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ABSTRACT 

Physical and biological processes interact during early life stages to determine 

the distribution and abundance of larvae of many marine benthic species, 

including the commercially and ecologically important American lobster, Homarus 

americanus. Following planktonic development, lobster postlarvae seek benthic 

habitat to occupy during a juvenile phase. Past studies of lobster settlement and 

post-settlement behaviour have rarely considered the effects of physical factors. 

To test whether lobster settlement is affected by flow, I conducted flume 

experiments. Flow increased settlement by increasing substrate encounter 

through passive deposition and modification of searching behaviours. To 

examine shelter fidelity of recently settled juvenile lobster, the behavioural 

response of 3-month-old lobsters to shelter warming and cooling was tested. 

Lobsters behaved aversively in response to cooler temperatures, and abandoned 

their shelter to move to warmer water. These studies of the interactions between 

physical factors and early lobster behaviour enhance our understanding of spatial 

and temporal variability in populations and our ability to identify habitats for 

conservation. 
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CHAPTER 1 

Introduction and Overview 

1.1 Importance of Physical Processes in Marine Ecosystems 

The biology of marine organisms can only be understood in the context of the 

physical processes that determine the conditions for biological processes (Mann 

& Lazier 1996). In marine systems, the physical environment defines the 

fundamental physiological and ecological processes, and marine communities 

are constantly responding to environmental variability (Denny & Wethey 2001 ). 

Patterns in marine communities are driven by complex interactions between 

environmental factors and biological phenomena. Of these environmental 

factors, water motion and temperature are key physical variables that determine 

the types of organisms that colonize a particular location (Ekman 1953, Mann & 

Lazier 1996, Denny & Wethey 2001 ). 

Flows influence all organisms that live in moving fluids (Vogel 1994). In the 

oceans, hydrodynamic forces affect organisms directly and indirectly at various 

scales and, in turn, contribute to the structure of marine communities (Denny & 

Wethey 2001 ). Water motion alters boundary layers around individual organisms 

and their habitats, thereby significantly influencing nutrient uptake and waste 

transport (Mann & Lazier 1996). Large-scale nutrient supply is also dependent 
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on physical processes such as upwelling. Hydrodynamics can exert 

considerable influence over organism movement, dispersal, and sinking, and also 

imposes forces (e.g. drag, turbulence) on sessile organisms. Water motion can 

influence encounter rates with predators, food, or habitat, as well as restrict or 

alter behaviours. 

A major consequence of water temperature is to limit the distribution of 

organisms. The thermal environment restricts the geographical range of marine 

species (Ekman 1953, Kinne 1963) via several mechanisms. Marine organisms 

may not colonize areas with thermal conditions that reduce survival, or may not 

occur in some locations because settling individuals do not survive. 

Physiological rates are largely temperature dependent, particularly in ectothermic 

animals, and organisms are typically adapted to a particular temperature regime 

(Kinne 1963). Adaptations to temperature are varied. Behaviour is sometimes 

thermally regulated, and mobile marine animals will often follow temperature 

gradients. Organisms living in sedimentary bottoms can avoid extreme or 

variable temperatures by burrowing. These adaptations to temperature are 

important drivers of the demography of marine species. 
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1.2 Importance of Early Life Stage Processes in the Recruitment of 
Marine Benthic Invertebrates 

One major focus of marine benthic ecology is to improve our understanding of 

the processes that determine spatial and temporal patterns of recruitment, and to 

assess their importance in regulating benthic populations and community 

structure. Most benthic marine invertebrates have complex life cycles with early 

life stages that differ considerably from adults in their morphology, habitat, and 

lifestyle (Thorson 1950). Consequently, knowledge of the dynamics of both 

planktonic and benthic stages must be integrated to understand the biotic and 

abiotic factors that regulate marine populations (Roughgarden et al. 1988, 

Underwood & Fairweather 1989, Gaines & Lafferty 1995, Eckman 1996). 

It has long been recognized that variations in the supply of early life stages 

(larvae and juveniles) can be important drivers of adult population dynamics 

(Underwood & Fairweather 1989, Rodriguez et al. 1993, Underwood & Keough 

2001 ). Recruitment, generally defined as the addition of new individuals to a 

population through survival to a specific size or life stage (Hunt & Schiebling 

1997), integrates variation from multiple processes including larval production, 

planktonic dispersal, mortality in the plankton, settlement, and post-settlement 

growth and survival. Knowledge of the biological and physical factors that affect 

these early life history events, as well as determination of the relative contribution 

of each process to recruitment, is therefore vital to understanding the distribution 
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and abundance of marine species. The relative importance of pre- and post

settlement events in regulating recruitment dynamics depends on multiple biotic 

and abiotic factors, and can differ among species (e.g. Keough & Downes 1982, 

Hurlbut 1991 , Palma et al. 1998) and among habitats within a species range or 

sites within habitats (e.g. Connell 1985, Bingham 1992, Eggleston & Armstrong 

1995). 

Most marine benthic species produce planktonic larvae that can disperse over 

long distances (Thorson 1950, Scheltema 1974). The transition from a 

planktonic to a benthic existence (settlement) is a key event in the life cycle of 

marine animals with a pelagic dispersal phase, particularly for sessile or 

sedentary species. Settlement into favourable habitat can be of profound 

importance for the survival of benthic species with sessile or sedentary juvenile 

and adult stages. Active selection of settlement habitat has been documented for 

many soft-sediment and hard-substrate species (Doyle 1975, Keough & Downes 

1982, Butman 1987, Morgan 2001 , Underwood & Keough 2001, Keough & 

Swearer 2007). For many marine species, larval settlement is triggered by a 

combination of physical, chemical , and biological factors, and larvae can exercise 

control over their settlement location by delaying settlement in the absence of 

suitable stimuli (reviewed by Rodriguez et al. 1993). Physical cues for settlement 

can include hydrodynamic conditions (e.g. Mullineaux & Butman 1991 , Pawlik et 
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al. 1991, Fuchs et al. 2004), luminosity (e.g. Boudreau et al. 1993, Maldonado & 

Young 1996) and substrate contour and texture (e.g. Wethey 1986, Berntsson et 

al. 2000). A suite of chemical and biochemical agents have been identified that 

induce settlement of marine organisms (see reviews by Crisp 1974, Pawlik 1992, 

Rodriguez et al. 1993). Because many larvae can actively choose where to 

settle, settlement patterns are not determined solely by larval supply, but also by 

larval responses to substrate characteristics. The importance of larval response 

in settlement varies at different spatial scales: active selection of settlement sites 

may be important on small scales (centimeters to tens of meters) but large scale 

settlement patterns will likely be determined by the oceanographic patterns that 

affect larval delivery (reviewed by Butman 1987). Selection of settlement habitat 

can lead to a coupling between settlement and recruitment patterns, because 

larvae are thought to choose habitats that confer high post-settlement survival. 

Under these circumstances, where post-settlement mortality is density

independent and low compared to settlement stages, recruitment patterns 

correspond to settlement patterns (Connell 1985). 

Settling marine organisms are small in size and particularly vulnerable to sources 

of mortality. Post-settlement mortality can result from abiotic factors that cause 

disturbance or physiological stress, and from biological factors such as predation, 

competition, and bioturbation (reviewed by Gosselin & Qian 1997, Hunt & 
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Scheibling 1997). Different causes of mortality, often at varying magnitude, may 

act in different areas of a species range, resulting in variation in the contribution 

of pre- and post-settlement components to recruitment (Connell 1985, Hunt & 

Scheibling 1997). Post-settlement movement and mortality can be as important 

as settlement in determining recruitment patterns of marine benthic organisms. 

Patterns in early post-settlement mortality and migration will therefore determine 

the contribution of settlement to recruitment (Gosselin & Qian 1997, Underwood 

& Keough 2001, Keough & Swearer 2007). 

1.3 Biological-Physical Interactions in Early Life History Processes 

The complexity of the relationship between physical conditions and recruitment 

processes requires an understanding of how spatial and temporal variations in 

the physical environment influence each component of recruitment. No single 

component of recruitment acts singularly, but rather patterns result from the 

combination and interaction of early life-history processes (Keough & Swearer 

2007). Physical processes affect each stage of recruitment- fertilization, larval 

survival, dispersal, settlement, metamorphosis and post-settlement survival 

directly and indirectly, with complex and often cascading consequences. For 

example, if the vertical migratory behaviour of a planktonic larva is affected by 

tidal flow patterns, this behaviour will affect transport and settlement location, and 

can influence both larval and post-settlement survival. Physical variables (e.g. 
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temperature, light, nutrient availability) that limit physiological rates influences the 

planktonic duration of larval stages, which in turn affects larval mortality, 

dispersal potential, larval supply, larval condition at settlement, and subsequent 

post-settlement survival. These examples highlight the need to understand the 

physical variables that influence early life-history stage processes, and to better 

assess the regulatory role of these biological-physical interactions. 

1.3.1 Settlement in Flow 

The process of settlement is the result of a combination of hydrodynamic 

processes and behavioural responses, and the relative contribution of each has 

generated debate in the past partly because early laboratory investigations were 

primarily done in still water (Butman 1987, Morgan 2001 , Underwood & Keough 

2001 ). Where water motion has been considered , it has been shown to 

significantly affect the settlement of marine organisms on both small and large 

scales (Abelson & Denny 1997). 

Settlement experiments performed in flowing water in the laboratory and the field 

have shown that larvae can respond to complex environmental cues in 

hydrodynamically active environments (Underwood & Keough 2001 ). This ability 

is dependent on the size and swimming capability of the larva, and differs 

between species. For instance, a small larva may exercise selective behaviour 
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at the substrate surface after passive contact, through a binary decision to attach 

or re-enter the water column. On the other hand, a larva that is a competent 

swimmer may, even in a high-energy environment, be able to respond to 

environmental cues and actively find a suitable habitat. Additionally, studies of 

larvae in different flow regimes have identified various ways in which 

hydrodynamics might interact with larval behaviour to influence settlement 

(Abelson & Denny 1997). It is clear that behavioural and physical processes 

interact to influence settlement outcomes, and that it is essential to consider the 

hydrodynamic environment in studies of larval settlement. To better understand 

variability in recruitment of marine species requires the integration of larval 

behavioural capabilities into physical models (Sale 1990). 

1.3.2 Early Post-Settlement Dynamics 

Knowledge of early post-settlement dynamics is critical to determining the relative 

contribution of settlement and post-settlement patterns to recruitment patterns 

under varying environmental conditions. Abiotic factors such as temperature and 

salinity can fluctuate greatly in coastal marine environments over tidal and 

seasonal cycles, and early juveniles are typically more sensitive to these 

extremes than adults (Gosselin & Qian 1997). Marine benthic invertebrates that 

settle at specific times during the settlement season, when environmental 

conditions are more favourable, have been found to have higher growth and 
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survivorship (e.g. James-Pirri et al. 1998). On a local scale, the physical 

environment may determine survival of settled organisms and set the distribution 

limits of populations (Butman 1987, Gosselin & Qian 1997). In addition, 

environmental conditions may affect distributions by influencing post-settlement 

migration in mobile species (Hunt & Scheibling 1997). Mortality and migration 

may vary among habitats or among sites within a habitat and thereby decouple 

the settler-recruit relationship (e.g. Eggleston & Armstrong 1995). 

