size after some threshold will negatively impact the stability of the grand coalitions

(see Theorem 5.14). Though the characteristic function in the transshipment games
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studied in Chapter 5 are expected values of possible allocations, which is also the

case for the games studied in Slikker =t al. (2005) and Chen and Zhang (2009), we
realize that an adequate link between these games and the deterministic games with
the characteristic function determined by the realization of demands still needs to
be established. An immediate important direction for further research is to study
connected networks that fall between the clique and the hub, Yet another is the ex-

tension of the model to include correlations between newsvendors' demands. Also, it

whether or not fa finite n* implies afinite

Finally, the transshipment games with cooperation costs played by asymmetric

newsvendors remain a great challenge for analytical treatment for now. They remain
s even under the assumption that demands are normal and independent though with
different means and standard deviations. However, some questions motivated by this
chapter may be a lesser challenge and yet. provide interesting insights. One such a
question is when would the game be over-mean, under-mean, or mean? Or when does
the maximum admissible cost per link for hubs remain unimodal? These questions

are left for future research.
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Appendix
Derivation of (3.4) and (3.5)
From (3.3) we have
P (8,X) <E[rumin (D1, X0) « Wyi(X)) = W5 (X) + (5 = )Wy (X)+
(K= D) = Wy(X)) - he (D= X" = W(X)) e Xi]
By rearranging we get
I (8,) =€ (3~ g~ W (X) + (e + B3 W(X)+
rimin(D,, X)) + (X - D" ~ (D~ X -]

which is equivalent to

IPC(8,X) =E[ (35 ~ tyy - w)Wis(X) ¢ (i + by —s5) Wia(X)] +

Ermin(D, Xi) + w(Xi - D)’ - h( D - X)) - e:X.]

For i,j = 1,2, the latter results in (3.4) and (3.5).

Concavity of (3.9)
Let

JE(8,X) = PC(5,X) - JFO(XFC) (61)

for i =1,2. We have

St AT 1ty o 30 0 0T G830 + 00 . 30)
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Second order conditions are

o PULCODTCDIT) iy 0 O 0T (03100

o,
=

o PP .
e PUHCRTCIIT) (0 o0rm O 00 0] (030 00

R
SUCRPIOIIT) - O  IHFw XT (00 SE 0

The terms [1a(X), F2i(X), JE(s,X), and JF (s, X) are non-negative. Also we have 17-7 <

0. The Hessian matrix is

=

THORX)  TaX)Ca(X)RX)
Ta(X)Mu(XRX)  THEIRX)

where R(X) = (7 ~1)[JE (s, X)]2[25 (s, X)] 7 (£ (5. X) + JE(s.X))” <0. Then, it is
clear that xH(f,)x" is non-positive. Therefore, the Hessian matrix is negative semi-definite

and J, is concave on 5.
Derivation of 5.8, 5.9, and 5.10

Efmin(X, )] :xL'](D)w.[:u/(mm
= X(1-F(X))+ XF(X) 7[’ F(D)dD

X
=X- ) _F(DMD
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x
Efmax(X - D,0)] = [_(x - D)f(D)dD
x [l /(n)uvf_[: DI(D)D
= XF(X)- XF(X)+ j: F(D)AD

-/, : F(D)dD

Emin(uX,2)] =nX [ 1@z [ 22200z
=nX(1- Fz(nX)) + nXFz(nX) - [:‘ Fa(2)iz

enx - [ Fuzyiz

Ip(X) = [T (€= X)nle)de
= [T e -x [T oo
< [ S eso(erie - x(1- Fo(x)
o

“u- [ Fole

Emin(X,0)] = [ Fo(€)de =~ Elmax(D - X.0)] =~ Ip(X)
X x

Elmax(X-D,0)] = [ (X-fp(©)de= [ Fo(€)€=Io(X)+ X -t
Elmin(nX,2)] = [ Fa@de=nu-I2(0X)

Derivation of 5.14

Assume y is a normal random variables with mean s, and standard deviation a,. Then,
the random variable = ay + 4 is also a normal random variable with mean pi; = g, + 8

and standard deviation a = aoy. Hence, if y is a standard normal random variable, the, =
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would be a normal random variables with mean a and standard devi
Now, F(X) = P{z < X} = P{oy + < X} = P{y s %22} = 8(Y), where ¥ = X2

nz is the random variable which is the summation of n normal random

variables with mean 1 and standard deviation o, then u, = nj and 0, = V/fio. Now,

F(nX) = P(z $nX} = P{y/fioy + nju < nX} = P{y < 52} = 9(VAY), where ¥ = X:£.
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