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Abstract 

ln recent years, new technologies for wireless communications have emerged. 

The wireless industry has shown great interest in orthogonal frequency division 

multiplexing (OFDM) technology, due to the efficiency of OFDM schemes to convey 

information in a frequency selective fading channel without requiring complex equalizers. 

On the other hand, the emerging OFDM wireless communication technology raises new 

challenges for the designers of intelligent radios, such as discriminating between OFDM 

and single-carrier modulations. To achieve this objective we study the cyclostationarity of 

OFDM and single carrier linear digital (SCLD) modulated signals. 

In this thesis, we first investigate the nth-order cyclostationarity of OFDM and SCLD 

modulated signals embedded in additive white Gaussian noise (AWGN) and subject to 

phase, frequency and timing offsets. We derive the analytical closed-form expressions for 

the nth-order (q-conjugate) cyclic cumulants (CCs) and cycle frequencies (CFs), and the 

nth-order (q-conjugate) cyclic cumulant polyspectra (CCPs) of OFDM signal, and obtain a 

necessary and sufficient condition on the oversampling factor (per subcarrier) to avoid 

cycle aliasing. An algorithm based on a second-order CC is proposed to recognize OFDM 

against SCLD modulations in A WGN channel, as an application of signal cyclostationarity 

to modulation recognition problem. 

We further study the nth-order cyclostationarity of OFDM and SCLD modulated signals, 

affected by a time dispersive channel, A WGN, carrier phase, and frequency and timing 

offsets. The analytical closed-form expressions for the nth-order (q-conjugate) CCs and 
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CFs, the nth-order (q-conjugate) CCPs of such signals are derived, and a necessary and 

sufficient condition on the oversampling factor (per subcarrier) is obtained to eliminate 

cycle aliasing for both OFDM and SCLD signals. We extend the applicability of the 

proposed algorithm in A WGN channel to time dispersive channels to recognize OFDM 

against SCLD modulations. The proposed algorithm obviates the preprocessing tasks; such 

as symbol timing, carrier and waveform recovery, and signal and noise power estimation. 

This is of practical significance, as algorithms that rely less on preprocessing are of crucial 

interest for receivers that operate with no prior information in a non-cooperative 

environment. It is shown that the recognition performance of the proposed algorithm in 

time dispersive channel is close to that in A WGN channel. In addition, we have noticed 

that the performance of recognizing both OFDM and SCLD signals does not depend on the 

modulation format used on each subcarrier for OFDM and for SCLD signals respectively. 
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Chapter 1 

Introduction 

1.1. Modulation Recognition: Problem Formulation 

In recent years, new technologies for wireless communications have emerged. 

The wireless industry has shown great interest in OFDM, due to several advantages of 

OFDM, such as high capacity data transmission, immunity to multipath fading and 

impulsive noise and, simplicity in equalization [1]-[2]. OFDM has been adopted in a 

variety of applications, such as wireless local area network (WLAN) IEEE 802.11a [3] and 

wireless metropolitan area network (WMAN) IEEE 802.16a [4]. On the other hand, the 

emerging OFDM wireless communication technology raises new challenges for the 

designers of intelligent radios, such as discrimination of OFDM against single-carrier 

modulations. Solutions to tackle such new signal recognition problems need to 

be sought [5]. Blind modulation recognition (MR) for single carrier signals has been 

studied for at least a decade (see [5] and references herein). Algorithms for discriminating 

between OFDM and single-carrier signals have been recently started to be investigated by the 

research community [6]-[8]. However, algorithms proposed in the literature to recognize the 

OFDM require either carrier or timing recovery [6]-[10], or estimation of signal-to-noise 

ratio [8], before the recognition algorithm is applied. This effort explores the applicability 

of signal cyclostationarity to distinguish OFDM against the class of single carrier linear 

digital (SCLD) modulations. 



MR is an intermediate step between signal interception and data demodulation. This is a 

difficult task, especially in a non-cooperative environment, in which no prior knowledge on 

the detected signal is available at the receive-side. Once the modulation format is correctly 

identified, other operations, such as signal demodulation and information extraction can be 

subsequently performed. The design of a modulation classifier essentially involves two 

steps; a signal preprocessing and proper selection of a modulation recognition algorithm. 

A simplified block diagram of an intelligent receiver is depicted in Fig. 1. 1. 

Recieved Output 

signal Preprocessing Demodulator symbols 

_____. 

Modulation 

format 
Modulation 
recognition I-

algorithm 

Figure 1.1: Simplified block diagram of an intelligent receiver 

Preprocessing tasks includes, but not limited to, perform some or all of, noise removal, 

estimation of carrier frequency, symbol period and signal power, equalization, etc. 

The required accuracy in preprocessing depends on the recognition algorithm chosen in the 

second step. For example, some recognition methods need more precise estimates, whereas 

some are less sensitive to unknown parameters [5]. 

Generally, two approaches are proposed to tackle the MR problem, i.e., the likelihood-

based (LB) and the feature-based (FB) methods (see [5] and references herein). 

The LB approach is based on the likelihood function of the received signal and the 
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likelihood ratio test is used for decision making. This can provide an optimal solution, in 

the sense that it maximizes the probability of false recognition. However, a complete 

mathematical representation of an optimal classifier is very complex even for simple 

modulation formats [5]. With the latter approach, features are extracted from the received 

signal, and a decision on the modulation format is made based on their differences. Several 

signal features have been investigated in the open literature, such as moments and 

cumulants, cyclic moments and cyclic cumulants, and wavelet transform [5]. 

The FB approach can have the advantage of implementation simplicity for an appropriately 

chosen feature set, and can provide near optimal performance. 

Here we exploit signal cyclostationarity to distinguish OFDM against SCLD modulations. 

In general, cyclostationary signals are present in communications, signal processing, 

telemetry, radar, sonar, and control systems. Signal cyclostationarity can be exploited for 

several purposes, including signal identification, blind equalization, synchronization, 

parameter estimation and modulation recognition [6]-[22]. Communication signals exhibit 

cyclostationarity in connection with the symbol period, carrier frequency, chip rate and 

combination ofthese [6]-[7] and [11]-[22]. First-, second- and higher-order cyclostationarity 

of single earner signals 1s employed for the aforementioned applications 

in [ 11 ]-[ 17], [21 ]-[22]. In particular, second-order cyclostationarity of the OFDM signal is 

exploited for blind estimation of symbol timing and carrier frequency offset, extraction of 

channel allocation information in a spectrum poling system, and blind channel 

identification [ 18]-[20]. 
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1.2. Thesis Objectives 

The main objective of this research is to find a feature-based blind recognition algorithm 

to identify OFDM against SCLD modulations, which is easy to implement, and still can 

provide good recognition performance. To achieve this objective, we investigate the 

cyclostationarity of OFDM and SCLD signals. Firstly, we study the nth-order 

cyclostationarity of OFDM and SCLD modulated signals embedded in additive white 

Gaussian noise (A WGN) and subject to phase, frequency and timing offsets. 

The analytical closed-form expressions for the nth-order (q-conjugate) cyclic cumulants 

(CCs) and cycle frequencies (CFs), and nth-order (q-conjugate) cyclic cumulant 

polyspectra (CCPs) ofOFDM signals are derived. Such expressions for the SCLD signals 

are presented in [11]. An algorithm based on a second-order CC is proposed to recognize 

OFDM against SCLD modulations in A WGN channel. In addition, we obtain a necessary 

and sufficient condition on the oversampling factor (per subcarrier) to avoid cycle aliasing 

for OFDM signals. Note that such a condition for SCLD signals is obtained in [11]. 

Secondly, we investigate the nth-order cyclostationarity of OFDM and SCLD modulated 

signal affected by a time dispersive channel, AWGN, carrier phase, and frequency and 

timing offsets. We derive the analytical closed-form expressions for the nth-order 

(q-conjugate) CCs and CFs, and the nth-order (q-conjugate) CCPs of these signals, and 

obtain a necessary and sufficient condition on the oversampling factor (per subcarrier) to 

eliminate cycle aliasing for both OFDM and SCLD. We extend the applicability of the 

algorithm proposed for A WGN channel to time dispersive channel, to discriminate 

OFDM against SCLD. The proposed algorithm has the advantage that it does not require 
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preprocessing tasks, such as symbol timing, carrier and waveform recovery, and signal and 

noise power estimation. This is of practical significance, as algorithms that rely less on 

preprocessing are of crucial interest for receivers that operate with no prior information in 

non-cooperative environments. Both recognition performance and complexity of the 

proposed algorithm are investigated for A WGN and time dispersive channels. 

1.3. Thesis Organization 

The rest of the thesis is organized as follows. Fundamental concepts of signal 

cyclostationarity are introduced in Chapter 2. Single carrier linearly digitally modulated 

and OFDM signal models, along with corresponding signal cyclostationarity, and 

proposed recognition algorithm in A WGN and time dispersive channels are presented in 

Chapter 3 and Chapter 4, respectively. Finally, conclusions are drawn in Chapter 5. 
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Chapter 2 

Signal Cyclostationarity: Fundamental Concepts 

2.1. Introduction 

Signal cyclostationarity has been used as a statistical tool for several applications, including 

signal identification, blind equalization, synchronization, parameter estimation and 

modulation recognition [6]-[22]. In communications, signals exhibit cyclostationarity in 

connection with symbol period, canier frequency, chip rate and combination of 

these [6]-[7]. The cyclostationary signals have been studied either within a 

stochastic [23]-[24] or a fraction-of-time probability framework [22], [25]. Here, we first 

introduce the fundamental concepts of continuous-time cyclostationary processes, using the 

stochastic framework. Then, we briefly review the fundamental concepts of discrete-time 

cyclostationary processes. For the modulation recognition application, we employed 

discrete-time processes obtained by sampling continuous-time cyclostationary processes. 

2.2. Signal Cyclostationarity 

A signal exhibits nth-order cyclostationarity if its nth- and lower-order time-variant 

cumulants are almost-periodic functions 1 of time [22]-[25]. For a complex-valued 

1 A function r(t ) , real or complex, defined for all real arguments t, is said to possess a trans lation number <, pertaining to the 
positive number E, if for all values of 1 from -oo to oo, 1 r(t + t , )- r(t) IS E. The continuou function r(t ) is then said to be 
almost periodic if, whenever E is given, there exists a fini te number 1,, such that if y i any real number, the interval 
(y, y + 1, ) contains at least one translation number t, perta ining to E . 
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----------------------

continuous-time nth-order cyclostationary process, r(t), the nth-order (q-conjugate) 

time-varying cumulant, 

- ( . -) - c [ (•), ( - ) (•h ( - ) (•). ( - )] cr t,'T n,q- urn r t+"L, ,r t+'L2 , .. . ,r t+'Ln ' (2.1 ) 

is an almost periodic function of time. Here Cum[·] represents the cumulant operator (for 

the definition one can see, e.g. [22]), .:r = [i1, • • • , i 11 ]tl:r"=o is the delay vector and (*); , 

i = I , . . . , n, is a possible conjugation, with the total number of conjugations equal to q and t 

as the transpose. This time-varying cumulant can be expressed as a Fourier series [22]-[25] 

cr(t, T)n ,q = I cr(y; T)n ,q ej21fit' 
YeK~ .q 

(2.2) 

where iC~ .q = {"y 1 c,(y;i)n,q ;e 0} represents the nth-order cycle frequencies (CFs) (for cyclic 

cumulants) and the coefficient cr(y;i)"·" is the nth-order (q-conjugate) cyclic cumulant 

(CC) at CF y and delay vector i , which can be expressed as [22]-[25] 

I 12 

cr(r;:r)n q = limr' J cr(t;T)
11

"e-j21f(tdt. 
' /~oo , 

(2.3) 
- / / 2 

For the nth-order cyclostationarity process r(t), the nth-order (q-conjugate) time-varying 

moment function 

- ( . -) - E[ (•), ( - ) C•h ( - ) (•). ( - )] mr t,'T n,q- r t + "L, , r t+'L2 , . . . , r t +'Ln ' (2.4) 

IS also an almost periodic function of time [22]-[25]. Here E[·] denotes the statistical 

expectation. This time-varying moment can also be expressed as a Fourier series [22]-[25] 

mr(t , :r)n,q = I mrca.; :r)n,qej2niit, 
O.eK;,q 

(2.5) 
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where i<7,',q = {ii 1 m,(ii; i)n,q :;t 0} represents the nth-order CFs (for cyclic moments), and the 

coefficient m,.(ii; i)
11
,q is the nth-order (q-conjugate) cyclic moment (CM) at CF ii and 

delay vector i, given by [22]-[25] 

112 

m,(ii;i)nq = limr' J m, (t;i)llqe-j2
1taldt. 

' /~oo , 
(2.6) 

- //2 

The nth-order (q-conjugate) cumulant can be expressed in terms of the nth- and 

lower-order moments by using the moment-to-cumulant formula [25], 

z 
- (. - ) - "' (- l)(Z-t)(Z - l)'fl- ( .- ) c, t, 'T n,q- ~ . m,. t, 'Tz n,,q= , (2.7) 

{.!'01>· . . ,soz} z=l 

where {p1, . . . ,p2 } is a partition of p={l,2, . .. ,n}, with p 0 z = l, ... ,Z, as a non-empty 

disjoint subset of p, so that the reunion of these subsets is p , Z is the number of subsets in 

a partition (1 ~ Z s n) , T z is a delay vector whose components are elements of {-r" };;=, , with 

indices specified by .f.Jz, and nz is the number of elements in the subset .f.Jz, from which qz 

z z 
corresponds to conjugate terms, with 2.:> .. = n and Lqz = q. 

z=l z=l 

By combining (2.2), (2.5) and (2.7), the nth-order (q-conjugate) CC of r(t) at CF y and 

delay vector i can be expressed using the nth- and lower-order CMs as [25] 

z 
c,.(y; i)n,q = L (-liZ-l)(Z -1)! L TI m,(ii;iZ)Il, ,q, ' (2.8) 

{SOt,.· .,.(Oz } at l =y z=l 

where ii = [ii, , ... ,a2 t is a vector ofCFs and l = [l, ... ,l]t is a Z -dimensional one vector. 

Equation (2.8) is referred to as the cyclic moment-to-cumulant formula [25]. 
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The nth-order (q-conjugate) cyclic cumulant polyspectrum (CCP) of the cyclostationary 

process, r(t) , at CF y and spectral frequency vector i, is defined as the 

(n -I) -dimensional Fourier transform of the nth-order (q-conjugate) CC [23], [25] 

0() 

C,. (y;f\,q = J c,. (y; i) n,qe-12
rtft 'f di, (2.9) 

- - - t where f = u; , ... ,f,_l] . 

A discrete-time signal r(u) = r(t)ie=uf,-i IS obtained by periodically sampling the 

continuous-time signal r(t) at rate fs. The nth-order (q-conjugate) CCP of the discrete-

time signal, r(u) , at CF y and spectral frequency vector f , is given by [26] 

C,.(y;f),,q =J;'-1L L C,. (y-vfs} - vfJ n,q (2.10) 
VEZ V EZ"- 1 

where y = Y.fs-1
, f = ij,-1

, with components /,, = lufs-1
, u = 1, ... , n -1, Z is the set of all 

integers, and v = [ v1 • •• v,_1 ]t , with vu, u = 1, .. . , n -1 , as an integer. One can notice that the 

nth-order CCP of the sampled signal consists of the periodic extension of the nth-order 

CCP of the original continuous signal, in both spectral (f - vfs ) and cycle frequency 

(y- vfs ) domains. Two kinds of aliasing effects can appear due to sampling, i.e., spectral 

aliasing, which is overlapping of images of CCP with the same CF, and cycle aliasing, 

which is the overlapping of images of the CCP with different CFs. Sampling has to be 

carried out such that both spectral and cycle aliasing are eliminated. Apparently, for a 

band-limited signal, the Nyquist condition has to be fulfilled to eliminate aliasing in the 

spectral frequency domain. For the cycle frequency domain, the support of y has to be 

found in order to obtain a condition to eliminate cycle aliasing. 
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Under the assumption of no aliasing, the nth-order (q-conjugate) CC of the discrete-time 

signal, r(u), the nth-order (q-conjugate) CCP, and the corresponding CFs, are respectively 

given by [26] 

and 

K~,q = {y E (- l/2, 1/2) j y = Y.fs- 1
, cr (y;T), ,q :;t: Q}, 

where T = i fs, with components •u = 'iufs , u = 1, .. . ,n. 

(2. 11 ) 

(2. 12) 

(2.13) 

Similar expressions can be written for the nth-order (q-conjugate) CM of the discrete-time 

signal, mr (a; T ) , ,", cycle moment polyspectrum, and corresponding CFs, <:',q [23]. 

