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ABSTRACT 

The general aim of this work was to investigate the photodynamic action 

of 1 ,4-dihydropyridines (DHPs) with respect to contractile force generation in 

rat smooth muscle. The preparations chosen possessed (thoracic aorta) or 

lacked (oesophag(~al tunica muscularis mucosae ITMM) and pyloric sphincter ) 

intrinsic photoresponsiveness. Exposure to 3'-N02 -substituted DHP (3'-N02 -

DHP) photosensitized precontracted TMM preparations in a concentration­

dependent fashion and this could be mimicked by photodegradable nitric oxide 

(NO) donors (streptozotocin, sodium nitroprussidem, sodium nitrite). 

3'-NO;~-DHP- and NO donor-photoactivated responses in TMIVI, had at 

least three different components, consisting of (i) a transient fast relaxation, (ii) 

a fast "off-contraction", and (iii) a slow, delayed relaxation. Only the latter 

component persisted in calcium-depleted, calyculin A-precontracted preparations 

or following inhiiJition of the fast response by DHP L-type ca+ + -<~hannel 

antagonists, skinning of the plasmalemma and extracellular ca+ + chelation . 

Both tast and slow relaxations in the TfVirvl were diminished by NO 

scavengers (L Y 83583, carboxy-PTIO), whereas the fast relaxation was also 

diminished by pre-irradiation of the 3'-N02-DHP solution. Tile selective cGMP­

d,3pendent phosphodiesterase inhibitor, zaprinast, enhanced the photorelaxation. 

Unbuffering of the sarcoplasmic reticulum with either cyclopiazonic acid 
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or ryanodine inhibited the Bay K 8644-photoactivated fast response in TMM. 

This effect was accelerated in the presence of extracellular Ca ~ ' and resembles 

that seen in tissues exposed to the calcium ionophore A2 31 8 7. 

In thoracic aorta, the endogenous photorelaxation was enhanced by all 

3'-N02-DHPs tested. L Y 83583 effectively inhibited both the endogenous and 

3'-N02-DHP-augmented photorelaxation. In pyloric sphincter, photosensitiwtion 

by the 3'-N02-DHP, ( + l-PN 202 791, was evident as a transient inhibition ol 

the muscarinic agonist-stimulated phasic contractions, followed by a post­

irradiation contraction . 

The present study supports the following conclusions: (1l 3' -N07-DHP­

photoactivated responses are tissue-specific and mimic the endogenous or NO 

donor-photoactivated response in smooth muscles, (2) photoactivated releasH 

of NO, presumably followed by stimulation of soluble guanylate cyclase 

mediates both the fast and slow relaxations in the TMM, (3) functional L-type 

ca+ +-channels are required for the expression of the fast components of the 

photoactivated response, (4) the slow relaxation may involve direct regulation 

of contractile protein phosphorylation by a cGMP-dependent protein kinase. 

Keywords: guanylate cyclase, 3' -N0;~-1 ,4-dihydropyridines, L-type Ca' '­

channel, nitric oxide, tunica muscularis mucosae, photosensitization, pyloric 

sphincter, sarcoplasmic reticulum, thoracic aorta. 
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CHAPTER ONE 

INTRODUCTION 

1 .1 Photoactivated changes in contractility of smooth muscle 

Visible or UV-irradiation of smooth muscle preparations may evoke 

relaxation or contraction. Furthermore, in certain preparations, irradiation 

induces a complex response consisting of a relaxation-contraction sequence. 

The following sections will describe the physical and pharmacological properties 

of the photoactivated responses in smooth muscle. 

1 . 1 . 1 Photorelaxation 

Photoactivated responsiveness in smooth muscle may be of intrinsic or 

extrinsic origin. Intrinsic photorelaxation does not require any added 

photosensitizing agent. On the contrary, certain compounds such as 

photodegradable NO-donors and 1 ,4-dihydropyridines (DHPs) have the property 

to enhance the intrinsic photorelaxation in vascular smooth muscle or to 

photosensitize de novo other preparations. 

1 .1 .1 . 1 Endogenous photorelaxation 

Forty years ago it was reported that visible or UV-irradiation evokes an 

oxygen-independent photorelaxation in norpinephrine-precontracted rabbit aorta 

(Furchgott et al., 1955). This response requiring no photosensitizing agent was 
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described as a reversible relaxation. 

The action spectrum of the endogenous photorelaxation in aortic prepara­

tions revealed a peak at 31 0 nm, but photorelaxation of variable amplitude could 

also be elicited in the visible range of the spectrum (Furchgott et al., 1961; 

Chaudhry et al., 1993). However, since the action spectrum of the molecule 

involved in the endogenous photorelaxation does not match the action spectrum 

of most common chromophores (i.e., proteins, NADH, porphyrins, flavins) in 

biological tissues, it has been suggested that more than one chromophore may 

be involved in the photorelaxation (Chaudhry et al., 1 993). 

Other studies demonstrated that the amplitude of the endogenous 

photorelaxation in rabbit aorta depends on the level of active tension of the 

smooth muscle, but not on the stimulating drug used to produce contraction 

(Furchgott et al., 1961 ). However, K + -precontracted aortic preparations were 

less responsive to the relaxant effect of UV-Iight. An explanation for this 

observation may be found in the sensitivity of the photorelaxation to 

extracellular Na+ concentration, but not other ions, reported in vascular smooth 

muscle !Raffa et al., 1 991). Thus, Raffa et al. have described that the UV­

photoactivated relaxation in rabbit aorta is greatly inhibited by equimolar 

replacement of the [Na+Je with mannitol and Li', but not choline, in the 

physiological buffer. 
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Preconstricted segments of rabbit aorta also relax when exposed to 

acetylcholine by an Emdothelium-dependent mechanism (Furchgott & Zawadski, 

1980) (see section ·1 .4.2). Relaxation is mediated by an endothelium-derived 

relaxing factor (EDBF) with the ultimate mediator b1=ing nitric oxide (NO)(Palmer 

et al., 1987; Furc1·1gott, 1988; lgnarro et al., 1987). The subsequent step in 

NO-mBdiated relaxation in smooth muscle involves activation of soluble 

guanylate cyclase (sGC) and increase in the levels of cyclic guanosine-3' ,5'­

monophosphate (cGMP) (Rapoport & Murad, '1983). Pharmacological studies 

have suggested that the endogenous photorelaxation in vascular smooth muscle 

may br~ mediated by a photoactivated relaxing factor with similarities to NO 

(Furch~Jott et al., '1985). Recent 1widenc:e using a porphyrin sensor, further 

suggests that this factor is indeed NO (Kubaszewski et al., 1994). Similar to 

acetylcholine-induced relaxation, photorelaxation is accompanied by an increase 

in cGMP levels (Furchgott et al., 1984; Karlsson et al., 1984). The onset of the 

rise in cGMP precedes the onset of the photorelaxation. The NO-binding 

molecule haemoglobin (Hb) inhibits both the rise in cGMP and the 

photorelaxation resulting from UV-irradiation (Furchgott et al., 1984, 1985), 

whereas L Y 8358~3. which gem~ rates superoxide radicals, also diminishes the 

photorelaxation (Furchgott & Jothianandan, 1991). Superoxide radicals react 

with NO to form pE!roxynitrite (BHckman et al., 1990) and thus represents one 
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means to diminish EDRF/NO vasodilation (Gryglewski et al., 1986). In rabbit 

thoracic aorta and bovine pulmonary artery, potentiation of the endogenous 

photorelaxation can be demonstrated with the selective inhibitor of cGMP­

dcpendent phosphodiesterase, zaprinast (M&B 22948) (Furchgott & 

Jothianandan, 1991; Wolin et al., 1991 ). 

The effect of the sGC inhibitor, methylene blue (MB), on the endogenous 

photorelaxation is presently unclear. Although MB significantly inhibits the UV 

irradiation-induced increase in cGMP in rabbit aortic preparations; pretreatment 

of aortic strips with MB results in a slowly developing, quasi-irreversible 

inhibition of the photorelaxation (Furchgott et al., 1984). Furthermore, recent 

data indicate that MB enhances the endogenous photorelaxation in several 

vascular smooth muscle preparations (Chen & Gillis, 1993). 

The endogenous photorelaxation, however, also occurs in endothelium­

denuded rabbit aortic preparations, suggesting that photoactivated release of 

NO from the vascular endothelium is not required for the photorelaxation 

(Furchgott et al., 1984). Since the superoxide scavenger, superoxide dismutase 

does not modify the intrinsic photorelaxation, it has been suggested that the 

source of NO may be an intracellular store in the smooth muscle cells 

(Matsunaga & Furchgott, 1989). Furthermore, this store could be depleted 

following repeated exposure to light stimulation (Venturini et aL, 1993; 
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Kubaszewski Ell: al., 1 B94). 

Other pathways involving sGC activation are believed to mediate 

photorela><ation in smooth muscle as well. Wolin et atl. (1 991) have proposed 

that metabolic degradation of hydrogen p(~roxide bv catalase, followed by 

activation of sG C, may mediate photorelaxation in bovine pulmonary artery . 

Direct photoactivation of sGC has also been inferred by Karlsson et al. ( 1985), 

which could underlie the increase in cGIVI P and photomlaxation in bovine 

mesenteric arteries (Karlsson et al., 1984). 

Tallarida and colleagues have propm:.ed two other mechanisms that 

mediate the endogenous pllotorelaxation in ~mooth muscle. The first mechanism 

involves a decrease in cytoplasmic free [Ca+ + 1 upon UV-irradiation (Jacob <~ 

Tallarida, 197?). They observed that UV irradiation of rabbit aortic microsomes 

enhances calcium binding which may explain the reduc;tion in tonus shown in 

the intact smooth muscle after irradiation. VVhether thi.s effeGt is cGMP­

depE!ndent remains to b13 determined since an increasE: in cGMP could result in 

a decrease in intracellular [Ca1 ~-+] via activat1on of a sarcolemmal ca+ + -ATPase 

(see section 1 .4.2). The second mechanism supposedly involves a shift in the 

equilibrium binding constant for the tonus-inducing dru~J and its receptor 

!McGonigle & Tallarida, 1980) in such way thEtt the drU!;J is disr!aced from the 

receptor or thH drug-receptor complex is in .~ctivated, resulting in relaxation. 
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1 . 1 . 1 .2 Exogenous photorelaxation 

NaN02 (a non-acidified solution) enhances the endogenous 

photorelaxation in rabbit aortic strips (Matsunaga & Furchgott, 1989). 

Moreover, in smooth muscle preparations from rabbit stomach, duodenum and 

uterus which are insensitive to photostimulation, NaN02 is able to induce 

relaxation upon UV-irradiation (Ehrreich & Furchgott, 1968). Matsunaga and 

Furchgott (1991) demonstrated that NaN02 in solution is photoactivated by long 

wavelength UV-Iight to release a potent, but very labile relaxing substance with 

pharmacological properties similar to EDRF. This molecule is believed to be NO 

since photorelaxation can be stabilized by superoxide dismutase and completely 

inhibited by Hb, but not methemoglobin (Matsunaga & Furchgott, 1988, 1991) . 

However, the peak of the action spectrum for the endogenous photorelaxation 

(31 0 nm) differs from that of the NaN02·-potentiated photorelaxation (350 nm) 

(Matsunaga & Furchgott, 1989). 

Other NO-donors are able to photosensitize smooth muscle as well. Thus, 

streptozotocin and N111-nitro-L-arginine enhance photorelaxation in rat aorta and 

induce photorelaxation in rat trachea (Chang et al., 1993). Significant release 

of NO following irradiation of a N111-nitro-L-arginine aqueous solution has been 

demonstrated by Bauer and Fung ( 1993). Sodium nitroprusside (SNP) ­

photoactivated relaxation has been described in porcine fundus (Golenhofen et 
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al., 1990). In contrast, phasic smooth muscle such as porcine antrum and 

pylorus are less sensitive to inhibition of the phasic contractions upon irradiation 

of SNP~treated preparations (Golenhofen et al., 1990). 

The DHPs are chiefly known to modulate voltage-gate!"} Ca ++-channels 

of the L~type. A less understood property of some members of this class of 

compounds is to sensitize smooth muscle to the relaxant effect of light 

(Mikkelsen et al., 1 985a,b). Mikkelsen and colleagues proposed that, in rat 

thoracic aorta, UV irradiation induces a reversible shift of the DHP ligand, Bay 

K 8644, from an agonist to an antagonist binding site at the L-type Ca + + ~ 

channel, causing inhibition of smooth muscle tonus (Mikkelsen & Nyborg, 

1986). However, subsequent studies of DHP L-type Ca ++-channel agonist­

antagonist enantiomeric pairs have shown that both enantiomers produce 

photorelaxation in vascular smooth muscle regardless of their action on the 

Ca' '~channel (Golenhofen et al., 1990; Triggle et al., 1991 ). Based on the 

photosensitizing activity and modulation of L-type ca+ +-channel in rat thoracic 

aorta, DHPs have been divided into four groups: 1) L-type Ca ++-channel agonist­

photosensitizers: Bay K 8644 and PN 202~791, 2) L-type Ca ++-channel 

agonist~nonphotosensitizers: CGP 28392 and YC-170, 3) L-type ca+ +-channel 

antagonist-photosensitizers: nifedipine, PN 200-11 0 and the antagonist 

enantiomers of Bay K 8644 and PN 202-791 , and finally 4) L-type Ca ++-channel 
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antagonist-nonphotosensitizers: amlodipine, felodipine and PO 122860 (Triggle 

& Sieger, 1990). Subsequent investigations, however, have failed to corroborate 

photosensitizing activity in the case of nifedipine and PN 200-11 0 (0. Sieger, 

personal communication). 

Preliminary structure-activity relationship (SARl studies of DHPs suggest 

that all molecules with a 3'-N0 2 substituent (3' -NQ -DHP) are effective 

photosensitizers in smooth muscle (Golenhofen et al., 1990; Triggle et al., 

1 991 ). As determined by spectral analysis, both the Bay K 8644-photoactivated 

relaxation and absorbance in aqueous solution show a maximum around 410 nm 

(G olenhofen et al., 1990). These observations have led to the hypothesis that 

the DHP-photoactivated relaxation results from photolytic release of NO from 

the 3'-N0 2-DHP molecule (Golenhofen et al., 1990) or from the formation of an 

intermediate nitrosyl radical capable of activating sGC (Triggle and Sieger, 

1990). 

Whether irradiation of the 3'-N02-DHP molecule may release a photolabile 

relaxing substance similar to NO remains to be established since: 1) 2h-UV light 

irradiation of a Bay K 8644 solution does not decrease its photosensitizing 

activity in rat thoracic aorta. In addition, removal of the 3'-NO,-DHP from the 

incubation medium does not attenuate the photorelaxation (Mikkelsen et al., 

1 985a); 2} although the photoactivated response of Bay K 8644-treated 
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preparations is accompanied by an increase in cGMP content (Sieger & Triggle, 

1 991), no vasorelaxant product could be detected by bioassay during irradiation 

of vascular smooth muscle (Chen & Gillis, 1992); 3) 3'-N02-DHP-photoactivated 

relaxation is less sensitive to pharmacological compounds modifying 

endogenous photorelaxation as well as NaN02-augmented photorelaxation. 

Thus, superoxide dismutase has no effect on the Bay K 8644-mediated 

photorelaxation (Chen & Gillis, 1 992) whereas L Y 83583 only attenuates the 

DHP-augmented photorelaxation in aortic rings (Triggle & Sieger, 1990). 

Other results, on the contrary, seem to support the hypothesis regarding 

photoactivated release of NO from the 3'-N02-DHP molecule. Recently, Bauer 

and Fung (1993) were able to demonstrate that irradiation of an ethanolic 

solution of Bay K 8644 results in a measurable release of NO as determined by 

chemiluminescence analysis. Moreover, an increase in cGMP production has 

been demonstrated in Bay K 8644-photosensitised rat aortic preparations 

(Triggle & Bieger, 1991 ) and ( + )-PN 202 791-treated porcine coronary arteries 

(Baik et al., 1994). In the latter, MB inhibits both the cGMP increase and the 

photorelaxation . Whether the effect of 3'-N02-DHP on cGMP is a direct result 

of light stimulation remains to be determined since Bay K 8644 alone may also 

stimulate cGMP synthesis in pituitary tumour cells and rat aortic smooth muscle 

(Heisler, 1986; Triggle et al., 1991 ). 
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Changes in the chemical structure of the 3'-NO,-DHP molecule as a result 

of irradiation and its interaction with different biological structures remain to be 

studied, especially changes related to the 3'-N01 group of the dihydropyridine 

ring. However, significant data regarding photoactivated decomposition of DHP 

antagonists have been described. Thus, irradiation of nimodipine and furnidipine 

results in aromatization of the dihydropyridine moiety, turning it into a pyridine 

ring (Nunez-Vergara et al., 1 994; Zanocco et al., 1992). If the DHP contains a 

-N02 group in the phenyl ring (e.g., nimodipine}, it may undergo reduction to the 

nitroso derivate {Nuriez-Vergara et al., 1994) or transmutation of the nitro group 

within the phenyl ring (Zanocco et al., 1992). The irradiation wavelength seems 

to play a role in the rate of those transformations. Thus, UV-irradiation or 

furnidipine results in oxidation of the dihydropyridine, whereas artificial day light 

irradiation also includes reduction of the nitro group (Nuriez-Vergara et al. , 

1994). 
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1.1 .2 Photocontraction 

Light may evoke contraction in precontracted smooth muscle preparations 

as well as in preparations held at basal tonus. However, unlike photorelaxation 

which occurs mostly during photostimulation, contractions may take place 

during, as well as after, irradiation. Thus, in frog iris sphincter, polychromatic 

light irradiation induces photocontraction via release of calcium from an 

intracellular source (Kargacin & Detwiler, 1985). However, high intensity Ar­

laser irradiation of rabbit aorta evokes photocontractions which are mediated by 

a thermal effect of the laser on the smooth muscle (Steg et al., 1 988). 

Although UV and polychromatic light-irradiation causes photorelaxation 

in smooth muscle, in certain preparations relaxation is followed by an "off­

contraction", i.e., a contraction occurring at the offset of the irradiation. At the 

present time, the mechanism of this response remains unknown; however, it 

has mainly been described in non-vascular smooth muscle such as preparations 

from the gastrointestinal tract. Such post-irradiation stimulation was first 

reported by Ehrreich and Furchgott ( 1968) in acetylcholine-precontracted rabbit 

stomach smooth muscle, photosensitized with NaN0 11 • This response was not 

cholinergically mediated since it was resistant to atropine and hexamethonium. 

When Na N02-pretreated preparations were stimulated electrically to induce 

phasic contractions, irradiation evoked a transient or long lasting inhibition of 
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the phasic activity, followed by an "off-contraction", the amplitude of the latter 

being significantly larger than the amplitude of the phasic contractions. In 

porcine longitudinal fundus, photostimulation of Bay K 8644-treated 

preparations also evokes a photorelaxation which is followed by an "oft­

contraction" after cessation of the photostimulus (Golenhofen et al., 1990). 

