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Abstract 

Hereditary Non-Polyposis Colorectal Cancer (HNPCC) is the most common type of 

inherited colorectal cancer. Eighty to ninety percent of identified mutations in HNPCC 

families involve MSH2 or MLHI genes. However, a great degree of variability has been 

observed within and between families carrying the same mutation. Therefore, other 

factors such as modifying genes may be involved in the presentation of this disease. 

The cell cycle, the mismatch repair pathway, and folate metabolism have been associated 

with cancer. Therefore, I studied 31 single nucleotide polymorphisms (SNPs) from genes 

in these pathways to determine if they had a modifying effect on the disease penetrance. 

Two MSH2 kindreds were used in this study, one from Newfoundland and one from the 

Lower North Shore of Quebec. They included 135 mutation carriers. I identified 3 SNPs 

CCNDJ 1722 GC, CCNA2 GA, and CDKNJ B (p27K1Pt) TG, which had significant effect on 

the age of disease onset. 
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Chapter 1 Introduction and Overview 

1.1 Introduction 

Colorectal cancer (CRC) is a disease affecting both women and men. The age of onset 

varies from youth to the elderly population depending on the type of CRC and the genetic 

or environmental influences that are involved. This disease is curable provided it is 

detected in an early stage. 

Determining what stage the cancer is in is based on a specific set of criteria that has 

evolved over time. In 1932, C.E.Dukes first introduced the Dukes staging system. This 

system was pathologically based on tumour resection that measured the depth of invasion 

through the mucosa and bowel wall. It was categorized as follows: Dukes A-tumour 

confined to mucosa, Dukes B- tumour invading through the intestinal wall (no lymph 

node involvement), Dukes C- positive lymph nodes identified, Dukes D- distant 

metastases has occurred. The specifics of this system have been revised several times 

since its first use because it did not provide detailed information about the tumour size, 

nodal involvement, or spread throughout the body. Finally, in 1990, the American Joint 

Committee on Cancer (AJCC) replaced Dukes staging with a more descriptive and 

detailed model called the TNM staging system. 

According to the TNM staging system T represents the primary thickness of the tumour, 

N describes nodal involvement, and M indicates the presence or absence of distant 

metastases. Each of these letters contains numerical subcategories that describe the cancer 

stage. For example, theTis subdivided from 1-4 based on the level oftumour invasion 

(Table 1.1 ). TheN is described as 0, 1, or 2 where 0 refers to no nodal involvement, 1 
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includes 1-3 positive nodes, and 2 means that >3 positive nodes have been detected. 

(Table 1.1 ). M is either 0 for no distant metastases or 1 for distant metastases (Table 1.1 ). 

Table 1.1: TNM Staging System for Colorectal Cancer* 

Primary Description 
Tumour 
(T) 
T1 Tumour invades submucosa lining 
T2 Tumour invades muscularis propria 
T3 Tumour invades through muscularis propria into submucoas, or non-

peritonealized pericolonic, or perirectal tissue 
T4 Invades other organs/structures, and/or perforates visceral 

peritoneum 
Regional Description 
Lymph 
Nodes (N) 
NO No regional nodal metastasis 
N1 1-3 regional lymph nodes 
N2 > 3 regional lymph nodes 
Distant Description 
Metastasis 
(M) 
MO No distant metastasis detected 
M1 Distant metastasis 

-th * Amencan Jomt Comrmttee on Cancer (AJCC) Cancer Stagmg Manual6 ed. (2002) 
Springer-Verlag New York Inc. 

The levels of TNM staging are (I) through (IV) where (I) describes the earliest form of a 

carcinoma while (IV) represents the latest. These stages are defined based on the 

numerical subcategories given to depict the tumour, node, and metastasis status (Table 

1.2). The five-year survival rates for each ofthese stages in colorectal cancer are as 

follows: (1) TNM Stage I (Dukes A) is 93.2%, (2) TNM Stage IIA (Dukes B1) is 84.7%, 

TNM Stage liB (Dukes B2) is 72.2%, (3) TNM Stage IliA, (Dukes C1) is 83.4%, TNM 
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Stage IIIB (Dukes C2) is 64.1%, TNM Stage IIIC is 44.3%, and (4) TNM Stage IV, 

(Dukes D) is 8.1 %. 

Table 1.2: Comparison ofTNM staging to Duke's Staging System and the 5-year 
survival rate for colorectal cancer*. 

Dukes Cancer TNM staging 5-Year 
Staging Stage Survival 
Dukes A Stage I Tl /T2, NO, MO 93.2% 
Dukes B Stage IIA T3, NO, MO 84.7% 

Stage liB T4, NO, MO 72.2% 
Dukes C Stage IliA T1 /T2, N1, MO 83.4% 

Stage IIIB T3/T4, N1 , MO 64.1% 
Stage IIIC AnyT,N2, MO 44.3% 

Dukes D Stage IV AnyT,AnyN, 8.1% 
M1 

* Amencan Jomt Committee on Cancer (AJCC) Cancer Stagmg 
Manual 6th ed. (2002) Springer-Verlag New York Inc 

Surgical removal of the colo rectal cancer and resection of the bowel cures this disease 

provided lymph nodes and other organs have not been invaded. Colorectal cancer is also 

preventable by polyp or pre-cancerous cell removal during regular screening through a 

colonoscopy. 

The Canadian Cancer Society recommends that individuals without a known family 

history of colorectal cancer who are 50 years or older should have at least one 

colonoscopy every 10 years and one fecal occult blood test (FOBT) every two years. 1 

FOBT is used to screen for traces of blood in the feces. 1 If a positive result is found 

further investigation by colonoscopy should follow to determine the source of the 

bleeding as it may suggest the presence of a polyp or cancer. 1 The frequency of screening 

after the age of 50 ranges anywhere from 1 to 10 years based upon health, lifestyle, and 

family history. In higher risk populations such as those with a family history of CRC at an 
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early age, colonoscopies are offered at ages <50 years based on the age prevalence within 

that family. The general rule of initiating screening in such families is 10 years younger 

than the youngest age of malignant diagnosis within a given family. 1 

The preventative purpose of the colonoscopy procedure is to detect and remove any 

polyps that may be present. Since polyps are believed to be pre-cursors to cancer, 

removing them eliminates their potential of evolving into a malignancy. Due to the 

common asymptomatic nature ofCRC in the earlier stages, ifthe individual is not 

undergoing regular routine colonoscopy screening, it is often late stage III or stage IV 

before it is diagnosed. During these later stages the symptoms tend to become more 

prevalent and severe. Therefore, the prognosis is often poor for unscreened individuals 

when CRC is finally detected. 

Once CRC is detected and family history taken, the type is determined as one of the 

following three categories: hereditary, familial or sporadic. Sporadic CRC occurs in 

approximately 6-7% ofthe general population? It does not have any obvious family 

history or mode of inheritance and there are very few to virtually no family occurrences 

of CRC at all. Familial CRC presents in family clusters more than would be expected in 

the general population but no genetic factors are clearly identified. Hereditary CRC is a 

single gene disorder and its risk can be identified in families as long as the gene(s) 

involved are known. 

The two most common hereditary forms of CRC are Familial Adenomatous Polyposis 

(F AP) and Hereditary Non-Polyposis Colorectal Cancer (HNPCC). F AP involves 

mutations in the APC gene and some HNPCC involves mutations in genes of the 

Mismatch Repair Pathway (MMR) following a dominant mode of inheritance. 

4 



,------------------------- - -----

In Newfoundland and Labrador and the Lower North Shore of Quebec, Canada there have 

been large families or founder clusters of families identified with HNPCC. These families 

serve as very informative models for studying this type of genetic disease due to 

geographical isolation, ethnic homogeneity, and a large number of individuals within 

each of the families remaining in the ancestral region. 

Mutations in an MMR gene MSH2 were identified in three of these Newfoundland and 

Quebec families and family clusters. In the Newfoundland and Labrador families from 

Bonavista North, referred to as Family C, there was a mutation found in the (A~T942+3) 

3 'splice region of intron 5; a group of families from Trinity/Conception Bay were 

identified to have a deletion of exon 8; while the Quebec family (Family 11) has a 

deletion in exons 4-16.3 Each family has multiple mutation carriers identified, but there is 

variation in the phenotype presentation. For example, there is a variation in the age of 

onset, location of cancer, the number of primary cancers between individuals within each 

family as well as between families. Therefore, other factors must be involved in 

determining phenotype expression besides the identified MSH2 mutation. This study 

included two of these three families, Family C and Family 11 for the purpose of 

investigating these variations. 

1.2 Colorectal Cancer 

Colorectal cancer (CRC) is the second leading cause of cancer death for men and women 

in North America. The Canadian Cancer Society estimates that ~ 21 ,500 Canadians will 

be diagnosed with CRC and about 8,900 will die from their disease in 2008. In 

Newfoundland and Labrador (NL) approximately 480 people will be diagnosed in 2008 
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with CRC and >50% of them will eventually die from their disease. Women and men are 

at unequal risk of developing CRC with men having a slightly higher incidence rate than 

women. After the age of 50 years, the risk of developing this form of cancer increases 

significantly.3 The incidence rate of CRC in NL is 27% higher than the Canadian 

average? This demonstrates the importance to the people of Newfoundland and Labrador 

of investigating this disease. 

Because CRC is usually asymptomatic until it is in a late stage, it generally has a poor 

prognosis at the time of diagnosis. Even if symptoms are present, many people are too 

embarrassed to talk about their "bowel problems" thus delaying diagnosis until their CRC 

is advanced and difficult to treat. For these reasons, it is important that the public be 

educated about the seriousness and prevalence of CRC in the general population. 

The Canadian Cancer Society recommends that screening with colonoscopy after age 50, 

and earlier if there is a family history, is the most important preventative method to date. 

The current treatments available for those with colon cancer are surgery (total colectomy, 

partial colectomy, and tumour resection), chemotherapy, and radiation. The extent of 

surgery depends on the location and stage of cancer. 

In 2007, the cost of treatment of Canadians with CRC was estimated to be approximately 

$500,000,000.2 Therefore; research on the cause, treatment, and prevention of this disease 

is of importance to those involved both provincially and federally in managing health care 

expenses. 

The actual cause of the different types of CRC has not yet been fully determined. 

Therefore, CRC may or may not follow different mechanisms of disease formation. 
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However, all cancers do involve changes in genes in somatic cells and sometimes in 

conjunction with germline cell mutations.4' 
5 

There are three categories of mutated genes that are commonly associated with CRC: 6
' 
7 

oncogenes, tumour suppressor genes, and DNA mismatch repair genes. The cellular 

proto-oncogenes are up-regulators of cell proliferation. 8 Hence, a mutation in one of these 

genes can result in it being transformed into an oncogene. Once this occurs the oncogene 

can cause the cell to proliferate uncontrollably. For instance, mutations in the B-raf and 

K-ras oncogenes have been associated with an increased risk of colorectal cancer.9 

Tumour suppressor genes, predicted in Knudson's model of the "two-hit theory" in 

retinoblastoma, function as negative regulators of cell proliferation.10 Thus, an effect is 

seen only when both alleles are mutated.10
' 

11 The DNA mismatch repair (MMR) genes 

repair errors that occur during DNA replication. 12' 
13 As a result, a loss of MMR function 

leads to an accumulation of mutations throughout the genome including mutations in 

growth regulatory genes. 14 

As the above description indicates, both inherited and sporadic cancer involves 

mutational alterations of genes. It is believed that all colorectal carcinomas develop from 

adenomas. 15 Together, hereditary and environmental factors contribute to the 

development of these neoplasms. 

In 1990, Fearon and Vogelstein developed a model that describes the development of a 

tumour from polyp to carcinoma?' 4 First, a pocket of colonic epithelial stem cells16 

containing a coupled mutation between oncogenes and tumour suppressor genes cause 

these mutated cells to propagate. As more of these mutated cells divide and make cloned 

copies, a growth advantage of mutated cells over surrounding normal cells is believed to 
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occur. The genes most frequently found to be involved in this process are the oncogene 

K-ras 17
• 

18 and the tumour suppressor gene p53. 19
' 

20 Approximately 50% of colorectal 

adenomas > 1 em in diameter, as well as carcinomas, have K-ras mutations? 1
-
23 However, 

only ~ 10% of adenomas <1 em in diameter have a mutation in this gene regardless of 

whether the CRC arose sporadically or in the context of an inherited predisposition.23
' 

24 

In adenomas only one p53 allele is mutated. The mutated p53 protein functions in a 

dominant negative pattern by binding to the wild type p53. Such binding prevents normal 

function of this prtoein. This was observed in mice,25
-
28 rats,29 and humans.20

' 
30 In cells 

that have an impaired wild type p53, the adenoma is able to continue to grow. Since these 

adenomas also grow and divide at a faster rate than normal cells, they are at an increased 

growth advantage to the normal cells. This in tum, increases the likelihood for the wild 

type p53 gene to also be mutated as more copies of the cells containing both a mutated 

and wildtype allele proliferate. Once both of the p53 alleles are mutated the tumour 

suppressor function is completely knocked out. It is at this stage that adenomas often 

progress further to become carcinomas? 0
• 
30 

An accumulation of 4 or more mutations in these oncogenes, tumour suppressor genes, or 

other genes must take place in the cell before it forms a malignant tumour. If there are < 4 

accumulated mutations, the adenoma will remain a benign tumour.30
• 

31 It is the 

accumulation of mutations rather than the sequence of events that determine the tumour' s 

biological properties. Finally, although tumour suppressor genes generally act in a 

recessive pattern, some behave in a dominant negative fashion at the cellular level as in 

the case described above for p53.29 
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1.2.1 Sporadic Colorectal Cancer 

People with sporadic colorectal cancer have very few to only one family member affected 

with the disease. This category of CRC has a late age of onset usually starting over 50 

years of age and includes 70-75% of all CRCs.3 The cause is believed to be a multi­

factorial result of dietary, environmental, and genetic factors that have yet to be defined.5 

The sporadic incidence of CRC has been identified with mutations in somatic cells rather 

than in the germline cells that are noted in hereditary forms of this disease.4 Apart from 

these gene mutations, recent studies have also associated a possible epigenetic cause such 

as the hypermethylation of the CpG islands and microsatellite instability (MSI).32
• 

33 

Hypermethylation of CpG islands in promoter regions of genes are an epigenetic process 

that inhibits transcription of specific genes throughout the genome. Microsatellite 

instability is the result of a genetic mutation that causes the number of microsatellite 

repeats in a particular region of the cell ' s genome to vary from that of a normal cell. 

Together, hypermethylation of p16 and MMR deficiency of MLHJ, relates to loss of cell 

cycle control. 32
• 

33 This phenomenon is found at very high frequencies in MSI tumors. 34
-
36 

Hong-Zhi et al (2002) related p16 hypermethylation to MSI tumours and suggested it be 

used as a marker in serum analysis for the prediction of colorectal cancer prognosis.37 

Since Sporadic CRC includes the vast majority of CRC, a better understanding is 

necessary in order to determine who is at risk of developing it. As it is only apparent in 

population history, individuals are at a lower risk of developing this disease when 

compared to familial and hereditary forms of CRC. Therefore, regular screenmg ts 

recommended for anyone over the age of 50 as previously described. 

9 



1.2.2 Hereditary Colorectal Cancer 

Individuals with relatives that have hereditary colorectal cancer are at the highest risk of 

developing the disease in comparison to those at risk of sporadic or familial colorectal 

cancer. It is in this group where screening programs are generally implemented. One of 

the main differences between hereditary and familial CRC is its earlier age of onset. 

Hereditary CRC almost always develops at <50 years of age rather than the later age of 

onset (60+ years) observed in the familial groups. This earlier age of onset that is 

observed in hereditary cancers results from a germline mutation in one wild type tumour 

suppressor allele. Therefore, only one more "hit" in the tumour suppressor gene is 

required for a cell to lose its tumour suppressor function. 

Out of all of the colorectal cancers approximately 5-l 0% of them demonstrate a pattern of 

dominant inheritance.38-4° These dominantly inherited CRCs are referred to as hereditary 

colon cancers. The two best-known forms are HNPCC and FAP. Together, both of these 

types are inherited autosomal dominantly and account for approximately 5-6% of all 

CRCs. 

F AP occurs in <1% of all colorectal cancers.4 1 In this form of the disease the colon can 

develop several hundred to thousands of adenomatous polyps, typically beginning in the 

second or third decade of life. These polyps are initiated at a greatly increased rate 

compared to the general population, but once formed, their rate of progression to 

carcinoma is remarbably fast.42
' 

43 Inevitably, one or more of the polyps will progress into 

. . . 
an mvas1ve carcmoma. 

Extracolonic manifestations are also common in families with FAP. These include polyps 

in the stomach or duodenum, which may also progress to cancer, desmoids, osteomas, or 
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epidermal (sebaceous) cysts. Papillary thyroid cancer and brain tumours, usually 

meduloblastoma, occur rarely in these families but at an increased rate in comparison to 

the general public. 

The F AP locus was mapped to chromosome 5q21 after the discovery of an interstitial 

deletion of chromosome 5q21 in an individual with FAP and mental retardation.4446 The 

adenomatous polyposis coli (APC) gatekeeper gene was identified in this region47 and 

extends 120 kilobases with 15 exons. The protein product of the APC gene has 2843 

amino acids whose function is to negatively regulate the Wnt signaling pathway. It does 

this by binding to and destroying beta-catenin. Loss of this function causes an unregulated 

intracellular build-up of beta-catenin.48 The biological significance of this build-up is that 

elevated levels of beta-catenin are associated with an increased growth advantage of 

tumour cells. 

Inherited APC mutations co-segregate with F AP in affected families.49 Other studies 

showed that the location of the mutation influenced the phenotype of this disease. For 

example, truncating mutations between codons 463 and 1387 are associated with 

congenital hypertrophy of the retinal pigment epithilium (CHRPE) 50 while mutations 

between codons 1403 and 1578 are linked to desmoid and osteoma cancers but not 

CHRPE.51 However, there is considerable variation of disease presentation even with the 

same mutation and non-penetrance has been observed.49 It is yet unknown whether these 

varying phenotypes are caused by environmental or genetic modifiers. Having said that, 

the MOMJ gene on chromosome 4 in multiple intestinal neoplastic (MIN) mice has 

demonstrated a genetic modifying effect on the number of polyps lining the colon of mice 

with germline APC mutations. 52 The environmental effects on these phenotypes have also 
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been shown through both chemo-preventive non-steroidal anti-inflammatory drugs 

(NSAID) and dietary factors such as arachidonic acid lipids. 53
-
55 Together these 

environmental findings correlate with the genetic MOMJ modification described above 

since MOMJ normally expresses an enzyme that metabolizes arachidonic acids. 56 If there 

is an abnormality in the MOMJ gene then its enzymatic activity may also be altered and 

could result in a change in the way that these acids are metabolized Thus, environmental 

influences may enhance the effects of the MOMJ mutation in an epigenetic manner. 

