Functonailzed ntrocrclofexavones avo ()--Trcoperdic Aad

sinahame vo adscol

Studies on an Organocatalytic Synthesis of Functionalized Nitrocyclohexanones and (+)-Lycoperdic Acid.

by
© Shubhangi V. Adsool

A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science

Department of Chemistry Memorial University
March 2010

St. John's
Newfoundland

Abstract

A strategy for enantioselective double Michael addition reactions of acetone to nitroalkene 1 has been investigated. The feasibility of employing an enamine-mediated, organocatalytic route to functionalized cyclohexanones 2 was examined in this study (Scheme 1).

Scheme 1: Synthesis of functionalized nitrocyclohexanones.
Simultaneously, in continuation with the Pansare group's interest in organocatalytic conjugate addition reactions, an organocatalytic, conjugate addition based synthesis of (+)-lycoperdic acid (10) was examined. Lycoperdic acid is an unusual amino acid isolated from a mushroom (lycoperdon perlatum). Its unique structure and potential glutamate receptor activity, makes it a challenging synthetic target. Our approach to lycoperdic acid is based on the enantioselective organocatalytic Mukaiyama-Michael addition of furan 5 to acrolein, mediated by catalysts 11 and $\mathbf{1 2}$ to provide the key butyrolactone 6 (Scheme 2). It is noteworthy that only a few examples of enantioselective organocatalytic Mukaiyama-Michael conjugate additions of furans related to 5 and β substituted α, β-unsaturated aldehydes are known, and the use of acrolein as a Michael acceptor in these reactions has not previously been reported. Conversion of 6 to (S)-
homocitric acid lactone (8) not only provided a new synthesis of this natural product enantiomer, and also established the stereochemistry of the Michael addition of 5 to $\mathbf{6}$. An organocatalytic α-amination of $\mathbf{6}$ using catalyst $\mathbf{1 2}$ provided 9 which is an advanced intermediate to lycoperdic acid.

Scheme 2: Organocatalytic synthesis of $(+)$ lycoperdic acid.

Acknowledgements

First and the foremost I would like to thank my supervisor Professor Sunil Pansare for his guidance and encouragement throughout the program. The training that I received by working in his lab, I believe, has equipped me with the expertise necessary of a good synthetic chemist. Indeed, if I had decided to embark on my doctoral studies, the Pansare group would have certainly been my first choice.

Besides Professor Pansare, Professor Yuming Zhao and Professor Christina Bottaro deserve special thanks as my committee members for providing me their comments and suggestions during the program and for their valuable evaluations of this document. I am deeply grateful to Professor Graham Bodwell and Professor Paris Georghiou for helpful discussions and encouragement during the program and graduate courses.

I would like to thank Ms. Julie Collins and Dr. Celine Schneider for the training and support with IR and NMR spectroscopy and Ms. Linda Winsor for the training and support with mass spectroscopy.

I would like to thank Mr. Dave Murphy for the computer-related support throughout my program. I thank Ms. Viola Martin, Ms. Mary Flinn, Ms. Rosalind Collins, Ms. Colleen Baker and Ms. Gina Jackson for the administrative support during the program. I thank Mr. Steve Ballard, Ms. Bonita Smith, and Mr. John Power for providing storeroom support.

I thank Mr. Patrick Hannon and Dr. Karen Hattenhauer and Mr. Tiber Reardon for being wonderful colleagues in the teaching labs.

Furthermore, I am also thankful to have supporting colleagues working with me in the lab. I thank Ms. Raie Lene Kirby, Mr. Rajinikanth Lingampally, Mr. Dave Murphy, Mr. Tim Morgan and Mr. Adam Hefferman for their constant help, support and encouragement throughout the program in the lab. Support from my colleagues from other research groups at the chemistry department at MUN is greatly appreciated. I also, thank to all of those who supported me in any respect during the program.

Special thanks go to my beloved husband Vikrant, who gave me the confidence and support to begin my Master's program. He has played the dual role of my colleague and that of my husband with incredible perfection. I am forever grateful to my parents and my in-laws for their support.

Last, but not the least, I also wish to thank the Department of Chemistry, Memorial University of Newfoundland, and Natural Sciences and Engineering Research Council of Canada for Financial support.

Table of contents

Page

Abstract ii
Acknowledgements iv
Table of Contents vi
List of Tables viii
List of Figures x
List of Abbreviations xi
Appendix xiv
Chapter 1: Organocatalytic Synthesis of Functionalized Nitro-cyclohexanones 1
Introduction 1
Discussion 2
Synthesis of nitrocyclohexanones 8
Organocatalytic synthesis of nitrocyclohexanones 11
Present work 19
An attempted nitroalkene/ enone cyclization. 29
Conclusion 32
Experimental 33
References 47
Chapter 2: Organocatalytic synthesis of (+)-Lycoperdic acid 50
Introduction 50
Discussion 51
Proposed retrosynthesis of lycoperdic acid 61
Studies on the synthesis of (+)-lycoperdic acid 62
Synthesis of (S)-(+)-homocitric acid. 82
Organocatalytic α-amination of
(R)-Benzyl-2-(formylethyl)-2,5-dihydro-5-oxofuran-2-carboxylate (50) 85
Conclusion 94
Experimental 95
References 117

List of tables

Chapter 1
Table 1 Organocatalyic double Michael reaction of acetone to nitroalkene
101 24
Table 2 Organocatalytic double Michael reaction of acetone to nitroalkene 106. 26
Table 3 Organocatalytic double Michael reaction of acetone to nitroalkene 28
Table $4 \quad$ Organocatalytic cycloaddition of nitroalkene and α, β-unsaturted
ketone 122 31
Chapter 2
Page
Table 1 Organocatalytic Mukaiyama-Michael addition of furan 51 to Acrolein, in the presence of catalyst 59 67
Table 2 Organocatalytic Mukaiyama-Michael addition of furan 51 to
Acrolein, in the presence of catalyst 59 69
Table 3 Organocatalytic Mukaiyama-Michael addition of furan $\mathbf{5 1}$ to
Acrolein, in the presence of catalyst $\mathbf{6 0}$ 71
Table 4 Organocatalytic Mukaiyama-Michael addition of furan 51 to
acrolein, in the presence of catalyst 72 75
Table 5 Effect of additive on the organocatalytic Mukaiyama-Michael addition reaction of 51 and acrolein. 77
Table 6 Effect of water on organocatalytic Mukaiyama-Michael
addition reaction 78
Table 7 Organocatalytic Mukaiyama-Michael addition reaction 80
Table 9 Organocatalytic α-amination 89

List of figures

Chapter 1:

Page
Figure 1 Selected catalysts for the Michael addition of aldehydes or ketones to Nitroalkenes 2
Figure 2 Catalyst used in preparation of nitrocyclohexanone 21
Chapter 2
Page
Figure 1 TS for cycloaddition of Nitrone 44 with allyl alcohol 61
Figure 2 MacMillan`s catalysts 64
Figure 3 Proposed reaction mechanism for the organocatalytic Mukaiyama-
Michael addition to acrolein 66
Figure 4 MacMillan's first generation catalyst and a C_{2} symmetric
pyrrolidine catalyst 79
Figure 5 Possible transition states leading to ' R ' and ' S ' $\mathbf{5 0}$ 81
Figure 6 Catalysts used for α-amination of aldehyde $\mathbf{5 0}$. 85
Figure 7 Organocatalytic approaches to potential intermediate to lycoperdic acid 86

List of Abbreviations

Ar	aromatic
atm	atmosphere
Bn	benzyl
$\mathrm{S}_{\mathrm{N}} 2$	bimolecular nucleophilic substitution
dr	diastereomeric ratio
ds	diastereoselectivity
DMF	dimethylformamide
DMSO	dimethyl sulfoxide
DABCO	1,4-diazabicyclo[2,2.2]octane
DCM	dichloromethane
DMAP	4-(dimethylamino)pyridine
DDQ	dichlorodicyanoquinone
DIBAL-H	diisobutylaluminium hydride
DIPEA	N,N-diisopropylethylamine
DNBA	dinitrobenzoic acid
Dt-BAD	ditertiarybutyl azodicarboxilate
equiv	equivalent
ee	enantiomeric excess
Et	ethyl
h	hours
HMPA	hexamethylphosphoramide
HPLC	high pressure liquid chromatography

$i-\operatorname{Pr}$	isopropyl
LDA	lithium diisopropylamide
LHMDS	lithium hexamethyldisilazide
min	minute
Me	methyl
MOM	methoxymethyl
MBH	Morita-Baylis-Hillman
MPM	(4-methoxyphenyl)methanol
NOE	nuclear Overhauser enhancement
NMR	nuclear magnetic resonance
NBS	N-Bromosuccinimide
nd	not determined
Ph	phenyl
$p-\mathrm{TsOH}$	para toluenesulfonic acid
PPTS	pyridinium p-toluenesulfonate
PDC	pyridinium dichromate
rac	racemic
rt	room temperature
TMS	trimethylsilyl
TBDPS	tertiary-butyl diphenylsilyl
TS	transition state
THF	tetrahydrofuran
t-Bu	tertiary-butyl

TMG	1,1,3,3-tetramethylguanidine
TIPS	tri-isopropylsilyl
Et $_{3} \mathrm{~N}$	triethyl amine
TFA	trifluoroacetic acid
Boc	tertiary-butyl carbamate
THP	tetrahydropyran
TBS	tributyl dimethylsilyl
TMSOTf	tetrabutylammonium fluoride
TBAF	tri-isopropylsilyl trifluoromethanesulfonate

Appendix

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. 122

Chapter 1

Organocatalytic Synthesis of Functionalized Nitro-cyclohexanones

Introduction

An organocatalyst is an organic molecule which increases the rate of an organic reaction when used in a substoichiometric amount. ${ }^{1}$ The need for enantiomericallyenriched compounds has given a boost to the study of organocatalysis. ${ }^{2}$ Asymmetric carbon-carbon bond formation is one of the challenging fields in organic chemistry. ${ }^{3}$ In recent years, the formation of two or more bonds in consecutive steps (tandem reactions) has gained interest. Tandem reactions are more economical because these reactions need fewer numbers of chemical steps and hence may produce less waste. ${ }^{4}$ Whenever applicable, these reactions can produce more than one stereocenter in a single step. One of the most important reactions for carbon-carbon bond formation is the Michael reaction. ${ }^{5}$ The asymmetric oganocatalytic Michael reaction has been utilized for the addition of various aldehydes and ketones to nitroalkenes. ${ }^{6}$ The use of a nitroalkene in this reaction is useful because the nitro functional group can be easily converted into other functional groups such as an amine, amide or ketone, etc. For these reasons, new synthesis of functionalized nitrocyclohexanones by using a double Michael addition reaction of a ketone to a nitroalkene is a topic worthy of extensive and systematic investigations.

Discussion

Several methods have been reported in the literature for the organocatalytic Michael addition of aldehydes or ketones to nitroalkenes. For most of these reactions chiral amines are used as catalysts. Some of these catalysts are shown in Figure 1. The majority of the catalysts are secondary amines which catalyze the Michael reaction by forming an enamine with the aldehyde or ketone. A brief discussion of the application of some of these catalysts follows.

1

4

2

5

8

Figure 1: Selected catalysts for the Michael addition of aldehydes or ketones to nitroalkenes.

In 2001, List reported the catalytic Michael reaction ${ }^{7}$ of cyclohexanone (11) and nitroalkenes e.g. 12 using proline (1) as catalyst. In this study, an excellent yield of the adduct $\mathbf{1 3}$ was achieved, but with low enantioselectivity. A similar study reported by

Scheme 1: Proline catalysed Michael adiition of ketone to nitroalkene.

Salunke et al. used L-proline (1) as a catalyst in an ionic liquid ${ }^{2}$ and gave good yield and diastereoselectivity (90% of the single diastereomer).

A study reported by Barbas on Michael addition of aldehydes to nitroalkenes using (S)-2-(morpholinomethyl)-pyrrolidine (2, scheme 2) as a catalyst provided the syn product 16 as a major diastereomer (up to 98%), in excellent yield and good

Scheme 2: Organocatalytic Michael adiition of aldehyde to nitroalkene.
enantioselectivity (up to 78%). ${ }^{8}$

Later, in 2002 Alexakis and Andrey reported a similar study of Michael addition of aldehydes and ketones to nitrostyrenes using $N-i$ - $\mathrm{Pr}-2,2^{\circ}$ bipyrrolidine ${ }^{5}$ (3, Figure 1) as a catalyst (Scheme 3). The reaction of an aldehyde with a nitroalkene (with or without HCl as an additive) gave γ-nitroaldehyde 18 with moderate-to-good enantioselectivity and excellent yield. However, a similar reaction with a ketone

Scheme 3: Organocatalytic Michael addition of aldehyde or ketone to nitroalkene.
proceeded in low yield and low enantioselectivity. In 2003 Alexakis used the same catalyst $\mathbf{3}$ for Michael addition of α-hydroxyketones to β-arylnitroolefins. ${ }^{9}$ In this case, the product was obtained with excellent enentioselectivity (up to 98%) and good yield. The proposed mechanism is shown in Scheme 4.

Scheme 4: Proposed mechanism for organocatalytic Michael addition.

The tertiary nitrogen in catalyst $\mathbf{3}$ is presumed to form a hydrogen bond with the α-hydroxy group in the ketone (I) (Scheme 4) which selectively generates the Z enamine (II) instead of the E enamine. The Z enamine undergoes a stercoselective Michael reaction to provide 21.

In 2005, Ley and co-workers used tetrazolyl pyrrolidine ${ }^{10}(\mathbf{4)}$ as catalyst for the Michael reaction of cyclohexanone (11) with β-nitrostyrene (12) as the Michael acceptor in a $1: 1$ mixture of isopropyl alcohol and ethanol as solvent (Scheme 5). The enantioselectivity obtained by using this catalyst was up to 93%.

Scheme 5: Organocatalytic Michael addition with cyclohexanone and tetrazolyl pyrrolidine (4).

Hayashi and co-workers reported the use of catalyst 5 (Figure 1) in the Michael addition of an aldehyde to a nitroalkene (Scheme 6). ${ }^{11}$ In their study, they obtained a nearly optically pure (99\%) Michael adduct in good yield and high distereoselectivity (syn selectivity up to 96%). The high selectivity was explained on the basis of transition state III in which the bulky diphenylsiloxymethyl group on the catalyst ensures the selective formation of the E enamine and selectively shields the $r e$-face of the enamine.

Scheme 6: Transition state for formation of 23 proposed by Hayashi.

Later on, Hayashi used catalyst 5 for the enantioselective Michael addition of nitroalkenes to α, β-unsaturated aldehydes, ${ }^{6}$ in which he obtained up to 98% ee.

In 2006, Jacobsen reported the Michael addition of acetone to a variety of nitroalkenes in the presence of catalyst 6 (a thiourea derivative) and a catalytic amount of benzoic acid. The adduct 26 was obtained in 99% ee and 83% yield (Scheme 7$)^{12}$.

Scheme 7: Michael addition of acetone with nitroalkene in the presence catalyst 6.

A similar reaction of acetone catalyzed by (S)-homoproline (7) hydrochloride ${ }^{13}$ in the presence of triethylamine gave low yield and enantioselectivity. However, the reaction of ethyl methyl ketone in t-butanol proceeds with high enantioselectivity (up to 90% and $s y n$ selectivity up to 98%) with this homoproline as catalyst.

In 2006, Pansare and co-workers studied the Michael addition of cyclic ketones to nitroalkenes by using the secondary amine substituted pyrrolidine $\mathbf{8}$ and N, N-dimethyl containing analogue 9 as catalysts in the presence of acid additives ${ }^{14}$ (scheme 8). In these studies, the syn distereomer $\mathbf{1 3}$ was obtained as the major product in good yield and high enantioselectivity (up to 99\%).

Scheme 8: Organocatalytic Michael addition of cyclohexanone to nitroalkene.

A similar study was reported by Liu et al. employing prolinol tertbutyldiphenylsilyl ether (10) as catalyst. Good yields of the Michael adduct were obtained in up to 95% ee and 98% de $(s y n){ }^{15}$ However, reactions with acetone and propanal gave only moderate selectivity.

Synthesis of nitrocyclohexanones

Previous studies by Seebach had shown that nitrocyclohexanones could be obtained from a $[3+3]$ cycloaddition reaction of enamine 27 and nitroallylic esters ${ }^{16} E$ or $Z, 28$ (Scheme 9). This methodology can produce up to five-to-six adjacent stereocenters in the cycloadduct. The enamines were prepared from corresponding ketones and secondary amines in the presence of molecular sieves.

Enamine 27	R_{1}	\mathbf{R}_{2}	\mathbf{R}_{3}	E or Z nitroallylic esters 28	R1	\mathbf{R}_{2}	\mathbf{R}_{3}
27a	CH_{3}	CH_{3}	-($\left.\mathrm{CH}_{2}\right)_{2}{ }^{-}$	E-28a	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{CO}^{\text {C }} \mathrm{C}_{4} \mathrm{H}_{9}$
			$\mathrm{O}-\left(\mathrm{CH}_{2}\right) 2-$				
27b	H	H	$-\left(\mathrm{CH}_{2}\right)_{4-}$	rac-28b	CH_{3}	CH_{3}	COCH_{3}
27c	COOEt	H	$-\left(\mathrm{CH}_{2}\right)_{4}{ }^{-}$	-	-	-	-

rac-29
from 27a and 28a

rac-30
from 27a and rac-28b

rac-31

rac-32

Scheme 9: Products of [3+3]-cycloaddition with racemic or achiral components.

In 1992, Enders and co-workers reported the enantioselective synthesis of nitrocyclohexanones based on a [4+2] cycloaddition of 3-[(S)-2-(methoxymethyl)pyrrolidin-1-yl]-1,3-butadiene (36) with E-2-aryl-1-nitroethene (37). ${ }^{17}$ For the preparation of butadiene 36, 2,3-butanedione (33) was treated with (S)-2-(methoxymethyl)pyrrolidine (32) to obtain a quantitative yield of α-oxoenamine ${ }^{18}$ in the presence of arsenic(III) chloride ${ }^{19}$ (modified Weingarten method ${ }^{20}$). A Wittig reaction of compound 35 provided the pyrrolidinyl butadiene 36 (59%, scheme 10).

T.S.IV

39

(S, S, R)-38
where $R=H, 4-F, 4-O M e, 4-M e, 3,4-\mathrm{OCH}_{2} \mathrm{O}$

Scheme 10: [4+2] Cycloaddition of chiral 2-aminobutadiene and nitroalkene.

Butadiene 36 was subjected to $[4+2]$ cycloaddition with nitroalkene $\mathbf{3 7}$ to obtain intermediate 38 which was hydrolyzed to 3-aryl-4-nitrocyclohexanone 39 in excellent enantiomeric excess $(\mathrm{ee}=95-99 \%)$ and high diastereoselectivity $(\mathrm{ds}=75-95 \%)$.

Barluenga et al. reported a similar study using chiral butadiene 40 (Scheme 11) and nitroalkenes 41 to obtain highly-substituted nitrocyclohexanones, ${ }^{21}$ such as 43, (four adjacent stereocenters) in good yield and up to 90% enantioselectivity. Later on, in 1997 he investigated the reactions between a variety of nitroalkenes (aromatic, heteroaromatic
and substituted aliphatic nitroalkenes and the same diene $40(E$ or $Z)$ in the [4+2] cycloaddition. ${ }^{22}$ They used different R groups such as TBDMS, Me and MOM in diene

Scheme 11: [4+2] Cycloaddition of butadiene with nitroalkene.
40. E diene 40 was first reacted with aromatic and aliphatic nitroalkenes under the same reaction conditions as shown in Scheme 11. Functionalized 4-nitrocyclohexanones were obtained in good yield and in excellent distereoselectivity ($83-99 \%$ de).

Organocatalytic synthesis of nitrocyclohexanone

Barbas and co-workers have developed the first amine-catalyzed direct DielsAlder reaction (which may also be considered to be a double Michael reaction) for the synthesis of nitro-cyclohexanones. ${ }^{23}$ The catalysts used in this study are (S)-1-(2pyrrolidinylmethyl)pyrrolidine (46) and L-proline (1, Scheme 12). The Diels-Alder reaction of chalcones 45 with nitroalkene (44) in the presence of catalyst 46 or $\mathbf{1}$ gave a mixture of nitrocyclohexanones (47a and 47b) in moderate-to-good yield (32-75\%) and moderate enantioselectivity (up to 38\%).

Scheme 12: Organocatalytic Diels-Alder reaction.

In 2004, Takemoto et al. reported a catalytic enantioselective double Michael addition. ${ }^{3}$ They synthesised 4-nitrocyclohexanones using γ, δ-unsaturated β-ketoester (48) and nitrostyrene (12), a bifunctional thiourea catalyst (51, Scheme 13) and 1,1,3,3tetramethylguanidine (TMG). Three contiguous stereocenters were constructed in a single reaction, for example, product 50a was obtained in good yield along with excellent diastreoselectivity (up to 99%) and good enantioselectivity (up to 62%).

Scheme 13: Thiourea 51-catalyzed double Michael addition reaction.

Jørgensen et al. reported the first one-pot reaction for the formation of five contiguous stereocenters by an intermolecular two-component reaction. ${ }^{4}$ The nitrocyclohexanol 55 was prepared from α, β-unsaturated aldehyde 52 and 1,3-dinitroalkane 53 in the presence of DABCO and (S)-2-[bis(3,5bistrifluoromethylphenyl)(trimethylsilyloxymethyl)pyrrolidine $]^{24}$ (54, Scheme 14) as catalyst. Compound 55 was obtained as the major isomer in good yield and enantioselectivity (up to 92%). A bulky β-substituent in aldehyde 52 favors higher enantioselectivity and variation of the substituents in dinitroalkane $\mathbf{5 3}$ such as aromatic, heteroaromatic, electron-donating aromatic or electron-withdrawing aromatic groups gave comparable diastereoselectivity and enantioselectivity ($88-90 \%$ ee).