Predation is typically considered the primary source of mortality for early 

juveniles (Gosselin & Qian 1997, Hunt & Scheibling 1997). Predation risk varies 

among habitats for many species, and it is well documented that structurally 

complex substrates often have lower predation intensity (e.g. Barshaw & Lavalli 

1988, Wahle & Steneck 1992, Eggleston & Armstrong 1995, Lovrich & Sainte

Marie 1997, Butler et al. 2001 ). Though less well known, the influence of 

physical factors on predator/prey behaviour can also have important implications 

for juvenile mortality (Hunt & Scheibling 1997). Fluctuations in physical variables, 

such as temperature, turbidity, or salinity, can increase or decrease predation risk 

by affecting the activity of predators and/or prey. By modifying junvenile 

behaviour, physical processes could indirectly influence mortality by predation 

and therefore further influence the abundance and distribution of marine 

organisms. 
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1.4 Study Species: the American Lobster 

The North American lobster, Homarus americanus, is an important Atlantic 

species and has long been a valuable commercial species in Canada and the 

United States. Dramatic increases in lobster landings occurred during the 1990s, 

and they are currently at near historic highs in many areas (Fogarty 1995, 

Fogarty & Gendron 2004). However, precipitous declines in some stocks 

underscore the fact that, despite the relatively large body of knowledge about 

lobster biology, our ability to predict and explain changes in lobster populations 

remains limited. 

Beginning over 1 00 years ago, biological research on the American lobster has 

produced a vast literature on its physiology, population and fisheries biology, 

aquaculture, ecology, behaviour, and sensory biology (Factor 1995). Like many 

marine organisms, the adult stages of lobster have been most frequently 

examined, and the ecology of early life stages is less well known. A fuller 

understanding of the early life history of Homarus is emerging, through the use of 

new approaches and tools in both the field and laboratory (Cobb & Castro 2006). 

Studies of clawed lobster populations (Family: Nephropidae) have concluded that 

successful settlement can be a key driver of lobster demography (Fogarty & 

ldoine 1986, Palma et al. 1999, Wahle et al. 2004). In contrast to other large 
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benthic decapod species found in North Atlantic coastal areas, H. americanus 

has relatively low fecundity, low settlement densities, and low early post

settlement mortality (Palma et al. 1998). Settling lobsters show strong 

preference for structurally complex substrate (Botero & Atema 1982, Wahle & 

Steneck 1991 , Palma et al. 1999). Predation rates are high in the absence of 

suitable shelter (Johns & Mann 1987, Wahle & Steneck 1992) and vary among 

habitats depending on the type of predator (Lavalli & Barshaw 1986, Barshaw & 

Lavalli 1988). These findings help explain why early life history processes are 

particularly influential to lobster demography. Nonetheless, local factors that 

increase post-settlement mortality or migration of juveniles and adults can 

obscure settlement-recruitment relationships (Wahle 2003, Wahle et al. 2009), 

and the investigation of the relative contribution of both pre- and post-settlement 

processes is necessary to increase our understanding of lobster demography 

(Wahle & Incze 1997, Wahle 2003). 

Lobsters display a wide range of complex behavioural adaptations at each life 

stage, and are particularly sensitive to environmental conditions that trigger 

specific behavioural responses (Childress & Jury 2006). Lobsters possess an 

array of sensory receptors across their bodies, particularly concentrated on 

antennules, limbs, and mouthparts, making them capable of detecting chemical 

(e.g. conspecifics/food odours) and mechanical (e.g. water movements, 
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vibrations) stimuli (Atema & Voigt 1995). Lobsters are demonstrably able to 

detect and respond to a suite of environmental variables such as salinity, 

temperature, osmolarity, and hydrodynamics (Atema & Voigt 1995, Childress & 

Jury 2006). The ability to integrate this sensory information into key behavioural 

decisions such as habitat selection and migration has clear adaptive value. 

The remarkable sensitivity of lobsters to environmental stimuli means that abiotic 

factors play a significant role in their ecology, not only by affecting physiological 

rates or by defining the environment in which biological processes occur, but also 

through their influence on organism sensory biology and behaviour. For 

example, as a result of the importance of olfactory signals in many aspects of 

lobster life (e.g. courting, agonistic behaviour, food detection), there is a complex 

relationship between hydrodynamics, habitat and odour detection (Childress & 

Jury 2006). Because environmental cues significantly influence behaviours and 

affect processes such as movement, habitat selection, and mating, they play an 

important role in the life history of lobsters. In their review of lobster behaviour, 

Childress and Jury (2006) recommend that in the study of the relationship 

between habitat and recruitment, a better understanding of the behavioural 

responses of lobsters to environmental change is needed. 
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The use of closed areas to help sustain lobster fisheries has attracted significant 

interest in the last 20 years (Childress 1997), and efforts to enhance stocks and 

habitats through seeding programs and the creation of artificial reefs have met 

with varied success (reviewed by Cobb & Castro 2006). An understanding of the 

interaction between behaviour, habitat, and physical factors, particularly in early 

life-history stages, is essential in the development of marine protected areas, 

artificial habitats, and larval or juvenile seeding ventures. 

1.5 General Objectives 

The aim of this research is to investigate the interaction of physical and 

ecological processes in the early life history of the American lobster and to 

identify ways in which these interactions may contribute to spatial and temporal 

variation in recruitment patterns. The two following chapters use experimental 

approaches to examine behavioural responses of settlement and post-settlement 

stage lobster to physical factors. 

Chapter 2 details experiments that investigated the effects of flow on the 

settlement of lobster postlarvae. Specifically, I explore the interaction of 

hydrodynamics and active postlarval behaviour on habitat searching and 

settlement. In this chapter, I identify and discuss ways in which near-bottom flow 

might contribute to spatial and temporal patterns of settlement. 
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Chapter 3 focuses on how environmental variability can affect early post-

settlement lobster migration and mortality. This study describes the effect of 

temperature changes on early juvenile shelter-use behaviour. The influence of 

thermal environment on lobster post-settlement movement and the potential 

implications for demography are discussed. 
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CHAPTER 2 

Hydrodynamic Effects on Postlarval Settlement in the American 

Lobster, Homarus americanus 

2.1 Abstract 

Following planktonic larval development, American lobster (Homarus 

americanus) postlarvae seek out appropriate settling grounds in which to develop 

through a shelter-restricted juvenile phase. Previous studies have shown that 

lobster postlarvae exhibit strong directional swimming ability, distinct bottom

searching behaviours, and clear responses to physical and chemical cues. 

However, most experiments on larval and postlarval lobster have been 

conducted in still water, and little is known on the effect of hydrodynamics on 

settlement. Flume experiments were conducted to investigate the effect of a 

moderate flow on postlarval swimming behaviour and settlement. In 1-hour trials, 

postlarvae settled significantly more in flow than in still water. Postlarvae in flow 

were more likely to encounter substrate than postlarvae in still water. 

Behavioural observations indicated that postlarval behaviour was modified by the 

presence of flow. In contrast to postlarvae in still water, postlarvae in flow 

appeared to deliberately sink and were entrained to the substrate by turbulence, 

contributing to higher encounter and settlement rates. When subjected to flow, 

postlarvae performed significantly fewer dives and exhibited fewer bottom 
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searching behaviours than postlarvae in still water. The flow environment 

therefore has an effect on settlement frequency by influencing encounter rates 

through an interaction between passive and active processes. These results 

suggest that lobster settlement could be affected by spatial and temporal 

differences in flow and that the influence of hydrodynamics on behaviour needs 

to be considered when examining and predicting settlement patterns. 

2.2 Introduction 

Understanding the structure of marine populations requires knowledge of not only 

the processes that affect adult life histories, but also the processes that influence 

variation in the arrival and settlement of planktonic larvae (Roughgarden et al. 

1988, Morgan 2001 , Underwood & Keough 2001 ). Many marine benthic 

invertebrates have complex life cycles that include a planktonic larval phase, 

which is their primary mode of dispersal. For species with a planktonic larval 

phase, the settlement process is a critical transition to the seafloor environment 

and can be a major structuring factor for benthic populations (Underwood & 

Keough 2001 ). Because many of these animals are sessile or sedentary as 

juveniles and adults, larval delivery and settlement into favourable habitats may 

be particularly important in determining the structure of populations and 

recruitment levels into fisheries. Underlying the recruitment of larvae to adult 
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populations are physical and behavioural processes that affect delivery to and 

settlement into suitable nursery grounds. 

Studies on the settlement of marine invertebrate larvae of various groups such as 

molluscs, echinoderms, polychaetes, cnidarians, and crustaceans, have shown 

that these organisms can actively select habitats in response to physical , 

chemical and biological cues (Crisp 1955, Crisp & Stubbings 1957, Crisp 1974, 

Scheltema 197 4, Pawlik 1992, Boudreau et al. 1993a, Rittschof et al. 1998, 

Forward et al. 2001 ). However, the scales at which active versus passive 

processes determine settlement distributions depend on the traits of a species 

(e.g. swimming ability, sensitivity to cues) , as well as the hydrodynamic 

conditions in the settlement environment (Scheltema 197 4, Hannan 1984, 

Butman 1986, Butman et al. 1988, Boudreau et al. 1990, Grassle et al. 1992). 

Unlike many smaller, weakly mobile planktonic larvae, decapod postlarvae are 

strong swimmers, and postlarvae of the American lobster, Homarus americanus, 

are particularly capable of oriented swimming (Ennis 1986, Cobb et al. 1989b). 

These characteristics have been hypothesized to allow relatively large-scale 

habitat selection by lobster postlarvae (Boudreau et al. 1990). 

Lobster settlement occurs after metamorphosis from larval stage Ill to the 

postlarval stage. Postlarvae begin searching for suitable bottom habitat 2-6 days 
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following metamorphosis (Cobb et al. 1989a). Timing of settlement is variable 

and, if suitable habitat is not encountered, postlarvae can delay their transition to 

the benthos until after a subsequent molt (Cobb et al. 1989a, Incze & Wahle 

1991 ). Postlarval lobsters display a range of swimming and searching 

behaviours and respond to a suite of physical and chemical cues in controlled 

laboratory experiments (Hadley 1905, Botero & Atema 1982, Johns & Mann 

1987, Cobb et al. 1989a, Boudreau et al. 1990, Boudreau 1991, Boudreau et al. 

1992, Boudreau et al. 1993a,b). Postlarvae are known to exploit a variety of 

substrates, but laboratory experiments have demonstrated a preference for 

structurally-complex substrates such as cobble, rather than sand or mud (Botero 

& Atema 1982). Size of shelter substrate has been shown to correlate to body

size of juvenile and adult lobster (Cobb 1971 , Wahle 1992) but a preference for a 

particular cobble size at settlement has not been examined. Johns and Mann 

(1987) found that lobster postlarvae choose habitats with seaweed or seaweed 

mimics more frequently than habitats without. Light penetration has also been 

identified as one of the most important substrate characteristics for lobster at 

settlement, and it has been suggested that a hierarchy of cues act to ultimately 

determine settlement location (Boudreau et al. 1990). While settling postlarval 

lobsters have been shown to respond to many physical and chemical factors, the 

difficulty of observing the settlement process in the field has resulted in 
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settlement studies that have been done almost exclusively in the laboratory and, 

with few exceptions, in still water. 