Apart from this classical form of F AP, there is an atypical phenotype referred to as 

attenuated familial adenomatous polyposis (AFAP). In AFAP, the number of polyps 

varies and they are smaller in size than those observed in F AP phenotypes. Individuals 

present with AF AP later in life and have a reduced penetrance of the disease.9
' 

57 Quite 

often AF AP can be mistaken for HNPCC in terms of the clinical features. 9• 
57 

HNPCC accounts for ~3-5% of all colorectal cancers with a high penetrance of 80-

85%.42' 
58

-
63 Unlike FAP, usually no polyps or a small number (1-5) form in the colon of 

those with this syndrome. These adenomas form at approximately the same rate as in the 

general population.42
• 
43 Once formed, however, they progress 2-3 times more rapidly.42

' 
43 

The age of onset of HNPCC is variable from the third to the seventh decade with a 

median age of 42 years. 

HNPCC has recently been re-named and divided into two groups: Families with 

mutations in the mismatch repair (MMR) genes are considered to have Lynch Syndrome, 

while families without evidence of MMR gene mutations are referred to as having 

Familial Colorectal Cancer Syndrome X (FCC-X). The average age at onset of CRC is 

typically earlier in Lynch Syndrome than FCC-X. 
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Lynch Syndrome commonly has extracolonic cancers that occur either exclusively or in 

addition to CRC. They include cancers of the endometrium, ovaries, stomach, small 

bowel, transitional cells in the uretergenital system, skin (sebaceous cell cancer), and less 

commonly glioblastomas.64
-
66 The MMR genes that have been identified in association 

with this syndrome are MSH2, MLHJ, MSH6, MSH3, PMSJ, and PMS2. 

To date, no genes have been found associated with FCC-X. Unlike Lynch Syndrome, the 

presentation of extracolonic cancers in this particular group is rare. It is also uncommon 

in FCC-X to find the synchronous or metachronous CRC that are observed in other forms 

ofCRC. 

Identification ofHNPCC is done through family history. The International Society of 

Gastro Hereditary Tumours (INSIGHT) previously known as the International 

Collaborative Group on HNPCC (ICG-HNPCC) defined the "Amsterdam criteria" used 

mainly for research purposes in order to identify this disease.67
-
69 The criteria includes the 

following: (1) three or more first degree relatives with CRC, one must be a first degree 

relative of the other two, (2) at least 2 successive generations affected, (3) one or more of 

these cases identified before age 50, (4) Familial adenomatous polyposis should be 

excluded, and (5) tumours should be verified by pathological examination.68 After this 

guideline was published Lynch et al. (1993) stated that these criteria were too stringent 

because extracolonic cancers such as endometrial cancer were not considered. 70 As a 

result "Amsterdam 2 criteria" were defined.71 These new criteria took into account extra­

colonic cancers as follows: (1) three or more first degree relatives with an HNPCC­

related cancer (CRC, endometrial, small bowel, ureter, or renal pelvis); and one must be a 

first degree relative of the other two, (2) at least 2 successive generations should be 
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affected, (3) and one or more of these cases identified before age 50, (4) Familial 

adenomatous polyposis should be excluded, and (5) tumours should be verified by 

pathological examination. 71 

Once a kindred has been identified with HNPCC, at-risk family members are offered a 

clinical screening program to identify and treat early cancers or precancerous lesions.71 

There are two main ways of doing this. First, if no mutation has yet been found in an 

HNPCC kindred all first degree relatives are assumed to be at 50% risk and recommended 

to have a colonoscopy every 1-2 years starting at 10 years prior to the age of the youngest 

HNPCC cancer diagnosed in that family. 1 Screening for extracolonic cancers may also be 

recommended based on family occurrence. Secondly, when a mutation has been 

identified in a family, only those who test positive for the mutation are screened 

aggressively through colonoscopy, and screening for extracolonic HNPCC-related 

cancers is also applied.64
• 

72
-
74 These extracolonic screening protocols include endometrial 

biopsy, transvaginal ultrasound to view the endometrium and ovaries, and IVP 

(intravenous plyelogram) cystoscopy monitoring ofthe genitourinary tract. 58
• 

75
-
77 

Preventative treatments are also an option for those with a strong history of HNPCC, and 

are usually offered following genetic counselling along with the advice of a surgeon or 

oncologist. These options include prophylactic surgeries, such as hysterectomy, 

oophrectomy, and subtotal or total colectomy with ileorectal anastomosis followed by 

regular screening of the rectum. 58
• 

60
• 

75
• and 

78 Other organs at risk may also require 

screening and prophylactic surgery. 58
• 

60
• 

75
• and 

78 
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1.2.3 Familial Colorectal Cancer 

Familial colorectal cancer is a cluster group of CRC in families that do not meet the 

Amsterdam criteria and the disease causing or contributing genes have not yet been 

identified. This group of CRC has a slightly higher risk than that of the general population 

noted in sporadic CRC. 

Approximately 20% of all CRCs are Familial. The number of individuals diagnosed 

within a family is higher than what would be expected by random chance in the general 

population of those without any obvious family history. However, an inheritance pattern 

is less obvious for these familial colon cancers in comparison to hereditary forms. For 

example, the family history may include more distantly related affected relatives such as 

the individual affected and his/her aunt/uncle (primary degree relative), and/or cousin 

(second degree relative). In addition, the cancers in these families usually do not present 

until later in life such as age 60 or older. 

The risk for relatives within these families increases based on the number of cancers that 

are present within the family. Therefore, if a person has two first-degree relatives (FDR) 

with CRC, that person's risk is increased two-fold compared to the general population 

and ten-fold if there are three FDRs.79 Also, if there are relatives in the family that had a 

polyp or CRC before the age of 60, the individual is at an even higher risk of developing 

CRC. 79 If there are also second- or third-degree relatives with this type of cancer the risk 

is increased by >50% compared to the general population. 79 As in the sporadic group, the 

cause for Familial CRC is unknown. It has been hypothesized that familial CRCs may 

result from a combination of both genetic and environmental factors such as radiation 

exposure and/or smoking.3 
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Recently, it has been observed that the province of Newfoundland and Labrador has 43% 

of all its CRC cases to be of a familial nature80and 31% have at least one first-degree 

relative that has been affected with CRC.80 The reason Newfoundland and Labrador has a 

higher proportion of familial CRC than found in other populations is currently under 

investigation. 80 

1.3 HNPCC Mutations 

Although mutations in >50% of HNPCC families have not yet been identified, to date all 

of the mutated genes that were found to be associated with HNPCC are part of the 

mismatch repair (MMR) pathway. 

The mismatch repair pathway is a process in the cell cycle where DNA is checked for 

nucleotide mismatches after DNA replication.81 This pathway occurs in the S-phase 

checkpoint of the cell cycle and is a necessary process for progression to the next phase. 82
• 

83 If there is a base-base mismatch or an insertion deletion loop in the DNA, the MMR 

pathway will repair it.84
-
86 Otherwise, a different cell signal will direct the cell to die via 

apoptosis. 84
-
86 These replication errors generally are caused by slippage of repeated 

sequences of the DNA polymerase.87 Some of the genes known to be involved in the 

mismatch repair pathway are MLHJ, MLH3, MSH2, MSH3, MSH4, MSH5, MSH6, PMSJ, 

PMS2, PMS2L3, and PMS2L4.88 

In brief, the MSH2 protein forms a heterodimer with either MSH3 or MSH6. If there is a 

base-base mismatch in the DNA, MSH2 will bind with MSH6, whereas for insertion 

deletion loop repair, it will bind with both MSH3 and MSH6.89
• 

90 MLH1 also forms 

heterodimers in this pathway by binding with PMS2 to operate the mismatch recognition 
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complex. It may also bind with other MMR proteins such as proliferating cell nuclear 

antigen, DNA polymerase 8 and£, single stranded DNA-binding proteins, and helicases. 

MLHl may also form a heterodimer with MLH3 for insertion deletion loop repair and 

with PMS 1 where the function has not yet been clearly defined.91
-
93 

To date, mutations in six mismatch repair genes have been identified in HNPCC families 

around the world. These genes are MSH2 (mutS homolog 2) located on chromosome 

2p16,94 MLHJ (mutL homolog!) on 3p21 ,95
•
96 MSH6 (mutS homolog 6) on 2p16,97MLH3 

(mutL homolog3) on 14q24,98 P MSJ (postmeiotic segregation 1) on 2q31 ,99 and P MS2 

(postmeiotic segregation 2) on 7p22.99 More than 80% of HNPCC mutations have been 

identified in either MSH2 or MLHJ. 87
• 

100
• and 

101 The remaining MMR mutations are 

mostly in MSH6 with less then 10% of families having an alteration in MLH3, P MSJ, or 

PMS2.87 The ICG-HNPCC database (www.nfdht.nl) has reported more then 1000 

different mutations in these MMR genes in over 500 kindreds globally.87 A new database 

developed at Memorial University of Newfoundland documents >2400 variants in these 

genes (http: //www.med.mun.ca/mmrvariants/ ). 1 02 

A feature observed in those with HNPCC and 15% of sporadic colon cancer cases 

involves short repeating nucleotide fragments of the DNA called microsatellites.103 

Changes in the number of repeated nucleotides in microsatellites either through deletion 

or addition in tumour cells with an MMR defect, is called microsatellite instability (MSI). 

During testing for MSI, the number of repeats or deletions for a particular marker is 

compared between tumour cells and normal cells. The number of repeated nucleotides 

fluctuates after a biallelic loss of the MSH2 or MLHJ gene or a combination of other 

minor MMR genes.104 
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Three categories of microsatellite instability (MSI) are recognized: MSI-high if more 

than 30% of the microsatellites tested for a particular marker are unstable, MSI-low if20-

29% of the tested microsatellite markers present with instability, and microsatellite 

stability (MSS) when no instability is noted. Guidelines known as the "Bethesda criteria" 

were compiled in 1997 to identify individuals that should be tested for MSI. 103
-
105 

To improve the specificity the guidelines were revised as follows: (1) colorectal cancer 

diagnosed in a patient who is less than 50 years of age, (2) presence of synchronous, or 

metachronous colorectal or other HNPCC-associated tumours, regardless of age, (3) 

colorectal cancers with the MSI-high histology diagnosed in a patient who is less than 60 

years of age, (4) colorectal cancer or HNPCC-related tumour diagnosed in one or more 

first-degree relatives, with one of the cancers being diagnosed under age 50 years, and (5) 

colorectal cancer or HNPCC-related tumours diagnosed in two or more first- or second­

degree relatives, regardless of age.106 

Phenotypic variations have been observed in HNPCC families depending on which MMR 

gene carries the mutation.64
• 

87 There is some evidence that MSH2 mutations present with 

more extracolonic cancers than do the MLHJ mutations.64
• 

87 MSH6 mutation carriers 

generally have a later age at onset, a higher incidence of endometrial cancer, and have 

tumours that are typically MSS or MSI-low.97
• 

107
-
111 MLH3 mutations result in tumours 

with MSI variations ranging from low, intermediate, to high numbers of short nucleotide 

sequence repeats. 11 2 

1.3.1 Family C 

A large kindred in Newfoundland, Canada, referred to as Family C, was involved in the 

identification of MSH2 as a susceptibility gene for HNPCC. 11 3 This was the first human 
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mismatch repair gene linked to HNPCC. The Family C mutation was identified as a 

founder mutation at the splice-site of codon 942+3 A>T.114 This mutationt is also 

recurrent in other parts of the world. Since these findings, more then 1000 mismatch 

repair gene mutations have been identified with - 40% MSH2, 41% MLHJ, 12% MSH6, 

and 7% PMS2. 102, 115 

Family C has now been extended to include 16 Newfoundland sub-families that trace 

back to a common ancestor originating from Bonavista Bay, which is on the northeast 

coast of Newfoundland, Canada. Three North American families and four English 

kindreds were identified with the same mutation that disrupts the 3' splice site of intron 5 

thus leading to deletion of the exon 5 sequence from MSH2 rnRNA. 11 6
• 

11 7 The result was 

an inframe deletion of amino acids 265-314 of the protein. 113
• 

118 Eight percent of CRC 

families in eastern England have this mutation. 113
• 

118 The HNPCC phenotype expressed in 

this family includes endometrial, ovarian, skin, colon, and rectum. 119 Less frequent are 

cancers of stomach, ureter, small intestine, upper biliary tract, and brain. 119 The number 

of people in Family Cis > 1000 with >200 carriers of the MSH2 mutation. 

1.3.2 Family 11 

Another MSH2 mutation identified in an HNPCC kindred used in this study was a multi­

exonic deletion from exon 4 to 16. 120 This mutation was identified in a kindred from the 

lower north shore of Quebec, Canada referred to as Family 11. This large family is of 

English background living in an isolated area with a stable population. The phenotypic 

expression of this mutation is mainly colon, rectal, ureter, and endometrial cancers.121
• 

122 

Less frequent are skin, stomach, and brain. Interestingly, no ovarian cancers have been 

observed in this kindred. 121
' 

122 

19 



There are >577 people in Family 11. Of these 577, 125 were tested by haplotype analysis 

for the MSH2 multi exonic deletion. Sixty-eight out of the 125 tested were mutation 

positive carriers and 57 were negative. However, 11 of the 57 who were negative 

developed a polyp or presented with HNPCC/HNPCC-related characteristics. Outside of 

the 125 individuals that were tested in this family, 34 people that did not have testing 

were assumed to be at 50% risk of having the mutation based on their family history. 

1.4 Modifier Genes 

1.4.1 Modifier Gene Definition 

Phenotypic variation of disease within families with the same disease predisposing 

mutation has been attributed to several different causes. Some of these causes include 

genetic imprinting, environmental influences, X-inactivation, and modifier genes. 

The concept of modifier genes was first proposed approximately 100 years ago. 123 

However, it is only in recent years, through molecular and genetic technological 

advances; that this phenomenon can be investigated. 

Starting with the most widely accepted definition, Nadeau (2001) suggested the 

following: a modifier gene is a locus that alters the phenotypic output of a major effect 

locus referred to as the target gene. 124 It can either reduce or increase the penetrance, 

expressivity, pleiotropy, or severity of a phenotype giving it either protective or 

susceptibility effects, respectively. 124
-
126 Nadeau also defined modification as an epistatic 

process where a genetic interaction of one allele with another could mask the phenotype 

db . 1 . . f h 124 cause y a mutatiOn or sequence a teratwn m one o t ose genes. 

20 



A less accepted definition comes from Weatherall (200 1) who recognized three categories 

of modifiers: (1) primary modifiers (i.e. Nadeau' s target genes), (2) secondary modifiers 

(Naudeau' s modifier genes) and (3) tertiary modifiers, being genes that alter pathologic 

processes that are not related directly to the function of primary modifiers. 127 

Finally, in 2003, Slavotinek stated in her review of modifier genes that both of these 

definitions have imperfections because no two loci equally interact to influence a 

phenotype. 128 In other words, there may not always be a major locus, such as with the 

case of digenic inheritance where two loci each have necessary and equal effect. 

Slavotinek also points out that genes and gene products interact in networks rather than 

linearly. Therefore, a continuous spectrum of the degree of allele impact on many 

phenotypes caused by alleles at different loci should be expected. 128 Based on these 

criticisms, Slavotinek stated that the most common effects of modifier genes could be 

described as either additive or multiplicative. 128 That is, the relative risk of a disease 

phenotype resulting from mutations at two different loci was either the sum or multiple of 

the risks from each individual allele, separately. 128 

There are numerous types of effects that modifiers can mediate. It can be cell­

autonomous, tissue specific or systemic action; qualitative or quantitative, both at the 

level of the protein and the disease phenotype; specific or non-specific action on the 

disease pathways; direct action, or requiring activation through somatic mutation or a 

specific environment. 129 Modification could involve any aspect of a trait from the primary 

action ofthe target gene, as in transcription, through to the intermediate phenotypes at the 

molecular or cellular levels, or the organ, system or whole body levels. 124 
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1.4.2 Methods For Identifying Modifiers 

Identifying genetic modifiers is more complex and time consuming than searching for 

disease-causing mutations. The reason is that they occur more frequently in the 

population and have a higher susceptibility to environmental influences than the 

pathogenic mutation. The two main methods used for identifying modifiers are linkage 

analysis and association (candidate gene) analysis. 

In situations where the pathology of the disease is understood, any other gene(s) involved 

in the primary process are considered to be candidates for modifying the phenotype of the 

disease. Under such conditions, association analysis is the method commonly used. 

The association of different alleles of these candidate genes is measured relative to the 

severity of the disease or other clinical variables such as age of onset or rate of disease 

progression. These studies are usually done in a case-control setting or through a 

transmission disequilibrium test (TDT) when DNA of both parents is available. 130 

If the pathological process of the disease has not yet been clearly defined, it becomes less 

obvious which genes to choose as candidate modifiers. Therefore, a linkage analysis is 

required. 

Linkage analysis of modifier genes is most commonly conducted in a mouse model or in 

human families. Quite often when the pathology of the disease is not completely 

understood mouse models can have advantages. For example, mouse models permit large 

numbers of matings in shorter periods of time due to their short gestation periods. 131 Also, 

it is easier to control environmental influences that might cause variability of the disease 

phenotype. 131 However, there are also disadvantages to studying human diseases by using 

animal models. For instance, in Mendelian diseases there may be a difference in the 
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phenotypic expression between mice and humans with the same mutation. 131 At other 

times, there is a different genetic pathway involved even though the same type of disease 

is present. 131 Therefore, finding a disease locus or modifying effect in the mouse model 

does not mean there will be the same result when studying humans. 

Another problem with mouse models versus human disease is with selective pressures 

and the effects of chance on the type and extent of genetic variability that can change 

from strain to strain in mice, as well as the transfer of data between human and mice 

studies131Thus, finding a genetic locus in an animal model does not imply that it will exist 

in humans. 