55

Scheme 14: Organocatalytic nitro-Michael/Henry reaction.

This organocatalytic Michael/Henry reaction proceeds by the proposed mechanism shown in Scheme 15. The first step is the formation of iminium ion 56 between catalyst 54 and aldehyde 52. Nucleophile 57 (generated from dinitroalkane 53) then attacks the iminium ion 56 from the less-hindered face to obtain Michael adduct 59. Enamine 58 provides iminium ion 59 which is hydrolyzed to the corresponding aldehyde. The resulting aldehyde then undergoes an intramolecular Henry reaction to provide product 55 which contains five contiguous stereocenters. Hayashi and co-workers have also reported a two-component Michael/Henry reaction using pentane-1,5-diol and 2substituted nitroalkenes ${ }^{25}$ for the synthesis of nitrocyclohexanones.

Scheme 15: Proposed mechanism for organocatalytic nitro-Michael/Henry reaction.

Enders and co-workers developed a chemo-, diastereo- and enantioselective organocatalytic triple-cascade reaction for the synthesis of nitrocyclohexenals. ${ }^{26}$ This organocatalytic three-component reaction proceeds through a Michael/Michael/aldol condensation sequence which results in the formation of a product with four contiguous stereocenters. In this domino reaction Enders used aldehyde 60, nitroalkene 61, $\alpha . \beta$ unsaturated aldehyde 62 and the chiral amine catalyst 5 (Scheme 16) to afford product 63 in high diastereoselectivity and complete enantioselectivity (99\%).

Scheme 16: Organocatalytic triple-cascade reaction.

The proposed mechanism for this reaction involves a sequence of Michael/Michael/aldol reactions as shown in Scheme 17.

65

Scheme 17: Proposed mechanism of the triple-cascade reaction.

The catalyst 5 first forms an enamine with aldehyde $\mathbf{6 0}$ which then selectively reacts with nitroalkene 61 to obtain the new (intermediate) nitroalkane 64. The catalyst then forms an iminium ion with α, β-unsaturated aldehyde 62. This step is followed by conjugate addition with the nitroalkane $\mathbf{6 4}$ to afford intermediate $\mathbf{6 5},{ }^{27}$ which undergoes an intramolecular aldol condensation to provide iminium ion 66. Hydrolysis of 66 leads to the formation of product 63 and regeneration of catalyst 5 . Melchiorre et al. have also reported a triple-cascade (Michael/Michael/aldol) using the catalyst 5. However, their synthesis began with a different starting material. As such, a more complex product 72 (Scheme 18) was obtained in excellent diastereoselectivity and enantioselectivity (99% de and ee) ${ }^{28}$

Scheme 18: Organocatalytic triple-cascade reaction.

Later on, Melchiorre and co-workers ${ }^{29}$ reported a double Michael addition reaction using a primary amine, 9-amino(9-deoxy)-epi-hydroquinine (75), which is derived from a natural cinchona alkaloid (Scheme 19).

$$
\begin{aligned}
& \mathrm{R}^{1}=\mathrm{Ph}, \text { thoiphenyl } \\
& \\
& 4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4} \\
& \mathrm{R}^{2}=\mathrm{H}, \mathrm{Me}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{R}^{3}=\mathrm{Ph}, 4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4} \\
2,6-\mathrm{Cl}_{2}-\mathrm{C}_{6} \mathrm{H}_{3} \\
4-\mathrm{Br}^{-\mathrm{C}_{6} \mathrm{H}_{4}}
\end{gathered}
$$

Scheme 19: Primary amine catalyzed double Michael addition reaction.

A similar reaction reported by Barbas and co-workers ${ }^{30}$ used a secondary amine catalyst to produce the isomeric product in only 38% ee. Melchiorre and co-workers ${ }^{30}$ also applied this methodology to construct quaternary stereocenters ${ }^{31}$ (Scheme 20).

Scheme 20: Formation of all carbon quaternary stereocenters in a molecule.

Reaction of α, β-unsaturated ketones 73 and trans α-cyanocinnamate (79) in the presence of primary amine catalyst 75 afforded compound 80 in good yield, excellent diastereoselectivity and enantioselectivity (up to 98%). A similar reaction of $\alpha . \beta$ unsaturated ketones 73 with N-phenyl- or N-benzyl maleimides gave bicyclic products containing three contiguous stereocenters in good yield and excellent diastereoselectivity and enantioselectivity (up to 99%).

Present work

Given the success of the organocatalytic tandem-Michael reactions outlined above, the possibility of conducting an organocatalytic nitrocyclohexanone synthesis using appropriately functionalized nitroalkenes as the Michael acceptors (Scheme 21) was targeted in this thesis work.

Scheme 21: Proposed organocatalytic reaction.

The proposed mechanism for this reaction is as illustrated in Scheme 22. A chiral amine 84 is expected to form an enamine $\mathbf{8 5}$ with acetone. The first Michael addition of 85 at the β-position to the nitro group in nitroalkene 86 with concomitant elimination of the acyl group provides intermediate 87. A second intramolecular Michael

Scheme 22: Proposed mechanism for double Michael reaction.
addition should give iminium ion 88 . Hydrolysis of iminium ion 88 will give a functionalized nitrocyclohexanone 83 and free chiral amine catalyst 84 for further reaction.

A variety of chiral amines were chosen as potential catalysts in this study (Figure 2). Of these, proline (1), 90 and 92 are commercially available and the remaining amines were prepared through known methods. The secondary-secondary diamine catalyst 3-methyl- N -(((S)-pyrrolidine-2-yl)methyl)butan-1-amine (89) has been used

Commercially available

91

89

Commercially available

Commercially available

94

Figure 2: Catalyst used in preparation of nitrocyclohexanone.
previously in the Pansare group for ketone-nitroalkene Michael additions. ${ }^{14}$ The amines

91,93 and 94 were prepared as follows. For the synthesis of amine 91 (Scheme 23) the primary alcohol group in prolinol (94) was protected as t-butyldiphenylsilyl ether by treating prolinol with triethylamine and TBDPS-Cl. Amine 93 was obtained in 36% yield from ephedrine by using the same method. (S)-2-(Methoxymethyl)pyrrolidine (94) was prepared from inexpensive and commercially available N-Boc-L-proline (96) by adapting

96
97

Scheme 23: Preparation of proline and ephedrine based catalysts.
the literature method. ${ }^{32}$ Boc-proline 96 was reduced to Boc-prolinol 97 (96\%). Treatment of 97 with sodium hydride and methyl iodide provided 98 in 24% yield. ${ }^{33}$ Boc deprotection in compound 98 (TFA) followed by basification provided amine 94 (96\%).

The functionalized nitroalkene starting material required for the study was prepared from 1-((E)-2-nitrovinyl)benzene and formaldehyde using the reported procedure ${ }^{34}$ (Scheme 24). Nitrostyrene (99) was subjected to a Morita-Baylis-Hillman

Scheme 24: Preparation of compound 101.
(MBH) type reaction ${ }^{34}$ with formaldehyde in the presence of imidazole (stoichiometric amount) and anthranilic acid (catalytic amount) to obtain (E)-2-nitro-3-phenylprop-2-en-1-ol (100) in 32% yield. The primary alcohol in compound 100 was acylated to provide compound 101 which is the required nitroalkene substrate for our studies in 92% yield.

Initial studies were conducted with 101 and acetone in the presence of diamines 89, 90 and 94 (Table 1). All experiments were conducted at room temperature with 1 equivalent of nitroalkene, 5 equivalents of acetone and $20 \mathrm{~mol} \%$ of the diamine. None of the reactions provided the anticipated nitrocyclohexanone 102. Instead, diamine 90 reacted with the nitroalkene substrate to give a $1: 1$ adduct which is likely to be either $\mathbf{1 0 3}$
or 104. A detailed structural analysis of this unwanted product however, was not carried out in this study (Scheme 25).

Table 1: Organocatalyic double Michael reaction of acetone to compound 101.

Entry	Ketone	Catalyst	Solvent	Time	Observation
1	Acetone	$\mathbf{8 9}$	THF	2 days	Starting material recovered
2	Acetone	$\mathbf{8 9}$	DMF	2 hours	Decomposition
3	Acetone	$\mathbf{9 4}$	THF	9 days	Starting material recovered
4	Cyclohexanone	$\mathbf{8 9}$	THF	3 days	Starting material recovered
5	Cyclohexanone	$\mathbf{9 0}$	THF	12 hours	$\mathbf{1 0 3}$ or $\mathbf{1 0 4}(12 \%)$

Nitroalkene 1 equiv; ketone 5 equiv, catalyst $20 \mathrm{~mol} \%$ all reactions were stirred at room temperature for the time mentioned in table 1.

Scheme 25: Reaction of catalyst 90 and starting material 101.

A probable mechanism for the formation of $\mathbf{1 0 3}$ is shown in Scheme 26. Alternatively 104 can also be formed in a similar manner.

Scheme 26: Proposed mechanism for the formation of compound 103.

Considering the reactivity of compound $\mathbf{1 0 1}$, it was decided to use a different alcohol protecting group (instead of acetyl). The pivaloyl group was chosen to favor nucleophilic addition at the β-position of the nitroalkene derivative, due to its steric hindrance. Thus, treatment of compound $\mathbf{1 0 0}$ with pivaloyl chloride in the presence of triethylamine in DCM at $-10{ }^{\circ} \mathrm{C}$ provided compound 106 in 45% yield (Scheme 27).

Scheme 27: Protection of the primary hydroxyl in 100 with pivaloyl group.

Reaction of 106 and acetone were attempted with amine 92 and 94 (Table 2). However, as with nitroalkene 101, these reactions did not provide any of the cyclohexanone 102.

Table 2: Organocatalytic double Michael reaction of acetone to compound 106.

	 106			
Entry	Catalyst	Solvent		
1	92	DMF	4 days	Starting material recovered
2	94	DCM	2 days	Starting material recovered
3	94	Acetone	9 days	Starting material recovered
4	94	THF	15 days	Starting material recovered
5	94	DCM	25 hours	$107(42 \%)^{\text {a }}$

Nitroalkene 1 equiv; acetone 5 equiv, catalyst $20 \mathrm{~mol} \%$ all reactions were stirred at room temperature for the time mentioned in table 2 . a yield based on catalyst used.

92

94

A reaction in which nitroalkene derivative 106 was treated with acetone in the presence of catalyst 94 (Entry 5) gave adduct 107 as product (Scheme 28). This compound was probably obtained from the direct reaction between catalyst 94 and nitroalkene derivative 106 involving a displacement of the pivaloyl group.

Scheme 28: Reaction of catalyst 94 with nitroalkene derivative 106.

Similar studies were conducted with a nitroalkene substrate derived from piperonal. This choice was based on a possible route to the lycorane family of alkaloids which were a target of these studies. The required nitroalkene was prepared by adaptation of known procedures ${ }^{34,35}$ and the synthesis is summarized in Scheme 29.

Scheme 29: Synthesis of compound 111.

The results of reactions of 111 with acetone in the presence of amines 91 and 93 are summarized in Table 3. Unfortunately, in this study, the only isolable products were

Table 3: Organocatalytic double Michael reaction of acetone to compound 111.

	 111		$\begin{gathered} \text { Catalyst } \\ \hline 0 \\ \hline 1 \end{gathered}$	 112
Entry	Catalyst	Solvent	Time	Observation
1	91	DMF	4 days	Starting material recovered
2	91	DCM	28 hours	113 (13\%)
3	91	THF	4 days	Starting material recovered
4	91	Acetone	5 days	Starting material recovered
5	93	Acetone	3 days	114 (10\%)

Nitroalkene 1 equiv; acetone 5 equiv, catalyst $20 \mathrm{~mol} \%$ all reactions were stirred at room temperature for the time mentioned in table 3 .

also those obtained from the reaction of the amine and the nitroalkene (Scheme 30).

Scheme 30: Reaction of nitroalkene derivative 111 with amines 91 and 93.

An attempted nitroalkene/ enone cyclization

As part of the studies discussed earlier in this chapter, we also examined the possibility of conducting an organocatalytic, formal [4+2] cycloaddition of a nitroalkene and an amino diene derived from an enone (Scheme 31).

Scheme 31: Organocatalytic [4+2] cycloaddition of nitroalkene with enone.

The synthesis of the required enone precursor to the eminodienes $\mathbf{1 1 5}$ is shown in Scheme 32. 2-2-(Bromomethyl)-1,3-dioxolane (117) was refluxed with p-methoxy phenol in acetone in the presence of anhydrous potassium carbonate ${ }^{36}$ to afford 119 (95%). Deprotection of $\mathbf{1 1 9}$ with $\mathrm{HCl}(7.0 \mathrm{M})$ provided aldehyde $\mathbf{1 2 0}$ (93%). The crude aldehyde $\mathbf{1 2 0}$ was treated with Wittig reagent $\mathbf{1 2 1}$ to obtain the required α, β-unsaturted

Scheme 32: Synthesis of $\alpha . \beta$-unsaturted ketone 132.
ketone 122. Wittig reagent 121 (l-triphenylphosphoranylidene-2-propanone) was prepared by known methods from monochloroacetone and triphenylphosphine. ${ }^{37}$ The resulting phosphonium salt was then treated with aqueous $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ to obtain the desired Wittig reagent.

Attempted cycloaddition of $\mathbf{1 2 2}$ with nitroalkene $\mathbf{1 0 9}$ in the presence of catalysts $\mathbf{1}$, 91, 93 and 94 however was unsuccessful, and only unreacted starting material was recovered from these reactions (Table 4).

Table 4: Organocatalytic cycloaddition of nitroalkene and $\alpha . \beta$-unsaturted ketone 122.

		 122	Catalys Solven	
Entry	Catalyst	Solvent	Time	Observation
1	95	THF	4 days	Starting material recovered
2	97	THF	9 days	Starting material recovered
3	92	MeOH	3 days	Starting material recovered
4	98	THF	7 days	Starting material recovered
5	95	Hexane	2 days	Starting material recovered

Nitroalkene 1 equiv; acetone 5 equiv, catalyst $20 \mathrm{~mol} \%$ all reactions were stirred at room
temperature for the time mentioned in table 4.

Conclusion

A series of functionalized nitroalkenes were prepared and their reactions with simple ketones were examined in the presence of some selected enamine-forming chiral amines. It was observed that in some cases unwanted side reactions between the chiral amines and the nitroalkenes led to deactivation of the amines by N-alkylation. Consequently, no enamine formation occurred and the anticipated nitrocyclohexanone products were not obtained. The exact reasons for the lack of reactivity of the nitroalkenes with the enones examined are unclear.

Experimental

(S)-2-(t-Butyldiphenylsilyloxy methyl) pyrrolidine (91): Triethylamine (1.1 mL. 7.5 $\mathrm{mmol})$ was added to a solution of (S)-prolinol ($29 \mathrm{mg}, 2.9 \mathrm{mmol}$) in dry THF (8.0 mL) at room temperature, under an atmosphere of nitrogen. To this was added tertbutyldiphenylsilyl chloride ($0.84 \mathrm{~mL}, 3.3 \mathrm{mmol}$. The mixture was stirred overnight and filtered (filter paper). The filtrate was concentrated and the residue was purified by flash chromatography on silica gel (96:2:2 ethyl acetate: methanol: $\mathrm{NH}_{4} \mathrm{OH}$) to provide 870 mg (86\%) of 91.
${ }^{1} \mathbf{H}^{\text {NMR }}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.68-7.65(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 7.44-7.36(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar} H), 3.66-$ $3.63\left(\mathrm{dd}, 1 \mathrm{H}, J=10,5, \mathrm{CH}_{2} \mathrm{OSi}\right), 3.60-3.57\left(\mathrm{dd}, \mathrm{H}, J=10,5, \mathrm{CH}_{2} \mathrm{OSi}\right), 3.25-3.20(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{NCHCH} \mathrm{H}_{2}\right), 3.00-2.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.87-2.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.13$ (bs, $1 \mathrm{H}, \mathrm{N} H), 1.81-1.69\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.50-1.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.06(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

(1R,2S)-1-(tert-butyldiphenylsilyloxy)- N-methyl-1-phenylpropan-2-amine (93). To a solution of ($1 R, 2 S$)-(-)-ephedrine ($26 \mathrm{mg}, 1.6 \mathrm{mmol}$) in THF (7.0 mL) at room temperature was added triethylamine ($0.55 \mathrm{~mL}(3.1 \mathrm{mmol})$ and t-butyldiphenylsilyl chloride ($0.44 \mathrm{~mL}, 1.7 \mathrm{mmol}$). The solution was stirred for 2 d and then concentrated. The residue was diluted with ethyl acetate, washed with cold aqueous $\mathrm{HCl}(1.0 \mathrm{M}, 15 \mathrm{~mL})$ followed by $\mathrm{NH}_{4} \mathrm{OH}$ and water. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by flash chromatography on silica gel (2:1 hexane: ethyl acetate) to provide 220 mg (35%) of $\mathbf{9 3}$ as a colourless gum.

IR (neat): 3071, 2931, 2857, 2789, 1960, 1890, 1825, 1472, 1427, 1391, 1105, 1028, 821 cm^{-1}.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.7-7.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.43-7.41(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 7.37-$ $7.31(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 7.26-7.19(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar} H), 4.66(\mathrm{~d}, 1 \mathrm{H}, J=4.6, \mathrm{PhCHOSi}), 2.68-2.63$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH} \mathrm{NH}), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NHCH}_{3}\right), 1.03\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.93(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.5$, CHCH_{3}).
${ }^{13} \mathbf{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.0$ (ArCipso), 136.1 (ArCipso), 136.0 (ArCipso), $134.2(\mathrm{ArC}), 133.5(\mathrm{ArC}), 129.8(\mathrm{ArC}), 129.6(\mathrm{ArC}), 127.9(\mathrm{ArC}), 127.7(\mathrm{ArC}), 127.5$
$(\mathrm{ArC}), 127.3(\mathrm{ArC}), 127.2(\mathrm{ArC}), 78.3(\mathrm{ArCOH}), 61.6(\mathrm{CHNH}), 60.4\left(\mathrm{NHCH}_{3}\right), 34.2$ $\left(\mathrm{NHCH}_{3}\right), 27.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $19.6\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), ~} 15.51\left(\mathrm{CHCH}_{3}\right)\right.$.

MS (APCI pos.): $m / \approx 404.2(\mathrm{M}+\mathrm{H})$.

HRMS (CI pos.): $m / z 404.2404$ (403.2410 calc. for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NOSi}, \mathrm{M}+\mathrm{H}$).

1-((E)-2-Nitrovinyl)benzene (99): $:^{34}$ A solution of benzaldehyde ($10 \mathrm{~mL}, 98 \mathrm{mmol}$) and nitromethane ($5.3 \mathrm{~mL}, 98 \mathrm{mmol}$) in methanol (10 mL) was cooled to $-10^{\circ} \mathrm{C}$ (ice salt mixture), and an aqueous solution of $\mathrm{NaOH}(4.0 \mathrm{~g}, 100 \mathrm{mmol})$ in ice-cold $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ was added dropwise, with constant stirring to ensure that the temperature did not exceed $15^{\circ} \mathrm{C}$ (ice was added to the mixture if necessary). A bulky white precipitate was formed. A few mL of methanol were added to facilitate stirring which was continued for a few minutes. The mixture was then allowed to stand for 15 min . and a mixture of ice and water (30 mL) was added to provide a solution. This was acidified with aqueous $\mathrm{HCl}(4.0$ $\mathrm{M}, 20 \mathrm{~mL}$) with cooling ($<5^{\circ} \mathrm{C}$). The nitrostyrene precipitated as a pale yellow solid that was isolated by filtration and air dried. Yield: $9.9 \mathrm{~g}(68 \%)$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.01(\mathrm{~d}, 1 \mathrm{H}, J=12.5, \mathrm{ArCH}), 7.59(\mathrm{~d}, 1 \mathrm{H}, J=12.5$, $\mathrm{CH} \mathrm{NO}_{2}$), 7.59-7.44 (m, $5 \mathrm{H}, \mathrm{ArH}$).

(E)-2-Nitro-3-phenylprop-2-en-1-ol (100): $:^{34}$ To a solution of 1-((E)-2nitrovinyl)benzene ($99,5.0 \mathrm{~g}, 34 \mathrm{mmol}$) in THF (68 mL) were added imidazole ($2.3 \mathrm{~g}, 34$ mmol), anthranilic acid ($0.46 \mathrm{~g}, 3.3 \mathrm{mmol}$) and aqueous formaldehyde ($38 \% \mathrm{soln}$., 66.9 mL) was added. The mixture was stirred for 18 h at ambient temperature. The mixture was then acidified with aqueous $\mathrm{HCl}(5.0 \mathrm{M}, 168 \mathrm{~mL})$ and extracted with ethyl acetate. The combined extracts were washed with aqueous NaHCO_{3}, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (2:1 hexane: ethyl acetate) on silica gel to provide 1.5 g (64 \%) of $\mathbf{1 0 0}$ as a yellow oil.
${ }^{1} \mathbf{H}^{\text {NMR }}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}), 5.57-7.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.50-7.47$ (m, 3H, ArH), $4.71\left(\mathrm{~d}, 2 \mathrm{H}, J=7.2, \mathrm{CH}_{2} \mathrm{OH}\right), 2.59\left(\mathrm{t}, 1 \mathrm{H}, J=7.2, \mathrm{CH}_{2} \mathrm{OH}\right)$.