Water flow is a ubiquitous and highly variable factor in the coastal marine 

environment, and inevitably has a strong influence on ecological processes in the 

marine realm. Laboratory and field studies have clearly demonstrated that flow 

can have a range of effects on the settlement of benthic marine invertebrates on 

soft and hard bottoms (e.g. Eckman 1983, Butman et al. 1988, Mullineaux & 

Butman 1991 , Pawlik et al. 1991, Snelgrove et al. 1993, Snelgrove et al. 1998). 

Abelson and Denny (1997) review three levels at which water motion may 

influence settlement of marine propagules: (1) Hydrodynamic forces may affect a 

settling organism's encounter rate with substrata, and/or subsequent behaviours, 

(2) Flow regime could serve as a settlement cue that induces active behaviour 

and determines site selection, and (3) Flow may mediate the detection of 

settlement cues in the environment. Because lobster settlement has been 

investigated primarily under static flow conditions, the effect of water motion is 

largely unknown. Without incorporating flow regime, it is unclear how the 

settlement behaviours and selectivity observed in laboratory experiments might 

translate to field conditions. Furthermore, the focus on still water experiments 

overlooks the possibility that habitat-associated flow can act as a physical 

settlement cue for lobster. 

23 



Investigation of the factors that influence the settlement process of marine 

species is fundamental to understanding and predicting patterns of recruitment, 

identifying critical habitat, and managing populations. Lobsters are effectively 

sedentary in the first years following settlement, and appear to experience little 

post-settlement mortality (Incze & Wahle 1991, Palma et al. 1998); lobster 

densities could therefore be largely determined by postlarval delivery and 

settlement patterns (Palma et al. 1998, Palma et al. 1999). Despite the 

ecological and economic importance of this species, and the significance of early 

life history stages in determining recruitment success, the behaviour of postlarval 

lobsters is not well-known (Lawton & Lavalli 1995, Phillips et al. 2006). 

The purpose of this study was to investigate effects of water flow on postlarval 

lobster settlement. In a laboratory experiment to examine the effect of flow on 

settlement, I examined the settlement of individual lobster postlarvae of two age 

groups under either still-water conditions or in a moderate flow. Two sizes of 

cobble were offered as settlement substrate to test for postlarval selection of 

substrate size in the two flow regimes. In a separate experiment, lobster 

postlarval swimming and searching behaviours were measured in response to 

flow, to further examine the active component of substrate encounter. 

24 



2.3 Materials and Methods 

2.3.1 Lobster Larval Culture 

Homarus americanus postlarvae were raised at the Ocean Sciences Centre of 

Memorial University. Fifteen ovigerous female lobsters were collected from Notre 

Dame Bay, Newfoundland using standard lobster traps during July 2007. 

Females were transported to the Ocean Sciences Centre laboratory and 

maintained in separate tanks under ambient light with flowing seawater at 

ambient surface temperature (range: 8-15 °C). The lobsters were fed a ration of 

squid or mussels every 3 days. When hatching occurred, lobster larvae were 

collected from the adult tanks using a fine mesh net. During this period, tanks 

were checked frequently for larvae in order to ensure they were collected soon 

after hatch. Larvae of the same age (hatched within the previous 24 h period) 

were cultured together in static, 1 0-L culture containers filled with filtered 

seawater maintained at 17-19 °C. Larvae were kept under artificial light (12 h 

light : 12 h dark cycle). Initial culture densities ranged from 20-40 larvae·L·1
• 

Strong aeration decreased cannibalism in the culture containers. Larvae were 

fed ad libitum a mixed diet of enriched frozen adult artemia and live artemia 

nauplii. Culture water was changed and dead larvae removed from the cultures 

every 2 days. After molting to the fourth stage (postlarval stage) , larvae were 

separated from their initial culture and reared, using the same methods, with 
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individuals of the same molt date in order to reduce cannibalism and to document 

the number of days past molt (within 24 hours). 

2.3.2 Settlement Experiments 

Settlement experiments were conducted late August - mid-September 2007 

during the daylight portion of the light cycle. A total of 62 mid-stage (7-9 days 

past molt) and 48 late-stage ( 12-16 days past molt) lobster postlarvae were used 

in individual trials. Within the mid-stage age group, 31 trials were conducted in 

flow and 31 in still water. Within the late-stage age group, 27 trials were 

performed in flow and 21 in still water. 

Experiments were carried out in a 7-m long linear flume (Fig. 2.1 a) with a 0.5-m 

wide channel and a 0.88-m long test section. Water depth was 10 em during all 

experiments. Flow is generated in the flume by an impellor driven by a variable

speed motor. The flume was filled with unfiltered seawater maintained between 

16-19°C by a heater/chiller unit that connected to a titanium heat exchange panel 

in the flume return pipe. To create two substrate choices, the test section 

substrate array of the flume was filled with a single layer of seawater-conditioned 

quarry cobble of two size ranges (small: 9.1 ± 0.2 em, large: 17.2 ± 0.2 em) on 

top of medium grain sand, divided on the longitudinal axis (Fig. 2.1 b). The sand 

in the test section sloped down from the edge of the smooth upstream bottom so 
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that the sand between cobble pieces was approximately 2 em deeper and 

created a smooth transition from the acrylic flume bottom to the cobble test 

section. Cobble was arranged to abut so that crevices formed between adjacent 

stones. Small cobble protruded ,...,3 em above the sand bottom, and large cobble 

pieces protruded ,...,5 em (Fig. 2.1 c). The two cobble sizes offered postlarvae 

contrasting habitat characteristics in 2 key ways: (1) different crevice sizes in 

which to shelter; (2) in flowing water, different hydrodynamic environments over 

the different-sized protruding structures. Cobble was chosen as the substrate for 

this experiment because it is a preferred settlement substrate for lobster 

postlarvae (Botero & Atema 1982, Hudon 1987, Wahle & Steneck 1991 ), but the 

preference for a particular grain size at settlement has not been fully assessed. 

Every 2-3 days during the experimental period, the flume water was replaced , 

and the test section reconfigured to ensure that each side of the test section held 

each cobble treatment for half of the trials, to avoid any cross-stream location 

bias. 
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Figure 2.1. Diagram of flow 
tank. (a) Side view of the 
channel flume. (b) Top view 
of substrate arrangement in 
test section. (c) Side view of 
relative heights of 
substrates in test section. 
Location of cobble 
treatments were periodically 
switched throughout the 
experiment. 

At the onset of each trial, an individual postlarva was gently introduced at the 

upstream edge of the flume test section using a dip net. Postlarvae exited the 

net themselves by crawling or swimming out. Constant observations of location 

and behaviour were made for 15 minutes following introduction; if settlement did 

not occur within this time period, the postlarva was left in the flume and observed 

for 5-minute periods every 15 minutes. Trials were discontinued when settlement 

occurred or at t = 1 h. Postlarvae were considered settled when they became 

sheltered under or between rocks for longer than 5 minutes. Time to settlement 
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and settlement substrate were recorded for settling individuals. If settlement 

occurred during unobserved periods, the time was recorded to the nearest 15-

minute interval. Individuals not settling by the end of the 1-hour trial were scored 

as not settled. 

Count data obtained from these experiments were analysed using the 

generalized linear model procedure (SAS statistical software). Response 

variables of (1) settlement (settled I not settled), (2) settlement substrate (small I 

large cobble), (3) substrate encounter during observation (encounter I no 

encounter, and (4) settlement following encounter (encountered and settled/ 

encountered and did not settle), were modeled in terms of the nominal predictor 

variables postlarval age (mid-stage I late-stage) and flow treatment (flow I still 

water). Models for these binary data used a binomial distribution and a legit link 

function. Effects of postlarval age and flow treatment on time to settlement were 

analyzed using a generalized linear model procedure with a poisson distribution 

and log link. For all analyses, plots of residuals versus fitted values were used to 

evaluate assumptions of homogenous errors and whether the structural models 

adequately represented the relationships. See Appendix A for details of each 

analysis and for sample diagnostic plots. 
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,------------------------

2.3.3 Flow Characterization 

To characterize the hydrodynamic environment in the flume during the flow trials, 

vertical depth profiles of velocity were measured at different locations in the 

flume : 0.5 m upstream of the test section in the middle of the channel , and above 

the top of a rock and a crevice for each substrate treatment mid-way along the 

test section (Fig.2.2) . The bounding surface at each location (i.e. rock surface, 

flume bottom) was the bottom from which height (z) measurements were made. 

All flow measurements were performed with a Sontek 16 Hz Acoustic Doppler 

Velocimeter (ADV) connected to a positioning system to allow measurements at 

defined coordinates (x,y,z) in the flume channel. A sampling volume of 0. 75 mm3 

was used and each point was sampled for approximately 300 seconds (> 3000 

samples per point) . 

All flow experiments were conducted using a moderate, smooth-turbulent flow, 

with a free-stream velocity of approximately 7.5 cm·s·1
• Boundary shear velocity, 

u*, is a measure of the shear stress acting on a boundary and is typically used as 

a convenient velocity parameter to characterize near-bottom flow (Nowell & 

Jumars 1984). The shear velocity (u*) upstream of the test section was 

calculated to be 0.34 cm-s·1 using the log layer of the upstream velocity profile 

(Fig. 2.2a) and the formula: 

K 
ln(z) = -u + ln(z0 ) 

u. 
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where K is von Karman's constant (=0.41 ), u is the velocity at height z, and z0 is 

the bottom roughness parameter. This u* is typical of mid-range near-bottom 

flow in a coastal embayment (Butman 1986, Grassle et al. 1992). 

Horizontal flow accelerated as it moved over the roughness elements in the 

substrate test section, reaching approximately 8 cm·s·1 and 8.5 cm·s·1 above the 

small and large cobble, respectively (Fig. 2.2b). Flow weakened above the 

bottom within crevices, and crevices in the large cobble section, where rocks 

reached ,...,4_5 em above the bottom, created flow eddies with increased vertical 

and transverse velocities, and a reverse horizontal flow (Fig. 2.2b). The temporal 

fluctuation in horizontal velocities (span of 95% confidence intervals) can be used 

as a measure of turbulence and was generally greater in the substrate test 

section compared to the upstream profile, and was more pronounced in areas of 

the vertical profile over the large cobble compared to the small cobble (Fig. 2.2c). 
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2.3.4 Swimming Behaviour Experiments 
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Figure 2.2. (a) Semi-logarithmic 
plot of ln(z) versus horizontal flow 
speed at 7.5 cm·s·1 free stream 
velocity upstream of flume test 
section. (b) Depth profiles of 
horizontal flow speed upstream of 
the test section (•), above small 
cobble ( .t.), in a small cobble 
crevice ( ), above large cobble 
(6.), and in a large cobble crevice 
(V). (c) Profiles of turbulence 
(variance in horizontal flow speed) 
upstream of test section, and in the 
test section. Symbols are the 
same as in (b). 

The swimming behaviour responses of lobster postlarvae to flow were tested in 

the daylight period of the light cycle. The flume was filled to 10 em depth with 

unfiltered 16-19 °C seawater. A total of 25 postlarvae (9-16 days past molt) were 
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used in swimming behaviour trials. In the flume, with the cobble substrate made 

unavailable, each postlarva was observed for 15 minutes in a moderate flow 

(same speed as in settlement experiments) and for 15 minutes in still water. 