Sometimes a knockout mouse model may be required to test a hypothesis. Unfortunately, 

inbred laboratory mice may disrupt linkage disequilibria making it difficult, if not 

impossible, to identify a modifying gene in the pure strain because the wild type genes 

may have been "bred out" from inbreeding. 131 

Mainly for these reasons, it is better to use human families whenever possible. Linkage 

analysis of modifiers in human diseases is based on human pedigrees. Since identifying 

modifier genes is not as straightforward as identifying primary disease loci, sib pairs are 

often used. The benefits of using sib pairs are that the relative risk of disease between 

siblings is higher than it would be in distant relatives. 131 Also, the frequency of the 

modifying allele must be considered in determining co-segregation with the primary 

disease. 131 Therefore, siblings would have an increased likelihood of a shared modifier 

allele when compared to distant relatives or the general population. 131 In cases where 

environmental influences on the disease phenotype are a concern, nuclear families 

become more informative as they generally share a similar environment. 131 Finally, sib 
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pairs are usually close in age thus reducing age-dependent factors that may contribute to 

the phenotypic variation of the disease of interest. 131 

In sib pair analyses, two methods can be used: affected sib pairs (ASP) and discordant 

sib pairs (DSP). ASP is generally the method of choice for identifying the primary disease 

locus. 131 However, for determining genetic modifiers, DSP are more useful. 131 

Discordant sib pairs consist of one affected and one unaffected sib. 131 Since ASP tend to 

have a higher incident rate and decreased survival because both are affected, it is more 

difficult to obtain clinical information on living subjects. 131 DSP are less likely to have 

these issues and therefore such comparisons provide the strongest evidence of any genetic 

modifying effects they may possess. Therefore, both quantitatively and qualitatively, DSP 

make the best model for studying modifiers of human genetic diseases. 131 It is expected 

that if both individuals have the primary disease causing mutation, the affected individual 

will also have the modifier allele that the unaffected sib does not have. 

1.4.3 Identified Modifiers 

Despite the preference for human systems outlined above, animal models have provided 

the most information regarding modifier genes so far. More is known of the biological 

systems of animal models, and their enviro-genetic status is controllable. One example 

involves a strain of mice known to have a dominant mutation in the Ape mouse gene at 

codon 850 in exon 15.132 This strain of mice is referred to as the multiple intestinal 

neoplasia (MIN) mouse model, which is analogous to Familial Adenomatous Polyposis 

(F AP) in humans. Despite the common primary Ape mutation, in the mouse model, the 

number of colonic polyps varies with genetic background. This implies that other genes 

must be involved which affects the phenotypic presentation of the disease. Through 

24 



studies using a backcross with inbred MIN mice, a Modifier of MIN (MOMJ) locus has 

been identified in the ~4cM region of mouse chromosome 14 syntenic to human 

chromosome 1p35-p36.133 It accounts for ~40% of the genetic variance observed in the 

number of polyps in the Apcmin mice. 134 Genes found in this region that are candidate 

modifiers are Pla2g2a, Egfr, Dnmtl, and Mmp 7. Of these candidates, the strongest data to 

date involves Pla2g2a. 135
• 

136 Mice with the mutated Apcmin, along with a null Pla2g2a 

gene had more polyps at a younger age than strains with the Pla2g2a wild type allele. 131 

One study in humans found a significant correlation with the Pla2g2a modifier and 

patient survival. 137 

It has been more difficult to confirm modifying genetic effects in human disease. Some of 

the difficulties in studying modifiers in humans include genetic complexity, a longer life 

span compared to animal models, and ethical issues regarding study designs. Despite 

these obstacles, some modifier loci and genes have been identified in humans for diseases 

such as cystic fibrosis, familial hypercholesterolemia, and hereditary deafness. 

Through linkage analysis, a penetrance modifier was found in the homozygous recessive 

form of a deafness gene linked to the DFNB26 locus on chromosome 4q31. 138 A 

modifying locus within a 5.6cM region of chromosome 1q24 has been identified and 

named 'deafness nonsyndromic modifier 1' (DFNM1). 138 This modifier suppresses 

deafness for those homozygous for the primary mutation in the DFNB26 gene. 138 

Another human genetic modifier affects the expression of mutations in the cystic fibrosis 

transmembrane conductance regulator ( CFTR) gene responsible for the autosomal 

recessive disease cystic fibrosis. CFTR, a gene of 230 kilobases on chromosome 

7q31.3, 139 encodes a 1480 amino acid protein that is expressed in the apical membrane of 
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epithelial cells lining the lungs, sinuses, pancreas, intestines, sweat ducts, and vas 

deferens. 140 The CFTR gene significantly influences sodium transport and water balance 

since it functions as a cAMP-dependent chloride channel that interacts with numerous 

other channels. 141 There are a number of different phenotypes expressed in cystic fibrosis, 

such as lung disease, pancreatic enzyme insufficiency, and meconium ileus. Differences 

in the more than 800 mutations in CFTR cannot completely account for the clinical 

variations of this disease.142 Through multipoint and haplotype analysis of sib pairs and 

parents in nuclear CF families, an approximate 7.65Mb locus on chromomosome 

19q 13 .2-q 13.4 was identified as a modifier of the penetrance of meconium ileus in those 

with CFTR mutations. 142 This CF modifier locus includes 141 candidate modifier genes. 

Finally, a cholesterol-lowering gene on chromosome 13q has been proposed as a human 

disease modifier for the familial form of hypercholesterolemia (FH). FH is an autosomal 

dominant disorder, which affects cholesterol metabolism causing higher than normal 

serum cholesterol levels. Knoblauch et al. (2000) used linkage analysis, multipoint 

quantitative-trait-locus (QTL) linkage analysis, an independent study of monozygotic and 

dizygotic twins, and an identity-by-decent (IBD) linkage analysis of an Arab family in 

Armenia to confirm a locus on chromosome 13q as a modifier locus. 149 Those with the 

modifier have decreased cholesterol levels because of lower LDL concentrations and do 

not present with FH. 138 Further studies are being conducted to identify the exact gene(s) 

involved in this protective effect. 
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1.4.4 Modifier Genes and Cancer 

The number of cancer modifier genes identified is limited. However, several candidate 

modifiers continue to be evaluated. Two examples include RAD51 (135C/G) and 

CyclinDJ . 

Cyclin Dl (CCNDJ) is found on chromosome llq13. It is a cell cycle checkpoint gene 

critical for the G1/ S phase transition of the cell cycle (see cell cycle: cyclins and cyclin 

complexes section below). 8
• 

143 A single nucleotide polymorphism (SNP), CCNDJ 

(870A/G), has been studied as a candidate modifier for phenotypic variation of squamous 

cell carcinoma of the head and neck (SCCHN), 144 non-small cell lung cancer (NSCLC), 

145 and hereditary non-polyposis colorectal cancer (HNPCC). 146
•
148 In 1995 Betticher et 

al. reported that NSCLC patients with the AG and AA genotypes had a shorter relapse­

free survival time when compared to the homozygous G group. Matthias et al. , (1998) 

found the opposite to be true for SCCHN. 144 They concluded that the GG genotype of 

SCCHN correlated with a shorter time to tumour recurrence and with poor differentiation. 

In another study, Kong et al. (2000) reported an 11-year earlier age of onset of HNPCC 

for those with either the homozygous A or heterozygous AG alleles compared to the 

homozygous G genotype. 146 However, McKay et al. (2000) did not find any clinical 

significance for either genotype in those with HNPCC. 148 To date, no definitive study has 

implicated CCNDJ as a diagnostic/prognostic indicator for cancer treatment. 

A second example, RAD51 has also been studied for its role in cancer. This gene is 

responsible for maintaining genomic stability during recombination150 and is essential for 

recombination repair of breaks in double stranded DNA. 150 RAD51 is known to interact 

with the two breast cancer genes BRCAJ and BRCA2.151
• 

152 One study found that a 
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RAD51 (135G/C) allele was associated with an increased risk of breast cancer in both 

BRCAJ and BRCA2 mutation carriers. 153 They concluded that BRCA2 mutation carriers 

with a RAD51 (135G/C) C allele should be considered modifier candidates for an 

increased risk of breast cancer and a decreased risk of ovarian cancer. 153 Another study 

found no association between breast cancer and the RAD51 GIC SNP, and concluded that 

it may not be a reliable candidate for modifying breast cancer risk. 154 Two other studies 

could only find a correlation between the penetrance of the BRCA2 (6174delT) and the C 

allele of the RAD51 (135G/C) SNP.155
• 

156 No association was found with BRCA J 

(185delAG) penetrance. 155
• 

156 If further studies demonstrate significance ofthis modifier 

in relation to increased risk, then the RAD51 (135G/C) SNP could be used to indicate 

which individuals might require more aggressive screening or preventative measures for 

breast cancer. 

It is common to find discordance in the data for candidate modifiers from one study to 

another. Different cancers and even different studies with the same cancer are yielding 

different results despite studying the same candidate modifier gene polymorphism. This 

demonstrates the complexity involved in cancer development, its multigenetic 

attributions, as well as non-genetic influences or the limitations in the design of the 

studies. Therefore, when comparing studies, it is important to consider the population 

size, ethnicity, allele frequency, age, as well as how the data are collected and analyzed to 

rule out any underlying factors that may be associated with disease expression. 
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1.5 The Cell Cycle 

1.5.1 Overview 

The cell cycle is a process a cell undergoes in order to reproduce itself. 157
-
159 This 

complex pathway, although still not completely understood, requires the expression and 

interaction of numerous genes and mitogens. First, a cell will duplicate its DNA and cell 

mass. Following this step it will divide into two cells after appropriate signaling. The new 

cells are referred to as daughter cells while the original is called the parent cell. 

The steps involved in cell replication have been categorized into four main phases: Gap 1 

(G 1 ), Synthesis (S), Gap 2 (02), and Mitosis (M). When the cell is not replicating it is in 

a resting state and referred to as Quiescent Gap 0 (GO) phase. The phases are a strictly 

regulated process as the integrity of the DNA and replication machinery is a vital 

component to the cell's viability. The length of time it takes to replicate is variable. 

However, a typical somatic cell is in the S-phase for approximately 10 hours, G2 for 4.5 

hours, and M-phase for about 30 minutes. The variation in cell cycle duration depends on 

the transition time from GO to G 1. 

Within these phases there are also sub-phases, as well as slight alterations pending on 

which type of cell is undergoing division. For instance, a mammalian germ cell will have 

additional phases know as meiosis that include a second cell division without going 

through the S phase. An Amphibian cell has rapid cell division that alternates between the 

S and M phases without any cell growth. The end result is 4000 cells with a full 

complement chromosomes at the end of 12 cleavage cycles. 160 As for the mammalian 
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somatic cell cycle, it begins when a cell starts to increase in size and duplicate its 

contents. It ends when the daughter cells resulting from this process do the same. 

Cancer has a genetic etiology resulting in uncontrolled cell growth. Proto-oncogenes 

becoming activated while tumor suppressor genes are deactivated causing genetic 

instability leading to tumorigenesis. Since DNA damage and errors in DNA replication 

play such an important role in the malfunction of the cell resulting in the development of 

cancer, the normal progression of the cell cycle will be reviewed. The following sections 

refer to the mammalian somatic cell pathway. They describe how various genes, proteins, 

and mitogens are involved in the reproduction of a cell. 

1.5.2 Cyclin Dependent Kinase (CDK) Regulation 

The regulation of cyclin dependent kinases (cdks) involves a series of activations and 

inhibitions depending on where they are in the cell cycle and what signals are being 

given. To date, 9 cdks have been identified in mammals. Each of these protein kinases are 

between 30 and 40 kilodaltons (kD) in size with > 40% sequence identity to one another. 

Only those involved in the cell cycle will be discussed here. 161
-
163 These include cdkl , 2, 

4, 6, and 7. The cdk2, 4, and 6 are all required for Gl progression whereas only cdk2 is 

known to be active in the S-phase. The cdk7 forms the cdk-activating kinase (CAK) 

trimeric complex. This cdk is involved in the cell cycle transition from G 1 -7 S phase. 

Finally, cdkl also known as cell division cycle2 (cdc2) is active both in the S-phase and 

mitotic entry and exit of the cell cycle. 164
, 

165 
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1.5.2.1 Activation 

Cyclin dependent kinases (cdks) are protein kinases that are inactive as monomers. To 

become active cdks bind to protein subunits called cyclins (CCN) forming heterodimers. 

They become further activated through the phosphorylation of the threonine 160 (Thr160) 

residues166or through the dephosphorylation of tyrosine 15 (Tyr15) residues. In more 

detail, the cdk protein has aT-loop that prevents ATP from binding to its active site when 

the cdk is in its monomeric state. 167
• 

168 However, binding of a cyclin subunit causes a 

conformational change that removes the T-loop from the activation site of the cdk. In its 

heterodimeric state, cyclin-cdk can be phosphorylated at the Thr160 residue of the cdk to 

further enhance the enzymatic activity of this complex! 66 Phosphorylation of this residue 

is done by the CAK trimeric complex. 169
-
172 

Apart from the above, cdks can also be activated through the dephosphorylation of their 

Tyr 15 inhibitory site. The cell division cycle (cdc) 25 phosphatase removes a phosphate 

group from the Tyr15 residue ofthe cdk in the cdk-cyclin complex to make it active. 173
-
177 

There are three isoforms of cdc25: cdc25a, cdc25b, and cdc25c and each has its own role 

in the cell cycle pathway although the details are still only vaguely understood. 173
• 

178
-

180 

In general, cdc25a functions in the nucleus throughout the cell cycle by activating the 

CCN-cdk complexes involved in the G 1-7S transition, S-phase, and the 02-7 M phase 

transition. 178
• 

179
• 

182 These CCN-cdk complexes include CCNE-cdk2 and CCNB-cdkl. 

Next, the cdc25b is hyperphosphorylated during the S phase and early 02 thus activating 

CCNB-cdkl, CCNA-cdk1, and CCNA-cdk2. Cdc25b is involved in the 02-7M transition 

and is localized in the cell's cytoso1. 182
-
186 Finally, hyperphosphorylated cdc25c is also a 

regulator of theM-phase by maintaining CCNB-cdkl activity! 87
• 

188 Otherwise, cdc25c is 
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not active throughout any other part of the cell cycle and exactly where it is localized is 

controversial. 189
-
191 

1.5.2.2 Inhibition 

Cyclin-dependent kinases are inhibited through phosphorylation by either wee1 and mik1 

kinases or by subunits called cdk inhibitors (CKis). When these inhibitors are over 

expressed, the result is an arrest of the G 1 phase. This occurs in response to any DNA 

damage or antiproliferative agents that may be present in the cellular environment. There 

are two mammalian classes of CKis, (1) the INK4 proteins and (2) the Cip!Kip family.192 

The INK4 proteins are p15TNK4b, p16TNK4a, p18INK4c, and p19INK4
d. They specifically bind 

to the inhibitory subunit of cdk4 and cdk6 enzymes when they are complexed with cyclin 

D to make them inactive. 192 These proteins can also bind to monomeric cdk4 and cdk6 to 

prevent formation of a heterodimer complex with cyclin D.193 

The p15 protein is also known as INK4B. Its gene is on chromosome 9p21. 192 An 

antiproliferative agent, TGF-~, stimulates an increase in p15. As p15 levels increase they 

replace any p27KIP1 inhibitors that may be bound to CCND1-cdk4 or CCND3-cdk6. 192 

The p27 inhibitors then travel to the CCNE-cdk2 complexes. p16, also referred to as 

INK4A, is another INK4 protein whose gene is on chromosome 9p21. 192 p16 directly 

inhibits CCND 1-cdk4 complexes. Several different mutations of p 16 have been 

associated with various cancers such as melanomas, leukemia, gliomas, non-small cell 

lung carcinoma, and esophageal cancers 194
-
202

• As with p15 and p16, a lot is still 

unknown about the complete involvement of p 18 and p 19 in the cell cycle other than their 

association with inhibiting CCND 1-cdk4 complexes. 
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The second class of inhibitors is the Cip/Kip CKis. They are universal cdk inhibitors that 

can inhibit all CCN-cdk complexes in the G 1 and S-phases of the cell cycle. 192 There are 

three types of these universal CKis, which include p21 Cipl , p27 Kip I, and p57Kip2
. The 

p21Cipl , located on chromosome 6p21 , inhibits Gl cdk activity when DNA damage has 

been detected?03 Transcriptional activation is the main form of regulation of this enzyme. 

193
• 

204 However, post-translational modification, as well as the stability of mRNA can also 

influence p21 Cip 1levels. 193
•

204 In the promoter region ofp21Cipl there are two binding sites 

for p53. The p53 protein detects any damage and then signals for the transcription ofp21. 