While the foregoing review has focused only on tile photoactivated 

changes in the mechanical activity in smooth muscle, it is well recognised that 

the cellular mechanisms of contraction and relaxation relate to tl1e intrinsic 

physiological properties of smooth muscle. The next section deals with this 

aspect. 
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1 .2 Smooth Muscle: structure-function relationship 

Contraction of smooth muscle cells is thought to occur, as in skeletal 

muscie, through the interaction of myosin and actin filaments (Somlyo et al., 

1976; Somlyo, 1 980). Although not arranged in sarcomeres as in skeletal 

muscle, at least three distinct types of contractile filaments have been identified 

in smooth muscle. These are the thick filaments ( 1 5 nm in cross-sectional 

diameter}, containing polymerized myosin monomers; the thin filaments (6-8 

nm), composed mainly of actin and the intermediate filaments (1 0 nm), made 

up of desmin or vimentin. Another major component of the contractile apparatus 

in smooth muscle, called dense bodies, operate as attachment sites for actin 

filaments, analogous to the Z-line in striated muscles. 

Myosin is composed of two high molecular weight (230 kDa) heavy 

chains and four low molecular weight (two 20 kDa and two 16 kDa or LC20 and 

LC10, respectively) light chains (Craig et al., 1983; Yanagisawa et al., 1987; 

Messer & Kendric-Jones, 1988). The LC20 is the substrate for a specific 

calcium-dependent kinase named myosin light chain kinase (MLCK). MLCK is a 

high molecular weight protein (::: 105 kDa in chicken gizzard) that is activated 

aftP.r binding to the calcium-dependent protein calmodulin. Proteolysis of the 

purified enzyme has demonstrated that MLCK is composed of two domains: an 

active domain which binds to myosin, and a pseudosubstrate domain, 
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containing a calmodulin-binding site (Foyt et at., 1985; Walsh, 1985a). Under 

resting conditions, binding of the pseudosubstrate domain to the active site 

prevents myosin activation whereas calmodulin interaction with the 

pseudosubstrate domain releases this autoinhibition of the active site, allowing 

its activation of the myosin filaments. 

Excitation-contraction coupling in smooth muscle involves the following 

sequence of events: 1) activation of [Ca ++ ]; by receptor-mediated events, 2) 

activation of the calcium-binding protein calmodulin as the resul t of !Ca ' ' 1. 

increase; 3) stimulation of MLCK by theca + 4 -calmodulin compiFJX (Lucas et al. , 

1986); 4) MLCK phosphorylation of the Ser 19 residue in the l.C 11 0 of the myosin 

head, exposing a binding site for actin (Jakes et al., 1976; Adelstein & Eisenber, 

1980; Walsh, 1985b), 5) activation of myosin ATPase resul t ing in the 

generation of force through cycl ing of myosin cross-bridges with the act in 

filaments, and 6) activation of several phosphatases which dephosphorylate the 

LC 20 , causing relaxation of smooth muscle (Morgan et al. , 1976; Pato & 

Adelstein, 1981 ). 
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1.2.1 Regulation of contraction in smooth muscle 

Although the details of molecular events mediating smooth muscle 

contraction have not been fully resolved, there is little doubt that calcium ions 

act as the second messenger regulating smooth muscle tension development. 

Increases in intracellular calcium may occur as the result of receptor 

stimulation or/and membrane depolarization. Unlike skeletal muscle, where 

contraction is mainly supported by release of intracellular calcium, smooth 

muscle depends on extracellular calcium as well to maintain tension (Bolton, 

1 97 9; Daniel et al., 1979). Thus, it has been proposed that calcium entry in 

smooth muscle may occur through receptor-gated channels, activated by 

agonist receptor occupancy (Bolton, 1979), or through voltage-gated channels, 

activated by membrane depolarization (Triggle, 1972). 

Another possible source of calcium is the sarcoplasmic reticulum {SR). 

Release of intracellular calcium from the SR may occur through the inositol 

triphosphate (IP3 )-activated channel and the caffeine modulated calcium-induced 

calcium release mechanism (Somlyo et al., 1985; Baron et at., 1989; llno, 

1 990). A variety of extracellular signals (neurotransmitters, hormones, etc.) 

interact with specific receptors located in the plasmalemma that are coupled via 

a GTP-binding protein to the enzyme phospholipase C. Activation of 

phospholipase C results in the hydrolysis of the membrane lipid, 
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phosphatidylinositol 4,5-bisphosphate, generating two second messengers: IP:1 

and 1 ,2-diacylglycerol. The latter activates protein kinase C, whereas IP:1 

diffuses into the cytoplasm and interacts with the IP3 -activated channel in t11e 

SR, allowing release of calcium into the myoplasm, down its concentration 

gradient. The calcium-induced calcium release mechanism allows the release of 

calcium ions from the SR as the result of an overall increase in myoplasrnic 

calcium concentration. 

The different time course of calcium entry from the extracellular space 

and calcium release from the SR is responsible for the biphasic components of 

the agonist-induced contraction (Bond et al., 1984; Daniel et al., 1979). This 

response contains an initial phasic contraction followed by a loilg lasting tonic 

contraction. The first phase is believed to involve SR calcium release by IP.,, 

whereas the tonic contraction is mediated by calcium entry from the 

extracellular space. Contraction induced by high K + entails mostly a tonic phase 

mediated by calcium entry through voltage-gated channels. 

Based on this simplified scheme, it has been proposed that smooth 

muscle possesses two types of excitation-contraction coupling: 

electromechanical and pharmacomechanical coupling (Somlyo & Somlyo, 1968) . 

The former is mediated by a change in resting membrane potential leading to 

ca++ influx through voltage-gated channels. The latter involves: 1) Ca I I influx 
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through receptor-gated channels; 2) SR Ca+ + release through IP3-activated 

channel; and 3) regulation of kinase/phosphatase activity (see below) . 

Several lines of evidence, however, suggest that cytoplasmic [Ca+ +J and 

force generation are not rigidly coupled and that ca+ +-sensitivity of the 

contractile apparatus can be modified by physiological mechanisms. The 

tension/Ca ·• + relationship is higher during agonist than during high K +-induced 

contractions !Bradley & Morgan, 1987; Himpens & Casteels, 1987; Rembold & 

Murphy, 1988). In staphylococcus a-toxin permeabilized smooth muscles, 

which still retaining their agonist-coupled responses, an increase in calcium 

sensitivity could be demonstrated by receptor stimulation (Kitazawa et al., 

1989; Nishimura et al., 1988). Moreover, simultaneous measurements of 

tension and [Ca+ +Ji have shown that during continuous stimulation, although a ­

adrenergic agonist induced force is maintained at high constant levels, calcium 

concentration may decline to basal levels (Morgan & Morgan, 1982). In intact 

smooth muscle, it has been demonstrated that levels of both MLCK 

phosphorylation and shortening velocity decrease to control levels during the 

phase of force maintenance (Dillon et al., 1 981). In order to account for these 

phenomena, a high calcium sensitivity state, the latch state, has been proposed 

to be involved in the development of force with significant decrease in calcium 

concentration and phosphorylation (Dillon et al., 1981 ). The latch bridge is a 



18 

dephosphorylated cross-bridge. Although both types of coupling are proposed 

to generate the same amount of force, the latch bridge has a fivefold slower 

detachment rate. 

Several other studies have indicated the existence of regulatory 

mechanisms other than myosin phosphorylation that may affect the contractile 

tonus of smooth muscle but do not involve the formation of latch-bridges. 

Convincing evidence for this has emerged from studies with smooth muscle 

preparations permeabilized with staphylococcus a-toxin, indicating that a GTP­

binding protein may be implicated in increasing the Ca 1 1 sensitivity or the 

contractile proteins to various agonists (Kitazawa & Somlyo, 1991 ). Protein 

kinase C has also been implicated in the regulation of smooth muscle 

contraction. Thus, the tumour-promoting phorbol esters can induce slowly 

developing, sustained contractions. Moreover, gizzard myosin is a substrate of 

protein kinase C in vitro, with phosphorylation occurring at several sites (S 1, 

S2, T9) of the LC20 (Nishimura et al., 1990). However, it is unclear if the protein 

kinase C- induced tonus is the result of a direct effect on the contractile proteins 

or an increase in ca+ + influx through phosphorylation of voltage-gated channels 

(Yabu et al., 1992). Regulation of the phosphorylation/ dephosphorylation rate 

of MLCK through changes in the kinase/phosphatase activity rnay also play an 

important role in tonus generation in smooth muscles. Recent evidence demon-
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strates that the phosphatase inhibitors, okadaic acid and calyculin A, induce 

tonic contractions in rabbit aorta and guinea-pig taenia caeci {Shibata et a/., 

1982; Hartshorne et al., 1989). Such contractions were independent of 

extracellular calcium and did not involve calcium mobilization from internal 

stores (Hartshorne et al., 1989). 

Several investigators have also suggested that large increases in [Ca + +]; 

per se may decrease the sensitivity of the contractile apparatus to calcium (Stull 

et al., 1990; Kitazawa & Somlyo, 1990). The molecular mechanism of calcium­

induced desensitization may be explained by phosphorylation of MLCK. In vitro 

MLCK activity is a function of both calcium and calmodulin concentration. 

However, increase in [Ca + +]i may activate a Ca ++-calmodulin-dependent protein 

kinase II which phosphorylates MLCK (Stull et al., 1990). Phosphorylated MLCK 

has a lower Ca ++-sensitivity than the clephosphorylated enzyme. This 

hypothesis may partially explain the phasic response of some smooth muscle 

(Kitazawa & Somlyo, 1990). Thus, exposure to high [Ca + +L induces a transient 

contraction in staphylococcus a-toxin skinned smooth muscle. However, force 

declines to a significantly lower level despite a maintained high [Ca + +li, 

suggesting a time-dependent decrease in calcium-sensitivity of contraction . 

Biochemical experiments also suggest the existence of contractile­

filament linked regulatory mechanisms in smooth muscle. Although smooth 
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muscle lacks troponin, two other proteins called caldesmon and calponin may 

be involved in the regulation of actin-myosin interaction in smooth muscle 

(Sobue et at., 1981; Takahashi et al., 1986). 
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1.2.1.1 Vortage-gated channels. 

As mentioned above, voltage-gated channels play a very important role 

in calcium-entry during force maintenance in smooth muscle. 

Electrophysiological studies indicate that there are at least two subtypes of 

voltage-gated channels in smooth muscles (Sturek & Hermsmeyer, 1986; 

Benham et al., 1987): i) L-type Ca++_channels, characterized by activation at 

depolarized membrane potential and large conductance. Upon repolarization, L­

type Ca ~+-channels inactivate slowly; ii) T-type ca+ +-channels are activated 

at more polarized membrane potentials and have low conductance. Since the 

inactivation kinetics are very fast, T-type ca+ +-channels are characterized by 

a transient current. 

The N-type ca+ +-channels appears to be confined only to neurons where 

it probably regulates neurotransmitter release (Miller, 1987). 

Molecular analysis has demonstrated that the L-type Ca+ +-channels is a 

complex of five protein subunits (a,, a2 , B, T, o)(Giossmann & Ferry, 1983; 

Curtis & Catterall, 1984; Borsotto et al., 1985). The a, -subunit forms the 

transmembrane channel pore and also contains the binding site for the three 

main ligands regulating channel activity: 1 ,4-dihydropyridines, benzothiazepines 

and phenylalkylamines. 

The DHPs are modulators of the L-type ca+ +-channels, acting either as 
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activators (agonists) or inhibitors. The same binding site in the a 1 subunit seems 

to accommodate both types of ligands. DHP agonists and antagonists interact 

with a high enantiomeric specificity with the binding site !Franckowiak et al., 

1 985; Triggle et al., 1989). Patch clamp recordings have revealed that L-type 

ca+ +-channels exhibit three different gating states: closed, open and inactivated 

(Hess et al, 1984; Kokubun & Reuter, 1984). DHP agonists bind to the open 

state, whereas antagonists bind preferentially to the inactivated state (Bean, 

1984). 

The a 1 and the r., subunits of the L-type ca + 1-channels contain at least 

one phosphorylation site (Curtis & Catterall, 1985; Hosey et al., 1986). Several 

observations suggest that phosphorylation of L-type Ca + '-channels by second 

messengers regulates channel activity. Thus, calcium current increases as the 

result of phosphorylation by a calmodulin-dependent protein kinase II in stomach 

smooth muscle from the toad Bufo marinus (McCarron et al., 1992). Cyclic 

AMP also appears to stimulate L-type ca+ +-channels in cardiac myocytes and 

guinea pig ventricular cells (Kameyama et al., 1986). However, in rat ileum 

smooth muscle cAMP does not produce any effect in channel activity (Yabu et 

al., 1992). Modulation of L-type ca+ +-channels has also been associated with 

activation of a pertussis toxin-sensitive G-protein (Yatani et al., 1987). 
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1.2.2 Relaxation of smooth muscle 

Relaxation of pre-contracted smooth muscle could be achieved either 

through a reduction in the tree cytoplasmic calcium or by decreasing the rate of 

phosphorylation of the contractile proteins. rca++]; can be reduced via (1) 

inhibition of calcium influx from the extracellular space and of calcium release 

from the SR, or (2) by enhancing the activity of mechanisms for ca+ + removal 

from the myoplasm. The latter may involve calcium-sequestration into the SR 

by a ca+ ~ -ATPase or extrusion into the extracellular space (Casteels et al., 

1986) by the plasm alemmal ca+ + -ATPase and the Na+ /Ca+ + exchange. Both 

the SR and the plasmalemma! calcium pump use ATP hydrolysis to transport 

calcium against its con~entration gradient. However, the SR ca+ + -ATPase 

differs from the plasmalemma! pump in several properties, e.g. the SA pump is 

regulated by phospholamban, where the plasmalemma! pump is regulated by 

calmodulin (Raeymaekers & Jones, 1986). 

Drug-induced relaxation of smooth muscle ma·y~ occur through 13-

adrenoceptor activation or nitric oxide release, leading to the stimulation of 

specific cAMP- and cGMP-dependent protein kinases, respectively. 
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1.2.2.1 B-adrenoceptor stimulation and cAMP 

Activation of the enzyme adenylate cyclase either by agonist binding to 

B-adrenoceptors or by action of vasodilator prostaglandins induces relaxation of 

airway, gastrointestinal and other smooth muscle (reviewed by Bi.ilbring & 

Tomita, 1987). Adenylate cyclase catalyses the production of cAMP from ATP. 

Increase in the intracellular level of cAMP stimulates a specific protein kinase, 

PKA (review by Langan, 1 973). 

Two potential sites for PKA action have been the focus of most studies: 

effects on intracellular ca+ + metabolism and phosphorylation of MLCK. Thus, 

the cAMP-mediated effects on intracellular calcium concentration, including 

stimulation of ca+ + efflux (Moore & Fay, 1993) and sequestration into the SR 

(Casteels & Raeymaekers, 1979; Mueller & van Breemen, 1979), have been 

demonstrated in several smooth muscles. Increase in Ca • • etflux could be 

mediated by activation of the Na+;K+-ATPase (Moore & Fay, 1993). The 

increase in the transmembrane Na+ -gradient will stimulate the Na •tea • • 

exchange in the Ca +-extrusion mode, therefore diminishing I Ca • • L induced by 

excitatory stimuli. 

It has also been demonstrated that PKA phosphorylates MLCK from 

gizzard smooth muscle at two sites (5815 and 5828) (Conti & Adelstein, 1981; 

Payne et al., 1981 ). In the absence of bound calmodulin both sites are 
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phosphorylated; however, with calmodulin bound to MLCK, only the 5828 site 

is phosphorylated. Phosphorylation of the 5828 site alone has no effect on the 

kinase, but phosphorylation of both sites results in a decrease in the affinity of 

MLCK for calmodulin (Conti & Adelstein, 1981 ). Whether this mechanism is 

important for smooth muscle relaxation in vivo is not completely clear. 

However, in skinned guinea pig taenia coli and trachea, its significance has been 

demonstrated (Miesheri & Ruegg, 1983; Sparrow et al., 1984; Nishimura & van 

Breemen, 1 989). 
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1.2.2.2 Nitric oxide and cGMP 

In 1980 Furchgott & Zawadzki demonstrated that stimulation of intact 

vascular smooth muscle by acetylcholine lead to the release of EDRF. Further 

investigations determined that this factor is NO (Palmer et al., 1987; lgnarro et 

al., 1 988). NO is synthesized from L-arginine by the enzyme nitric oxide 

synthase (NOS) with the formation of citrulline as a co-product (Moncada et al., 

1989; Palmer & Moncada, 1989). Several cofactors such as NADPH, FMM, 

FAD and tetrahydrobiopterin are required for the catalytic activity of NOS. The 

NO-mediated mechanism of smooth muscle relaxation involves activation of 

sGC after binding to the haem iron of the enzyme (lgnarro, 1991), followed by 

an increase in intracellular cGMP. The same final pathway is involved in smooth 

muscle relaxation by nitrovasodilators and in endothelium-dependent relaxation 

stimulated by substance P, the calcium ionophore A23187 and bradykinin 

(Murad et al., 1978; lgnarro et al., 1987; Khan & Furchgott, 1987; Keirn & 

Schrader, 1988). 

At least three different NOS have been described. These differ by their 

tissue localization and ca+ +-dependence. Thus, the activity of two constitutive 

NOS, i.e., the 1 35 kD endothelial NOS (Lamas et al., 1992) and the 168 kD 

neuronal NOS (Bredt et al., 1991), is stimulated by an increase in intracellular 

calcium. Conversely, an inducible, ca + +-independent NOS is expressed in 
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macrophages following immunological stimuli (Lyons et al., 1992). This enzyme 

is believed to mediate the cytotoxic activity of NO in macrophages. The rate of 

NO £ynthesis from this enzyme is much higher than in endothelial and brain 

NOS. Moreover, the inducible NOS is bound to a calmodulin-regulatory sequence 

(Cho et al., 1992). This eliminates the requirement for calcium to stimulate the 

activity of the inducible NOS. 

Degradation of cyclic nucleotides in vascular and non-vascular smooth 

muscle is mediated by at least five phosphodiesterase (PDEl isozymes, each 

encoded by a distinct gene or gene family (Torphy & Cielinski, 1990; Torphy et. 

al., 1993; Saeki & Saito, 1993). However, cGMP degradation may only involve 

two types known as cGMP-specific POE (PDE V) and calmodulin-dependent POE 

(PDE I). Although zaprinast inhibits both enzymes, the highest selectivity is 

shown toward PDE V (Saeki & Saito, 1993). 

Although the mechanism of cGMP-mediated relaxation is not fully 

understood, several sites have been proposed as possible target for protein 

kinase G (PKG). It has been demonstrated that PKG activates Ca + + -ATPase 

activity in crude preparations. This result has been supported by studies 

demonstrating that PKG catalyses the phosphorylation of phospholamban, a 

regulator of SR Ca-~ + -ATPase (Raeymaekers et al., 1 988; Twort & van Breemen, 

1988). Moreover, agents which increase cGMP may induce relaxation of 
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vascular smooth muscle by activating K +-channels which results in membrane 

repolarization and a decrease in calcium influx through voltage-gated channels 

(Nelson et al. , 1990; Thornbury et al., 1 991 l. Phosphorylation toy PKG activates 

ca+ +-activated K+ -channels inducing hyperpolarization and relaxation of 

coronary artery (Taniguchi et al., 1993). 

No direct effect of cGMP on channel regulation similar to that mediating 

phototransduction in retinal cells, has been found in smooth (reviewed by Kaupp 

& Koch, 1 992). The role of phosphorylation by PKG on contractile tonus is 

presently unclear despite reports showing modulation of the calcium sensitivity 

of the contractile proteins by PKG (Pfitzer et al., 1982; Nishimura & van 

Breemen, 1989). 
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1 .3 Objectives and rationales of this study 

The aims of this study were the following: 

1 a) to characterize and compare the DHP-photoactivated response in tonic and 

phasic smooth muscles devoid of any intrinsic responsiveness to light, and b) to 

contrast these responses with an endogenously mediated one. 