Time spent at the surface (top 1 em), time spent at the bottom (within 1 em of the 

flume bottom) and time spent in the water column was recorded. Three 

behaviours were characterized (adapted from Cobb et al. 1989a; Fig. 2.3) and 

enumerated during each trial : the number of full descents, the number of partial 

descents (departures from the surface to the mid-water, returning to the surface 

within 30 seconds), and the number of lift-offs (departures from the bottom to 

mid-water, returning to the bottom within 30 seconds). Between the two 

swimming trials, the postlarva was removed from the flume for 1 0 minutes before 

it was reintroduced for the alternative treatment. It is possible that experimental 

handling affected lobster behaviour, but every effort was made to minimize 

handling time and lobsters experienced consistent handling at each introduction; 

there was no systematic change observed in behaviour as the experiments 

progressed. To ensure that the sequence of treatments did not affect the 

individuals' responses, the order of exposure to the two experimental conditions 

was alternated among the test subjects, so that the order of trials was flow 

followed by still water for half of the postlarvae, and still water followed by flow for 

the remaining postlarvae. 
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Paired t-tests were utilized to analyze the results of the swimming behaviour 

trials. The mean number of descents (full and partial) and lift-offs performed, as 

well as the mean time spent by postlarvae in surface, mid, and bottom waters, 

was compared between still-water and flow trials. 

surface ~ 

midwater 

bottom 

Figure 2.3. Diagram of postlarval searching behaviours: (a) Partial descent, 
(b) Full descent (c) Lift-off 

2.4 Results 

2.4.1 Settlement Experiments 

Flowing seawater significantly affected postlarval lobster settlement. More 

postlarvae settled in flow treatment trials compared to still-water trials (Fig. 2.4; 

Table 2.1 ). The effect of flow was consistent across both age classes; however, 

a higher proportion of late-stage postlarvae settled compared to younger 

individuals. In flow trials, many postlarvae were observed to quickly descend 
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following introduction, by deliberate sinking with claws and abdomen extended 

while being transported by the current. When the postlarvae entered the 

turbulent area above the substrate section, this behaviour typically resulted in 

advection of the postlarva to the substrate. In contrast, postlarvae in still-water 

trials most often swam actively at introduction and encountered substrate through 

diving and/or sinking. 
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Figure 2.4. Percentage of lobsters in each age class settling under still
water and flow conditions. Bars are shaded to represent the percentage 
of lobsters that chose each substrate type. 
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....---------------------------

Table 2.1. Summary statistics for generalized linear models of proportional 
settlement and encounter data. Asterices indicate statistical significance 
(*= p<0.05, **= p<0.01) . 

Dependent variable Predictor r! p-value 

Settlement (yes/no) Age 12.68 0.0004 ** 

Flow treatment 5.88 0.0153 * 

Interaction 1.869 0.9103 
Settlement substrate Age 0.965 0.326 
(small/large) Flow treatment 0.114 0.736 

Interaction 0.080 0.778 
Substrate encounter Age 4.702 0.030 * 
(yes/no) Flow treatment 7.569 0.006 ** 

Interaction 1.869 0.172 
Encountered substrate Age 6.696 0.010 * 
but did not settle Flow treatment 0.019 0.889 

Interaction 0.397 0.529 

There was no significant preference for small or large cobble as a settlement 

substrate in this experiment. Although a slightly larger percentage of postlarvae 

settled in small cobble in flow compared to still-water treatments (Fig. 2.4) , this 

difference was not significant, and the proportion of postlarvae settling in each 

cobble type did not differ between the two age groups (Table 2.1 ). 

During the first 15 minutes of trials, 73% of all lobsters tested encountered the 

substrate section. However, lobsters were significantly more likely to encounter 

substrate in the flow treatment than in the still-water treatment (Fig. 2.5; Table 

2.1 ). The proportion of lobsters that encountered substrate was significantly 

different between the two age groups; in each flow treatment, late-stage 
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postlarvae encountered substrate more frequently than mid-stage postlarvae 

(Table 2.1 ). The majority of lobsters that encountered substrate eventually 

settled during the trials : only 19 of 80 lobsters (24%) that encountered the 

substrate within the first 15 minutes did not settle during the trial period. Of these 

individuals that did not settle, significantly more were mid-stage lobsters (Fig. 2.5; 

Table 2.1 ). Flow condition did not have an effect on this relationship, in that 

lobsters of both age groups were as likely to settle after encountering substrate in 

flow or still water. 
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Figure 2.5. Percentages of mid-stage and late-stage postlarvae in still water 
and in flow that encountered substrate within 15 minutes of trial start and 
percentages that settled during 1 h trials. 
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Flow and postlarval age had an interactive effect on the time to settlement (Fig. 

2.6; x2=4.69, p=0.0136); therefore, each predictor was analysed separately 

(Table 2.2, Appendix A). No significant difference in time to settlement was 

found between the two flow treatments for either age group (Table 2.2). Late

stage postlarvae settled more quickly than mid-stage postlarvae in both flow and 

still water (Table 2.2; Fig. 2.6). In these experiments, time to settlement included 

two components: the time to encounter substrate and the time spent in the 

substrate choosing or creating a shelter. The younger postlarvae generally 

explored more within the substrate compared to older individuals, and took more 

time choosing a crevice or creating a burrow in which to remain. Younger 

postlarvae were also often observed to make multiple contacts with the substrate, 

re-entering the water column, whereas late-stage postlarvae typically remained in 

the substrate after the initial encounter. The interaction detected in the analysis 

is due to a difference in magnitude of the effect of age on time to settlement 

between flow and still water (Table 2.2). Flow increased the age effect, most 

likely by decreasing the time it took to encounter substrate, which led to quicker 

settlement by the late-stage postlarvae with a higher settlement drive than mid

stage postlarvae. Individual variation in searching times within the substrate 

possibily negated any direct effect of the decreased encounter time conferred by 

the flow on total time to settlement. 
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Table 2.2. Summary of statistical analysis of the interaction of postlarval age 
and flow treatment on time to settlement. Asterices indicate statistical significance 
(*= p<0.05, **= p<0.01 ). 

Observations used Predictor ·l p-value 

Mid-stage Flow treatment 2.86 0.0909 

Late-stage Flow treatment 3.23 0.0721 

Still Postlarval age 4.39 0.0362 * 

Flow Postlarval age 45.32 <0.0001 ** 
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Figure 2.6. Mean time to settlement(± SE) for mid-stage and late-stage 
postlarvae that settled in 1 h still water and flow trials. 
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2.4.2 Swimming Behaviour Trials 

Postlarvae were more active in their searching while in still water. In still-water 

trials, the mean number of full descents by postlarvae was significantly greater 

than in flow trials (Fig. 2.7 ; t-test: t=3.05, P<0.01 ). Postlarvae also performed 

significantly more partial descents (t=3.32, p<0.01) and lift-off behaviours (t=2.94, 

p<0.01) in still water compared to flow (Fig. 2.7). The postlarvae actively swam 

during flow trials, typically at speeds equal to or slightly less than the current 

speed. In flow, postlarvae bottom searched with deliberate sinking behaviour, 

using the current to transport them backwards and to the bottom, with their claws 

out and abdomen extended. This behaviour was in contrast to active diving as 

the main mode of descent in still-water trials. In flow, once in contact with the 

bottom, postlarvae often remained , and explored the surface by walking, whereas 

in sti ll water, lift-offs were the preferred method of searching. 
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Figure 2.7. Mean number of full descents, shallow descents, and lift-offs 
performed by postlarvae in still- water and in flow trials. Error bars 
represent 1 S.E. 

No significant difference was found between still and flow trials in the time spent 

by postlarvae at the surface (Fig. 2.8; t=0.672, p=0.508). On average postlarvae 

spent more time on the bottom in flow compared to still water, but this difference 

was not significant (t=1.907, p=0.1 01 ). However, the postlarvae spent 

significantly more time in mid-water during still-water trials (t=3.861 , p<0.01 ), as a 
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result of the increase in diving and lift-off behaviours that brought them into the 

mid-section of the water column. 
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Figure 2.8. Mean time spent in the surface, mid-water, and bottom 
sections by postlarvae in still-water and flow trials. Error bars represent 
1 S.E. 

2.5 Discussion 

This is the first investigation to focus on the role of flow in American lobster 

postlarval settlement. Crustacean species such as H. americanus that exhibit 

strong swimming abilities, substrate preferences, and responsiveness to cues 
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offer a compelling study subject to investigate the effects of hydrodynamics on 

larval settlement. The superior swimming capability of lobster postlarvae 

provides a contrast with the weaker swimming mollusc (e.g. Snelgrove et al. 

1993, Snelgrove et al. 1998, Boxshall 2000, Grimaldi et al. 2002), barnacle (e.g. 

Crisp 1955, Mullineaux & Butman 1991 , Berntsson et al. 2000) and polychaete 

(e.g. Butman et al. 1988, Butman & Grassle 1992, Grassle et al. 1992, Pawlik & 

Butman 1993, Snelgrove et al. 1993) larvae that have been the focus of previous 

studies of settlement in flow. The objective of the present study was to examine 

lobster settlement under realistic flow conditions and to evaluate the potential 

contribution of passive and active processes to lobster settlement. 

The results presented here demonstrate that water flow can significantly 

influence lobster postlarval settlement. The observed differences in settlement 

and behaviour between flow and still water confirms that flow has potentially 

important implications for the settlement of H. americanus. The flow used in 

these experiments increased encounter rates of postlarvae with the substrate, 

and the probability of settlement was correspondingly higher and faster in flow 

compared to still-water treatments. The increased encounter rate and 

subsequent increase in settlement in flow was not simply a passive physical 

process, but rather one that was influenced by postlarval behavioural responses 

to flow. Lobster postlarvae are capable swimmers, and can sustain swimming at 
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flow speeds well above the 7.5 cm·s·1 velocity used in this experiment (Ennis 

1986, Cobb et al. 1989b). When exposed to the flow, however, postlarvae 

modifed their behaviour, deliberately sinking and subsequently becoming 

entrained to the bottom, particularly in the turbulent test section. These results 

indicate that the behavioural mechanisms by which postlarvae reach the 

substratum and ultimately settle can be influenced by hydrodynamic conditions. 

Settlement requires two events to occur: (1) substrate encounter and (2) 

acceptance of the encountered substrate. The latter often requires an active 

behaviour on the part of the larva, whereas the initial component can occur 

passively. Two categories of conceptual behavioural models have been used to 

explain active settlement of marine larvae in flow (Mullineaux & Garland 1993, 

Abelson & Denny 1997, Dobretsov & Wahl 2008). Most commonly, larvae are 

thought to contact the substrate surface via advective flow, and subsequently 

accept or reject the surface (e.g. Butman & Grassle 1992, Snelgrove et al. 1993). 