The estimator for the nth-order (q-conjugate) CM at a CF a and delay vector T , based on 

L samples, is given by [24] 

L " 
A ( • ) _ -1"Il (•)p ( ) -)21tau mr a, T fl ,q- L ~ r u +Tp e . (2. 14) 

11=1 p =1 

Furthermore, the estimator for the nth-order (q-conjugate) CC at a CF y and delay vector 

'T ' based on L samples, cr (y;T), ,q, can be obtained by applying the cyclic 

moment-to-cumulant formula given in (2.8), with CMs replaced by their estimate 

given in (2.14) [24]. For the estimator of the nth-order (q-conjugate) CCP one can see, for 

example, [23] . 
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Chapter 3 

Cyclostationarity-Based Recognition of OFDM Against 

SCLD in A WGN Channel 

3.1. Introduction 

Blind recognition of the modulation format of a received signal is of importance in a 

variety of military and commercial applications, such as electronic warfare, surveillance 

and control ofbroadcasting activities, spectrum monitoring and management, and cognitive 

radio. Although this topic has been extensively studied (see the comprehensive survey [5] 

and reference herein), less attention has been paid to the identification of OFDM signals. 

In recent years OFDM has been adopted in a variety of applications, such as WLANs and 

WMANs. Algorithms to recognize OFDM against SCLD signals have been reported 

in [8]-[9]. The algorithms proposed in [8], [9] and [ 1 0] require estimation of 

signal-to-noise ratio, carrier frequency recovery, and both carrier frequency and timing 

recovery as preprocessing tasks. In this Chapter, we investigate the cyclostationarity of 

OFDM signals with a view to recognizing OFDM against SCLD. The analytical 

closed-form expressions for the nth-order (q-conjugate) CCs and CFs, and CCPs of an 

OFDM signal embedded in additive white Gaussian noise and subject to phase, frequency 

and timing offsets are derived. In addition, a necessary and sufficient condition on the 

oversampling factor (per subcarrier) to eliminate cycle aliasing is derived for OFDM 

signals. An algorithm based on a second-order CC is proposed to recognize OFDM against 
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SCLD modulations. The proposed recognition algorithm obviates the need for 

preprocessing tasks, such as symbol timing estimation, carrier and waveform recovery, and 

signal and noise power. The performance of the proposed recognition algorithm is 

evaluated through simulations. The average probability of correct recognition, ~r, is used 

as a performance measure for performance evaluation. 

3.2. Cyclostationarity of Single Carrier Linearly Digitally 

Modulated Signals 

3.2.1. Signal Model 

Let us assume that a single carrier linearly digitally modulated signal is transmitted 

through a channel, which corrupts the signal by adding white Gausian noise. The output of 

the matched filter at the receive-side is a baseband waveform, given by [27] 

00 

t;cw (t) = ae19 e12rtt.fct L s1g(t -IT- £T) + w(t), (3.1) 
1=-«J 

where a is the amplitude factor, e is the phase, !::,fc is the carrier frequency offset, T is the 

symbol period, 0 ~ E ~ 1 is the normalized timing offset, s1 represents the symbol 

transmitted within the /th symbol period drawn either from a quadrature amplitude 

modulation (QAM) or phase shift keying (PSK) constellation, g(t) is the overall impulse 

response of the transmit and receive filters and w(t) is the zero-mean complex Gaussian 

noise. The overall impulse response of the transmit and receive filters in cascade is given 

by g(t) = g 1r (t) ® grec (t), with g 1r (t) and grec (t) as the impulse response of the transmit and 
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receive filters, respectively and ® as the convolution operator. The data symbols {s1} are 

assumed to be zero-mean independent and identically distributed (i.i.d.) random variables. 

The discrete-time baseband signal rsno (u) , obtained by oversampling rscLo (t) at rate 

fs = pr-1
, with p as the number of samples per symbol ( oversampling factor), is given by 

/rr. 6./, Tu oo 

rscLD (u)=ae19 e P c ,L s1g(u-lp-£p)+w(u), (3.2) 
1=-<:IJ 

where w(u) is wide-sense stationary zero-mean complex Gaussian noise. 

3.2.2. Cyclostationarity of Received SCLD Modulated 

Signals 

For the continuous-time baseband received signal, rscLD (t) , the nth-order (q-conjugate) 

time-varying cumulant at delay vector -t is given by [11] 

n oo 

x IJ g(•)P(t+iP)® L 8(t-lT-£T)+ cJt;i:)n,q' (3.3) 
p=l 1=-<:IJ 

where cs,n,q is the nth-order (q-conjugate) cumulant of the signal constellation, c,vCt; i)n,q 
2 

is the nth-order (q-conjugate) time-varying cumulant of w(t), (- )P is the optional minus 

sign associated with the optional conjugation (*) p , p = l, .. . ,n, 8(t) is the Dirac delta 

function. The values of delays, -t , are defined within the symbol interval (for rectangular 

pulse shape). At zero-delays, the cumulant magnitude reaches a maximum, and as the delay 

2 For n = I and n ~ 3 there is no additive contribution of the wide-sense stationary zero-mean Gaussian noise to the 
cumulant of the received signal. For n=2, the cumulant corresponding to the noise does not depend on time, due to the 
wide- sense stationarity of the noise. 
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values increase towards the symbol duration, the cumulant magnitude reduces to zero. 

The delay values for which the CCs are non-zero can exceed the symbol period for 

a non-rectangular pulse shape. 

The nth-order (q-conjugate) CC at CF y and delay vector i, the nth-order (q-conjugate) 

CCP at CF y and spectral frequency vector f , and the CFs for the continuous-time signal 

rscw Ct) are respectively given by [11], [13] 

oo n 

X JTI g (*)p (t + i p)e-j21t~l dt + cw(y; i)n,q' (3.4) 
-00 p=l 

n- 1 
C (y-· f) =anc y-tej(n-2q)fJe-j2n~E1·na<•>P ((-) ~- - /'>." ) 

rscLD ' n,q s,n,q p p Y c 
p= l 

n- 1 

X a<•). ((-)n (p - I (-) p((- ) PJP- f'../J )) + Cw(y ;f) n,q> (3.5) 
p =l 

and 

K~~~D = {y I y = p + (n- 2q)/'>.fc , p = IT- I' l integer, crscw (y; i)n,q * 0}, (3 .6) 

where cw(y;i)n ,q and Cw(y;f)n,q are the nth-order (q-conjugate) CC and CCP of w(t), 

respectively. 

A necessary and sufficient condition on the oversampling factor, p , to eliminate cycle 

aliasing has been derived in [11] for a raised cosine pulse shape as 

(3.7) 

where r
0 

is the roll-off factor. 
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One can easily show that (3 .7) is valid for any SCLD signal, which is band-limited to 

W = (1 + r0 )(2Tr 1
• As an example, with n = 2 and r0 = 0.35 , a necessary and sufficient 

condition on the oversampling factor, p , is p ;:: 3 . 

Under the assumption of no aliasing, the expressions for the nth-order (q-conjugate) CC, 

CCP, and CFs for the discrete-time SCLD signal, 'ScLo (u) , can be easily obtained based on 

(3.4)-(3.6) and by using (2.11)-(2.13). Note that the cumulant cs,n,q of odd order (n odd) is 

zero for symmetric signal constellatioins, in which case the lowest order non-zero CC and 

CCP are of second-order [II]. For numerical values of cs.n,q for diverse orders, n, number of 

conjugations, q, and SCLD modulations, one can see [1I], [13]. 

3.3. Cyclostationarity ofOFDM Signals 

3.3.1. Signal Model 

The continuous-time baseband equivalent of a transmitted OFDM signal is given by [ 18], 

1 K - 1 oo 
X (t) = - - " " s ei211

k /lf, (t - IT)gtr (t - ZT) 
OFDM f.; L..,; L..,; k ,/ ' 

"K k=O 1=-<:J:J 

(3.8) 

where K is the number of subcarriers, !lfK is the frequency separation between two 

adjacent subcarriers, T is the OFDM symbol period, given by T = Tu + T,;P , with 

~ =lJ4fK as the useful symbol duration and Tcp as the length of the cyclic prefix, sk,l is the 

symbol transmitted within the lth symbol period and the kth subcarrier, and g 1
r (t ) is the 

transmit pulse shaping window [2]. The data symbols {sk,l } are assumed to be zero-mean 

i.i.d. random variables, drawn either from a QAM or PSK constellation. 
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At the receiver-side, the continuous-time baseband equivalent is given by 

K - 1 oo 

roFoM (t)= aei9eJ2rrl"!fct I I Sk,t eJZrrkt:J.fK(t- IT-ET) g(t -IT- c:T) + w(t), (3.9) 
k=Oi=-«> 

where g(t) = g1r (t) ('8) grec (t). 

A discrete-time baseband OFDM signal, romM (u) , is obtained by oversampling roFoM (t) at 

a rate fs = pKTu-1 
, where pK is a positive integer, which represents the oversampling factor 

per subcarrier in the useful symbol duration, with p as the number of samples per symbol 

per subcarrier (oversampling factor per subcarrier). For SCLD signals, the number of 

(sub)carriers is one and p simply represents the oversampling factor (the number of 

samples per symbol). The expression for the discrete-time baseband OFDM signal can be 

easily written as, 

2rr .2rr 
1·- !:J.r T u K - I oo J- k(u- ID-ED) 

·e K Y c " "" "" K romM (u) = ae1 e P L... L... sk,l e P g(u -!D-fl))+w(u), (3.10) 
k=Oi=-«> 

where D = pK(l + TcpTu- 1
) is the number of samples over an OFDM symbol. 

Note that equations (3.1) and (3.2) represent particular cases of (3 .9) and (3.10), 

respectively, K = 1 and no cyclic prefix, ~P = 0 ( T = Tu ). 

3.3.2. Cyclostationarity Of Received OFDM Signals 

Results derived in Appendices A and B for the nth-order cyclostationarity of the received 

OFDM signal are presented in the following. The nth-order (q-conjugate) time-varying 

cumulant of the continuous-time baseband received OFDM signal, r0FoM (t) , at delay vector 

i (see Appendix A for the comments on the delay values) is given by 2 
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n oo 

X ej2rr(n-2q)kLlfKt n g (•)p (t + i p )@ L 8(t - IT - £T) + cw (t ; i)n,q· (3 .11) 
p= l 1=-<JO 

The nth-order (q-conjugate) CC at CF y and delay vector i , the nth-order (q-conjugate) 

CCP at CF y and spectral frequency vector i , and the CFs for the continuous-time 

baseband received OFDM signal, r ornM (t) , are respectively given as 

oo n 

x f ej2rr(n-2q)k4ht fl g<•>P (t + i P)e- j2rrptdt +cw(Y; i )n,q' (3.12) 
-<){) p= l 

K - l n- l c. (y- ·i ) = anc r- ' ej<n-2q>ae-j2rrper~nd·>P ((-) !- - 11~' - kl1~') 
' oFDM ' n,q s,n,q ~ p p '1 c '1 K 

k=O p=l 

n- l 

X G(•). ((- )n CP - c.L: (-) p ((- ) p J p- !1fc - k!1JK )) - (n - 2q )k11fK )) 
p=l 

(3.13) 

and 

(3 .14) 

A necessary and sufficient condition on the oversampling factor (per subcarrier), p , to 

eliminate cycle aliasing in A WON channel is derived in Appendix C, which will be 

presented in the subsequent section. Under the assumption of no aliasing, the expressions 

for the nth-order (q-conjugate) CC, CCP, and CFs for the discrete-time OFDM signal, 

roroM (u) , can be easily derived based on (3 .12)-(3 .14) and by using (2. 11 )-(2. 13). 
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Note that (3.4), (3.12) and (3.5), (3.13) give the analytical expressions for the CC and 

CCP, respectively, only at CFs and certain delays (see Appendix A for comment on the 

delay). At other frequencies and delays, the CC and CCP equal to zero. It is also to be 

noted that (3.4)-(3.6) are particular cases of (3.12)-(3.14) for a single carrier ( K = 1) and no 

cyclic prefix ( T;;P = 0, T = Tu ). This is expected from the comments on the signal models. 

From (3.4) and (3.12) one can see that the nth-order (q-conjugate) CCs of both SCLD and 

OFDM signals depend on the nth power of the signal amplitude, the nth-order 

(q-conjugate) cumulant of the signal constellation, phase, timing offset, carrier frequency 

offset, pulse shape, and symbol period. In addition, the CC ofthe OFDM signal depends on 

the number of subcarriers, K , and frequency separation between two adjacent subcarriers, 

f!..jK . However, the CC magnitude of the signal component does not depend on phase, and 

timing and carrier frequency offsets. Owing to the nature of the noise, cw(y;T)n,q is 

non-zero only for n = 2 and q = 1, at zero CF and for zero delay vector. From (3.5) and 

(3.13) it can be noticed that the nth-order (q-conjugate) CCP ofSCLD and OFDM signals 

depends on the nth power of the signal amplitude, the nth-order (q-conjugate) cumulant of 

the signal constellation, phase, timing offset, carrier frequency offset, symbol period, and 

the Fourier transform of the pulse shape. In addition, the CCP of the OFDM signal depends 

on the number of subcarriers, K , and frequency separation between two adjacent 

subcarriers, tlfK . According to (3 .6) and (3 .14), if n = 2q , the CFs are integer multiples of 

the inverse of the SCLD and OFDM symbol period, respectively. Otherwise, there is a shift 

of these values due to the carrier frequency offset, f!..fc . 
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--· --------------------------------------

3.3.3. A Necessary and Sufficient Condition on the 

Oversampling Factor (per Subcarrier) to Eliminate Cycle 

Aliasing for OFDM Signals 

In several signal processing applications, cyclostationary continuous-time signals are 

subject to sampling operations. This leads to aliasing in both cycle and spectral frequency 

domains [26]. In our analysis, the continuous-time signal, r;(t), i = OFDM, SCLD is 

oversampled at the output of the receive lowpass filter. Therefore, it is important to find a 

condition to eliminate aliasing. 

As mentioned in Chapter 2, the Nyquist condition has to be fulfilled to eliminate spectral 

aliasing. On the other hand, we show that to eliminate cycle aliasing, a necessary and 

sufficient condition on the oversampling factor (per subcarrier), p, has to be fulfilled. 

This is as follows (see Appendix C for derivations): 

p ~I n- 2q I+ r K - 1 (2nT;,T- 1- I n- 2q I) l, 
where l·l denotes the nearest largest integer. 

(3.15) 

Note that this result is valid for n even. For n odd we cannot derive such a condition, as the 

nth-order (q-conjugate) CPP equals zero. 

From (3 .15) one can see that the oversampling factor per subcarrier, p, depends on the 

order n, number of conjugations, q, number of subcarriers, K , and the product TJ-1
• 

As an example, with n = 2 , q = 1 , K = 128 , and Tcp = Tu I 4, the necessary and sufficient 

condition on the oversampling factor (per subcarrier), p , given by (3 .15), becomes p ~ 1 . 
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3.4. Recognition of OFDM Against SCLD by Exploiting 

Signal Cyclostationarity 

Results presented in previous sections are employed here to develop an algorithm for the 

classification of OFDM and SCLD in A WGN channel. 

3.4.1. Discriminating Signal Feature 

We investigate the lowest-order non-zero CC to recognize OFDM against SCLD signals; 

this is of second-order (one-conjugate); the first-order and second-order (zero-conjugate) 

CCs equal zero due to zero values of cs 10 and cs 2 0 , respectively, for PSK and QAM 
, ' J' 

signals with more than four points in the signal constellation [5], [11]. Under the 

assumption of no aliasing, with n = 2, q = 1, and t = [ • O]t , and by using (2.11), (2.13), 

(3.4), (3.6), (3 .12) and (3.14), one can easily obtain the second-order (one-conjugate) CCs 

and sets ofCFs for the discrete-time SCLD and OFDM signals respectively, as3 

. 2rc !if. TT 

c (R·-c) =a2c p- 1e- J2rcj3ep/ P c "" g(u+-c)g*(u)e- J2rc13" +c (R·-c) (3.16) 
rscw 1-'> 2,1 s ,2,1 L...,; w 1-'> 2,1' 

tl 

K~~~o = {~ 1 ~ = /p- 1
, l integer}, 

and 

(3.17) 

(3.18) 

3 Note that according to (2. 11 ) and (3.6), if n=2q (in this case n=2 and q=l), the CF y is equal to ~ . This result will be used 
for the CF notation throughout the thesis. 
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(3.19) 

K - I J~kT J...2:....(K - I)< sin( m I p) 
One can easily show that 3 K ( 't) = I e pK = e pK . , and write (3 .17) as 

k =O sm( 7t't I pK) 

. 21t Arr 
)-~...;iJc u L 

( A ) 2 D- • -j21ti3ED pK ~ ( )" ( ) ·c ) - J27tl3u (A ) ( 3 20) 
c rOFOM 1-';'t 2,1 =a cs,2,1 e e ..:::.K 't L.Jg u g U+'t e +cw 1-';'t 2,1 · . 

ll 

According to the analysis carried out in Appendix A, these results are valid for specific 

ranges of the delay values. For SCLD and OFDM, these delay values belong to the interval 

zero to that corresponding to symbol period of SCLD and OFDM, respectively (for 

rectangular pulse shape). At zero delay, the second-order (one-conjugate) CC magnitude 

reaches maximum, and approaches zero at delay corresponding to the symbol period for 

both SCLD and OFDM signals (rectangular pulse shape). If the pulse shape is 

non-rectangular, non-zero CC magnitude values can appear also at delays beyond that 

corresponding to the symbol period. For the OFDM signal, a significant non-zero value of 

the second-order (one-conjugate) CC magnitude can be noticed at delays corresponding to 

the useful symbol period, ±pK . This is due to the existence of the cyclic prefix. 