Following this, p21 Cipl binds to the cdks in the Gl phase of the cell cycle and causes Gl 

arrest. 205
•
390 Apart from the p53-binding site, p21 Cipl has an amino terminal site that binds 

with cdk and a carboxy terminal site for PCNA (proliferating cell nuclear antigen; a 

DNA- replicating promoting protein) binding? 06
-
209 The purpose of these binding sites is 

to stop the G 1 phase of the cell cycle when DNA damage has occurred and to prevent the 

cell from completing the cell cycle once it has been registered for programmed cell 

death. 166, 2 1 o 

Another type of CKI, the p27Kipl inhibitor, is located on chromosome 12p132 11
-
2 13 with a 

42% homology to the cdk binding domain of p21 Cipt 2 14 It is very similar to the p21 Cipl 

inhibitor except that it is not regulated by p53.2 11
' 

2 12 Instead, p27Kipt is stimulated through 

extra cellular mitogenic and antimitogenic signalling192 It binds to the catalytic cleft of 

cdk so that ATP cannot bind the cdk-cyclin complex for activation.2 15 One example of a 

cyclin-cdk-p27Kipl complex is with cyclin E- cdk2. This particular type of binding 

inactivates the kinase and causes G 1 arrest of the cell cycle? 16 When p27Kipl is complexed 
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with CCNE-cdk2, it blocks the phosphorylation site that is normally phosphorylated by 

CAK enzymes.217 

Apart from the function just described, p27Kipt is also involved in the cell-to-cell contact 

inhibition of the cell cycle. During such an event, the p27Kipl expression levels increase 

thus acting as a mediator for this form of inhibition to take place.2 18 On the contrary, 

when the oncogene Ras is activated it causes a decrease in the synthesis of p27Kipt as well 

as an increase in its degradation. This function has lead to the postulation of Ras being a 

late G 1 regulator that decreases p27Kipt resulting in G 1 restriction point passage and entry 

into S-phase entry.2 19 Without this function, increased p27Kipt levels will lead to a 01 

arrest of the cell cycle. Therefore, p27Kipt is an inhibitory mediator of cell cycle 

progression in response to external stimuli. Interestingly, p27Kipl has been observed to be 

in a methylated state in various tumors such as in the pituitary gland?20 

Finally, the last CIPIKIP CKI to be discussed is p57Kip2
. Although this CKI is known to 

be restricted to terminally differentiated tissue, little is known of its exact function. It 

shares homology with the p27Kipl inhibitor195
• 

221 and is located on chromosome 

11 p 15 .5"222
-
225 Notably, this particular locus contains several imprinted genes including 

the Beckwith-Wiedemann Syndrome (B WS) gene. 224 The expression of p57Kip2 is 

maternal since the paternal allele is methylated and transcriptionally silent.226
-
229 The 

paternal allele only represents 5% of the expressed protein in various human tissues 

excluding fetal brain where both parental alleles are expressed almost equally.226
-
229 As 

for the function of p57Kip2 it inhibits the cdks involved in the G 1 to S-phase of the cell 

cycle and has also been associated with inhibiting the cyclin B-cdk1 complex of 

mitosis.22 1 
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Apart from these two classes of cdk inhibitors there is another known method of CCN­

cdk inhibition. This method involves phosphorylation of the tyrosine 15 residue (Tyr15) 

of cdks. When phosphorylated, Tyr 15 can stop cyclin-cdk activity regardless of whether 

the Thr160 residue is phosphorylated or not. 170
' 

172
' 

230
-
232 The kinases involved in 

phosphorylating this residue are weel and mikl. Activation of either of these two kinases 

sets the baseline for cdk activity in order to determine mitotic phase entry of the cell 

cycle.tst, 190, 233-236 

1.5.3 Cyclins and Cyclin Complexes 

As was discussed in the previous section, cyclins form heterodimers with cdks in order to 

activate them. Their expression is rate limiting for the activation of cdks and their levels 

are controlled by transcription and regulated proteolysis by the ubiquitin-proteasome 

system. The subunits of cyclins determine cdk activity at different times throughout the 

cell cycle based on which cyclin and cdk is present. For example, during the G 1 phase in 

the mammalian cell cycle, the D and E cyclins associate with cdk 4/6 or cdk2, 

respectively. 

All 16 mammalian cyclins have a conserved homologous region known as the cyclin box. 

They are as follows: cyclin A, cyclin B 1, cyclin B2, cyclin C, cyclin D 1, cyclin D2, 

cyclin D3, cyclin E, cyclin F, cyclin G1 , cyclin G2, cyclin H, cyclin I, cyclin K, cyclin 

Tl , and cyclin T2. Only those involved in cell cycle regulation will be discussed here. 

Cyclin D (CCND) is the best understood of the cyclins. This cyclin initiates the cell cycle 

as its expression begins early in the G 1 phase. Unlike the other cyclins, CCND level is 

directly influenced by the extracellular stimuli of mitogens.162 As long as there are 

mitogenic stimuli, CCND will remain at high levels. If there is an over expression of 
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CCND the G 1 phase will be shortened and less mitogenic influence will be required.237
• 

238 On the contrary, if CCND is inhibited the cell will not proceed through the G 1 

phase.238
• 

239 The RASIRAF/MAPK pathway controls the mitogenic stimuli and results in 

the activation of CCND transcription. 162
• 

240 Three isoforms of CCND have been 

identified, CCND1, CCND2, and CCND3. Each of these isoforms is expressed in a cell 

type-specific fashion 161
• 

162
• 

241 and each associates with either cdk 4 or cdk 6. 

CCNE is activated in the G 1 phase after CCND peaks at the G 1-S phase boundary. 

Without CCNE kinase activity the cell will not enter the S-phase. As the S-phase 

progresses the level of CCNE decreases?42
-
244 The level of CCNE is transcriptionally 

controlled by E2F through the phosphorylation of the pRb active site by the CCNE-cdk2 

complex itself. After pRb has been activated it releases the transcriptional inhibitory E2F 

factor allowing further gene transcription of cyclin E. Increased levels of cyclin E activate 

the CCNE-cdk2 complex through autophosphorylation?44 CCNE-cdk2 is also regulated 

through proteolysis. If CCNE is over expressed it will shorten the G 1 phase and therefore, 

less mitogenic influence is required to activate the progression through to the next phase. 

If CCNE-cdk2 is inhibited, the mitotic phase will not begin.245 

Another cyclin that forms a complex with cdkl is cyclin B (CCNB). During the S and 

G2-phases of the cell cycle this cyclin forms a cdk complex in the cytoplasm. However, 

this is inactive due to phosphorylation of the Thr14 and Tyr15 residues of cdk1 by the 

inhibitory kinases myt1 and weel. The CCNA-cdk1 complex first phosphorylates the 

cdc25b phosphatase and in the activated state removes the wee1 kinase from cdk1 ? 46
-
249 

This in turn activates CCNB-cdk1 formation. After critical levels of CCNB-cdk1 are 

~ d hi 1 . ~ d h 1 11 h . . . . f . . 248 250 10rme t s comp ex IS trans1erre to t e nuc eus to a ow t e Imtlatwn o mitosis. · 
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In doing so CCNB-cdkl regulates both mitotic entry and exit.247 CCNB-cdkl is also 

important in the expression of the protein Survivin. This protein functions in sustaining 

the life ofthe cell and the regulation of mitotic spindle formation.251
-
253 

Cyclin A (CCNA) can form a heterodimer with either cdk2 or cdkl (cdc2) subunits. The 

CCNA-cdk2 complex is required for starting the S-phase once this heterodimer has been 

actively phosphorylated by CAK. This active CCNA-cdk2 complex directly inactivates 

the E2F factor thus allowing the S-phase to begin. When CCNA forms a heterodimer with 

cdkl, it is involved with the transition from the G2 to the mitotic phase.254
-
256 

Another cyclin indirectly contributing to cell cycle progression is cyclin H which when 

complexed into a trim eric form becomes an essential component of cell cycle continuity. 

This trimeric complex consisting of CCNH-cdk7-Matl also called p35, is known as the 

cdk-activating kinase (CAK). 257
-
259 The role ofCAK is to phosphorylate cdkl, 2, 4, and 6 

at their Thr160 residue when they are complexed with their cyclin unit. This 

phosphorylation step is necessary for activation of the cyclin-cdk complex and 

progression of the cell cycle. 172
' 

260
-
265 

The C cyclin (CCNC) is of unknown function, however, it has been hypothesized that 

CCNC-cdk8 complexes are involved in the transcriptional machinery and therefore 

contribute to the cell cycle indirectly via regulation of transcription. 266
• 
267 

Cyclin F (CCNF) is the largest cyclin identified with a molecular weight of 87 kD and its 

gene sequence is closely related to that of CCNA and CCNB. The exact function of 

CCNF is unknown but it may have some involvement in the G2-7M transition. 

Although much is yet to be explored about cyclins their importance is clear. They appear 

to act as the "starters" and "extinguishers" of the cell cycle. However, as more is 
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discovered it is becoming evident that they not only influence cell cycle progression and 

arrest, but also the regulation of transcription, DNA repair, cell differentiation, and 

apoptosis. 

1.5.4 Cell Cycle Regulation 

Regulation of the cell cycle is not completely understood. What is known thus far 

involves such things as restriction points, checkpoints, and cyclin dependent kinase 

substrates. These processes work together to permit a cell to replicate, repair, or destroy 

itself based on circumstances of both the cell and its environment. 

The restriction point is the point at which the cell no longer requires stimulation by 

external growth factors.268
-
271 This is when the cell is transferring from a quiescent GO 

state to a proliferative G 1 phase. Once the cell passes its restriction point it cannot revert. 

Instead, it is committed to either proliferate or destroy itself based on details within the 

cell itself. Such events involve mechanisms referred to as checkpoints. 

Checkpoints of the cell cycle are mechanisms that monitor the quality and viability of 

DNA. They also follow mitosis and cytokinesis to ensure that it is carried through 

correctly.271
• 

272 Two main types of checkpoints are: (1) DNA damage checkpoints and 

(2) Mitotic phase (M-phase) checkpoints. However, they can be subdivided into four 

groups ( 1) G 1-phase checkpoints, (2) S-phase checkpoints, (3) G2-phase checkpoints, and 

(4) Spindle checkpoints (also known as Mitotic phase checkpoints). 

After a cell is committed to proliferation the G 1 checkpoint monitors the integrity of the 

cell's DNA. If damage such as double stranded breaks occur, or hypoxia, or oncoprotein 

activation is detected this checkpoint prevents further proliferation until the defect has 
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been corrected.273
-
276 If it cannot be corrected the cell will be directed into apoptosis and 

cell death. 

Some of the main players in the G 1 checkpoint are: the tumor suppressor p53, the 

oncoprotein mdm-2, the cyclin dependent kinase inhibitor p21 CIPIIWAF I, casein kinase-1 

(chk1) and - 2 (chk2), and the ATM and ATR pathways. 

When the cell encounters damage, activation of the G 1 checkpoint takes over. In response 

to a defect, the levels of p53 increase rapidly and p53 becomes active through a series of 

phosphorylations and dephosphorylations. Under normal cell circumstances p53 binds to 

the oncoprotein MDM-2, which acts as a negative regulator of p53 .277
-
284 Such binding 

acts as a shuttle for transferring p53 from the cytosol to the nucleus.285
-
287 However, when 

there is a disruption in the G 1 phase the A TM -dependent pathway mediates the 

phosphorylation of p53 both directly and indirectly?88
• 
289 

First, A TM phosphorylates the threonine 68 residue of chk2, which in turn 

phosphorylates p53 at its serine 20 site.290
• 

29 1 This causes interference with MDM-2 

binding. 290
• 

291 A second phosphorylation of p53 at threonine 18 follows ATM activation 

of chkl. 292 Before this can occur, the serine 15 residue of p53 needs to receive a 

phosphate group?92 Finally, ATM also phosphorylates MDM-2 at its serine 395 

residue? 93 The purpose of phosphorylating p53 and MDM-2 is to prevent the two from 

interacting with each other. 293 When MDM-2 and p53 do not form a complex, the p53 

accumulates and is activated by hyperphosphorylation. Once p53 is activated it signals for 

h . . f th 1. d d k. .nhib. 21WAF I/CIPI 294 Thi dki t e transcnpt10n o e eye m epen ent mase 1 1tor p . s c 

suppresses CCNE-cdk2 and CCNA-cdk2 thus preventing G 1 ~S transition. 294 
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Apart from this chain of events, p53 can also trigger the cell into apoptosis depending on 

the degree of damage involved. 295 Another pathway called the A TR pathway is also 

involved in the G 1 phase checkpoint. Exactly how it participates is unclear but it is 

believed to help in serine 20 phosphorylation by chk1 activation.294 

Entering the next phase of the cell cycle involves the S-phase checkpoint, which delays 

synthesis in the event of DNA double strand breaks (DNA dbsb) or impaired progression 

of the replication fork. This checkpoint inhibits synthesis in order to give the repair 

mechanisms a chance to repair these errors. Two main pathways involved include the 

A TM and ATR pathways. 

When there is a breakage in the DNA double strand that requires repair, ATM responds 

through a series of phosphorylations. This process begins by phosphorylation of the 

nibrin protein NBSl at its serine 343, 397, and 615 residues?96
-
299 The NBSl protein 

forms a complex with Mreii and Rad50, which also work to maintain the genome.300
• 

301 

This trimer plays a role in recombinational repair of DNA dbsb, 300 and is also an 

upstream regulator of the phosphatase cdc25a discussed earlier.30 1
-
303 

Another player involved in this form of DNA repair is the p53 binding protein1 

(p53BP1). This nuclear protein responds to the damage immediately following ATM 

phosphorylation. 304
• 

305 Its mode of action is not well understood other than having many 

serine/threonine-glutamine sites and involvement in DNA damage checkpoints 

throughout the cell cycle.306 

Coinciding with the DNA repair is the inhibition of DNA synthesis. To do this ATM 

phosphorylates the chk2 protein to activate it. Once chk2 has been activated it 

phosphorylates the serine 123 site of cdc25a in preparation for ubiquitin-proteasome 
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degradation.307 Without cdc25a, CCNA-cdk2 and CCNE-cdk2 cannot be activated thus 

preventing DNA synthesis from continuing.307
-
309 

The second player of the S-phase checkpoint involves the ATR pathway. ATR responds 

to fork replication errors during synthesis. The details of this pathway are still being 

worked out. However, what is known is that a polo/primase complex function initiates the 

ATR pathway. ATR then phosphorylates a group of hus1 and Rad proteins. These 

proteins somehow work together with ATR to activate chk1 and breast cancer 

susceptibility protein1 (BRCA1) to delay the S-phase.3 10
-
3 12 Hus1 , Rad, and ATR also are 

involved in the activation of BRCA1 and NSB1 for homologous recombination 

replication fork repair and restart. 310
-
312 

Following along the cell cycle, after the successful completion of the S-phase is the 

second gap phase (G2). This phase also involves both the A TM and A TR pathways. The 

purpose of G2 is to ensure DNA viability and prevent further progression into mitosis if 

damage is detected. Once repairs have been made the cell cycle is re-started to proceed 

into the next phase. Otherwise, if the damage cannot be repaired the cell is signaled to go 

through apoptosis for destruction. 

The G2 checkpoint begins with the ATR pathway during the S-phase. DNA damaging 

agents activate this pathway through Hus1 and various Rad proteins.313
• 

3 14 When signaled 

by these proteins ATR activates BRCA1 , which goes on to regulate both chkl and chk2 

through phosphorylating the p53BP1.3 15
-
3 17 Activation of ATR also leads to the 

phosphorylation of the serine 345 residues on chk1 that then bind with cdc25. 3 15
-
3 17 This 

process initiates the G2 phase checkpoint by enabling the binding of cdc25 to the 14-3-3 

family proteins that normally sequester cdc25 and CCNB-cdkl in the cytoplasm.3 15
-
3 17 
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When bound together with chkl, cdc25 is unable to bind to CCNB-cdkl , thus inhibiting 

G2 from going on to mitosis. Once the G2 checkpoint has been activated by A TR the 

ATM pathway then takes over. 

ATM activates MDCI which also upregulates p53BP1. The role of ATM in G2 

checkpoint control involves the threonine 68 phosphorylation of chk2.318 Chk2 then goes 

on to phosphorylate serine residue 216 of the cdc25 bound 14-3-3 complex. 318 This 

phosphorylation step stops the G2~M transition by inhibiting the phosphorylation of 

CCNB bound cdkl. Apart from this event chk2 phosphorylation also activates the weel 

cdkl inhibitor. 318 This inhibitor once upregulated stops the activation of CCNB-cdkl. 

Therefore, the cycle cannot progress to mitosis until signaled otherwise. 

The final checkpoint to be discussed in this review is the mitotic phase checkpoint also 

known as the spindle assembly checkpoint (SAC). It has been hypothesized that during 

theM-phase unattached kinetochores somehow signal these checkpoints to stop the cell 

cycle in mitosis.319
• 

320 Proteins associated with this pathway are Bubl , Bub2, Bub3, 

Madl, Mad2, and Mad3.321
-
325 Of these proteins, Bubl and Mad2 have been found on 

kinetochores that are unattached to spindles. In response to a lack of tension in the 

kinetochores, these proteins stop the destruction of mitotic CCNB-cdk2 complexes thus 

preventing entry into anaphase. Mad2 is first sequestered into the kinetochore region of 

the DNA. Then Bubl and Mad2 bind together to trigger the MAP-dependent kinase 

pathway.326
-
336 This causes an increase in CCNB-cdk2 activity and inhibition of the 

anaphase promoting complex or cyclosome (APC/C), which breaks these cyclin 

complexes down. 
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The function of Mad2 involves a newly investigated pathway currently under study. 

Somehow, Mad1 acts as a delivery unit carrying Mad2 from the cytosol to the nuclear 

kinetochores of the microtubule spindles.337 There are two forms of Mad2; open Mad2 

(O-Mad2) and closed Mad2 (C-Mad2). 338
-
342The open form is found mostly in the 

cytosol.338
-
341

' 
343 Once it binds to Mad1 it takes on a closed conformation as it is moved 

into the kinetochore region where the Mad1 transfers the Mad2 to cdc20.338
-
34 1

' 
343 By 

doing this the spindle assembly checkpoint (SAC) is activated. Sufficient binding of the 

kinetochores to the spindles is necessary for adequate formation of the mitotic checkpoint 

complex (MCC) otherwise anaphase will be delayed.337 

Finally, substrates of CDKs include E2F transcription factors and pocket proteins p1 07, 

p 130, and retinoblastoma (pRb ). In order to mediate positive and negative feedback loops 

of the cell cycle, CDKs use these substrates. Within recent years much has been 

discovered about pocket proteins and E2Fs. Previously, these substrates were believed to 

be involved in a vaguely understood process with the G 1/S transition and S-phase of the 

cell cycle. However, the pocket proteins are now recognized to be involved in numerous 

stages of the cell cycle including GO/G 1, G liS, G2/M, DNA repair and recombination, 

apoptosis, cell differentiation and development.344
-
346 

E2F is a heterodimeric protein consisting of an E2F molecule and a DRTF1 polypeptide 

(DP) molecule. There are eight related E2Fs labeled E2F1, E2F2, E2F3a, E2F3b, E2F4, 

E2F5, E2F6, and E2F7 and two DPs, DPl and DP2. Together, these heterodimers act as 

an essential factor for the transcription of genes that are necessary for the initiation, 

progression, and regulation of the S-phase.347
-
349 Apart from this, the heterodimer(s) play 

numerous roles throughout the cell cycle depending on which E2F is involved. These 
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roles vary from being a player in tumorigenesis and oncogenesis, a regulator of cell death, 

cell proliferation and differentiation, to acting as either an activator or repressor of 

transcription. 350 

E2F 1, E2F2, and E2F3a are transcription activators that are involved in the progression of 

the cell cycle. However, E2F3b, E2F4, E2F5, and E2F6 are transcription repressors that 

assist in cell cycle exit and differentiation. E2F7 is also a transcription repressor but its 

exact mode of action is unknown. 