If a larva rejects the surface, it returns to the water column. Alternatively, the 

"contact and explore" model suggests that certain larvae will contact a surface, 

and rather than make a binary accept/reject response, they will explore the 

substrate to locate a suitable settlement site. Neither of these models consider 

the influence larvae may have on substrate encounter, but rather, the "choice" 

comes when larvae accept or reject a substrate. Because larval decapods have 
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a high swimming capacity, they may be able to select settlement sites over larger 

scales than smaller passive larvae (Luckenbach & Orth 1992, Fernandez 1994, 

Hedvall et al. 1998). Rather than contact the substrate solely by advective flow, 

they may actively contribute to probability of encounter with the substrate. The 

lobster postlarvae examined in this study demonstrated "contact and explore" 

behaviour but with a clear behavioural influence on initial contact. This 

behavioural influence was particularly important to settlement outcome; the 

increased settlement in flow resulted not from differential acceptance of substrate 

in flow and still water, but from differences in substrate encounter in flow and still 

water. 

The variation seen between the two age classes of postlarvae in flow highlights 

the active behavioural contribution to substrate encounter - if the flow regime 

itself was the cause of the increased substrate encounter, a difference between 

mid- and late-stage postlarvae would not be expected. Instead, behaviour 

remains an important contributor to the first component of settlement in flow, and 

substrate encounter is higher for late-stage postlarvae. The behaviours used to 

encounter substrate may differ in flow versus still water, but the results presented 

here support and add to previous work that has demonstrated that lobster 

postlarvae increase bottom-related behaviours with age (Botero & Atema 1982, 

Cobb et al. 1989a, Boudreau et al. 1993b). 
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The behavioural differences quantified in the swimming experiment give further 

insight into the contrasting methods by which postlarvae find substratum in 

different flow environments. In still water, postlarvae actively dived and searched 

throughout the water column far more than in flow. This pattern suggests that in 

the absence of flow postlarvae must actively search significantly more than when 

flow is present and, in combination with the results of the settlement experiment, 

that this active searching does not equal the success of encounter attained 

through the use of near-bottom flow. 

From an adaptive perspective, the postlarvae settling and searching behaviours 

in flow appear to maximize substrate encounter while minimizing energetic 

requirements. In the moderate flow used in these experiments, postlarvae 

actively sank or dove as they were carried across the more turbulent cobble-filled 

test section. Despite their capacity for swimming against the flow, the postlarvae 

rarely exhibited searching behaviour against the current, but instead alternated 

between drifting with the current while actively sinking, and swimming to hold 

position with the flow. In areas with even a moderate flow, such as that used 

here, postlarvae can utilize turbulence in order to contact substrate, and avoid 

the energy expenditure of repeated dives. This potential energy savings during 

settlement could have carry-over effects and confer an advantage to juveniles 

that settled through the use of flow. In field surveys, postlarvae are almost 
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always caught in the surface layer (Hudon et al. 1986, Harding et al. 1987), a 

result that conflicts with the idea that postlarvae spend substantial time 

descending and ascending, testing bottom substrates, prior to settlement (Ennis 

1995). Because postlarvae have been found to rarely cross thermal gradients, 

thermoclines have been suggested as a possible cue that confines them in 

surface waters and increases the likelihood of settlement in warmer shallow 

areas (Boudreau et al. 1991, Annis 2005). The behavioural responses to flow 

that have been documented here suggest an additional mechanism by which 

postlarvae avoid extensive active forays to the bottom in areas of innapropriate 

depths. Active movement that is limited to short vertical distances during 

transport in flow and the use of turbulent advection for substrate contact could 

increase the probability of substrate encounter primarily at shallow depths where 

appropriate settlement substrate is located. 

Habitat-associated flows are potentially an important component of habitat 

selection (Crisp 1955, Eckman 1983, Mullineaux & Garland 1993, Abelson & 

Denny 1997). In the only other lobster settlement study that included flow as a 

variable, Johns and Mann (1987) found that lobster postlarvae that settled in a 

1 0-30 cm·s·1 current preferred habitats with plastic seaweed mimics more than 

postlarvae in still water. They suggested that the lobsters seek shelter from 

water currents, because flow is reduced beneath the frond structures. In my 
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study, the subtle differences in flow created by the two substrate sizes did not 

cause any significant difference in settlement. It is likely that in the moderate flow 

speed used, small and large cobble both provided sufficient refuge from the 

current. It is also possible that postlarvae do not seek shelter from moderate to 

low currents, but that these are ideal flow environments in which to live. 

It is unclear if hydrodynamics could act as a settlement cue for lobster; although 

the flow promoted substrate contact it did not affect the acceptance or rejection of 

that substrate. It is possible, however, that the deliberate sinking and use of 

turbulence to contact substrate reflects a preference for a particular flow pattern. 

Only one flow speed was tested in this experiment so additional experiments are 

needed to determine whether there is a preference for settlement in a particular 

flow regime. Nonetheless, given that flow influenced behaviour and proportion of 

settled larvae, these results suggest that hydrodynamic cues are important for 

lobster settlement. Moreover, because early juvenile lobsters are generally 

shelter-restricted and rely on suspension feeding for the early part of their benthic 

life (Barshaw & Bryant-Rich 1988, Lavalli & Barshaw 1989, Lawton & Lavalli 

1995), there would be an expected advantage to settling in an environment that 

confers a favourable, flow-mediated food supply. Because abiotic and biotic 

cues interact to determine settlement patterns, possible hydrodynamic cues 

should be investigated in conjunction with other known lobster settlement cues to 
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evaluate their relative importance. An additional factor to be considered in future 

experiments is the possibility of gregarious effects of multiple settlers, or 

previously settled juveniles, on settlement behaviour in flow. 

Examination of the interaction between active and passive processes during 

larval settlement is critical to determining the importance of the larval stage to the 

demography of a species (Butman & Grassle 1992). The results of this study 

demonstrate the importance of flow and its effect on active settlement in lobster. 

This laboratory study shows that hydrodynamics may have a considerable 

influence on active settlement with significant ramifications for settlement 

patterns in the field. If specific flow speeds promote lobster settlement, temporal 

(e.g. tides) and spatial variability in flow may be particularly influential in 

determing recruitment patterns. Although laboratory studies have implicated 

many exogenous factors in lobster habitat selection at settlement, little is known 

about the the ability and proclivity of postlarvae to respond to these physical, 

chemical and biological factors under different hydrodynamic conditions. The 

present experiment was not designed to fully examine the range of flow velocities 

and turbulence levels that postlarvae would be exposed to in the field , but rather, 

the results provide a starting point from which to examine the settlement of 

lobster under realistic flow conditions. Moreover, this study investigated the 

effects of water motion on initial settlement only, thus longer-term responses to 
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flow remain to be evaluated. It is clear, however, that future investigations of 

lobster recruitment must consider the role of hydrodynamics in determining not 

only large-scale larval distribution patterns, but also smaller-scale temporal and 

spatial settlement patterns. 
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CHAPTER 3 

Behavioural Response to Temperature Change in Shelter

Restricted Early Juvenile American Lobster, Homarus 

american us 

3.1 Abstract 

Early benthic juvenile American lobsters, Homarus americanus, rely on shelter-

providing substrates for protection from predation, and are assumed to remain 

shelter-bound during their early post-settlement life. However, it is not known 

whether early juveniles will abandon the safety of their shelters under 

unfavourable environmental conditions. Larval and adult lobster are known to 

behaviourally thermoregulate in order to maintain metabolically favourable 

temperatures, but the behavioural response of early juvenile lobsters to 

temperature has not been investigated. The shelter fidelity of early post-

settlement juvenile lobsters (4.2-6.2 mm carapace length) was examined in 

response to water temperature manipulation. In experiments to characterize the 

behavioural response to warming and cooling events, lobster shelters that were 

maintained in 9-1 0 oc water were gradually warmed or cooled by approximately 8 

°C. During shelter cooling, 73.5% of lobsters demonstrated an aversive 

response and left the shelter to move into the warmer surrounding water, 

compared to only 2.9% movement in control trials. Warming did not produce a 

similar significant result, in that only 15% of lobsters abandoned the shelter. The 

55 



results indicate that, like larvae and adults, young juvenile lobsters can sense 

and respond to changing water temperatures, and will risk out-of-shelter 

movement to avoid unfavourable conditions. These results suggest that young 

lobsters, particularly those that inhabit thermally variable areas such as coastal 

areas subject to upwelling, may be less bound to a single shelter than has been 

previously thought, and this finding has important implications for lobster post

settlement migration and mortality. 

3.2 Introduction 

Thermal environment is of major importance in regulating marine community 

structure (Denny & Wethey 2001 ). Temperature, possibly more than any other 

single environmental factor, has a pervasive influence on the biological 

processes of marine organisms, and consequently plays a central role in the 

distribution and abundance of populations, and ultimately regulates the structure 

of marine communities. Indeed, the broad-scale biogeography of species in the 

marine environment is closely linked to seawater temperature (Ekman 1953, 

Kinne 1963, Crame 1993). 

Temperature effects vary significantly among species and life history stages. 

The behaviour and movement of most crustaceans is strongly influenced by 
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water temperature, and thermal preference behaviour can improve the fitness of 

species in different ways, most often by optimizing metabolic performance 

(Lagerspetz & Vainio 2006). The commercially and ecologically important 

American lobster ( Homarus american us) is one species for which temperature 

has complex effects on different life history stages. Planktonic larvae and 

postlarvae of American lobster have been found to regulate their vertical 

distribution in response to temperature, remaining in warmer surface waters 

above the seasonal thermocline (Boudreau et al. 1992, Annis 2005). This 

behaviour likely helps to prevent settlement in cooler, energetically unfavourable 

habitats. In adult lobsters, temperature is considered to be a major determinant 

of adult lobster distributions and movement (Lawton & Lavalli 1995); seasonal 

lobster migrations appear to follow thermal gradients (Ennis 1984, Watson et al. 

1999) and short-term lobster movements in response to storms have also been 

linked to thermal variability (Jury et al. 1995). In general, studies on lobster 

movement suggest that individuals move to maintain residence in warm waters, a 

strategy that maximizes growth, reproduction , and survival (Aiken & Waddy 1986, 

Waddy et al. 1995). Although the thermal tolerance for this species is broad 

(from -1 o to 30.5 °C in adults, 5° to 26°C in larvae), and they can survive abrupt 

temperature changes of up to 20 oc (Lawton & Lavalli 1995), adult lobster 

behaviour appears to maximize residence in metabolically optimal waters (Aiken 

& Waddy 1986, Crossin et al. 1998). 
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The post-settlement early benthic phase of the juvenile American lobster is 

behaviourally distinct from older juvenile and adult lobsters (Lawton & Lavalli 

1995, Butler et al. 2006). Laboratory and field studies have demonstrated strong 

selection for structurally complex habitats by postlarval lobster at settlement 

(Botero & Atema 1982, Hudon 1987, Johns & Mann 1987, Barshaw & Bryant

Rich 1988, Wahle & Steneck 1991 ). The association of early benthic phase 

lobster with cobble, mussel shell , and peat reef habitats has been linked primarily 

to predator avoidance, and predation rates are significantly lower for juvenile 

lobsters in these structurally complex habitats compared to those living in 

habitats that do not provide shelter (Johns & Mann 1987, Barshaw & Bryant-Rich 

1988, Wahle 1992, Barshaw et al. 1994, Ball et al. 2001 ). Following substrate 

selection, juveniles appear to be dependent on shelter-providing habitat, and 

adopt a highly cryptic, shelter-restricted lifestyle (Barshaw & Bryant-Rich 1988), a 

strategy that is likely made necessary by their small size and lack of structural 

defense mechanisms (Wahle 1992, Wahle & Steneck 1992, Atema & Voigt 1995, 

Lawton & Lavalli 1995). During the shelter-restricted phase, the energetic cost of 

reduced foraging is apparently overcome because young lobsters are able to 

meet their energetic needs with shelter-based food sources and suspension 

feeding (Barshaw & Bryant-Rich 1988, Lavalli & Barshaw 1989). Early benthic 

lobsters are strongly bound to their shelters during their first year or more, until 

they grow larger in size, become more mobile, and are better able to defend 
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themselves (Barshaw & Lavalli 1988, Wahle & Steneck 1992, Incze et al. 1997). 