The magnitude of the second-order (one-conjugate) CC of SCLD and OFDM signals (in 

the absence of noise) is plotted versus CF and delay in Fig. 3.1 a) and b), respectively (for 

parameter setting see Section 3.5.1 ). In addition to the peak at zero delay, CC magnitude 

peaks are visible for the OFDM signal at • = ±pK and for different CFs. With sufficiently 

large K, these peaks do not occur in the vicinity of zero delay, and this represents a 

distinctive characteristic of OFDM in comparison with the SCLD signals. 

The existence of such a peak in the magnitude of the second-order (one-conjugate) CC of 
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the OFDM signal (at zero CF, p = 0, and delay -r = pK) is employed here as discriminating 

feature to identify OFDM against SCLD signals. 

3 .4.2. Proposed Recognition Algorithm 

At the receive-side, the bandwidth of the signal is roughly estimated, and a low-pass filter 

is used to remove the out-of-band noise. The signal is down-converted and (over)sampled 

at a rate equal to p times the signal bandwidth estimate. Discrimination between OFDM 

and SCLD signals is performed by applying the following algorithm, which consists of two 

steps. 

Step 1: 

Based on the observation interval available at the receive-side (L samples), the magnitude 

of the second-order (one-conjugate) CC of the baseband received signal is estimated at zero 

CF, p = 0 , and over a range of positive delay values. This range is chosen to cover possible 

peaks at pKmin and pKmax , with Kmin and Kmax as the minimum and maximum number of 

subcarriers that we consider (the number of subcarriers is assumed unknown at the 

receive-side and a range of possible values considered). The peak pKmin has to be far 

enough from zero delay to serve as an unambiguous discriminating feature between OFDM 

and SCLD signals. Over the considered delay range, we select that delay value for which the 

CC magnitude reaches a maximum. 
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Step 2: 

With n = 2 and q = 1, the cyclostationarity test developed in [28] is used to check whether 

or not p = 0 is indeed a CF for the delay selected in Step 1. This test consists in comparing 

a statistic against a threshold (see Appendix G for the test description). If p = 0 is found to 

be a CF, then we decide that the signal is OFDM, otherwise we declare it as SCLD. 

As one can notice, the algorithm proposed here to recognize OFDM against SCLD does 

not require symbol timing, carrier and waveform recovery, or estimation of signal and noise 

powers. 

3.5. Simulation Results 

Simulations are performed to confirm theoretical developments, and results of these 

simulations are presented in the following. 

3.5.1. Simulation Setup 

For SCLD modulations, we consider a pool consisting ofBPSK, QPSK, 8-PSK, 16-QAM 

and 64-QAM. Without any loss of generality, we simulate unit variance constellations. 

The transmit filter is a root-raised cosine with 0.35 roll-off factor [27], and the signal 

bandwidth is 40 kHz. At the receive-side, a low-pass filter is used to eliminate the 

out-of-band noise, and the signal is sampled at a rate f. = 160kHz. For the OFDM signal, 

we set the parameters as follows. The signal bandwidth is set to 800 kHz, the number of 

subcarriers to 128, the useful time period to 160 flS , and the cyclic prefix period to 40 flS . 

All subcarriers are modulated either using QPSK or 16-QAM. Unit variance constellations 
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are also used in this case. The transmit pulse-shaping window is chosen as raised cosine, 

with 0.025 roll-off factor [2]. At the receive-side, the signal is low-pass filtered and 

sampled at a rate of 3.2 MHz. For both OFDM and SCLD, we consider an oversampling 

factor of 4. Unless otherwise mentioned, the observation interval available at the 

receive-side is 0.1 s. This interval corresponds to L = 320,000 and 16,000 samples for 

OFDM and SCLD, respectively. In addition, we set a to one, e to 0.75, 9 as a random 

variable uniformly distributed over [-n,n), and 111;,. to 16kHz and 320kHz for SCLD and 

OFDM signals, respectively. The signal-to-noise ratio (SNR) is defined as the signal power 

to the noise power at the output of receive filter. For the cyclostationarity test, a Kaiser 

window of length 61 and parameter 1 0 is employed to compute the estimates of 

covariances used in the test, and a threshold of 23.0258 is employed for decision making 

(see Appendix G for the description of the test and parameters involved in it). 

This threshold value corresponds to a probability of false alarm P1 = I o-s [29]. 

The probability of false alarm represents the probability to decide that ~ = 0 is a CF for the 

delay -r = pK , when it is actually not; in other words, that the received signal is OFDM, 

when this is SCLD. The probability to correctly decide that the modulation format of the 

received signal is i , when indeed the modulation format i is transmitted, 

~~liJ, i = OFDM, SCLD, is used to evaluate the performance of the proposed recognition 

algorithm. This is calculated based on I 00 trials. 
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3.5.2. Numerical Results 

The estimated magnitude of the second-order (one-conjugate) CC of OFDM and SCLD 

signals is plotted versus cycle frequency and delay in Fig. 3.2 a) and b), respectively, for 

20dB SNR and 0.1 s observation interval. When comparing results presented in Figs. 3.1 

and 3.2, one can notice the existence of non-zero spikes in the estimated magnitude at 

frequencies different than CFs, and over the whole delay range. This is due to the finite 

length of the observation interval. The magnitude of the second-order (one-conjugate) CC 

at zero CF ( ~ = 0 ), is plotted versus delay (positive values) in Fig. 3.3 a) and b), for OFDM 

and SCLD signals, respectively. The peak corresponding to 1: = pK is to be noticed in the 

results presented for OFDM; no such peak appears for SCLD. 

Fig. 3.4 shows the estimated magnitude of the second-order (one-conjugate) CC of 

OFDM versus delay, for zero CF and at different SNRs. From Fig. 3.4 one can notice the 

significant peak at delay -r = pK. In addition, it is to be noted that the CC value at zero 

delay increases with a decrease in the SNR, which can be explained by the noise 

contribution to the CC, at zero CF and zero delay. Fig. 3.5 shows the estimated magnitude 

of the second-order (one-conjugate) CC of SCLD versus delay, for zero CF, and at 

different SNRs. From Fig. 3.5 one can notice that there is no significant peak along the 

delay axis, even at lower SNR values. As the SNR decreases, the same behavior of the CC 

at zero CF and zero delay can be noticed for SCLD signals as well. 

Recognition performance ofthe proposed algorithm is shown in Fig. 3.6. The probability 

of correct recognition, ~~li) , is plotted versus SNR, for i = OFDM, SCLD . It can be noticed 
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that with 0.1 s and 0.05 s observation intervals, r:,SoFDMtOFDM) equals one for SNR above 

- 9 dB and - 7 dB respectively; these results do not depend on the modulation type within 

the OFDM signal (4-PSK or 16-QAM). On the other hand, ~~scLotscLo) is always one for 

the whole investigated SNR range; these results hold regardless the SCLD modulation 

format. This can be easily explained, as for SCLD there is no statistically significant peak 

in the second-order (one-conjugate) CC magnitude at zero CF and over the searched 

delay range. Thus, the local maximum in the CC magnitude, which is selected in Step 1 

of the classification algorithm, is due only to the finite length of the observation interval, 

and does not pass the cyclostationarity test in Step 2 of the algorithm. Hence, a correct 

decision is made when recognizing SCLD modulations. This is in agreement with the 

value set for the probability of false alarms, which actually represents the probability to 

decide that the modulation format is OFDM when this is SCLD. Simulations have been 

performed for different pulse shapes at the transmit-side, such as rectangular for both 

SCLD and OFDM signals, root-raised cosine with roll-off factor 1 for SCLD signals, and 

raised cosine with 0.1 roll-off factor for OFDM signals. The same recognition 

performance is practically obtained, regardless the change in the pulse shape. 

26 



0.9 

0.8 

0.7 

"' /"""'. 0.6 
t-

I:Q_ 
0.5 ...__... 

~ 
0 0.4 
r:x.. 
0 .. 0.3 

u 
0.2 

0.1 

0 

a) 

0.25 

0.2 

"' 0.15 .,........_ 
t-

I:Q_ ...__... 
0 0.1 ....:l 
u 
U) .. 

u 
0.05 

0 

b) 

.. . -· 

~ . . .. . .. ' 

·t······ 
... ·· 

.. - .. 

~- ... -·· 

. , ... -···· 

__ .... -· 

, ... ·· 
-- :······ 

••• j ..... ·· \-· 

-· .-

····? .. 

. > 

:····· . 

. :······· 

·--.. ·? 

X 10"3 

"":····· 

!·· 

... ~ ·--
'·; · ., .; 

.... +--

i-- ··! --

Figure 3.1: The magnitude of second-order (one-conjugate) CC versus cycle frequency and 
delay (in absence of noise), for a) OFDM and b) SCLD signals in AWGN channel 

27 



·· ····· 

.{,. 

. -······ ·'. . . . . . 

.... ---· • .. j •• , 

-~ . . . .. . ---. . .j 

- . -. ~ 

a) o -o.oo2.o.o04 o oo6 p -. -0 008-0.01 

·-.,._ 

.. ; ····-. ~-

0.2 

..... 
N 0.15 ......... 
\-

CQ. ..__., 
Q 0.1 
.....:! 
0 
ifl 
~ 

<0 
0.05 

0 

b) 
Figure 3.2: The estimated second-order (one-conjugate) CC magnitude versus cycle 

frequency and delay (at 20 dB SNR), for a) OFDM and b) SCLD signals in AWGN channel 

28 



0. 

0.8 

0.7 
...... 

"' 0.6 ,.---.,. 
l-

0 
"--" 

~ 0.5 
Q 
r:z.. 

0.4 0 ... 
u 

0.3 

0.2 ..... · • 

0.1 

a) 
100 200 300 400 0 

't 

0.25 

0.2 

...... 
N 0.15 ,.---.,. 
l-

0 
"--" 

Q 
.....:l 
0 
U) 0.1 ... 

u 

0.05 .. 

b) 10 20 30 40 50 60 
't 

Figure 3.3: The magnitude of second-order (one-conjugate) CC at zero CF versus positive 
delays (in absence of noise), for a) OFDM and b) SCLD signals in AWGN channel 

29 



JSdBSNR 

0.8 

"' --;:--

e 0.6 
:E 
0 
j:,., 

0 
~ 0.4 

0.2 

a) ..... 
00 100 200 300 400 500 600 700 800 900 1000 

1.4 

1.2 
5 dB SNR 

~ ... 
e 0.8 

:E 
0 
j:,., 

0 0.6 . 
~ 

0.4 

0.2 

l ~ 
00 100 200 300 400 500 600 700 800 900 1000 b) 

2 

1.8 
OdB 

1.6 SNR 

1.4 

~ 1.2 ... 
e 

:E 
0 
j:,., 

0 0.8 
,j 

0.6 

0.4 

l 0.2 

oil. 
C) 0 I 00 200 300 400 500 600 700 800 900 1000 

t 

Figure 3.4: The estimated second-order (one-conjugate) CC magnitude ofOFDM signals (in 
AWGN channel) versus delay, at zero CF and a) 15 dB SNR, b) 5 dB SNR, and c) 0 dB SNR 

30 



a) 

b) 

0.25 

-0.2 

~ 
1-

0 
~0 0. 15 

....J 
C) 
Ul 

,J 
-o.I 

0.05 

l 
00 

0.4 

0.35 

0.3 

~ 0.25 
1-

e 
Cl 0.2 
....J 
C) 
Ul 

,J 0.15 

0.1 

0.05 

1\. 
00 

0.5 

0.4 

_..!:! 
1-

e. 0.3 
Cl 
....J 
C) 
Ul 

,J 
0.2 

0.1 

-- .a 

100 200 

·- --· 100 200 

_i., . t.i..o.. 

15 dBSNR 

... .. . .a. .... a .... 
300 400 500 600 700 800 900 1000 

~ 

5dBSNR 

.a .a. .............-. 
300 400 500 600 700 800 900 1000 

OdBSNR 

·- A . .fti .... ""'-" .... ' .... 
0o 100 200 300 400 500 600 700 800 900 1000 c) ~ 

Figure 3.5: The estimated second-order (one-conjugate) CC magnitude of SCLD signals (in 
AWGN channel) versus delay, at zero CF and a) 15 dB SNR, b) 5 dB SNR, and c) 0 dB SNR 

31 



0.95 

0.9 

0.85 

,....._ 

~ ' Q." 0.8 

0.75 

0.7 

0.65 

0.~ - 1 -10 

observation · 
interval 

-- i=OFDM with 16QAM, 0.05s observation interval 
-- i=OFDM with QPSK, 0.05s observation interval 
-- i=OFDM with 16QAM, O.ls observation interval 
-- i=OFDM with QPSK, O.l s observation interval 
-- i=SCLD, 0.05s observation interval 
-- i=SCLD, O.ls observation interval 

-8 -6 -4 -2 

SNR (dB) 
0 

Figure 3.6: The average probability of correct recognition P!}.1;>, i = OFDM, SCLD , versus 

SNR in A WGN channel 

3.6. Summary 

In this Chapter, we investigate signal cyclostationarity of OFDM, and apply the results to 

recognize OFDM against SCLD modulations in A WGN channel. We derive the analytical 

closed-form expressions for the nth-order cyclic (q-conjugate) CC, CCP, and CFs for an 

OFDM signal embedded in AWGN and affected by phase, frequency offset and timing 

errors, and obtain a necessary and sufficient condition on the oversampling factor 

(per subcarrier) to avoid cycle aliasing. Furthermore, based on the second-order 

(one-conjugate) CC, we propose an algorithm to discriminate OFDM against SCLD 
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,-------------------------------- -

modulations. The proposed recognition algorithm has the advantage that is devoid of 

preprocessing tasks, such as symbol timing, carrier and waveform recovery, and signal and 

noise power estimation. 
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Chapter 4 

Cyclostationarity-Based Recognition of OFDM Against 

SCLD in Time Dispersive Channel 

4.1. Introduction 

The algorithm proposed in Chapter 3 is applicable to the recognition of OFDM against 

SCLD signals in A WGN channel. Here we extend the applicability of this algorithm to 

time dispersive channels. We study the nth-order cyclostationarity of OFDM and SCLD 

signals affected by a time dispersive channel, A WGN, carrier phase, and frequency and 

timing offsets. We derive analytical closed-form expressions for the nth-order 

(q-conjugate) CCs, nth-order (q-conjugate) CFs, nth-order (q-conjugate) CCPs of such 

signals. Then, we obtain a necessary and sufficient condition on the oversampling factor 

(per subcarrier) to eliminate cycle aliasing for OFDM and SCLD signals. Second-order 

CCs are finally employed to develop the recognition algorithm. In addition, we investigate 

the computational complexity ofthe proposed recognition algorithm. 
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4. 2. Cyclostationarity of Signals of Interest 

4.2.1. Channel and Signal Models 

Channel Model 

Let us assume that the signals of interest are transmitted through a time dispersive channel, 

which also corrupts the signal by adding white Gaussian noise. The impulse response of the 

time dispersive channel is 

M 

h(t) = L h(~m)O(t - ~m) ' (4.1) 
m=1 

with h(~".) as the channel coefficient at delay ~"', m = l, ... M. 

SCLD Signal Model 

If an SCLD signal is transmitted through the above channel, the output of the matched 

filter at the receive-side is a baseband waveform, given by [27] 

oo M 
'"scw (t) = a ejO e j

2
rtl1fct L Islh(~m)g(t - ~m - IT- ET) + w(t) . (4.2) 

1=-oo m=l 

The discrete-time baseband signal, rscLo (u) , obtained by oversampling rscLo (t) at a rate 

fs = pT-1 
, with p as the number of samples per symbol ( oversampling factor), is given by 

(4.3) 
1=-oo m=l 

where w(u) is wide-sense stationary zero-mean complex Gaussian noise and urn = ~mfs (not 

necessarily an integer). 
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OFDM Signal Model 

The continuous-time baseband equivalent of a transmitted OFDM signal is given by [ 18], 

1 K - 1 co 
X (t)=--~ ~ s ej2rckllf,(t-IT) tr(t- /T). 

OFDM {";:;K L..,. L..,. k ,I g 
VA k=O 1=-oo 

(4.4) 

At the receive-side, the continuous-time baseband equivalent is given by 

K - 1 co M _ 

roFoM (t)= aej9 ej2rc!lfct I I Isk,lh(~,)ej2rckD.fK(t-C, .. - IT-tT) g(t -~m- IT - ET) + w(t). (4.5) 
k=O 1=-co m=l 

A discrete-time baseband OFDM signal, roroM (u), is obtained by oversampling roroM (t) at 

a rate fs = pKT,,-1 
, with pK as a positive integer which represents the number of samples in 

the useful symbol duration, and p as the number of samples per symbol per subcarrier 

(oversampling factor per subcarrier). Note that for the SCLD signals there is a single carrier 

(K = I) and, thus, p simply becomes the number of samples per symbol (oversampling 

factor) . The expression for the discrete-time baseband OFDM signal can be easily written 

as, 

).3.!:._/lrruK-1 co M ;·~k(u-u - /D-tD) 
·e K ~c " ~ ~ ~ K "' 

r oFoM (u) = ae1 e P L.... L.... L....sk,1h(u,) e P g(u -um - lD - ED)+ w(u), (4.6) 
k=OI=-«> m=l 

where D = pK (1 + Tcpru-1
) is the number of samples over an OFDM symbol. 