(E)-2-Nitro-3-phenylallyl-2-en-1-acetate (101): ${ }^{34}$ To a solution of compound $\mathbf{1 0 0}(1.4 \mathrm{~g}$, $8.0 \mathrm{mmol})$ in dry dichloromethane $(19 \mathrm{~mL})$ was added triethylamine $(1.4 \mathrm{~mL}, 10.0 \mathrm{mmol})$ followed by acetyl chloride ($0.70 \mathrm{~mL}, 10.0 \mathrm{mmol}$). The mixture was stirred for 3 h , diluted with dichloromethane and the resulting solution was washed with aqueous HCl $(2.0 \mathrm{M}, 2 \times 20 \mathrm{~mL})$. The organic layer was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated.

The residue was purified by flash chromatography on silica gel (2:1 hexane: ethyl acetate) to provide $1.5 \mathrm{~g}(82 \%)$ of compound 101 as a yellow solid.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}), 7.51-7.45(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.22(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OCO}$), $2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right)$.

OR

(9aS)-Octahydro-4-nitro-2,3-diphenyl-1H-pyrrolo-(1,2-a)(1,4)diazepine) or (9aS)-Octahydro-4-nitro-2,5-diphenyl-1H-pyrrolo-(1,2-a)(1,4)diazepine) (103): To a solution of $(S)-(+)$-2-(anilinomethyl)pyrrolidine ($\left.90,1.2 \times 10^{-3} \mathrm{~g}, 6.6 \times 10^{-3} \mathrm{mmol}\right)$ in THF $(0.8 \mathrm{~mL})$ was added cyclohexanone $(0.09 \mathrm{~mL}, 0.83 \mathrm{mmol})$ and nitroalkene $101(0.07 \mathrm{~g}$, $0.33 \mathrm{mmol})$. The mixture was stirred for 12 h and concentrated. The residue was purified by flash chromatography on silica gel (6:1 hexane: ethyl acetate) to provide $19 \mathrm{mg}(83 \%)$ of 103 .

Note: The exact identity of $\mathbf{1 0 3}$ (one of two possible structural isomers) has not been determined.

IR (neat): $1600,1542,1506,1457,1369,1341,1287,1183 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.30-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 6.81-6.79(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 4.86-$ $4.82\left(\mathrm{dt}, 1 \mathrm{H}, J=9.5,2.0, \mathrm{CHNO}_{2}\right), 4.18-4.13\left(\mathrm{dd}, 1 \mathrm{H}, J=15.4,9.5, \mathrm{NCH}_{2}\right), 4.03-3.99$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.55-3.52(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.2,11.2, \mathrm{NCH}), 3.34-3.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.18-$
$3.14\left(\mathrm{t}, 1 \mathrm{H}, J=11.3, \mathrm{CH}_{2}\right), 2.64-2.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.35-2.30\left(\mathrm{t}, 1 \mathrm{H}, J=6.6, \mathrm{CH}_{2}\right), 2.23-$ 2.14 (m, 2H, CH2 $)$, 1.89-1.84 (m, 1H, CH2 $), 1.73-1.62\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.90-0.80(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

LCMS (CI positive): m/z 338.1 (M+1).

(E)-2-Nitro-3-phenylallyl pivalate (106): To a solution of compound 100 ($180 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ in dry dichloromethane (19 mL) was solution of pivaloyl chloride $(0.18 \mathrm{~mL}, 1.5$ $\mathrm{mmol})$ in dry dichloromethane (2.0 mL) dropwise, at $0^{\circ} \mathrm{C}$. The mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 4 h , acidified with aqueous $\mathrm{HCl}(1.0 \mathrm{M}, 5.0 \mathrm{~mL})$ and extracted with ethyl acetate. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by flash chromatography on silica gel column (4:1 hexane: ethyl acetate) to provide 116 mg (44\%) of compound 106 and $50 \mathrm{mg}(28 \%)$ of unreacted starting material.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}), 7.51-7.45(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph} H), 5.19(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{OCO}\right), 1.25\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

(S)-2-(Methoxymethyl)-1-((E)-2-nitro-3-phenylallyl)pyrrolidine (107): The catalyst 94 $(4.0 \mathrm{mg}, 0.38 \mathrm{mmol})$ was dissolved in dichloromethane $(1.0 \mathrm{~mL})$ and acetone $\left(6.9 \times 10^{-2}\right.$ $\mathrm{mL}, 0.95 \mathrm{mmol})$, and the nitroalkene $106(50 \mathrm{mg}, 0.19 \mathrm{mmol})$ were added. The solution was stirred at ambient temperature for 25 h . The reaction mixture was diluted with dichloromethane and the solution was washed with aqueous $\mathrm{HCl}(1.0 \mathrm{M}, 1.0 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated, and the residue was purified by flash chromatography on silica gel (4:1 hexane: ethyl acetate) to provide $5.0 \mathrm{mg}(42 \%)$ of 107 .
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.06\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}=\mathrm{CNO}_{2}\right), 7.66-7.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H)$, 7.45-7.43 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{Ar} H), 4.22\left(\mathrm{~d}, 1 \mathrm{H}, J=13.7, \mathrm{CH}=\mathrm{CCH}_{2}\right), 3.80(\mathrm{~d}, 1 \mathrm{H}, J=13.7$, $\left.\mathrm{CH}=\mathrm{CCH}_{2}\right), 3.47-3.44\left(\mathrm{dd}, 1 \mathrm{H}, J=9.5,5.7, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 3.35-3.32(\mathrm{dd}, 1 \mathrm{H}, J=9.5,5.7$, $\left.\left.\mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.96-2.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 2.76-2.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH})_{2}\right)$, 2.30-2.27 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), 1.91-1.86 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.71-1.67 (m, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH} \mathrm{H}_{2}$), 1.6-1.5 (m, $\left.\mathrm{IH}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

LCMS (Cl positive): $m / z 277.1(\mathrm{M}+1)$.

5-((E)-2-Nitrovinyl)benzo(\boldsymbol{d})(1,3)-dioxole (109): ${ }^{35}$ A mixture of piperonal (2.0 g, 13 $\mathrm{mmol})$, nitromethane, $(8.7 \mathrm{~mL}, 1.6 \mathrm{~mol}), \mathrm{NH}_{4} \mathrm{OAc}(2.2 \mathrm{~g}, 29 \mathrm{mmol})$ and acetic acid (2.2 mL) was sonicated for 8 h at room temperature (reaction was monitored by NMR). The mixture was diluted with dichloromethane and the solution was washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was recrystalised from aqueous methanol to provide $2.4 \mathrm{~g}(91 \%)$ of $\mathbf{1 0 9}$ as a solid.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92(\mathrm{~d}, 1 \mathrm{H}, J=13.5, \mathrm{PhC} H), 7.48(\mathrm{~d}, 1 \mathrm{H}, J=13.5$, $\left.\mathrm{C} H \mathrm{NO}_{2}\right), 7.09(\mathrm{dd}, 1 \mathrm{H}, J=8.0,1.6, \mathrm{Ar} H), 7.0(\mathrm{~d}, 1 \mathrm{H}, J=1.6, \mathrm{Ar} H), 6.88(\mathrm{~d}, 1 \mathrm{H}, J=8.0$, $\mathrm{ArH}), 6.06\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right)$.

(E)-3-(Benzo(d)(1,3)dioxol-6-yl)-2-nitroprop-2-en-ol (110):34 To a solution of compound $109(1.0 \mathrm{~g}, 5.2 \mathrm{mmol})$ THF (12 mL) was added imidazole ($0.31 \mathrm{~g}, 5.2 \mathrm{mmol}$), anthranilic acid ($70 \mathrm{mg}, 0.52 \mathrm{mmol}$) and aqueous formaldehyde (38% soln., $10.0 \mathrm{~mL}, 1.3$ $\mathrm{mol})$ was added. The reaction mixture was stirred for 6 d , acidified with aqueous $\mathrm{HCl}(5.0$ $\mathrm{M}, 34 \mathrm{~mL}$) and the mixture was extracted with ethyl acetate. The combined organic layers were washed with aqueous NaHCO_{3}, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue
purified by flash chromatography on silica gel (2:1 hexane: ethyl acetate) to provide 560 $\mathrm{mg}(49 \%)$ of 110 as a yellow solid.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}), 7.26(\mathrm{~d}, 1 \mathrm{H}, J=1.5, \mathrm{Ar} H), 7.13(\mathrm{~d}$, $1 \mathrm{H}, J=6.8, \mathrm{Ar} H), 7.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.91(\mathrm{~d}, 1 \mathrm{H}, J=6.8, \mathrm{ArH}), 6.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right)$, 4.72-4.71(dd, $\left.2 \mathrm{H}, J=1.2,7, \mathrm{CH}_{2} \mathrm{OH}\right), 2.59\left(\mathrm{dt}, 1 \mathrm{H}, J=7,1.4, \mathrm{CH}_{2} \mathrm{OH}\right)$.

(E)-3-(Benzo(d)(1,3)dioxol-6-yl)-2-nitroallyl pivalate (111): To a solution of compound $110(47 \mathrm{mg}, 2.1 \mathrm{mmol})$ in dry dichloromethane $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise, a solution of pivaloyl chloride ($0.38 \mathrm{~mL}, 3.1 \mathrm{mmol}$) in dry dichloromethane (4 mL). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 8 h , acidified with aqueous $\mathrm{HCl}(1.0 \mathrm{M}, 16 \mathrm{~mL})$ and the solution was extracted with ethyl acetate. The combined organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by flash chromatography on silica gel (4:1 hexane: ethyl acetate) to provide $490 \mathrm{mg}(76 \%)$ of compound 111 and 96 mg (21%) of unreacted starting material.

IR (neat): 2974, 1728, 1490, 1261, 1148, $1032 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.27(\mathrm{~s}, 1 \mathrm{H} . \mathrm{ArCH}), 7.4(\mathrm{dd}, 1 \mathrm{H}, J=8,1.2 \mathrm{ArH}), 6.97(\mathrm{~d}$, $1 \mathrm{H}, J=1.2, \mathrm{Ar} H), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=8.0, \mathrm{Ar} H), 6.06\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{2} \mathrm{O}\right), 5.20(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{OCO}\right), 1.24\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }^{13} \mathbf{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.1(\mathrm{OCO}), 150.9(\mathrm{ArC}), 148.9(\mathrm{ArC})$), 144.0 $\left(\mathrm{CNO}_{2}\right), 140.1(\mathrm{ArC}), 126.9\left(\mathrm{CH}=\mathrm{CNO}_{2}\right), 125.1(\mathrm{ArC}), 109.6(\mathrm{ArC}), 109.3(\mathrm{ArC}), 102.2$ $\left(\mathrm{OCH}_{2} \mathrm{O}\right), 58.3\left(\mathrm{CH}_{2} \mathrm{OCO}\right)$, $39.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $27.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

MS (CI): m/z $206.0\left(\mathrm{M}-\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}_{2} \mathrm{H}\right)+\mathrm{H}\right)$.

(E)-3-(Benzo(d)(1,3)dioxol-6-yl)-2-nitroprop-2-en-1-(S)-2-(t-butyldiphenylsilyloxy methyl) pyrrolidine (113): To a solution of the catalyst $91\left(20 \mathrm{mg}, 6.00 \times 10^{-2} \mathrm{mmol}\right)$ in dichloromethane (1.0 mL) were added acetone $(0.21 \mathrm{~mL}, 2.9 \mathrm{mmol})$ and the nitroalkene $111(85 \mathrm{mg}, 0.29 \mathrm{mmol})$. The mixture was stirred for 28 h at ambient temperature and concentrated. The residue was purified by flash chromatography on silica gel (6:1 hexane: ethyl acetate) to provide 15 mg (12%) of 113 .

IR (neat): 2932, 2857, 1554, 1503, 1487, 1444, 1427, 1248, 1113, $1039 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.02\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CNO}_{2}\right), 7.65-7.62(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 7.49$
$(\mathrm{d}, 1 \mathrm{H}, \quad J=1.5, \operatorname{Ar} H), 7.42-7.33(\mathrm{~m}, 6 \mathrm{H}, \operatorname{Ar} H), 7.17-7.15(\mathrm{dd}, 1 \mathrm{H}, J=8.1,1.5, \mathrm{Ar} H)$,
$6.75(\mathrm{~d}, 1 \mathrm{H}, J=8.1, \mathrm{Ar} H), 5.98\left(\mathrm{~d}, 1 \mathrm{H}, J=1.3, \mathrm{OCH}_{2} \mathrm{O}\right), 5.88\left(\mathrm{~d}, 1 \mathrm{H}, J=1.3, \mathrm{OCH}_{2} \mathrm{O}\right)$,
$4.14\left(\mathrm{~d}, 1 \mathrm{H}, J=13.5, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{C}\right), 3.85-3.82\left(\mathrm{dd}, 2 \mathrm{H}, J=10.3,6.2, \mathrm{CH}_{2} \mathrm{O}\right), 3.83(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$
$\left.=13.5,1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{C}\right), 3.59-3.55\left(\mathrm{dd}, 2 \mathrm{H}, J=10.3,6.2, \mathrm{CH}_{2} \mathrm{O}\right), 2.91-2.88(\mathrm{~m}, 1 \mathrm{H}$,
$\mathrm{NCH}), 2.81-2.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.42-2.37\left(\mathrm{q}, 1 \mathrm{H}, J=8.5, \mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH} \mathrm{N}_{2}\right), 1.92-1.87(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.69-1.57\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.00\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

LCMS (APCI neg.): m/z 544.3 (M+); (APCI pos.): $m / z 545.2(\mathrm{M}+\mathrm{H})$.

HRMS (EI pos.): $m / z 544.2394$ (544.2393 cal. for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}, \mathrm{M}+$).

(E)-3-(Benzo(d)(1,3)dioxol-6-yl)-2-nitroprop-2-en-1-(1R,2S)-2-(methylamino-1-phenylpropan-1-diphenyl trimethylsilanol (114): To a solution of the catalyst 93 (16.0 $\left.\mathrm{mg}, 4.0 \times 10^{-2} \mathrm{mmol}\right)$ and acetone $(1.0 \mathrm{~mL})$ was added the nitroalkene $111(0.07 \mathrm{~g}, 0.22$ mmol). The solution was stirred at ambient temperature for 3 d and concentrated. The residue was purified by flash chromatography on silica gel (6:1 hexane: ethyl acetate) to provide $16 \mathrm{mg}(66 \%)$ of 114.

IR (neat): 2932, 2857, 1503, 1488, 1447, 1245, 111, 1039, $934 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.92(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArCH}=\mathrm{C}), 7.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.41(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{Ar} H), 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 7.15(\mathrm{t}, 2 \mathrm{H}, J=7.5, \mathrm{Ar} H), 6.99(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 6.94(\mathrm{t}, 2 \mathrm{H}$, $J=7.3, \operatorname{Ar} H), 6.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 6.76(\mathrm{dd}, 1 \mathrm{H}, J=6.6,1.5, \operatorname{Ar} H), 6.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{Ar} H)$, $6.65(\mathrm{~d}, 1 \mathrm{H}, J=8.1, \mathrm{Ar} H), 5.98\left(\mathrm{dd}, 2 \mathrm{H}, J=7.3,1.2, \mathrm{OCH}_{2} \mathrm{O}\right), 4.43(\mathrm{~d}, 1 \mathrm{H}, J=8.5$,

CHOSi), $3.79\left(\mathrm{~d}, 1 \mathrm{H}, J=13.8, \mathrm{NCH}_{2}\right), 3.16\left(\mathrm{~d}, 1 \mathrm{H}, J=13.8, \mathrm{NCH}_{2}\right), 2.92-2.87(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{3}\right) 1.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 1.1\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5, \mathrm{CHCH}_{3}\right), 0.93\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. MS (APCI pos.): m/z 609.3 (M+1).

HRMS (CI positive): $m / z 609.2777$ (609.2785 cal. for $\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}, \mathrm{M}+\mathrm{H}$).

2-(2-(4-Methoxyphenoxy)ethyl)-1,3-dioxolane (119): ${ }^{36}$ To a solution of p-methoxy phenol ($120 \mathrm{mg}, 1.0 \mathrm{mmol}$) acetone (7.0 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(270 \mathrm{mg}, 2.0 \mathrm{mmol})$ and the mixture was stirred for 10 min 2 -(2-Bromoethyl)-1,3-dioxalane ($117,0.12 \mathrm{~mL}, 1.0$ mmol) was added and the mixture was heated to reflux for 62 h . The mixture was cooled to ambient temperature, concentrated and the residue was dissolved in ethyl acetate. The solution was washed with aqueous NaOH solution ($2.0 \mathrm{M}, 2.0 \mathrm{~mL}$). The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to provide 220 mg (98%) of 119 as pale yellow liquid.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.84-6.77(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 5.09(\mathrm{t}, 1 \mathrm{H}, J=4.9$, $\left.\mathrm{CH}\left(\mathrm{OCH}_{2}\right)_{2}\right), 4.07\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.5, \mathrm{ArOCH}_{2}\right), 4.01-3.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.90-3.86$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 2.14\left(\mathrm{q}, 2 \mathrm{H}, J=6.5, \mathrm{ArOCH}_{2} \mathrm{CH}_{2}\right)$.

3-(4-Methoxyphenoxy)propanal (120): Compound 119 ($2.2 \mathrm{~g}, 9.6 \mathrm{mmol}$) was dissolved in THF (20 mL) and aqueous $\mathrm{HCl}(7.0 \mathrm{M}, 20 \mathrm{~mL})$ was added over a period of 15 min . with cooling. The mixture was stirred at room temperature for 20-30 min (monitored by NMR) and concentrated. The residue was dissolved in ethyl acetate and the solution was washed with brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to provide $160 \mathrm{mg}(91 \%)$ of $\mathbf{1 2 0}$ as a yellow-brown liquid.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.84(\mathrm{t}, 1 \mathrm{H}, J=1.6, \mathrm{CHO}), 6.83(\mathrm{~d}, 2 \mathrm{H}, J=1.0, \mathrm{Ar} H)$, $6.76(\mathrm{~d}, 2 \mathrm{H}, J=1.0, \mathrm{Ar} H), 4.25\left(\mathrm{t}, 2 \mathrm{H}, J=6.0, \mathrm{ArOCH}_{2}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.91-$ $3.85\left(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=1.6,6.0, \mathrm{ArOCH}_{2} \mathrm{CH}_{2}\right)$.

(E)-6-(4-Methoxyphenoxy)hex-3-en-2-one (122): 3-(4-Methoxyphenoxy)propanal (120) $(340 \mathrm{mg}, 1.9 \mathrm{mmol})$ was dissolved in THF (10.0 mL) and the Wittig reagent (121) 600 $\mathrm{mg}, 1.9 \mathrm{mmol}$) was added. The mixture was heated to reflux for 34 h , cooled to ambient temperature and concentrated. The residue was purified by flash chromatography on silica gel (4:1 hexane: ethyl acetate) to provide 220 mg (29%) of 122.
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.91-6.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCO}), 6.83(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH}), 6.19$
$(\mathrm{d}, 1 \mathrm{H}, J=20, \mathrm{CH}=\mathrm{CHCO}), 4.05\left(\mathrm{t}, 2 \mathrm{H}, J=6.3, \mathrm{ArOCH}_{2}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 2.70-$ $2.66\left(\mathrm{dq}, 2 \mathrm{H}, \mathrm{J}=6.5,1.3, \mathrm{CH}_{2} \mathrm{CH} \mathrm{H}_{2} \mathrm{CH}=\mathrm{CH}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right)$.

References

1. Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2004, 43, 5138.
2. Rasalkar, M. S.; Potdar, M. K.; Mohile, S. S.; Salunkhe, M. M. J. Mol. Cat. A: Chemical 2005, 235, 267.
3. Hoashi, Y.; Yabuta, T.; Takemoto, Y. Tetrahedron Lett. 2004, 45, 9185.
4. Reyes, E.; Jiang, H.; Milelli, a.; Elsner, P.; Hazell, R. G.; Jørgensen, K. A. Angew.