Three subgroups of E2Fs that form complexes are as follows: (I) E2F/DP and pRb 

dependent complexes which involve E2F 1-4, (2) E2F/DP dependent complexes without 

pRb that involve E2F 4, 5, and 6, and (3) E2F7, which is independent ofpRb and DP and 

appears to be a homodimer.350 More specifically, E2F1 , 2, 3a, and 3b can only form a 

complex with pRb. The E2F4 can complex with any of the following three pocket 

proteins pRb, p107, or p130. From the second group, E2F5 only binds with p130 while 

E2F6 forms a complex outside of these pocket proteins. Instead, E2F6 forms a complex 

with the polycomb protein PeG, which is also DP-dependent. 

As described above these cdk substrates work together to either activate or repress the 

transcription of genes that are involved at various points throughout the cell cycle. First, 

the pocket proteins bind to the E2F factor in a hypophosphorylated state. Once they have 

been hyperphosphorylated by various CCN-cdk complexes through a series of steps, the 

E2F transcription factor is released and becomes transcriptionally active.35 1 

The next group of substrates to be discussed is referred to as the "pocket proteins". They 

include p107, pl30, and pRb. As mentioned these proteins work in conjunction with E2F 

transcription factor proteins and cdks of CCN-cdk complexes.352
• 

353 They have multiple 
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CCN-cdk binding sites and are genetically similar to one another because of sharing 

sequence homology.354
-
357 This homology has been conserved throughout evolution and 

across species.358
-
360 Therefore, although they are not yet completely understood, their 

significance must be important. Of the three pocket proteins, p 1 07 and p 13 0 are most 

genetically similar to one another.358
-
361 

The pRb protein is expressed in both proliferating and non-proliferating cells. 362 It is a 

nuclear protein that is hypophosphorylated during the GO phase of the cell cycle. 363 As 

the cell cycle progresses to the G 1 phase pRb becomes continuously phosphorylated until 

it reaches a hyperphosphorylated state during the mitotic phase where it remains until late 

mitosis.363 When pRb is hypophosphorylated it inhibits cell cycle proliferation through its 

association with proteins such as E2F transcription factor I , 2, 3, and 4.364 The pRb pocket 

protein responds to mitogenic stimulation of the cell cycle during the early to mid phase 

of G 1 in conjunction with the CCND-cdk4 and CCND-cdk6 complexes. It also associates 

with CCNE-cdk2 during late G 1. 364 

The remaining two pocket proteins, p107 and p130 although described as somewhat 

similar to pRb also have differences. Unlike pRb, which maintains relatively constant 

levels throughout the cell cycle, p107 and p130 fluctuate antagonistically to one another 

in each of the phases of cell replication.365
-
367 Starting with the GO phase, p130 is 

abundant and involved with cells being exited from mitosis and maintained at a quiescent 

state.368
• 

369 As the cell enters G 1 and progresses through each phase of the cell cycle the 

levels ofp130 drop dramatically.368
•

369 The opposite is true for p107.370
-
372 

Another difference from pRb is that p107 and p130 have a high affinity for CCNA-cdk2 

or CCNE-cdk2.355
• 

357
• 

373
-
375 Also, even though they too bind with E2F, p107 and p1 30 
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function more as co repressors acting as CDK.Is rather than as activators as discussed 

above.376
• 

377 The E2F transcription factors that they mainly interact with are E2F4 and 

E2F5. However, they can also bind with the E2Fl , 2, and 3 factors when they are over 

expressed. 378
-
380 

1.5.5 Conclusion 

In conclusion the cell cycle is a very sophisticated process that involves, directly and 

indirectly, several pathways, key players, and influences from extra and intra-cellular 

sources. Although only a portion of cell replication has been elucidated it is clear that 

there is much to be discovered and completely understood. However, as more discoveries 

are being accumulated the complex intricacy of the cell cycle become evident. Therefore, 

a more complete understanding of cancer, cell differentiation, and development will 

follow based on knowledge gained from cell cycle discoveries. 

The relevance of the cell cycle to this study is to obtain a clearer understanding of how a 

cell replicates, divides, and destroys itself. As previously mentioned, cancer is the result 

of an uncontrolled cell. Knowing the process involved in the cell cycle helps coordinate 

an organized investigation for determining where or how a malfunction in this pathway 

can lead to a cancerous cell. The fact that the MMR pathway of the families in this study 

has an identified MSH2 mutation, suggests that cell cycle malfunctions are involved in the 

development and possibly penetrance variations of HNPCC. 
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1.6 Background and Rationale For Study 

1.6.1 Overview 

HNPCC (hereditary non-polyposis colorectal cancer) has been linked to mutations in 

mismatch repair (MMR) genes in some families. However, not all mutation carriers 

develop cancer and there is a wide variation in phenotypic presentation and age of onset 

within these carriers. Therefore, other factors must be involved. 

Modifier genes may contribute to the phenotypic variation of HNPCC. Thus, it is 

hypothesized that the genes of pathways such as the cell cycle and DNA mismatch repair 

may act as modifiers in individuals carrying a known MSH2 HNPCC mutation. 

Of particular interest to this study are i) the MSH2 A -7 T point mutation at nucleotide 

942+ 3A -7 T in the 3' splice site of intron 5 and ii) an MSH2 deletion of exons 4-16. 114
' 

120 

In two HNPCC families from Newfoundland and Labrador and the lower north shore of 

Quebec with either of these two identified MSH2 mutations, there is a variation within 

each family in the age at onset or severity of disease despite similar environmental 

backgrounds. Other environmental factors such as nutrition, smoking, alcohol, or 

chemicals may play a modifying role. Given our knowledge of modifier genes in animal 

models and some human diseases, it is also possible that other genes may independently 

modify the phenotype of the MSH2 mutations in these kindreds. For example, it has been 

shown in diseases such as cystic fibrosis, deafness, and other forms of colon cancer that a 

modifying gene affects the penetrance of their phenotypes. These modifiers can provide 

either protection from or enhancement of the disease depending on the allelotype that the 

individual has. Considering the amount of phenotypic variations within HNPCC family 

47 



members carrying the same mutation, it is possible that other genetic influences such as 

modifiers may be playing a role. This modification can be either direct or indirect in a 

metabolic, physiological, or disease pathway. 124 Determining the risk due to such 

modifiers may more clearly defme the risk and severity of expression in individual 

mutation carriers. In other words, identifying modifiers should aid in more precise 

diagnosis, prognosis, and treatment of HNPCC in these two families. 

It is known that carcinogenesis involves a malfunction in the control of cell division. 

Based on that fact, I focused my research on genes directly involved in the cell cycle 

pathway. In my project I studied frequency and distribution of SNPs within genes of the 

cell cycle in carriers of MSH2 mutations with different disease expression. Since MMR 

genes are mutated in this disease, I also analyzed SNPs within MMR genes. In addition, 

there have been a number of studies involving SNPs in the methylenetetrahydrofolate 

reductase (MTHFR) enzyme in association with colon cancer. It was observed in these 

studies that folate status and allele type for the C677T MTHFR gene might be involved 

with expression of colorectal adenomatous and hyperplastic polyps.391
• 
392 Therefore, 

some MTHFR SNPs were also included in this analysis. 

With the collected data I analyzed how the allele types of such genes were related to the 

age of onset ofHNPCC. The purpose of doing this analysis was to study genetic factors 

that could modify the age-dependent penetrance of HNPCC. Confirmed results from this 

data would be used to alter the current screening methods because of genetic 

identification of those within these mutation positive carriers who might be more likely to 

develop a specific form of HNPCC- related cancer (colon, rectal, endometrial, or other 

forms). Such information would also be applied to identifying who in this group was 
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more likely to develop the disease earlier than other family members with the same MSH2 

mutation. 

Choosing the Newfoundland population for this study was based on their genetically 

isolated homogeneous nature. The people of Newfoundland mainly came from the 

southwest coast of England and south east coast oflreland starting in the 1700' s. Fishing 

was the livelihood of these people explaining their coastal habitat patterns. Since there 

were few roads, many towns remained isolated from one another except by sea. This type 

of setting contributed to a series of homogenous genetic isolates since little in or out 

migration took place for approximately 250 years. The majority of families in 

Newfoundland were large with the average family having 6 or more children. Also, the 

community churches and later the provincial archives kept records of births and deaths of 

everyone in the community. Combining family size and history records with isolation 

makes Newfoundland a genetically rich resource for studying inherited diseases such as 

HNPCC. 

1.6.2 Specific Objectives 

1. To identify candidate genes by a comprehensive literature and database search. 

2. To genotype candidate modifier loci in HNPCC or polyp patients carrying one of 

the two defmed MSH2 mutations. 

3. To determine if there is a polymorphic difference in the age of onset of those who 

get HNPCC, an HNPCC-related cancer, or polyp and those who do not. 
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Chapter 2 Materials and Methods 

2.1 Subjects 

Two large HNPCC kindred's have been ascertained through studies at Memorial 

University ofNewfoundland (MUN) and the Charles S. Curtis Memorial Hospital, in St. 

Anthony, Newfoundland and Labrador (NL). This includes a large NL family from the 

Northeast coast ofNL (called Family C), and a family from the Lower North Shore of 

Quebec who traditionally received their healthcare from the hospital in St. Anthony, NL 

(called Family 11). For each family, family history and medical records had been 

collected to extend the pedigrees and to determine the type and age of onset of CRC and 

extracolonic cancers in affected individuals. 

MSH2 mutations were identified in both of these families: (i) Family C carries a c.942+3 

A 7 T point mutation of intron 5 resulting in a deletion of ex on 5 from the mRNA at the 

3' splice site114 and (ii) Family 11 carries a multi-exonic deletion extending from exon 4-

16.120 

Family C includes twelve sub-families with > 1000 family members. Ancestors of all sub­

families came from within a 40 km radius of each other along a stretch of north eastern 

coastline. A couple who settled in Newfoundland more than 200 years ago was identified 

through archival searches as ancestral to four sub-families of Family C. All sub-families 

have a common haplotype of linked markers in the immediate region of MSH2 of 

chromosome 2 suggesting a common ancestor for all the sub-families. 
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Family 11 has a pedigree size of>575 family members over 7 generations. The family is 

Anglo-Saxon origin living in an isolated area of the Lower North Shore of the St. 

Lawrence River, Quebec and their clinical status regarding colorectal cancer has been 

followed for over 30 years. 

Only those who tested positive for the relevant mutation in these two families and gave 

research consent were included in the present study. In total 135 genomic DNA samples 

including 94 from Family C and 41 from Family 11 were used for this study. 

2.2 Phenotype Presentation 

The HNPCC cancers occuring in Family C included colorectal, endometrium, ovarian, 

stomach, small bowel, and skin (sebaceous cell cancer and keratocanthomas). 

In Family 11 HNPCC cancers included colorectal, endometrial, stomach, ureter, bladder, 

kidney, and sebaceous cells but ovarian cancer was not observed. Both families had skin 

lesions considered to be Muir-Torre features including keratocanthoma and sebaceous 

adenoma. 120 

2.3 Screening 

When these families were identified and characterised a screening program was offered to 

affected and at risk family members based on the type and frequency of the cancers 

present in their family. Results of all screening investigations have been recorded. 

2.4 DNA Samples 

DNA samples were collected at the time of initial mutation testing of members of these 

families. The DNA extraction method followed standard procedures.393 Family members 

consented to the use of an aliquot of DNA for research studies. DNA samples were 

grouped according to age of onset of an HNPCC related cancer or polyp. 
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Thirty-one SNPs from 17 genes were chosen for study (1 CCNA2, 3 CCNDl, 1 CCND2, 

2 CCND3, 5 CCNH, 1 CDK2, 1 CDKNIA , 2 CDKNJB, 3 CDKN2A (p16), 3 E2F2, 1 

RAD51, 1 PMS2, 2 MLHJ, 2 MSH2, 1 MSH6, 1 TFD-Pl, and 1 MTHFR) (Table 2.1). The 

allele frequency for each SNP was determined and analyzed according to the age of onset 

categories. 

2.5 MassArray 

The MassArray is a homogeneous massExtend (hME) assay that can be used for SNP 

analysis. The analysis is done through the use of MALDI-TOF-MS (matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry), which permits high throughput 

genotyping. This form of mass spectrometry allows for processing of numerous samples 

simultaneously. Fewer reactions are required to obtain large quantities of data, when 

compared to traditional procedures such as SSCP and RFLP. It is a useful method when 

DNA supplies are limited, as each reaction only requires 2.5 ng of DNA. 

In general, the MassArray involves a PCR step, a SNP region, and then an hME reaction. 

The hME step is a process of adding hME nucleotides by using specific primers that are 

adjacent to a SNP location on a gene. Since different alleles vary in mass a SNP is 

differentiated by the mass of the allele. Thus, adding hME nucleotides to the PCR 

product allows tagging of each SNP of interest for identification by its mass so that the 

laser MALDI-TOF-MS can identify it. 

A multiplex reaction is also incorporated into this protocol. Multiplex is a reaction where 

more than one SNP primer is added to the same tube of multiple PCR and hME products 

and then dispensed into a single well on a sample plate. A computer program called 

SpectroDESIGNER (Sequenom, Newtown, MA, USA) determines which SNPs can be 
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multiplexed together into one reaction tube. It also designs the PCR and MassEXTEND 

primers required (Table 2.2 and 2.4), as well as the multiplex conditions for the 

appropriate termination mix to be used for each reaction (Table 2.5). 

Following the multiplex protocol the samples are transferred onto a 384 well chip (- 1 x 

1.5 inches). The 384 wells are - 1/4 mm in diameter. The samples are dotted onto the chip 

by a robot. Once the chip has been spotted it is placed into the MassArray apparatus, 

which does MALDI-TOF-MS analysis by reading each spot 3 times and then averaging 

the peaks. The machine-called results must be reviewed manually before being 

considered fmal. 

2.6 SNPs Analyzed 

SNPs were chosen using the National Center for Biotechnology Information (NCBI) 

website as a guide. Initial criteria for choosing these SNPS were: (i) a minor allele 

frequency of 5% or higher (ii) involvement in the cell cycle either directly or indirectly, 

(iii) location in a MMR gene, and/or (iv) causing a non-synonymous amino acid change. 

However, many of these SNPs were recently discovered and allele frequencies were 

either unknown or less than 5%. (Table 2.1) 
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Table 2.1: List of SNPs used for RFLP & MassARRA Y Analysis. 

Gene SNP Amino Acid Hz Genbank 
Change SNPid 

CCNDfJIU A~G N/A N/A rs603965 
CCND11 722 

G~C N/A N/A rs678653 
MTHFR0 11 C~T VAL~ ALA 0.409 rs1801133 

CCNDJ G~T N/A N/A ss3163670 
CCND2 A~G GLY~ARG 0.01 rs3217921 
CCND3 T~G ALA~SER 0.49 rs1051130 
CCND3 C~T PRO~SER 0.02 rs3218089 
CCNH T~C VAL~ ALA 0.169 rs2266690 
CCNH A~G LYS~ARG 0.051 rs226669 
CCNH G~T ARG~LEU 0.011 rs2234942 
CCNH T~C VAL~ARG 0.144 rs2266690 
CCNH A~G LYS~ARG 0.045 rs2266691 
CCNA2 G~A VAL~ILE 0.067 rs769242 
CDK2 A~C TYR~SER 0.00 rs3087335 

CDKNJA(p2J0 P1
) C~T SER~ARG 0.29 rs1801270 

CDKNJB(p2r'P1
) G~T VAL~GLY 0.28 rs2066827 

CDKNJB(p2r'P1
) C~T ARG~TRP 0.00 rs206682 

CDKN2A(pl6) G~A ALA~THR 0.056 rs3731249 
CDKN2A(pl6) G~A GLY~ARG 0.012 rs4987127 
CDKN2A_fp_16l_ C~T PRO~SER 0.011 rs3731190 

E2F2 A~G ASP~ASN 0.02 rs4134982 
E2F2 G~A GLY~ARG 0.011 rs4134973 
E2F2 G~T GLN~HIS 0.39 rs2075995 
E2F2 G~A GLY~ARG 0.01 rs2229287 

RAD51 A~C LYS~GLN 0.00 rs1056742 
MLHJ A~G ILE~VAL 0.11 rs2229023 
MLHJ G~A VAL~ MET 0.00 rs2308317 
MSH2 G~A GLY~ASP 0.01 rs4987188 
MSH2 T~G HIS~GLN 0.00 rs1800152 
MSH6 A~G GLY~VAL N/A rs1042821 
PMS2 A~G LYS~GLU 0.125 rs2228006 

TFD-Pl G~A ASP~ASN 0.011 rs4150823 
*N/A=not available from resources at tune of selectiOn. Hz= Heterozygosity 
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Data was collected by either PCR-RFLP analysis or through MassArray. PCR-RFLP 

involves using the polymerase chain reaction to amplify a sample of DNA including the 

SNP to be tested and then digesting the amplified DNA with a restriction enzyme. The 

restriction enzymes cut the amplified DNA into fragments based on their ability to 

recognize a specific DNA sequence (usually in the range of 6-10 basepairs in length). If a 

DNA sample has the sequence recognized by a particular restriction enzyme it will be 

cleaved at that specific region. If the SNP allele alters the restriction rate, cleavage will 

not occur. Thus, the samples will be of different lengths depending on the SNP allele 

enabling identification of the presence of a specific sequence. This method can only be 

used to genotype SNPs that occur in restriction enzyme recognition sequences. 

The initial3 SNPs (CCNDJA870G, CCNDJ G1722C, andMTHFR C677T) were 

analyzed using PCR-RFLP analysis. MassArray™, was used (see below) for the 

remaining SNPs (CCNA, CCNDJ, CCND2, CCND3, CCNH, CDK2, CDKNJA (p21c;pi), 

CDKNJB (p2 7Kip1
) , CDKN2A (p16), E2F2, RAD51, MLHJ, MSH2, MSH6, PMS2 and 

TFD-Pl). 