Note that equations (4.2) and (4.3) represent particular cases of (4.5) and (4.6), 

respectively, for K = 1 and ~P = 0 (T = T,,). In addition, if h(t) = 8(t), (the channel is 

AWGN) (3.1), (3.2), (3.9) and (3.10) represents particular cases of (4.2), (4.3), (4.5) and 

(4.6), respectively. 
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4.2.2. Cyclostationarity of SCLD Signals 

Results obtained from the analysis performed in Appendices D, E and F for the nth-order 

cyclostationarity of the SCLD signals are presented as follows. For the continuous-time 

baseband received signal, rscw (t), the nth-order (q-conjugate) time-varying cumulant at 

delay vector i (see Appendix D for the comments on the delay values), is obtained as2 

II 

J2n6f c I <->" r, 
c (t- i) = an c ej(n- 2q)9 ej2rt(n- 2q)6fct e p : i 

rsc LD ' n,q s,n ,q 

00 

® L 8(t - IT - £T)+ cw(t ; i)n,q> (4.7) 
1=-oo 

where c,.,,.q is the nth-order (q-conjugate) cumulant of the signal constellation, cw(t ; i), ,q 2 

is the nth-order (q-conjugate) time-varying cumulant of w(t) , and (- ) P is the optional 

minus sign associated with the optional conjugation (*)p, p = l, ... ,n . 

The nth-order (q-conjugate) CC at CF y and delay vector i , the nth-order (q-conjugate) 

CCP at CF y and spectral frequency vector f , and the CFs for the continuous-time signal, 

rscLo (t) , are respectively given as 

- j2rt6fc f. (- )p 'i:p 
- ( - . -) _ n T - l j(n-2q)9 - j2rtPET p=i 
Crscw y, T n,q - a Cs,n,q e e e 

(4.8) 
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n- l 

X H (*)" ((-)n (~- L (-) p ((-)pjp- 11fc)) 
p=l 

n-l 

X c<•)" ((-)n(~-L(-)p((-)pjp - /1fc))+Cw(y;f\,,q, (4.9) 
p=l 

and 

(4.10) 

A necessary and sufficient condition on the oversampling factor, p, to eliminate cycle 

aliasing is derived in Appendix F, which will be presented in Section 4 .3. Under the 

assumption of no aliasing, the expressions for the nth-order (q-conjugate) CC, CCP, and 

CFs for the discrete-time SCLD signal, rscLD (u), can be easily derived based on ( 4.8)-( 4.1 0) 

and by using (2.11)-(2.13). 

4.2.3. Cyclostationarity of OFDM Signals 

Results derived in Appendices D, E and F for the nth-order cyclostationarity of the 

OFDM signal are presented as follows. The nth-order (q-conjugate) time-varying cumulant 

at delay vector i (see Appendix D for comments on the delay values) for the continuous-

time baseband received OFDM signal, romM (t) , is given by 
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CXl 

® L 8(t-lT-sT)+cw(t;i) 11,q· (4.11) 
1=-«J 

The nth-order (q-conjugate) CC at CF y and delay vector .:r , the nth-order (q-conjugate) 

CCP at CF y and spectral frequency vector i , and the CFs for the continuous-time 

baseband received OFDM signal, rornM (t) , are respectively given as 

+ cw(y;i)n,q' (4.12) 

C (y- ·f) = anc r - lej(n-2q)9e - j2rrPtT 
roFDM ' n,q s,n,q 

K - ln- 1 

x z::rr H(·)p cc-)PJP -t:.fc)ot·>Pc(- )pJp - 1::.1c - k!::.fK) 
k=O p= l 

n- 1 

X H (•). ((- )
11 
(/3- L (-) P ((- ) P JP - !::.fc - k!::.JK) - (n - 2q )k!::.JK) + k!::.JK) 

p =l 

n- 1 

X ae·>. (( -)n(/3-L( -) p((- ) PJP- !::.fc - k!::.JK)- (n - 2q)k!::.JK )) 
p= l 

(4.13) 

and 

(4.14) 

Note that (4.8) and (4.12), and (4.9) and (4.13) give the analytical expressions for the CC 

and CCP, respectively, only at CFs and certain delays (see Appendix D for comments on 

the delays). At other frequencies and delays, the CC and CCP equal to zero. It is also to be 

noted that ( 4.8)-( 4.1 0) are particular cases of ( 4.12)-( 4.14) for a single carrier ( K = 1) and 

no cyclic prefix ( Tcp = 0 , T = Tu ). This is expected from the comments on the signal model 
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(see Section 2.1 ). In addition, one can easily notice that if the channel is A WGN 

( h(t) = 8(t) ), then (3 .4)-(3 .6) and (3 .12)-(3 .14) are obtained as particular cases 

of (4.8)-(4.10) and (4.12)-(4.14) for SCLD and OFDM, respectively. From (4.8) and (4.12) 

one can notice that the nth-order (q-conjugate) CCs of both SCLD and OFDM signals 

depend on the nth power of the signal amplitude, the nth-order (q-conjugate) cumulant of 

the signal constellation, phase, timing and carrier frequency offsets, channel impulse 

response, pulse shape, and symbol period. In addition, the CCs of the OFDM signal depend 

on the frequency separation between two adjacent subcarriers, 6./K, and the number of 

subcarriers, K. On the other hand, CC magnitude of the signal component does not depend 

on phase, timing and carrier frequency offsets. Owing to the nature of the noise, cJy; i ),,q 

is non-zero only for n = 2 and q = 1 , at zero CF and for zero delay vector. 

From (4.9) and (4.13), one can notice that the nth-order (q-conjugate) CCPs of both SCLD 

and OFDM signals depend on the nth power of the signal amplitude, the nth-order 

(q-conjugate) cumulant of the signal constellation, phase, timing and carrier frequency 

offsets, symbol period, and the Fourier transform of the pulse shape and channel impulse 

response. In addition, the CCPs of the OFDM signal depend on the frequency separation 

between two adjacent subcarriers, 6.JK, and the number of subcarriers, K. According to 

(4.10) and (4.14), if n = 2q , the CFs are integer multiples of the inverse of the SCLD and 

OFDM symbol period, respectively. Otherwise, there is a shift of these values due to the 

carrier frequency offset, 6.fc . 
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A necessary and sufficient condition on the oversampling factor per subcarrier, p , to 

eliminate cycle aliasing is derived in Appendix F, which will be presented in Section 4.3. 

Under the assumption of no aliasing, the expressions for the nth-order (q-conjugate) CC, 

CCP, and CFs for the discrete-time OFDM signal, rornM (u), can be easily derived based on 

( 4.12)-( 4.14) and by using (2.11 )-(2.13). 

4.3. A Necessary and Sufficient Condition on the 

Oversampling Factor (per Subcarrier) to Eliminate Cycle 

Aliasing for OFDM and SCLD Signals 

In signal processing applications, cyclostationary continuous-time signals are subject to 

sampling operations. This can lead to aliasing in both cycle and spectral frequency 

domains [26]. In the application that we study here, the continuous-time signal is 

oversampled at the output of the receive low-pass filter. Therefore, it is important to find a 

condition to eliminate aliasing. As mentioned in Chapter 2, the Nyquist condition has to be 

fulfilled to eliminate spectral aliasing. A necessary and sufficient condition on the 

oversampling factor (per subcarrier), p , to eliminate cycle aliasing for both OFDM and 

SCLD signals is derived in Appendix F and presented here for good channels (there are no 

spectral nulls in the channel amplitude response). For bad channels (there exist spectral 

nulls in the channel amplitude response) the same reasoning can be applied to obtain a 

condition on the oversampling factor to eliminate cycle aliasing (see Appendix F). 

For the SCLD signals, the condition on the oversampling factor in case of good channels is 
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(4.15) 

where W represents the one-sided bandwidth of the pulse shaped signal. One can easily 

notice that the oversampling factor, p, depends on the order n, symbol period, T , and the 

bandwidth (unless otherwise mentioned, the bandwidth is referred to as the one-sided 

bandwidth for both OFDM and SCLD signals) of the pulse shaped signal, W. For example, 

if n = 2 and the received SCLD signal is band-limited to W = (1 + r0 )(2Tf1
, with the roll-off 

factor r
0 

= 0.35 , a necessary and sufficient condition on the oversampling factor, p, to 

eliminate cycle aliasing is p ~ 3 . Note that for SCLD we use the term oversampling factor 

for p , as in this case there is a single carrier (K = 1) , and the oversampling factor per 

subcarrier simply becomes the oversampling factor. 

For the OFDM signal and a good channel, a necessary and sufficient condition on the 

oversampling factor per subcarrier, p, to eliminate cycle aliasing is (see Appendix F for 

derivations): 

(4.16) 

One can easily notice that the oversampling factor per subcarrier, p , depends on the order 

n, number of conjugations, q, number of subcarriers, K , useful symbol duration, Tu, and 

the bandwidth of the pulse shaped signal, W . For example, if n = 2, q = I , K = 128, and 

W = r-1 =( 1.251'., r 1 (Tcp = Tu I 4) , the necessary and sufficient condition on the oversampling 

factor per subcarrier, p, given by ( 4.16), is p ~ 1 . 

Results presented here for both SCLD and OFDM signals are valid only for n even. For n 

odd we cannot derive such a condition, as the nth-order (q-conjugate) CCP equals zero. 
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To be noted that results obtained for SCLD and OFDM signals and good channels are the 

same as for the A WGN channel (for the latter see Chapter 3). 

4.4. Recognition of OFDM Against SCLD by Exploiting 

Signal Cyclostationarity 

Results presented in previous sections are employed here to develop an algorithm for the 

recognition ofOFDM against SCLD, when affected by a time-dispersive channel, AWGN, 

carrier phase, and frequency and timing offsets. We extend the algorithm proposed in 

Chapter 3 for the recognition of OFDM against SCLD in the A WGN channel to time 

dispersive channels. 

4.4.1. Discriminating Signal Features 

We investigate the lowest-order non-zero CC to recognize OFDM against SCLD signals. 

This is of second-order (one-conjugate), as the first- and second-order (zero-conjugate) 

CCs for PSK and QAM signals with more than four points in the signal constellation equal 

zero due to zero values of cs 1o and cs 20 , respectively [5], [11]. Under the assumption of 
I I I' 

no aliasing, with n =2 , q =l , 't = [• O]t, and by using (4.8), (4.10), (4.12), (4.14), (2. 11), 

and (2.13) one can easily obtain the second-order (one-conjugate) CCs and sets ofCFs for the 

discrete- time SCLD and OFDM signals respectively, as3 

.2rc Arr 
}-~, 1: 

(
R. ) 2 - 1 - j2rcPEP p c cr. ....,; T 2 1 =a cs 2 1p e e 

SCLD , , , 
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(4.17) 

(4.18) 

K~~~o = {~ 1 ~ = /p- 1
, l integer} , ( 4.19) 

and 

K~~M = {~ 1 ~ = ID- 1
, I integer} . (4.20) 

by denoting this function 3K('r:,u"' ,u"' ) , (4.18) can be further expressed as, 
I 2 

( 4.21) 

According to the analysis carried out in Appendix D, these results are valid for specific 

ranges of the delay values. For SCLD and OFDM, these delay values belong to the interval 

zero to that corresponding to symbol period of SCLD and OFDM, respectively 

(for rectangular pulse shape). At zero delay, the second-order (one-conjugate) CC 

magnitude reaches maximum, and approaches zero at delay corresponding to the symbol 

period for both SCLD and OFDM signals (rectangular pulse shape). If the pulse shape is 

non-rectangular, non-zero CC magnitude values can appear also at delays beyond that 

corresponding to the symbol period. For the OFDM signal, a significant non-zero value of 
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the second-order (one-conjugate) CC magnitude can be noticed at delays corresponding to 

the useful symbol period, ±pK . This is due to the existence of the cyclic prefix. At delays 

around zero and ±pK , other peaks can appear (local maxima) in the second-order 

(one-conjugate) CC magnitude, depending on the location of the channel coefficients, 

urn, m = 1, . .. ,M (here we assume that uM < ~Pis ). The magnitude of the second-order 

(one-conjugate) CC of SCLD and OFDM signals (in the absence of noise) is plotted versus 

CF and delay in Fig. 4 .1 a) and b), respectively (for the parameter setting see Sections 3.5.1 

and 4.5.1). In addition to the peak at zero delay, CC magnitude peaks are visible for the 

OFDM signal at • = ±pK and for different CFs. To be noted that other peaks (local 

maxima) appear around zero and ±pK delays; these are due to the time dispersive channel, 

and occur at delays -r , such that T- u,
1 
+ um

2 
= 0 and T -um, + u,

2 
= ±pK, m p ~ = 1, .. . , 5 . 

To be noted that this is an extension of the results presented in Chapter 3 for the A WGN 

channel. If h(u1) = 1, withu1 = 0, andh(uP) = O, p=2,·· ·M , (4.17) and (4.19) give the 

expressions for the second-order (one-conjugate) CCs for SCLD and OFDM signals in 

A WGN channel, respectively. With sufficiently large K , the peaks in the CC magnitude at 

delays ±pK do not occur in the vicinity of zero, and the existence of such peaks represents 

a distinctive characteristic of the OFDM signal when compared with SCLD. The existence 

of such peaks in the second-order (one-conjugate) CC magnitude of the OFDM signal 

(at zero CF, ~ = 0) is employed here as a discriminating feature to identify OFDM against 

SCLD. 
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4.4.2. Proposed Recognition Algorithm 

At the receive-side, the bandwidth of the received-signal is roughly estimated, and a 

low-pass filter is used to remove the out-of-band noise. The signal is down-converted and 

( over)sampled at a rate equal to p times the signal bandwidth estimate. Discrimination 

between OFDM and SCLD signals is performed by applying the following algorithm, 

which consists of two steps. 

Step 1: 

Based on the observation interval available at the receive-side (L samples), the magnitude 

of the second-order (one-conjugate) CC of the baseband received signal is estimated at zero 

CF, p = 0 , and over a range of positive delay values. This range is chosen to cover possible 

peaks at pKmin and pKmax, with Kmin and Kmax as the minimum and maximum number of 

subcarriers that we consider (the number of subcarriers is assumed unknown at the 

receive-side and a range of possible values considered). The peak pKmin has to be far 

enough from zero delay to serve as an unambiguous discriminating feature between OFDM 

and SCLD signals. Over the considered delay range, we select that delay value for which the 

CC magnitude reaches a maximum. 

Step 2: 

With n = 2 and q = 1, the cyclostationarity test developed in (28] is used to check whether 

or not p = 0 is indeed a CF for the delay selected in Step 1. This test consists of comparing 

a statistic based on the second-order (one-conjugate) CC, against a threshold. This threshold 

corresponds to a certain probability of false alann, P1 , which actually represents the probability to 
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decide that ~ = 0 is a CF for the delay selected in the Step 1 of the recognition algorithm, 

when it is actually not; in other words, that the received signal is OFDM, when this is 

SCLD (see Appendix G for the test description). We actually compare the test statistics with a 

thresholds, which correspond to P1 = 1 o-5 
. If the test statistic exceeds the threshold, then we 

decide that the received signal is OFDM. Otherwise we declare the signal as SCLD. 

As one can notice, the algorithm proposed here to recognize OFDM against SCLD does 

not require symbol timing, carrier and waveform recovery, or estimation of signal and noise 

powers. 

4.4.3. Complexity Analysis of Proposed Recognition 

Algorithm 

As previously presented, the proposed recognition algorithm consists of two steps. 

As such, the computational complexity of the algorithm is determined by the estimation of 

the second-order (one-conjugate) CC at zero CF and over the considered delay range, 

-r E [pKmi,, PKmax l (Step 1), and estimation of a covariance matrix used with the 

cyclostationarity test for decision making (Step 2). 

In the following we investigate the computational complexity associated with both Step 1 and 

Step 2. 1n Step 1 we estimate the second-order (one-conjugate) CC at zero CF for a number 

of delays equal to •max- •min + I , with • max = pKmax and • min = pK,i, as integers. 

According to (2.14)4
, estimation ofthe second-order (one-conjugate) CC at zero CF, ~ = 0, 

4 For zero-mean processes, (2.14) gives the estimator for the second-order (n=2) /one-conjugate (q= 1) CC. 
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- ----------

and for a specific delay value, requires L complex multiplications and L -I complex 

additions, where L is the total number of processed samples at the receive-side. Therefore, 

estimation of the second-order (one-conjugate) CCs at zero CF and for all delay values 

within the range [ • min, • max ] requires pL(K,ax- Km;n) + L complex multiplications and 

p(L - I)(K,a.r- K,;
11

) + (L -I) complex additions. Hence, the total number of complex 

multiplications and additions required for Step 1 of the recognition algorithm is 

p(2L-l)(Knuu- Km;
11
) +(2L-l). For an OFDM signal observed over Tabs seconds and 

sampled at a rate !,. = pWoFoM , with WoFoM as the bandwidth of the OFDM signal, the total 

number of complex computations (additions and multiplications) required in Step 1 can be 

easily expressed as p(2p~bsWornM - l)(Kmax - Km;n ) +(2pTobsWornM - 1). For the SCLD signal, 

this number can be similarly expressed as p(2pTobsWscw - 1)(Kmax - K,;11 ) + (2pTobsWscLo - 1) . 