Several studies have demonstrated that the light-induced responses in vascular 

and non-vascular smooth muscle differ in their components. Whereas in vascular 

smooth muscle, DHPs or NO donors augment the intrinsic photorelaxation !Golenhofen 

et al. , 1990; Triggle & Sieger, 1990; Chen & Gillis, 1992), the DHP- or NO donor­

photoactivated response in rabbit stomach and porcine fundus consists of a relaxation 

followed by an "off-contraction" (Ehrreich & Furchgott, 1968; Golenhofen et al. , 

1990) . On the contrary, phasic smooth muscle (porcine circular antrum) and smooth 

muscle with mixed tonic and phasic contractions (guinea-pig uterus) are insensitive to 

photostimulation even following treatment with 3'-N02-DHP or NO-donors (Golenhofen 

et al., 1990). 

In this study, the vascular and non-vascular smooth muscle preparations chosen 

to investigate the DHP-photoactivated response were the thoracic aorta and TMM, 

respectively. Furthermore, the TMM and pyloric sphincter were used to compare the 

DHP-photoactivated rt..::;Jonse in tonic and phasic smooth muscles, respectively. 
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2) to determine whether the 3'-N02-DHP-photoactivated response is mediated 

by release of NO from the DHP molecule. 

Photoactivated release of NO from the DHP molecule has been implicated as the 

initial step in photorelaxation of smooth muscle. Thus, DHP-photoactivated relaxation 

in smooth muscle seems to involve only nitro-substituted DHP (Golenhofen et al., 

1990, Triggle et al., 1990} and DHP photosensitization could be mimicked by 

photodegradable NO-donors (Golenhofen et al., 1990). Photoactivated release of NO 

has been demonstrated following irradiation of a 3'-N02-DHP compound (Bauer & 

Fung, 1993). 

If photoactivated release of NO accounts for the 3'-N02-DHP-photoactivated 

response in the TMM, the following predictions can be made: 

(i) established NO-donors should mimic the 3'-N02-DHP-photoactivated response; 

(ii) the photoactivated response should be attenuated by the NO-inactivating agents 

L Y 83583, haemoglobin and carboxy-PTIO; 

(iii) the photosensitizing efficacy of a 3'-N02-DHP solution should be altered by prior 

polychromatic light irradiation of the solution. 
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3) to determine the effector mechanism(s) involved in the 3'-N02-DHP-

photoactivated response. 

Since DHP-augmented photorelaxation in rat aorta are accompanied by an 

increase in cGMP production (Triggle at al., 1991, Baik et al., 1994), it has been 

proposed that activation of sGC following photoactivated release of NO, may lead to 

photorelaxation. If activation of sGC were to mediate the 3'-N02-DHP-photoactivated 

response in the TMM, the selective cGMP-PDE inhibitor, zaprinast should enhance any 

NO-mediated effect occurring via stimulation of sGC. 

Previous work in rat thoracic aorta has shown that the 3'-N02-DHP-r:~ugmented 

photorelaxation does not require the presence of extracellular calcium (Triggle & 

Sieger, 1990) and it occurs independently of the effect of DHPs on the L-type Ca + +­

channels (Golenhofen et al., 1990; Triggle et al., 1991 ). If the 3'-N0 2-DHP­

photoactivated response were dissociated from extracellular calcium, the following 

predictions could be made: 

(i) the photoactivated response should be indistinguishable whether it is produced by 

photosensitizing DHPs with agonist or antagonist effects at the L-type Ca ++-channel; 

(iil chelation of extracellular calcium, inhibition of L-type ca+ +-channel with non­

photosensitizing DHPs or skinning of the plasmalemma should not interfere with the 

photosensitizing activity of DHPs. 

Microsomal Ca ++-binding has also been implicated as a possible mechanism for 
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photorelaxation (McGonigle & Tallarida, 1980). If the SR were to mediate the 3'-NO;~-

DHP-photoactivated response, agents which interfere with the storage/release capacity 

of the SR, such as cyclopiazonic acid and ryanodine, respectively, should modify the 

photoactivated response. 



2.1 Animals 

CHAPTER TVIJO 

METHODS AND MATERIALS 

Male Sprague-Dawley rats, 150-300g, were purchased from Charles River 

Inc., Montreal, Quebec or from the vivarium at Memorial University of 

Newfoundland. The animals were housed in the animal quarters of the Faculty 

of Medicine, Memorial University of Newfoundland. Rats were kept on a 12 h 

light/dark schedule with controlled humidity and temperature. The animals had 

access to food and water ad libitum. Procedures performed on the animals were 

approved by the Animal Care Committee at Memorial University of 

Newfoundland in accordance with the guidelines of the Canadian Association 

on Animal Care. 

2.2 Preparation of tissues for in vitro mechanical study 

2.2. 1 Isolated TMM 

Rats were anaesthetized with urethane ( 1 .2 g/kg, i.p.). The thorax was 

exposed with a midline incision, the rib cage cut open and the oesophagus 

dissected out from the pharynx to the stomach. A metal rod was slipped 

through the lumen and the oesophagus placed in a Sylgard (Dow Corning 

Corp., USA)-coated petri dish containing Tyrode's solution aerated with 95%02 

/5%C02 • Care was taken to maintain the length of the oesophagus during 

dissection equivalent to its original length. Dissection was carried out under 

white incandescent light (0.6 mW/cm2
). The tunica muscularis propria was split 
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lengthwise and dissected away leaving the smooth muscle tube, viz. the TMM. 

The TMM was divided into threa or four segments. The segments corresponded 

to proximal (cervical), middle (supradiaphragmatic) and distal 

(infradiaphragmatic) portions, each 1-2 em in length. Each segment was secured 

at one end via a loop of silk thread (5-0 silk, Ethicon) to a tissue holder. The 

other end was tied with the silk thread to a Grass FT03C force transducer. The 

preparation was bathed with Tyrode's solution in a 10 ml water-jacketed organ 

bath. Preparations were aerated with 95%0 2 /5%C0 2 and maintained at 37°C. 

2.2.2 Isolated thoracic aorta 

The rat thoracic aorta was excised and placed in a Sylgard-coated petri 

dish containing Tyrode's solution aerated with 95%02 /5%C0 2 • The vessel was 

cleaned of adherent fat and connective tissue and cut into rings of 

approximately 3-5 mm in length. Each ring was mounted between two triangular 

steel wires. One of the wires was tied to a tissue holder whereas the other wire 

was connected to the force tranducer. Each segment was maintained in water­

jacketed organ bath containing Tyrode's buffer at 37°C and aerated with 

95%0 2 /5%C~. The endothelium was removed by saponin (1 00 pg/ml)­

treatment for 5 minutes in Tyrode's buffer at 37°C (Graser et al., 1988). After 

washing out saponin from the bath with fresh buffer, the absence of 

acetylcholine ( 1 J,JM)-induced relaxation was used to confirm endothelium 

removal. 
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2.2.3 Isolated pyloric sphincter 

The pyloric sphincter was excised and placed in a Sylgard-coated petri 

dish containing Tyrode's solution aerated with 95%02 /5 %C02 • The pyloric 

sphincter was cleaned of adherent fat and connective tissue. To separate the 

inner circular layer of smooth muscle from the outer longitudinal layer, the 

pyloric sphincter was inverted. The longitudinal layer was removed and one or 

two strips were prepared from the circular laver of smooth muscle. Each strip 

was secured at one end via a loop of silk thread (5-0 silk, Ethicon) to a tissue 

holder. The other end was tied with the silk thread to a Grass FT03C force 

transducer. The preparation was bathed with Tyrode's solution at 37 ac in a 10 

ml water-jacketed organ bath. 

2.3 Mechanical recording 

Isometric longitudinal tension was recorded via a Grass FT03C transducer 

on a Grass 70 polygraph. The transducers were mounted on adjustable clamps 

permitting fine adjustment of resting muscle tension without overstretching the 

tissues. TMM and pyloric sphincter preparations were set up at a preload of 0.3 

g whereas aortic rings were set at 1 g preload. 

To register and analyze fast changes in tension, force transducers were 

connected with a Digi-Med tension force analyzer (model 200), kindly supplied 

by Micro-Med (Louisville, KY) . Data were stored as digital information using a 

PC 486DX2/50. Traces were analyzed using the software Acqknowledge for 
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Windows (Biopac System Inc.) or imported into SigmaPiot (Jande! Scientific) for 

graphic reproduction. 

2.4 Experimental protocol 

Tissues were allowed to equilibrate in Tyrode's solution for approximately 

30 minutes. Muscle tissues were stimulated to generate active tonus by means 

of the following protocols: i) incubation with the muscarinic cholinoceptor 

agonist cis-dioxolane (CD) at the EC80.90 (0.1 pM or 0 .3 JJM) (Akbaraly, 1987) 

in Tyro de's solution; ii) incubation in 11 0 mM K i -depolarizing solution 

containing a known calcium concentration; iii) incubation in 1 1 0 mM K 1 
, 

nominally calcium free solution, containing 0.3 JJM CD. After a steady-state 

tonus was reached, photosensitization of smooth muscle was induced with DHP 

or NO-donors. Concentration-response curves for these compounds were 

obtained by cumulative additions to the organ bath. When drugs were examined 

for their ability to inhibit light-induced responses in TMM, precontracted 

preparations were first photosensitized with a fixed concentration of DHP or 

NO-donor and then, exposed to test concentrations of the drug. If tonus 

dropped as a result, it was titrated back to its original leve! with additional 

spasmogen. The relaxant effect of isoprenaline (INA, 0.3 JJM) was tested at the 

end of most experiments to ensure that the capability of the tissues to relax in 

response to a nonphotic stimulus was preserved. 

Tetrodotoxin (TTX)-sensitive, field stimulation-induced relaxations of 
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TMM were obtained in Tyrode's medium. Preparations were pre-treated with 1 

nM methscopolamine, a muscarinic acetylcholine receptor antagonist lacking 

subtype selectivity . This concentration was sufficient to block field stimulation­

induced cholinergic contractions followed by contraction with 1 .uM CD. TTX­

insensitive relaxations were obtained in TMM preparations treated with 0.5 .uM 

TTX and precontracted with 1 pM CD. 

The intrinsic or DHP-augmented photorelaxation in thoracic aorta was 

revealed using phenylephrine (ECa0.90 = 0.1 .uM)-precontracted preparations. The 

DHP-photoactivated response in pyloric sphincter was studied in CD (1 .uMl­

treated preparations. Activation of the muscarinic acetylcholine receptors 

induced phasic contractions in pyloric sphincter. 

2.5 Skinning of muscle preparations 

Skinning of the TMM was carried out with 15-escin (50 pM) for 20-30 

minutes (Kobayashi et al., 1989) in the presence of a skinning solution (see 

section 2.7) at 22 °C and pH 7.0 (pCa++<8). Contraction was induced by 

increasing the ca+ +:ethylene glycol-bis{l5-aminoethyl ether) N,N,N' ,N'­

tetraacetic acid (EGTA) ratio, keeping the total EGTA concentration constant at 

0.1 mM. The apparent binding constant of the ca++_EGTA complex was 

considered to be 2.52 x 106 M·1 at 22°C and pH 7 .0, as calculated by the 

ancillary computer program STACONS (Fabiato & Fabiato, 1979). The 

concentrations of free calcium shown in the results were calculated by the 
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computer program ALEX, the updated version of SPECS (Fabiato, 1988). The 

software STACONS and SPECS were kindly supplied by Dr. Fabiato (Medical 

College of Virginia, USA). 

2.6 SR calcium-depletion 

Calcium-depletion of the SR was achieved by rapetitive stimulation of the 

TMM preparation with CD in 110 mM K + nominally calcium-free solution 

containing 30 pM of the calcium chelator BAPTA. To prevent refill ing of tile SA 

after its depletion, preparations were subsequently incubated with the SR Ca 1 1
-

ATPase inhibitor cyclopiazonic acid (3-5 pM) (Seidler et al., 1989). 

2.7 Buffers 

The composition of the Tyrode's solution was (in mM): NaCI 137, KCI 

2.7, CaCI2 1 .8, MgCI2 1.1, NaHC03 12.0, NaH2P04 0.42, D-glucose 5 .6. Prior 

to use the buffer was aerated with 95% 0 2 + 5°/o cq . The 110 mM K 1
-

depolarizing, nominally Ca ++ -free solution was prepared by substituting an 

equimolar concentration of KCI for NaCI to obtain a final potassium 

concentration of 11 0 mM, with CaCI 2 being omitted from the solution. The 

resulting isotonic solution was aerated with 95% 0 2 + 5% co,. 

The skinning solution had the following composition (in mM): KCI 1 26 , 

NaCI 7, MgCI 2 5, ATP 2.5, 3-[N-morpholino]propanesulfonic acid (MOPS) 10, 

EGTA 1.0. 
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2.8 Photostimultion 

Photostimulation was carried out by means of a timer-controlled 

polychromatic halogen light source CEJL, 200W, General Electric) the intensity 

of which could be varied. Photostimuli (0.9 W/cm 2
) were delivered for 1 0 s at 

intervals of 2-5 minutes through a fibre-optic light guide positioned 10 mm 

from the preparation. The change in the bath temperature as a result of 0.9 

W /cm2-irradiation was ~0. 5 DC. Intensity was determined by means of a 

radiometer (IL 1700, Ealing) and measured at the tip of the light guide . 

2.9 Electrical field stimulation 

Electrical field stimulation of isolated TMM preparations was delivered via 

a Grass S88 stimulator using two concentric platinum rings spaced 5 mm apart 

and surrounding the preparation. Rectangular pulses of 40V and 1 0 s duration 

were applied every 1.5-2 min. Pulse width and frequency were varied depending 

on the type of response studied. 

2.10 Drugs and chemicals 

The drugs used in this study and their sources were: 

Anachemia Chemicals !Canada!: sodium nitrite 

BDH Chemicals (U.K.!: methylene blue (MB) 

Calbjochem !USAl: carboxy-2-phenyl-4,4, 5, 5-tetramethylim idazoline-3-
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oxide-1 -oxyl (carboxy-PTIO), streptozotocin 

Rasearch Biochemicals International !US.AI: ( + l cis-dioxolane (CO), 

ketanserin, L-NG-nitroarginine methyl ester and ryanodine 

Sigma CUSAl: calcium ionophore A231 87, adenosine 5' -tripllosphate 

(disodium salt, from equine muscle), atropine, 1 ,2-bis{2-

aminophenoxy)ethane-N,N,N',N' ·· tetraacetic acid (BAPTA), calyculin 

A, cyclopiazonic acid, diethyldithiocarbamate, B-escin, ethylene glycol­

bis(f:S-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA), 

guanethidine, bovine haemoglobin (Hbl, indomethacin, isoprenaline, 

methscopolamine , nifedipine, 3-[N-morphulinolpropanesulfonic acid 

(MOPS), ouabain, potassium cyanide, potassium fluoride, 

phenylephrine, propanolol, sodium nitroprusside (SNP), sodium 

dithionate, saponin, tetrodotoxin (TTX). 

The following drugs were generously donated: 

Bay 10 8495, Bay 0 9507 and Bay K 9073 (Dr. D,J, Triggle. School 

of Pharmacy. State University of New York at Buffalo,. U.S.A) 

CGP 28392 (Dr. G.B. Weiss. Ciba-Geigy Corp .. USA) 

Felodipine (Hassle. Sweden) 

L Y 83583 (Lilly Research Lab,. USA) 

racemic Bay K 8644 and its enantiomers Bay K 5714 and 4407, 

nicardipine, nimodipine and nitrendipine (Miles Inc, USA) 

zaprinast (M&B 22948) (Bhone-Poulenc Inc .. U.K.) 
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( +), (-)-PN 202 791 and ( +) PN 200-11 0 (Sandoz Inc, Switzerland) 

YC 1 70 !Yamanouchj Pharmaceuticals. Japan) 

(±)-Bay K 8644 is the racemate of Bay K 5417 and Bay K 4407. 

The mixture of reduced and oxidized forms of Hb supplied by Sigma 

Chemical was converted to the reduced form as described by Martin et al. 

(1986). A 1 0-fold molar excess of the reducing agent sodium dithionite was 

added to a 0.1 mM solution of Hb and then the sodium dithionite was removed 

by dialysis (Spectra/Par Membranes tubing (Fisl1er, USA)) against 1 00 volumes 

of distilled water for 2 h at 4 °C. The resulting solution was frozen in 1 ml­

aliquots at -20°C, 

Stock solutions of DHPs, zaprinast, L Y 83583 and ryanodine were 

prepared in 100% ethanol; corresponding volumes of the solvent were routinely 

tested to rule out a vehicle effect. The maximal amount of ethanol added into 

the 1 0 ml-organ bath did not exceed 50 pM. All the remaining drugs were 

dissolved in water. The aqueous solution of NaN02 had a pH of 8.1. 

Polychromatic light-irradiation (0.9 W /cm2) of SNP (1 M, aqueous 

solution) and ( + )-PN 202 791 (1 mM, ethanol-dissolved} solution was carried 

for 60 minutes at 37°C. 

2.11 Presentation of results and statistics 

The polygraph traces shown in the figures are representative of data 
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replicated in 4-6 preparations. Traces were digitized with a Logitech scanner for 

graphic reproduction. The small squares above each trace represent the 1 0 

second-photostimulation unless indicated otherwise. The vertical bar, indicating 

tension in each trace, is placed such that the botton of the line is at the level of 

basal tonus. Statistical results are expressed as mean ± standard error of the 

mean (SEM), n represents the number of preparations used for each mean. 

Where indicated, cumulative concentration-response curves were normalised 

and log concentrations interpolated for each predetermined response. Curve 

normalization involved expressing each response as a percentage of the maximal 

response. 

Photorelaxation was expressed as a percent of the steady state tonus or 

as an absolute value in tension. The effect of a drug on the photorelaxation was 

examined by comparing the value of photorelaxation before and after the 

application of the drug. When two groups were compared only once, significant 

differences were analyzed using the Student's t-test for paired observations. 

When more than two groups were compared, one way analysis of variance 

IStudent-Newman-Keuls test) was used to test for significant differences. 

Differences with a p s; 0.05 as determined by either test were considered 

significant. The statistical software Sigmastat (Jandel Scientific) was used for 

all calculations. Data were plotted using Sigma Plot (Jande I Scientific). Curve 

fitting was carried out with TableCurve (Jandel Scientific). 



CHAPTER THREE 

RESULTS 

3.1 Photoactivated responses in the rat tunica muscularis mucosae 

Freshly dissected TMM preparations did not show a measurable intrinsic 

response to polychromatic light irradiation, irrespective of their contractile state. 