The ecology and behaviour of lobsters during their early post-settlement months 

is largely unknown, other than the evidence of a shelter-restricted lifestyle. 

However, we do know that postlarval lobsters settle in dynamic shallow subtidal 

and lower intertidal habitats (Wahle & Steneck 1991, Cowan 1999), which are 

areas that are likely to be thermally unstable and at times subject to rapid 

temperature changes. Because lobsters respond to changing temperature during 

other life history phases, it is possible that shelter-restricted juveniles also exhibit 

a behavioural response to temperature. Although research suggests that early 

juveniles (<25 mm) are bound to their shelters (Lawton & Lavalli 1995), the 

possibility of shelter abandonment in response to a shift in environmental 

conditions has not been investigated. A recent study of year-round lobster 

abundance in intertidal areas showed seasonal differences in early juvenile 

abundance that was apparently unrelated to mortality, and pointed to seasonal 

movement of early stage juveniles in response to temperature (Cowan et al. 

2001 ). In situations where temperature inhibits optimal metabolic function, 

behaviours may reflect a trade-off between the risks of out-of-shelter movement 

and the benefits of locating a metabolically favourable environment. 
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The behavioural responses of H. americanus to water temperature have been 

characterized for larval stages (Boudreau 1991, Boudreau et al. 1992, Ennis 

1995, Lawton & Lavalli 1995) and adult lobsters (Crossin et al. 1998), but there is 

little data on juveniles. Given their distinct shelter-restricted behaviour, and 

habitation in thermally dynamic areas, it is of particular interest to investigate the 

response of early benthic juveniles to temperature change. Studies of the 

interactions between environmental factors and early juvenile lobster behaviour 

are needed to advance our understanding of their distributions and recruitment, 

and improving our ability to identify and protect key habitat. 

The aim of this study was to investigate the possibility of behavioural 

thermoregulation in shelter-restricted early benthic lobster and to determine what 

temperature changes, if any, would prompt emergence from shelters. To 

examine the effect of temperature on shelter occupation in early juvenile lobster, I 

tested the behavioural response of young (approximately 3-month old) lobsters to 

short-term shelter warming and cooling. Lobster shelters were gradually warmed 

or cooled by approximately 8 °C from autumnal ambient water temperature to 

determine what temperatures elicited a response. 
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3.3 Materials and Methods 

3.3.1 Lobster Rearing 

Early juvenile lobsters (2-3 months old; carapace length 4.2-6.2 mm) were 

laboratory-reared from the broods of 15 females obtained from commercial 

fishermen in Notre Dame Bay, Newfoundland in August 2007. The early 

juveniles were held at the Ocean Sciences Centre in St. John's, Newfoundland in 

plastic cylinders (7 em diameter x 15 em high, 1 individual per cylinder) with 

mesh bottoms and mesh windows. The containers were positioned 5-cm off of 

the bottom in 1-m2 tanks with flowing 8-1 0 °C ambient seawater. Lobsters 

sheltered in small pieces of PVC pipe in their containers. Every two days, 

containers were cleaned and lobsters were fed ad libitum frozen enriched 

Artemia nauplii (San Francisco Bay Brand). Lobsters were maintained under an 

ambient light cycle from September until experiments were performed in 

November (range of light:dark was 13h:11 h- 1 Oh:14h). Lobster carapace lengths 

were measured prior to experiments using a dissecting microscope and all 

lobsters used were in an intermolt stage at the time of experiments. 

3.3.2 Temperature Manipulation Experiments 

34 early juvenile lobsters (stage VI-VII; 4.2-5.5 mm carapace length) were tested. 

Individual lobsters were placed in a 15 em x 15 em shelter box situated at one 

end of a 50 em x 25 em black-sided tank filled to 15 em depth with unfiltered 
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ambient seawater (Fig. 3.1 ). The shelter enclosure was made of PVC with a 

removable door; the bottom of the enclosure was covered in sand. Cobble was 

placed at the rear of this enclosure so that lobsters would take cover in the 

location where the temperature change first occurred (Fig. 3.1 ). Shelter 

temperature was manipulated by circulating cold or warm propylene glycol 

through an exchange coil located behind the cobble side of the shelter. 

Submersible heaters and slow ambient water inflow were also used to maintain 

temperature gradients across the tanks. Digital thermometers were used to 

confirm the presence of a temperature gradient during manipulations. Gentle 

aeration was used to minimize vertical stratification or the development of 

convection currents. Experiments were performed in a temperature-controlled 

foom set at 10 °C. To simulate the ambient light levels observed at ..... 1 0 m, the 

depths usually inhabited by early juvenile lobsters, dim red lighting was used, 

with only a small amount of white light entering the room. Red wavelengths have 

been shown to be poorly absorbed by lobster visual pigments (Bruno et al. 1977) 

and were used to mimic dark conditions while allowing for observation. 

Experimental tanks were black on all sides so that light entered from the top only. 

Each individual was tested in separate warming, cooling, and control trials. 

Control runs were identical to experimental runs except that ambient water 

flowed through the cooling/heating coils and water inflows. Trials of a single 
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individual were separated by at least 2 days. To avoid potential effects of the 

order of exposure to treatments, the sequence of treatments varied among 

lobsters, with equal numbers assigned to each of the 6 possible treatment 

sequences. 
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Thermometer 
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Shelter Enclos ure I Shelter Enclo sure 

I 

Removable Door -=------ t--Removable Door 
.. 

Thermometer 

-1-----1-- Submers ible Heater ·------t-Cold Water Inflow -
Figure 3.1. Thermal manipulation tanks (50 em x 25 em) viewed from above. (A) Shelter 
cooling was achieved by circulating coolant through an exchange coil, and by introducing 
cold water at the rear of the enclosure. A temperature gradient within the tank was 
maintained using a submersible heater at the end of the tank opposite the cooling 
apparatus. (B) Shelter warming was accomplished by circulating warm liquid through an 
exchange coil at the rear of the shelter enclosure. The temperature gradient was 
maintained in the tank during trials by introducing cold water at the end opposite the 
shelter enclosure. 
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Lobster juveniles were placed in the closed shelter box for a 30-minute 

acclimation period prior to the start of temperature manipulation. During this 

period, all lobsters disappeared from sight by sheltering in the cobble crevices or 

burrowing under the cobble. Following the acclimation period, the temperature 

manipulation began and the shelter door was opened to allow the lobster to move 

from the enclosure. In cooling treatments, the shelter was cooled from the initial 

ambient temperature of 9-10 oc to approximately 2 °C. In warming treatments, 

the shelter was heated from the ambient temperature to approximately 17 °C. 

This range of temperature change is within that observed in the shallow-water 

intake at the Ocean Sciences Centre during upwelling and downwelling events in 

late summer and early fall. On average, the temperature in the rear of the shelter 

changed at a rate of 0.4 °C/min during the first 20 minutes of the experiment, and 

remained at approximately that temperature for the remaining 1 0 minutes. 

Lobster activity was monitored during the trials and any visible movement or 

activity was recorded, as well as the temperature at which any activity occurred. 

Activity that occurred during a trial was classified as "normal" if no visible 

movement was observed or if the behaviour was identified as a burrow/shelter 

constructing behaviour (Cobb 1971 ). Any other behaviour exhibited by the 

lobsters were scored as "aversive"; these behaviours included movement from 

the shelter to open sand, movement to the top of the cobble, swimming, and 

departure from the shelter enclosure. 
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3.3.3 Statistical Analyses 

Because the measures were repeated on animals for each of the three 

treatments, data was analysed using generalized estimating equations (GEE), an 

extension of the generalized linear model procedure that accounts for non

independent responses (Hardin & Hilbe 2003). This analysis used a binomial 

distribution and logit link function to determine whether treatment 

(cooling/warming/control) had an effect on juvenile lobster response (proportion 

of aversive versus normal responses). Pairwise comparisons were used to 

identify which of the treatments caused any significant differences in behaviour. 

Analyses were performed using SPSS Statistical Software. See Appendix B for 

detailed model and parameter information. 

3.4 Results 

Treatment had a significant effect on lobster behavioural response (x2=43.0, 

p<0.001 ). Early juvenile lobsters demonstrated a significant aversion to shelter 

cooling. When the temperature in the experimental shelter was decreased from 

9.9 ± 0.1 °C to 2.9 ± 0.4 oc (range 2.2-3.7 °C), most (73.5%) of the lobsters left 

their cobble shelter to move to warmer waters (Fig. 3.2). The high rate of shelter 

abandonment was clearly in response to the temperature manipulation, given 
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that during the control trials, only 1 of the 34 lobsters (3%) left the shelter (pair-

wise comparison: p<0.001 ). 

Shelter warming did not elicit the same strong aversive response as cooling, 

however, given that only 5 of 34 lobster (15%) abandoned the experimental 

shelter during warming to 16.0 ± 0.5 °C (range 14.7-17.6 °C). The proportion of 

aversive responses in warming trials was not significantly different than in control 

trials (Fig . 3.2; p=0.13). 
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Figure 3.2. Comparison of the percent of juvenile lobsters that exhibited 
an aversive response during cooling, warming and control trials. 
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The most common aversive response observed was movement to open sand 

outside of shelters, followed by movement to the top of the cobble, upward 

swimming, and movement out of the shelter enclosure (Fig. 3.3). In the cooling 

experiment, of the 25 lobsters that exhibited aversive behaviour, 16 (64%) moved 

to exposed sand, 11 (44%) moved to the top of cobble, 5 (17%) swam, and 4 

(14%) moved completely out of the shelter enclosure area. In the warming 

experiment, in which 5 lobsters responded to the treatment, all moved onto the 

open sand in front of the cobble and 2 moved further out of the shelter enclosure. 

The one individual that exhibited an atypical behaviour during the control trial 

moved around the front of the cobble shelter, walked to another rock, and 

resumed sheltering. 
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Figure 3.3. Percent of juvenile lobsters that exhibited specific aversive 
responses during cooling and warming manipulations. 

In the cooling experiments, the temperature at which lobsters exhibited 

responses was varied. No responses were observed during approximately the 

first two degrees of decrease, but subsequently, various responses occurred 

throughout the temperature range (Fig. 3.4). There were, however, patterns in 

the types of responses exhibited during the decrease in temperature. Horizontal 

movements onto open sand generally occurred earlier in the cooling period (at 

higher temperatures) than vertical movements onto the top of the cobble (Fig. 
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3.4; Fig. 3.5). There was no obvious trend in the less common responses 

(swimming and moving out of the shelter enclosure) in terms of the temperatures 

at which they occurred. 
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Figure 3.4. Cumulative percent of aversive responses occurring as 
temperature was decreased during shelter cooling. Letters indicate 
behaviours occurring at each temperature: Sa= moved to open sand, 
C= moved on top of cobble, Sw= swam, 0= left shelter enclosure. 
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Figure 3.5. Temperatures at which specific behavioural responses occurred during 
shelter cooling experiments. 