Note that for the SCLD signal, the sampling frequency is fs = P~cw, with ~cw as the 

bandwidth of the SCLD signal. 

For Step 2 we are interested in the computation of the covariance matrix :L2,1 needed for 

the cyclostationarity test (for details on the test and parameters that this involves, one can 

see Appendix G). This requires estimation of Q2 0 and Q2 1 • Based on to (G.8) and (G.9), . . 

one can easily find that estimation of Q2 0 requires 2(L + l)Lsw + (L + 2) complex 

multiplications and 2(L - l)Lsw + (Lsw - 1) complex additions, where Lsw is the length of 

spectral window, w<Lsw) . Furthermore, the estimation of Q21 additionally requires 3Lsw + 1 

complex multiplications and Lsw - I complex additions. We can thus state that the total 

number of complex computations required in Step 2 is ( 4L + 5)Lsw + (L + 1). 
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From the above results, one can notice that the computational complexity of the algorithm 

is mainly given by Step 1. For example, with the parameters setting as given under Section 

3.5.1 , Kmin = 32, and K max = l 024 , the number of complex computations required in the 

Step 1 and Step 2 ofthe algorithm is as follows. 

Table 4.1 : Number of complex computations required in Step 1 and Step 2 of the algorithm 

Step 1 Step 2 Total 

number of 

Number of Number of Number of Number of 
complex 

complex complex complex complex 
computations 

multiplications additions multiplications additions 

OFDM 1.2701 x 109 1.2700 X l 09 3.9360 x 107 3.9039 X 107 2.6184 x 109 

SCLD 6.3504 x 107 6.3500 x l07 1.9683 X 106 1.9519 x 106 1.3094 x 108 

With a high performance digital signal processor, which is capable of executing 1500 

million floating-point operations per second [30], the aforementioned number of 

computations will be performed in approximately 1.8 s and 87 ms for OFDM and SCLD, 

respectively. 
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4.5. Simulation Results 

Simulations are performed to confirm theoretical developments, and results of these 

simulations are presented in the following. 

4.5.1. Simulation Setup 

Here we consider the simulations setup used in Section 3.3.2. In addition to that, the 

channel considered in simulations is a five-tap (M=5) time dispersive channel, with 

coefficients h(~ 1 ) = 0.227, h(~2 ) = 0.460, h(~3 ) = 0.688, h(~4 ) = 0.460, and h(~5 ) = 0 .688 

[31 ], and ~;, i = 1, ... , 5, uniformly distributed over [0, ~5 ] , with ~5 = 25 f.1S . The threshold 

used for decision making is set to 23.0258 (see Appendix G for the description of the test 

and parameters involved in it). This threshold value corresponds to a probability of false 

alarm P1 = 10-5 [29]. The probability to correctly decide that the modulation format of the 

received signal is i, when indeed the modulation format i is transmitted, 

P,~li), i = OFDM, SCLD , is used to evaluate the performance of the proposed recognition 

algorithm. This is evaluated based on 1 00 trials. 

4.5.2. Numerical Results 

The estimated magnitude of the second-order (one-conjugate) CC of OFDM and SCLD 

signals is plotted versus cycle frequency and delay in Fig. 4.2 a) and b), respectively. 

These results are obtained for 20dB SNR and O.ls observation interval. When comparing 

results presented in Figs. 4.1 and 4.2, one can notice the existence of non-zero spikes in the 
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estimated magnitude at frequencies different than CFs, and over the whole delay range. 

This is due to the finite length of the observation interval used for estimation. 

The magnitude of the second-order (one-conjugate) CC at zero CF, p = 0 , is plotted versus 

delay (positive values) in Fig. 4.3 a) and b), for OFDM and SCLD signals, respectively. 

These results are obtained by using ( 4.17) and ( 4.21) in the absence of noise, with signal 

parameters set as specified in Sections 3.5.1 and 4.5.1. Peaks at delays 

-r = ±(pK + u"'
1 

- um)• mpm2 = 1, ... ,5, are to be noticed for OFDM; such peaks do not 

appear for SCLD. 

Fig. 4.4 shows the estimated magnitude of the second-order (one-conjugate) CC ofOFDM 

versus delay, for zero CF and at different SNRs. From Fig. 4.4 one can notice the peaks at 

delays -r = ±(pK +u"' - u"' ), m1,m2 = 1, ... ,5 , which are specific to the OFDM signal. It is 
I 2 

also to be noted that the CC value at zero delay increases with a decrease in the SNR, 

which can be explained by the noise contribution to the CC at zero CF and zero delay. Fig. 

4.5 shows the estimated magnitude of the second-order (one-conjugate) CC of SCLD 

versus delay, for zero CF and at different SNRs. From Fig. 4.5 one can notice that there is 

no significant peak along the delay axis, even at lower SNR values. As the SNR decreases, 

the same behavior of the CC at zero CF and zero delay can be noticed for SCLD signals, as 

well. 

Recognition performance of the proposed algorithm is shown in Fig. 4.6. The probability 

of correct recognition, F,;~li) , is plotted versus SNR, for i = OFDM, SCLD. It can be noticed 

that with 0.1 s and 0.05 s observation intervals, F,;SornMtoFoM) equals one for SNR above 
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- 9 dB and -7 dB respectively. These results do not depend on the modulation type 

within the OFDM signal ( 4-PSK or 16-QAM). On the other hand, ~~scLo!scLo) is always 

one for the whole investigated SNR range. These results hold regardless the SCLD 

modulation format. 

In Fig. 4.7, the probability of correct recognition, ~~lil , is plotted versus SNR for 

i = OFDM, SCLD, in time dispersive and A WGN channels, respectively. One can notice 

that the recognition performance in the time dispersive channel is close to that in the 

AWGN channel, with both 0.1 sand 0.05 s observation intervals. 

In Fig. 4.8, the probability of correct recognition, ~~lil, is plotted versus SNR for 

i = OFDM, SCLD, assuming that different observation intervals are available at the receive

side. As expected, the recognition performance depends on the observation interval. With 

sufficient observation interval (above 10 ms), the probability of correct recognition reaches 

one above a certain SNR; the longer the observation interval, the lower the SNR at which 

this performance is achieved. However, for a shorter sequence (see Tobs = 7 ms ), the 

probability of correct recognition does not reach one even at higher SNR (the ~~li l reaches 

a floor); this is due to the inaccurate estimation when insufficient data are available at the 

receive-side. 
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Figure 4.1 : The magnitude of second-order (one-conjugate) CC versus cycle frequency and 
delay (in absence of noise), for a) OFDM and b) SCLD signals in time dispersive channel 
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Figure 4.2: The estimated second-order (one-conjugate) CC magnitude versus cycle 
frequency and delay (at 20 dB SNR), for a) OFDM and b) SCLD signals in time dispersive 
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4. 6. Summary 

In this Chapter, we investigate the cyclostationarity of OFDM and SCLD signals, when 

affected by a time dispersive channel, white Gaussian noise, carrier phase, frequency and 

timing offsets. We derive the analytical closed-form expressions for the nth-order 

(q-conjugate) CCs, nth-order (q-conjugate) CCPs, and nth-order (q-conjugate) CFs for 

OFDM and SCLD signals, and obtain a necessary and sufficient condition on the 

oversampling factor (per subcarrier) to avoid cycle aliasing. Furthermore, based on the 

second-order (one-conjugate) CC, we propose an algorithm to discriminate OFDM against 

SCLD modulations. The proposed recognition algorithm has the advantage that is devoid 
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of preprocessing tasks, such as symbol timing, carrier and waveform recovery, and signal 

and noise power estimation. 
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Chapter 5 

Conclusions and Future Work 

In this thesis, we investigate the nth-order cyclostationarity of orthogonal frequency 

division multiplexing (OFDM) and single carrier linearly digitally (SCLD) modulated 

signals affected by additive white Gaussian noise (A WGN) and time dispersive channel, 

with a view to recognizing OFDM against SCLD modulations. An algorithm is proposed 

based on a second-order cyclic cumulant to recognize OFDM against SCLD. The proposed 

recognition algorithm shows good recognition performance even at low signal-to-noise 

ratio (SNR). 

The major contributions of this thesis includes the following: 

We investigate the-nth-order cyclostationarity of OFDM signal embedded in A WGN, and 

subject to phase, frequency and timing offsets. The analytical closed-form expressions for 

the nth-order (q-conjugate) cyclic cumulants (CCs), cycle frequencies (CFs), and cyclic 

cumulant polyspectra (CCPs) ofOFDM signal are derived. 

We obtain a necessary and sufficient condition on the oversampling factor (per subcarrier) 

to avoid cycle aliasing for OFDM signals, when these are affected by A WGN, phase and 

frequency and timing offsets. 

An algorithm based on a second-order CC is proposed to recognize OFDM against 

SCLD modulations in A WGN channel as an application of signal cyclostationarity to the 

modulation recognition problem. 
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We further investigate the nth-order cyclostationarity of OFDM and SCLD modulated 

signal affected by a time dispersive channel, A WGN, carrier phase, and frequency and 

timing offsets. The analytical closed-form expressions for the nth-order (q-conjugate) CCs, 

CFs, and CCPs of such signals are derived. 

A necessary and sufficient condition on the oversampling factor (per subcarrier) to 

eliminate cycle aliasing for both OFDM and SCLD signals are obtained for good and bad 

channels. It is shown that for good channels, this condition is same as in AWGN. 

We extend the applicability of the proposed algorithm in AWGN channel to time 

dispersive channels. The proposed algorithm obviates that it does not require the 

preprocessing tasks; such as symbol timing, carrier and waveform recovery, and signal and 

noise power estimation. This is of practical significance, as algorithms that rely less on 

preprocessing are of crucial interest for receivers that operate with no prior information in a 

non-cooperative environment. 

The performance of the proposed algorithm is evaluated through computer simulations. 

It can be noticed that the recognition performance of the proposed algorithm does not 

depend on the modulation type within the OFDM signal and modulation format used for 

SCLD in both A WGN and time dispersive channels. In addition, the recognition 

performance of the time dispersive channel is close to that in A WGN channel. 

The computational complexity associated with the proposed recognition algorithm is 

also investigated. It is shown that the computational complexity mainly depend on the first 

step of the proposed recognition algorithm. 
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Suggested future work as follows: 

Investigation of the applicability of the proposed algorithm to environment with different 

propagation characteristics, such as frequency-selective fading. 

Study the applicability of signal cyclostatioanrity to blind parameter estimation, such as 

number of subcarriers, cyclic prefix period and useful symbol periods. 

Exploitation of the OFDM signal cyclostationarity for modulation recognition within the 

OFDM signals. 

We will improve the accuracy of the proposed recognitnio algorithm by appropriately 

choosing Kmin . 
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Appendix A 

Cyclic Cumulants and Cycle Frequencies of Received 

OFDM Signal in A WGN Channel 

The expressions for the nth-order (q-conjugate) CC and CFs for the received baseband 

OFDM signal are derived here. With the received baseband OFDM signal as in (3.9), and 

by using the multi-linearity property of the curnulants [32], the time-varying nth-order 

(q-conjugate) curnulant of rornM (t) at delay vector i can be expressed as follows2
, 

C [ • • ] j2rtk6.JK (t+'t,-l,T - ET) x umsk 1 , ..• , sk 1 ,sk 1 , . •. ,sk 1 e ... 
1' I n- q- 1• n- q- 1 n- q, n- q n, n 

j21tk D.fK (t+tn- q- 1- /n - q- JT - ET) - j2rrk6.fK (t+tn- q - /n- qT - ET) - j2rtk D.fK (t+tn - tnT - ET) 
xe e .. . e 

xg•(t + in-q - ln-qT- r.T) ... g*(t +in -lnT- r.T)+ cw(t; i)n,q' 

where * denotes conjugation. 

(A.2) 

In the following derivations we consider only the curnulant of the signal component5. 

As the data symbols {sk,t} on each subcarrier k, k = l , .. . ,K, are i.i.d. and mutually 

independent for different subcarriers, Cum[s* 1 , .. . ,sk 1 ,s; 1 , .. . ,s; 1 ] equals zero, 
Jtl n- q - l •n-q- 1 n- q•n- q n •n 

unless k1 = · · · = k
11 

= k and 11 = ··· = In = I . This occurs for certain delays, :r P, p = 1, ... , n . 

5 The cumulant of the noise component has to be added to the final result. 
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For the OFDM signal, the values of these delays belong to the interval zero to the OFDM 

symbol period, T (for a rectangular pulse shape). For a non-rectangular pulse shape, this 

interval exceeds the symbol period. At zero delays, the cumulant magnitude reaches a 

maximum, as this is calculated for the signal and its identical replicas. At delays equal to 

the useful symbol period, Tu, the cumulant magnitude reaches a local maximum, due to the 

existence of the cyclic prefix. Non-zero cumulant magnitudes at delays over the symbol 

period (for rectangular pulse shape) or beyond (for non-rectangular pulse shape), other than 

those previously mentioned, are due to the inverse Fast Fourier transform (IFFT) operation. 

Under such conditions, ( k1 = · · · = kn = k and /1 = · · · = l, = l ), the cumulant 

Cum[skJ •···•sk,l•s;,,, ... , s;,~] is non-zero and equals the nth-order (q-conjugate) cumulant for 

the signal constellation, cs,n,q . With k1 = · · · = k" = k, 11 = · · · = !" = l, the cumulant 

oo n 
X I ej2rr(n- 2q)kt.fK(t- IT- ET)ITg(*)p (t+ip -/T-ET), 

1=-m p = l 

n oo 

xej2n(ll- 2q)kllfKtng(*)p(t+1p)® I 8(t-lT-sT). (A.3) 
p =l I=~ 

The Fourier transform of the nth-order (q-conjugate) time-varying cumulant of the 

received baseband OFDM signal can be expressed as 
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co 

:S{cr. (t;i)n q}= Jcr. (t ; i)nqe- 12rfi
1
dt OFDM • OFDM • 

-co 

n co 

xej2n(n- 2q)kllfKtfi g(•)p(t+-tp ) ® L o(t - !T -£T )]e- j2rfitdt, (AA) 
p= l 1=-co 

where 3 {-} denotes the Fourier transform. 

By using the convolution theorem, (A.4) can be written as 

co n co 

X I ejZn(n- Zq)kllfKung(•)P(u+-tp ) L o(t - u - !T -£T) e- i 2rfi1dudt. (AS) 
-co p= l 1=-co 

With the change of variables t - u - r.T = v and u = u , and by using the identity 

3{_L 8(t- IT)}= T-1 I 8(y - Ir-1
) , one can easily show that 

I I 

co n 
X I ej2n(n- 2q)kt.fKt1 I1 g (•)p (u + -t p )e- j2n(y-(n- 2q )llfc)u du 

-co p= l 

X Lf>(y-(n - 2q)~fc -!T- '). (A.6) 
I 

It can be seen that 3 {croFoM (t;i)
11
,q}:;t: O only if y = IT- 1 +(n -2q)!J.fc, with las an integer. 

By using the notations p = Ir-1 and u= t, (A.6) can be written as 
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oo n 
x J ej27t(n-2q)kt>fK' TJg(•)P (f+iP)e-j27t~tdt 

-oo p=l 

x Lb(y -(n-2q)~fc -/T- 1
) . (A.7) 

I 

By taking the inverse Fourier transform of (A.7) one can easily show that c, (t;-T)n q can 
OFDM ' 

be expressed as5 

- C. -) -IB j2rrr' Cr. t , T n q- y-e , 
OFDM ' 

(A.8) 
{Y} 

where fy} denotes the set {y I y = ~ + (n- 2q)~fc, ~ = lr-1
, I integer}, and B1 ts the 

coefficient corresponding to frequency y in the Fourier senes expansiOn of the 

time-varying cumulant. This implies that the cycle frequency domain is discrete, and the 

spectrum consists of a set of finite-strength additive components. By using (2.2) and (A.8), 

one can easily notice that the nth-order (q-conjugate) CC at CF y 5
, and the CFs are 

respectively given as 

oo n 

x J IJ g(•lp (t + T P )ej27t(n- 2q)ktifKt e - j27t~t dt, (A.9) 
-oo p =l 

and 

(A.lO) 

Note that K:ornM is used here to denote the CFs which corresponds to the nth-order n,q 

(q-conjugate) CC of the continuous-time OFDM signal. 
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AppendixB 

Cyclic Cumulant Polyspectrum of Received OFDM Signal 

in AWGN Channel 

The expression for the nth-order (q-conjugate) CCP of the received baseband OFDM 

signal is derived here. In this derivation, we consider only the signal component (no noise). 