Photoresponsiveness was readily induced by several DHP such as Bay K 8644 

and PN 202 791. Comparison of the chemical structures of DHPs (Appendix I) 

tested for photosensitizing activity (Table 1) revealed that only compounds 

containing a 3'-nitro group on the 1 A-dihydropyridine ring (3'-N02-DHPs) were 

able to induce photorelaxation, regardless of whether they were activators or 

inhibitors of L-type Ca ++-channels. However, agonist and antagonist 

photosensitizers each induced a characteristic photoresponse pattern consisting 

of a respectively complex relaxation-contraction sequence and relaxation. The 

photosensitizing activity of 3'-N02-DHPs persisted for at least 5 h after wash 

out from the tissue without any apparent change in the photoactivated 

response. 
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Table 1. DHP-mediated photoactivity in oesophageal TMM at equieffective 
extracellular calcium concentrations which induce 500 mg steady-state tension 

DHPs Light-induced lCa' 'I (pMI 7 

activity (%1 1 

Control 03 410 ± 71 -
(±}-Bay K 8644 -51 .0 ± 7.8 60 ± 12 

Bay K 5417 - 60.0 ± 9.5 66 ± 9 

Bay K 4407 - 10.3 ± 5.0 1427 ± 58 

( + )-PN 202 791 -49.3 ± 3.0 90 ± 15 

(-)-PN 202 791 -12.0±3.1 1867 ± 23 

Bay 10 8495 -34.3 ± 7.0 567 ± 27 

Bay 0 9507 - 46.6 ± 13.3 203 ± 29 

CGP 28392 0 507 ± 12 

YC-170 0 607 ± 19 

Felodipine 0 1633 ± 130 

Nicardipine 0 1760 ± 44 -
Nimodipine 0 2000 ± 82 

Nitrendipine 0 1533 ± 55 

( + )-PN 200-110 0 1733 ±56 

4-(p-nitrophenyl)-1 ,4-DHP 0 600 ± 100 

Nifedipine + 13.8 ± 3.0 1900 ± 53 

Bay K 9073 + 6.0 ± 0.6 53 ± 17 

1 light-induced activity expressed as percent of 500 mg-active tonus (n =4-6). 
( +) represents photocontraction whereas (-1 represents photorelaxation. 

2 concentration of extracellular calcium required for obtaining 500 mg of tonus 
in the presence of 1 ,uM of the DHP (except for nifedipine where 10 nM was 
used). Experiments were carried out in 110 mM K+ buffer plus 0 .3 pM CD. 

3 0 represents compounds devoid of any photoactivity. 
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3.1 .1 1 ,4-dihydropyridine-photoactivated responses 

When exposed in a K +-depolarizing solution to the 3'-N02-DHP agonist 

( + )-PN 202 791, CD-precontracted tissues displayed a characteristic 

photoactivated response consisting of an initial fast relaxation followed by an 

off-contraction (Fig.1 A). In some preparations, a low amplitude, late relaxation 

occurred before the pre-existing tonus level recovered (Fig 1 A, Fig 2 (inset)). A 

virtually identical photoactivated response was obtained with racemic Bay K 

8644 and its enantiomer the L-type Ca ++-channel agonist Bay K 541 7. The 

amplitude of the fast relaxation as well as the amplitude and slope of the off­

contraction increased with stimulus duration, whereas the slope of the fast 

relaxation was constant (Fig.2). The fast relaxation reached its nadir within 2.6 

± 0.2s and then faded rapidly (escape). The escape response was characterized 

as the decrement of the fast relaxation while photostimulation was still applied. 

The escape of the fast relaxation was more evident at irradiation periods > 1 Os 

(Fig. 2, inset) and the slope did not show any irradiation t ime-dependence. 

The "off-contraction" was seen only under two conditions: at submaximal 

levels of CD ( < 0.1 pM)-induced tonus in Tyrode's buffer or at [Ca + +) < 1 mM 

in K +-depolarizing medium, indicative of mechanical saturation when tissues 

were fully contracted. However, the "off-contraction" was evident at steady­

state active tension in tissues pretreated with ( + )-PN 202 791 (1 pM) bathed 



Fig.1 Photoactivated response by: A) the DHP L-type Ca 1 1 -channel agonist 
(+)-PN 202 791 (111M); B) its antagonist enantiomer (-)-PN 202 791 (1 JJM); 
and C) the NO-donor streptozotocin (1 mM) in TMM preparations. In all cases, 
experiments were carried out at similar CD (0.3 JJM)-induced tonus levels (:::180 
mg) in 11 OmM K + depolarizing buffer. 
The horizontal bar above each trace represents the 1 0 s-irradiation period. 



A (+). PN 202 791 

60mg 

I 
8 (-) -PN 202 791 
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Fig.2 Irradiation time dependence of the amplitude of the relaxation (Atr (%), 
filled circle); the amplitude of the off-contraction (A0 , (%), open circle); the 
slope of the relaxation (S1r (mg/s), filled square); the slope of the off-contraction 
after turning off the light source, (S011 (mg/s), open square) and the slope of the 
escape of the relaxation (Se (mg/s), filled triangle) during the fast ( + )-PN 202 
791-photoactivated response in TMM. 
Inset: ( + )-PN 202 791 (1 pM)-photoactivated response after 10 s- and 30 
s-irradiation period. 
A1r and A011 are expressed as percent of the amplitude of the relaxation and the 
"off-contraction, respectively, at 60 s-irradiation (control). 
Note that the units for the ordinate are in percent or mg/s as referred to the 
amplitude or slope of the photoactivated responses, respectively. 
Experiments were carried out in 11 0 mM K +, nominally calcium-free buffer in 
CD {0.3 JJM)-precontracted preparations (n =4). 
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in a K +-depolarizing, nominally calcium-free medium. 

The 3'-N02-DHP antagonists (-)-PN 202 791 (Fig. 1 B) and Bay K 4407 

{not illustrated) were also effective as photosensitizers. In 11 0 mM K 1 -

depolarizing solution at matched levelc; of CO-induced tonus, both antagonists 

induced comparable photosensitization. However, the photoactivated response 

obtained in the presence of L-type ca+ +-channel antagonists differed from that 

to agonists in that the amplitude of the relaxation was smaller, the kinetics of 

the response was slower (slope of relaxation== 1.1 ± 0.4 mg/s, n = 4) and there 

was no off-contraction. 

The correlation between the amplitude of the photorelaxation and the 

concentration of extracellular calcium needed to maintain a predetermined level 

of contractile force was estimated for both agonist and antagonist 

photosensitizing DHPs (Fig.3). The linear regression demonstrated that the 

photoactivated relaxation by the 3'-N02-DHP agonists, Bay K 5417 and ( + )-PN 

202 791, was greater and required lower extracellular calcium as compared 

with the photorelaxation obtained in the presence of their enantiomeric 

antagonist, Bay K 4407 and (-)-PN 202 791, respectively. No difference in the 

value of the photorelaxation was noted between racemic Bay K 8644 and the 

agonist enantiomer Bay K 5417. The equieffective calcium concentrations for 

the other DHPs are also presented in Table 1. 
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Fig. 3 Correlation (r = 0.81, n = 4) between equieffective extracellular calcium 
concentration and percent of photorelaxation of 3'-NO,-DHP L-type Ca 1 1

-

channel agonist and antagonist enantiomers and racemic Bay K 8644 in TMM. 
ICa 1 1 I and percent of the photorelaxation were calculated at 500 mg active 
tension. Concentration of all the 3'-NO,-DHPs shown was 1 JJM. 
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Fig.4 Effect of DHP L-type ca+ +-channel antagonists on the 3'-N0 2-DHP- and 
NO-donor-photoactivated fast response in TMM . 

A-Effect of the nonphotosensitizing DHP felodipine on the (±)-Bay K 
8644 ( 1 pM)-photoactivated response in 11 0 mM K +, nominally calcium-free 
solution. 

B-Photoactivated response of the NO-donor sodium nitroprusside (30 pM) 
is attenuated by the photosensitizing 3'-N02-DHP Bay K 4407 (30-300 nM) in 
11 0 mM K + , nominally calcium-free solution. TMM preparations were 
contracted with CD 0.3 ,uM. 
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A shift in the 3'-N02-DHP-photoactivated response from agonist to 

antagonist pattern was obtained with the DHP L-type Ca' '-channel antagonist 

felodipine ( 1 pM) in (±)-Bay K 8644-sensitized tissues (Fig. 4Al. Tissues treated 

with felodipine alone remained unresponsive to light (Table 1 l. 

The photoactivated relaxation for 3'-N02-DHPs was concentration­

dependent (Fig.5). Photorelaxatiom, reached a maximum at 1 JJM in the case of 

racemic Bay K 8644 or the agonist ( + )-PN 202 791. At that concentration, 

photorelaxation obtained with the antagonist (-)-PN 202 791 amounted to only 

40% of the active tension. 

DHP compounds containing an o-nitro group in the phenyl ring such as 

nifedipine and Bay 0 9073 induced a concentration-independent, long lasting 

photocontraction in TMM (Fig. 6A, 8). The duration and the slope of the 

nifedipine-photoactivated contractions were 180 ± 4 s and 2.14 ± 0. 5 mg/s 

(n =4), respectively. Bay 0 9073-photoactivated contraction was preceded by 

a small relaxation (Fig. 6B). As demonstrated by the Ca' '-sensitivity of the 

contraction, nifedipine had an antagonistic effect at L-type Ca' '-channels, 

whereas Bay 0 9073 had the appositive effect, i.e., an agonistic effect at the 

ca+ +-channels (Table 1). In 6 out of 1 2 experiments, there was a slow increase 

in tension after intermittent irradiation of nifedipine-treateu preparations whereas 

in 5 out of 7 Bay 0 9073-treated preparations, the tonus tended to decrease. 
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Fig. 5 Concentration-response curves for the DHPs: (±)-Bay K 8644, ( + )- and 
{ )-PN 202 791 and the NO-donors: streptozotocin, sodium nitroprusside (SNP) 
and sodium nitrite in TMM preparations bathed in Tyrode's buffer. 
PholorP.Iox<ltion is exJ)ressed as percent of the CD (0.3 JJM)-induced tension 
(fl-c: 4 -8). 
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Fig.6 Photoactivated response by o-nitrophenyl-substituted DHPs in TMM. 

A-Nifedipine 110 nM)-photoactivated contractions in CD-precontracted 
TMM. Preparations were bathed in 110 mM K +, depolarizing buffer, containing 
1 mMca++. 

B-Bay 0 907 3 ( 1 pM)-photoactivated response in CD-precontracted TMM. 
Experiments were carried out in 110 mM K +, nominally Ca 1 1 -free buffer. 

The 1 0 s-irradiation period is represented by the horizontal bar below 
each trace. 
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3.1.2 Comparison between the 3'-N02 -DHP- and NO donor· 
photoactivated response 

54 

Precontracted TMM preparations also became responsive to 

photostimulation after exposure to NO-donors such as streptozotocin, SNP and 

sodium nitrite. The NO-donor-mediated photosensitization in rat TMM mimicked 

that obtained with the 3'-N0 2 -DHP in displaying: (i) an initial fast relaxation, (ii) 

a fast "off-contraction" and (iii) a late relaxation before the pre-existing tonus 

level recovered (Fig. 1 C). The SNP (30 pM)-photoactivated fast relaxation-

contraction sequence was transformed by the photosensitizing L-type Ca • • -

channel antagonist Bay K 4407 (30-300nl'v1) into a slow monophasic 

photorelaxation of small amplitude (Fig. 48). In addition, the NO-donor-

photoactivated response was concentration-dependent. However, all three NO-

donors were less potent photosensitizers than 3'-N02-DHPs (Fig. 51 and differed 

in terms of efficacy. Streptozotocin was more efficacious, but less potent than 

SNP. Sodium nitrite was the least potent sensitizer. Relative to { + )-PN 202 

791, streptozotocin had an equipotent molar ratio of 2.1 x 1 0 3
• 
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3.1 .3 Comparison between the NO-donor-photoactivated response and 
the neurogenic NO-mediated relaxation 

As described above, photosensitization of the TMM with 3'-N02-DHP 

agonists and NO·donors produced an off-contraction. It thus appeared of 

interest to compare, in the same preparation, the NO donor-photoactivated 

response with the response induced by electrical CJtimulation of intramural NO-

producing (nitroxidergic) nerves (Willet al., 1990). As shown in Fig. 7A, the 

field stimulation-evoked, TTX-sensitive relaxation was devoid of any post-

stimulation contraction contrary to that resulting from photostimulation of SNP-

pretreated TMM preparations. However, a post-stimulation contraction was 

obtained following the electrically evoked, TTX-insensitive relaxations (Fig 78). 

The TTX-sensitive relaxation (Fig. 7 A) but not the SNP-photoactivated response 

or the TTX-insensitive relaxation (not illustrated) was blocked by the NOS-

inhibitor, L-NG-nitroarginine methyl ester (l-NAME, 1 mM). 



Fig. 7 SNP-photoactivated response and field stimulation (FS)-evoked TTX­
sensitive (A) and -inst:msitive relaxations (8) in CD (1 JJM)-precontracted TMM 
preparations, bathed in Tyrode's buffer. 

A- Preparation was pretreated with 10 nM methscopolamine to block FS­
induced cholinergic contractions. Photoactivated response was induced with 50 
11M SNP. Electrical field stimulation parameters: 8 Hz, 0.5 ms pulse width, 40 
V, 1 0 s trains of stimulation. 

8- Preparation was pretreated with TTX (0.5 JJM) to inhibit FS-evoked 
nitroxidergic relaxations. Photoactivated response was induced with 30 JJM 
SNP. Electrical field stimulation parameters: 4 Hz, 2 ms pulse width, 40 V, 10 
s trains of stimulation. 

Squares represent 1 0 s-photostimulation. 
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3.1.4 Effect of skinning of the plasmalemma and extracellular calcium 
chelation on the ( ± )-Bay K 8644-photoactivated response 

Since regulation of calcium influx through L-type Ca 1 1 -channel seemed 

to be involved in the 3'-N02-DHP-photoactivated response in the TMM, further 

experiments were done to determine the effect of eliminating plasmalemma! 

ca+ + entry. First, preparations were subjected to chemical skinning with ~-escin 

to eliminate any ionic fluxes across the membrane. Second, extracellular free 

calcium was removed by chelation. 

Attempts at skinning of the TMM were considered successful only in 1/3 

of the experiments based in the following criteria: high calcium sensitivity of the 

contraction and production of a tonus that was reversible either w ith 

isoprenaline or by transferring the preparations to a calcium-free medium. Data 

obtained from viable preparations (n = 61 revealed the depenoence of the fast 

photoactivated response on an intact plasmalemma. The skinning procedure 

employed thus resulted in the loss of the fast relaxation-contraction sequence, 

specifically the off-cu~t:-8ction, unmasking a slow photorelaxation ar a calcium 

concentration as low as 6 .uM (Fig. 8). 

In preparations maintained in 110 mM K + , nr·"'1inally free calcium buffer 

and precontracted with CD 0.3 pM, the calcium chelator BAPTA (3 to 100 pM) 

inhibited the (±)·Bay K 8644-photoactivated fast response, leaving a residual 

slow photorelaxation (Fig. 9) . In most tissues BAPTA lowered tonus (Fig. 9A) , 



os 

but in some instances steady state tonus was unaffected (Fig. 98). When tonus 

was restored by raising the CD concentration, inhibition of the photoactivated 

response persisted with virtually no change in the steady state tonus. 

Analogous inhibitory effects on the ff.lst photoactivated response and steady­

state active tension (n = 6) were obtained with EGTA (maximal concentration 1 

mM, not illustrated) in CD-(0.3 pM)-precontracted TMM preparations bathed in 

110 mM K + , nominally calcium-free buffer. 



Fig.8 (±)-Bay K 8644 (1 pM)-photoactivated response in r!-escin skinned TMM. 
Contraction was induced with cafcium as indicated below the trace. Note 
relaxant response to isoprenaline (INA) . 





Fig. 9 Effect of the calcium chelator BAPTA on the (±)-Bay K 8644 (1 pM)­
photoactivated response in TMM preparations bathed in 110 mM K 1 

, nominally 
calcium-free buffer. TMM preparations were precontracted with 0. 3 JiM CO. 
A and B represent the variability in the contractile tonus after BAPT A treatment 
in two different preparations. 
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3.1 .5 Effect of cyclopiazonic acid and ryanodine on the (±)-Bay K 8644-
photoactivated response 

The effect on the photoactivated response of the Ca 1 1 -ATPase inhibitor, 

cyclopiazonic acid, and the modulator of calcium-induced calcium release, 

ryanodine, were examined in tissues precontracted with CD (0.3 pM) in 

Tyrode's buffer (Fig. 10 A,C) or in 110 mM K 1 , nominally calcium-free buffer 

(Fig. 10 B,D). Under both experimental conditions, cyclopiazonic acid (1 0 tJm) 

and ryanodine (30 pM) inhibited the Bay K 8644-photoactivated fast response. 

In ca+-~ -containing buffer, the inhibition was of immediate onset and 

accompanied by a rise in tonus. In 110 mM K~, nominally calcium-free buff or, 

the inhibition was delayed and coincided with a gradual reduction in CO-tonus. 

Inhibition of the fast photorelaxation and of the off-contraction followed a 

similar time course. A residual slow photorelaxation of small amplitude persisted 

even after incubation with higher concentrations (up to 1 00 pM) of 

cyclopiazonic acid or ryanodine. 

In order to test the possibility that the cyclopiazonic acid effect on the 3' -

N02 -DHP- photoactivated response resulted from a calcium "overflow" into the 

myoplasm, tissue were depleted of the intracellular calcium by repetitive 

stimulation of the TMM preparation with CD in 11 0 mM K ', nomi .. dlly calcium-

free solution containing 30 pM of the calcium chelator BAPTA (Fig . 11 Al. 

However, in the presence of cyclopiazonic acid (3 pM), a fast (±)-Bay K 8644-
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photoactivated response was obtained similar to that observed in tissues with 

an intact SR (Fig. 11 8). In this case, a small amount of calcium (30 pM) was 

added tor tonus generation. A further CD (0.3 pM) challenge demonstrated that 

the SR calcium store had not been ref illed, as evidenced by the continued 

depression of the phasic (initial) component of the CO-evoked contraction (Fig . 

11 C) . 



Fig.1 0 Effect of ryanodine (RYA, 30 JJM) and cyclopiazonic acid (CPA, 10 JJM) 
on the (±)-Bay K 8644 ( 1JJM)-photoactivated response in TMM preparations 
bathed in Tyrode's (A,C) or nominally calcium-free, depolarizing buffer (8,0). In 
all cases, tonus was induced with CD 0.3 JJM. 
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Fig.11 Depletion of the sarcoplasmic reticulum Ca ... ·• prevents inhibition of the 
(±)-Bay K 8644-photoactivated response by cyclopiazonic acid in TMM. 

A-Depletion of SR ca++ after repetitive stimulation with CD (0.3 JJM) in 
110 mM K+, nominally calcium-free solution containing 30 JJM BAPTA, as 
demonstrated by nearly complete loss of contractile response after the fourth 
CO-challenge. 

B-In a preparation previously depleted of the SR calcium, incubation with 
cyclopiazonic acid (CPA,3 pM) did not prevent the (±)-Bay K 8644-
photoactivated response evident when low extracellular calcium was added to 
rnduce tonus. Experiment was carried out in 110 mM K +, nominally calcium-free 
solution. 

C-lncubation with CPA (3 pM) of SR ca+ +-depleted preparation prevents 
the refilling of the SR as evidenced by the depression in the phas~c component 
of the CO-induced contraction. 
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3.1 .6 Effect of the calcium ionophore A 23187 on the (±)-Bay K 8644-
photoactivated response 

Inhibition of the (±)-Bay K 8644-photoactivated response by calcium 

overflow from SR into the cytoplasm was further examined with the calcium-

ionophore A 23187 (Fig. 12A}. ~n calcium-containing buffer, A 231 87 11 JiM) 

inhibited the fast photoactivated response. However, in nominally-free calcium 

soiL:tion the same concentration of the calcium ionophore did not cause a 

significant inhibition of the photoactivated response (Fig. 1 28). 