3.5 Discussion 

Early juvenile lobster can detect and respond behaviourally to changes in 

environmental temperature. In cooling experiments, lobsters began to respond 

aversively when water temperatures decreased, and a majority chose to move 

out of their burrows. It is not surprising that shelter cooling elicited a stronger 

response from juvenile lobsters than warming, given that cooling has a potentially 
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damaging effect on lobster metabolism and growth, whereas limited warming is 

likely to be physiologically beneficial within the range of temperatures tested in 

these experiments. This interpretation is consistent with evidence that lobsters 

generally move into warmer water that enhances their growth rate (Waddy et al. 

1995). Metabolic implications of thermal manipulations would be worthwhile to 

investigate in future experiments by measuring physiological as well as 

behavioural responses of early juvenile lobster. 

In their study of adult lobster thermal preferences, Crossin et al. (1998) found that 

animals prefer shelters 1.5 °C warmer than their acclimation temperature and 

demonstrate an avoidance response above 23.5 oc; responses to cooling were 

not examined. They determined that it was not the magnitude of the temperature 

increase that the lobsters found aversive, but rather temperatures above 23 oc . 

This finding is consistent with results of my heating experiment, in which juvenile 

lobsters were exposed to temperatures up to approximately 18 °C, and did not 

exhibit a significant negative response to the higher temperature. Within the 

context of climate change, modest warming may have little effect on juvenile 

behaviour, however, other temperature-related effects may be important to 

investigate since excessive warming has previously been found to contribute to 

massive mortality events in adult lobster populations (Pearce & Balcom 2005). 
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No threshold temperature was found at which responses to cooling occurred, but 

rather aversive behaviours were observed throughout the range of decrease in 

temperature. This experiment was not designed to detect specific temperatures 

at which responses occurred. Because temperatures were recorded at the rear 

of the shelter, it was not possible to assess the precise temperature to which 

each lobster was exposed when they displayed aversive behaviour. Thus, 

because individual lobster would burrow/shelter in different areas of the cobble, it 

is quite possible that cool water reached them at different rates. Not unlike wild 

conditions, heat transport processes might have brought sudden pulses of cold 

water into contact with postlarvae. In future experiments, studying several 

subjects simultaneously, as well as attaching temperature loggers to individual 

lobsters, may prove useful in detecting potential temperature thresholds. Even 

though information on specific temperature responses of juvenile lobsters is 

lacking, the data suggest that there may be different behavioural responses as 

water cools. Horizontal movements to sand outside of the shelters typically 

occurred at higher temperatures than vertical movements to the top of the 

cobble. Further studies to characterize the specific behaviours in terms of their 

induction temperatures as well as their associated predation risk would allow a 

more thorough evaluation of the implications of cooling events. 
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The data suggest that early juvenile lobsters (<8 mm CL) may move more than 

previously thought, despite being considered "shelter-restricted". It is possible 

that thermally-induced movements occur in early juvenile lobster that inhabit 

dynamic low intertidal and shallow coastal areas. Juvenile lobsters in Atlantic 

Canada are exposed to highly variable temperatures, particularly in the early 

post-settlement autumn months. Sudden cooling events, which are probable in 

the intertidal zone, may induce out-of-shelter movement in early juvenile stage 

lobster. Ellis and Cowan (2001) found a positive correlation between juvenile 

(<40 mm CL) abundances and substrate temperature, with the highest intertidal 

abundances in the warm summer months. Seasonal variation in abundance of 

young-of-the-year lobsters (<1 0 mm CL) in Maine revealed a peak in spring 

(Cowan et al. 2001 ), which is probably not indicative of a settlement event 

because hatching and settlement usually do not occur until summer. Instead, the 

seasonal variation they observed in small lobster abundance in the intertidal zone 

is possibly a result of behavioural responses to environmental conditions (Cowan 

et al. 2001 ). 

This laboratory study helps to explain some distribution patterns observed in 

juvenile lobster, and suggests that temperature may be of significance in early 

juvenile lobster behaviour. Nonetheless, this work does not address the potential 

interaction between responses to temperature and other abiotic and biotic 
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variables in the wild, such as light level , presence of predators and conspecifics, 

salinity, food supply, and hydrodynamics. Juvenile lobster are known to restrict 

activity outside their burrows in full light (Zeitlin-Hale & Sastry 1978, Spanier et al. 

1998), and there is evidence that early juvenile lobster can detect and respond to 

predators (Johns & Mann 1987, Spanier et al. 1998) by increasing their use of 

shelters (Wahle 1992). It is likely that these and other stimuli interact with 

thermal conditions to determine juvenile sheltering behaviour. Circumstances 

that promote sheltering, such as high light or predator odour, may increase risk 

enough to offset the response to decreasing temperature, and deter a juvenile 

from abandoning its shelter during a mild cooling event. Further exploration of 

the conditions under which temperature change affects behavioural decisions of 

early juvenile lobster is needed to evaluate the potential for complex behavioural 

processes with a hierarchy of decision-making cues. 

The demography of the American lobster is thought to be driven largely by 

settlement success, and less influenced by post-settlement mortality or the 

movements of juveniles (Lawton & Lavalli 1995, Butler et al. 2006). Recently, 

however, Wahle et al. (2009) illustrated how local factors that increase post

settlement mortality (such as incidence of disease) can weaken the settlement

recruitment relationship in a lobster population. Their research emphasizes the 

importance of examining the processes that influence both pre- and post-
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settlement stages in order to explain recruitment. My results highlight the need to 

consider the complex relationship between environment and behaviour by 

assessing the early post-settlement mortality risks and migration associated with 

different types of habitats or regions. Incze et al. (1997) and Palma et al. (1999) 

have suggested that juvenile lobsters remain within 1-2 m of where they settled 

during their first year, but findings here suggest that this fidelity could depend on 

whether they settle in thermally dynamic areas. Habitats with frequent 

temperature fluctuations may represent a greater mortality risk for juvenile lobster 

because of their behavioural response to temperature, above and beyond any 

direct physiological impacts. The thermal environment, in terms of average 

temperature and temperature variability, are likely to influence early juvenile 

lobster relocation and therefore predation mortality. These post-settlement 

processes have a significant effect on local population size and need to be 

considered in predictions of recruitment and models of habitat quality. 

To assess more clearly the role that temperature variation may play in juvenile 

lobster movement, mortality, and recruitment in various habitats, the effect of 

substrate type also needs to be considered. Postlarval lobsters are known to 

preferentially settle in several types of substrate, including cobble on sand, 

cobble on bedrock, peat reef, and shell hash (reviewed by Lawton & Lavalli 

1995). The present study examined juvenile lobster behaviour in cobble on sand, 
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but it is possible that behavioural responses to changing temperature will vary 

among shelter substrates. For instance, during unfavourable temperature 

fluctuations, a juvenile lobster in cobble on soft sediment may be able to remain 

protected and burrow deeper into the substrate, whereas an individual that 

resides on hard substrate may be forced to abandon the protection of their 

shelter. If substrate-specific behavioural responses to temperature can be 

identified, then prediction of recruitment success may be improved for different 

types of habitat. 

The use of laboratory-reared lobsters in this study could not be compared to field

caught test subjects because early benthic juvenile lobsters are rarely 

encountered in Newfoundland waters (Burdett-Coutts & Wilke, pers. comm.). 

Although any laboratory experiment raises the potential for artifacts, one study 

that examined sheltering differences between field-caught and hatchery-reared 

early juvenile lobsters found that hatchery-reared individuals spent more time in 

their shelter and were less likely to explore than individuals brought in from the 

wild (Castro & Cobb 2005). If this finding holds true for my laboratory-reared 

lobsters, the shelter abandonment response I found should be strengthened, and 

suggests that wild juvenile lobster may be even more likely to leave their shelter 

under changing temperatures. Nonetheless, experiments using wild-caught 

juveniles, particularly wild lobster from different thermal environments, would 
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provide further insight into the significance of temperature avoidance behaviour 

of juvenile lobster. 

Identification of the role of environmental variables such as temperature in the 

migration and mortality of early benthic stages is essential to evaluating the 

relative contribution of pre- and post-settlement events to spatial and temporal 

patterns in the recruitment of marine animals. In this study, I have demonstrated 

that early juvenile lobsters have the capacity to respond to temperature changes, 

and that they show distinct avoidance responses to cooling. These results shed 

light on the behaviour of lobsters during the poorly known, early post-settlement 

phase, and suggest that environmental conditions, through their influence on 

behaviours, could impact early juvenile movement and survival. 
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CHAPTER 4 

Summary 

Processes that occur during the early life stages are critical to the recruitment 

and success of populations of benthic marine species. In marine systems, 

physical processes such as water flow and temperature can interact with 

biological processes during critical early life history stages to determine the 

distribution and abundance of a species. Through advances in the ability to 

simulate natural ocean environments using laboratory flumes (flow channels that 

attempt to create realistic sea-bottom conditions) and other controlled tank 

systems, there is the potential to gain a better understanding of the key 

processes that regulate benthic community structure. The investigation of early 

life history processes can improve our ability to predict population demography 

and identify important nursery habitats. This study of the interaction between 

physical processes (hydrodynamics and temperature) and lobster behaviour at 

early life-history stages serves to enhance our understanding of the processes 

that drive spatial and temporal variability in recruitment. 

Previous laboratory experiments have provided information about lobster 

postlarval substrate preferences and responses to chemical and physical 

substrate characteristics. However, nearly all of these experiments have been 
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conducted in still water. Chapter 2 showed that flow has an effect on settlement 

frequency by increasing encounter rates through both passive deposition and the 

modification of postlarval settlement behaviour. These results suggest that the 

flows associated with different benthic environments are important to consider as 

potential cues for habitat selection by lobsters at settlement, and that spatial and 

temporal hydrodynamic characteristics of habitat are important to incorporate into 

settlement and recruitment models. Further studies of lobster settlement 

behaviour in response to the range of flow speeds and turbulence levels seen in 

the field will make the implications of hydrodynamics on settlement more clear. 

This type of information could be applied in the development of marine reserves, 

specifically to identify habitats with flow regimes that may enhance settlement 

and recruitment. 

Very little is known about the ecology and behaviour of lobsters post-settlement 

( 1-12 months old), although they are widely considered to be "shelter-restricted". 

In the study presented in Chapter 3, a significant number of lobsters 

demonstrated sensitivity to cooler temperatures, abandoning their shelters for 

warmer water during cooling. This pattern suggests that shelter-restricted 

juvenile lobsters may move from the protection of their shelter under unfavorable 

temperature conditions, and that early post-settlement mortality and migration 

may vary among habitats and therefore be more important than previously 
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thought in determining recruitment patterns. In this case, post-settlement 

migration and mortality may be especially significant in regions that experience 

rapid changes in temperature, such as coastal Newfoundland. This also 

suggests that future environmental changes that lead to more unstable or 

unpredictable temperature regimes could negatively impact lobster populations 

through their effects on early juvenile behaviour. 