By replacing (A.9) into (2.9), the nth-order (q-conjugate) CCP of r 0 FoM (t) can be expressed 

as 

00 00 

c (y- 0 f) = J 0 0 0 J c (y- 0 i) e - j2n]j'fl 0 0 0 e- j2nin-l'fn- l dT. 0 0 0 dT. 
roFDM ' n,q roFDM ' n,q I n- 1 

-<Xl -<Xl 

co n _ .. -
X J ej2n(n-2q)kt.fKt fl g(*)p (f+"f.p )e-j2n~te-j2nfi'tl ·· · e - j2nf,. l'fn-1d"f.l···d"f.n- ldt 

-<Xl p=l 

. _ K - I 00 _ 

= n y -1 j(n- 2q)9 - j2n~£T "' f (*)n (t) j2n(n-2q)kt:J.fKt e-j2n~t a cs ,n,q e e L.... g e 
k=O -oo 

00 

x J g (*)l (t + 'il)e(- )lj2nt:.fc'tle(-)l j2nkt:.fK'tle-j2n]j'tl d'il ... 

-<Xl 

00 

X J g (*)n -1 (t +"f. n- l )e( - )n-1 j2nllfc'in- l e( - )n- 1 j2nkt:.fK'tn- 1 e - j2njn-1in- 1 d"f. n- ldt. (B.J) 

-<Xl 

With a change of variables, i.e., t = t , ul = t + Lp 0 

··, un- 1 = t +•11-1' (B. I) becomes 
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n- 1 
K - 1 oo _ j 2n L (-)p((-)pjp-tifc-klifK )I XL J g(•). (t)ej2n(n-2q)ktifKt e - j2nPt e p = l dt 

k =O --m 

00 

X J g(•)1 (ul)e-j2n(jj-(-V:,.fc-(- )1ktifK)u1du
1 

. . . 

00 -

X J (•ln- 1 ( ) -J2n(fn- l -(-)n- lt!.fc-(-)n- lkt!.fK l 11n- ld 
g un- 1 e un- 1" (B.2) 

00 00 

By using that f g(i)e-12ni"' e12nt:.f'i di = G(j - tJ.f) and f g<·l (i)e- J2
n]'i ei 2

M.f'i di = a· (- j + tJ.f) , 

with G(f) as the Fourier transform of g(t) and tJ.f as a frequency shift, (B.2) can be 

rewritten as 

n-1 

X c <•>. ((-)ll (B-<I (-) p ((-) PJP - 11fc - kt1fK )) - (n- 2q )k11fK )). (B.3) 
p=l 
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Appendix C 

A Necessary and Sufficient Condition on the 

Oversampling Factor (per Subcarrier) to Eliminate Cycle 

Aliasing for OFDM Signals in A WGN Channel 

As mentioned in Chapter 2, the nth-order (q-conjugate) CCP of a discrete-time signal is 

the periodic extension of the nth-order (q-conjugate) CCP of the original continuous-time 

signal, in both spectral and cycle frequency domains. This periodic extension of CCP of the 

original continuous-time signal leads to two kinds of aliasing, i.e., spectral and cycle 

aliasing. When sampling is carried out, both spectral and cycle aliasing have to be 

eliminated. As mentioned in Chapter 2, the Nyquist condition has to be fulfilled in order to 

eliminate aliasing in the spectral frequency domain. To derive a condition to eliminate 

cycle aliasing when sampling an OFDM signal, the domain of y for which Cr (y;f)
11 

q is 
OFDM ' 

non-zero has to be first obtained. Here we start with the derivation of this domain for 

particular values of n, q, and K, i.e., n = 2, q = 0, and K = 4 (Example 1 ), n = 2, q = 2 , and 

K = 4 (Example 2), n = 2 , q = l , and K = 4 (Example 3), and then we generalize the 

results to any n, q, and K. 

Example 1: n = 2 , q = 0 , and K = 4 . 

For these particular values ofn, q, and K, (B.3) becomes 
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- - -
+ G(J. - !::.fc - 2!::./K )G(p- J. + !::.fc - 2!::./K) 

+ G(j; - !::.fc- 3/::.fK )G(~- J; + !::.fc- 3/::.fK )]. 

By using that G(]) =I G(]) 1 e-J
2nh, , with ' g as a time delay, (C.l) can be rewritten as 

crOFDM (y; ltho = a2cs,2,0T-Iej29 e-j2nPtT[I G(j;- !::.fc) II G(~- J; + !::.fc) I 

+I G(j; - !::.fc - !::.JK) II G(~ - J; + !::.fc- !::.JK) I / 4
rc!!.JK-rg 

+I G(j; - !::.fc - 2/::.fK) II G(~ - J; + !::.fc - 2/::.fK) I eJSrct>fK-cg 

(C.l) 

+I G(j; - !::.fc - 311/K) II G(~ - J; + !::.fc- 3/::.fK) I e112
rc!!.JK'g ]e-12

rcp-rg. (C.2) 

We seek to find the range of y for which I c" (y;];1) 2 0 I* o. Based on (C.2), one can 
OFDM ' 

identify different cases for which 1 C, (y;]; )2 0 1 is non-zero, as follows : 
OFDM , 

Case I : (one term out of four, i.e., the first term, from the summation in (C.2) is non-zero): 

cs 2 o*O (Cl.l), and 

I G(J. - !::.fc) l:;t: 0 (C 1.2), and 

- - I G(~ - J; + !::.fc) I* 0 (C 1.3), and 
I cr. (y;;; )2 o I* o if (C.3) 

oFoM , I G(J. - !::.fc - !::.fK) I= 0 (C 1.4), and 

I G(J. - !::.fc - 2/::.fK) I= 0 (C 1.5), and 

I G(J. - !::.fc - 3/::.jK) I= 0 (C 1.6). 

Let us consider that g(t) is band-limited to W , with W = r-1 (this is valid in our case, in 

which we use a raised cosine window function [2] and a low-pass receive filter) . 

Based on the conditions (C 1.2), (C 1.4), (C 1.5), and (C 1.6), and by taking into account 

that D.fK = r,,-1 > W = r-1
, one can easily show that 

- W +!::.fc < f. < - W +!::.fc +!::.fK· (C.4) 

73 



In addition, based on (C 1.3), one can write that 

-W -11/c < P- J; < W -11fc· (C.5) 

By using (C.4) and (C.5), it is straightfmward that ~ takes values in the range 

(C.6) 

Case 2: (one term out of four, i.e. , the second term, from the summation in (C.2) is 

non-zero): 

cs,z,o =t:. 0 (C 2.1), and 

I G(J; -11fc -11/K) l=t:. 0 (C 2.2), and 

I G(p- J; + 11fc -11/K) I* 0 (C 2.3), and 
ICr. (y;];)20 l:;t:Oif (C.7) 

oFoM , I G(J; - 11fc) I= 0 (C 2.4), and 

I G(j; -11fc- 211/K) I= 0 (C 2.5), and 

I G(J; - 11fc - 311/K) I= 0 (C 2.6). 

Based on the conditions (C 2.2), (C 2.4), (C 2.5), and (C 2.6), and by taking into account 

that t:.JK = T,,-1 > W = r', one can easily show that 

W +11fc < j; < -W +b.fc +211fK· 

In addition, based on the condition (C 2.3), one can write that 

-W -life +11/K < P- J; < W -11/c +11/K· 

By using (C.8) and (C.9), it is straightforward that ~ takes values in the range 

(C.8) 

(C.9) 

(C.lO) 

Case 3: (one term out of four, i.e., the third term, from the summation in (C.2) is non-zero): 
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~~-------------------- ----------------------

c s,2,0 :1:-0 (C 3.1), and 

I G(J; -~fc - 2~/K )1:~ 0 (C 3.2), and 

I G(p - J; + ~fc - 2~/K ) l=t 0 (C 3.3), and 

I G(J; - ~fc) I= 0 (C 3.4), and 

I G(J;- ~fc - ~~K ) I= 0 (C 3.5), and 

I G(J; - L\fc - 3L\fK) I= 0 (C 3 .6). 

(C.11) 

Based on the conditions (C 3.2), (C 3.4), (C 3.5), and (C 3.6), and by taking into account 

that l:lfx = r,,-1 > W = r-1
, one can easily show that 

W +~fc +~fK < J; < -W +~fc +3~fK · 

In addition, based on (C 3.3), one can write that 

- W - ~fc + 2~/K < p- J; < W - ~fc + 2~/K . 

By using (C.12) and (C.13), it is straightforward that~ takes values in the range 

(C. 12) 

(C.13) 

(C.14) 

Case 4: (one term out of four, i.e., the fourth term, from the summation in (C.2) is 

non-zero): 

cs,2,0 :t 0 (C 4.1), and 

I G(j; - ~fc- 3~/K ) l=t 0 (C 4.2), and 

- - I G(p - J; + ~fc - 3~/K ) l=t 0 (C 4.3), and 
I c rOFDM (y; .t; ) 2,0 l=t 0 if (C.15) 

I G(j; - ~fc ) I= 0 (C 4.4), and 

I G(j; - L\fc- ~!K ) I= 0 (C 4.5), and 

I G(j; - ~fc - 2~/K ) I= 0 (C 4.6). 

Based on the conditions (C 4.2), (C 4.4), (C 4.5), and (C 4.6), and by taking into account 

that l:lfx = Tu-1 > W = T-1
, one can easily show that 
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W + flfc + 2fljK < J; < W + flfc + 3fljK · 

In addition, based on (C 4.3), one can write that 

-W - !!.fc +3!!.fK < ~ -f..< W -!!.fc +3!!.fK· 

By using (C.16) and (C.17), it is straightforward that ~ takes values in the range 

5!!.fK < ~ < 2W + 6!!.fK . 

(C.l6) 

(C.17) 

(C.l8) 

Other cases in which only one term in the summation in (C.2) is non-zero can be identified. 

Derivations are not shown here, but these can be similarly performed. Results are taken into 

account when determining the overall range of ~ . 

In order for 1 cr. (y; J; h 0 1 to be non-zero, two terms in the summation in (C.2) can be 
OFDM , 

non-zero. It can be easily shown that only consecutive terms can be non-zero 

simultaneously (there is no spectral frequency range for which two non-consecutive terms 

are non-zero). For the case when the first and the second terms are non-zero in the summation 

in (C.2), one obtains 

By usmg that 

I G(j; - 11/J 1=1 G(~ - J; + 11/J 1=1 G(j; - 11fc - 11/K) 1=1 G(~- J; + 11fc - !:!JK) 1=1 G(j;) I for the 

whole range of J; , (C.19) can be expressed as 

C- (-·7-) _ 2 r-IJ29 -J2rr~£r i G( f- )i2 [l J4rrt:.fK'g ] -J2rr~'g 
r. y,112o - acs20 e e 11 +e e 
OFDM ' , ' 

. . - - sin(4nfl1K-r ) -2 Ar ·2 ii _ 2 r -1 1 2a -1 2rri3£TIG(~") I2 ~j g 1 rr'-!I K' g - 1 rr,..,t8 - a cs 2 0 e e 11 e e . 
' ' sin(2n!lfK-rg) 

(C.20) 
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Note that the identity 1 + r = (1 - r 2
) I (1- r) is used m (C.20). Based on (C.20), 

I C,. (y;]; )J 0 I can be written as follows 
OFDM - , 

(C.21) 

From (C.21) one can easily notice that if 

4rr.D.fKT.g -:t:- lrr., with I as an odd integer. 

This additional condition has also to be satisfied in order for 1 C,. (y;];1 ) 2 0 1-:t:- 0 . Examples 
OFDM , 

of such cases, in which two consecutive terms are non-zero in the summation in (C.2), are 

given in the following. 

Case 5: (two consecutive terms are non-zero in the summation in (C.2), i.e., the first and 

second terms): 

cs 2 0 :t:O (C5.1), and 

4n!:J.fKT.g :;t: In, with I as an odd integer (C 5.2), and 

IG(J; - !:J.fc)l:t:O (C5.3), and 

- - I G(l;- !:J.fc - !:J.fK) l:t: 0 (C 5.4), and 
I C,. (y;J;)2 0 l:t: 0 if 

omM ' IG(P - };+!:J.fc)l:t:O (C5.5), and 
(C.22) 

I G(p- J; + !:J.fc- !:J.fK) l:t: 0 (C 5.6), and 

I G(J;- !:J.fc- 2!:J.fK) I= 0 (C 5.7), and 

I G(}; - !:J.fc - 3!:J.fK) I= 0 (C 5.8). 

Based on the conditions, (C 5.3), (C 5.4), (C 5.7), and (C 5.8), and by taking into account 

that D.fK = ru-1 > W = r-1
, one can easily show that 
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-W + 11fc + 11/K < J; < W + 11fc. (C.23) 

In addition, based on (C 5.5) and (C 5.6), one can write that 

-W- 11fc + 11/K < ~- j; < W- 11fc. (C.24) 

By using (C.23) and (C.24), it is straightforward that ~ takes values in the range 

- 2W + 211/K < ~ < 2W. (C.25) 

Other similar cases can be identified, for which the first and second consecutive terms in 

the summation in (C.2) are non-zero. These are not shown here, but derivation of the range 

of ~ can be similarly done; note that results are included when determining the overall 

range of~ . 

Case 6: (two consecutive terms are non-zero in the summation in (C.2), i.e. , the second and 

third terms): 

cs,z,o :1:- 0 (C 6.1), and 

4rcl1fKT.g :t:-lrc, with las an odd integer (C 6.2), and 

I G(j; - 11fc- 11/K) 1-:t:- 0 (C 6.3), and 

I G(J;- 11fc - 211/K) 1-:t:- 0 (C 6.4), and 

I G(~- J; + 11fc - L\[K) 1-:t:- 0 (C 6.5), and 
(C.26) 

I G(~ - J; + 11fc - 211/K) 1-:t:- 0 (C 6.6), and 

I G(J; -11fc) I= o (C 6.7), and 

I G(J; - 11fc - 311/K) I= 0 (C 6.8). 

Based on the conditions (C 6.3), (C 6.4), (C 6.7), and (C 6.8), and by taking into account 

that D.fK = Tu_, > W = r', one can easily show that 

(C.27) 
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In addition, based on (C 5.5) and (C 5.6), one can write that 

-W - 11fc + 211fK < ~ - J; < W -11fc + 11fK. (C.28) 

By using (C.27) and (C.28), it is straightforward that p takes values in the range 

- 2W + 411/K < ~ < 2W + 211/K . (C.29) 

Other similar cases can be identified, for which the second and third consecutive terms in 

the summation in (C.2) are non-zero. These are not shown here, but derivation of the range 

of p can be similarly done; note that results are included when determining the overall 

range of p. 

Case 7: (two consecutive terms are non-zero in the summation in (C.2), i.e. , the third and 

fourth terms): 

c s,2,o :;t: 0 (C 7.1), and 

4n11fK-r:g :;t: lrt, with las an odd integer (C 7.2), and 

I G(j; - 11fc - 211/K) l:;t: 0 (C 7 .3), and 

- - I G(j; -11fc - 311/K) l:;t: 0 (C 7.4), and 
I cr. (y;J;)2 o l:;t: o if 

omM ' I G(~- J; + 11fc - 211/K) l:;t: 0 (C 7.5), and 
(C.30) 

I G(~- J; +11fc - 311/K) l:;t: 0 (C 7.6), and 

I G(j; -11fc) I= 0 (C 7.7), and 

I G(j; -11fc - 11/K) I= 0 (C 7 .8). 

Based on the conditions (C 7.3), (C 7.4), (C 7.7), and (C 7.8), and by taking into account 

that t}.jK = T;,- 1 > W = r' , one can easily show that 

- W + 11fc + 311fK < J; < W + 11fc + 211fK. (C.31 ) 

In addition, based on (C 7.5) and (C 7.6), one can write that 
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-W- ~fc + 3~fK < p- J; < W - ~fc + 2~fK . (C.32) 

By using (C.31) and (C.32), it is straightforward that~ takes values in the range 

- 2W + 6~fK < p < 2W +4~fK. (C.33) 

Other similar cases can be identified for which consecutive terms in the summation in (C.2) 

are 

non-zero. These are not shown here, but derivation of the range of ~ can be similarly done. 

Note that results are included when determining the overall range of~. 

It can be easily shown that three or more consecutive terms in the summation in (C.2) 

cannot be non-zero simultaneously (there is no spectral frequency range for which three 

terms are non-zero). 

By considering all possible cases for which CPP is non-zero, one can fmd the range of 

values for ~ as 

-2W < f3 < 2W + 6~fN . (C.34) 

Example 2 : n = 2, q = 2, and K = 4. 

For these particular values of n, q, and K, (B.3) becomes 

C (y- ·f) =a2c T-Ie-j29e-j21t~er [G(*\-~'-~r)d*l (_A+r +~r ) 
'ornM 'Jl 2,2 s,2,2 l! ~ c 1-' l! ~ c 

(*) - (*) - -+G (-J; -~fc -~fK)G (-f3+ ft + ~fc -~fK) 

+ c <•) (-J; - ~fc - 2~/K )G<*) ( -p + J; + ~fc- 2~/K ) 

(*) - (•) - -
+ G (-ft - ~fc- 3~JK )G ( -f3 + ft + ~fc - 3~/K )]. (C.35) 

By using that c c•> (-]) = G(]) , (C.35) can be written as 
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cr. (y; J:J22 = a2cs 2 2T- le- j
28 e- j

2nPET[I G(j; + 11fc) II G(p- ];, - 11f:c) I 
OFDM ' ' ' 

+I G(j; + 11fc + 11/K) II G(p- J; - 11fc + 11/K) I e- j
4

nt>fKtg 

+I G(j; + 11fc + 211/K) II G(p- J; - 11fc + 211/K) I e- jSnt,fKtg 

+I G(j; + 11fc + 311/K) II G(p- J; - 11fc + 311/K) I e- jl
2

nNK•g ]e-j2nP•~: . (C.36) 

By performing a similar analysis as in Example 1, one can show that ~ takes values in the 

range 

- 2W - 611/K < p < 2W. (C.37) 

Example 3: n = 2 , q = 1 , K = 4 . 