2.7 PCR-RFLP analysis was conducted on SNPs in CCNDJ870
, CCNDJ 1722

, and 
MTHFR677 as follows: 

2.7.1 Genotyping ofCCNDl A870G Polymorphism 

The 168-bp fragment containing the A/G polymorphism in exon 4 of CCNDJ was 

analyzed using the PCR-RFLP method. The PCR reaction was performed using the 5' -

GTGAAGTTCA TTTCCAA TCCGC-3' and 5 ' -GGGACATCACCCTCACTTAC-3 ' 

primers (Qiagen, Operon Technologies, Alameda, CA, USA). The PCR reactions 

contained the following: 1x PCR buffer, 0.2 mM/dNTP, 1.5 mM MgCb, 2.5 ul /primer, 
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1 U Taq, 20 ng DNA in a final volume of 25 ul. Amplification conditions were: 95°C for 

10 min followed by 35 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 60 s with a 

fmal extension of 72°C for 7 min. The PCR product was digested overnight at 37°C using 

10 ul ofPCR product, 2.0 ul of 1 Ox RE buffer, 0.5 ul (5 units) of ScrFI restriction enzyme 

(New England Biolabs Inc., Beverly, MA, USA), and 7.5 ul ddH20 to make a final 

volume of 20 ul. The presence of the G allele resulted in two fragments of 146 and 22 bp, 

whereas the undigested product of 168 bp represented the A allele. RFLP products were 

visualized on a 3% agarose gel. 

2.7.2 Genotyping ofCCNDl G1722C Polymorphism 

The CCNDJ G/C SNP was genotyped using the 5' -AAGTAGAAGAGGGTTTTAGG-3 ' 

and 5' -TCGTAGGAGTGGGACAG-3 ' primers (Qiagen, Operon Technologies, 

Alameda, CA, USA). The PCR reactions contained the following: 1x PCR buffer, 0.2 

mM/dNTP, 1.5 mM MgCh, 2.5 ul /primer, 1U Taq polymerase, 20 ng DNA in a fmal 

volume of 25 ul. The amplification conditions were an initial denaturing step at 94 °C/ 2 

min followed by 34 cycles of 94°C/1 min, 57°C/ 1 min, 72°C/ 1 min with a fmal 

extension of 72°C/7 min. Ten micro-litres of PCR product were digested at 37°C 

overnight with 0.5 ul (10 U/ul) of Haelll enzyme, 2.0 ul of 10xRE buffer, and 7.5 ul of 

dH20 to make a 20 ul volume (New England Biolabs Inc., Beverly, MA). The products 

were visualized on a 3% agarose gel. The restriction cut site was at the G allele and was 

22 base pairs in length. 

2.7.3 Genotyping ofMTHFR C677T Polymorphism 

The MTHFR CIT SNP was analyzed using the 5' -TGAAGGAGAA GGTGTCTGCG 

GGA-3 ' and 5'-AGGACGGTGCGGTGAGAGTG-3 ' primers (Qiagen, Operon 
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Technologies, Alameda, CA, USA). The 15 ul reaction mixture for PCR contained 1.5 ul 

lOX buffer, 0.45 ullprimer, 0.75 ul dNTPs, 0.20 ul Taq polymerase, 1 ul DNA, and 0.45 

ul MgCh. The amplification conditions had an initial denaturing step at 95°C/3 min 

followed by 30 cycles of 94 °C/30 s, 64 °C/30 s, 72°C/45 s, and a final extension at 72°C/7 

min. RFLP analysis was conducted by mixing 10 ul of PCR product with 0.5 ul of Hinjl 

enzyme (New England Biolabs, Inc., Beverly, MA, USA) with a digestion period of 

37°C/2 h. Alleles were visualized on a 3% agarose gel. The restriction cut site was at the 

T allele. 

2.8 MassARRAY analysis was conducted on SNPs in CCNA, CCNDJ, CCND2, 

CCND3, CCNH, CDK2, CDKNJA (p21Cipl), CDKNJB (p27Kip1
) , CDKN2A (p16) , E2F2, 

RAD51, MLHJ, MSH2, MSH6, PMS2 and TFD-Pl. Some ofthe data was collected from 

the samples used in the uniplex test runs (a uniplex reaction means that only one primer is 

used per reaction tube). The purpose of such a test run was to determine if the protocol for 

each primer, reagent, and DNA samples was appropriate and working for this analysis. 

The remaining data was collected in multiplex reactions (a multiplex reaction has more 

than one primer used per reaction tube). 

2.8.1 The following protocol was used for the MassARRA Y analysis: 

First, a PCR reaction was performed for each SNP on the genomic DNA samples 

provided for this study (Tables 2.3 and 2.4.). In this reaction, an additionallO nucleotides, 

5' -ACGTTGGATG-3 ', were added to the 5' end ofthe forward and reverse primers 

(Table 2.2). These extensions were referred to as a hME-10-mer tag and are used to 

improve the hME reaction that followed (see below). This additional sequence tagged 

unused primers from the amplified PCR product so that they would have a greater mass. 
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The larger mass of these tagged primers was outside of the parameters set for calling a 

SNP sequence during the mass array analysis. Therefore, the tagging process screened out 

unused primers. 

Following the PCR reaction, SAP (shrimp alkaline phosphatase) was added to each of the 

PCR reaction tubes, which were then incubated at 3 7°C for 20 minutes followed by the 

hME reaction (Table 2.5). The SAP dephosphorylates dNTPs that were not incorporated 

into the amplified DNA sequence. 

Next, hME termination (Table 2.6) and primer mixes (Table 2.7 and 2.8) were added to 

the SAP treated PCR product, which then underwent another series of thermocycling 

(Table 2.9 and 2.1 0). A termination mixture was used to allow differentiation between the 

SNP alleles. A single primer is used which anneals to the target sequence immediately 

adjacent to the SNP. The ME reaction mix contains only 3 types of dNTPs which will 

allow for the addition of only 1 or 2 bases, depending on the allele in the test sample. One 

additional nucleotide was added immediately after the polymorphic site of one allele 

while adding two additional nucleotides after the polymorphic site of the other allele. The 

difference in nucleotide numbers created a difference in mass between the two alleles that 

was identifiable by a later step using MALDI-TOF mass spectrometry (Table 2.7). 

However, before proceeding to the mass spectrometry, resin was added to desalt the final 

product (Table 2.11 ). This removed any ions or other unwanted materials that could 

interfere with the final result of the massarray analysis. 

Finally, after resin treatment, the hME reaction products were spotted onto a silicon 384-

well SpectroCHIP. The data was then collected using Spectra (MALDI-TOF MS) by 
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SEQUENOM, Newtown, MA, USA using Typer 3.0.1 software program for 

displaying spectra and calculating the relative allele frequencies. 

The same procedure was followed for both the multi -and uniplex reactions with the 

exception of variances in chemical concentrations and number of SNPs per reaction tube. 

2.9 Statistical Analysis 

Statistical analysis was conducted usmg SPSS for Windows 95 version 10.0. The 

association between the age of onset and allele genotype was compared using Kaplan­

Meier survival curves, the log rank test hazardous ratios and Cox regression. Events were 

characterized as age of first HNPCC cancer (colonic or extracolonic) or age of first 

colorectal polyp. In other words, a single event was defined as having a minimum of one 

of the following: an HNPCC cancer (colonic or extracolonic) or a polyp. Once a patient 

presented for the first time with either of these criteria no further follow-up information 

was included in this analysis. Furthermore, the specific site(s) and age at which the first 

event occurred was the age and anatomical location that was entered into this study's 

analysis. Comparisons were then made between the age of first HNPCC cancer (colonic 

or extracolonic) or colo rectal polyp and SNP genotype. 
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Table 2.2: The primers used for MassARRA Y PCR reactions for each SNP. 

SNP l" PCR Primer 2"d PCR Primer Am oLen 
CCNDJ Orr ACGTTGGATGATGCCAACCTCCTC ACGTTGGATGTTAAAGTAGCACAC 90 

AACGAC CGAGGG 
CCND2NG ACGTTGGATGCTGGCTTGGTCCAG ACGTTGGATGTCAATAGCCTGCAG 89 

TTCATC CAGTAC 
CCND3Crr ACGTTGGATGAGTTACACACGCAC ACGTTGGATGCCCTGACCATCGAA 93 

CCGCAA AAACTG 
CCND3T/G ACGTTGGATGTTTGGGCGCTGGGC ACGTTGGATGCTGTCAGGAGCAGA 119 

TGGAG TCGAAG 
CCNHNG ACGTTGGATGTTGGAAACCTCCGG ACGTTGGATGAGGTGGAAATTAAG 102 

GAGAGT TTGCTG 
CCNHTIC ACGTTGGATGAAGAAGTATGAACC ACGTTGGATGTGCAAGCTCAGCAG 92 

ACCCAG AATGAC 
CCNHTIC ACGTTGGATGAAGAAGTATGAACC ACGTTGGATGTGCAAGCTCAGCAG 102 

ACCCAG AATGAC 
CCNHGrr ACGTTGGATGTTGGCCACGGCTTT ACGTTGGATGACAGTAGTCAGAAG 99 

GCATCT CGGCAC 
CCNHNG ACGTTGGATGAGGTGGAAATTAAG ACGTTGGATGTTGGAAACCTCCGG 117 

TTGCTG GAGAGT 
CCNA2GIA ACGTTGGATGTGAATTGTCCCAGA ACGTTGGATGCTTCATTAACACTC 120 

GTCACC ACTGGC 
CDK2NC ACGTTGGATGAGGTGGAAAAGAT ACGTTGGATGCTCTCCCGTCAACT 94 

CGGAGAG TGTTTC 
CDKNJA ACGTTGGATGCCCGCCATTAGCGC ACGTTGGATGATGTCCGTCAGAAC 96 
p2JaP1crr ATCACA CCATGC 
CDKNJB ACGTTGGATGATGTCAAACGTGCG ACGTTGGATGAAGAGGTTCCTGCA 113 
p2ripicrr AGTGTC GGCCGA 
CDKNJB ACGTTGGATGAGCCGGAGCCCCAA ACGTTGGATQCCAAAGGTGCCTGC 101 
p2 fUP1Grr TTAAAG AAGGTG 
CDKN2Apl6 ACGTTGGATGCTCAGATCATCAGT ACGTTGGATGCACCAGAGGCAGTA 119 
G/A CCTCAC ACCATG 
CDKN2Apl6 ACGTTGGATGAGGCATCGCGCACG ACGTTGGATGACTCTCACCCGACC 119 
GIA TCCAG CGTGCA 
CDKN2Apl6 ACGTTGGATGAACCACGAAAACCC ACGTTGGATGGAACATGGTGCGCA 118 
err TCACTC GGTTCT 
E2F2GIA ACGTTGGATGGGAATGTTTGAAGA ACGTTGGATGGTGTTCATCAGCTC 106 

CCCCAC CTTCAG 
E2F2NG ACGTTGGATGAGTCTGCTGTAAGA ACGTTGGATGTTGGCTTCAACCAA 120 

GGTTGG CTCAGG 
E2F2Grr ACGTTGGATGATCTCTTGTTGGCC ACGTTGGATGTGAAGGAGCTGATG 96 

TTGTCC AACACG 
E2F2GIA ACGTTGGATGTGTGTTTCAGTCTCT ACGTTGGATQCCACTTCTGTTCAT 101 

TCTGG AGAGCC 
RAD51 NC ACGTTGGATGATCTGAGGAAAGG ACGTTGGATGGCTTAGCTTCAGGA 120 

AAGAGGG AGACAG 
MLHJGIA ACGTTGGATGTCGACATACCGACT ACGTTGGATGCTGATGTTAGGACA 99 

AACAGC CTACCC 
MLHJNG ACGTTGGATGCTGATGTTAGGACA ACGTTGGATGTCGACATACCGACT 120 

CTACCC AACAGC 
MSH2T/G ACGTTGGATGTTATTCAGCAAGGC ACGTTGGATGCACTAATGAGCTTG 110 

AGCCAG CCATTC 
MSH2G/A ACGTTGGATGTTATTCAGCAAGGC ACGTTGGATGCACTAATGAGCTTG 116 

AGCCAG CCATTC 
MSH6NG ACGTTGGATGGCATCCCCGCCTGG ACGTTGGATGGCTGAGTGATGCCA 117 

GGAAG ACAAGG 
PMS2 NG ACGTTGGATGTGGTTTGAATGGCA ACGTTGGATGAGGAACATGTGGAC 102 

GTCCAC TCTCAG 
TFD-Pl GIA ACGTTGGATGCGTCCTCGTCATTC ACGTTGGATGAATGGGTCTCAGTA 99 

TCGTTG CAGCGG 
*Amp_len = amplicon length underlined sequence= hME-10-mer tag**see Appendix 
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Table 2.3: PCR contents per tube for Multiplex Analysis. 
Each tube contained 5 ul of PCR product. 

Multiplex PCR ul/Rx 
dH20 0.920 
Buffer(l Ox) 0.625 
dNTPs(25mM) 0.100 
Forward 1.00 
Primer(0.5 uM) 
Reverse Primer 1.00 
(0.5uM) 
MgCl (25 mM) 0.325 
Hot Star Taq 0.030 
DNA 2 ng/ul 1.00 
Total Volume 5.00 
Thermocycle 3.35hrs 

.. 
Thermocycle conditions: 95°C 15 mms, (95°C 20 sec, 
56°C 30 sec, 72°C 1 min) repeat I 00 cycles, 72°C 3 min. 
**see Appendix 

Table 2.4: PCR per tube for Uniplex Analysis. Each tube 
contained 5 ul of PCR product. 

Uniplex PCR ul/Rx 

dH20 2.24 
Buffer (lOX) 0.50 
MgCl (25 mM) 0.20 
dNTPs (25 mM) 0.04 
Forward Primer 1.00 
(1 uM) 
Reverse Primer 1.00 
(1 uM) 
Taq 0.02 
DNA (2 ng/ul) 1.00 
Total Volume 5.00 
Thermocycle 1.52 
Time hrs . . . 

Thermocycle conditiOns: 95°C 15 mms, (95°C 20 sec, 56°C 30 sec, 
72°C 1 min) repeat 40 cycles, 72°C 3 min. **see Appendix 

61 



Table 2.5: SAP addition to PCR Product per tube for Multiplex and 
Uniplex Analysis. Each tube contained 5 ul of PCR product and 2 ul 
of SAP mixture with a final volume of 7 ul/tube. 

SAP addition ui/Rx 

dH20 1.53 
hME 0.17 
Buffer( I Ox) 
SAP 0.30 
Total Volume 2.00 
Thermocycle 25m in. 

Thermocycle conditions: 37°C for 20 mins 
followed by 85°C for 5 mins. **see Appendix, 
SAP: shrimp alkaline phosphate 

Table 2.6: SNP contents of each Termination Mix tube used for each MassARRA Y 
reaction. Mixes 1-5 are multiplex and Mixes 6 and 7 are uniplex reactions. 

dNTPs ADDED TO EACH TERMINATION MIX 
ACT ACG ACT ACT ACT CGT ACG 
Mixl Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 

CDKN2A MLHl CDKNIB CCND3 CCNH CCNDI CDKN2A 

z GIA NG GIT TIG NG GIT CIT 
0 .... Ala-7Thr Ile-7 Val Val-7Giy Ala-7Ser Lys-7Arg 
E-o CDK2 CCNA2 CDKNlB CCNH MSH6 < 

~ 
NC GIA CIT G/T NG 
Tyr-7Ser Vai-7IIe Arg-7Trp Arg-7Leu Glv-7Val 

~ CCND2 CCNH E2F2 G/T CCNH E2F2 
E-o NG NG Gln-7His TIC GIA 
~ Gly-7Arg Lys-7Arg Val-7Arg Gly-7Arg u 
< MSH2 CDKNlA MSH2 PMS2 CDKN2A 
~ TIG CIT GIA AIG GIA 
0 
E-o His-7Gln Ser-7Arg Gly-7Asp Lys-7Glu Gly-7Arg 
~ MLHl E2F2 CCNH TFD-Pl 
~ 
~ GIA GIA TIC GIA 
~ Vai-7Met Gly-7Arg Vai-7Ala Asp-7Asn 

~s 
RAD51 CCND3 E2F2 
NC CIT NG 
Lys-7Gln Pro-7Ser Asp-7Asn 

.. 
Termmatwn MIX: The 3 dNTPs added to the reactiOn after SAP addition m order to allow for 
differentiation between the SNP alleles during MALDI-TOF-MS. 
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Table 2.7: The primers used for the MassExtend hME 
reaction for each SNP. 

SNP hME Primer UEP _Sequence 

CCNDI G/T CTCCGCCTTCAGCATGG 
CCND2A/G GTCAGGACCAACGTGAC 
CCND3 CIT CCGACCACGCTGTCTCT 
CCND3 T/G GAGAGCCTCAGGGAAGCC 
CCNHA/G GTATCTGTTCAAGTGCC 
(Lys/Arg) 
CCNHT/C ACTTCTGTTTCAGAACAGCA 
Val/Ala 
CCNHT/C ACTTCTGTTTCAGAACAGCA 
Val!Arg_ 
CCNHG/T GCGGGCTGACGCCAACC 
CCNHA/G AGAGTCCTCTTGGACAGGAGA 
CCNA2 G/A CACTGGCTTTTCATCTTCTAATA 
CDK2 AIC TTTGTACACAACTCCGT 
CDKNlA GACAGCGAGCAGCTGAG 
p21 Cip1C/T 
CDKNlB CCTGCCTGGCGTCCATCC 
p27Kip1C/T 
CDKNIB GCGCAGGAGAGCCAGGATG 
p27Kip1G/T 
CDKN2A pl6 G/A ACCATGCCCGCATAGATGCC 
Ala/Thr 
CDKN2A p16 G/A GCCCGGGAGGGCTTCCT 
Gly/Arg 
CDKN2A p16 CIT TTCGGCGCGCGTGCGGC 
E2F2 G/A Gly/Arg CCCCAGCTGTTGCTGCTTCC 
E2F2 A/G Asp/ Asn CCAACTCAGGACATAGC 
E2F2 G/T GGAGCAGGCCTTGGACCA 
E2F2 G/A Gly/Arg ATACATTTGGCAAGTACCCAA 
RAD51 A/C ACAGGGAGAGTCGTAGATTT 
MLHI G/A CTACCCAATGCCTCAACC 
MLHJA/G GACTAACAGCATTTCCAAAGA 
MSH2 T/G GTTCTGTTGAAGATACCACTG 
MSH2 G/A GTTCTGTTGAAGATACCACTG 
MSH6 A/G TGCCGCCGCTGCCCCCG 
PMS2A/G GACTCTCAGGAGAAAGCGCCT 
TFD-Pl G/A AGGACGACGAGGAGGAC 

**see Appendix 
hME (homogeneous massextend): addition of nucleotides adjacent 
to SNP of interest to allow allele differentiation by mass. 
UEP=unextended primer 
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Table 2.8: 500 uL stock ofhME primer mixes for each multiplex hME reaction. Primers 
that could be combined into one multiplex reaction were mixed into a 500 ul stock 
solution for easier handling and equal dispensing. 

SNPs Mix 1 SNPs Mix2 SNPs Mix3 SNPs Mix4 SNPs Mix5 
for Primer for Primer for Primer for Primer for Primer 
Mixl ul per Mix2 ul per Mix3 ul per Mix4 ul per Mix5 ul per 

SNP SNP SNP SNP SNP 
CDKN2A 50.89 MLHI 52.4 CDKNIB 46.95 CCND3 126.22 CCNH 58.40 
GIA 88.41uM AIG 85.89uM Grr 95.86uM TIG 35.65uM NG 77.05uM 

Ala-?Thr Ile-?Yal Vai-?Giy Ala-?Ser Lys-7 
Arg 

CDK2 52.64 CCNA2 50.4 CDKNIB 56.06 CCNH 53.10 MSH6 56.77 
NC 85.48uM GIA 89.22uM err 80.27uM Grr 84.75uM AIG 79.27uM 
Tyr-?Ser Val-? lie Arg-?Trp Arg-?Leu Gly-7 

Val 
CCND2 54.92 CCNH 42.2 E2F2 Grr 50.90 CCNH 55.49 E2F2 49.96 
NG 81.93uM AIG 106.59uM Gin-? His 88.43uM TIC 81.10uM GIA 90.08uM 
Gly-?Arg Lys-?Arg Vai-?Arg Gly-7 

Arg 
MSH2 51 .64 CDKN IA 48.8 MSH2 50.82 PMS2 55.84 CDKN 46.22 
TIG 87.15uM err 92.18uM GIA 88.54uM NG 80.59uM 2A 97.35uM 
His-? Gin Ser-?Arg Gly-?Asp Lys-7Giu GIA 

Gly-7 
Arg 

MLHI 51.98 E2F2 GIA 49.4 CCNH 52.47 TFD-Pl 48.64 
GIA 86.58uM Gly-?Arg 91.12uM TIC 85.76uM GIA 92.51uM 
Vai-?Met Val-? Ala Asp-?Asn 
RAD51 58.3 1 CCND3 50.7 E2F2 A/G 49.83 
lAIC 77.17uM err 88.72uM Asp-?Asn 90.31uM 
Lys-?Gin Pro-7Ser 

dH20 179.62 206.10 192.97 251.28 288.65 
Total 500 500 500 500 500 
Volume 

Table 2.9: Multiplex hME reaction/tube. Each tube contained 5ul PCR product, 2 ul 
SAP addition, and 2 ul ofhME mix with a final volume of9 ul/tube. 

Multiplex ul/Rx 
hME reaction 
dH20 0.76 
Termination 0.20 
Mix 
hME Primer 1.00 
Mix 
TSQ 0.04 
Total Volume 2.00 
Thermoc cle 27m in. 

Thermocycle conditions: 94°C 2 rnins, (94°C 5 sec, 52°C 5 sec, 
72°C 5 sec) repeat 100 cycles, **see Appendix 
Tsq: Thermosequenase 
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Table 2.10: Uniplex hME cocktail recipe per reaction. 

SNP dH20 Termination hME primer ul Tsq Total Vol. Thennocycle 
ul mix (32 U/ul) ul Minutes 

CCNDl G!f 1.716 0.200 0.066 0.018 2.00 27 
CCND2A/G 1.716 0.200 0.066 0.018 2.00 27 
CCND3C!f 1.721 0.200 0.061 0.0 18 2.00 27 
CCND3T/G 1.739 0.200 0.043 0.018 2.00 27 
CCNHA/G 1.73 1 0.200 0.051 0.018 2.00 27 
Lys/Ar2 
CCNHT/C 1.719 0.200 0.063 0.018 2.00 27 
VaVA1a 
CCNHT/C 1.716 0.200 0.066 0.0 18 2.00 27 
VaVArg 
CCNHG!f 1.718 0.200 0.064 0.018 2.00 27 
CCNHA/G 1.71 2 0.200 0.070 0.018 2.00 27 
CCNA2G/A 1.721 0.200 0.061 O.Ql8 2.00 27 
CDK2A/C 1.719 0.200 0.063 0.018 2.00 27 
CDKNlA 1.723 0.200 0.059 0.0 18 2.00 27 
p21ciptcrr 

CDKNlB 1.7 I 5 0.200 0.067 0.018 2.00 27 
p27Kip'crr 

CDKNlB 1.726 0.200 0.056 0.018 2.00 27 
p27KiP'Grr 
CDKN2A 1.721 0.200 0.061 0.018 2.00 27 
p16 G/A 
Ala!fhr 
CDKN2A 1.727 0.200 0.055 0.018 2.00 27 
p16 G/A 
Gly/Arg_ 
CDKN2A 1.719 0.200 0.063 0.018 2.00 27 
pt6 err 
E2F2 G/A 1.723 0.200 0.059 0.0 18 2.00 27 
Gly/Arg 
E2F2 A/G 1.721 0.200 0.060 0.0 18 2.00 27 
Asp/Asn 
E2F2 G!f 1.721 0.200 0.06 1 0.018 2.00 27 
E2F2 G/A 1.722 0.200 0.060 0.01 8 2.00 27 
Gly/Arg 
RADSl A/C 1.712 0.200 0.070 0.0 18 2.00 27 
MLHl G/A 1.720 0.200 0.062 0.018 2.00 27 
MLHlA/G 1.719 0.200 0.063 0.018 2.00 27 
MSH2T/G 1.720 0.200 0.062 0.018 2.00 27 
MSH2G/A 1.721 0.200 0.061 0.018 2.00 27 
MSH6A/G 1.714 0.200 0.068 0.018 2.00 27 
PMS2 A/G 1.71 5 0.200 0.067 0.018 2.00 27 
TFD-Pl 1.724 0.200 0.058 0.018 2.00 27 
G/A 

. . 
Thennocycle conditiOns: 94°C 2 mms, (94°C 5 sec, 52°C 5 sec, 72°C 5 sec) repeat 100 cycles 
**see Appendix, Tsq: Thermosequenase 
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Table 2.11: Desalting ofhME product following PCR in preparation for 
MALDI-TOF-MS analysis. The hME product plate was rotated for 20 
minutes following this addition. 

Amount added to 
Desalting Agent product of each 

hME reaction well 
Resin 6mg/well 

dH20 16uVwell 

**see Appendix 
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Sources of Materials for Genotyping 

Software: MassARRA Y™ Typer 3.0.1 or higher (Sequenom, Newtown, MA, USA) and 
MassARRA Y™ Assay Design 2.0 (Sequenom, Newtown, MA, USA). 

Equipment: MassARRA Y™ Liquid Handler (Sequenom, Newtown, MA, USA), 
MassARRA Y™ Nanodispenser (Sequenom, Newtown, MA, USA), and MassARRA Y™ 
Analyzer (Sequenom, Newtown, MA, USA). 

Consumables for PCR: Hot Star Taq (Qiagen Operon Technologies, Alameda, CA, 
USA,), Hot Star Taq PCR Buffer (Qiagen, Operon Technologies, Alameda, CA, USA), 
dNTPs, PCR primers. 

Consumables for hME: MassExtend™ Starter Kit (Sequenom, Newtown, MA, USA), 
Homogenous MassExtend™ Mix (Sequenom, Newtown, MA, USA), MassExtend™ 
Primers, Thermo Sequenase™ (Sequenom, Newtown, MA, USA), Clean Resin 
(Sequenom, Newtown, MA, USA), Clean Kit (Sequenom Newtown, MA, USA,), and 
Shrimp Alkaline Phosphatase (SAP) (Sequenom, Newtown, MA, USA). 

SpectroCHIP Bioarrays™: 384-well silicon SpectroCHIP (Sequenom, Newtown, MA, 
USA). 

Clean Resin Dimple Plate: 6mg Dimple Plate (Sequenom, Newtown, MA, USA). 
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Chapter 3 Results 

3.1 RESULTS 

Thirty-one SNPs from 17 different genes were chosen for this study. They were: 1 

CCNA2, 3 CCNDJ , 1 CCND2, 2 CCND3, 5 CCNH, 1 CDK2, 1 CDKNIA, 2 CDKNJB, 3 

CDKN2A (p16) , 3 E2F2, 1 RAD51 , 1 PMS2, 2 MLHJ , 2 MSH2, 1 MSH6, 1 TFD-Pl , and 

1 MTHFR (Table 3 .1.1 & 3 .1.2). Details of these SNPs were outlined in the Materials and 

Methods section above. 

Two of the 31 SNPs (1 CCNH and 1 PMS2) had to be eliminated as a result of invalid 

primers either from contamination or sequence inaccuracies. There were two other SNPs 

that yielded limited results because the sample size for their reaction was relatively small 

(CCND3 TIG Ala-7Ser and CCNHTIC Val-7Ala). For this reason, both were eliminated 

from the final analysis. Therefore, 27/31 of the SNPs that were selected for this study 

were analyzed completely. However, CCND3 TIG Ala-7Ser and CCNH T IC Val-7Ala 

were analyzed using the limited data that was available before being eliminated because a 

polymorphism was observed. No significant data in either of these two SNPs was found 

regarding allele types in relation to the age of onset of an HNPCC-related cancer (either 

CRC or an extra-colonic cancer) or colorectal polyps in males, females, or males and 

females combined in either of these two SNPs (Table 3.2, 3.3, and 3.4). 
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In total, 17 of these 29 SNPs were not polymorphic in our HNPCC subjects. The other 

12129 SNPs (including CCND3 TIG Ala-?Ser and CCNH TIC Val-?Ala) were 

polymorphic, and were analyzed based on the set parameters discussed in the materials 

and methods above. 

After CCND3 TIG Ala-?Ser and CCNHTC Val-?Ala were removed from the study, 10 

polymorphic SNPs remained. Of those 10, CDKN2A (p16) AIG Ala-?Thr and E2F2 AIG 

Asp-7 Asn SNPs were only observed to be polymorphic in Family C but not in Family 11 

(Table 3.1.1 and 3.1.2). Three other SNPs from the polymorphic group were of 

statistically significant value in the set parameters for this study. These three SNPs 

included CCNA2 GIA (Figure 3.1 and 3.2), CDKNIB (p2 7KIP 1) TIG (Figure 3.3), and 

CCNDJ GIC (Figure 3.4). Thus, altogether 5110 or 50% of the polymorphic SNPs that 

were completely analyzed displayed results that may be either candidates for further 

investigation or have significance in relation to HNPCC. 

For each polymorphic SNP, the age to first HNPCC-related cancer or colorectal polyp 

and allele type was analyzed by Kaplan-Meier analysis under three categories: (i) Males 

and Females combined (Table 3.2), (ii) Females only (Table 3), and (iii) Males only 

(Table 3.4). 

3.2 CCNA2 GIA 

In the Males and Females combined group, those with a CCNA2 A allele were found to 

have a significantly earlier age of onset of an HNPCC-related cancer, or colorectal polyp 

than those with the homozygous G allele (p=0.0094; Mean age: 37; 95% CI: 32, 42; Cox 

Forward Confidence Interval (CI): 1.29-14.9) (Figure 3.1). The frequency for the 

homozygous GIG allele type was 1071112 (46 males; 61 females) with 501107 (22 males; 
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28 females) of these subjects having had an event (Table 3.1.1). The heterozygous GIA 

genotype was present in 51112 (3 males; 2 females) with events having occurred in 315 (3 

males; 0 females) (Table 3.1.1). There were no subjects in this analysis that had the 

homozygous AI A alleles. When the males and females were separated and then re­

analyzed the male only group with the heterozygous Gl A allele type remained statistically 

significant for having a modifying effect for an earlier age of onset (p = 0.0239; Mean 

age: 35; 95% CI: 29, 42; Cox Forwarding CI: 4.3{1.29-14.9} (Figure 3.2 and Table 

3.1.1). 

3.3 CDKNlB (p27kipl) TIG 

The second SNP to demonstrate a significant modifying effect was CDKNIB (p27kipl) 

TIG where there was an earlier age of onset of an HNPCC-related cancer or a colorectal 

polyp in those with the homozygous GIG allele type in the female only group (p = 

<0.0001; Mean age: 34; CI {28,40}) (Figure 3.3 and Table 3.1.1). There were 63 

females in this group and 35163 were homozygous TIT with 14135 events, 24163 were 

heterozygous TIG with 9124 events, and 4163 were homozygous GIG with 414 events 

(Table 3.1.1). 

3.4 CCNDl GIC 

Finally, in the male only group the CCNDI GC was found to be associated with the age 

of onset of an HNPCC-related cancer or a colorectal polyp. There were 46 males in this 

group and 21146 had had an event (Table 3.1.1). The homozygous GIG was observed in 

4146 with 3121events, heterozygous GIC was in 19146 with 8121 events, and 23146 were 

homozygous CIC with 10121 events (Table 3.1.1). The homozygous CIC allele type of 
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this SNP was observed to be present in those with an earlier age of onset (p=0.0137; 

Mean age: 32; 95% CI: {25, 40}) (Figure 3.4). 

Table 3.1.1: Summary of allele frequencies for 31 SNPs'chosen for analysis by 
RFLP or MassARRA Y™. The minor allele frequency was taken from 
NCBI (National Centre for Biotechnology Information) database while the 
remaining allele frequencies were the results from this study. 

Amino NCBI Genotype Genotype Genotype 
Gene SNP Acid minor Frequency Frequency Frequency 

Substitution Allele Males& Males Only Females 
Frequency Females Only 

CCNDJ AJG Modulates N/A AA=37;AG AA= l7;AG AA- 20;AG=40; 

mRNA =67;GG= l5 =27;GG=7 GG=8 

splicing 
producing 2 
transcripts: a 
andb 

CCNDJ G/C 3'UTR N/A GG=ll ;GC GG=4;GC= GG=7;GC=24;C 

region =43;CC=47 19;CC=23 C=24 

MTHFR CIT Ala~ Val 0.409 CC=62;CT= CC=28;CT= CC=34;CT=30;T 

44;TT=12 14;CT=6 T=6 

MLHJ AJG Ile~Val 0.11 AA=56;AG AA=23;AG AA-33;AG- 26; 

=45;GG=7 =19;GG=5 GG=2 

CDKN2A AJG Ala~Thr 0.056 AA=n/a; AA=n/a; AA=nla; 

(P16) AG= lO; AJG=6; AG=4;GG=59 

INK4a GG=lOO GG=41 
CDKNJB T/G Vai7Gly 0.28 TT=66;TG= TT=3l;TG= TT=35;TG=24;G 

(P27) 37;GG=6 13;GG=2 G=4 

Kipl 
E2F2 TG Gln~His 0.39 TT=33;TG= TT= 12;TG= TT- 21 ;TG-31 ;G 

47;GG=22 16;GG= l4 G=8 

MSH6 AJG Gly~Val NIA AA=n!a; AA=n/a; AA- n/a; 

AG= l7;GG AG=8;GG= AG=9;GG=50 

=85 35 
CCNA2 G/A Vai7IIe 0.067 GG=107; GG=46;GA GG-61 ;GA-2;A 

GA=5;AA= =3;AA=n/a A=nla 

n!a 
E2F2 AJG Asp~Asn 0.02 AA=n/a; AA=n/a; AA=n/a; AG- 10; 

AG=12; A/G=2;GG= GG=45 

GG=80 35 
*CCND3 TIG Ala~Ser 0.49 TT=4;TG=6 TT=l ;TG=3 TT -3;TG- 3;GG 

;GG=2 ;GG= l = 1 

*CCNH TIC Vai7Ala 0.169 TT=24;TC= TT=12;TC= TT= I 2;TC=l ;CC 

3;CC= l 2;CC= l =NIA 

CCNH AG Lys~Arg 0.051 Non- Non- Non-polymorphic 

polymorphic polymorphic 
CDKN2A AJG Gly~Arg 0.011 Non- Non- Non-polymorphic 

(pl6) polymorphic polymorphic 
TFD-Pl AJG Asp~Asn O.oll Non- Non- Non-polymorphic 
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r-------------------- -------

polymorphic polymorphic 

CCNDJ GIT NIA NIA Non- Non- Non-polymorphic 

polymorphic polymorphic 
CCNH TIG Arg-?Leu 0.011 Non- Non- Non-polymorphic 

polymorphic polymorphic 
CDKN2A CIT Pro-?Ser 0.011 Non- Non- Non-

(PJ6) polymorphic polymorphic polymorphic 
MSH2 NG Gly-?Asp 0.01 Non- Non- Non-

polymorphic polymorphic polymorphic 
CDKNJB TIC Arg-?Trp 0.00 Non- Non- Non-

polymorphic polymorphic polymorphic 
CDK2 NC Tyr-?Ser 0.00 Non- Non- Non-

polymorphic polymorphic polymorphic 
CCND2 NG Gly-?Arg 0.01 Non- Non- Non-

polymorphic polymorphic polymorphic 
MLHJ NG Val-?Met 0.00 Non- Non- Non-

polymorphic polymorphic polymorphic 
RAD51 NG Lys-Gln 0.00 Non- Non- Non-

polymorphic polymorphic polymorphic 
MSH2 NG His-?Gln 0.00 Non- Non- Non-

polymorphic polymorphic polymorphic 
CCNH GIA Lys-?Arg 0.045 Non- Non- Non-

polymorphic polymorphic polymorphic 
CDKNJA CIT Ser-?Arg 0.29 Non- Non- Non-

polymorphic polymorphic polymorphic 
E2F2 GIA Gly-?Arg 0.011 Non- Non- Non-

polymorphic polymorphic polymorphic 
CCND3 CIT Pro-?Ser 0.02 Non- Non- Non-

polymorphic polymorphic polymorphic 
CCNH TIC Val-?Arg 0.144 Non- Non- Non-

polymorphic polymorphic polymorphic 
PMS2 NG Lys-?Glu 0.125 Non- Non- Non-

polymorphic polymorphic polymorphic 
*Small subset from family 11 was found polymorphic before contamination occurred. 
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Table 3.1.2: Summary of 31 SNPs chosen for analysis by 
RFLP or MassARRA Y™. 