Fig.12 Effect of the calcium ionophore A23187 on the (±}-Bay K 8644 (1 IJM)­
photoactivated response in TMM preparations bathed in Tyrode's (A) and in 11 0 
mM K •, nominally calcium-free buffer (8). 
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3.1.7 Effect of NO-inactivating procedures on the fast photoactivated 
response 

In CD- or K + -precontracted TMM preparations, L Y 83583 (Fig. 13), 

carboxy-PTIO and Hb (not illustrated) failed to produce any significant change 

in the fast photorelaxation when a near-maximal photoactivated response was 

induced with 1 11M ( + l-PN 202 791. In CD (0.3 JJM)-precontracted preparations 

bathed in a 11 0 mM K +-depolarizing solution, L Y 83583 ( 10 ,uM) failed to 

diminish the ( ± i -Bay K 8644 ( 1 JJM)-photoactivated fast relaxation whereas the 

amplitude of the "off-contraction" was significantly decreased. In this case, the 

amplitude of the relaxation and the "off-contraction" after L Y 83583-treatment 

were expressed as percent of the pre-treatment re• ~xation or contraction, 

respectively. The photorelaxation was not altered following L Y 83583-treatment 

(pre-L Y 83583 : 100 % vs. post-L Y 83583: 86.5 ± 7.1 % (n = 10, p > 0.05)) . 

On the contrary, the amplitude of the "off-contraction" was significantly 

decreased (pre-L Y 83583: 100 % vs. post-L Y 83583: 9.1 ± 2.6 % (n = 10, 

p<0.05)). 

At lower concentrations of ( + )-PN 202 791 or in the presence of the 

superoxide dismutase inhibitor, diethyldithiocarbamate (DOC, 100 pM), a 10 pM 

concentration of L Y 83583 significantly diminished the ( + )-PN 202 791-

photoactivated fast relaxation (Fig. 13). Diethyldithiocarbamate (1 00 pM) alone 

did not cause a significant inhibition of the ( + J-PN 202 791 -photoactivated fast 
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Fig. 13 Effect of LV 83583 (1 0 t~M) alone or in combination with the supmoxide 
dismutase inhibitor dietllylditlliocarbarnate (DOC, 1 00 t~M) on the ( +) PN 202 
791 ( 1 t~M)-photoactivated response in TMM. 
Experiments were carried out in CD (0.1 pM)-precontracted prepamtions batlwd 
in Tyrode's buffer, n = 4-6 preparations per group. Photore1rJxalion wos 
expressed as percent of steady-state tonus.* p< 0.05 vs. control. 
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Table 2 . Effect of haemoglobin (Hb) and carboxy-PTIO on the ( + )-PN 202 791-
photoactivated fast relaxation in TMM. 

Drug Amplitude of the % inhibition 
photorelaxation (mg) vs. control 

Control1 253 ± 25 -
Hb (1 0 pM) 214 ± 26 14 ± 6 
Hb (30 pM) 15B ± 35 40 ± 7 

Control2 64 ± 7 -
carboxy-PTIO ( 1 00 pM) 36 ±a· 59 ± 9 

1 experiment was carried out in CD (0. 1 pM)-precontracted preparations bathed 
in Tyrode's buffer and photosensitized with 0.1 pM ( + )-PN 202 791. 

' experiment was carried out in CD (0.1 pM)-precontracted preparations bathed 
in 110 mM K +, nominally calcium-free buffer and photosensitized with 30 nM 
( + )-PN 202 791. 

· p < 0.05 vs. control, n = 4 preparations per group. 
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relaxation. The fast photorelaxation induced by low concentrations of ( + )-PN 

202 791 was also sensitive to the NO-trapping agent carboxy-PTIO (Table 2) . 

The decrease in the ( + )-PN 202 791-photoactivated fast relaxation by Hb (1 0 

or 30 ,uM) was not statistically different from the control (Table 2). 

Irradiation of the ( + )-PN 202 791 stock solution caused a rightward shift 

in the photorelaxation concentration response curve as compared with the 

control (a non-irradiated solution of ( + }-PN 202 791 )(Fig. 14A). The 

concentration-response curve for the irradiated solution also showed a decrease 

in the maximal response to light-stimulation. As compared with the ( + )-PN 202 

791 concentration-response curve, a right- and downward shift was also 

obtained with non-irradiated racemic PN 202 791 . The slopes of the sigmoid 

curves for irradiated ( + )-PN 202 791 and ( ± )-PN 202 791 were statistically 

different from the control. In contrast, irradiation of an SNP solution induced a 

rightward shift in the concentration response curve (Fig. 14B} with no decrease 

in the maximal photorelaxation. 



Fig.14 Effect of ( + )-PN 202 791 (A) and SNP (8) irradiated f,olutions on the 
photorelaxation concentration response curve in TMM. (+)-PN .?02 791 (1pM) 
and SNP (1 mM) stock solutions were irradiated for 60 min at 37 °C. *p< 0.05 
vs. control (non-irradiated solution). After 10 min irradiation, the SNP solution 
became blue probably because of the formation of Na2[Fe(CN) 5(NOH)}. 
The respective slope values as determined by curve fitting analysis were: 4.06 
± 0.34 for ( -1- )-PN 202 791, 2.9 ± 0.34' for irradiated ( + )-PN 202 791 and 
2.14 ± 0.44 · for racemic PN 202 791, · p < 0.05 vs ( + )-PN 202 791 (n = 4 
preparations per group). 
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3.1.8 Effect of zaprinast on the f«st and the slow msidual 
photorelaxations 

Two second-irradiatiol1 of ( + )-PN 202 791 prr~tredlt!d preparatio11s 

d1splayed <'I rctaxat1on followed by an recovery from irradi;ltioll. Botll tl1p 

amplitude of tile relaxation nnd tlw slope of the of tst~t wsponst! VVI'It' 

significantly increased by the cGM P-dependc"'lnt POE inhibit or, laprinast, wtwn!liS 

the slope ot the relaxr.Jtion remained unchanged. 

At 10 s-irradiation, zaprinast enhanced the nmp!!fudn of tiH! I (1st 

photorelaxation (Fig. 15). However, neither the slope of til(~ fast photowlflxrttl!lll 

nor the slope of the off-contraction were affected by zaprinast, wlu~rna!; 1IH! 

slope and the percent decrement of the escape were cJimrnislwd. 

Incubation of the DHP agonist or NO-donor photosensitit-<!cl TMM wrtll 

DHP antagonists (Fig. 4), BAPTA (Fig. 9), cyclopiazonic acrd <tlld rv<nloclirH! (Ftq. 

1 0) unmasked a low amplitude slow residual photoretaxnt ion as dc!scrihnd ahov1: 

(section 3.1 .5). Zaprinast enhanced the slow pilOt urelaxation 1111dnr <1ll 

conditions (Fig. 16, 17) and this effec.t was rendily rf~ve rs f~d hy L Y 83583 {Fin . 

16) . 



Fig .1 5 Effect of zaprinast (filled bars) on the parameters of the fast 
photo response at two (2) and ten ( 1 0} s irradiation in TMM. 
The parameters of the relaxation were as follows: amplitude ot the fast 
relaxation {A" { %)), and slope of the fast relaxation (S 1, (mg/s)}, slo~'e of the 
offset response at 2 s -irradiation and at 10 s-irradiation (S011 (mgis}) , slope of 
the escape response (Se (mg/s)), and percent decrement of the fast rela xation 
(%0, (%)) . 

Arr was expres~ed as percent of the amplitude of the relaxation at 10 s·· 
irradiation {control). 
%0~ was calculated as {R 10/Rmaxl * 1 00, where Rma• and R10 represent the value 
of tile relaxation at its peak and at the end of the 10 s-irradiation period. 
Experiments were carried out in Tyrode's buffer. CD {0 .1 fJM)-precolltracted 
preparations were photosensitized with 1 fJM ( + )-PN 202 791 {n = 4 
preparations per group). Control values are represented as open bars. 
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Fio. 16 Ellects of zc:Jprinast Clnd L Y 83583 on the slow photorelaxation in TMM 
billlwd in 110 rnM K · , nominally calcium free buffer. Tissues were 
pmconlrr~cled with 0.3 pM CD and the slow ~)hotorelaxation was obtained after 
trcc-Jirnent with BAPTA (1 00 ;1Nl). Photosen~:~~ izat!on was induced witl1 1 pM of 
( t.) -BclY K 8644. 
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3.1 .9 Dependence of the 3' -N0 2-DHP-photoactivated relaxation on 
contractile stimuli and the active tension level 

7G 

In other to determine how different rnechanistns nl tcmus netWiltli<Hl lllciV 

affect the photoactivated response in the TMM, thP- fast photon~ldXilticm wils 

examined under various contractile states induced with sucll pll<Hilldcolu!JiCill 

stirnuli as the muscarinic agonist CD, 2 depoli:Hi7ing solutiotl dtHl tlw 

phosphatase 1, 2A inhibitor, calyculin A. Tile magnitude ol tlw 3' NO. OHP 

photoactiva1ed relaxation varied with both the pharmacolooic<li stimulus ltSt!d 

and with the level of contractile tension. 

Pretreatment of TMM preparations with the phosphatase 1 ,2A inhthttor 

calyculin A induced a slowly developing contraction in cCllcitJJll d<)pluwd t tSStH!S 

(as described in section 2.6). In the presence of calyculin A -induced totHJs, tiH! 

DHP photosensitizer ( + )-PN 202 791 gave rise to slow photon~lax(ltiotls i11 t1 

concentration-dependent fasl1ion (Fig. 1 8). A similar concentration ol c;Jiyr:ulitt 

A did not affect tonus-generation or the fast photorelaxattort i11 c;•lcilllll 

replenished preparations (not illustrated). In calyculin A prf!C:Otttrilctr!d 

preparations, the slow photorelaxation was enhanced by Laprinast (Fiu . 8), 

similar to the slow photorelaxation obtained after calcium df!plrJlton <Hid 

inl1ibition of L-type Ca' '-channels (described above). 

The fast photorelaxation was evident either in CD· or K' -pwcontrac;tnd 

preparations. The 3'-N07 -DHP-photoactivatecJ re~ponse shownd id~mtical 
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f nat 1rrr~s uncJer f~it her contractile stimulus . However, irregular fluctuations in 

1 orllls occurrod when CD ( < 0 .1 ,uM)-precontracted preparations were exposed 

to DHP agonists in Tyrode's solution . In contrast, CD- or calcium-induced tonus 

in tt,r~ depolc.nizing solution was maintained at a steady level for several hours 

(nut illustrated). 

Tlw amplitude of the fast photo relaxation varied with the level o f active 

tonus. Tllus, in 110 mM K', nominally ca· ' -free buffer and the absence of 

act iv£! tonus, rt photoactivated response was undetectable. With graded 

incrunwnls in ICa ' ' I" over the range of 10 to 1000 JJM, the arnpli tude of the 

pholorelaxal ion measured in absolute terms increased in parallel with contractile 

tonus, reaching a maximum at 300 JJM, i.e. the !Ca • 'J, causing a near maximal 

incr<!asc in tonus (Fig. 19A). With a further increase in ICa 1 ' I"' the absolute 

valw~ of both tonus and photoretaxation decl ined . However, over the range of 

l C<l' ' I,. tested, the photo relaxation expressed as percent of the steady state 

tonus WCIS not signif icantly different (Fig 19A) . 

A different relationship between the ( ± )·Bay K 8644-photoactivated fast 

rclaxotion Cllld the level tonus was obtained in sarcoplasmic Ca ' ' -depleted 

~iss11e contracted with CD. Fig. 198 shows the bell-shaped relationship between 

tile amplitude of the pllotor~~laxation and the level of CO-induced tonus in 1 1 0 

mM K 1 solution containing 10 pM calcium. The amplitude of the photorelaxation 
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reached a maximum ot 0.1 pM CD, corresponding to the ECH .. of this il~JlHlist. 

With further increases in the CD concentrnticn, the cllnplitudl! ul tlw 

photorelaxation fell to near zero. Expressed as percent ag{) of CD ·induced tonus. 

the relative photorelaxation amplitude declined frorn c-1 111aximal valtHJ of G0°!1 \() 

5%. 



Fio.18 ( + l -PN 202 791-pllotoactivated slow relaxation in calyculin A­
pmcontractcd TIVlM. Experiment was carried out in extracellular calcium­
deplet eu preparations (treated with 30 pM BAPTA), bathed in 11 0 mM K', 
nominally cc-llciurn -free medium. 
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Fig.19 Dependence of the (±)-Bay K 8644-photoactivated fast relaxation on the 
active tonus in TMM . 

A-Calcium dependence of tonus (top panel) and (±)-Bay K 8644 ( 1 .uMl­
induced photorelaxation (middle and lower nanels). Experiments were carried out 
in 11 0 mM K t depolarizing solution, tonus was induced with cumulative 
addition of calcium chloride solution. 
The tonus response was standardized with reference to the maximal response 
of the TMM in 110 mM K+ solution to calcium (753±95 mg, n=4). The 
photorelaxation is ShO'Nn in itS absolute value (lower panel) and as percent of 
the induced tonus (middle panel). In the latter, the dashed line correspond8 to 
the linear regression for the plotted values (r=0.65) . 

B-Dependence of the (±)-Bay K 8644 (1 pM)-photoactivated fast relaxation 
(middle and lower panels) on the CO-induced tonus of sarcoplasmic calcium­
depleted tissues . Top panel shows the change in the level of tonus as a funct ion 
of CD concentration. Experiments were carried out in the presence of 
cyclopiazonic acid 5 11M in 11 0 mM K +, depolarizing solution containing 10 11M 
calcium. 
The tonus response was standardized with reference to the maximal response 
ot the TMM to CD (204±45 mg, n=4) . Photorelaxation is shown in the same 
manner as in panel A. 
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3.1.1 0 Effect of pharmacologic;,JI agents on the 3' -N02~DHP­
photoactivated response in the TMM 

81 

Several !1~ -~nrmacological agents were examined as potential modifiers o f 

l11r~ 3 • NO~-DHP-f1 ll0toactivrned response. In CD (0.3 J.JM)-precontracted TMM 

propmatil'ms bathed inn depolorizing buffer, the (±)-Bay K 8644 (1 tJM)-induced 

fnst photorelaxc1tion was significantly inhibited by sodium fluoride (NaF, 30 

rnM). Expressed as percent of the exist ing tonus, the ampli tude of the 

pilotorelnxation before and after NaF was 85.2 ± 7.7 vs . 21.0 ± 3 .2 (n = 5 , 

p < 0 .05), respec tively . Tile NaF-mediated effect on tl1e pllotorelaxation was 

prececl r~ d by i-Hl incrense in contractile tonus. 

Other pharmacological agents tested during this studv were ineffective 

<l~JCllllSl tl1e 3' -NO :>-DHP-phot oactivated response (Table 3) . Neither the biphasic 

I ctst wsponsc not the slow photorelaxation induced by (± )-Bay K 8644 or ( + )-

PN 202 791 were affected by these druos when tested in Tyrode's or 110 mM 

K · , nominally calcium-free solut ion (n = ::> -4). 
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Table 3. Pharmacological agents cievo[d of any effect on tlw 3 1 NO_. DHP 
photoactivated response. 

Ageot E!Jannacologic,ll actiQil Ill i:l ~ I c Q I 1 Ullill.il ti.u.u 

TTX Na I channel blocker 10 nM 

methscopoiCJmi ne mAChR antagonist 100 nM 

propanolol 13-adrenoceptor 1 0 JI!Vl 
antagonist 

guanethedine adrenergic neuron blocker 10 JIM 

indomethacin cyclo-oxygenase inhibitor 1 00 11M 

ouabain Na I /K I A TPase inhibitor 1 00 JIM 

ICS 205-930 5HT1 receptor antagonist 10 JIM 

ketanserin 5HTH:15HT 7 receptor 1 pM 
antagonist 

L-arginine NOS subsi.rate 1 rnM 

L -Nc;_nitroargi nine NOS inhibitor 1 rnM 
rnethy l ester 

KCN inhibitor of oxidative 0 . 1 rnM 
phosphorylation 



3.2 Photoactivated response in the rat pyloric sphincter and thoracic 
aorta 
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The rat pyloric sphincter responded with phasic contractions to CD ( 1 

fJM)-stirnulation. Similar to the TMM, pyloric sphincter was devoid of any 

intrinsic responsiveness to light irradiation. Photostimulation of CO-pretreated 

pyloric sphincter did not produce any cl1ange in the frequency of the pl1asic 

coni ractions or in the basal tonus (Fig 20 A, upper trace). 30 s-irradiation of 

( + l PN 202 791-treated preparations revealed a transient inhibition (duration :::: 

1 0 s) of the phasic contractions followed by an escape or resumption of the 

phasic activity (Fig 20 A, lower trace). Termination of the photostimulation 

resulted in an "off-contraction" of larger amplitude than the phasic contractions . 

Contrary to the TMIVI and pyloric sphincter, precontracted rat thoracic 

aorta sho Ned an endogenous photo relaxation after polychomatic light irradiation 

(Fig. 208, upper trace). Following the relaxation there was a delayed recovery 

to the prestimulation tension. The effects of the 3 '-NOrDHP photosensitizer 

( + )-PN 202 791 on the endogenous photorelaxation, under different conditions 

of irradiation intensity and photostimulation interval, are summarised in Fig. 21. 

Moreover, a sample trace of the ( + )-PN 202 791-augmented relaxation in rat 

tlwracic aorta is shown in Fig. 20 8 (lower trace). Both the relaxation and the 

recovery components of the endogenous and the ( + )-PN 202 791 -augmented 

responses were described by a logistic function (Fig . 208) . Each component 



Fig.20 Sample ·.races of the pllotoac tivated responsf) in rat pyloric sphinctur <Inti 
thoracic aorta. 

A- 30 s-photostimulation of CO-pretreated pyloric sphincter before (upper 
trace) and after ( + )-PN 202 791 (1 .uM) treatment (lower trace). Tlw lwri;ontal 
bar represents 30 s irradi;:Jtion. 

8- 1 0 s-photostimulation of PE (0.1 pM) -precontractecl rat t horcJCiG ;rort 11 

before (upper trace) and after ( + )-PN 202 791 (1 pM)-treatment (lowm trace!). 
The 1 0 s-irradiation interval is represented by tile horizontal bar. 
The logistic equations for the relaxation and recovery of thu £)1\doourlous 

relaxation arey=2.77 + 0.93(1 + (x/5.13)'1 \' " } and y = 2.57 1· 1.22(1 1 (x /5.53) 
0 
.,) (coefficient of determination ( > 0 .97, F-statistic > 11 03), wlwr(!iiS tlw 

equations describing the relaxation and recovery of lhe ( 1 }-PN 202 7 91 
augmented response are y==2.50+1.14(1+(x/6 .26) :J'•'1) and 
y = 2.46 + 1.43(1 + (x/35 .55) 1 1£' ) (r" > 0.99, F-statistic > 2834). 
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contained three phases: 1 I an initial slow phase. 21 an intermedinte tr~st plli!SI! 

and 3) a late slow phase. The duration of the initial slow pl1ase w<ls rwuli~Jillll! 

as compared with the duration of the following two phases. Tile eftl)Cl of ( 1 1 

PN 202 791 on the endogenous photorelnxation was characterilC:d by tlw slop!! 

of the fast phase. Moreover, the photorelaxation and recovery were d!)Scribl !d 

by the time required for the relaxation to reach its maximal value ~T,, ... k ... ,,,.) or 

the time necessary for the recovery to reach 50% of the preplwtostimulatron 

tension (TG0 ), respectively (Fig. 21). 