These results emphasize the need for an integrated approach in studying lobster 

recruitment, where interactions between environmental fluctuations and 

behavioural plasticity are considered. Knowledge of the causes and outcomes of 

different behavioural strategies, and integration of these variables into population 

and fishery models, represents an important step towards increasing our ability to 

manage fishing activities on marine populations more sustainably than in the 

past. As climate change continues to alter the environmental conditions in 

marine systems, studies of biological-physical interactions are needed to 

evaluate the impacts of changing thermal and hydrodynamic regimes on marine 

communities. Effective implementation of marine protected areas and habitat 

enhancement projects also requires an understanding of how physical variables 

affect recruitment. The new insights provided here regarding the influence of 

physical variables on settlement and post-settlement behaviour could assist in 

the designation of marine reserves for lobster; the results highlight the need to 
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consider the hydrodynamic conditions and thermal regime of areas when 

examining their suitability as lobster nursery habitat. 

In summary, a more comprehensive understanding of the physical factors that 

influence survival, growth, and distributions of early life-history stages is of 

fundamental importance in determining the relationships between physical and 

ecological processes that regulate recruitment. Such information has the 

potential to be applied to fisheries management, conservation and mitigation of 

human impacts on marine communities. 
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Appendix A 

Chapter 2 Statistical Analysis 

1. Settlement Outcome 

S= {3 o + {3 A • A + {3 F • F + {3 AxF • A • F + C 

where 
S= settlement outcome 
A= age (mid- or late-stage) 
F= flow treatment (flow or still) 

Model Information 

Dependent Variable Settlement 

Probability Distribution Binomial 

Link Function Logit 

No. Observations Used 110 

Tests of Model Effects 

Type Ill 

Source Chi-Square df Sig. 

Age 12.68 1 .0004 

Flowtrt 5.88 1 .0153 

Age * Flowtrt 1.869 1 .9103 

Dependent Variable: Settlement 

Model : (Intercept) , Age, Flowtrt, Age * Flowtrt 
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Analysis of Parameter Estimates 

95% Confidence Interval 

Parameter Estimate Std. Error Lower 

(Intercept) -.9163 .4830 -1 .8630 

Age= mid 1.5141 .6118 .3151 

Flowtrt=flow -1.1632 .7800 -2.6918 

Age= mid * 
.1058 .9409 -1 .7383 

Flowtrt=flow 

2. Settlement Substrate 

where: 
Sub= substrate (small or large cobble) 
A= age (mid- or late-stage) 
F= flow treatment (flow or still) 

Model Information 

Dependent Variable Settlement Substrate 

Probability Distribution Binomial 

Link Function Log it 

No. Observations Used 69 

Tests of Model Effects 

Type Ill 

Source Chi-Square df Sig. 

Flowtrt .965 1 .326 

Age .114 1 .736 

Flowtrt * Age .080 1 .778 

Dependent Variable: Substrate 

Model: (Intercept) , Flowtrt, Age, Flowtrt * Age 

86 

Upper 

.0305 

2.7131 

.3655 

1.9498 

Hypothesis Test 

Chi-Square df Sig . 

3.60 1 .0578 

6.13 1 .0133 

2.22 1 .1359 

0.01 1 .9105 



Parameter Estimates 

95%Confidence 

Interval Hypothesis Test 

Std. Chi-

Parameter B Error Lower Upper Square df Sig. 

(Intercept) -.134 .5175 -1.148 .881 .067 1 .796 

Flowtrt=flow .316 .7966 -1.245 1.877 .157 1 .692 

Age= mid .644 .6676 -.664 1.953 .932 1 .334 

Flowtrt=flow * Age=mid -.288 1.0191 -2.285 1.710 .080 1 .778 

3. Substrate Encounter 

E= 13 o + 13 A 'A + 13 F • F + 13 AxF ·A· F + C 

E= encounter 
A= age (mid- or late-stage) 
F= flow treatment (flow or still) 

Model Information 

Dependent Variable Encounter in 15 

Probability Distribution Binomial 

Link Function Logit 

No. Observations Used 11 0 

Tests of Model Effects 

Type Ill 

Source Chi-Square df Sig. 

Age 4.702 1 .030 

Flowtrt 7.569 1 .006 

Age * Flowtrt 1.869 1 .172 
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Parameter Estimates 

95 %Confidence Interval 

Std. 

Parameter Estimate Error Lower Upper 

(Intercept) -.693 .4629 -1.600 .214 

Age .499 .5870 -.651 1.649 

Flowtrt -2.565 1.1193 -4.759 -.371 

Age* Flowtrt 1.703 1.2456 -.738 4.144 

4. Encountered substrate but did not settle 

Ens= encounter without settlement 
A= age (mid- or late-stage) 
F= flow treatment (flow or still) 

Model Information 

Dependent Variable Encounter _didnotsettle 

Probability Distribution Binomial 

Link Function Logit 

No. Observations Used 81 

Tests of Model Effects 

Type Ill 

Source Chi-Square df Sig. 

Age 6.696 1 .010 

Flowtrt .019 1 .889 

Age * Flowtrt .397 1 .529 
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Hypothesis Test 

Chi-

Square df Sig. 

2.242 1 .134 

.723 1 .395 

5.252 1 .022 

1.869 1 .172 



Parameter Estimates 

95% Confidence 

Interval 

Std. 

Parameter B Error Lower Upper 

(Intercept) 2.565 1.0377 .531 4.599 

Age -2.208 1.1488 -4.460 .043 

Flowtrt -.528 1.2057 -2.891 1.835 

Age* Flowtrt .865 1.3726 -1 .826 3.555 

5. Time to settlement 

TTS= 13 o + 13 A ·A + 13 F • F + 13 AxF • A· F + E 

TIS= time to settlement 
A= age (mid- or late-stage) 
F= flow treatment (flow or still) 

Model Information 

Dependent Variable TimetoSettlement 

Probability Distribution Poisson 

Link Function Log 

No. Observations Used 69 

Tests of Model Effects 

Type Ill 

Source Chi-Square df 

Age 39.81 1 

Flowtrt .54 1 

Age * Flowtrt 4.69 1 

Sig. 

<.0001 

.9672 

.0136 
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Hypothesis Test 

Chi-

Square df Sig. 

6.109 1 .013 

3.695 1 .055 

.192 1 .661 

.397 1 .529 



Parameter Estimates 

95% Confidence 

Std. Interval Hypothesis Test 

Parameter B Error Lower Upper Chi-Square df 

(Intercept) 2.8829 0.0611 2.7632 3.0027 2227.43 1 

Age=mid 0.1872 0.0892 0.0125 .3260 4.41 1 

Flowtrt=flow -.1448 0.0802 -0.3019 0.0123 3.26 1 

Age=mid * Flowtrt=flow .2787 0.1131 0.0571 0.5002 6.07 1 

St em Leaf # Boxp ot 
7 4 2 I 
6 222.2 4 I 
5 3468 4 

I 4 
3 33888 8 7 I 
2 7 1 +-----+ 
1 1 44688 8 
0 1 

- 0 777 61 5 + 
- 1 988 855 6 •- - - --* 
- 2 9998~ 2 1 8 
- 3 22 0 3 
- 4 999965 41 00 0 11 +-----+ 
- 5 777 550 6 
- 6 61 3 

----+- --- +----+- ---+ 

Figure A-1. Boxplot diagnostic to determine appropriate distribution 
for generalized linear model. 
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Sig. 

<.0001 

.0358 

0.0709 

0.0137 
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Figure A-2. Diagnostic plot of fitted values versus residuals to 
check for homogeneity of errors and fit of structural model. 
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Analysis of interaction for time to settlement: 

Flow treatment 

Mid-stage: flow vs. still 

Model Information 

Dependent Variable Time to Settlement 

Probability Distribution Poisson 

Link Function Log 

No. Observations Used 30 

Tests of Model Effects 

Type Ill 

Source Chi-Square 

Flow 
2.86 

treatment 

Late-stage: flow vs. still 

Model Information 

df 

1 

Dependent Variable Time to Settlement 

Probability Distribution Poisson 

Link Function Log 

No. Observations Used 39 

Tests of Model Effects 

Type Ill 

Source Chi-Square df 

Flow 
3.23 1 

treatment 

Sig . 

.0909 

Sig . 

.0721 
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Still: Mid-stage vs. Late-stage 

Model Information 

Dependent Variable Time to Settlement 

Probability Distribution Poisson 

Link Function Log 

No. Observations Used 26 

Tests of Model Effects 

Type Ill 

Source Chi-Square 

Flow 
4.39 

treatment 

Flow: Mid-stage vs. Late-stage 

Model Information 

df 

1 

Dependent Variable Time to Settlement 

Probability Distribution Poisson 

Link Function Log 

No. Observations Used 43 

Tests of Model Effects 

Type Ill 

Source Chi-Square df 

Flow 
45.32 1 

treatment 

Sig . 

.0362 

Sig. 

<.0001 
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6. Swimming Behaviour Trials 

Paired Samples Test 

Paired Differences 

Std. 95% Confidence Sig. 

Std. Error Interval (2-

Mean Deviation Mean Lower Upper t df tailed) 

Pair T 

1 Midwater -1.16EO 1.508EO .30163 -1.787EO -5.42E-1 -3.861 24 .001 

flow-still 

Pair T Surface 
-7.42E-1 5.5246EO 1.104EO 

2 flow-still 
-3.023EO 1.538EO -.672 24 .508 

Pair T Bottom 

3 flow-still 
1.90733 5.59693 1.11939 -.40296 4.21763 1.704 24 .101 

Pair Lift-offs 

4 flow-sti ll 
-4.160 7.087 1.417 -7.085 -1 .235 -2.935 24 .007 

Pair Partial 

5 Dives 8.760 13.182 2.636 3.319 14.201 3.323 24 .003 

flow-still 

Pair Full Dives 
-3.800 6.238 1.248 -6.375 -1.225 -3.046 24 .006 

6 flow-still 
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Appendix B 

Chapter 3 Statistical Analysis 

where : 
Ab= aversive behaviour (yes/no) 
T = temperature treatment (warming/cooling/control) 

Generalized Linear Model 

Model Information 

Dependent Variable 

Probability Distribution 

Link Function 

Subject Effect 

Within-Subject 
Effect 

1 

1 

Working Correlation Matrix Structure 

Tests of Model Effects 

Type Ill 

Wald Chi-
Source Square df 

(Intercept) 11 .779 1 

Treatment 43.000 2 

Dependent Variable: Behaviour 
Model: (Intercept) , Treatment 

Sig. 

.001 

.000 

95 

Behaviour 

Binomial 

Log it 

Individual 

Treatment 

Independent 



Pairwise Comparisons 

95% Wald 

Mean Confidence Interval 

(I) (J) Difference Std. for Difference 

Treatment Treatment (1-J) Error df Sig. Lower Upper 

Control Cooling -4.518a 1.048 1 .000 -6.573 -2.463 

Heating -1 .739 1.156 1 .133 -4.004 .527 

Cooling Control 4.518a 1.048 1 .000 2.463 6.573 

Heating 2.780a .540 1 .000 1.721 3.838 

Heating Control 1.739 1.156 1 .133 -.527 4 .004 

Cooling -2.780a .540 1 .000 -3.838 -1.721 

Pairwise comparisons of estimated marginal means based on the linear 
predictor of dependent variable Behaviour 

a. The mean difference is significant at the .05 level. 
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