For these particular values of n, q, and K, (B.3) becomes 

cr. (y; J; ) 2 I = a2 cs 2 ,r- l e- j
2nPET [I G(j; - 11fc) II G(p - J; + 11fc) I 

OFDM ' , ' 

+I G(j; - 11fc - 11/K) II G(p- J; + 11fc + 11/K) I 
+I G(j; - 11fc - 211/K) II G(p - J; + 11fc + 211/K) I 

+I G(j; - 11fc- 311/K) II G(p - J; + 11fc + 311/K) IJe-j
2np-r8

• (C.38) 

By performing a similar analysis as in Example 1, one can show that p takes values in the 

range 

-2W < f3<2W. (C.39) 

Results obtained for the range of p for n = 2, 4, 6, 8 , q = 0, ... , n , and K = 4 are shown in 

Table C.1. 
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Table C.l: The range of p values for which CPP is non-zero, with n = 2,4,6,8 , q = 0, ... ,n, 

and K = 4 (for AWGN channel) 

Order, n Number of conjugations, q Range of p values 

2 0 - 2W < p < 2W + 61':lfx 

2 1 -2W <P<2W 

2 2 -2W- 61':lfx < p < 2W 

4 0 -4W < p < 4W + l2!:lfx 

4 1 - 4W < ~ < 4W + 61':lfx 

4 2 -4W <P<4W 

4 3 -4W - 611fx < p < 4W 

4 4 - 4W - l2!:lfx < p < 4W 

6 0 - 6W < p < 6W + l 81':lfx 

6 1 - 6W < ~ < 6W + 121':lfx 

6 2 - 6W < ~ < 6W + 61':lfx 

6 3 -6W <P<6W 

6 4 - 6W - 61':lfx < p < 6W 

6 5 - 6W - ! 21':lfx < p < 6W 

6 6 - 6W - 181':lfx < p < 6W 
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Order, n Number of conjugations, q Range of ~ values 

8 0 -8W < p < 8W + 241}./K 

8 1 -8W < p < 8W + 181}./K 

8 2 -8W < p < 8W + 121}./K 

8 3 - 8W < p < 8W + 6t}.jK 

8 4 -8W <P<8W 

8 5 -8W - 6t}.jK < p < 8W 

8 6 -8W -121}./K < p < 8W 

8 7 -8W - 1 8t}.jK < ~ < 8W 

8 8 -8W - 241}./K < p < 8W 

The same procedure can be applied for any n, q and K. Note that if n is odd, the CCP is zero, 

as cs.n,q = 0 [ 11]. With n even, by using the mathematical induction, one can obtain the range 

of y = P + (n - 2q)t}.fc as 

-nW + (n- 2q)!1fc < y < nW + (n - 2q)!1fc + (n- 2q)(K -1)11fx , if n - 2q > 0, 

- nW + (n - 2q)!1fc + (n - 2q)(K - 1)11/x < y < nW + (n - 2q)!1fc, if n- 2q < 0, (C.40) 

-nW<y<nW, if n=2q. 

By knowing the possible range of y , a necessary and sufficient condition on the 

oversampling factor per subcarrier, p, to eliminate cycle aliasing can be derived for any 

order n, number of conjugations, q, and number of subcarriers, K. For example, if 

n- 2q > 0, then, according to (C.40), the range of y values 1s 
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-nW+(n-2q)~Y,.fc <y<nW+(n-2q)!Y,fc+(n-2q)(K - l)!Y,fK· By using this domain of y 

values with (2.1 0), one can easily see that fs has to satisfy the following condition to avoid 

cycle aliasing 

fs -nW +(n-2q)!::.fc > nW +(n-2q)11fc +(n-2q)(K -1)11/K. (C.41) 

By replacing fs = pKTu-1 
, W = T-1 and ~Y,.fK = Tu-1 in (C.41 ), one can obtain the necessary and 

sufficient condition on the oversampling factor per subcarrier, p, to eliminate cycle aliasing 

as 

(C.42) 

Similarly, for n - 2q < 0 and n-2q = 0 , one can respectively obtain the following necessary 

and sufficient conditions on p as 

p ~-(n-2q)+~K-1 (2nTuT- 1 +(n-2q))l if n-2q<O, 

and 

p ~ 12nTuK- 'r- 'l, if n - 2q = 0. 

(C.43) 
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Appendix D 

Cyclic Cumulants and Cycle Frequencies of OFDM and 

SCLD Signals in Time Dispersive Channel 

The expressions for the nth-order (q-conjugate) CC and CFs for the received baseband 

OFDM and SCLD signals in time dispersive channel are derived here. We obtain the 

results for the SCLD as a particular case of OFDM (K = 1 and Tcp = 0) . In the following, we 

consider only the cumulant of the signal components. With the received baseband OFDM 

signal as in ( 4.5) and by using the multi-linearity property of the cumulants [32], the 

time-varying nth-order (q-conjugate) cumulant of roFoM (t) at delay vector t can be 

expressed ass, 

x Cum[ s k 1 , . .. , s k 1 , s; 1 , ... , s; 1 ] 
I' I n- q- 1' n- q - 1 n- q' n- q n' n 