Chem. Int. Ed. 2007, 46, 9202.
5. Alexakis, A.; Andrey, O. Org. Lett. 2002, 4, 3611.
6. Hayashi, Y.; Gotoh, H.; Hayato, I. Org. Lett. 2007, 9, 5307.
7. List, B.; Pojarliev, P.; Martin, H. J. Org. Lett. 2001, 3, 2423.
8. Betancort, J. M.; Barbas III, C. F. Org. Lett. 2001, 3, 3737.
9. Alexakis, A.; Andrey, O.; Bernardinelli, G. Org. Lett. 2003, 5, 2559.
10. Mitchell, C. E. T.; Alexander, J. A.; Cobb, A. J. A.; Ley, S. V. Synlett 2005, 611.
11. Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem. Int. Ed. 2005, 44, 4212.
12. Huang, H.; Jacobsen, E. R. J. Am. Chem. Soc. 2006, 128, 7170.
13. Terakado, D.; Takano, M.; Oriyama, T. Chem. Lett. 2005, 34, 962.
14. Pansare, S. V.; Pandya, K. J. Am. Chem. Soc. 2006, I28, 9624.
15. Liu, F.; Wang, S.; Wang, N.; Peng, Y. Synlett 2007, 2415.
16. Seebach, D.; Missbach M.; Calderari, G.; Eberle, M. J. Am. Chem. Soc. 1990, 112, 7625.
17. Enders, D.; Meyer, O.; Raabe, G. Synthesis 1992, 1242.
18. Felluga, F.; Nitti, P.; Pitacco, G.; Valentine, E. Tetrahedron Lett. 1988, 29, 4165.
19. Amold, Z. Synthesis 1990, 39.
20. White, W. A.; Weingarten, H. J. Org. Chem. 1967, 32, 213.
21. Barluenga, J.; Aznar, F.; Valdes, C.; Martin, A.; Granda, S. G.; Martin, E. J. Am. Chem. Soc. 1993, 115, 4403.
22. Barluenga, J.; Aznar, F.; Ribas, C.; Valdes, C. J. Org. Chem. 1997, 62, 6746.
23. Thayumanavan, R.; Dhevalapally, B.; Sakthivel, K.; Tanaka, F.; Barbas III, C. F. Tetrahedron Lett. 2002, 43, 3817.
24. Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2005, 44, 795.
25. Hayashi, Y.; Okano, T.; Aratake, S.; Hazelard, D.; Angew. Chem. Int. Ed. 2007, 46, 4922.
26. Enders, D.; Huttl, M. R. M.; Grondal, C.; Raabe, G. Nature, 2006, 44, 861.
27. Prieto, A.; Halland, N.; Jørgensen K. A. Org. Lett. 2005, 7, 3897.
28. Bencivenni, G.; Wu, L. Y.; Mazzanti, A.; Giannichi, B.; Pesciaioli, F.; Song, M. P.; Bartoli, G.; Melchiorre, P. Angew. Chem. Int. Ed. 2009, 48, 1.
29. Wu, L. Y. Bencivenni, G.; Mancinelli, M.; Mazzanti, A.; Bartoli, G.; Melchiorre, P. Angew. Chem. Int. Ed. 2009, 48, 1.
30. Thayumanavan, R.; Dhevalapally, B.; Sakthivel, K.; Tanaka, F.; Barbas III, C. F. Tetrahedron Lett. 2002, 43, 3817.
31. Bella, M.; Gasperi, T. Synthesis 2009, 1583.
32. Zhao, D.; Kuethe, J. F.; Journet, M.; Peng, Z.; Humphery, G. R. J. Org. Chem. 2006,

71,4336.
33. Kurokawa, M.; Shindo, T.; Suzuki, M.; Nakajima, N.; Ishihara, K.; Sugai, T.

Tetrahedron: Asymmetry, 2003, 14, 1323.
34. Moha, R.; Rastogi, N.; Namboothiri, I. N. N.; Mobin, S. M.; Panda, D. Bioorg. Med. Chem. 2006, 14, 8073.
35. McNulty, J.; Steere, J. A.; Wolf, S. Tetrahedron Lett. 1998, 39, 8013.
36. a) El-Qisairi, A. K.; Qaseer, H. A.; Henry, P. M. J. Organomet. Chem. 2002, 656,
168. b) Vogel's Text Book of Practical Organic Chemistry, Addison Wesley Longman

Ltd:Essex, England, 1996, p 986.
37. Ramirez, F.; Dershowitz, S. Synthesis 1957, 41.

Chapter 2

Organocatalytic Synthesis of (+)-Lycoperdic Acid

Introduction

In 1978, Rhugenda-Banga et al. isolated lycoperdic acid (1) as a nonproteinogenic α-amino acid, from the mushroom Lycoperdon perlactum.' Later on, in 1979 these authors explored the structural details of lycoperdic acid based on spectroscopic and X-ray crystallographic studies. ${ }^{2.3}$

1

This unusual α-amino acid is structurally similar to (S)-glutamic acid and it was therefore expected to have antagonistic (a ligand or drug, which binds the receptor but does not induce biological responses, but blocks the agonist mediated responses) or agonistic (a guest or drug, that binds and alters the receptor activity) activity for the glutamate receptor in the mammalian central nervous system. ${ }^{4}$ The total synthesis of $\mathbf{1}$ has been reported in the literature by Yoshifuji, ${ }^{3,5}$ Hatakeyama, ${ }^{6}$ Hamada, ${ }^{4}$ Ishibashi ${ }^{7}$ and Chamberlin, respectively. ${ }^{8}$ In most of these total syntheses, chiral starting materials were used.

The interesting biological activity, unique structure and its low natural abundance attracted our attention to the total synthesis of lycoperdic acid, using an organocatalytic reaction as the key step involving homocitric acid.

Discussion

The first total synthesis of lycoperdic acid was reported by Yoshifuji et al. in 1992. ${ }^{3}$ Their approach is based on a SmI_{2}-mediated formation of a spirolactone at the C 4 position of commercially available trans-4-hydroxy-L-proline (2 Scheme 1) and oxidation of the pyrrolidine ring using RuO_{4} to a pyroglutamic acid derivative.

Scheme 1: Yoshifuji`s synthesis of lycoperdic acid.

Trans-4-hydroxy-L-proline (2) was converted to the methyl ester and protection of the secondary amine with a Boc group gave compound 3. Oxidation of $\mathbf{3}$ with RuO_{4} gave compound 4 in 84% yield. ${ }^{9}$ The key step in this synthesis is the reductive cross coupling ${ }^{10}$ of methyl acrylate and compound 4 with SmI_{2}. The reaction resulted in a mixture of two inseparable, diastereomeric spirolactones $\mathbf{5 a}$ and $\mathbf{5 b}$ in 81% yield. RuO_{4}. mediated oxidation of this mixture was done by using Yoshifujiis protocol ${ }^{11}$ to obtain pyroglutamic acid derivatives $\mathbf{6 a}$ and $\mathbf{6 b}$, which were separated by column chromatography. The stereochemistry in $\mathbf{6 a}$ and $\mathbf{6} \mathbf{b}$ was determined by NOE experiments, which proved that $\mathbf{6 a}$ is the proper diastereomer for lycoperdic acid. Removal of the Boc protecting group, ester hydrolysis and amide hydrolysis in compound 6 a were achieved with refluxing aqueous 6.0 M HCl to provide lycoperdic acid. The crude acid was purified by ion exchange chromatography (Dowex 1×8, eluted with aqueous 2.0 M $\mathrm{AcOH})$ followed by recrystalisation from water (77% yield). A similar hydrolysis of $\mathbf{6 b}$ gave epi-lycoperdic acid.

In 2002, Hatakeyama et al. reported a new stereo-controlled approach for the synthesis of lycoperdic acid. This approach was based on a palladium-catalyzed crosscoupling reaction (Scheme 2). ${ }^{6}$

Scheme 2: Hatakeyama’s synthesis of lycoperdic acid.

In the synthesis of lycoperdic acid, Hatakeyama used tetrahydro-2-(2-propynyloxy)-2H-pyran (7) as a starting material (Scheme 2). Lithiation of 7 followed by alkylation with 1-iodo-3-(4-methoxyphenylmethyl)-propane and subsequent removal of
the THP ether with PPTS gave propargyl alcohol 8. Alcohol 8 was treated with Red-Al ${ }^{12}$ and the resulting alkenyaluminum complex was reacted with iodine followed by protection of the primary alcohol as its TBS ether to provide 9. Thus a stereo- and regioselective synthesis of (Z)-iodoalkene 9 was obtained. Palladium-catalyzed coupling of 9 with organozinc reagent 11 (Scheme 3) prepared in situ from 11 using Jackson`s protocol, ${ }^{13}$ followed by desilylation with AcOH , gave alcohol 12. Catalytic asymmetric epoxidation of $\mathbf{1 2}$ using the Katsuki-Sharpless protocol ${ }^{14}$ provided epoxide 13. Diol 14 was then obtained by treating epoxide 13 with DDQ to remove the MPM protecting group. Cyclization of diol 14 with PPTS gave tetrahydrofuran 15 with complete inversion of stereochemistry at one of the epoxide stereocenters. Tetrahydrofuran 15 was directly subjected to $\mathrm{Pb}(\mathrm{OAc})_{4}$ oxidation and Jones oxidation to obtain lactam 16 in 67% yield. RuO_{4} oxidation ${ }^{15}$ of lactam 16 thus provided compound 17 in excellent yield. The total synthesis of lycoperdic acid was completed by subjecting compound 17 to acid hydrolysis (83% yield). ${ }^{3}$

In 2002, Hamada and co-workers ${ }^{4}$ reported the synthesis of lycoperdic acid by using the known chiral bicyclic lactam ${ }^{16} 20$ (Scheme 4), which was prepared through Thottathil's protocol. ${ }^{16}$ Pyroglutamic acid (18) was converted to an ester which was then reduced to alcohol 19. ${ }^{17}$ Bicyclic lactam 20 was obtained from 19 as a single diastereomer by reaction with benzaldehyde in acidic medium.

Scheme 4: Synthesis of bicyclic lactam 20.

The bicyclic lactam 20 was treated with lithium diisopropylamide (LDA) followed by addition of allyl bromide at $-78^{\circ} \mathrm{C}$ for 4 h to gave a $1: 1$ mixture of diastereomers 21 (Scheme 5).

Scheme 5: Hamada`s synthesis of lycoperdic acid.

In the key step, reaction of diastereomers 21 with LDA and freshly-prepared
$\mathrm{MoOPH}\left(\mathrm{MoO}_{5} \cdot \mathrm{Py} \cdot \mathrm{HMPA}\right)^{18}$ gave single diastereomer of α-hydroxy lactam 22. The endo stereochemistry of the allyl group in $\mathbf{2 2}$ was confirmed by NOE experiments. $\alpha-$ Hydroxylactam 22 was treated with borane tetrahydrofuran complex followed by alkaline hydrogen peroxide work-up to give alcohol 23, which was oxidized using Jones reagent to afford crystalline tricyclic γ-lactone 24 in 67\% yield. The X-ray structure of compound 24 shows that the oxygen in the lactone ring is at the endo position which supports the assigned stereostructure of compound 22 based on the NOE experiment. For the conversion of 24 to $\mathbf{1}$ a novel two-step conversion was developed, in which compound 24 was oxidized with $\mathrm{RuCl}_{3}{ }^{19}$ and sodium periodate to provide anhydride $\mathbf{2 5}$ (oxidation of 24 at Cl and the N, O-acetal benzylic position), which then was heated to reflux in aqueous 6.0 M HCl for 16 hours to afford lycoperdic acid in 64% yield.

In 2007, Chamberlin and Cohen reported the synthesis of lycoperdic acid, which is based on the intramolecular $\mathrm{S}_{\mathrm{N}} 2$ displacement of a bromide by an alkoxide nucleophile in a diastereoselective annulation of an oxolane ring onto a pyroglutamate scaffold to construct a γ-lactone. ${ }^{8}$ The starting material for this synthesis was prepared from commercially available D-glutamic acid (27) in four steps ${ }^{20}$ (Scheme 6). Treatment of D-glutamic acid (27) with thionyl chloride in ethanol was followed by addition of potassium hydroxide, and the mixture was then refluxed at $150{ }^{\circ} \mathrm{C}$ to give (R)-ethyl-5-oxopyrrolidine-2-carboxylate (28) in 88% yield. The ester in compound 28 was reduced with lithium aluminum hydride to yield (R)-5-(hydroxymethyl)pyrrolidin-2-one (29) in 72% yield. The primary hydroxy group in 29 was first protected with TBDSCl followed

Scheme 6: Preparation of compound 30.
by protection of the secondary amine with Boc anhydride to provide compound $\mathbf{3 0}$ in 72% yield.

Deprotonation of compound $\mathbf{3 0}$ (Scheme 7) followed by a reaction with 3-(tert-butyldimethylsilyloxy)propanal in the presence of $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ provided an inseparable mixture of diastereomeric aldol adducts $\mathbf{3 1}$ in 96% yield. Dehydration of compound $\mathbf{3 1}$ with triphenyl phosphonium iodide in the presence of imidazole provided $\mathbf{3 2}$ as a 5:1 mixture of E / Z isomers based on NMR analysis. ${ }^{21}$ The 3,5-substituted pyrrolidine $\mathbf{3 3}$ was obtained as a single diastereomer after hydrogenation of compound 32. Bromination of $\mathbf{3 3}$ gave a separable mixture of diastereomers $\mathbf{3 4 a}$ and $\mathbf{3 4 b}$ (6:1 based on NMR of crude reaction mixture) in 95% yield.

Scheme 7: Synthesis and bromination of 3,5-disubstituted pyrrolidine 31.

The stereochemistry at C3 in compound $\mathbf{3 4} \mathbf{a}$ was helpful for the stereospecific generation of the oxolane ring in compound 35 (Scheme 8). The major anti isomer 34a was assigned on the basis of earlier studies on similar γ-lactones or γ-lactams. ${ }^{22}$ Oxidative annulation of lactam 34a was achieved using Jones reagent followed by basic work-up to provide spirolactone $\mathbf{3 5}$ in 79% yield. Boc protection of $\mathbf{3 6}$ followed by desilylation with TBAF gave pyroglutaminol 36. Ruthenium tetroxide-mediated oxidation of alcohol 36 followed by esterification of the resulting acid with TMSCHN_{2} afford methyl ester $\mathbf{3 7}$ in 76% yield. Acid hydrolysis of methyl ester 37 followed by ion-exchange chromatographic separation and recrystalisation ${ }^{3,5}$ gave pure $(S)-(+)$-lycoperdic acid in 56\% yield.

Scheme 8: Synthesis of lycoperdic acid 1 from 34a.

Ishibashi et al. reported a new methodology for the synthesis of lycoperdic acid 7 (Scheme 9). The synthesis begins with the protection of the alcohol in ethyl-2(hydroxymethyl)acrylate 38 (Scheme 9) as the tert-butyl diphenyl silyl ether 39. Reduction of 39 with DIBAL-H gave 40^{23} in 93% yield. Compound 40 was subjected to the Johnson-Claisen rearrangement conditions to provide the γ, δ-unsaturated ester 41, which was then treated with TBAF to provide the allylic alcohol 42 . Cycloaddition of 42 with nitrone ${ }^{24} 43$ in the presence of $\mathrm{MgBr}_{2} . \mathrm{OEt}_{2}{ }^{25}$ gave a separable mixture (91:9) of diastereomers of cycloadduct 44 in 94% yield. Cycloadduct 44 was hydrogenated over Pearlman's catalyst and the primary amine was protected as a Boc carbamate to provide lactone 45 in 72% yield. The primary hydroxy group in compound 45 was oxidized with

44
i) $\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ MeOH,
ii) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{CN}$
aq. NaHCO_{3}
72\%

$\mathrm{HCl}-\mathrm{HCOOH}$

87\%

1

Scheme 9: Ishibashi`s synthesis of lycoperdic acid (1).

PDC to the corresponding acid 46 in 82% yield. Hydrolysis of the lactone ring and translactonization in 46 was achieved by treatment with aqueous methanolic NaOH to
afford the sodium salt 47. Acidification of 47 with formic acid and aqueous 1.0 M HCl provided crude lycoperdic acid which was purified by ion exchange chromatography.

The stereochemistry in cycloadduct 44 can be explained on the basis of the proposed transition states (TS) shown in Figure 1. The structure of TS I shows that the $r e$-face of nitrone $\mathbf{4 3}$ is greatly shielded by the phenyl ring as compared to the si-face. ${ }^{27 \mathrm{~d}}$

TS 1

TS II

TS III

Figure 1: Transition states for cycloaddition of Nitrone 44 with allyl alcohol.

The addition of MgBr_{2}. OEt_{2} increases the rate of cycloaddition reaction by chelating with nitrone and allyl alcohol as shown in TS II and III. ${ }^{26}$ TS II is more crowded than T. S. III (exo), hence the latter leads to the obtained product.

Proposed retrosynthesis of lycoperdic acid

The strategy employed for the synthesis of lycoperdic acid by this author is based on an organocatalytic Mukaiyama-Michael addition to acrolein and an organocatalytic α-amination reaction. The retrosynthesis is summarized in Scheme 10 .

Scheme 10: Proposed retrosynthesis of lycoperdic acid (1).

It was reasoned that lycoperdic acid (1) (Scheme 10) could be obtained from the hydrazino analogue 48 by $N-N$ bond cleavage. Compound 48 can be obtained from acid 49 by Boc deprotection. Acid 49, in turn, can be obtained from aldehyde 50 by an organocatalytic α-amination reaction followed by oxidation. Aldehyde 50, the key intermediate in the synthesis, can be obtained from furan $\mathbf{5 1}$ by using an organocatalytic Mukaiyama-Michael addition to acrolein. Compound 51 can be obtained from commercially available $\boldsymbol{\gamma}$-crotonolactone (52) by adaptation of literature procedures. ${ }^{27,28}$

Studies on the synthesis of (+)-lycoperdic acid

Our studies started with commercially available γ-crotonolactone (52, Scheme 11), which was treated with TIPSOTf in the presence of triethylamine to obtain triisopropyl silyloxy furan (53) in 95% yield. ${ }^{27}$ Furan 53 was then lithiated with sec -butyl lithium

Scheme 11: Preparation of furan nucleophile 51.
followed by acylation with benzyl chloroformate to provide 51 in 40% yield. The purification of compound 51 was achieved by column chromatography followed by distillation. Impurities present in the chromatographed product were distilled over at $120^{\circ} \mathrm{C}(0.2 \mathrm{~mm}$ of Hg$)$, whereas pure 51 remained in the pot.

As the purification of $\mathbf{5 1}$ is time-consuming we attempted to prepare it by using a different method. L-(+)-glutamic acid (54, Scheme 12) was treated with HCl and

Scheme 12: Preparation of compound 52.
NaNO_{2} in the presence of water to obtained (R)-tetrahydro-5-oxofuran-2-carboxylic acid (55) in 83% yield following the reported procedure. ${ }^{29}$ The carboxylic acid group in compound $\mathbf{5 5}$ was protected as a benzyl ester (56). Attempted phenylselenation of $\mathbf{5 6}$ (LDA/PhSeCl) to provide 57 was unsuccessful. Consequently this synthetic route, which would have provided 58 via selenoxide elimination from $\mathbf{5 7}$, was abandoned.

Nevertheless, with furan nucleophile 51 in hand, we planned to react it with acrolein in an organocatalytic Mukaiyama-Michael addition reaction employing iminium ion catalysis (Scheme 13).

Scheme 13: Proposed organocatalytic Mukaiyama-Michael addition to acrolein.

For this purpose, the use of MacMillan`s second generation catalyst ${ }^{30} 59$ and its enantiomer 60 (Figure 2) was planned.

59

60

Figure 2: MacMillan`s catalysts.

The proposed mechanism for the organocatalytic Mukaiyama-Michael addition to acrolein is as shown in Figure 3. According to MacMillan, the imidazoline salt $\mathbf{5 9}$ forms an iminium ion such as $\mathbf{6 2 .}{ }^{31}$ Two factors for stereocontrol can be identified in the reaction.

1) Selective formation of E iminium ion 61 (Figure 3$)^{31}$
2) The benzyl group on the catalyst shields the si-face of the iminium ion but the re-face is less hindered for nucleophilic attack. ${ }^{31}$

Taking into consideration these aspects, the furan nucleophile should approach from the less hindered re-face of the iminium ion as shown in 62, which will form enamine 63. Hydrolysis of enamine $\mathbf{6 3}$ will give aldehyde $\mathbf{5 0}$ and regenerate the catalyst for further catalytic cycles.

Figure 3: Proposed reaction mechanism for the organocatalytic Mukaiyama-Michael addition to acrolein.

To optimize the enantioselectivity in the conjugate addition reaction, a solventeffect study was performed using MacMillan's second generation catalyst 59. In all the reactions, 1 equivalent of benzyl ester and 3 equivalents of acrolein were used. All reactions were done with $20 \mathrm{~mol} \%$ catalyst and $20 \mathrm{~mol} \%$ acid additive at different temperatures and in different solvents. The experimental results are summarized in Table 1.

Table 1: Organocatalytic Mukaiyama-Michael addition of furan 51 to acrolein, in the presence of catalyst 59.

All reactions are performed using 1 equiv. benzyl ester 51 and 3 equiv. acrolein and 20 $\mathrm{mol} \%$ catalyst. Except noted as a footnote.

Entry	Acid additive ${ }^{\text {a }}$	Solvent	Temp. ${ }^{\circ} \mathrm{C}$	Time (h)	Yield ${ }^{\text {b }}$ (\%)	ce ${ }^{\text {c }}$ (\%)
1	DNBA ${ }^{\text {d }}$	DCM	-15	120	58	56
2	TFA ${ }^{\text {e }}$	DCM	0	48	41	41
3	TFA ${ }^{\text {f }}$	CHCl_{3}	0	72	47	78-66
4	TFA ${ }^{\text {f }}$	dioxane	$0-\mathrm{rt}$.	188	46	75
5	TFA ${ }^{\text {g }}$	ether	0	168	34	25
6	-	THF	0	139	35	13
7	TFA	dioxane	rt.	72	50	14

${ }^{3} 20 \mathrm{~mol} \%$ acid additive. ${ }^{\text {b }}$ Isolated yield. ${ }^{\text {c }}$ Determined by chiral HPLC (AS-H column). ${ }^{d} 0.16 \mathrm{mmol}$
of ester in 3 ml DCM. ${ }^{\mathrm{e}} 0.096 \mathrm{mmol}$ ester in 1.5 ml DCM. ${ }^{\mathrm{f}} 0.266 \mathrm{mmol}$ of ester in 1 ml solvent.
${ }^{8} 0.266 \mathrm{mmol}$ ester in 1 ml ether.