The results in thoracic aorta can be summarised as follows : 

1 I the amplitudQ of the e11dogenous photorelaxation wns incw<Jsed f ollowinu 

( + )-PN 202 791-treatment. This effect was observed both al dilturont 

intensities (0.08 W/cm 7 or 0.9 W/cm 7
) or durations (1 0 s or 30 s m 0.9 W/mt ·1 

of light-irradiation; 

2) the slope of the fast phase of the ( + )-PN 202 79 '1-Huonwrlh!d 

photorelaxation at 0 .08 W/cm 7 was similar to the slopr~ of tile i11trinsic 

photorelaxation at a higher intensity (0.9 W/cm ')). No further increase in I IH! 

slope of { + l-PN 202 791-augmented photorelaxation was noticed at 0 . 9 W /cJTr' 

irradiation Oi at 30 s photostimulation; 

3) at 0.9 W/cm', Tp., .. krct .• x increased following sensitization by ( + )-PN 202 791, 

as the irradiation period increased; 
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4l no change in the slope of the recovery for the endogenous or the ( + )-PN 202 

791-enllancerJ photorelaxation was found at different intensities or intervals of 

irradiation. The long duration of the recovery resulted from the slope of the 

rccovrjry (fast phase) being at least 1 .5 times smaller than the slope of the 

relaxation. 

5) ( + )-PN 202 791 was without effect on Tho at 0.08 W /cm 7
. However, an 

increase was noticed at 0.9 W/cm 2 which seemed to be maximal since a longer 

irradiation interval (30 s) did nat produce any further change. 



Fig.21 Parameters of the endogenous and the (+)-PN 202 791 (1 11M) 

augmented photorelaxation (PhR) in rat thoracic aorta under 0 .08 W /em·' (I" ot~l 
(10 s-irradiation) or 0.9 W/cm 2 (1 09)(10 s-, 30 s-irradiat ion) photostimulatio11. 
Experiments were carried out in Tyrode's buffer. Preparation wore prccontrar.tcd 
with phenylephrine (0.1 11Ml . 
T

11
c •• k .er~· represents the interval for the relaxation to reacll its lllrlximal vrllllt!, 

whereas T!>o represents the time required to recover to 50 1% or tiH! pw 
photostimulation tension level. 
1 amplitude of the relaxation was expressed as percent of tlw endOfJ(!IHHJs 
photorelaxation obtained after 10 s-irradiation at 0.9 W/cm 7

. 

* p ~ 0.05 vs . same parameter of the endogenous relaxation (n - 4 1 0) . 
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3.2.1 Effect of methylene blue and l Y 83583 on the photorelaxation in 
thoracic aorta 

In rat thoracic aorta, L Y 83583 inhibited the endogenous photowlt~xcJtion 

at 111M concentration (Table 3). On the contrary, a ten-fold lmger collcerltration 

of L Y 83583 was ineffective against the (±)-Bay K 8644 ( ·1 pM) <HI\JilWIJil!d 

photorelaxation. After removal of (±)-Bay K 8644 from the incubatioll IJul fl}l, 

L Y 83583 significantly reduced the photorelaxation. The removal of ( ·t) Bfly K 

8644 did not affect the amplitude of the photorelaxClt ion. As in the TMM, L Y 

83583 was also an effective inhibitor of the photorelaxation Clugnwrlted lly cl 

low concentration of the 3'-N0 7-0HP, Bay K 8643 (3 nM). The inhibitor of ~GC, 

methylene blue, effe~tively blocked the Bay K 8643-flu:Jmented photorci<JxatrorJ 

in rat thoracic aorta. 
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Table 4. Effect uf L Y 8358 3 and methylene blue (MB) on the endogenous and 
the 3' -N0 1 -DHP-augmented photorelaxation in phenylephrine (0.1 JJM)­
precontracted rat thoracic aorta. 

Treatment 

Endogenous photorelaxation (control) 
+ L Y 83583 (1 JiM) 

( ± )-Bay K 8644 ( 1 JiM)( control} 1 

+ L Y 83583 (1 0 pM) 
Photorelaxation after (±)-Bay K 8644 
removal / 
+ L Y 83583 (1 0 pM} 

Bay K 8643 (3 nM)-augrnented 
photorelaxation (control) 
+ LY 83583 (1 pM) 

Bay K 8643 (30 nM)-augmented 
photorelaxation (control) 
+ MB (3 pM) 

Amplitude of the 
photorelaxation (%) 

40.0 ± 4.0 
2 .2±1.5' 

65.5 ± 7.1 
61.4 ± 5.9 

67 .6 ± 2.7 
14.4 ± 5.0' 

47.5 :L 3.5 
14.8 ± 4.3' 

83.0 ± 5.8 
5 .8 ± 2 .3' 

(±)-Bay K 8466-augmented photorelaxation after the endogenous 
photoresponse was eliminated with 1 pM L Y 83583. 

) Rat aorta preparations were treated with 1 pM (±)-Bay K 8644 for at least 1 5 
min. After that Bay K was removed from the batll by washing with fresh buffer. 
After that tissues were precontracted again with phenylephrine (0.1 pM). 

· p < 0.05 vs. control (n = 4 - 5 preparat ions per group). 
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3.2.2 Effect of zaprinast on the 3'-N02-DHP-photoactivated response in 
rat pyloric sphincter 

In pyloric sphincter, the phasic contractions observed in the presnncn ol 

zaprinast during the 30 s-irradiation (similar to an escape response durinu 

photostimulation) were decreased by 78°/o as measured by the clrl!<l of tlw 

phasic contractions ( pre-zaprinast: 66.5 ± 2.5 vs. post-zaprinast: 14.3 • 0.4, 

(p< 0 .05, n =3)). No Significant change was observed in the cHnplitudl! of tlH! 

"off-contraction". 



CHAPTER FOUR 

DISCUSSION 

4.1 General properties of the DHP-photoactivated response 

The DHPs examined in this investigation mediated multiple photoactivated 

response patterns in the t11ree smooth muscle preparations studied. Tl1ese 

photodynamic effects were confined to compounds possessing nitro 

substituents and encompassed simple relaxation or contraction events and 

complex relaxation-contraction sequences. Photoactivated responses involving 

relaxation with or without a contraction component were mediated by 3'-NO, ­

DHPs, whereas pure photocontractions were obtained solely with o-nitrophenyl­

s ubstituted DHPs. Since the former but not the latter were concentration­

depC'ndent, it is suggested that the photocontraction by o-nitrophenyl­

substituted DHPs is a passive process not involving release of a photodynamic 

derivative. Non nitro-substituted DHPs, specially those with antagonistic action 

at L-type Ca 1 1 -channels were able to alter the complex relaxation-contraction 

response in TMM preparations. 

Exposure to 3'-N0 2-DHPs augmented the intrinsic photorelax.Jt;on in rat 

thoracic aorta or photosensitized de novo preparations devoid of any intrinsic 

photoresponsiveness, i.e., rat TMM and pyloric sphincter. In preparations 

lacking endogenous photoresponsiveness, photodegradable NO-donors mimicked 

the 3' -N0 7-DHPs in conferring photoactivity. In TMM preparations, however, the 
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NO donor-photoactivated response differed qualitatively from the rwur;!lly 

evoked NO-mediated response. 

4.1.1 Tissue selectivity of the photoactivated response components 

The present study demonstrates that the 3'-NO?-DHP-photoinduced <!ll<!ct 

on smooth muscle contractility is expressed in a tissue-selective mannm. In 

TMM preparations, L-type Ca' '-channel agonist 3 ' -NO:,-DHPs producc!d <J 

complex response, consisting of a fast relaxation-contr<rction sc~qtwnc1~, 

followed by a late slow relaxation. In pyloric spllincter, the s<rme compot111ds 

mediated a transient inhibition of the phasic contractions followed by <H l "of I 

contraction". In rat thoracic aorta, however, sensitization IJy 3' NO:, DHPs 

augmented the intrinsic photorelaxation. 

These findings are consistent with the diversity of the plwtoactivillf!d 

response previously described in other smooth muscle preparations. Thus, tlw 

3 '-NO 7 - DHP-p hotoactivated biphasic relaxation-cant raction se(luenc I ! i11 the~ 

TMM is similar to the Bay K 8644-photoactivated response~ in porcinrJ furHlus 

(Golenhofen et at., 1990) or the NaNO:>-photoactivated response in rrrhbi l 

stomach smooth muscle (Ehrreich & Furchgott, 1968) . Howevm, a distinctivn 

feature of the biphasic photoactivated response in the TMM was tho t rarrsif~ r ll 

duration of the mlaxation as compared with the sustained relaxatior1s d1~scritHHJ 
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by others (Furchgott et al., 1961; Golenhofen et al., 1990). The possible basis 

for this difference will be discussed in a later section. The 3'-N0 7-DHP­

photoactivated response in pyloric sphincter is similar to the transient 

pl10tO<Jctivated inhibition of the electrically stimulated phasic contractions in the 

NaND;,-JHetreated rabbit stomach (Ehrreich & Furchgott, 1968). 

As first shown by Furchgott ( 1 961) in rabbit thoracic aorta, the intrinsic 

response consists of a ;>hotorelaxation followed by a long lasting recovery. Both 

the relaxation and recovery contain an initial slow phase of short duration, an 

illtermedinte fast phase and a late slow phase. 3'-NOJ·DHPs have been shown 

to o111lance the intrinsic photorelaxation in vascular smooth muscle (Golenhofen 

nt al., 1990; Triggle et al., 1990; Chen & Gillis. 19921; however, the effect of 

3' NO:,- DHP on the photorelaxation-recovery sequence has not been described 

before. As shown here, photosensitization of rat thoracic aorta by 3'-N0 7 -DHP 

docs not alter the pattern of the intrinsic mlaxation; it only modifies the 

quantitative properties of the intrinsic photorelaxation (i.e .. the amplitude and 

stope of the endogenous photorelaxation). 
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4.1.2 Structure-activity relationship 

The TMM preparation was specially selected for the inves li [JCll iol l of ti H~ 

structure-activity relationship between DHPs . A lthough several DHPs wl~rl! 

tested in th1s study, only nitro-substituted DHPs were reported ilS possessinn 

a plloto-ind ucecJ activity in TMM preparations. 3 '- NO:,-DHPs inducntl il 

photoactivated response involving relaxation whereas nitrophenyl-subsl itut t~d 

DHPs eithe1 mediated a long-lasting photocontraction (o-nitrophonyl-subslitut(!d 

DHPs) or lacked any photosensitizing activity (m- and p-nitrophP.nyl -s,Ihsl il u l 1~<1 

DHPs). Non nitro-substituted DHPs with L-type Ca 1 1 -channel illltanonisiic 

action, a:beit devoid of any photodynamic activity, were abl-.-! to lllodil y rlln 

components of the 3' -N07-DHP-photoactivated response. 

Previous studies carried out in vascul ar smooth n1uscle (Golonlwfen 1!1 <I I. , 

1990; Triggle et al., 1991) l1ave demonstrated that 3' -NO:.-DHPs aU!JilH!Ill Ill!! 

endogenous photorelaxation. However, the presence or ciil inr ri tls ic 

photoresponsiveness in this type of smooth muscle may hov e ohsr.urc!d any 

other photo-induced activity. This drawback was avoided in the prosf~nt st ud·,1 

by using a preparation lacking any endogenous photoresponsivmH~ss. tlw 

oesophageal TMM. 

The present results demonstrate that the nitro grotifl 111 ltH! 

dihydropyridine ring is absolutely required for photoactivatecJ responsi!S 
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involving relaxation. If photoactivated release of NO from the 3'-NO?-DHP 

molecule is to account for the photosensitizing activity of these compounds 

(Golenhof en et al., 1 990), the present results are consistent with this 

possibility. By contrast, m- and p-nitrophenyl-substituted DHPs (nicardipine, 

n~rnodipine, nitrendipine and 4 -(p-nitrophenyl)-1 ,4-DHPl did not photosensitize 

TMM prf~parations, suggesting that the nitro group in the pl1enyl ring may have 

a less fcwourable energetic configuration to allow for the release of NO by 

polychromatic light irradiation. 

The o· nitrophenyl-substituted DHP, nifedipine, mediated a concentration­

indopendent , long lasting photocontraction which could be differentiated by its 

duration from the 3'-NO:>-DHP-induced "off-contraction" in the TMM. Because 

only one sucl1 compound was tested, a definitive conclusion regarding o­

rlitrophenyl-substituted DHPs as a mediator of photocontractions is preliminary. 

However, it is noteworthy that Bay 0 9073 which contains a nitro group on 

both the dihydropyridine and the phenyl rings, had a mixed photoactivated 

response intermediate between that of 3 '-N0 2-DHP and nifedipine. 

Tile concentration-independence of the nifedipine- and the Bay 0 9073-

photoactivated response suggests that photocontractions are rnost likely 

mediated by the photodecomposition of these molecules . In heart cell 

membranes, it has been shown that irradiation results in the rapid removal of 
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calcium channel blockade by nifedipine (Gurney et al., 1 985) or nisoldipine, 

whereas the m-nitrophenyl DHP, nirnodipine, is less photosonsitivu (S<lrluuirwtli 

& Kass, 1984). This may also explain the effect of irradiation on 1 onus . Thus, 

in several cases, irradiation of nifedipine-sensitized preparations produC!!d <111 

increase in steady state tonus, whereas a decrement in tension was olls!Hved 

after Bay K 9073. Tl1is is consistent with the antagonistic eltecl ol nil<!dipirw 

on the TMM and the agonist effect of Bay K 9073 . 



4.2 Role of photoactivated release of NO in the 3' -N0 2-DI-IP­
photoactivated response 
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Unlike vascular smooth muscle (Furchgott et al., 1961}, the TMM and 

pyloric sphincter are devoid of any intrinsic photoactivated response to light-

irradiation. Photosensitization with 3' -N02-DHP may be equivalent to supplying 

a phototransducer substance, i.e., a plloto-induced relaxing factor, which is 

already present in vascular smooth muscle (Furchgott et al., 1985). Since 

photodegradable NO-donors mimicked the 3'-N07-DHP-photoactivated response 

in the TMM, the mediator molecule could be NO or a NO-like molecule. At first 

glance, tl1is assumption would seem to be implausible given that 3'-N0 7-DHPs 

were effective at micromolar concentrations, 100 times lower than those 

required for the most effective NO-donor. However, as highly hydrophobic 

molecules, 3' -NOr DHP would be expected to accumulate in the lipid phase of 

the pi asmalemma and sarcoplasmic membrane system with a cell to medium 

rc1tio of 120:1 (lull mann & Mohr, 1987), permitting the effector structure(s) to 

be accessed more effectively than with hydrophilic NO donors. This would 

expl<lin the high potency of 3' -NOr DHP agonists in comparison with the latter. 

Pharmacological evidence also suggests that NO mediates the 3' -N0 7-

DHP·photoactivated response in the TMiVI. Thus, agents that interfere with NO 

and cGMP production/degradation affected both the fast and slow components 

of the photoactivated response in the TMM. In particular, the NO scavenger L Y 
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83583 and carboxy-PTIO inhibited the fast photorelaxation tollowi110 

photosensitization with low concentrcHions of the 3'-NO_.-DHP. How(!Vt!r, dt " 

maximal concentration of the 3'-N0 7-DHP, photorelaxations were mininl<llly 

affected by LY 83583 and carboxy-PTIO. The fast photorel<lx<Jtioll wfls reduced 

following treatment with L Y 83583 only after pre-incubation witl1 tlw 

superoxide dismutase inhibitor cliethyldithiocarbarnate . To expi<Jin tlwtw rusults, 

the following factors should be considered: 1) the 3'-NO:,·DHP-pllotoCJctiv<JI(!d 

fast relaxation may be the result of a very sensitive photo-inducible stnp 

requiring few molecules of the phototransducer (NO) to producn relaxation, 2) 

the close proximity of the photoinducible NO-source to its tmgut lllay prnumpl 

any effect of the NO-scavenger on the photoactivated response. Accordir1uly, 

NO scavengers are only effective at low concentrations of the 3' NO:, DHP or 

when the superoxide production is presumably enhanced by inhibi!io11 ol 

endogenous superoxide dismutase. 

Although Hb inhibits the endothelium-dependent, acetylcholine rrwcJi;JWd 

relaxation as well as the NO donor-augmented photorelaxation in vascuiCir 

smooth muscle (Furchgott et al., 1984, 1985), in this study Hb w r-1s ir1ufi£!Lt ivr! 

against the 3'-NO:.>-OHP-photoactivated response. Since Hb does not ;;ross till! 

plasmalemma! barrier, one possible explanation is that Hb only affncts NO 

released extracellularly. Therefore, Hb will not affect photoactivatf·!d reluase of 
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NO from 3' -NO,-DHP which takes place at the plasmalemma! and sarcoplasmic 

membrane level. 

Irradiation of the 3'-N0 7-DHP solution, similar to the NO-donor SNP, 

resulted in a decrease in the photosensitizing activity of the compound as 

indicated by the rightward shift in the dose-response curve. This is consistent 

with the hypothesis that the irradiated molecule will loose its photoactivity due 

to release of tile active moiety mediating ;:>hotorelaxation. As demonstrated by 

chemiluminescence analysis, this active moiety appears to be NO (Bauer & 

Fung, 1994). Irradiation of the 3' -NO,-DHP solution was also accompanied by 

a depression of the maximal response. This effect would be consistent with 

racemization ot the 3'-NO;;o-DHP molecule and the formation of the L-type Ca' ' -

channel antagonist analog. The similarity between the concentration-response 

curves for irradiated ( + )-PN 202 791 and racemic PN 202 791 seems to 

corroborate this conclusion. 

The results in rat thoracic aorta are also consistent with the hypothesis 

of photoactivated release of NO from 3'-N0 2-DHPs. Exposure to 3' -N07 -DHP 

resulted in an increase in the slope of the fast and the final slow phases of the 

intrinsic photorelaxation. Thus, following low intensity irradiation, the slope of 

the fast phase of the 3' -NO,-DHP-augmented photorelaxation was equivalent to 

the slope of the intrinsic photorelaxation at a higher irradiation intensity. This 
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would be expected if more molecules of the mediator were formed hy irradi~1tion 

of 3'-N07-DHP-treated preparations. However, the slow plwsc~ only w<ts 

augmented with increased duration of photostimulation. This su~mests that tlw 

fast and the following slow phnse may hA mgulatAd by CJ diffeH~nt NO-nwdiall'd 

mechanism . It is unlikely, however, that the final slow phase ropresunts it 

change in the visco-elastic properties of the smooth muscle as proposnd by 

Furchgott et al. ( 1961) since this phase was augmented by 3' NO , 01-IP 

treatment . 

Pharmacological evidence in rat thoracic aorta further supports tlw 

conclusion that the 3'-NO ;.>- DHP-augmented photorelaxation is nwdiatc!d by 

photoactivated release of NO. As in the TMM, LY 83583 was clll ellc!clivc~ 

blocker of the photorelaxation enhanced by a low concentre~tion of tlw 3' NO. 

DHP, Bay K 8643, but not when a high concentration of thf~ 3'-NO-'DHP w<ts 

used. Furthermore, after removal of the 3'-NO;.>-DHP from tlw hatll, llw 

augmented photorelaxation was greatly diminished by L Y 83583 . As pwviously 

shown by Mikkelsen et al. (1985a) and supported by the presc!llt rc!sults, 

removal of the 3' -N0 7-DHP did not result in the loss of the photoactivatnd 

response following intermittent photostimulation for at least 5 II, probably 

reflecting the accumulation of these drugs in cell phospholipid rw:ntbrarH!S 

(Lullmann & Mohr, 1 987). 
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4.3 Effector mechanisms involved in the photoactivated response 

The physiological action of NO in smooth muscle has been mainly related 

to thH activation of sGC. However, NO release in living cells may merliate other 

effects apart from cGMP formation. NO has been implicated in t he cytotoxic 

effects mediated by macrophage activation (Hibbs et al., 1988) or glutamate 

receptor stimulation in neurons (Dawson et al., 1993). Several pat llways 

mediate thi~ cytotoxicity via the formation of highly reactive radicals, alteration 

in the genetic material or binding to iron-sulphur-containing enzymes. Thus, 

r ormation of peroxynitrite radicals as the result of NO reaction with superoxide 

ion could mediate NO-induced neurotoxicity (Lipton et al., 1993). NO format ion 

may also alter the genetic material in ce llular organisms as a resu lt of 

doamination of DNA (Wink et al., 1991 ). NO binding to iron-sulphur-containing 

enzymes may block oxidative phosphorylation. Thus , act ivation of peritoneal 

macrophages inhibits oxidative phosphorylation by a L-arginine-dependent 

mecllanisrn (Drapier & Hibbs, 1988). However, these NO-mediated cy totoxic 

effects are unlikely to be involved in the photoactivated response by 3' -NO?­

DHP since: 1) intermittent photostimulation for long periods did not lead to 

decreases in the photoactivated response and smooth muscle contractility; 2) 

the fast photorelaxation was insensitive to 0.1 mM cyanide. A similar 

concentration of cyanide completely inhibits mitochondria! cytochrome oxidase 
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(Griffiths & Wharton, 1 961 l. 

4.3.1 Role of cGMP in the 3'-N02 -DHP-photoactivated response 

Photolytic release of NO from the 3'-NO:,-DHP should lead to act ivation 

of sGC and formation of cGMP since previous work has alre(ldy rc!vealt~cl illl 

increase in cGMP as the result of polychromatic (Triggle & Sieger, 1991) or UV 

light irradiation of 3'-N07-DHP-treated smooth muscle preparations (B<lik nt <II., 

1994). In keeping with this hypothesis the cGMP-dependent POE inhibit or, 

zaprinast, enhanced both the fast and slow components of the pl10toactivatud 

response in Hle TMM, whereas L Y 83583 still reversed the zaprim1st lllndlill(!d 

enhancement of the slow photorelaxation. In rat thoracic aorta , tl w sGC 

inhibitor, MB, significantly inhibited the photorelaxation supported by Bay K 

8643, confirming recent results in porcine coronary artery (Baik et al. , 1994) 

and gastric fundus (Golenhofen et al., 1 990). 

Two additional cGMP-dependent pathways have been irnplicatnd i11 tlw 

mecl1anism of intrinsic photoresponsiveness of smooth rnuscl (~ . Whereas rl 

direct activation of guanylate cyclase by light has been interred by Kar lsson r!t 

al. ( 1985} from the study of the endogenous photorelaxat ion in bov1tw 

mesenteric artery, such a mechanism can be ruled out in the ~ ase uf tlw TMM 

since the photoactivated response is only observed in tissues sensitited with 3' 
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NO~- DHPs. Wolin et al. ( 1991) have proposed that photorelaxation in pulmonary 

artery is associated with an increase in cGMP levels via a catalase-dependent 

activation of sGC. However, it is unl ikely that a similar pathway plays any role 

in the 3' -N07 -DHP-photoactivated response in oesophageal TMM since the 

photorelaxation was insensitive to cyanide. As a Fe3 +-containing enzyme, 

cat<-llase would be inhibited by CN (Schonbaun & Chance, 1976). 

This investigation also revealed a novel feature of the 3'-NO='-DHP­

induced response in smooth muscle: the escape or fade of the fast 

photorelaxation in the TIVlM, i.e., the decrement in the fast photorelaxation 

while irradiation was being applied. Tllis phenomenon probably reflects a shift 

in tile balance between cGMP production and degradation as suggested by tile 

ability of zaprinast to prevent the escape of the fast photorelaxation in the TMM 

and to delay the appearance of phasic contractions in pyloric sphincter within 

the irradiation interval. Another possibility is that irradiation will deplete most 

of the available NO-releasing molecules in the vicinity of the target enzyme . 

However, the fade of the fast photorelaxation was still present in tissues 

photosensitized with a maximal concentration of the 3' -N02-DHP and remained 

sensitive to zaprinast, suggesting that NO availability may not be the limiting 

factor. 

The escape of the photorelaxation in the TMM contrasts with the 
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photorelaxation (endogenous and 3'-N07-DHP-augmentecl) in rat norla in w l1icl1 

the relaxation remained for as long as irradiation was applied. Moreover, at t <~r 

1 0 s irradiation, the intrinsic photorelaxation was still progressing and tl1is w as 

enhanced by 3' -NOr DHP. This suggests that the cGMP effect mny contillll<! 

after irradiation even when supposedly pllotoactivated release of NO should 

have declined . Despite conflicting evidence regarding the temporal correlation 

between post-stimulation intracellular cGMP levels and contrHctile Ioree 

generation (Nakatsu & Diamond, 1989), the recovery of the relaxation could tw 

related to the degradation of cG M P. 

The pharmacological characteristics of the 3' -NO;>- DHP-photmlctiv;tt <HI 

response in smooth muscle are consistent with NO as the primary step leadino 

to photorelaxation. As inferred from the study of the photoactivated mec!HHlicill 

response in the TMM, however, the following cGMP-dependent steps could 

generate two kinetically different responses, i.e ., a fast and a slow 

photorelaxation . As described below these two responses rnay point t o tlw 

existent of different effector mechanisms. 



4.3.2 Role of the plasmalemma in the 3'-N0 2-DHP-photoactivated 
fast response 
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3'-NO~-DHPs have a dual character, combining activity as L-type Ca 1 
· -

channel modulators and as photosensitizing agents. The present data clearly 

indicate a qualitative and quantitative difference between 3'-NO?-DHP agonist 

and antagonist-induced photosensitizing activity. With antagonists, the rate of 

photorelaxation was diminished and the "off"-contraction abolished. This 

difference was most evident at extracellular ca + _._ concentrations below the 

physiological range. L-type Ca 1 1 -channels are, therefore, likely to mediate the 

expression of the fast components of the photoactivated response. 

Our results contrast with previous reports showing the agonist-

antagonist enantiomeric pairs of Bay K 8644 and PN 202 791 to be 

equieffective as photosensitizers in rabbit aorta and porcine stomach fundus 

(Golenhofen et al., 1 990), rat thoracic aorta (Triggle & Bieger, 1 990) and 

porcine coronary artery (Baik et al., 1994) . However, the explanation for these 

contrasting results rnay be found in the experimental conditions used in this 

study and those carried out previously: 

1 ) whereas tile present results were obtained in preparations precontracted with 

a depolarizing solution containing low concentrations of Ca 1 
•, previous work 

was carried out in normal physiological solution, hence at high extracellular 

Ca' ' concentration. Due to the high-affinity binding of DHP antagonists to 
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inactivated L-type Ca 1 
.. -channels (Bean, 1984), the use of <l depolari;i110 

solution may result in a h1gher binding rate of DHP antagon1sts to L typo Ca I I 

channels as compared with that in a normal physiological buffer {Godlr;lind, 

1992); 

2) the use of L-type Ca .. 1 -channel antagonists results in a decrP.C:Ise ill tension 

output. Whereas this is without etfect in preparations devoid of any endou<!IHlus 

photoresponsiveness (e.g., TMM), in vascular smootl1 muscle prnp<Jrat ions tl1is 

suggests an increase in photosensitizing activity. Thus, Trigg Ia & Bieom ( 19901 

found that the L-type Ca 1 
I -channel antagonists PN 202-11 0 and 11il £!dipi1w 

enhanced the endogenous relaxation in rat thoracic nortcl. Huw(!V<~r, l urtiH!r 

studies with more rigorous controls for tonus dependence have failed to confin11 

these results (Sieger, personal communication). On the contrmy, tlw prt!Sf!lll 

results revealed a different type of response in the case of nil ndipirw, wllic:ll 

probably results from photolytic inactivation of this L-typc Cal I dlilrHH!I 

antagonist. Therefore, previous results in vascular smooth lllllscle d(:scribino tlw 

photosensitizing effect of L-type Ca · 1 -channel antagonists may h;wn 1 o bn H! 

examined, with proper controls for the endogenous and ttw 3' -NO/ DHP 

antagonist-augmented photorela xation. 

Past work in the TMM has also demonstrated that electrical lirdd 

stimulation results in a relaxation response witt1 a TTX-srmsitivr-: and iflsr:nsr11vr! 
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component (Akbarali et al., 1986). The latter was mimicked by the K ·-channel 

opcm,~rs , BRL ~4915 and pinacidil, and blocked by the L-type Ca' ·-channel 

antc1gonists, nifedipine, ( + )-PN 200-11 0 and verapamil, as well as by incubation 

in a depolarizing K I solution, suggesting the involvement of Ca 1 ~ -activated K 1 

channels (Akbarali et al., 1988a,b). On the contrary, the 3'-N0 7-DHP­

photoactivated fast response, albeit sensitive to L-type Ca I .. -channel 

<Hltanonists, was unaffected by incubation ir; a K '-depolarizing medium . 

Tile ref ore, calcium entry followed by activation of K ' -channels is unlikely to 

nwdiate the photorelaxation in the TMM. 

These findings suggest that photostimulation may cause a decrease in the 

c<:1lciurn current through the L-type Ca · I -channel. Consistent with til is 

intcrpretCltion, extracellular calcium depletion as well as chemical skinning of 

TMM smootl'l muscle fibers significantly inhibited the fast photoresponse 

components. At appropriate levels of cholinoceptor stimulation, extracellular 

calcium chelation was effective in inhibiting the photoactivated response in K I ­

c!Ppolarized TMM with little or no alteration in steady-state tonus. By contrast, 

tlw 3' -NO:,-DHP-augmented photorelaxation in rat aorta is not affected by L-type 

Ca' ' - channel antagonists and is independent of extracellular ICa' 1 J (Bieger & 

Triggle, 1990). Therefore, the 3' -N0 2-DHP-photoactivated response in rat aorta, 

unlike tile fast pflotorelaxation in the TMM, does not appear to involve 
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plasm alemmal Ca · ' channels. 

The proposed mechanism of photoactivated L-t ype Ca ' ' -ch<:llllwl 

modulation by 3'-N07-0HP agonists implies an increased prohnllility of clwnrwl 

closure during relaxation. As argued above, NO acting lflrl>ugll sGC is tlw 

primary step in rhis process . Activation of sGC will lead to cGMP lorrnat io11 cllld 

stimulation of cGMP-dependent protein kinase. Patch-clamp st udil!S lliiV<~ 

pointed to an inhibition of calcium current (lc .• l through L-type Ca' '-clwnrwls in 

rat thoracic aorta and rabbit pulmori.:.r'j' artery treated with the NO-donor SNP 

(Magliola & Jones, 1990, Clapp & Gurney, 1991 ). Moreover, JJOiychronl<ltic 

light irradiation of (±)-Bay K 8644-pretreated rat dorsal root cllld llippoc<II11Jl i ll 

neurons resulted in an inhibition of L-type Ca 1 1 -channel current (Scott & 

Dolphin, 1988; O'Regan et al., 1990). However, these results cannot he! 

extrapolated to explain the 3'-NO:>-DHP-photoactivated response in t!w TMIVI. 

The inhibition of lr.., following irradiation of neuronal preparations is purl ially or 

fully irreversible whereas in the TMM the photosensitized statn persists lor a 

long period (at least 5 h) following washout of the 3' -N0 7-DHP frolll tile batflinu 

medium . Recently, it has been demonstrated that the effect ot NO 011 L tyJH! 

Ca 1 1 -channel activity plays an important role in vascular tonus re{JUiatioll 

(Omote & Mizusawa, 1994). Thus, inhibition of NO release by endothf!liwr' 

removal or L-Nr.-nitroarginine methyl ester-treatment of rabbit coronary ilr!l!W!~ 



109 

results in spontaneous contractions sensitive to L-type ca• +-channel blockade. 

4.3.2.1 Regulation of the ''off-contraction" 

The fast photoactivated response in the oesophageal TMM consists of a 

bipllasic relaxation-contraction sequence with the contraction occurring as a 

post-irradiation response. This "off-contraction" was also present in pyloric 

sphincter following photosensitization by 3'-N02-DHPs. Similar post-irradiation 

contractions have been described in Bay K 8644-photosensitized fundic 

prcpmations (Golenhofen et al., 1 990) and NaNO:dreated rabbit stomach 

(Ehrrcich & Furchgott, 1968). The post-irradiation stimulation in the TMI\!1 is not 

cholinergically mediated since rnethscopolamine failed to block it. This 

observation agrees with tl1at of Ehrreich and Furchgott ( 1968) who first 

demonstrated the atropine-resistance of the "post-irradiation stimulation" in 

rabbit stomach. 

Altl1ough the "of f-contraction" showed J linear-dependence on the 

amplitude of the preceeding relaxation at irradiation periods ~ 10 s, the "off­

contraction" was still evident when tonus level did not allow for expression of 

the relaxation, i.e., at baseline level. In other words, the preceding events 

occurring during photostirnulation triggered the "off-contraction" even when the 

plwtorelaxation was not manifested. The "off-contraction" was a!so inhibited 
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by the same procedures that inhibited the fast relaxation. It seems thl~rl!forl! 

that the sequence of relaxation-contraction is coupled and may reii£!Ct a 

regulatory process occurring at the level of the L-type Ca' 1 -•:lwnnel. 

An "off-contraction" following electrical stirnulation-induced relaxation 

has been described in several gastrointestinal smooth muscles, including guir1ea 

pig sphincter of Oddi (Pauletzki et al., 1993), rat duodenum (Mule et al. , 1990). 

guinea pig colon (Maggi & Giuliani, 1993), opossum and human lower 

esophageal sphincter and lower oesophagus (Preiksaitis et al., 1994) . In most 

cases the relaxation seems to be mediated by a non-cholinergic, non-adreneruic 

mechanism. NO, prostaglandins and neuropeptides nave been implicat(~d as tlw 

neurotransmitters mediating the electrical stirn ulation-induced wl"xat ior1. 

Activation of non-cholinergic, non-adrenergic nerves also medi;JI£!s 

hyperpolarization of the canine colon smooth muscle via NO w lcasl! . T ills 

response also known as an inhibitory junction potential is followed by a post 

stimulus excitatory response (depolarization) (Ward et al., 1992). 

Contrary to the nerve-mediated "off-contraction" in otllm tissur!s (Mauui 

& Giuliani, 1993; Pauletzki et al., 1993, Preiksaitis et al., 1994), tho liuht 

induced "off-contraction" was TTX-insensitive and persisted in K I -cJepolarii£!U 

preparr~tions maintained at subnormal extracellular calcium concentrations , 

suggesting that the photoactivated "off-contraction" is of myogenic ori~Jin . 
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Consistent with this conclusion, the present results show that the electrically 

rNoked TTX-insensitive relaxation was also followed by a rebound contraction. 

By contrast, the nerve-mediated nitroxidergic relaxations lacked any post­

stimulation contraction, suggesting that the preceding NO-mediated event is not 

required for the expression of the photoactivated "off-contraction". Whether this 

st10uld be attributed to different actions of NO released intracellularly or 

extraccllularly by photo- or electrical stimulation, respectively, requires further 

studies with photosensitizing compounds that are incapable of permeating the 

cell membrane. Therefore, it would be premature to rule out the involvement of 

the preceding photoactivated release of NO in the "off-contraction" considering 

t l1at tho post-irradiation response was not only evident with photodegradable 

NO donors but also inhibited by the NO scavenger L Y 83583. Moreover, in 

smooth muscle preparations other than TMM, the TTX-sensitive, nitroxidergic 

relaxations are followed by a post-simulation contraction (Pauletzki et al., 1993, 

Prcil<saitis et al., 1 994). Furhtermore, in canine colon, L-N(j-nitroarginine methyl 

ester inhibits both the electrical stimulation evoked inhibitory junction potential 

and the following rebound (Ward et al., 1 992) . 

Anotl1er conceivable explanation is that activation of a secondary 

moclwnisrn via a cGMP-dependent pathway c:Juld be involved in the "off­

contraction". As demonstrated in opossum oesophageal longitudinal muscle, 
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SNP produces a biphasic response, i.e, an initial transient relaxation lollowed hy 

a indomethacin-sensitive, long lasting contraction (Saha et al., 1993). Hnwevm, 

the 3' -N07-DHP··photoactivated "off-contraction", albeit sensitive to L Y 83583, 

does not seem to involve prostaglandins or thromboxane as demonstrated hy 

the failure of indomethacin to modify this response. In addition, it seems tllclt 

the cGMP sensitivity of this pathway may differ from that nwdiatinu 

photorelaxation since L Y 83583 was more effective at inhibiting tiH! ccmtract i<lll 

than the fast relaxation induced by a maximal concentration of tile 3' NO:, DHP. 



4.3.3 Role of the sarcoplasmic reticulum in the 3'-N02 -DHP­
photoactivated response 
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Along with the plasmalemma. the SA is another primary structure 

controlling tonus generation in smooth muscle (van Breemen & Saida, 1989; 

Qui an et al., 1 992). Previously, McGonigle and Tallarida ( 1980) have 

demonstrated tlwt UV irradiation of rabbit aortic microsomes is accompanied by 

increased calcium binding. This effect could underlie the decrease in tension 

elicrted in precontracted rabbit aorta by photostimulation. In other words, 

pllotorelaxation in smooth muscle may involve Cat t -sequestration by the SR. 

T'NO mechanisms acting at the level of the SR are thought to regulate 

rnyoplnsrnic calcium concentration, and hence, tonus generation in smoottl 

nruscle: the SR Ca' '-ATPase and the ryanodine channel. The former controls 

calcium sequestration into the SR, whereas the ryanodine channel is responsible 

lor calcium-induced calcrum release from the SR. Ryanodine and cyclopiazonic 

acid are primary tools in the study of regulation of Ca • ' by the SR. The natural 

alkaloid, ryanociine, locks the ryanodine channel in a subconductance state 

(Hwang & van Breernen, 1987), whereas cyclopiazonic acid inhibits the SR 

Ca' ' -A TPase (Seidler et al., 1 989). Both agents give rise to calcium depletion 

ot the SR. 