X LM h* cr ) -j21tk!;,.JK (1-~"'n-q +T:n-q - 1.-qr - ET) • (t - r - - I T - T) .. . 
~~~~ e g ~~~~ +'tn- q n- q £ n- q n- q 

mn- q=l 

M -
x L h*(r ) -j21tk6.fK<t- sm, +T:. - I,r -Er) ·c - r - - I T - T) 

~m e g f ~~~~ +'[II II £ " 
n n 

(D.l) 
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As the data symbols {sk,1} on each subcarrier k, k=l, ... ,K , are i.i.d. and mutually 

independent for different subcarriers, the cumulant Cum[sk 1 , . .. ,sk 1 ,s; 1 , .. . ,s; 1 ] 1'1 "-q- J ~ n-q-1 n- qlff- q " ' " 

equals zero, unless k1 = · · · = k11 = k and 11 =· ·· = In =I . This occurs for certain delays, 

:rP, p = l , ... ,n. For the OFDM signal, the values of these delays belong to the interval zero 

to the OFDM symbol period, T (for rectangular pulse shape). For a non-rectangular pulse 

shape, this interval exceeds the symbol period. At zero delays, the cumulant value reaches a 

maximum, as this is calculated for the signal and identical replicas. At delays equal to the 

useful symbol period, ~, the cumulant value reaches a local maximum, due to the 

existence of the cyclic prefix. Under the assumption that ~M < T,;P , local maxima appear at 

delays around zero and T,, , due to the calculation of the cumulant of the signal and its 

identical replicas and the existence of the cyclic prefix, respectively; these delay values 

depend on the channel delays ~m, m = I, ... ,M . Non-zero cumulant values at delays over the 

symbol period (for rectangular pulse shape) or beyond (for non-rectangular pulse shape), 

other than those previously mentioned, are due to the inverse Fast Fourier transform (IFFT) 

operation. Under such conditions ( k1 = · · · = kn = k, 11 =· ··= I" = I), the cumulant 

Cum[sk,l•· .. ,sk,t•s;,1, ... ,s;,tJ is non-zero and equals the nth-order (q-conjugate) cumulant for 

the signal constellation, c s,n,q . With /1 = ·· ·= In = I , and 

Cum[sk,t , ... ,sk,t ,s;,1 , .. . ,s;,~ ] = cs,n,q, (D.l) can be further written as, 
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n 

K-1 )2rtkt.fK I<-)p'fp 00 

x L e p =i L eJ2rt(n- 2q)kt.fK (t-IT -tT) 

k= O 1=-«> 

00 

® L 8(t-IT-£T). (D.2) 
1=-«> 

The Fourier transform of the nth-order (q-conjugate) time-varying cumulant of the 

received baseband OFDM signal can be expressed as, 

00 

3{c,. (t ; i)nq} = f c,. (t;i)nqe- J
2

rt'!
1
dt 

OFDM ' OffiM , 

-«J 

n n 

j2rtt.fc I (- )p Tp 00 K - I )2rtkt.fK I(- )p Tp 
= an c ej(n- 2q)f) e p = i f [ ej2rt(n- 2q)t.fct""' e p= i 

s,n,q .i....J 
k=O 

00 

® L 8(t-IT -c:T)]e- J
2rt'!1

dt. (D.3) 
1= -«> 

By using the convolution theorem, (D.3) can be written as, 
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00 

x L b(t- y -IT-£T) e-J2Wi1 dydt . (D.4) 
1=--oo 

With the change of variables t- y- £T = v and y = y, and by usmg the identity 

3{~)(t -/T)} = r-1 L)(y -lr-1
), one can easily show that 

I I 

x e-J2n(Y-(n-2q)D.fc)Y dy Lb(y - (n - 2q)b.fc -zT-1). (D.5) 
I 

It can be seen that :J{c,. (t;i),.q} :t: O only if y=lr-1 +(n-2q)~fc, with I as an integer. 
OFDM • 

By using the notations p = tr-1 and y = t, (D.5) can be written as, 

n n 

j2nD.fcL (-)p'ip _ K- l j2nkD.fK l_(-)ptp 
3{c (t;i) }=a"c T - lej(n- 2q)9e p=l e-j2n~eT ""e p=l 

roFDM n,q s,n,q ~ 
k=O 

oo n M - )2nMf.K f. Hp~m _ 
x J eJ2n(n-2q)k!'J.fKtiT" h(*)p (~ )g(*)p (t-~ +i )e p=l P e-J2n~tdt 

~ m p m p p 
--oo p=l mp=l 

X Lb(y-(n-2q)!::.fc -!T- 1
). (D.6) 

I 

By taking the inverse Fourier transform of (D.6) one can easily show that c, (t; i),. q can 
OFDM • 

be expressed as5 
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- ( .-) - L:B j21!'Yt cr. t, 'T n q- y-e ' 
OFDM ' 

(D.7) 
m 

where {y} denotes the set {y I y = P + (n- 2q)~fc, p = !T- 1
, I integer} , and B1 IS the 

coefficient corresponding to frequency y m the Fourier senes expansion of the 

time-varying cumulant, giVen by 

This implies that the cycle frequency domain is discrete, and the spectrum consists of a 

fmite-strength additive components. By using (2.2) and (D.7), one can easily notice that the 

nth-order (q-conjugate) CC at CF y and delay :r (see previous comments on the delay 

values), and the CFs are respectively given as 

n n 

_ j27!llfcL (-)p i pK- l j 2rckllfx L (- )p'ip c (y- · i) = anc y - tej(n- 2q)ee- j21lPET e p: l "" e p = l 
roFDM ' n,q s,n,q ~ 

k=O 

00 n M - j21lkllfx f.(-)p~m _ 
x JTI"" h(•)" (~ )g(•)"(t -~ +i )e p =l " ej21t(n-2q)kllfxte-j27!Pt d t, 

~ mp ml' p 
-oo p =l mp=1 

(D.8) 

and 

K~~M = {y I y = ~ + (n - 2q)~fc , ~ = IT- 1
, l integer}. (D.9) 

For the OFDM signal in AWGN channel, the analytical closed-form expressions for the 

nth-order (q-conjugate) cc can be obtained form (D.8), when 

h(~, ) = l , with~m = O, andh(~m ) = 0, mP=2, . . . ,M,p = l, ... ,n. Note this is in agreement 
I I p 

with results presented in Chapter 3. 
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As mentioned under the Signal Model Section, SCLD can be obtained as a particular case 

of OFDM, with K = l and Tcp = 0 (T = T,,). In such case, the cumulant 

Cum[sk 1 , • •• ,sk 1 ,s; 1 , ... ,s; 1 ] reduces to Cum[s1 , .. . ,s1 ,s; , .. . ,s; ], which 
1' I n- q- 1• n- q- 1 n- q • n- q n • n I n- q- 1 n- q n 

equals c s,n,q if /1 = · · · = 1, = I . This occurs for delay values within the symbol interval (for 

rectangular pulse shape). At zero-delays, the cumulant magnitude reaches a maximum, and 

as the delay values increase towards the symbol duration, the cumulant value reduces to 

zero. The delay values for which the CCs are non-zero can exceed the symbol period for a 

non-rectangular pulse shape. With (D.2), (D.8), and (D.9), the analytical closed-form 

expressions for the nth-order (q-conjugate) time varying cumulant, nth-order (q-conjugate) 

CC at CF y and delay :r, and CFs for the SCLD signal are respectively given as, 

II M 00 

X 11 I h(*)p (~m)g(•)p (t - ~mp +i p) ® I o(t - lT - sT), (D.lO) 
p=l mp=l 1=-oo 

n 

_ j21tc.fc I <->p'1p - c-· -) _ II r - l j(11-2q )fJ -j21t~£T p = l 
C rSCLD y, 'f n,q - a CS,II ,q e e e 

(D.ll) 

and 

(D.l 2) 

Note that K.~~~o is used here to denote the CFs which correspond to the nth-order 

(q-conjugate) CC of the continuous-time SCLD signal. For the SCLD signal in AWGN 

channel, the analytical closed-form expressions for the nth-order (q-conjugate) CC can be 
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obtained from (D.ll), when h(~m ) = 1, with ~m = 0, and h(~m ) = 0, mP = 2, .. . ,M , p = 1, .. . ,n. 
I I p 

Note this is in agreement with results presented in Chapter 3. 
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Appendix E 

Cyclic Cumulant Polyspectrum of OFDM and SCLD 

Signals in Time Dispersive Channel 

The expressions for the nth-order (q-conjugate) CCP of the received baseband OFDM and 

SCLD signals in a time dispersive channel are derived here. In this derivation, we consider 

only the signal component (no noise). We obtain the CCP of the SCLD signal as a 

particular case of OFDM, for K = 1 and Tcp = 0 (T = TJ. By taking the Fourier transform 

of (D.8) with respect to i , the nth-order (q-conjugate) CCP of roFoM (t) can be expressed as 

00 00 c 0 (y- 0 f) = f 0 0 0 f c (y- 0 i) e - j2rcjj'f.l 0 0 0 e - j2rc]n·l'in- l dT. 0 0 0 dT. 
' oFDM ' n,q roFDM ' n,q I n- 1 

-<X) -<X) 

n 

00 n M - j21tkllfK L (-)p~m 
x JIT" h(•)p (F ) (•)P (t-~ +T. )e p=l P e J2 1t(n- 2q)kt>fKt 

L.,. ._,mp g mp p 
-oo p =l mp=l 

X e - j21t~t e - j21tjj'il . . . e-j2rcj~ - l 'in-l eli ... eli dt 
I n- 1 ' 

K - 1 oo 00 M 

X I f f I h (•)l (~ml )g(*)l (l- ~ml + T1) 
k =O -oo -oo m1 =I 

- (- )I j21tkllfK~ml (- )I j2rckt:.JK'f.l ( - )I }21t6.fc 'f. I e - }21tjj'f.l d::;: x e e e • 1 • •• 

oo M 

X f I h (*)n- 1 (~mn-1 )g(•)n-1 (l - ~mn-1 + Tn-1) 
-oo mn- 1 =I 
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Withachangeofvariables, i.e., t = t, v1 =t+=f1, ···, v,_1 = t +i,_1, (E.l)becomes 

K - I 00 M -
X I J I h(•), (~ml )e - (- )1)2rrkllfK(,ml g(•)l (vi -~ml )e- )2rr(]j - (- )lt:.fc- (-)lkllfK)vl dvl . .. 

k=O -oo m1 =I 

oo M -
x f " h (*)n - 1 (~ )e - (-)n- 1 J 2

rrkt:.fKC,mn- l g(•),._l (v _ ~ ) 
~ m"- 1 n- 1 mn- 1 

-oo mn- 1 =I 

oo M -
X f I h (*)n (~mn )e - HnJ2rrkllfK(,m, g(•)n (t- ~mn) 

-oo m11 =1 

n- 1 
)2rr L (-)p((-)pjp-t:.fc - kllfK )I _ 

X e p=l e -)2rr(f3-(n-2q)kt:.fK)tdt. (E.2) 

One can notice that the second, third, and fourth lines of (E.2) can be written as a Fourier 

transform of two convolved functions, and (E.2) becomes 

{; (y-· f) = a"c r - 'eJ(n-2q)9e-J2nPtT 
'OFOM ' II,({ S,n,q 

K - 1 00 XL f (h(•)l (v,)e- (- )lj2rrk6fKvl ® g<•)l (v,))e-j2rr(jj - (- )J6fc-<- )lkl>/K)vldv, . .. 

k=O -<Xl 

(E.3) 

By using that the Fourier transform of the convolution of two signals is multiplication of 

00 

their Fourier transforms, and f g(i)e-J2niteJ2Tttiftdi = G(j _ t}.j ) , 

00 00 f g<•) (i)e- j2n/t ej2n6ft di = c· (-J + t}.j) , f h(i)e-J2n/te}2n6ftdi = H(j -t}.j)' and 
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00 

Jh<•l(:r)e-J2rti'ieJ2rctif:rdi = H·(-]+!:J.f), with G(f)and H(f) as the Fourier transforms of 

g(t) and h(t) respectively, and !:J.f as a frequency shift, (E.3) becomes 

(; (y-·f) = a"c r-lej(n-2q)9e-j2rt~ET 
roFDM ' ll,q s,n,q 

K- 1 n- 1 

X ITI H (•)p ((-)pjp -!::.fc)G(•)p ((-)pjp -/::.fc - k!J.jK) 
k=O p=l 

n- 1 

X H(•)n ((-),(~-I(-) p((-)P]P -!::.fc -k!::.JK )- (n- 2q)k!::.JK) + k!::.JK) 
p=l 

n- 1 

X G(•)n ((-), (~-I (-) p((-) PJP- !::.fc - k!::.JK)- (n- 2q)k!::.JK )). (E.4) 
p=l 

Similarly, one an easily obtain the analytical closed-form expressions for the nth-order 

(q-conjugate) CCP of the SCLD signal. This can be also obtained as a particular case of 

(E.4), for K = 1 and Tcp = 0 (T = Tu), and is given by, 

n- 1 

C (y-·f) = a"c T- 1eJ<n-2q)ee-J2rt~ETnH<•)p ((-) r -!::.~")G(•)P ((-) f- - !::.1 ) 
rscw ' n,q s,n,q pip !lc p p !l c 

p=l 
n-l 

X H (•)n ((- ), (~-I (-) P (( -) PJP- /::.fc)) 
p =l 

n-l 
xa<•)"((-),(~ - IC- )p((- )P]P -!::.fc)). (E.5) 

p= l 

Note that based on (E.4) and (E.5) one can easily obtain the analytical closed-form 

expressions for the nth-order (q-conjugate) CCPs of OFDM and SCLD signals in AWGN 

channel (with h(t) = 8(t) and H(f) = 1 ). These results are in agreement with those 

presented in Chapter 3 for OFDM and SCLD, respectively. 
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Appendix F 

A Necessary and Sufficient Condition on the 

Oversampling Factor (per Subcarrier) to Eliminate Cycle 

Aliasing for OFDM and SCLD Signals in Time Dispersive 

Channel 

Similar to the conditions defined in appendix C, here we have derived a necessary and 

sufficient condition on the oversampling factor (per subcarrier) to eliminate cycle aliasing 

for both OFDM and SCLD signals. 

OFDM signals 

First we derive the CF domain for which CPP is non-zero for n = 2 , q = 0 , and K = 4 

(Example 1 ), n = 2 , q = 2 , and K = 4 (Example 2), and n = 2 , q = 1 , and K = 4 

(Example 3), and then we generalize the result to any n, q, and K. 

Example 1: n = 2 , q = 0 , and K = 4 . 

For these particular values of n, q, and K, (E.4) becomes 

C- (-· 1) _ 2 r -' J20 -J2rrPETH( 1 A. I" )H(A 'j A. I") 
roFDM y,Jl 2,0- Q Cs ,2,0 e e }} - LJ,J c ,_, - } } +LJ.J c 

X [G(j;- !::.fc)G(p- J; + !::.fc) 

+ G(j; - !::.fc - !::.fK )G(p - J; + !::.fc - !::.fK) 

+ G(j; - !::.fc - 2!::./K )G(p - J; + !::.fc - 2!::./K) 

+ G(f; - !::.fc - 3!::.fK )G(f3 - J; + !::.fc - 3!::.fK )]. (F.l ) 
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By using that G(]) =I G(]) I e-JZnit8 and H (])=I H (])I e1~H <ll , with 1: g as a time delay 

(we assume linear phase for g(t) ), and ~H (]) as the channel phase response, (F. l) can be 

rewritten as, 

C- (-·f-) _ 2 y - t j29 -j2n~trl H(r A.I") !! H(R r A.l")l 
rOFDM y,Jl 2,0 -Q Cs,2,0 e e Jt -u} c J-'- Jt +u}c 

X[! G(-" - 11fc) II G(~--" + 11fc) I 
+I G(-" - 11fc - 11/K) II G(~--" + 11fc - 11/K) I eJ

4
1t6fK-r:g 

+I G(-" - 11fc - 211/K) II G(~ - -" + 11fc - 211/K) 1 ejSrt6fK-r:g 

+I G(-" - 11fc- 311/K) II G(~--" + 11fc - 311/K) I ejl21t6fK-r:g ]ej(~H, +~H2 ) e - j21t~-r:8 , 

(F.2) 

where ~ H, and ~ H
2 

represent the channel phase response at J; - ~fc and P- J; + ~fc , 

respectively. We seek to fmd the range of y values for which 1 C. (y; ];, )2 0 I* 0 . Based on 
'OFDM , 

(F.2), one can easily see that, 

cs 20 :t: O (Fl.l), and 

I H (ft - 11fc) l:t: 0 (F 1.2), and 
!Cr. (y;-")20 !:t:Oif (F.3) 

ornM • I H(~- ft + 11fc) l:t: 0 (F 1.3), and 
- -I C :,wGN (y; ft )2 0 l:t: 0 (F 1.4 ), 

OFDM • 

where IC;,wGN (y;}; )2 0 l=a2 1Cs zo lr-'[IG(j; -NJ IIG(p- J; +~fc)l 
OFDM • • , 

+I G(j; - ~fc - ~~K) II G(p - J; + ~fc - ~~K ) I e14
nt>.fK-r:g +I G(j; - ~fc - 2~/K ) II G(p - J; + ~fc - 2~/K) I e18

nAfKtg 

+I G(j; - ~fc - 3~/K) II G(p - J; + ~fc - 3~/K) I e 112
nAfK-r:g ] is the second-order (zero-conjugate) 

CCP ofthe OFDM signal in AWGN channel. 

Let us assume that g(t) is band-limited to W . In our case, g(t) = g'r (t) ® grec (t) , with 

g'r (t) as a raised cosine window function [2] that is considered band-limited to r-' , and 
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g 1
r (t) as the low-pass receive filter with bandwidth KtJ.fK. As such, one can easily obtain 

that W = r-1 
• In our discussion we consider two types of channels, i.e., a good channel 

(there are no spectral nulls in the channel amplitude response) and a bad channel (there are 

spectral nulls in the channel amplitude response) [27]. When the channel amplitude 

response has no spectral nulls, then infinite channel bandwidth can be assumed, and (F 1.2) 

and (F 1.3) are valid for any ~ . On the other hand, when the channel amplitude response 

has spectral nulls, one can easily show from (F 1.2) and (F 1.3) that ~ belongs to a union 

of open intervals whose endpoints are sums of frequencies at which spectral nulls occur in 

the channel amplitude response, and this amplitude is non-zero above or below these 

frequencies . Let us denote the union of these intervals by K~1 . In addition, based on the 

condition (F 1.4) (see analysis performed in Appendix C for the AWGN channel), one can 

write that 

- 2W < ~ < 2W +6tJ.fx · (F.4) 

By using (F.4) and the remarks on the domain of~ values for good and bad channels, one 

can conclude the following: 

-If the channel is good (there are no spectral nulls in the channel amplitude response), then 

the range of ~ values is given by (F.4). Note that this also corresponds to the A WGN 

channel. 

- If the channel is bad (there are spectral nulls), then the range of ~ values is given by 
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Example2: n = 2 , q = 2 , and K =4. 

For these particular values of n, q, and K, (E.4) becomes 

C- c-· ~") - 2 r -1 - j29 -j2rr~tTH* ( r A.I")H*( A r A.l") 
r. Y' 11 2 2 - a cs 2 2 e e -11 - t.:iJ c -,.., + 1 1 + t.:iJ c OFDM , ' , 

X [ G* (-~ - 11fc )G* ( -~ + J; + 11/J 

+ G* (-~ - 11fc - 11JK )G* ( -~ + ~ + 11/c - 11JK) 

+ G* (-~ - 11fc - 211/K )G* ( -~ + ~ + 11fc - 211/K) 

+ G* (-~ - 11/c - 311/K )G* ( -~ + ~ + 11/c - 311/K )]. 

By using that c<•> c- ]) = G(]) and H <•> c- ]) = H(] ) , (F.5) can be written as 

C- c-· ~") - 2 r -1 -j29 - j2rrPtT I H( r A. I") II H(A r A. I") I 
r. Y' 11 2 2 - a cs 2 2 e e 1 1 + t.:iJ c ,.., -11 - LlJ c 
OFDM ' ' ' 

X [I G(~ + 11fc) II G(~ - ~ - 11/J I 
+I G(~ + 11fc + 11/K) II G(~ - ~ - 11fc + 11/K) I e- j

4
rrtifK'g 

+I G(~ + 11fc + 211/K) II G(~ - ~ - 11fc + 211/K) I e- jBrr6fK<g 

(F.5) 

+I G(~ + 11fc + 311/K) II G(~ - ~ - 11fc + 311/K) I e- j 12rr.AfK' g ]ej(~HJ +~H4) e- j 2nP<g ' 

(F.6) 

where <P H
3 

and <PH 
4 

represent the channel phase response at J; + 1}./c and P- J; - 1}./c, 

respectively. By performing a similar analysis as in Example 1, one can show that 

If the channel is good (there are no spectral nulls in the channel amplitude response), the 

range of p values is - 2W - 61}./K < p < 2W. Note that this is the same as in the A WGN 

channel case. 

If the channel is bad (there are spectral nulls in the channel amplitude response), then the 

range of p values is K~ n ( -2W - 6t}.jK, 2W ). 

Example 3: n = 2, q = 1, K = 4. 

For these particular values of n, q, and K, (E.4) becomes 
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X [I G(j; - 11fc) II G(~- J; + 11fc) I 
- - -

+I G(J; - 11/c - 11/K) II G(~ - J; + 11/c + 11/K) I 
- - -

+I G(J; - 11fc - 211/K) II G{B - J; + 11/c + 211/K) I 

+ I G(j; - 11fc - 311/K) II G(~- J; + 11fc + 311/K) IJeJ(.Pu, +.Pu5 ) e-1211h , (F. 7) 

where $ H
5 

represents the channel phase response at ~- J; + !J.fc . 

By performing a similar analysis as in Example 1, one can conclude the following: 

If the channel is good (there are no spectral nulls in the channel amplitude response), the 

range of ~ values is - 2W < ~ < 2W . Note that this is the same as in the A WGN channel 

case. 

- If the channel is bad (there are spectral nulls in the channel amplitude response), then the 

range of~ values is K~ n ( -2W,2W) 0 

Results obtained for the range of ~ for n = 2, 4, 6, 8 , q = 0, ... , n , K = 4 , and a good time 

dispersive channel are the same for the A WGN channel (see Table C.l). 

The same procedure can be applied for any n, q and K. Note that if n is odd, then th-order 

CCP is zero, as c s,n,q = 0 . With n even, by using the mathematical induction, one can obtain 

the range of y = ~ + (n - 2q)!J.fc for the case of a good time dispersive channel, as follows : 

If n -2q > 0, then 

-nW +(n - 2q)11fc <y < nW +(n - 2q)11fc +(n -2q)(K -1)11/K, (F.8) 

- If n - 2q < 0, then 

- nW + (n - 2q)11fc + (n - 2q)(K - 1)11/K < y < nW + (n - 2q)11fc, (F.9) 
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- If n = 2q, then 

-nW <y<nW. (F.l 0) 

Note that these results are identical to those derived for the A WON channel, given in 

(3.15). 

For a bad channel, the y range is given by the intersection of previous intervals with 

where K~ represents the union of open intervals whose endpoints are the endpoints of the 

intervals in K~ shifted by (n - 2q)!J.fc. 

By knowing the range of CF values, a necessary and sufficient condition on the 

oversampling factor per subcarrier, p, can be derived to eliminate cycle aliasing for any 

order, n, number of conjugations, q, number of subcarriers, K, frequency separation !J.fK , 

and channel. Results will be presented here for good channels, i.e., without spectral nulls in 

the amplitude response. For such channels, with the range of y values as in (F.8)-(F.l 0), 

and by using (2.10), one can easily write the condition to avoid cycle aliasing as follows: 

- If n - 2q > 0 , then 

fs - nW +(n - 2q)t':!.fc > nW +(n - 2q)t':!.fc +(n-2q)(K - l)t':!.fK· (F.ll) 

By replacing fs = pKT,- 1 in (F.ll ), one can obtain the necessary and sufficient condition on 

the oversampling factor per subcarrier, p , to eliminate cycle aliasing as, 

(F.l2) 

- If n - 2q < 0 , the necessary and sufficient condition on p to eliminate cycle aliasing is, 
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(F.13) 

- If n- 2q = 0, the condition can be written as 

(F.14) 

To be noted that these results are identical to those derived for the A WGN channel, given 

in (3.7). The same reasoning can be applied for bad channels to derive a necessary and 

sufficient condition on the oversampling factor per subcarrier to eliminate cycle aliasing, 

given the channel amplitude response. 

SCLD signals 

The same procedure can be applied to find a necessary and sufficient condition to eliminate 

cycle aliasing for SCLD signals. However, results for SCLD signals can be also obtained as 

a particular case ofOFDM, with K=l (single carrier) and Tcp=O (T =T,,). As such, from 

(F.8)-(F.l 0) one can obtain the range of y = p + (n - 2q)~fc values for SCLD signals and 

good time dispersive channels as 

-nW +(n - 2q)4fc <y <nW +(n - 2q)/1j~ , (F.15) 

For any nand q. With fs = pT- 1 and by using (2.10) and (F.15), a necessary and sufficient 

condition on the oversampling factor, p , to eliminate cycle aliasing can be easily obtained as, 

p ~ jT(2nW) l· (F.l6) 

The same reasonmg can be applied for bad channels to obtain a condition on the 

oversampling factor to eliminate cycle aliasing, given the channel amplitude response. 
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AppendixG 

Cyclostationarity Test Used for Decision Making 

A cyclostationarity test, which is developed in [28], is presented here for n=2 and q= 1. 

This is used in Step 2 of the proposed recognition algorithm, for decision making. With this 

test, the presence of a CF is formulated as a binary hypothesis-testing problem, i.e., under 

hypothesis H 0 the tested frequency ~ is not a CF at delay T , and under hypothesis H1 the 

tested frequency ~ is a CF at delay T . The cyclostationarity test consists of the following 

three steps. 

Step 1: 

The second-order (one-conjugate) CC of the received signal r;(u) is estimated (from L 

samples) at tested frequency ~ and delay • , and a vector c2,1 is formed as 

(G. I) 

where Re O and ImO are the real and imaginary parts, respectively. 

Step 2: 

A statistic 'I' 2•1 is computed for the tested frequency ~ and delay • , 

u1 L ~ ~- ~ ~t 
r 2,1 = c 2,1 L..2,1 c 2,1 ' (G.2) 

where -I denotes the matrix inverse and I 2,1 is an estimate of the covariance matrix 

(G.3) 

with 
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(G.4) 

and 

(G.5) 

The covariances Q2 0 and Q2 1 are given respectively by [28]6 

' ' 

L- 1 oo 

Q20 = limr1"" Cum[f2 1 (/;-r),f21 (/+~;-r)]e-j21t2131e-j2 rr13~, (G.6) 
' L~oo ~ ~ ' ' 

1=0 ~=-<0 

and 

L- 1 oo 

Q2,1 = lim r 1 L L Cum[/2,1 (!; T),f2~1 (l + ~; -r)]e- j2rr(-13)/' (G.7) 
L~oo 1=0 1;=-<0 

where / 2•1 (l ; -r) = r; (I+ -r )r; • (/) is the second-order (one-conjugate) lag product. 

The estimators for the covariances Q2,0 and Q2,1 are given respectively by [28]6 

(L,w-1)/2 
Q 2,0 = (LLswf1 L w<Lsw) (s )F,(L) (p-sr1 )F,(L) w + sL-1

) ' (G.8) 
s=-(L,w-1)/2 

and 

(L.,.-1)/2 
Q2,1 =(LLswf1 L w<L.,.) (s)F;(L)(P+sr1)F,(L) (P+sr 1) ' (G.9) 

s=-(L,w-1)/2 
L- 1 

where w <Lsw> is a spectral window oflength L,.w and ~<L> (y) = :L r; U +-r)r;. (l)e-j2rry1
• 

1=0 

Step 3: 

The test statistic \}' 2,1 , calculated for the tested frequency ~ and delay -r , is compared 

against a threshold r. If \}' 2,1 ;::: r, we decide that the tested frequency ~ is a CF at delay -r ; 

otherwise not. The threshold r is set for a given probability of false alarm, P1 , which is 

6 Th . . fi ese equations are vahd or zero-mean processes. 
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defined as the probability to decide that the tested frequency p is a CF at tested delay 't , 

when this is actually not. This can be expressed as P1 = Pr{':l' 2,1 ~ r I H0 } . By using that the 

statistic ':1' 2,1 has an asymptotic chi-square distribution with two degrees of freedom under 

the hypothesis H 0 [28], the threshold r is obtained from the tables of the chi-squared 

distribution for a given probability of false alarm, P1 . 
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