The use of 2,4-dinitrobenzoic acid as a co-catalyst led to 58% yield of aldehyde in dichloromethane with moderate (56\%) ee (Table 1, Entry 1) at $-15{ }^{\circ} \mathrm{C}$. Changing the acid from 2,4-dinitrobenzoic acid to trifluoroacetic acid in dichloromethane (Entry 2), at
$0^{\circ} \mathrm{C}$ gave 41% yield in 48 h , however, the ee was only 41%. The use of chloroform as a solvent in the presence of TFA provided $\mathbf{5 0}$ with moderate-to-good ee (78-66) (Entry 3). Also, TFA in dioxane gave 75% ee and 46% yield after a longer period of time (Entry 4). However, the use of solvents like ether (Entry 5) resulted in low yield as well as low ee at $0{ }^{\circ} \mathrm{C}$. A reaction without any acid additive in THF proceeded with very low enantioselectivity (13%) thereby emphasizing the importance of the acid additive.

To continue this study, the effect of TFA or other acids as additives was investigated by controlled experiments performed in THF (Table 2).

Table 2: Organocatalytic Mukaiyama-Michael addition of furan 51 to acrolein, in the presence of catalyst 59.

All reactions were performed using 1 equiv. benzyl ester 51 and 3 equiv. acrolein and 20 $\mathrm{mol} \%$ catalyst. Except noted as a footnote.

Entry	Acid additive ${ }^{\text {a }}$	Solvent	Temp. ${ }^{\circ} \mathrm{C}$	Time (h)	Yield ${ }^{\text {b }}$ (\%)	$\begin{aligned} & \text { ee } e^{c} \\ & (\%) \end{aligned}$
1	TFA ${ }^{\text {d }}$	THF	0	48	29	69
2	TFA ${ }^{\text {d }}$	THF	$0-\mathrm{rt}$	50	50	59
3	TFA ${ }^{\text {e }}$	THF	4	72	24	61
4	TFA ${ }^{\text {f }}$	THF	-7	72	27	48
5	$\mathrm{Cl}_{2} \mathrm{CHCOOH}^{\text {e }}$	THF	0	80	43	2
6	TFA ${ }^{\text {h }}$	DME	0	68	41	58
7	TFA ${ }^{\text {f }}$	THF	0	46	29	55
8	TFA ${ }^{\text {g }}$	THF	0	115	43	$59^{\text {i }}$

[^0]The reaction at $0{ }^{\circ} \mathrm{C}$ gave low yield (29\%) and moderate ee (69\%) (Entry 1). Increasing the reaction temperature to $4^{\circ} \mathrm{C}$ gave 61% ee and only 24% yield (Entry 3). However, cooling the reaction to $-7{ }^{\circ} \mathrm{C}$ gave only 48% ee and low yield (Entry 4). The use of dichloroacetic acid instead of TFA was not beneficial, and nearly racemic product (Entry 5) was obtained. TFA in DME as the solvent gave 41\% yield and 58\% ee (Entry 6). However, use of $30 \mathrm{~mol} \%$ catalyst in the presence of TFA gave 55% ee (Entry 7). Changing the ratio of ester to acrolein from 1:3 to $1: 1$ gave bcttcr yield (43\%) and moderate ee (59\%) (Entry 8). Table 2 indicates that there is no specific trend in the yield as well as in the enantiomeric excess in the THF/TFA system. However, the importance of TFA is highlighted by the low ee with dichloroacetic acid.

Table 1 (Entry 4) shows that the use of TFA in dioxane provides 51% yield with 75% ee. This relatively good result suggested that further optimization of the reaction should be based on these conditions. The studies were conducted with the enantiomeric catalyst 60, in dioxane as solvent and in the presence of TFA as an additive using 1:3 ratio of ester: acrolein (Table 3).

Table 3: Organocatalytic Mukaiyama-Michael addition of furan 51 to acrolein, in the presence of catalyst $\mathbf{6 0}$.

All reactions are performed using 1 equiv. benzyl ester 52 and 3 equiv. acrolein and $30 \mathrm{~mol} \%$ catalyst. Except noted as a footnote.

Entry	Temp. ${ }^{(0} \mathbf{C}$)	Time (h)	Yield $^{\mathrm{b}}$ (\%)	ee $^{\mathrm{c}(\%)}$
1	rt. $^{\mathrm{d}}$	144	45%	68%
2	0^{f}	120	23%	10%
3	0^{d}	96	30%	25%
4	rt^{d}	240	Nd^{g}	-

 by chiral HPLC (AS-H column). ${ }^{\mathrm{d}} 0.4$ mmol ester in 1 ml dioxane. ${ }^{\mathrm{e}} 0.266$ ester in 1 ml dioxane. ${ }^{f} 0.82 \mathrm{mmol}$ ester in 2 ml dioxane. ${ }^{\text {E }}$ Reaction at double dilution.

The reaction in dioxane at room temperature gave 44% yield and good ee (68%) (Entry 1). However, decreasing the temperature to $0{ }^{\circ} \mathrm{C}$ gave low yield and nearly racemic aldehyde (Entry 2, 3). Since dioxane freezes at $0{ }^{\circ} \mathrm{C}$, these reactions were not homogenous and the reaction medium was a slurry.

The substituent effect of a change in the ester moiety was examined with furan 6 (methyl ester instead of benzyl ester). For the preparation of furan 64 (Scheme 14), triisopropyl silyloxy furan (53) was treated with sec-butyl lithium and to the resulting reaction mixture methyl chloroformate was added, producing compound 64 in 53% yield.

53
64

Scheme 14: Preparation of chiral acetal 67.

Compound 64 was treated with catalyst 59 and acrolein (ester: acrolein 1:3) in the presence of TFA to yield aldehyde 65 in low yield (30\%). The enantiomers of aldehyde 65 were inseparable on chiral AS-H and AD columns. It was therefore converted to a chiral acetal. Thus aldehyde $\mathbf{6 5}$ was refluxed with $2 R, 3 R-(+)-2,3$-butanediol in the presence of a catalytic amount of p-toluenesulfonic acid in benzene, to provide the acetal 66 in quantitative yield. ${ }^{32}$ Chiral HPLC analysis of 66 (chiral AS-H) indicated an ee of
59%. This observation indicates that the benzyl ester is a better option which provides up to 69% ee.

The results obtained so far with MacMillan`s catalyst were promising, but the enantiomeric excess of aldehyde $\mathbf{5 0}$ was not very high. It was therefore decided to examine the prolinol ether 72 (Scheme 15) as catalyst. Previous studies have demonstrated the applicability of 72 in iminium ion catalysis. ${ }^{33}$ Catalyst 72 was prepared by using the known method from proline (67) (Scheme 15).

Scheme 15: Preparation of the catalyst 73.

The secondary amine and carboxylic acid in proline were protected as the ethyl carbamate and methyl ester, respectively. ${ }^{34}$ The resulting compound 68 was reacted with Gignard reagent 69 to provide $70(77 \%)$. Hydrolysis of the carbamate in 70 was achieved with KOH in methanol to produce compound 71 in 98% yield. ${ }^{34}$ The tertiary alcohol in

71 was selectively protected as its TMS ether to provide catalyst 72 in 83% yield. ${ }^{35}$

With catalyst 72 in hand its efficiency in the Michael-Michael conjugate addition of $\mathbf{5 1}$ to acrolein was examined in a variety of solvents. Initial studies with TFA and dioxane provided aldehyde 50 with low ee (Entries 1 and 2, Table 4).

Table 4: Organocatalytic Mukaiyama-Michael addition of furan 51 to acrolein, in the presence of catalyst 72.

All reactions were performed using 1 equiv. of benzyl ester 51 and 3 equiv. of acrolein and $20 \mathrm{~mol} \%$ catalyst. Except noted as a footnote.

Entry	Solvent ${ }^{\text {a }}$	Temp.	Time (h)	Yield ${ }^{\text {b }}$ (\%)	ee ${ }^{\text {c }}$ (\%)
1	THF	rt .	91	74	35
2	Dioxane	rt.	163	47	33
3	DCM	rt.	120	33	44
4	DMF	rt .	48	22	30
5	Toluene	rt.	168	19	78
6	CHCl_{3}	rt.	120	36	89
7	CHCl_{3}	rt .	168	42	90
8	CHCl_{3}	rt.	180	50	$64^{\text {d }}$

Reactions in dichloromethane and DMF gave low yield of the target product as well as low ee. Surprisingly, the reaction in toluene gave high ee (78\%) but in less yield (19\%) (Entry 19). Interestingly, changing the solvent to chloroform (Entries 6 and 7)
gave a moderate yield of $\mathbf{5 0}$, but also the highest ee so far (89% and 90%). Unfortunately, this enantioselective reaction could not be reproduced and, despite numerous attempts, provided $\mathbf{5 0}$ only as a racemate. The enantiomeric excess of $\mathbf{5 0}$ was confirmed by conversion to the chiral acetal 73 and analysis by chiral HPLC (Scheme 16).

Scheme 16: Preparation of chiral acetal 73.

The inexplicable irreproducibility of the reaction in chloroform prompted a study of the effect of additives on this reaction. Table 5 summarizes this study from which methanol emerged as a good additive for ee (78%), but not for the yield of $\mathbf{5 0}$ was found to be only 15%.

Table 5: Effect of additives on the organocatalytic Mukaiyama-Michael addition reaction of 51 and acrolein.

All reactions were performed using 1 equiv. benzyl ester 51 and 3 equiv. acrolein and $20 \mathrm{~mol} \%$ catalyst in chloroform solvent. Except noted as a footnote

Entry	Additive $^{\text {a }}$	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time	Yield ${ }^{\text {b }}$ (\%)	$\mathrm{ec}^{\text {c }}$ (\%)
1	$\mathrm{MeOH}^{\text {d }}$	rt	6 days	15	78
2	IPA ${ }^{\text {d }}$	rt	5 days	53	34
3	$\mathrm{BnOH}^{\text {d }}$	rt	7 days	10	5
4	TFA ${ }^{\text {e }}$	4	12 h	67	16
5	$\mathrm{HClO}_{4}{ }^{\text {e }}$	-17	4 days	28	9
6	TFA ${ }^{\text {e }}$	-17	2 days	20	8
7	$\mathrm{MeOH}^{\text {d }}$	rt	8 days	ND	ND

A detailed study of the effect of aqueous conditions was also undertaken (Table
6).

Table 6: Effect of water on organocatalytic Mukaiyama-Michael addition reaction.

All reactions were performed using 1 equiv. benzyl ester 51 and 3 equiv. acrolein and $20 \mathrm{~mol} \%$ catalyst. Except noted as a footnote

Entry	Solvent	\% $\mathrm{H}_{2} \mathrm{O}$	Time	Yield ${ }^{\text {a }}$ (\%)	ce ${ }^{\text {b }}$ (\%)
1	-	100	17 h	80	2
2	$97.5{ }^{\text {c }}$	2.5	144	40	2
3	$95^{\text {c }}$	5	108	45	$84^{\text {d }}-1^{\text {c }}$
4	$90^{\text {c }}$	10	144	47	2
5	80°	20	144	50	3
6	$50^{\text {c }}$	50	144	55	0
7	-	-	144	nd	-
8	$\mathrm{CHCl}_{3}{ }^{\mathrm{f}}$	-	144	10	1
9	ACS CHCl ${ }^{\text {g }}$	-	144	5	3
10	IPA ${ }^{\text {g }}$	-	24	20	9
11	DCE ${ }^{\text {g }}$	5	144	40	1

[^1]The reaction in 100% water (Entry 1) gave the aldehyde in 80% yield which is the highest so far, but virtually no enantiomeric excess (2% ee). Other reactions in which the amount of water was gradually reduced (Entries 2-6) also gave nearly racemic aldehyde in moderate yield. Table 6 also shows that as the amount of water in the reaction is increased the yield of the product increases (Entries 2-6) but the enantiomeric excess is unchanged. In one particular reaction, in 5\% water and 95\% chloroform (Entry 3), the product ee was 84% after 16 hours. However, after the same reaction had been stirred for 108 h the ee dropped to 1% (Entry 3). This indicates that the enantiomeric excess of the product decreases with time. The reaction (Entry 7) without solvent provided a complex mixture. Reactions in ACS chloroform (Entry 8) and moist chloroform (Entry 9) were inefficient. However the reactions in isopropyl alcohol (Entry 11) and DCE (Entry 11) gave better yields, but low ee.

A few reactions were tried with MacMillan's first generation catalyst 74 and the C_{2}-symmetric amine catalyst 75 . These results are summarized in Table 7.

74

75

Figure 4: MacMillan's first-generation catalyst and a C_{2}-symmetric pyrrolidine catalyst.

Table 7: Organocatalytic Mukaiyama-Michael addition reaction.

All reactions were performed using 1 equiv. of benzyl ester 51 and 3 equiv. of acrolein and $20 \mathrm{~mol} \%$ catalyst. Except noted as a footnote.

Entry	Catalyst	Solvent ${ }^{\text {a }}$	Additive ${ }^{\text {b }}$	Time	Yield ${ }^{\text {c }}$ (\%)	ce ${ }^{\text {d }}$ (\%)
1	74	CHCl_{3}	$\mathrm{H}_{2} \mathrm{O}$	3 days	19	84
2	74	dioxane	$\mathrm{H}_{2} \mathrm{O}$	5 days	28	ND
3	75	CHCl_{3}	$\mathrm{H}_{2} \mathrm{O}$	7 days	27	1
4	75	CHCl_{3}	MeOH	8 days	35	3
5	75	dioxane	$\mathrm{H}_{2} \mathrm{O}$	12 h	ND	26
6	-	10 M glucose solution (aq)	-	1.5 days	50	3

${ }^{\text {a }} 0.133 \mathrm{mmol}$ ester in 0.5 ml solvent. ${ }^{6}$ Additive 2 equivalent with respect to ester. ${ }^{\text {d }}$ Isolated yield.
${ }^{d}$ Determined by chiral HPLC (AS-H column). ${ }^{e} 20 \mathrm{~mol} \%$ TFA additive.

Reaction with (2S,5S)-tetrahydro-2,5-bis(methoxymethyl)furan (catalyst 74) in chloroform and water (Entryl, Table 8) gave high ee (84\%) but the yield was only 19%. However the same catalyst in dioxane (Entry 2) did not work as expected. The remaining reactions with these catalysts gave nearly racemic aldehyde in moderate yield. Out of
curiosity one reaction was conducted in 10 M aqueous glucose solution (Entry 6) to examine the effect of a chiral environment on the reaction in the absence of a catalyst. However, this reaction gave 50% yield of almost racemic aldehyde.

Considering that acrolein tends to undergo polymerization at room temperature, we examined acrolein dimethyl acetal as an alternative to acrolein in a reaction catalyzed by 72. However, there was no significant change in the enantiomeric excess of $\mathbf{5 0}$ obtained (64% ee after 48 h).

The moderate-to-low enantiomeric excess obtained in these reactions may be explained as illustrated in Figure 5. Presumably, the lack of a β-substituent on the acrolein accounts for the low enantioselectivity.

IV
$R=B n$ or H,
$\mathrm{R}^{\prime}=t-\mathrm{Bu}$ or $\mathrm{C}(\mathrm{Ar})_{2}$ OTMS

50
'S' enantiomer

v
$\mathrm{R}=\mathrm{Bn}$ or H ,
$\mathrm{R}^{\prime}=t-\mathrm{Bu}$ or $\mathrm{C}(\mathrm{Ar})_{2} \mathrm{OTMS}$

50
'R'enantiomer

Figure 5: Possible transition states leading to ${ }^{\circ} R$ ' and ${ }^{\prime} S$ " 50.

Synthesis of (S)-(+)-homocitric acid

Naturally occurring $(-)-(R)$-homocitric acid is an intermediate in the biosynthesis of lysine in yeast and in some fungi. In nature, homocitric acid is produced by enzymatic condensation of R-ketoglutarate and acetyl CoA. ${ }^{36}$ Shah and Bill in 1977 first discovered that homocitrate is an essential component in nitrogen fixation ($\mathrm{Fe}-\mathrm{Mo}$ cofactor). ${ }^{37}$ Because of these interesting biological properties, homocitric acid is of interest in the development of antifungal therapies. ${ }^{38}$ Biellmann et al. reported the first enantioselective total synthesis of natural and unnatural homocitric acid from (-)-L-lactic acid and (-)-L-serine respectively. ${ }^{36}$ The synthesis was based on a Diels-Alder reaction. In 2005, Tatsumi and co-workers reported a three-step synthesis of homocitric acid from D-malic acid. ${ }^{39}$ In 2007, Pansare and Adsool reported the enantioselective synthesis of homocitric acid from an ephedrine-derived morpholinedione. ${ }^{40}$ To date, several total syntheses of homocitric acid have been reported in the literature, but none of these syntheses employ organocatalysis.

Given the interest in homocitric acid, it was decided to attempt to convert the aldehyde $\mathbf{5 0}$ to homocitric acid via a dehomologation sequence as shown in Scheme 17.

Scheme 17: Homocitric acid 77 from aldehyde 50.

In the present study, aldehyde $\mathbf{5 0}$ in 65% ee, obtained from the organocatalytic reaction (Entry 8, Table 4), was employed as the starting material. The first attempt at the dehomologation 50 is shown in Scheme 18.

Scheme 18: Dehomologation of aldehyde 50.

Singaram's method ${ }^{41}$ which relies on enamine oxidation as the key step was chosen. Unfortunately, although the enamine 79 could be obtained, further oxidation with KMnO_{4} adsorbed on alumina was unsuccessful.

As an alternative, it was decided to convert $\mathbf{5 0}$ to its enol ether and to oxidize the enol ether for the dehomologation. To this effect, aldehyde 50 was treated with methyl orthoformate in the presence of a catalytic amount on indium triflate for 10 min at room temperature ${ }^{42}$ to obtained dimethyl acetal 81 in 82% yield (Scheme 19). Dimethyl acetal 81 was converted in to the enol ether $\mathbf{8 2}$ by using Gassman`s methodology. ${ }^{43}$

i) $2 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$
ii) $\mathrm{HCl}(\mathrm{aq})$
quantitative

77
$(S)-(+)$-homocitric acid
65 \% ee
$|14|_{0}^{23}=+21$

Scheme 19: Synthesis of (S)-(+)-homocitric acid (77).

Acetal 81 was converted to the enol ether $\mathbf{8 2}$ by treatment with diisopropyl ethylamine and TMSOTf. Compound $\mathbf{8 2}$ was obtained as a $2: 1$ mixture of isomers (${ }^{(} \mathrm{H}$ NMR) in 62% yield. Chemoselective oxidation of enol ether $\mathbf{8 2}$ with osmium tetroxide/ NaIO_{4} in water gave 95% yield of the dehomologated aldehyde 76, which was oxidized to carboxylic acid $\mathbf{8 3}$ using Pinnic oxidation ${ }^{44}$ conditions. Compound $\mathbf{8 3}$ was hydrogenated to reduce the double bond in the lactone ring and to effect debenzylation. However, hydrogenation at atmospheric pressure reduced only the double bond and the benzyl ester remained
intact. Changing the solvent from ethyl acetate to methanol had no apparent beneficial effect. Therefore, the benzyl ester in compound 84 was hydrolyzed with aqueous 2.0 M NaOH . Acidic work-up gave homocitric acid in quantitative yield. The naturallyoccurring homocitric acid, (R)-homocitric acid, has a negative specific rotation. ${ }^{45}$ The specific rotation obtained for the synthesized homocitric acid is +21 , ($\mathrm{c}=1$), which indicates that it is $(S)-(+)$-homocitric acid. Therefore, aldehyde $\mathbf{5 0}$ also has the ' S ' configuration, which is required for the synthesis of the natural isomer of (+)-lycoperdic acid.

Organocatalytic α-amination of aldehyde 50

As discussed in the proposed retrosynthesis of lycoperdic acid (Scheme 10), α amination of aldehyde 50 would provide a potential intermediate to lycoperdic acid. In this context we examined the organocatalytic α-amination of $\mathbf{5 0}$ with selected enamine forming catalysts (Figure 6) and dialkyl azodicarboxylates as the amination reagents. Of these catalysts, L-proline (67) is commercially available, catalysts 85 and 72, were prepared as discussed earlier.

67

85

72

Figure 6: Catalysts used for α-amination of aldehyde $\mathbf{5 0}$.

An alternative approach to the required α-amino aldehyde derivative could involve an iminium ion-catalyzed addition of triisopropyl silyloxy furan to an α-amino acrolein derivative. Both of these approaches are shown in Figure 7.

Figure 7: Organocatalytic approaches to potential intermediate to lycoperdic acid.

Initially, we examined the iminium ion-catalyzed approach with the α-amino acrolein derivative 97 and 98 which were prepared from serinol (95) as shown in Scheme 20.

Scheme 20: Preparation of compound 97 and 98.

The primary amine in serinol (95) was protected with benzyl chloroformate in the presence of triethylamine to form 52% of compound $\mathbf{9 6}$, which was oxidized with oxalyl chloride and DMSO in the presence of triethylamine to provide benzyl-1formylvinyl carbamate (97) in (Scheme 20). ${ }^{46}$ Compound 98 was prepared in a similar manner by treating serinol (95) with phthalic anhydride followed by oxidation. ${ }^{47}$

Unfortunately, both 97 and 98 were completely unreactive in attempted iminium ion-catalyzed conjugate addition reactions with 51 (Scheme 21). Presumably, the electron-donating α-amino substituent reduces the electrophilicity of the α, β unsaturated aldehyde. Consequently, the anticipated products $\mathbf{9 9}$ and $\mathbf{1 0 0}$ could not be obtained.

52

Scheme 21: Organocatalytic α-amination.

We therefore examined the alternative approach of an organocatalytic α amination of aldehyde $\mathbf{5 0}$ with azodicarboxylates. The results from these studies are summarized in Table 9.