At first glance, tile results with ryanodine and cyclopiazonic acid suggest 

that the 3' -NO:'-DHP-photoactivated fast response requires a functional SR. 
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However, since cyclopiazonic acid and ryanodine interfere with different calcium 

mechanisms, it is unlikely that the photoactivated response observod in TMM 

is the result of a direct interaction of the 3'-NO:.-DHP molecule w itll eitlwr tlw 

SR Ca I t -ATPase or the ryanod ine channel. This conclusion wCJs further 

confirmed in cyclopiazonic acid-pretreated TMM preparations whore tlw ( 1 ) Bay 

K 8644-photoactivatecJ response persisted while the SR function, as a ss(!SS( !d 

by the phasic response to muscarinic acetylcholine receptor agonrst cllil lll!llgn, 

was blocked . Nonetheless, at least for the SR Ca ' I -A TPi-lse there ll <-Jve IH!I!JJ 

reports concerning the binrling of DHPs (Zerning, 1990). A sim pler ~~ xpl < lllil t ion 

of the cyclopiazonic acid- and ryanodine-rnediated inhibitory E-!ll ec t on tlw 3' 

NO :>-DHP-photoactivated response would be that swampinu o f tlw rllyopi<Jsrn 

with calcium mobilized from the SR mCisks any smal l chan~JC due to c(l lc iunr 

influx/efflux across the plasmalemma. However, wllen the intracellular c:; rlcllllll 

store is depleted, a low concentration ot extracellular calcium is sui ficient t u 

support photorelaxation even in the con tinued presence of cyclopianmic acid . 

The above hypothesis is consistent with observations on tiH~ dnpnndr!rJU! 

of the time course of the action of cyclopi azonic ac id and ryanodirH! on th e 

extracellular Ca f ' concentration. In calciurn-c ontc:Jining huller hotll c onrpOIHHh 

produced a rapid inhibition of the photoactivated respo nse, accumpr-JrJH!cl by ;u1 

increase of tonus . Tile opposite situation occurred in nomin ally calciiHII I rr !r! 
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solution, i.e., inhibition of the photoactivated response took significantly longer 

in the presence of either drug. Similarly, at physiological levels of extracellular 

Ca' ' concentration, the calcium ionophore A 23187 inhibited the 3'-N07-DHP­

photoactivated response, probably because the massive calcium entry induced 

by the ionophore overwhelms the Ca' • buffering capacity of the SR. However, 

in nominally calcium-free medium the photoactivated response was barely 

affectecl by A 231 87. 

Consistent with previous results in rat thoracic aorta (Triggle and Sieger, 

1991 ), sodium fluoride inhibited the (±)-Bay K 8644-photoactivated responsa 

in the TMM. Since fluoride ions inhibit the sarcoplasmic Ca 1 1 -ATPase 

(Utegalieva et al., 1990). fluoride could mimic the cyclopiazonic acid-mediated 

effect on the photoactivated response. However, in TMM preparations bathed 

in a depolarizing, nominally calcium-free buffer, the cyclopiazonic acid-mediated 

effect on the pllotoac!ivated response was accompanied by a decline in tension, 

whereas under similar conditions fluoride mediated contraction. fhis could be 

tile resulting effect of fluoride on several mechanisms mediating contraction in 

smooth muscle. As demonstrated by several studies, the fluoride-mediated 

contraction could involve G protein-mediated activation of the phospholipase C 

cascade and (Fermum et al., 1991; Murthy et al., 1992; Watson et al., 1988; 

Zeng et al., 1989) or an increase in the calcium sensitivity of the contractile 
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proteins (Adeagbo & Triggle, 1991 ). 

Summarizing the above results, Ca ' ' sequestration in the SR is not 

directly involved in the 3'-N0 7-DHP-pl1otoact ivated response i11 t lw TMM. 

However, drugs which alter the buffering cC!pacity of the SR could indirectly 

interfere with the expression of tr,e photoactivated response. 
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4.3.4 Involvement of other intracellular mechanisms in the 3' -N02-DHP­
photoactivated slow relaxation 

While the mechanisms of cGMP-induced relaxation in smooth muscle 

rc~rnain incompletely understood (for review see Lincoln. 19 89). the present 

rosults show that the cGMP mediated slow photorelaxation is resistant to such 

factors as L- type Ca 1 
I -channel blockade, jepolarization of the cell membrane 

or inhibition of the SR Ca I I -ATPa~ie and the ryanodine channeL Conceivably 

this response involves cGMP signalling at a substrate such as myosin light chain 

kinase or a direct regulation of the calcium sensitivity of the contractile 

clements, probably by a cGMP-dependent protein kinase {Nishimura & van 

Breemen (1989) . This hypothesis is supported by the results obtained with the 

phosphatase inhibitor calyculin A. Several reports have demonstrated that 

calyculin A induces a slowly developing contraction in smooth muscle. This 

response is independent of extracellular calcium and occurs even in SR calcium-

depleted preparations (Shibata et al., 1982; Hartshorne et al, 1 989). It has been 

suggested that inhibition of the phosphatase shifts the equilibrium between 

phosphorylation and dephosphorylation of the contractile proteins towards 

phosphorylation, resulting in contraction. Tile calyculin A-induced contraction 

ill calcium-depleted TMM was photosensitized by ( + )-PN 202 791 and the 

resulting slow photorelaxation was enhanced by zaprinast. Therefore, the slow 

photorelaxation probably involves regulation of the contractile proteins via a 



cGMP-dependent protein kinase. 

In comparison with the fast photorelaxation, tile lower alnplitude, mow 

shallow slope and longer duration of the slow photorelaxation suggest lll<ll 

regulation of the contractile proteins by a cGMP-clepenclent mechc-mis111 occurs 

at a lower velocity than does the modulation of L-type Ca 1 
I -channel. This could 

be due to the different cellular structures wherP. the slow photorelaxcllion and 

fast response take place, i.e., the myoplasma and tho plasnwlnnll ll<l, 

respectively. If photoactivated release of NO occurs in the sarcolen11nal 

membrane where 3'-N0 7 -DHPs accumulate, it is likely that cldfusion into tlw 

myoplasma will take longer. 

As revealed by the present study, several similarities exist betwc~nrl tlw 

slow photorelaxation in TMM and the 3'-NOr DHP-augrnented pllotorulaxation 

in rat thoracic aorta : 1) both types of relaxations arP. insensi tivc! to extracnllular 

calcium depletion (Triggle & Sieger, 1991 ), and 2) in both cases tile relaxa tions 

also seem to be mediated by photoactivated release of NO f ollowc!d hy 

~ct!vation of sGC (Golenhofen et al., 1 990; Triggle et al., 1991 ; Baik f!l cJI., 

1994). Whether the intracellular mechanism of the intrinsic or the 3' -NO;.o DHP 

augmented relaxation in rat thoracic aorta occurs via regulation of coni ract ilr! 

protein phosphorylation remains to be determined. 
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4.3.5 Dependence of the 3'-N02-DHP-photoactivated response on 
the contractile stimuli and the active tonus 

Mechanical activity of smooth muscle represents the final physiological 

output resulting from various membrane-mediated and intracellular events. 

Ttwrefore, tension recording is an indirect measure of ec;rlier biophysical and/or 

biochemical processes including change in membrane conductance, synthesis 

of intracellular messengers and activation ol specific protein substrates . To 

study how different components of tonus generation are inv'Jived in the 3'-NO,-

DHP-photoactivated response, several stimuli were used to induce contraction. 

Each stimulus activated specific intracellular steps of the contractile processes 

allowing discrimination between those events which support photorelaxation 

and those which do not. Thus, K • -induced tension is mediat8d by Ca + ' -entry 

through voltage-gated channels, leading to stimulation of the contractile 

proteins , whereas muscarinic agonist-induced tonus may also involve activation 

of DHP-insensitive receptor-gated channels, IP3 -induced calcium release and 

secondary regulation of the contractile proteins by phosphorylation. Moreover, 

muscarinic ac(~tylcholine receptor-induced tonus in TMM is partially sensitive to 

D HP antagonists suggesting that voltage-gated channels are also involved in 

tonus genemtion (Akbarali, 1987). On the contrary, in calcium-depleted 

preparations calyculin A-induced tonus may involve a shift in the 

phosphorylation/dephosphorylation state of the contractile proteins (Hartshorne 
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et al., 1989). The present results thus demonstrate that tlw fast <HHI slow 

photoreli1xations in the TMM depend on the contractile stimuli applied whicl1 

could be related to tt1e different components involved in !Onus ocrwmt ion , u~ . , 

L-type Ca ' ' -channels as well as other rnemi.1rane-rclated and intli, cPIIui<H 

structures. 

The proportion of the L-type Ca ' ' -cha11nel component 111 tlw ovnr,!ll 

tension output may define the dependence of the 3' -NO _,- DHP plwtOilCIIva tul 

fast relaxation on active tonus . Thus, striking differences betwncn lliqt1 K · iHI<l 

CO-induced tonus are evident after expressing photorelaxat ions ciS i l purcm 1t o f 

active tonus. In the former condition, the magnill,de of the ptlotor<11<tx ill lorl 

remains virtually unchanged as tonus increases in a Ca ' ' collC£)rlfr;ll ir lll 

dependent-manner. On the contrary, the relative value of the pho tort!i<Jxat Jorl rs 

diminished as the CD- induced tonus increases . It is likely that dil fmoncns in tlw 

intracellular mechanisms leading to regulation of tile contractile proteins tiiHil!r 

either condition are responsible for this behaviour. Thus, several compoiHJnt s 

could contribute to agonist-induced tonus and not all of them are subject to 

photorelaxation. Conceivably the fast photorelaxation is suscep tibl u to tll<tt 

component of the contraction that depends on calcium influx tlwunh v o ltaq(! 

gated channels. Therefore, the higher the CO -induced t onus, th r~ lliqlw r tiH! 11011 

photorelaxable components of contraction and the lower the photornlax ;:ttion < t ~ 
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r)xpwsscd r~s a percent of tonus. 

W~1en expressed in absolute values of tension, tile 3'-N0 7-DHP­

pllotonctivatod fast relaxation shows a biphasic dependence on the level of 

active tonus with no apparent differences between high K 1 - and muscarinic 

clgonist-induced tens1on. The absolute amount of the photorelaxation increases 

almost in parallel CJS the tonus increases. However, after contraction reaches the 

maximal value, a further increase in muscarinic agonist or calcium concentration 

induces a dccrel'lse in both tonus and pllotorelaxation. One possible explanation 

for this observation could be a decrease in the sensitivity of the contract ile 

proteins to calcium (Stull et all., 1990; Him pens & Casteel, 1 987; Kitazawa & 

Somlyo, 1990). This mechanism termed Ca t ·-induced desensitization may act 

1 o prevent adverse effects resulting from a prolonged increase in 1 Ca 1 1 1, . 

Although the molecular mecha •. :sm responsible for the Ca' ~ -induced 

desensiti7.ation of contrCiction in smooth muscle is not fully understood, one 

possible t<Hget is phospllorylation of MLCK via activation oi· calmodulin ­

clP.r.wndent protein kinase. Thus, in rabbit renal arteries, a high level of a­

adrenoceptor occupancy decreases the relaxant effect of nifedipine by 

i11creasing MLCK phophorylation (Ratz, 1993). 

In contrast to smooth muscle preparations from either rat duodenum 

(Dove et al., 1979} or fundus (D. Sieger, personal communication), the 3'-NOr 
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DHP-photoactivated response in the TMM persisted undiminislwd under 

depolarizing conditions and did not show dependence on cxtracdlulm N<1' <IS 

reported for the endogenous relaxat ion in rabbit aortic smooth muscle (Raf f <I (!I 

al. , 1992). Thus, light still produced r1 response in tissue nloint <:lirwd in ;-1 ll inll 

K +- -depolarizing solution and high concentrations of the Na 1 /K 1 -A TPiiSe 

inhibitor ouabain did not affect the light-- induced response in Tyrodc's solution. 

Although the rat Na 1 /K ' -ATPase is relatively insensitive to ouabain !AIIon & 

Schwartz, 1969; Toda, 1974), a tenfold lower concenlrntion than tllf11 used ill 

this study was able to block tile I< 1 -induced relaxt~tion in rat lclil clrWry ( W(!lll> 

& Bohr, 1 978) and TMM (Akbarali et al., 1 987). 
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4.4 Photoactivated response and neurogenic control of the TMM 

One question whicl1 arose during the study of the photoactivated 

response in the TMM was the possibility that an endogenous transmitter was 

rniHased following sensitisation with 3'-N0 2-DHP. However, since the 

photoactivatcd response was also evident in a depolarizing medium and in the 

presence of TTX, a neurogenic component did not seem to be involved. As 

discussed below, the ineffectiveness of pharmacological drugs interfering with 

neurotransmitter action further corroborates this conclusion. 

Severaf studies regarding neurogenic control of tile TMM have 

dHmonstrated an extensive innervation by the parasympathetic nervous system 

(Bieger & Triggle, 1985). The cholinergic two-neuron pathway mediates 

contraction of oesophageal smooth muscle via activation of muscarinic: 

receptors. Jacob and Tallarida (1 977) proposed that UV irradiation interferes 

wilh tl1e Elgonist-receptor complex resulting in relaxation of precontracted aortic 

strips from rabbit. However, muscarinic receptor-induced contractile acti·Jity per 

se does not appear to be a prerequisite for 3'-NO _.-DHP-induced 

photoresponsiveness . Since photosensitization was observed in the presence of 

methscopolamine in TMrv1 preparations bathed in Tyrode's or K +-depolarizing 

buffer at appropriate concentrations of extracellular calcium to support a tonic 

contraction (:> 1 JJM), involvement of the agonist-receptor complex as a possible 
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target fort 1e light-induced effect in TMM is unlikely. 

Although histological studies reveal the presence of aclrenmgic fibms in 

the TMM, their physiological role is unknown (Akbarali, 1987). Sti111ulation ol 

I:S-adrenoceptors in TMM induces relaxation of the smooth muscle . Howl~vur, 

incubation of precontracted preparations with guanethidine and tlw I~ 

adrenoceptor antagonist propranolol do not produce any ef feet on tlw 

photoactivated response. Moreover, the adrenoceptor agonist isoprerwlirw wtrs 

routinely tested in this study to determine the tissue's capability for w laxc-rtiun. 

I:S-adrenoceptor-mediated relaxation in smooth muscle could involve stimulation 

of Ca 1 l-efflux (Moore & Fay, 1993), stimulation of intracellulm C11 1 1 

sequestration (Casteels & Raeymaekers, 1979; Mueller & van Breenwn, 1979), 

or decrease in the Ca ~ '-sensitivity of the contractile proteins by PKA phosphor 

ylation (Conti & Aldestein, 1981 ). In the TMM, none of these mechanis111s 

seems to be involved in the fast photorelaxation since tlte isoprenalirw-incluced 

relaxation was preserved after blockade of the 3'-NO~-OHP-photoactivatP.d f ilst 

response. With regard to the slow relaxation, it was still evident in ouab<rin 

treated or K ~-depolarized tissues, as well as, after inhibition of SR Cu I I 

ATPase, indicating that stimulation of Ca 1 l extrusion or sequestration is not 

involved in the slow photorelaxation. Therefore, the slow photoroiCJxation and 

the ~-adrenoceptor-mediated relaxation may share a similar mechanism of 
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relaxation based on a decrease in tl1e Ca' '-sensitivity of the contractile proteins 

hy phosphorylation via PKG and PKA, respectively. 

5-HT release frorn mast cells may also regulate contractile tonus in TMM 

(Akbarali, 1987) . Where 5-HT induces a hexamethonium-resistant, ketanserin­

sensitive increase in tension in the distal portion of the TMM, relaxation of the 

TMM is most evident after a muscarinic-agonist-induced contractile response 

(Akbarali, 1987). 5-HT-induced relaxation in tl1e TMM is ketanserin insensitive 

but il is blocked by the 5-HT-1 receptor antagonist ICS 205-930 (Ohia et al., 

1992). However, ketanserin or ICS 205-930 treatment of CD-precontracted 

TMM preparations does not prevent the (±)-Bay K 8644-photoactivated 

response. 
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4.5 Future experiments 

The results and the hypotheses regarding the 3'-NO;,-DHP photoact ivat1.~d 

response in the TMM raise several issues tor future consideration. 

1) In view of the postulated mechanism for the fast photoreiClX<ltion , r!~Olll<t l tutt 

of the L-type Ca' '-channel current by cGMP in the TMM merits furtlwr study 

by electrophysiological methods. 

2) Although photoactivated release of NO has been demonstrated witlt r<tcentic 

Bay K 8644, corresponding evidence regarding other 3' -NO:,-DHP is lackinn . 

Chemiluminescence analysis may help to determine whether pl10toactivatod 

release of NO is a general property of the DHPs. 

3) Nifedipine was the only authentic a-nitro-substituted DHP rnediitlitt(J 

photocontraction. It would be interesting to determine if other DHPs wit 11 an o 

nitro in the phenyl ring are able to evoke photocontractions in smooth muscln. 

4) One important observation from this work is that t1'1e "ofl -contr<tctiott", 

widely observed in other gastrointestinal smooth muscles, is present after linlll 

stimulation. The nature of this response requires further explorat ion. 

5) The presence of a 3'-nitro group on the dihydropyridine ring, but not on tlw 

phenyl ring is necessary to induce photorelaxation. It remains to be c.Jntermirwd 

if other compounds containing a nitro group on other positio11s of 1 tu! 

dihydropyridine ring are pllotosensitizers as well. 
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4.8 Summary 

1) Exposure to DHP compounds give rise to different photoactivated 

rnsponses in smooth muscle that depend on the chemical structure of the DHP 

molecule and differ from organ to organ. 

2) DHP-induced photodynamic activity was observed only in compounds 

containing nitro-substituent. Photoactivated responses involving relaxation are 

mediated by 3~ -N0 7- DHPs whereas photosensitization by o-nitrophenyl­

substituted DHPs cause contractions . As evidenced by contrac tile force 

generation, 3 I -NO:>-DHP-induced photorelaxations, but not o-nitrophenyl­

substituted DHP-mediated photocontractions, are concentration-dependent. 

Compounds lackir-.g any photodynamic activity but possessing L-type Ca · '­

channel affinity can modify the 3 1 -N0 7-DHP-photoactivated response in TMM . 

3) The photoactivated response by 3 1 -N0 2-DHP L-type Ca' '-channel 

agonists in TMM is mimicked by photodegradable NO-donors and consists of a 

fast relaxation-"off -contraction" sequence that is sJperimposed on a normally 

concealed slow relaxation. 

4) In rat thoracic aorta, 3' -NO,-OHPs enhance the intrinsic 

pl1otorelaxation. 

5) An "off -contraction" is evident following photoinhibition of the 

muscarinic agonist -stimulated phasic contract ions in 3 I -NO,-DHP-treated pyloric 
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sphincter or followi'lg field stimulation-evoked TTX-insensitive relaxations, hut 

not by electrical stimulation of intrarnural nitroxidergic nerves in TMM 

preparations. 

6) The 3'-NOrDHP-photoactivated response is sensitivt~ to NO sc<lvun 

gers and cGMP-modulators, suggesting that photoactivated r.91ease of NO I rom 

the DHP molecule, followed by stimulation of sGC, is involved in tiH! 

photoactivated response. 

7) Cyclic GMP generation may lead to two l<inetically ditfert!nt nwcllilllicill 

responses in the TMM: 1) a fast relaxation, highly sensitive to 1,4- DHP L-typo 

Ca' • -channel antagonists, chelation of extracellular calcium, or skinning of tlw 

plasmalemma, suggesting a mechanism of calcium influx regulation viaL -type 

Ca ++-channels; and 2) a slow relaxation probably mediated by regulation ol 

contractile protein phosphorylation by a cGMP-dependent protein kinnsc!. 

8} Depleting the SR of calcium with ryanodine or cyclopiazunic acid as 

well as treatment with the calcium ionophore A 23187 inhibits th{J last 

photoactivated response in the TMM. 

9) The amplitude of the fast relaxations varies with the contractile stimuli 

used and the level of contractile tension. 
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Appendix I 
CHEMICAL STRUCTURES OF 1.4-DIHYDROP'YRIDINES 
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