POLYMORPHIC NON-POLYMORPHIC ELIMINATED SNPs 
SNPs SNPs 
CCNDJ AJG CCND3 CIT PMS2 AJG Lys-?Giu 
CCNDJ GIC CDKNIBTIC *CCNHTIC Vai-7Aia 
MTHFR E2F2 GIA Gly-7Arg CCNHTIC Vai-7Arg 
MLHJ GIA Ile-7Val RAD51 AIC *CCND3 TIG 

Ala-7Ser 
# CDKN2A (p16) AIG CCNH A/G Lys-7Arg 
Ala-7 Tbr 
CDKNIB (p27KJPJ) MLHJ AJG Val-? Met 
T IG 
E2F2TIG MSH2 AJG 
MSH6AJG CCNDJ GIT 
CCNA2 GIA CCND2 AJG 
# E2F2 AG Asp-7Asn CDK2 AIC 
*CCND3TIG CDKNJA CIT 
Ala-7Ser 
*CCNHTIC Val-? Ala E2F2 AJG Gly-7Arg 

TFD-Pl AJG 
CDKN2A (p16) AIG 
Gly-7 Arg 
CDKN2A{p16) CIT 
CCNHTIG Arg-7Leu 
MSH2 AJG Gly-7Asp 

*small subset from Family 11 was found polymorphic before contammatwn 
occurred; # only polymorphic in Family C 

Table 3.2: Polymorphism summary of Kaplan-Meier Survival Analysis of the age of first 
HNPCC cancer or colorectal polyp and allele type for males and females in Family C and 
Family 11 MSH2 mutation positive carriers. 

SNPID Total Patients Events P-value (log 
Anal zed (n) rank) 

CCNDJ AIG 119 57 0.9617 

CCNDJ GIC 101 51 0.5263 
MTHFR 118 60 0.6507 

108 57 0.9497 
110 59 0.1419 
109 56 0.0667 
102 54 0.2622 
102 52 0.7867 
112 50 0.0094 

E2F2 AJG As -7 Asn 93 44 0.9160 
*CCND3 TIG Ala-7Ser 12 5 0.7801 
*CCNHTIC Val-7Ala 28 17 0.3316 

* small subset from Family 11 was found polymorphic before contamination occurred. 
Note: number of patients analyzed varies due to depletion in DNA supply & nil result for some samples. 
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Table 3.3: Polymorphism summary of Kaplan-Meier Survival Analysis ofthe age 
of first HNPCC cancer or colorectal polyp and allele type for females in 
Family C and Family 11 MSH2 mutation positive carriers. 

SNPID Total Analyzed Events P-value (log rank) 

CCNDI AIG 68 33 0.7112 
CCNDI GIC 55 30 0.6651 
MTHFR 70 36 0.7638 
MLHI IV 61 32 0.9694 
Pl6 Ala-:? Thr 63 34 0.7234 
CDKNJB (P27KJP 1) TIG 63 31 <0.00001 
E2F2 TIG 60 30 0.8266 
MSH6AIG 59 28 0.7406 
CCNA2G/A 63 28 0.7140 
E2F2 AIG Asp~ Asn 55 24 0.2700 
*CCND3 TIG Ala~Ser 7 2 NA 
*CCNHTIC Val~ Ala 13 6 0.5264 

* small subset from Family 11 was found polymorphic before contammatJOn occurred. 

Table 3.4: Polymorphism summary of Kaplan-Meier Survival Analysis of the 
age of first HNPCC cancer or colorectal polyp and allele type for males in 
Family C and Family 11 MSH2 mutation positive carriers. 

SNPID Total Analyzed Events P-value 
(102 rank) 

CCNDI AIG 31 24 0.7322 
CCNDIGIC 46 21 0.0137 
MTHFR 48 24 0.5614 
MLHIIV 47 25 0.9934 
P16Ala~ Thr 47 25 0.0932 
CDKNIB (P27K/Pl) T/G 46 25 0.3450 
E2F2TIG 42 24 0.3517 
MSH6AIG 43 24 0.9953 
CCNA2G/A 49 22 0.0239 
E2F1 AIG Asp~ Asn 38 20 0.5948 
*CCND3 TIG Ala~Ser 5 3 0.5890 
*CCNHTIC Val~ Ala 15 11 0.6934 

* small subset from Family 11 was found polymorphic before contamination occurred. 
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Figure 3.1: Kaplan-Meier survival curve of age of onset of first HNPCC-related 
cancer or first colorectal polyp in males and females in the CCNA2 GIA SNP 
(p=0.0094; Mean age: 37; 95% CI: {32, 42} ). Individuals with heterozygous 
G/ A alleles had earlier age of onset than those who were homozygous GIG. 
No one had a homozygous AlA allele in this analysis. 
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Figure 3.2: Kaplan-Meier survival curve of age of onset of first HNPCC-related cancer 
or first colorectal polyp in males and the CCNA2 GIA SNP (p=0.0239; Mean age: 35; 
95% CI: {29,42}). Individuals with a heterozygous G/A allele type had an earlier age of 
onset than those with a homozygous GIG. No one in this analysis had the AI A allele type. 
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Figure 3.3: Kaplan-Meier survival curve of age of onset of first HNPCC-related cancer 
or first colorectal polyp in females and the CDKNJB (p27kipl) TIG SNP (p<O.OOOl ; 
Mean age: 34; 95% CI: {28, 40} ). Individuals with homozygous GIG allele had earlier 
age of onset than those with a T allele. 
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Figure 3.4: Kaplan-Meier survival curve of age of onset of first HNPCC-related cancer 
or first colorectal polyp in males and the CCNDJ GIC SNP (p=0.0137; Mean age: 32; 
95% CI: {25, 40} ). Individuals with homozygous C/C had an earlier age of onset than 
those with a G allele. 
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Chapter 4 Discussion and Conclusion 

4.1 DISCUSSION 

Mutations in the MMR genes cause Hereditary Non-Polyposis colorectal cancer 

(HNPCC), however, there is still a great deal about this disease, which is not understood. 

One area that has not been extensively studied is variations in the penetrance of 

pathogenic mutations. Areas of interest surrounding these variations include: how to 

predict who in the general population is at a higher risk than others for developing forms 

of CRC, how to identify these people before they get cancer, why some members within 

the same high risk family with the same predisposing mutation get CRC and related 

cancers earlier in life than other members, or why some of these family members get 

multiple primary tumours whereas others in their family never develop cancer. 

Past studies have centered on the examination of variants of single candidate genes for 

their ability to modify the penetrance or expressivity of the MMR mutation. In this study, 

I have examined a group of potential modifiers of HNPCC. I looked at how candidate 

modifiers affected the age of onset ofHNPCC cancers (and number) in those with the 

same HNPCC mutation The candidate modifiers included single nucleotide 

polymorphisms (SNPs) in the cell cycle and related pathways (such as the mismatch 

repair (MMR) pathway), and an epigenetic pathway involving folate metabolism via 

methylenetetrahydrofolate reducatase (MTHFR)). I analysed these potential modifiers in 

order to determine whether they correlate with age of onset of HNPCC in males and/or 

females. 
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The cell cycle genes and genes in the related functions were examined through SNP 

analysis to determine their modifying impact on the penetrance ofHNPCC. I focused 

upon the cell cycle because carcinogenesis involves a malfunction in the control of cell 

division, thus, implying that there is uncontrollable cell division in the presence of cancer 

or the precursors leading to it. Therefore, it is possible that a variant that might increase 

the rate of cell division could also include the potential for developing into cancer, or vice 

versa. 

Through the use of genetic analysis, some forms of CRC have been identified as resulting 

from gene mutations that are inherited within families. The families used in this HNPCC 

study were from that category. They were described as being carriers of a mutation in one 

ofthe MMR genes, MSH2. 120 There were two MSH2 mutations described in that study, 

including a c.942+3A>T point mutation (Newfoundland and Labrador, Family C), and an 

exon 4-16 deletion (Lower North Shore of Quebec, Family 11). 120 Historically, mutation 

carriers presented symptomatically with one or more HNPCC-related cancers. Penetrance 

in hereditary cancer syndromes is traditionally calculated based on the percentage of 

mutation carriers developing cancer. Age-related penetrance uses age at onset of cancer in 

the calculation. However, some forms of screening for members of families with 

hereditary cancer result in identification and removal of the pre-cancerous lesions such as 

polyps. Thus, these individuals may never develop cancer. The definition of penetrance 

therefore has to be revised to include age at development of pre-cancerous lesions such as 

polyps, which may be markers for cancer development. Since genetic testing became 

available in these families, screening interventions were offered to those who tested 

positive for either of these two mutations. 
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This has had a significant impact in decreasing the number of mutation positive carriers 

that developed an HNPCC-related cancer in these two families. As polyps are removed 

during colonoscopy screening, the occurrence of CRC is altered, and fewer subjects with 

cancer are available. As a result, this study included age of onset of first colorectal polyp 

identified during screening procedures, as well as age of onset of HNPCC. Therefore, 

although the age at polyp identification may be younger than the age that the cancer 

would have occurred, there is less bias than having eliminated the subjects as not having 

had an event at all. As polyp studies provide more information on how long it takes for a 

polyp to change into a carcinoma and which type of polyp becomes cancerous, more 

accurate age to event data will be available for future studies such as this one. In fact, as 

more mutations predisposing to hereditary CRC are identified, and increasing numbers of 

subjects are having screening interventions, polyp history will be a more important 

feature of hereditary CRC analysis and intervention. 

At the start of my project, cell cycle SNP discovery was still in its preliminary stages with 

limited information available. However, based on what was available and what is known 

thus far about the cell cycle, a group of SNPs was chosen and analyzed (Table 3 .1.1 in 

Results). Ideally, the greater the allele frequency of the SNP the more likely it would 

provide definitive data. Due to the fact that many cell cycle genes are still being 

discovered and that SNPs within these genes are currently being determined, allele 

frequencies were not yet known for most of the ones chosen (Table 3.1.2 in Results). 

Therefore, the criterion for choosing SNPs with unavailable frequencies was that the SNP 

had to cause a non-synonomous amino acid change in a coding region of one of the cell 

cycle genes. Taking into consideration this limitation, encouraging results were still 
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obtained from 7 of the 29 SNPs (includes CCND3 TIG and CCNHTIC before 

elimination) that were investigated. That is, approximately one quarter (24%) of the 

analyzed SNPs demonstrated possible association with the penetrance of HNPCC. 

The most significant observation noted in this study involved three SNPs that correlated 

with the age of onset of an HNPCC-related cancer or first colorectal polyp, and are 

potentially modifiers. These SNPs include: CCNDJ 1722 G/C, CCNA2 GIA , and CDKNJB 

(p2 7KJPI) Val/Gly T/G. With the CDKNJB (p27KJPI) SNP it was found that females with 

the homozygous GIG allele type had an earlier age of onset of HNPCC or first colorectal 

polyp compared to other family members having either a homozygous or heterozygous T 

allele type (n = 63; events31; p= <0.0000 1) (Figure 3.3 from Results). Therefore, the 

homozygous G allele in these two families demonstrated a possible association as a risk 

factor for developing an HNPCC-related cancer or colorectal polyp. Women with 

homozygous GIG had incidence of cancer/polyp in the third and fourth decade of life with 

a mean age of diagnosis at 34 years. However, those possessing aT allele did not develop 

an event until later in life with a mean age of 4 7. This coincides with a similar study in 

oral squamous cell carcinoma of the head and neck (SCCHN), which found that the 

homozygous GIG allele of the CDKNJB TIG variant might be associated with an 

increased risk in those already in an at-risk subset for SCCHN.381 

Opposite results have been found in other studies. For example, the CDKNJB TIG SNP 

has been found to be associated with tumorigenesis in advanced prostate carcinoma 

patients.382 It was concluded that those with the homozygous TIT allele that expresses for 

the valine amino acid were associated with advanced prostate cancer progression.382 

Another study also observed a penetrance effect with the T allele in hereditary prostate 
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cancer families.383 However, their findings were not of significant value and they 

suggested that this SNP might be involved in sporadic prostate cancers rather than in 

hereditary cases with high-risk factors.383 

The second potential modifier identified involved the CCNA2 gene with the Gl A 

polymorphism. In the male and female combined group, those with the heterozygous Gl A 

alleles developed an event earlier than those with homozygous GIG (n=112; events=50; 

p=0.0094) (Figure 3.1 in Results). No homozygous AlA individuals were observed. The 

same result was also found in the male only group. In this subgroup, the age to event was 

earlier in those with the heterozygous Gl A alleles compared with those with the 

homozygous GIG. The mean age of onset for the heterozygous group was 35 years 

compared with 42 years for the homozygous GIG. The A allele appears to be a risk factor 

for these mutation positive carriers (n=49; events=22; p=0.0239) (Figure 3.2 in Results). 

To my knowledge there have not been any other studies reported that investigate SNPs in 

the CCNA2 gene and their association with cancer. However, other investigators have 

reported an over expression of the CCNA2 protein in association with various cancers 

such as breast, lung, and liver.384
-
388 It has been suggested that CCNA2 could potentially 

be used as a predictive marker for tumorigenesis and prognosis of those already with 

cancer. 384-388 

Finally, for the CCND 11722 GIC SNP, males with the homozygous CIC alleles had an 

event earlier than males with either GIC or homozygous GIG genotypes (n=46; 

events=21; p=0.0137) (Figure 3.4 in Results). The mean age of onset for those with the 

CIC alleles onset was 32 years compared with the mean age of 40 years for those with 
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either a heterozygous or homozygous G allele. Therefore, having a C allele is associated 

with an earlier age of onset of either a colorectal polyp or an HNPCC-related cancer. 

In the literature only one study was found regarding this particular CCNDJ 1722 G/C SNP. 

The study was conducted on the polymorphism and expression in patients with squamous 

cell carcinoma of the head and neck (SCCHN). 389 It was because of this study that I 

chose to investigate this SNP using our MSH2 mutation positive carriers and the 

incidence of HNPCC. The results from the SCCHN study found that the homozygous C/C 

SNP was associated with poorly differentiated tumours and decreased disease-free 

interval.389 This coincides with my study in that the C/C genotype was correlated with an 

earlier age of onset of HNPCC-related cancers. However, the study on the SCCHN from 

the literature noted that their results had a higher association of the C/C allele type in 

females whereas in my study there was a higher association in males. 

It has also been observed that there are minor phenotypic differences between Family C 

and Family 11. For instance ovarian cancer has only been found in Family C and not in 

Family 11 and urothelial cancers were present in Family 11 but not Familt C. 120 

Therefore, although both families have an MSH2 mutation that leads to a higher risk for 

HNPCC -related cancers compared to the general population, the effect ofthe location of 

the primary mutation may be a factor. There also might be other undetermined underlying 

modifiers that contribute to these phenotypic differences. This study detected a difference 

between these two families in the presence of polymorphisms for SNPs in 2 genes: 

CDKN2A (pl6) AIG Ala/Thr and E2F2 AIG Asp/ Asn. These SNPs were polymorphic in 

Family C but not in Family 11 (Table 3.1.2 in Results). However, no significant 

difference was found with regards to the age to event and allele type for either of these 
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two SNPs. Considering the phenotypic differences between these two families, further 

analysis of the CDKN2A and E2F2 SNPs including various forms ofpenetrance variables 

should be investigated in larger studies. Although there was no specific allele type 

associated with family members having an HNPCC-related event compared to those who 

did not in Family C, it might be part of a multi-genetic polymorphism that either protects 

or predisposes for the occurrence of HNPCC. Therefore, investigations of polymorphisms 

and polymorphic combinations within these two families should be considered. 

A final observation in this study that warrants further investigation involves the CCND3 

T/G Ala/Ser and CCNHVal/Ala SNPs. As described in the results section, these were 

only partially analyzed in a small sample from Family 11 (n=12 CCND3; n=28 CCNH) 

because oftechnical difficulties (Table 3.2). However, both SNPs were polymorphic 

(Table.3 .1.2 in Results). Thus, it would be interesting to investigate these two SNPs in a 

larger sample to determine whether or not they contribute to a modifying effect on 

HNPCC penetrance. 

4.2 Conclusion 

In conclusion, based on the data gathered in this study, SNPs in cell cycle genes should be 

considered as potential modifiers ofHNPCC expression. This is especially true for the 

families in this study with either the MSH2 c.942+3A>T point mutation or the MSH2 

exon 4-16 multi-exonic deletion. As new cell cycle genes and their SNPs are identified a 

better choice of candidate SNPs with higher allele frequencies will become available and 

be more informative for future studies. The other pathways investigated such as the one 

involving folate metabolism using MTHFR was not significant in this study due to the 

fact that other factors outside of genetics such as diet and smoking need to be considered 
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in conjunction with allele types. This type of information was not available for this 

project. 

The SNPs that did not have any significant value in this analysis may be a result of the 

study being underpowered. Increasing the sample size would present more significant 

data. This would help determine if the SNPs found to be insignificant in this analysis 

could be screened out and considered less important or not involved in the modifying 

effects of penetrance of HNPCC. 

The cell cycle genes that did present as candidates for modifying the age of onset of 

HNPCC are significant players in the cell cycle. For instance, Cyclin A is a crucial cyclin 

for transferring the cell cycle from G 1 to S-phase, as well as the G2 to M -phase. It also 

inhibits the E2F factors thus allowing the S-phase to begin. CyclinD 1 brings a cell 

through each restriction point so that it can be committed to completing G 1. This cyclin is 

also influenced by external stimuli and can prevent or initiate the start of the G 1 phase 

based on the stimuli that it receives. CDKN1B (p27KIPJ) is a cyclin dependent kinase 

inhibitor of the phosphorylation of the cyclinE-cdk2 complex. Once phosphorylation of 

the CCNE-cdk2 complex is inhibited the cell goes into G 1 arrest. It is also influenced by 

external stimuli such as cell-to cell contact inhibition, which prevents the cell from 

proceeding through the G 1 phase and puts the cell cycle in arrest. 

As for the other potentially modifying genes mentioned in this discussion, the CCNH 

prtoein is a major player in the CAK complex, which activates the cyclin-cdk complexes. 

Without this step the cell cycle cannot proceed. CCND3 has the same function as CCND 1 

discussed above. E2F2 are transcription activators involved in cell cycle progression. 

Finally, CDKN2A (p16INK4
A) inhibits the cyclinD1-cdk4 complexes. Therefore, given 
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,----- --------------------

their roles in the cell cycle and their noted polymorphisms despite being non-significant 

in this study possibly because of the small sample size used, the potential for a larger 

sample to yield significant results in these candidates should be investigated further. In 

addition, the results from this study were not corrected for multiple test analysis. 

Therefore, to solidify the value of this data further corrections should be done to confirm 

these findings. 
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