Table 9: Organocatalytic α-amination:

All the reactions were performed using 1 equiv. of aldehyde 50, 1.1 equiv. of dialkyl azodicarboxylate and $20 \mathrm{~mol} \%$ catalyst. Except noted as a footnote.

Entry	Catalyst ${ }^{\text {a }}$	R	Solvent	Time	\% yield ${ }^{\text {b }}$
1	85	Bn	DCM	72 h	13
2	85	Bn	CHCl_{3}	48 h	0
3	85	Bn	$\mathrm{CH}_{3} \mathrm{CN}$	48 h	decomposition
4	85	Bn	MeOH	8 h	5
5	72	Bn	DCM	72 h	0
6	72	Et	DCM	17 h	50
7	72	t-Bu	DCM	48 h	53
8	72	t-Bu	CHCl_{3}	6 h	67

${ }^{3} 20 \mathrm{~mol} \%$ catalyst. ${ }^{\text {issolated yields. }}$
Reaction of aldehyde 50 with dibenzyl azodicarboxylate 87 (Table 10) in dichloromethane and methanol solvents (Entry 1 and Entry 4) gave very low yield of α amino aldehyde 101 which could not be isolated pure. The reaction with catalyst 85 did
not work in chloroform (Entry 2) and in acetonitrile (Entry 3) decomposition of the aldehyde was observed. Reaction using catalyst 72 with dibenzyl azodicarboxylate in dichloromethane (Entry 5) was not successful. Using diethyl azodicarboxylate instead of dibenzyl azodicarboxylate in dichloromethane (Entry 6) gave a good yield (50\%) of the required product. However, the purity of the product was not satisfactory (despite chromatography). The use of di-tert-butyl azodicarboxylate in dichloromethane (Entry 7) provided the required product in 53% yield and good purity. The use of chloroform as solvent was beneficial (Entry 8) in the presence of catalyst 72 and the required product 102 was obtained in 67% yield in only 6 h . The stereochemistry of the amination reaction was not determined during this study.

The aldehyde 103 (Scheme 24) was oxidized to the corresponding acid $\mathbf{1 0 4}$ by Pinnic oxidation. ${ }^{48}$ Thus, 103 was treated with sodium chlorite in a solution of 2-methyl-2-butene and t-butanol in the presence of aqueous sodium dihydrogen phosphate to provide 67% yield of acid 104 in 5 h . Compound 104 was treated with TFA for Boc removal to provide compound 105 in 76% yield. Unfortunately, attempted hydrogenation of 105 (Ra-Ni/ H_{2} with sonication) led to unidentifiable products and 106 was not obtained.

Scheme 20: Towards the synthesis of lycoperdic acid 106.

It was therefore decided to change the sequence of reactions. First, the double bond was hydrogenated and the benzyl ester in compound 104 was hydrogenolyzed $\left(\mathrm{H}_{2}\right.$, $1 \mathrm{~atm}, \mathrm{Pd} / \mathrm{C}$) to form diacid 108 (Scheme 21) in quantitative yield, in 24 h . Compound 108 was treated with TFA in dichloromethane for 2 h to obtain the deprotected compound 109 as a hydrazine salt in 72% yield.

Scheme 21: Towards the synthesis of lycoperdic acid 106.

With the hydrazine salt 109 in hand; lycoperdic acid was just one step away. Several methods for $\mathrm{N}-\mathrm{N}$ bond cleavage in hydrazines have been reported in the literature. For example, reductive cleavage has been achieved with hydrogen in the presence of Raney- Ni , ${ }^{49}$ or with Pd / C, at high pressure; ${ }^{50}$ with $\mathrm{Zn} / \mathrm{AcOH},{ }^{51}$ with samarium diiodide, ${ }^{52}$ with hydrogen and $\mathrm{PtO}_{2},{ }^{53}$ with hydrogen and $\mathrm{Pd}(\mathrm{OH})_{2},{ }^{54}$ and with dissolving metal reduction $\left(\mathrm{Li} / \mathrm{NH}_{3}\right.$, , ${ }^{55}$

Samarium diiodide was first chosen to react with diacid $\mathbf{1 0 8}$ to obtain compound 110 (Scheme 22), which on Boc deprotection, would provide lycoperdic acid.

Unfortunately, compound 108 was inert to samarium diiodide, and no $\mathrm{N}-\mathrm{N}$ bond cleavage was observed (Scheme 22).

Scheme 22: Samarium diiodide-mediated $\mathrm{N}-\mathrm{N}$ bond cleavage.

Attempted reductive cleavage of $\mathbf{1 0 9}$ with $\mathrm{Ra}-\mathrm{Ni}$ or PtO_{2} as catalysts was unsuccessful (Scheme 24). No further studies with 109 were conducted.

Scheme 24: Attempted reductive cleavage of the $\mathrm{N}-\mathrm{N}$ bond in 109.

Conclusion

Abstract

Extensive studies were conducted on the organocatalytic conjugate addition of silyloxy furan nucleophiles to acrolein. The highest enantiomeric excess that was obtained (90%) is the best obtained to date, using acrolein as an electrophile. Organocatalytic α-amination of the conjugate addition product was also achieved and an advanced intermediate to (S)-lycoperdic acid has been prepared. A short synthesis of (+)homocitric acid lactone involving organocatalysis was also achieved.

Experimental

Benzyl-5-triisopropylsiloxy-2-furoate (51): A solution of sec-BuLi (12 ml, 11 mmol , 0.9 M solution in cyclohexane) was added dropwise to a stirred solution of (furan-2yloxy) triisopropylsilane ($2.4 \mathrm{~g}, 10.1 \mathrm{mmol}$) in 12 ml THF at $-78{ }^{\circ} \mathrm{C}$ under nitrogen and the reaction was stirred at the same temperature for 1 h . A solution of benzyl chloroformate ($1.5 \mathrm{ml}, 10.5 \mathrm{mmol}$) in 13 ml THF (cooled at $-78^{\circ} \mathrm{C}$) was added and the mixture was stirred for 90 min and then warmed to room temperature. The mixture was concentrated and the residue was dissolved in ethyl acetate (20 ml). The solution was washed with aqueous saturated $\mathrm{NaHCO}_{3}(2 \times 10 \mathrm{ml})$ followed by brine (20 ml). The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was subjected to flash column chromatography ($97: 3$ hexane:ether). Fractions containing the required product were pooled and concentrated. This material had a volatile impurity which was removed at $120^{\circ} \mathrm{C}(0.2 \mathrm{~mm})$ to provide $1.5 \mathrm{~g}(40 \%)$ of pure 51 as an orange coloured oil.

IR (neat): 2947, 2869, 1720, 1604, 1531, 1303, $1123 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.42-7.31(\mathrm{~m}, 5 \mathrm{H}, \operatorname{Ar} H), 7.13(\mathrm{~d}, 1 \mathrm{H}, J=3.5$, $\mathrm{CH}=\mathrm{CC}=\mathrm{O}), 5.30(\mathrm{~d}, 1 \mathrm{H}, J=3.5, \mathrm{CH}=\mathrm{CO}), 5.28\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH} H_{2}\right), 1.33-1.26($ sept, 3 H,$$ $\mathrm{SiCH}), 1.11\left(\mathrm{~d}, 18 \mathrm{H}, J=7.5, \mathrm{CH}_{3} \mathrm{CH}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.9(\mathrm{COSi})$, $158.4(\mathrm{C}=\mathrm{O})$, $136.43(\mathrm{CC}=\mathrm{O}), 133.9$ $\left(\mathrm{Ar} C_{i p s o}\right), 128.7(\mathrm{ArC}), 128.3(\mathrm{ArC}), 128.3(\mathrm{ArC}), 122.2(C=\mathrm{CC}=\mathrm{O}), 87.7(C=\mathrm{CO}), 66.0$ $(\mathrm{PhC}), 17.7\left(\mathrm{CH}_{3} \mathrm{CH}\right), 12.4\left(\mathrm{CH}_{3} \mathrm{CH}\right)$.

HRMS (CI): $m / 2375.1999$ (375.1992 Calc. for $\left.\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{Si}, \mathrm{M}+\mathrm{H}\right)$.

Tetrahydro-5-oxofuran-2-carboxylic acid (55): ${ }^{29}$ L-(+)-Glutamic acid (10.0 g, 68 mmol) was dissolved in concentrated $\mathrm{HCl}(20 \mathrm{ml})$ and water $(40 \mathrm{ml})$ and the solution was cooled to $-10^{\circ} \mathrm{C}$. To this mixture, a solution of $\mathrm{NaNO}_{2}(7.0 \mathrm{~g}, 0.10 \mathrm{~mol})$ in water (20 ml) was added dropwise over a period of 30 min . The mixture was stirred at $-10^{\circ} \mathrm{C}$ for 1 h and then at room temperature for 18 h . The mixture was then concentrated (below $50^{\circ} \mathrm{C}$) and the residue was dissolved in ethyl acetate (30 mL). The ethyl acetate solution was filtered and the residue was washed with ethyl acetate (20 mL). The organic filtrate was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to provide $7.4 \mathrm{~g}(83 \%)$ of $\mathbf{5 5}$ as a pale yellow oil.
${ }^{1} \mathrm{H}^{\mathrm{H}} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 11.60(\mathrm{bs}, 1 \mathrm{H}, \mathrm{COOH}), 5.05-5.02(\mathrm{dd}, 1 \mathrm{H}, J=8.6,4.8$, $\mathrm{CHCOOH}), 2.70-2.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 2.58-2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 2.36-2.31$ (m, $1 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2}$).

Benzyl-tetrahydro-5-oxofuran-2-carboxylate (56): Oxalyl chloride ($0.20 \mathrm{ml}, 2.2$ mmol) was added to a solution of 55 in dichloromethane (3.0 mL) at $0^{\circ} \mathrm{C}$ under nitrogen. The reaction mixture was allowed to warm to room temperature, stirred for 2 h and then cooled to $0{ }^{\circ} \mathrm{C}$. Triethylamine ($0.31 \mathrm{ml}, 2.2 \mathrm{mmol}$) and benzyl alcohol $(0.23 \mathrm{ml}, 2.2$ mmol) were added and the solution was stirred at room temperature for 24 hours. The mixture was was diluted with dichloromethane $(6.0 \mathrm{ml})$ and the solution was washed with water ($2 \times 2 \mathrm{ml}$) followed by aqueous saturated $\mathrm{NaHCO}_{3}(2 \times 1 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by flash chromatography on silica gel (3:1 hexanc: cthyl acetate) to provide $0.23 \mathrm{~g}(52 \%)$ of 56 as a pale yellow solid.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.34(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 5.26-5.21(\mathrm{AB}$ system, $2 \mathrm{H}, J=$ 12.1, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 4.98-4.96(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.3,4.3 \mathrm{OCH}), 2.57-2.45\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right)$, 2.34-2.25 (m, 1H, $\left.\mathrm{COCH}_{2} \mathrm{CH}_{2}\right)$.

(R)-Benzyl-2-(formylethyl)-2,5-dihydro-5-oxofuran-2-carboxylate (50): To a solution of the imidazolidinone or pyrrolidine catalyst ($20 \mathrm{~mol} \%$) in chloroform was added acrolein ($0.54 \mathrm{ml}, 0.80 \mathrm{mmol}$) at room temperature. The reaction mixture was cooled to
$0^{\circ} \mathrm{C}$ and compound $51(0.10 \mathrm{~g}, 0.27 \mathrm{mmol})$ and water ($21.0 \mu \mathrm{~L}, 0.53 \mathrm{mmol}$) were added. The mixture was warmed room temperature and stirred for 7 d . The mixture was concentrated and the residue was purified by flash chromatography on silica gel (hexanes:ethyl acetate, $7: 3$) to provide $32 \mathrm{mg}(45 \%)$ of aldehyde 50 as a gum.

Other reactions of 51 with acrolein (employing different solvents and/or catalysts at selected temperatures) followed the same general procedure described above.

IR (neat): $3092,2929,2735,1768,1102 \mathrm{~cm}^{-1}$.
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.71$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$), $7.41(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHC}=\mathrm{O}, J=5$), 7.39-7.32 (m, 6H, $\mathrm{Ar} H), 6.17(\mathrm{~d}, 1 \mathrm{H}, J=5), 5.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.59-2.47(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$), 2.30-2.22 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH} 2 \mathrm{CHO}$).
${ }^{13} \mathbf{C}$ NMR ($\left.125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 199.6(\mathrm{CHO}), 171.1(\mathrm{OC}=\mathrm{O}), 167.1\left(\mathrm{CO}_{2} \mathrm{Bn}\right), 154.4$ $(C=C C=O), 134.7\left(\mathrm{ArC}_{\text {ipsu }}\right), 129.0(\mathrm{ArC}), 129.0(\mathrm{ArC}), 128.6(\mathrm{ArC}), 122.7(\mathrm{C}=\mathrm{CC}=\mathrm{O})$, $88.9(\mathrm{OCC}=\mathrm{O}), 68.5\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 37.8\left(\mathrm{CH}_{2} \mathrm{CHO}\right), 27.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

HRMS (CI): $\mathrm{m} / z 275.0917$ (275.0919 Calc. for $\left.\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{5}, \mathrm{M}+\mathrm{H}\right)$.

Ee: $90 \%\left(t_{\mathrm{R}}: 51.7 \mathrm{~min} ; t_{\mathrm{S}}: 69.6 \mathrm{~min}\right.$ (Chiralpak AS-H, 210 nm , hexanes: $\mathrm{iPrOH}, 85: 15,1$ $\mathrm{mL} / \mathrm{min}$).

Methyl-5-triisopropylsilyloxy-2-furoate (64): ${ }^{30}$ A solution of sec-BuLi ($2.8 \mathrm{ml}, 1.9$ $\mathrm{mmol}, 0.70 \mathrm{M}$ solution in cyclohexane) was added dropwise to a stirred solution of (furan-2-yloxy) triisopropylsilane (450 mg, 1.9 mmol) in THF (2.0 mL) at $-78{ }^{\circ} \mathrm{C}$ under nitrogen and the reaction was stirred at the same temperature for an hour. A solution of methyl chloroformate $(0.15 \mathrm{~mL}, 1.9 \mathrm{mmol})$ was added and the mixture was stirred for 90 \min and then warmed to room temperature. The mixture was concentrated and the residue was dissolved in ethyl acetate (20 mL). The solution was washed with aqueous saturated $\mathrm{NaHCO}_{3}(2 \times 10 \mathrm{~mL})$ followed by brine (10 mL). The organic layer was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by distillation to provide 290 mg (53\%) of 64 (b.p. $220^{\circ} \mathrm{C}(0.2 \mathrm{~mm}$ of Hg$)$).
${ }^{1} H$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.10(\mathrm{~d}, 1 \mathrm{H}, J=3.5, \mathrm{C}=\mathrm{CHCH}=\mathrm{CCO}), 5.30(\mathrm{~d}, 1 \mathrm{H}, J=$ $3.5, \mathrm{C}=\mathrm{CHCH}=\mathrm{CCO}), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.34-1.28\left(\mathrm{sept}, 3 \mathrm{H}, \mathrm{J}=7.4, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.11$ (d, $\left.18 \mathrm{H}, J=7.4, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$.

(S)-Methyl-2-(2-formylethyl)-2,5-dihydro-5-oxofuran-2-carboxylate (65): This was prepared from $7(150 \mathrm{mg}, 0.50 \mathrm{mmol})$, acrolein $(0.10 \mathrm{ml}, 1.5 \mathrm{mmol})$ and catalyst 59 (24 $\mathrm{mg}, 0.10 \mathrm{mmol})$ and TFA ($76 \mu \mathrm{I}, 0.10 \mathrm{mmol}$) in THF (2.0 mL) and water ($18 \mu \mathrm{l} .1 .0$
mmol). The reaction was stirred for 4 days and 17 hours to provide after purification by flash chromatography on silica gel (hexanes:ethyl acetate $40: 60$) $30 \mathrm{mg}(30 \%)$ of the aldehyde 65.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 7.44(\mathrm{~d}, 1 \mathrm{H}, J=5.6, \mathrm{COCH}=\mathrm{C} H)$, $6.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.59, \mathrm{COCH}=\mathrm{CH}), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 2.63-2.52(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}\right), 2.33-2.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}\right)$.

An accurate enantiomeric excess determination was not possible for this aldehyde due to a lack of resolution of the enantiomers on chiral columns. Hence, it was converted to the acetal with $(2 R, 3 R)$-2,3-butanediol and this acetal was analyzed for enantiomeric excess.

(S)-Methyl-2,5-dihydro-2-(2-((4R,5R)-4,5-dimethyl-1,3-dioxolan-2-yl)ethyl)-5-oxofuran-2-carboxylate (66): A solution of the aldehyde $65(0.01 \mathrm{~g}, 0.05 \mathrm{mmol})$, ($2 R, 3 R$)-2,3-butanediol ($5.8 \mu \mathrm{l} .0 .07 \mathrm{mmol}$) and p-toluene sulphonic acid ($1.9 \mathrm{mg}, 0.01$ $\mathrm{mmol})$ in benzene (1.0 mL) was heated to reflux for 1 h under nitrogen. The mixture was cooled to ambient temperature and diluted with ethyl acetate. The resulting solution was washed with aqueous NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to provide 15 mg (quantitative) of acetal 66.

Enantiomeric excess: 59\% (Chiralcel AS-H column, hexanes/isopropyl alcohol 96/4; $210 \mathrm{~nm} ; 1 \mathrm{ml} / \mathrm{min} . ; t_{\text {minor }}=27.28 \mathrm{~min} . ; t_{\text {major }}=29.32 \mathrm{~min}$. .

IR (neat): 2974, 1773 (br), 1446, 1385, 1235, 1111, 1001, $907 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.43(\mathrm{~d}, 1 \mathrm{H}, J=7.8, \mathrm{COCH}=\mathrm{C} H), 6.16(\mathrm{~d}, 1 \mathrm{H}, J=7.8$, $\mathrm{COCH}=\mathrm{CH}), 5.06\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=4.3, \mathrm{CHCH}_{2}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.64-3.54(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CHCH}_{3}\right), 2.36-2.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 2.09-2.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 1.72-1.61(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 1.27\left(\mathrm{~d}, 3 \mathrm{H}, J=5.7, \mathrm{CHCH}_{3}\right), 1.22\left(\mathrm{~d}, 3 \mathrm{H}, J=5.7, \mathrm{CHCH}_{3}\right)$.
${ }^{13} \mathbf{C}$ NMR $\left(125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.4(\mathrm{OCC}=\mathrm{C}), 168.2\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 154.7(\mathrm{OCC}=\mathrm{C})$, $122.52(\mathrm{OCC}=\mathrm{C}), 102.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 89.7\left(C_{\text {quat }}\right), 80.1\left(\mathrm{CHCH}_{3}\right), 78.6\left(\mathrm{CHCH}_{3}\right), 53.5$ $\left(\mathrm{OCH}_{3}\right), 29.8\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 17.4\left(\mathrm{CH}_{3}\right), 17.0\left(\mathrm{CH}_{3}\right)$.

HRMS (CI pos.): m/z 271.1176 (271.1182 calc for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})$).

(S)-Ethyl methyl pyrrolidine-1,2-dicarboxylate (68): ${ }^{34}$ L-proline ($1.0 \mathrm{~g}, 8.7 \mathrm{mmol}$) was dissolved in anhydrous methanol (ACS grade, 14 ml) under nitrogen. Anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.2 \mathrm{~g}, 8.7 \mathrm{mmol})$ was added, followed by dropwise addition ethyl chloroformate (1.8 ml , 19 mmol) over a period of 6 min . at room temperature. The reaction mixture was stirred for 17 h . at ambient temperature. The methanol was removed under reduced pressure and
water (20 ml) was added and the aqueous solution was extracted with chloroform. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to provide $1.8 \mathrm{~g}(99 \%)$ of 68 as a colourless liquid.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): Approximately $1: 1$ mixture of rotamers: $\delta 4.38-4.37$ (dd, $1 \mathrm{H}, J=8.7,3.5, \mathrm{NCH}), 4.30(\mathrm{dd}, 1 \mathrm{H}, J=8.6,3.9, \mathrm{NCH}), 4.25-4.20\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 4.11-4.04 (m, 1H, OCH OH_{3}), $\left.3.74(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH})_{3}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.59-3.42(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{NCH} \mathrm{N}_{2}\right), 2.28-2.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.03-1.84\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.27(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=$ 7.1, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.20\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

(S)-Ethyl 2-(bis(3,5-bis(trifluoromethyl)phenyl)(hydroxy)methyl)pyrrolidine-1carboxylate (70): ${ }^{34}$ A solution of $68(0.20 \mathrm{~g}, 1.0 \mathrm{mmol})$ anhydrous THF (2.0 mL) under nitrogen was cooled to $0^{\circ} \mathrm{C}$ and 3,5 -bis-(trifluoromethyl) phenyl magnesium bromide ($\mathbf{6 9}$, 8.0 mL of 0.50 M soln. in THF, 4.0 mmol) was added. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2.5 h and aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(2.0 \mathrm{~mL})$ was added. The mixture was warmed to ambient temperature, the organic layer was separated and the aqueous layer was extracted with chloroform. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$
and concentrated. The residue was purified by flash chromatography on silica gel (initial elution with 3 column volumes of hexanes to remove non-polar impurities, followed by elution with 9:1 hexanes:ethyl acetate) to provide 460 mg (77%) of 70 as a brown solid.
${ }^{1} \mathbf{H}^{\text {NMR }}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 7.86(\mathrm{~s}, 3 \mathrm{H}, \operatorname{Ar} H), 7.82(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{Ar} H), 4.88-4.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NC} H), 4.20-4.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.14-4.08(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.56-3.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.97-2.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 2.15-2.05(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.85-1.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.67-1.57\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.22(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.05-0.98\left(\mathrm{~m}, \mathrm{IH}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$.

$\operatorname{Bis}\left(\mathbf{3 , 5}\right.$ bis(trilfuoromethyl)phenyl)((S)-pyrrolidin-2-yl)methanol (71):3 ${ }^{34}$ To a solution of $70(0.24 \mathrm{~g}, 0.39 \mathrm{mmol})$ in methanol ($3.0 \mathrm{~mL}, \mathrm{ACS}$ grade) was added $\mathrm{KOH}(0.56 \mathrm{~g}, 10$ $\mathrm{mmol})$. The mixture was heated at reflux for 4.5 h , then the methanol was removed under reduccd pressure and water $(2.0 \mathrm{~mL})$ was added. The aqueous solution was extracted with chloroform, the combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by flash chromatography on silica gel (5:1 hexane:ethyl acetate) to obtain 200 mg (98%) of 71 as a brown solid.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.04(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 7.96(\mathrm{~s}, 2 \mathrm{H}, \operatorname{Ar} H), 7.77(\mathrm{~d}, 2 \mathrm{H}, J=5$, $\mathrm{Ar} H), 4.34(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.6, \mathrm{NCH}), 3.10-3.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH} 2), 1.83-1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 1.62-1.49 (m, $\left.2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$.

(S)-2-(Bis-(3,5-bis(trilfuoromethyl)phenyl)-trimethylsilanyloxy-methyl)-pyrrolidine
(72). ${ }^{35}$ To a solution of $71(0.200 \mathrm{~g}, 0.39 \mathrm{mmol})$ in anhydrous dichloromethane $(6.0 \mathrm{~mL})$ under nitrogen was added triethylamine ($0.07 \mathrm{ml}, 0.50 \mathrm{mmol}$). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and trimethylsilyltriflouromethanesulfonate ($91.0 \mu \mathrm{l}, 0.50 \mathrm{mmol}$) was added. The mixture was stirred for 5 min . at $0^{\circ} \mathrm{C}$, warmed to room temperature, and stirred for 1.5 hours. Water (8.0 mL) was added, the phases were separated, and the aqueous phase was extracted with dichloromethane. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by flash chromatography on silica gel (90:10 ethyl acetate:hexane) to provide $0.190 \mathrm{~g}(83 \%)$ of 71 as a colourless gum.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.01(\mathrm{~s}, 2 \mathrm{H}, \operatorname{Ar} H), 7.84(\mathrm{~d}, 2 \mathrm{H}, J=5 \mathrm{Ar} H), 7.76(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{Ar} H), 4.21(\mathrm{t}, 1 \mathrm{H}, J=7.3, \mathrm{NCH}), 2.95-2.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.59-2.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right)$, 1.73-1.66(m, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.57-1.46\left(\mathrm{br} m, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{~N} / f\right), 1.48-1.38(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 1.15-1.07 (m, 1H, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right),-0.08\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

(S)-Benzyl-2,5-dihydro-2(2-((4R,5R)-4,5-dimethyl-1,5-dioxolane-2-yl)ethyl)-5-oxofuran-2-carboxylate (73): A solution of the aldehyde (50) (30 $\mathrm{mg}, 0.09 \mathrm{mmol}$), ($2 R, 3 R$)-2,3-butanediol ($0.01 \mathrm{ml}, 0.14 \mathrm{mmol}$) and p-toluenesulfonic acid $(5.0 \mathrm{mg}, 0.03$ $\mathrm{mmol})$ in dry benzene (3.0 mL) was heated to reflux under nitrogen for 1 h . The reaction mixture was cooled to room temperature, diluted with ethyl acetate, and the solution was washed with aqueous saturated NaHCO_{3}. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to provide $36 \mathrm{mg}(97 \%)$ of 73 as a colourless oil.

IR (neat): 3523, 2931, 1773, 1499, 1456, 1177, 1098, 906.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.41(\mathrm{~d}, 1 \mathrm{H}, J=5, \mathrm{CH}=\mathrm{CHC}=\mathrm{O}), 7.38-7.31(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{Ar} H), 6.15(\mathrm{~d}, 1 \mathrm{H}, J=5, \mathrm{CH}=\mathrm{CHC}=\mathrm{O}), 5.2\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.04(\mathrm{t}, 1 \mathrm{H}, J=5$, $\left.\mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}\right), 3.61-3.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCHCH}_{3}\right) 2.37-2.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.09-2.02(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.69-1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.25\left(\mathrm{~d}, 3 \mathrm{H}, J=5, \mathrm{CH}_{3}\right) 1.25\left(\mathrm{~d}, 3 \mathrm{H}, J=5, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}$ NMR ($125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.4(\mathrm{OCOC}=\mathrm{C}), 167.6(\mathrm{OCC}=\mathrm{O}), 154.6$ $(C=\mathrm{CC}=\mathrm{O}), 134.9 \quad(\mathrm{Ar} C \mathrm{ipso}), 128.9(\mathrm{ArC}), 128.5(\mathrm{ArC}), 122.6(\mathrm{C}=C \mathrm{C}=\mathrm{O}), 102.0$ $(\mathrm{OCC}=\mathrm{O}) 89.7\left(\mathrm{CH}_{2} \mathrm{CH}\right), 80.1\left(\mathrm{CHCH}_{3}\right), 78.6\left(\mathrm{CHCH}_{3}\right), 68.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 29.7\left(\mathrm{CH}_{2}\right), 28.6$ $\left(\mathrm{CH}_{2}\right), 17.4\left(\mathrm{CH}_{3}\right), 17.0\left(\mathrm{CH}_{3}\right)_{2}$.

LCMS (CI positive): $m / z 347.1(\mathrm{M}+\mathrm{H})$.

HPLC: $t_{\mathrm{s}}: 37.4 \mathrm{~min}$; $t_{\mathrm{R}}: 42.3 \mathrm{~min}$ (Chiralpak AS-H, 210 nm , hexanes $/ \mathrm{iPrOH}, 96 / 4,1$ $\mathrm{mL} / \mathrm{min}$).

(R)-Benzyl-2,5-dihydro-2-(3,3-dimethoxypropyl)-5-oxofuran-2-carboxylate
(81):

Indium triflate ($1.7 \mathrm{mg}, 3.0 \times 10^{-3} \mathrm{mmol}$) was added in two portions to a solution of the aldehyde $50(0.17 \mathrm{~g}, 0.60 \mathrm{mmol})$ and trimethyl orthoformate $(0.13 \mathrm{ml}, 1.2 \mathrm{mmol})$ in dichloromethane $(8.0 \mathrm{ml})$ at room temperature. The reaction mixture was stirred for 4 min., a second portion of indium triflate ($1.7 \mathrm{mg}, 3.0 \times 10^{-3} \mathrm{mmol}$) was added and stirring was continued further for 6 min . The reaction mixture was then filtered through a plug of neutral alumina and the plug was washed with dichloromethane. The filtrate was concentrated to provide $160 \mathrm{mg}(83 \%)$ of 81 as a colourless oil. This was pure by ${ }^{1} \mathrm{H}$ NMR and was used further without purification.

IR (neat): 2932, 1773, 1456, 1128, $1057 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.4(\mathrm{~d}, 3 \mathrm{H}, J=3.1, \mathrm{CH}=\mathrm{CHC}=0)$, 7.4-7.3 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{ArH}$), $6.16(\mathrm{~d}, 1 \mathrm{H}, J=3.1, \mathrm{CH}=\mathrm{CHC}=\mathrm{O}), 5.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 4.32\left(\mathrm{t}, 1 \mathrm{H}, J=5, \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}\right)$, $3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.30-2.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{OCH}_{3}\right)_{2}\right), 2.0-1.9(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{OCH}_{3}\right)_{2}\right), 1.7-1.5\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\left.125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.4(\mathrm{C}=\mathrm{CCO}), 167.57\left(\mathrm{CO}_{2} \mathrm{CH} 2 \mathrm{Ph}\right), 154.6$
($\mathrm{CH}=\mathrm{CHCO}$), 134.8 ($\mathrm{PhCipso)} ,129.0(\mathrm{PhC}), 128.9(\mathrm{PhC}), 124.5(\mathrm{PhC}), 122.6$
$(\mathrm{CH}=\mathrm{CHCO}), 103.7\left(\mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}\right), 89.7\left(\mathrm{OCCO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 68.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 53.5\left(\mathrm{OCH}_{3}\right)$, $53.1\left(\mathrm{OCH}_{3}\right), 30.7\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}\right)$, $26.8\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}\right)$.

HRMS (CI): $m / z 320.1255$ (320.1260 Calc. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{6}, \mathrm{M}+$).

(R)-Benzyl 2,5-dihydro-2-((E)-3-methoxyallyl)-5-oxofuran-2-carboxylate (82):

Dimethyl acetal $81(150 \mathrm{~g}, 0.47 \mathrm{mmol})$ was dissolved in dichloromethane (0.80 ml) and N, N-diisopropyl ethylamine $\left(9.7 \times 10^{-2} \mathrm{ml}, 0.56 \mathrm{mmol}\right)$ was added at room temperature. The reaction mixture was cooled to $-20^{\circ} \mathrm{C}$ and TMSOTf $\left(9.3 \times 10^{-2} \mathrm{ml}, 0.52 \mathrm{mmol}\right)$ was added dropwise. The reaction was warmed to room temperature and stirred for 2.5 h after which it was concentrated and filtered through a short silica gel column (hexanes:ethyl acetate, $7: 3$). The filtrate was concentrated to provide $84 \mathrm{mg}(62 \%)$ of $\mathbf{8 2}$ as a $2: 1$ mixture of isomers.

IR (neat): 2936, 1768, 1655, 1456, 1213, 1107, 1027, $922 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): Major isomer: $\delta 7.40(\mathrm{~d}, 1 \mathrm{H}, J=5, \mathrm{CH}=\mathrm{CHC}=\mathrm{O})$, 7.36$7.32(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 6.33(\mathrm{~d}, 1 \mathrm{H}, J=12.7, \mathrm{CH}=\mathrm{CHOMe}), 6.16(\mathrm{~d}, 1 \mathrm{H}, J=5.6$, $\mathrm{CH}=\mathrm{CHC}=\mathrm{O}), 5.2\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.54-4.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHOMe}), 3.43(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 2.78-2.73 (dd, $1 \mathrm{H}, J=14,8, \mathrm{CH}_{2} \mathrm{C}=\mathrm{CHOMe}$), 2.58-2.54 (dd, $1 \mathrm{H}, J=14,7$, $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{CHOMe}\right)$. Visible peaks of minor isomer: $\delta 6.12$ (d. $1 \mathrm{H}, J=5.6, \mathrm{CH}=\mathrm{CHC}=\mathrm{O}$),
5.99 (d, 1H, $J=7.3, \mathrm{CH}=\mathrm{CHOMe}), 4.24-4.2$ (q, 1H, $J=7.3, \mathrm{CH}=\mathrm{CHOMe}), 3.55(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 2.91-2.86\left(\mathrm{dd}, 1 \mathrm{H}, J=7.3,14.5, \mathrm{CH}_{2}\right), 2.83-2.80(\mathrm{dd}, 1 \mathrm{H}, J=7.3,14.5$, $\mathrm{CH}_{2} \mathrm{C}=\mathrm{CHOMe}$).
${ }^{13} \mathrm{C}$ NMR $\left(125.77 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.4(\mathrm{C}=\mathrm{CCO}), 167.3\left(\mathrm{CO}_{2} \mathrm{CH} 2 \mathrm{Ph}\right), 154.4$ $(C=\mathrm{CCO}), 151.7(\mathrm{C}=C \mathrm{OMe}), 150.2(\mathrm{Ph} C \mathrm{ipso}), 134.9(\mathrm{Ph} C), 128.9(\mathrm{Ph} C), 128.6(\mathrm{Ph} C)$, $122.8(\mathrm{C}=\mathrm{CCO}), 93.1(\mathrm{C}=\mathrm{COMe}), 90.2\left(\mathrm{OCCO}_{2} \mathrm{Bn}\right), 68.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 56.1\left(\mathrm{C}=\mathrm{COCH}_{3}\right)$, $35.0\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CHOMe}\right)$. Visible peaks of the minor isomer: $\delta 171.7(\mathrm{C}=\mathrm{CCO}), 167.5$ $\left(\mathrm{CO}_{2} \mathrm{CH} 2 \mathrm{Ph}\right), 154.6(C=\mathrm{CCO}), 121.9(\mathrm{PhC}), 128.8(\mathrm{PhC}), 128.8(\mathrm{PhC}), 128.4(\mathrm{CPh})$, $122.2(\mathrm{C}=\mathrm{CCO}), 96.5(\mathrm{C}=\mathrm{COMe}), 89.9\left(\mathrm{OCCO}_{2} \mathrm{Bn}\right), 68.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 59.9\left(\mathrm{C}=\mathrm{COCH}_{3}\right)$, $30.5\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CHOMe}\right)$.

HRMS: (CI): m/z 288.1000 (288.0998 Calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5}, \mathrm{M}+$).

(S)-Homocitric acid (77): A solution of osmium tetroxide (4% in water, 0.09 ml , $\left.1.4 \times 10^{-2} \mathrm{mmol}\right)$ was added to a stirred solution of the enol ether $82(0.08 \mathrm{~g}, 0.28 \mathrm{mmol})$ in acetone (4.3 ml) and water $(0.50 \mathrm{ml})$. The mixture was stirred for 10 min . and sodium periodate ($0.12 \mathrm{~g}, 0.55 \mathrm{mmol}$) was added. The mixture was stirred for 20 min . and filtered through a pad of celite. The celite was washed with acetone and the filtrate was concentrated to provide an aqueous solution which was extracted with ethyl acetate (3×5 $\mathrm{ml})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to provide 64
mg (95\%) of (R)-benzyl-2-(formylmethyl)-2,5-dihydro-5-oxofuran-2-carboxylate (76) as a gum. This was used further without purification.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 7.56(\mathrm{~d}, 1 \mathrm{H}, J=5.6, \mathrm{CH}=\mathrm{CHCO})$, 7.38-7.30 (m, 5H, $\mathrm{Ar} H), 6.24(\mathrm{~d}, 1 \mathrm{H}, J=5.6, \mathrm{CH}=\mathrm{CHCO}), 5.24-5.18(\mathrm{AB}, 2 \mathrm{H}, J=15.0$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 3.23-3 . \mathrm{I} 3\left(\mathrm{AB}, 2 \mathrm{H}, J=20.0, \mathrm{CH}_{2} \mathrm{CHO}\right)$.

The aldehyde $76(0.06 \mathrm{~g}, 0.26 \mathrm{mmol})$ was dissolved in t-butanol $(5.2 \mathrm{ml})$ and 2-methyl-2butene $(0.55 \mathrm{ml}$ of a 2.0 M solution in $\mathrm{THF}, 1.1 \mathrm{mmol})$. To this was added a solution of $\mathrm{NaClO}_{2}(0.07 \mathrm{~g}, 0.79 \mathrm{mmol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(0.03 \mathrm{~g}, 0.28 \mathrm{mmol})$ in water $(1.3 \mathrm{ml})$. The mixture was stirred at room temperature for 3 hours and concentrated. The aqueous solution obtained was extracted with ether ($3 \times 5 \mathrm{ml}$). The ether layer was separated and the aqueous layer was cooled $\left(<5^{\circ} \mathrm{C}\right)$ and acidified $(0.50 \mathrm{M}$ aqueous $\mathrm{HCl}, 3.0 \mathrm{ml})$ and the acidic solution was extracted with ether $(3 \times 5 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to provide $64 \mathrm{mg}(95 \%)$ of the acid $\mathbf{2 - (}(\boldsymbol{R})-\mathbf{2}-$ ((benzyloxy)carbonyl)-2,5-dihydro-5-oxofuran-2-yl)acetic acid (83). This was used further without purification.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.0-8.0\left(\right.$ br. $\left.1 \mathrm{H}, \mathrm{CO}_{2} H\right), 7.56(\mathrm{~d}, \mathrm{IH}, J=5.6$, $\mathrm{COCH}=\mathrm{C} H), 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph} H), 6.24(\mathrm{~d}, 1 \mathrm{H}, J=5.6, \mathrm{COC} H=\mathrm{CH}), 5.22(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 3.20-3.05\left(\mathrm{AB}, 2 \mathrm{H}, J=16.9, \mathrm{CH}_{2} \mathrm{COOH}\right)$.

The acid $83(0.05 \mathrm{~g}, 0.17 \mathrm{mmol})$ was dissolved in ethyl acetate $(3.0 \mathrm{ml}), \mathrm{Pd} / \mathrm{C}(10 \%, 10$ mg) was added and the mixture was stirred under hydrogen at atmospheric pressure for

48 h . The reaction mixture was filtered through celite, the celite was washed with ethyl acetate $(10 \mathrm{~mL})$ and the combined filtrates were concentrated to provide $40 \mathrm{mg}(85 \%)$ of 2-((S)-2-((benzyloxy)carbonyl)-tetrahydro-5-oxofuran-2-yl)acetic acid (84).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.39-7.33(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 5.24\left(\mathrm{AB}, 2 \mathrm{H}, J=12, \mathrm{OCH}_{2} \mathrm{Ph}\right)$, $3.19\left(\mathrm{~d}, 1 \mathrm{H}, J=17.1, \mathrm{CH}_{2} \mathrm{COOH}\right), 3.04\left(\mathrm{~d}, 1 \mathrm{H}, J=17.1, \mathrm{CH}_{2} \mathrm{COOH}\right), 2.65-2.50,(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.36-2.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right)$.

The acid 84 ($38 \mathrm{mg}, 0.14 \mathrm{mmol}$) was dissolved in THF (0.50 mL), aqueous $\mathrm{NaOH}(2.0$ $\mathrm{M}, 0.50 \mathrm{~mL}$) was added and the mixture was stirred at rt for 15 h . The THF was removed under reduced pressure and the resulting aqueous solution was extracted once with dichloromethane. The aqueous solution was cooled, acidified with aqueous $\mathrm{HCl}(0.50 \mathrm{M})$ to pH 1 and extracted with dichloromethane ($3 \times 5 \mathrm{ml}$). The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to provide $25 \mathrm{mg}(97 \%)$ of (S)-homocitric acid (77).

IR (solid): 3500-2800 (br), 1717, 1416, 1170, 1064, 942, $870 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.39\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.5, \mathrm{CH}_{2} \mathrm{COOH}\right), 3.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.5$, $\left.\mathrm{CH}_{2} \mathrm{COOH}\right), 2.75-2.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.60-2.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.47-2.4(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$).

MS (APCI negative): $m / z 187$ (M-H); (APCI positive): $m / z 189(\mathrm{M}+\mathrm{H})$.
$[\alpha]_{\mathrm{D}}{ }^{20}:+21.0\left(\mathrm{c} 1, \mathrm{H}_{2} \mathrm{O}\right)$.

(S)-2-(Diphenyl-trimethylsilanyloxymethyl)-pyrrolidine (85):35 To a solution of diphenyl ((S)-pyrrolidin-2-yl)methanol ($0.22 \mathrm{~g}, 0.84 \mathrm{mmol}$) in dichloromethane (7.0 ml) under nitrogen was added triethylamine ($0.15 \mathrm{ml}, 1.0 \mathrm{mmol}$). The mixture was cooled to $0^{\circ} \mathrm{C}$, TMSOTf ($0.20 \mathrm{ml}, 1.1 \mathrm{mmol}$) was added and the mixture was allowed to warm to room temperature and stirred for 1.5 h . Water (5.0 mL) was added, the mixture was extracted with dichloromethane, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by flash chromatography on silica gel (5:1 hexane:ethyl acetate) to provide 220 $\mathrm{mg}(82 \%)$ of $\mathbf{8 5}$ as a yellow oil.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.46(\mathrm{~d}, 2 \mathrm{H}, J=7.2, \mathrm{Ar} H), 7.36(\mathrm{~d}, 2 \mathrm{H}, J=7.3, \mathrm{Ar} H)$, 7.29-7.19 (m, $6 \mathrm{H}, \mathrm{Ph} H), 4.03(\mathrm{t}, 1 \mathrm{H}, J=7.3, \mathrm{NCH}), 2.88-2.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH} \mathrm{N}_{2}\right), 2.81-$ $2.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 1.75(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N} H), 1.60-1.52\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.40-1.33(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right),-0.10\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

Benzyl-1,3-dihydroxypropane-2-ylcarbamate (96):46 To a solution of serinol (1.8 g, $20.0 \mathrm{mmol})$ in ethanol (60 ml) at $0{ }^{\circ} \mathrm{C}$ was added triethyl amine ($3.1 \mathrm{ml}, 22 \mathrm{mmol}$) and benzyl chloformate ($2.9 \mathrm{ml}, 21 \mathrm{mmol}$) and the mixture was stirred for 30 min after which
it was allowed to warm to room temperature, stirred for 2 h and concentrated. The residue was suspended in acetone (30 ml) and the mixture was filtered. The solid residue remaining was washed with acetone and the combined filtrates were concentrated to provide crude 96. This was purified by flash chromatography on silica gel (2:1 dichloromethane:methanol) to provide $3.2 \mathrm{~g}(70 \%)$ of 96 as a colourless powder.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.4-7.3(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 5.45(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N} H), 5.12(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 3.90-3.75\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.20(\mathrm{bs}, 2 \mathrm{H}, \mathrm{OH})$.

Benzyl-1-formylvinylcarbamate (97): ${ }^{46}$ To a solution of oxalyl chloride ($0.16 \mathrm{ml}, 2.0$ $\mathrm{mmol})$ in dichloromethane $(1.6 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$, under nitrogen, was added a solution of DMSO ($0.89 \mathrm{ml}, 13 \mathrm{mmol}$) in dichloromethane (1.0 ml) and the mixture was stirred for 10 min . A solution of $96(0.30 \mathrm{~g}, 1.3 \mathrm{mmol})$ in dichloromethane $(0.80 \mathrm{ml})$ and DMSO ($1.5 \mathrm{~mL}, 22 \mathrm{mmol}$) was added dropwise to the above mixture and stirring was continued for 20 min at the same temperature. Triethyl amine ($0.88 \mathrm{ml}, 6.3 \mathrm{mmol}$) was added dropwise and the mixture was stirred for 20 min . after which it was gradually warmed to $-10^{\circ} \mathrm{C}$ (ethylene glycol-dry ice bath) and water (4.0 mL) was added. The mixture was extracted with chloroform; the combined organic layers were washed with aqueous citric acid $(10 \%, 5.0 \mathrm{~mL})$ and brine, dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was
purified by flash chromatography on silica gel (2:1 dichlomethane:methanol) to provide $130 \mathrm{mg}(48 \%)$ of $\mathbf{9 7}$ as a pale yellow oil.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 7.38(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Ar} H), 7.21(\mathrm{bs}, 1 \mathrm{H}$, $\mathrm{N} H), 6.79\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\right), 5.47\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\right), 5.18\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right)$.

2-(1,3-Dihydroxypropane-2-yl)isoindoline-1,3-dione (98): ${ }^{46}$ A mixture of serinol (1.5 $\mathrm{g}, 17 \mathrm{mmol})$ and phthalic anhydride ($2.4 \mathrm{~g}, 17 \mathrm{mmol}$) was heated (without solvent) at $160{ }^{\circ} \mathrm{C}$ under constant stirring for 2 h 15 min . The mixture was cooled to room temperature and the solid obtained (3.5 g) was used further without purification.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.89-7.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.77-7.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 4.48$ (m, 1H, NCH), 4.13-4.04 (m, 4H, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 2.99-2.96(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OH})$.

2-(1,3-Dioxoisoindolin-2-yl)acrylaldehyde (99): ${ }^{47}$ Prepared by adapting the procedure for making aldehyde 97. Thus reaction of the diol 98 ($3.5 \mathrm{~g}, 17 \mathrm{mmol}$) in DMSO (8.2 mL) and dichloromethane (25 mL) by oxidation (oxalyl chloride ($2.2 \mathrm{~mL}, 25 \mathrm{mmol}$),

DMSO (8.2 mL) in dichloromethane (25 mL) and triethylamine ($11 \mathrm{~mL}, 78 \mathrm{mmoL}$) followed by a quench with water (50 mL)) provided $1.65 \mathrm{~g}(50 \%)$ of $\mathbf{9 9}$.
${ }^{1} \mathbf{H}^{\text {NMR }}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 7.93-7.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.80-7.78$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{Ar} H), 6.58-6.56\left(\mathrm{dd}, 2 \mathrm{H}, J=1.16,1.15, \mathrm{CH}_{2}=\mathrm{C}\right)$.

General procedure for α-amination of aldehyde: The aldehyde $\mathbf{5 0}$ was dissolved in solvent at room temperature and the pyrrolidine catalyst was added. The mixture was stirred for 5-10 min and the dialkyl azo-dicarboxylate was added in one portion. Upon completion of the reaction, the mixture was concentrated and the product was isolated by flash chromatography on silica gel. The reaction time is mentioned under each product.

(R)-Benzyl-2-(2-(di-t-butoxycarbonylhydrazino)-2-formylethyl)-2,5-dihydro-5-oxofuran-2-carboxylate (103): Prepared from aldehyde $50(0.10 \mathrm{~g}, 0.36 \mathrm{mmol})$, catalyst (43 mg, $7.2 \times 10^{-2} \mathrm{mmol}$) and di-tert-butyl azodicarboxylate $\left(9.2 \times 10^{-2} \mathrm{~g}, 0.40 \mathrm{mmol}\right)$ in chloroform $(0.20 \mathrm{~mL})$ according to the general procedure. The mixture was stirred for 5 h to provide $130 \mathrm{mg}(67 \%)$ of $\mathbf{1 0 3}$ after purification by flash chromatography on silica gel (2:8 ethyl acetate:hexane).

IR (neat): $3310,2970,1734,1718,1700,1684,1369,1278,1246,1134 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: Mixture of rotamers and diastereomers: $\delta 9.90(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CHO}), 9.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 9.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 9.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 7.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{N} H)$, $7.70(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N} H), 7.47-7.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCH}=\mathrm{CH}), 7.38-7.31(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 6.50(\mathrm{br} \mathrm{m}$, $1 \mathrm{H}, \mathrm{COCH}=\mathrm{CH}), 6.18-6.13(\mathrm{br} \mathrm{m}, 1 \mathrm{H}, \mathrm{COCH}=\mathrm{CH}), 5.27-5.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.38-$ 4.25 (br m, $1 \mathrm{H}, \mathrm{NCH}$), 2.77-2.72 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCHO}$), 2.39-2.28 (m, 1 H , $\left.\mathrm{CH}_{2} \mathrm{CHCHO}\right), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

LCMS (APCI neg.): m/z 503.3 (M-H)

HRMS (CI neg.): $m / z 504.2130$ (504.2108 Calc. for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{9}, \mathrm{M}+$).

3-((R)-2-((benzyloxy)carbonyl)-2,5-dihydro-5-oxofuran-2-yl)-2-(di-t-
butoxycarbonylhydrazino)-propanoic acid (104): To a solution of the amination product 103 ($190 \mathrm{mg}, 0.37 \mathrm{mmol}$), in t-butyl alcohol (7.3 ml) was added 2-methyl-2butene $(0.78 \mathrm{ml}$ of 2.0 M solution in THF, 1.6 mmol$)$. A solution of $\mathrm{NaClO}_{2}(0.10 \mathrm{~g}, 1.1$ mmol) and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(0.05 \mathrm{~g}, 0.39 \mathrm{mmol})$, in water $(1.8 \mathrm{ml})$ was added dropwise to this mixture. The resulting mixture was stirred at room temperature for 2 h and concentrated. The residue was diluted with ether and the solution was acidified with aqueous $\mathrm{HCl}(0.50$ M) to pH 6 . The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to provide $170 \mathrm{mg}(89 \%)$ of the acid 104 .
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): Mixture of rotamers and diastereomers: $\delta 7.52-7.47$ (m , $1 \mathrm{H}, \mathrm{COCH}=\mathrm{C} H), 7.39-7.32(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 6.82(\mathrm{bs}, 1 \mathrm{H}, \mathrm{CHN} H), 6.20-6.16(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{COCH}=\mathrm{CH}), 5.28-5.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}), 5.20-5.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 3.12-3.08(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCH}), 2.60-2.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCOOH}\right), 1.53-1.42\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

LCMS: (APCI negative): $m / z 519.2(\mathrm{M}-\mathrm{H})$.

(S)-2-(2-(Di-t-butoxycarbonylhydrazino)-2-carboxyethyl)-tetrahydro-5-oxofuran-2carboxylic acid (108): The hydrazino acid 104 ($35 \mathrm{mg}, 0.07 \mathrm{mmol}$), was dissolved in ethyl acetate $(2.0 \mathrm{~mL})$. To this solution $\mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$ was added and the mixture was stirred under H_{2} at 1 atm. for 24 h (monitored by NMR). The mixture was filtered through a pad of celite and the residue was washed with washed with ethyl acetate. The combined filtrates were concentrated to provide 29 mg (quant) of diacid $\mathbf{1 0 8}$.

IR (neat): 3400-3100 (br), 2979, 1717, 1480, 1369, 1252, $1147 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}^{\mathrm{H}} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.66(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NCH}), 2.63-2.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right.$, $\left.\mathrm{CH} \mathrm{H}_{2} \mathrm{CHCOOH}\right), 2.42-2.31\left(\mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 1.52\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.48\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

HRMS: (CI negative): $m / z 431.1$ (M-1).

References

1. Rhugenda-Banga, N.; Welter, A.; Jadot, J.; Casimir, J. Phytochemistry 1979, 18, 482.2. Lamotte, J.; Oleksyn, B.; Dupont, L.; Dideberg, O.; Campsteyn, H.; Vermeire, M.;Rhugenda-Banga, N. Acta Cryst. 1978, B34, 3635.
2. Kaname, M.; Yoshifuji, S. Tetrahedron Lett. 1992, 33, 8103.
3. Makino, K.; Shintani, K.; Yamatake, T.; Hara, O.; Hatano, K.; Hamada, Y.Tetrahedron 2002, 58, 9737.
4. Kaname, M.; Yoshifuji, S. Chem. Pharm. Bull. 1995, 43, 1617.
5. Hatakeyama, S.; Masaki, H.; Mizozoe, T.; Esumi, T.; Iwabuchi, Y. Tetrahedron Lett.
2000, 41, 4801.
6. Ishibashi, H.; Tamura, O.; Shiro, T.; Ogasawara, M.; Toyao, A. J. Org. Chem. 2005,70, 4569 .
7. Chamberlin, A. R.; Cohen, J. L. J. Org. Chem. 2007, 72, 9240.
8. Dormoy, J-R.; Castro, B. Synthesis 1987, 81.
9. a) Yamaguchi, M.; Otsubo, K.; Inanaga, J. Tetrahedron Lett. 1986, 27, 5763. b)Fukuzawa, S.; Nakanishi,A.; Fujinami, T.; Sakai, S. J. Chem. Soc. Chem. Commun.1986, 624.11. Yoshifuji, S.; Tanaka, K.; Kawai, T.; Nitta, Y. Chem. Pharm. Bull. 1986, 34, 3873.
10. Denmark, S.E.; Jones, T. K. J. Org. Chem. 1982, 47, 4595.
11. a) Jackson, R. F. W.; James, K.; Wythes, M. J.; Wood, A. J. Chem. Soc. Chem. Commun. 1989, 644. b) Jackson, R. F. W.; Wishart, N.; Wood, A.; James, K.; Wythe, M. J. J. Org. Chem. 1992, 57, 3397. c) Dunn, M. J.; Jackson, R. F. W.; Pietruszka, J.; Turner, D. J. Org. Chem. 1995, 60, 2210.
12. Gao, Y.; Hanson, R. M.; Klunder, J. M.: Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Org. Chem. 1987, 109, 5765.
13. Horita, K.; Yoshioka, T.; Tanaka, T.; Oikawa, Y.; Yonemitsu, O.; Tetruhedron 1986, 42,3021.
14. a) Thottathil, J. K.; Moniot, J. L.; Mueller, R. H.; Wong, M. K. Y.; Kissick, T. P. J. Org. Chem. 1986, 5l, 3140. b) Thottathil, J. K.; Przybyla, C.; Malley, M.; Gougoutas, J. Z. Tetrahedron Lett. 1986, 27, 1533.
15. a) Silverman, R. B.; Levy, M. A.; J. Org. Chem. 1980, 45, 815. b) Bruim, J. W.; DeKoning, H.; Huisman, H. O. Tetrahedron Lett. 1975, 15, 4599.
16. a) Vedejs, E. J. Am. Chem. Soc. 1974, 96, 5944. b) Vedejs, E.; Engler, D. A.; Telschow, J. E. J. Org. Chem. 1974, 43, 188.
17. Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46. 3936.
18. Otsuka, M.; Masuda, T.; Haupt, A.; Ohno, M.; Shiaki, T.; Sugiura, Y.; Maeda, K. J. Am. Chem. Soc. 1990, 112, 838. b) Evans, D.; Lundy, K. J. Am. Chem. Soc. 1992.

114, 1495. c) Barrett, A.; Head, J.; Smith, M.; Stock, N.; White, A.; Williams, D. J. Org. Chem. 1999, 64. 6005.
21. Ezquerra, J.; Pedregal, C.; Yryretagoyena, B.; Rubio, A. J. Org. Chem. 1995, 60, 2925.
22. a) Gu, Z.-Q.; Lin, X.-F.; Hesson, D. Bioorg. Med. Chem. Lett. 1995, 5, 1973. b) Ezquerra, J.; Pedregal, C.; Rubio, A. J. Org. Chem. 1994, 59, 4327.
23. Villieras, J.; Rambaud, M. Synthesis 1982, 924
24. a) Tamura, O.; Gotanda, K.; Terashima, R.; Kikuchi, M.; Miyawaki, T.; Sakamoto, M. Chem. Commun. 1996, 1861. b) Tamura, O.; Kuroki, T.; Sakai, Y.; Takizawa, J.; Yoshino, J.; Morita, Y.; Mita, N.; Gotanda, K.; Sakamoto, M. Tetrahedron Lett. 1999, 40, 895. c) Tamura, O.; Yoshida, S.; Sugita, H.; Mita, N.; Uyama, Y.; Morita, N.; Ishiguro, M.; Kawasaki, T.; Ishibashi, H.; Sakamoto, M. Synlett 2000, 1553. d) Tamura, O.; Gotanda, K.; Yoshino, J.; Morita, Y.; Terashima, R.; Kikuchi, M.; Miyawaki, T.; Mita, N.; Yamashita, M.; Ishibashi, H.; Sakamoto, M. J. Org. Chem. 2000, 65, 8544. e) Baldwin, S. W.; Young, B. G.; McPhail, A. T. Tetrahedron Lett. 1998, 39, 6819.
25. Tamura, O.; Shiro, T.; Toyao, A.; Ishibashi, H. Chem. Commun. 2003, 2678.
26. Kanemasa, S.; Tsuruoka, T.; Wada, E. Tetrahedron Lett. 1993, 34, 87. b) Kanemasa, S.; Tsuruoka, T. Chem. Lett. 1995, 49. c) Hanselmann, R.; Zhou, J.; Ma, P.; Confalone, P. N. J. Org. Chem. 2003, 68, 8739.
27. Martin, S. F.; Barr, K. J.; Smith, D. W.; Bur, S. K. J. Am. Chem. Soc. 1999, 121, 6990.
28. Naito, S.; Escobar, M.; Kym. P. R.; Liras, S.; Martin, S. F. J. Org. Chem. 2002, 67. 4201.
29. a) Taniguchi, M.; Koga, K.; Yamada, S. Tetrahedron 1974, 30, 3547. b) Shiro, Y.: Kato, K.; Fuji, M.; Ida, Y.; Akito, H. Tetrahedron 2006, 62, 8687.
30. Brown, S. P.; Goodwin, N. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, I25, 1192.
31. Ahrendt, K. A.; Borth, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243.
32. Hanessian, S.; Gomtsyan, A.; Malek, N. J. Org. Chem. 2000, 65, 5623.
33. a) Rueping, M.; Sugiono, E.; Merino, E. Angew. Chem. Int. Ed. 2008, 47, 3046. b)

Palomo, C.; Mielgo, A.; Angew. Chem. Int. Ed. 2006, 45, 7876.
34. Bhaskar Kanth, J. V.; Periasamy, M. Tetrahedron 1993, 49, 5127.
35. Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A.; Angew. Chem. Int. Ed. 2005, 44, 794
36. Gasto`n, H.; Rodri’guez, R.; Biellmann, J. F. J. Org. Chem. 1996, 61, 1822.
37. Shah, V. K.; Brill, W. J. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 3249.
38. Tanzer, M.; Shuster, J.; Harner, L.; Adachi, K.; Dezwaan, T.; Lo, S.-C.; Montenegro-

Chamorro, M. V.; Frank, S.; Deveraux, B.; Mahanty, S.; Heiniger, R.; Skalchunes, A.;Pan, H.; Tarpey, R. PCT Int. Appl. 2003, WO 2003046130.
39. Xu, P. F.; Matsumoto, T.; Ohkia, Y.; Tatsumi, K. Tetrahedron Lett. 2005, 46, 315.
40. Pansare, S. V.; Adsool, V. A. Tetrahedron Lett. 2007, 48, 7099.
41. Harris, C. E.; Chrisman W.; Bickford, S. A.; Lee, L. Y.; Torreblanca, A. E.; Singaram, B. Tetrahedon Lett. 1997, 38, 981.
42. Smith, B. M.; Graham, A. E. Tetraheclon Lett. 2006, 47, 9317.
43. Gassman, P. G.; Burns, S, J.; Pfister, K. B. J. Org. Chem. 1988, 53, 5576.
44. Bal, B. S.; Childers, W. E.; Pinnick, H. W. Tetrahedron 1981, 37, 2091.
45. Pansare, S. V.; Adsool, V. A. Tetrahedron Lett. 2007, 48, 7099.
46. Harada, H.; Morie, T.; Hirokawa, Y.; Kato, S. Chem. Pharm. Bull. 1996, 44, 220.
47. Ishihara, K.; Nakano, K.; Akakura, M. Org. Lett. 2008, 10, 2893.
48. Bal, B. S.; Childers, W. E.; Pinnick, H. W. Tetrahedron 1981, 37, 2091.
49. For examples of N-N bond cleavage using Raney-Ni see: a) Enders, D.; Schubert, H. Angew: Chem. 1984, 96, 368; Angew. Chem. Int. Ed. Engl.1984, 23, 365. b) Trimble, L. A.; Vederas, J. C. J. Am. Chem. Soc. 1986, 108, 6397. Denmark, S. E.; Weber, T.; Piotrowski J. Am. Chem. Soc. 1987, 109, 2224. d) Alexakis, A.; Lensen, N.; Mangeney, P. Synlett 1991, 625. c) Einhorn, J.; Einhorn, C.; Luche, J.-L. Synlett 1991, 37.
50. For examples of $\mathrm{N}-\mathrm{N}$ bond cleavage with $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$ see: a) Mellor, J. M.; Smith, N. M. J. Chem. Soci., Perkin Trans.I 1984, 2927. b) Dolle, R. M. Branden, M. C.; Brennan, P. E.; Ahmed, G.; Tran, V.; Ho, D. M. Tetrahedron Lett. 1999, 40, 2907.
51. For examples of $\mathrm{N}-\mathrm{N}$ bond cleavage with $\mathrm{Zn}, \mathrm{AcOH}$ see: a) Beatrice, S-P.; AnneMarie, H.-F.; Leon, G. Tetrahedron Lett. 1982, 23, 3261. b) Enders, D.; Demir, A. S.; Tetrahedron Lett. 1987, 28, 3795. c) Zaltsgendler, I.; Leblanc, Y.; Bernstein, M. A. Tetrahedron Lett. 1993, 34, 2441. d) Beaudegnies, R.; Ghosez, L. Tetrahedron: Asymmetry, 1994, 5, 557. e) Leblanc, Y.; Boudreault, N. J. Org. Chem. 1995, 60, 4268.
52. For examples of $\mathrm{N}-\mathrm{N}$ bond cleavage with SmI_{2} see: a) Burk, M. J.; Feaster, J. E. J. Am. Chem. Soc. 1992, 114, 6266. b) Ding, H.; Friestad, G. K. Org. Lett. 2004, 6, 637.
53. For examples of $\mathrm{N}-\mathrm{N}$ bond cleavage with H_{2} and PtO_{2} see: a) Banfi, L.; Cascio, G.; Guanti, G.; Manghisi, E.; Narisano, E.; Riva, R. Tetrahedron 1994, 50, 11983. b) Gennari, C.; Colombo, L.; Bertolini, G. J. Am. Chem. Soc. 1986, 108, 6394.
54. For examples of $\mathrm{N}-\mathrm{N}$ bond cleavage with hydrogen and $\mathrm{Pd}(\mathrm{OH})_{2}$ see: Kim, Y. H.; Choi, J. Y. Tetrahedron Lett. 1996, 37, 5543.
55. For examples of $\mathrm{N}-\mathrm{N}$ bond cleavage with dissolving metal reduction see: Denmark, S . E.; Nicaise, O.; Edwards, J. P. J. Org. Chem. 1990, 55, 6219.

Appendix

Chapter 1

sva2995a

Chapter 2

叁	霏菏	\％	玉	\％	葠	咢	哭录哭	\％	$\stackrel{\text { ® }}{\sim}$
i	｜${ }^{\text {｜}}$	1	।		｜	1	4.	，	I

sva2654f

[^2]

[^0]: ${ }^{3} 20 \mathrm{~mol} \%$ acid additive. ${ }^{\text {b }}$ Isolated yield. ${ }^{\text {c }}$ Determined by chiral HPLC (AS-H column). ${ }^{d} 1.79 \mathrm{mmol}$ of ester in 14 ml THF. ${ }^{c} 0.74 \mathrm{mmol}$ ester in 7 ml THF. ${ }^{f} 0.16 \mathrm{mmol}$ of ester in 3 ml THF. ${ }^{\circ} 0.5 \mathrm{mmol}$ ester in 4 ml .THF. ${ }^{1} 0.226 \mathrm{mmol}$ ester in 1 ml DME. ' $30 \mathrm{~mol} \%$ catalyst and $30 \mathrm{~mol} \%$ acid. ${ }^{1} 1$ equiv. acrolein.

[^1]: ${ }^{\text {a }}$ Isolated yield. ${ }^{6}$ Determined by chiral HPLC (AS-H column). ${ }^{\text {c }}$ Chloroform. ${ }^{\text {d }} \%$ ee after 16 hours.
 ${ }^{\circ} \%$ ee after 4.5 days. ' 0.133 mmol ester in 0.5 ml moist chloroform. ${ }^{\circ} 0.133 \mathrm{mmol}$ ester in 0.5 ml solvent.

[^2]:

