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Abstract 

Lung surfactant is a complex mixture of lipids and proteins that enables normal 

breathing by reducing the surface tension at the alveolar air-water interface, and additionally 

provides the first line of defense against inhaled microbes in the lungs. Surfactant protein B 

(SP-B) is an indispensable component of lung surfactant system and absolutely essential for 

the survival of mammals. SP-B is thought to function by facilitating large-scale 

rearrangements of lipid structures at various stages of the breathing cycle. However, neither 

the structural mechanisms for this ability nor the physiological ramifications of the lipid 

rearrangements are yet understood, in part because a high-resolution structure of SP-B has 

not been determined. As is generally the case for membrane and other lipid-associated 

hydrophobic proteins, the production of an SP-B sample for structural studies has been very 

challenging and unsuccessful to date. Interestingly , synthetic fragments of SP-B retain 

substantial biological activity when compared to the full -length protein . This Ph.D. research 

has applied solution nuclear magnetic resonance (NMR) methods to three SP-B-based 

peptides to reveal at least some of the critical structural features and lipid/protein interactions 

that presumably underlie the functional mechanisms of SP-B in physiological conditions. 

The high-resolution structure of Mini-B, an N-terminal - C-terminal construct of 

SP-B that exhibits even better performance than the full-length protein in rat models, is 

determined in the presence of surfactant lipid-mimetic sodiumdodecylsulfate (SDS) micelles. 

Mini-B consists of two a-helices with a projecting tryptophan anchor and displays a 

strikingly amphipathic surface. The structure of Mini-B appears very well-suited for making 

strong interactions with surfactant phospholipid analogues. Indeed, Mini-B binds both 

anionic and zwitterionic micelles composed of SDS, dodecylphosphocholine (DPC), 

lysomyristoylphosphatidylcholine (LMPC), lysomyristoylphosphatidylglycerol (LMPG) and 

mixed LMPC/LMPG, and induces substantial rearrangements of the micelle structures. To 

prepare a foundation for directly probing the interaction between Mini-B and surfactant 

protein A (SP-A), the conformation and lipid interactions of SP-A are investigated separately 

in the presence of micelles composed from the same model surfactant lipids. SP-A also binds 
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both zwitterionic and anionic micelles. Surprisingly, in the presence of micelles, SP-A exists 

predominantly as smaller oligomers, in sharp contrast to the octadecamers observed when in 

an aqueous environment, and the form in which SP-A has long been presumed to function. 

Mini-B appears to interact with SP-A in all micelle systems, although the interaction is 

indirect and the degree of the interaction is dependent on the type of detergent/lipid 

headgroup. Next investigated are the changes to SP-B's structure and lipid interactions 

brought about by tryptophan oxidation, a modification which is thought to be a major 

contributor to acute respiratory distress syndrome (ARDS). Replacement of tryptophan by 

one of its oxidized forms, kynurenine, substantially disrupts the helical structure of SP-Bs-25, 

anN-terminal fragment of SP-B, and also affects its interactions with the micelles. Lastly, as 

a step towards the determination of the structure of full-length SP-B, the overall 

conformation of Maxi-BeT, the C-terminal half of SP-B, has been investigated in the organic 

solvent hexafluoroisopropanol (HFIP) and SDS micelles. 

SP-B is indispensable for life, but the molecular basis for its activity is not yet 

understood. The findings of this Ph.D. research contribute to the ongoing endeavor in 

characterizing SP-B 's structure-function relationships and its mechanisms of lipid/protein 

interactions that are crucial for lung surfactant function. This work also provides a strong 

foundation for future studies on the conformation and interactions of full-length SP-B. 
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1.1 Respiratory System and Lung Surfactant 

It is essential for almost all multicellular living organisms to inhale oxygen from the 

external environment in order to perform various physiological functions and to exhale 

carbon dioxide produced in the internal metabolic reactions from the body. For humans and 

all air-breathing vertebrates, the blood transports both of these gases and the exchange takes 

place in the lungs. This lung function is accomplished through airways ending in tiny air sacs 

known as alveoli (Figure 1.1). Adult human lungs contain approximately 2400 km of airways 

and 300 to 500 million alveoli, covering a total surface area of about 70m2 [1]. In the lungs, 

the air-filled alveoli are surrounded by blood-filled capillaries and the barrier in between is 

extremely thin. Molecules of oxygen and carbon dioxide are passively exchanged by 

diffusion between the air and the blood. Because of an incessant direct exposure to the 

external gaseous environment, the inner surface of the alveoli is coated by an approximately 

0.2 f.tm thick water layer to prevent it from dehydration [2]. As a result, a surface tension is 

created at the air-water interface since the forces of attraction between water molecules are 

stronger than the forces between water and air. 

The water-coated alveoli are roughly spherical in shape. The alveoli, and thereby the 

lung as a whole, inflate and deflate cyclically with inhalation and exhalation. Maintaining the 

alveolar structure throughout the cyclical changes in the lung volume is critical for normal 

respiration. The surface tension created at the air-water interface is largely governed by 

LaPlace's equation that relates the fluid pressure P inside a spherical vessel of radius R with 

the surface tension T, 

T = RP/2. 1.1 

Pure water has a surface tension of about 70 mN/m. Such a surface tension, unless countered, 

would promote lung collapse and increase the work required to re-inflate the lung at the end 

of an expiration [3]. However, the surface tension is indeed countered by a material called 

lung surfactant (also known as pulmonary surfactant) which enables normal breathing. Lung 

surfactant is a mixture of lipids and proteins that lines the air-water interface in alveoli. When 

lung surfactant is at thermodynamic equilibrium between the outer or water surface covering 
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monolayer and a bulk phase inside water, it decreases the surface tension to about 25 mN/m 

[4]. However, when the monolayer is compressed laterally, as at the end of expiration, it 

reduces the surface tension to near 0 mN/m [4]. This function of lung surfactant, termed 

"surface activity", successfully prevents alveolar collapse during exhalation and also eases 

the work of breathing during subsequent inhalation. 

In addition to reducing the surface tension and thereby enabling normal breathing, 

lung surfactant also provides the first line of defense and the innate immune response against 

inhaled pathogens, toxins and allergens [5]. This function of lung surfactant is also crucial 

since the respiratory system is continually exposed to toxic substances and infectious agents 

due to its direct contact with the external environment. 

Alveolar cell 

Alveoli Alveolus 

Figure 1.1 : A schematic representation of the human respiratory system. The lungs are 
composed of millions of alveoli where the 0 2/C02 exchange takes place. The inner surface of 
the alveoli is coated by a water layer. Lung surfactant, a lipid-protein lining at the air-water 
interface, reduces the surface tension and enables normal breathing. 
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The initial discovery of lung surfactant was made by von Neergaard in the late 1920s 

[6]. However, the significance of his discovery was not understood at that time. In the mid 

1950s, the observation of surfactant's ability to reduce the surface tension led to its 

rediscovery by Pattie [7] and Clements [8]. Since then, extensive research has been 

performed to unveil the molecular mechanisms that underlie its essential physiological 

functions. Although important advancements have been made over past decades, a complete 

structural description of the components and their interactions during the respiratory 

dynamics are still unavailable. 

1.2 Synthesis and Composition of Lung Surfactant 

Lung surfactant is synthesized and secreted into the alveolar fluid by one of the two 

boundary-forming cells of the alveoli, known as Type II pneumocytes (Figure 1.2) [9]. These 

cells are cuboidal in shape and contain specialized secretory intermediaries known as the 

lamellar bodies (LB) [ 1 0]. LB is actually a storage form of the surfactant. It consists of a core 

composed of multilamellar membranes surrounded by another membrane [11]. Its secretion 

occurs in response to local biochemical factors [12], signals from the autonomic nervous 

system [13] and deep breathing [14] or stret~h [15]. After reaching the extracellular aqueous 

environment, the LB contents become hydrated and can unravel into a highly ordered array 

of tubules with nearly rectangular cross section known as the tubular myelin (TM) [ 16]. The 

sidewalls of the TM are thought to be constructed from bilayers of surfactant phospholipids 

and their characteristic crosshatched structures are probably maintained through interactions 

with surfactant proteins [I 7]. Some models for surfactant formation suggest TM as the 

immediate precursor from which the surfactant components are released and finally form a 

surface active film at the alveolar air-water interface that is responsible for surface tension 

reduction [18, 19]. Electron microscopic images and surface activity studies suggest that the 

surface active film consists of multiple layers of phospholipids closely packed by the proteins 

[20, 21]. These multilayered structures act as a surface-associated reservoir of surfactant 

material and remain attached to the interface although the constituents are probably 

interchanged and recycled [22]. The final coating at the edge of the surface film, however, is 
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likely in the form of a lipid monolayer with the headgroups in contact with water and other 

polar molecules and the hydrocarbon acyl chains exposed into the air [22]. 

The composition of lung surfactant vanes among different vertebrates and also 

throughout the physiological development of a particular species [23]. For adult humans, and 

most mammals, phospholipids make up the bulk of surfactant materials (- 80% by weight), 

with the remaining being neutral lipids (- 10% by weight) and proteins (- 10%, by weight) 

[24]. Table 1.1 lists the components of adult human lung surfactant with percentages by 

weight [23-25]. 

Air 

Alveolar 
Type II cell 

Compression 

Figure 1.2 : A model for the life cycle of lung surfactant [19, 22]. After being synthesized in 
the endoplasmic reticulum (ER), surfactant materials are transported to the golgi apparatus 
(GA) and then packed into the lamellar bodies (LB). The LB, being secreted then into the 
water layer, swells and unravels to form the tubular myelin (TM). From the TM, lipids and 
proteins are released to form the surface active film at the air-water interface. 

5 



Table 1.1 : The composition of adult human lung surfactant [23-25]. 

Category Components with Percentages by Weight 

1. Phosphatidylcholine (PC) ~ 70% 
~ 35% dipalmitoylphosphatidylcholine (DPPC), 
~ 15% other disaturated species, and 
~ 20% unsaturated forms 

Phospholipids(~ 80%) 2. Phosphatidylglycerol (PG) ~ 9% 
3. Minor amount ofPhosphatidylinositol (PI) 
4. Minor amount of Phosphatidylethanolamine (PE) 
5. Minor amount ofPhosphatidylserine (PS) 
6. Minor amount of Sphingomyelin (SM) 

1. Mostly Cholesterol ~ 10% 
Neutral lipids(~ 10%) 2. Minor amounts of mono, di and triglycerides 

3. Minor amount of free fatty acids 

1. Surfactant Protein A (SP-A)~ 6% 
Proteins ( ~ 1 0%) 2. Surfactant Protein B (SP-B) ~ 1.5% 

3. Surfactant Protein C (SP-C) ~ 1.5% 
4. Surfactant Protein D (SP-D) ~ l% 

1.3 Lung Surfactant Activity, Disorder and Treatment 

An effective surfactant exhibits at least three critical properties. Firstly, it adsorbs 

quickly (within a few seconds) to the alveolar air-water interface [21]. This ensures that the 

materials reach the respiratory interface before a newborn completes the first inspiration. 

Secondly, attaining a thermal equilibrium after lining the interface, the surfactant brings 

down the surface tension close to 25 mN/m [26], which is further reduced to almost 0 mN/m 

during lung compression following an expiration [25]. This ensures that the alveolar collapse 

is avoided at the end of the expiration and that the subsequent lung expansion, following the 

next inspiration, can be performed with ease. Thirdly, during the re-expansion of the lung, 

the surfactant respreads back and covers the whole respiratory interface again [ 12]. This 

ensures that the surface film is protected from any rupture and is ready to repeat the cycle. 
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Since its rediscovery in the mid 1950s, lung surfactant has been subjected to various 

analytical and experimental techniques, but the molecular mechanisms underpinning its 

functions are not yet known in detail. There are a lot of unanswered questions regarding the 

structures, roles and mechanistic behaviors of the components at different stages of the 

breathing cycle. However, based on various biophysical studies, a few models have been 

proposed [12, 25, 27]. These models suggest that the phospholipids, due to their ability to 

form oriented interfacial monolayers, act as the principal surface active agents in the 

surfactant [27]. The proteins are primarily considered as modulating agents, evolved to 

optimize the surface activity of the phospholipids during the respiratory cycle and provide 

the innate immune response to microbes in the lungs [28, 29]. However, one of the proteins, 

namely surfactant protein B (SP-B), plays such crucial roles that lung surfactant loses its 

surface activity in the absence of SP-B and fails to function [30]. Thus SP-B is absolutely 

essential for the survival of mammals [31]. 

Deficiency or inactivation of lung surfactant leads to potentially fatal respiratory 

disorders such as neonatal respiratory distress syndrome (NRDS) in premature newborns [32] 

and acute respiratory distress syndrome (ARDS) in adults with acute injury or illness [33]. 

Development of lung surfactant replacement treatments in the early 1990s greatly improved 

the outlook for NRDS [34], but successful treatment of ARDS with endogenous surfactant has 

proved more challenging, probably because the conditions that lead to ARDS in the first place 

also lead to a rapid deactivation of the replacement surfactant [35]. Clinical trials have shown 

artificial surfactants to be much more effective if they include the proteins, SP-B in particular, 

as compared to protein-free preparations [36]. The requirement for SP-B's presence in 

effective surfactant replacement therapy is in keeping with the lethality of hereditary SP-B 

deficiency in humans [3 7] and knockout mice [3 8]. Improvement of surfactant replacement 

preparations, for example to avoid the use of animal derived surfactant and to improve its 

activity in the context of ARDS, is hampered by the lack of understanding of the structural 

features of surfactant proteins in detail that lead to their activities in the lungs. 
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1.4 Roles of Surfactant Lipids 

Lung surfactant consists of a distinct set of phospholipids that is largely dissimilar to 

other membranous systems in most organisms. The importance of these phospholipids for the 

physiological function of lung surfactant has been recognized for many years [24]. The roles 

of the major phospholipid species belonging to the PC and PG categories (Figure 1.3) have 

been well-identified but those of the minor phospholipid species, such as PI, PE, PS and SM, 

are still far less characterized. For the most part, experimental focus has been on the surface 

activity properties of the surfactant lipids, i.e., the surface tension reduction, rapid adsorption 

and respreading characteristics. In addition to these essential functions, however, the lipid 

components may also play other important roles, such as controlling lung fluid balance and 

thereby preventing alveolar edema [39]. 

During expiration, the surfactant film at the air-water interface is compressed and the 

surface tension must be reduced to almost 0 mN/m in order to prevent alveolar collapse [8]. 

This means that the surfactant film sustains a surface pressure of about 70 mN/m at the 

interface. Previous biophysical studies on monolayers composed of the major surfactant 

phospholipids led to a general consensus that only a pure dipalmitoylphosphatidylcholine 

(DPPC) film is capable of withstanding such high pressures [40]. This is because the 

disaturated hydrocarbon acyl chains of DPPC can be packed tightly enough to sustain the 

highest pressure. However, this idea has undergone some revision recently following 

observations such as (1) the monolayers which include unsaturated lipids, such as 

palmitoyloleoylphosphatidylcholine (POPC), can also reduce the surface tension to very low 

values if they are compressed quickly enough [ 41, 42], (2) the collapse pressures of mixed 

mono layers, such as a monolayer of DPPC/DPPG (at a ratio of 80 : 20), are similar to that of 

pure DPPC [43], and (3) the liquid-expanded and tilted condensed monolayer phases coexist 

even at surface tensions approaching zero [44-47]. Thus a new school of thought, aimed at 

explaining how lung surfactant reaches near-zero surface tension without necessitating a pure 

DPPC monolayer formed by squeezing out other phospholipids, suggests that the mixture of 

DPPC and other phospholipids may take on a metastable super-compressed structure when 

they are compressed sufficiently rapidly at the alveolar air-water interface [ 41, 48]. 
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Molecular dynamics (MD) simulations of several different phospholipid compositions, 

performed at the Booth lab, have found results consistent with this newer view [ 49]. 

Nevertheless, since DPPC is the most abundant surfactant phospholipid in most organisms 

(in humans, - 35% of the total weight), all working models consider at least a DPPC

enriched film as the critical surface tension reducing structure at the alveolar air-water 

interface [19, 22, 25, 27, 50]. Other phospholipid components are mainly attributed with 

modulating roles to facilitate DPPC's adsorption to the interface as well as its respreading in 

the successive respiratory cycles [24]. It has been shown that DPPC, by itself, adsorbs very 

slowly into the air-water interface, especially at temperatures below its gel-to-liquid 

crystalline phase transition temperature of 41 oc [51]. However, mixing with more fluid 

phospholipids, such as unsaturated PCs, PG and/or PI, improves the adsorption of DPPC by a 

large extent [24]. 

DPPC 0 

POPG 0 

H, C, ~CH, . c . \ 
CH) CH, 

HO 

Cholesterol 

Figure 1.3 : Chemical structures of major lung surfactant lipids. DPPC is the most abundant 
phospholipid with PC headgroup, POPG is the most abundant phospholipid with PG 
headgroup and Cholesterol is the main neutral lipid in human lung surfactant. 
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Other than the phospholipids, a considerable amount ( ~ 1 0% of the total weight) of 

cholesterol is also present in lung surfactant. The ability of cholesterol to alter many essential 

physical properties of membranous systems is well-established. Its involvement in lateral 

phase separation of native lung surfactant membrane at physiological temperatures has been 

reported [52]. However, no clear data are available to date to evaluate its actual roles in lung 

surfactant function. 

It is to be noted that the lipids alone do not make a fully functional endogenous lung 

surfactant. The protein SP-B is indispensable for an effective lung surfactant. The other 

proteins are also important for its optimum performance, in terms of the surface activity as 

well as the host defense. However, the detailed mechanistic descriptions of the proteins' roles 

are not available till to date. 

1.5 Roles of Surfactant Proteins 

Lung surfactant consists of four proteins which are named as surfactant protein A 

(SP-A), surfactant protein B (SP-B), surfactant protein C (SP-C) and surfactant protein D 

(SP-D) according to their chronological order of discovery. In the native condition, SP-A is 

octadecameric consisting of six trimers [53], SP-B is dimeric [54], SP-C is monomeric [55], 

and SP-D is dodecameric consisting of four trimers [56]. SP-A is the most abundant protein 

of lung surfactant by weight (~ 6% of the total weight). Its main role is thought to be in 

defending the lungs against pathogens [5, 57]. Experiments showed that mice born without 

SP-A could breathe normally but were extremely prone to developing infections [58]. In vitro 

and in vivo studies suggest that SP-A also promotes the formation of tubular myelin, but this 

requires the protein SP-B and calcium too [59-61]. In addition, it has been observed that 

SP-A enhances adsorption of phospholipids along the air-water interface in a concerted 

action with SP-B [62, 63]. The protein SP-B is indispensable for life. It performs such crucial 

roles in surfactant function that its hereditary deficiency is lethal in humans [3 7] and in 

knockout mice [38]. Deactivation of SP-B by antibodies also causes respiratory distress 
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syndrome (RDS) in rabbit models [64]. Deficiency of the protein SP-C is not lethal at birth in 

knockout mice but they develop mild respiratory dysfunction later in life [65, 66]. Also, 

several cases have been described in which mutations of the SP-C gene are related to the 

occurrence of chronic familial respiratory diseases [67, 68]. The exact roles played by SP-B 

and SP-C in surfactant function and the mechanisms by which they act are not yet known. 

However, experiments showed that the presence of SP-B and SP-C provide necessary 

enhancement in adsorption of phospholipids at the alveolar air-water interface [69]. These 

proteins also appear to be important in preventing detachment of the folded structures from 

the water layer [70]. The other protein SP-D is not associated with the surface active lipid

protein complexes and is not considered to play any significant role in the biophysical 

mechanisms of lung surfactant at the air-water interface in alveoli [71]. Although it is evident 

that SP-D affects the lipid homeostasis in vivo, perhaps, like SP-A, its main role is to provide 

an immune response against microbes in the lungs [72]. 

Understanding the molecular basis of surfactant proteins' functions and obtaining the 

mechanistic descriptions of their interactions are hindered, in part, by the lack of knowledge 

of their high-resolution structures. To date, the only known full-length structure of a 

surfactant protein is that of SP-C determined using solution-state nuclear magnetic resonance 

(NMR) spectroscopy (PDB ID 1 SPF) [55]. However, X-ray crystallographic structures of the 

carbohydrate recognition and neck domains, in both native and ligand-bound forms, of rat 

SP-A (PDB IDs 1R13 and 1R14) and human SP-D (PDB IDs 1B08 and lPWB) have been 

determined [73-75]. Additionally, the structures of SP-B fragments containing the terminal 

regions have been determined in organic solvent and/or detergent micelles by NMR (PDB 

IDs lKMR, 1RG3, 1RG4 and 2JOU) [76, 77]. Figure 1.4 shows the structural models for the 

native multimeric forms of SP-A, SP-B and SP-D constructed based on preliminary 

assumptions [56, 70] and the high-resolution structure of SP-C determined by NMR [55]. 

The high-resolution crystallographic structures of the trimeric carbohydrate recognition and 

neck domains of SP-A and SP-D [73, 74] are also shown. 
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Monome1 

Trimer 

SP-A (Model) 
Based on Ref. [56] 

SP-A CRD and 
Neck Trimer 
(Experimental) 

PDB ID 1Rl3, [73] 

SP-D (Model) 
Based on Ref. [56] 

SP-B (Model) 
Based on Ref. [70] 

SP-C (Experimental) 
PDB ID 1 SPF, [55] 

Figure 1.4 : Structural models for lung surfactant proteins, based on Refs. [55, 56, 70]. 
Native SP-A, SP-B and SP-D are multimers while SP-C is a monomer. High-resolution 
X-ray crystallographic structures of the carbohydrate recognition and neck domains of SP-A 
and SP-D are shown enlarged [73, 74]. For SP-C, an ensemble of the 20 lowest energy 
structures, determined by solution NMR, is shown [55]. 
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1.6 Properties and Function of SP-B 

SP-B is considered the most important protein component of lung surfactant as it is 

essential for survival [37, 38, 78]. In mammals, native SP-B is composed of two covalently 

linked identical proteins (homodimer) [54]. Human SP-B monomer consists of 79 amino 

acids and weighs about 8.7 kDa [70]. However, the SP-B gene is first transcribed and 

translated into a significantly larger precursor consisting of 3 81 residues [79]. The mature 

form of SP-B consists of residues 201-279 .of the precursor [80]. The flanking regions of the 

precursor are cleaved in at least two steps within type II alveolar cell compartments that lie 

between the trans-golgi and the lamellar body [81] . The amino acid sequence of mature 

human SP-B is shown in Table 1.2 [70]. 

Table 1.2 : Amino acid sequence of human surfactant protein B [70]. 

1-20 Phe-Pro-lle-Pro-Leu-Pro-Tyr-Cys-Trp-Leu-Cys-Arg-Ala-Leu-Ile-Lys-Arg-Ile-Gln-Ala-

21-40 Met-Ile-Pro-Lys-Gly-Ala-Leu-Ala-Val-Ala-Val-Ala-Gin-Val-Cys-Arg-Val-Val-Pro-Leu-

41-60 Val-Ala-Gly-Gly-Ile-Cys-Gln-Cys-Leu-Ala-Glu-Arg-Tyr-Ser-Val-Ile-Leu-Leu-Asp-Thr-

61-79 Leu-Leu-Gly-Arg-Met-Leu-Pro-Gln-Leu-Val-Cys-Arg-Leu-V al-Leu-Arg-Cys-Ser-Met 

Compared to water soluble proteins, SP-B consists of a high proportion (- 52%) of 

nonpolar and hydrophobic amino acids, such as alanine, valine, leucine, isoleucine, 

methionine, phenyalanine and tryptophan. SP-B also exhibits a strong cationic profile as it 

contains nine positively charged (arginine & lysine) and two negatively charged (aspartic 

acid & glutamic acid) amino acids yielding a net charge of +7 at neutral pH. There are seven 

cysteines, six of which form three intra-molecular disulfide bridges and the remaining one 

forms an inter-molecular bond responsible for the dimerization. 

Biophysical studies have presented a long list of SP-B activities including membrane 

binding, membrane lysis, membrane fusion, promotion of lipid adsorption to air-water 

surfaces, stabilization of monomolecular surface films and respreading of films from 

collapsed phases [82]. However, it is not clear which of these activities, if any, underlies 

SP-B's crucial contributions to surfactant function in the lungs. As SP-B is positively 
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charged at neutral pH, it seems likely that electrostatic interactions between SP-B and 

surfactant lipids with negatively charged headgroups contribute to its physiological function. 

Indeed, there are studies which have found that SP-B preferentially binds negatively charged 

phospholipids such as phosphatidylglycerol (PG) in surface monolayers of surfactant films 

[83, 84], as well as in multilamellar vesicles [85]. Some models aiming to explain the 

functional mechanism of SP-B suggest that upon compression, as would happen in lungs 

during the expiration, films composed of positively charged SP-B and negatively charged 

lipids may form buckled structures that remain attached to the monolayer [86]. During 

subsequent expansion of the film at a lower surface pressure, the buckled structures may 

rapidly be reincorporated into the film to re-form a flat monolayer [87, 88]. The most 

dramatic acceleration of the interfacial adsorption of phospholipids is also caused by SP-B 

[25] . Furthermore, SP-B, in addition to SP-A, is required for the formation of tubular myelin, 

an ordered array of phospholipid aggregates that is thought to be involved in transporting 

lipids from aqueous subphase to the surface-associated phase [59, 60]. All these observations 

suggest that SP-B's critical contributions to lung surfactant function are made via facilitating 

large-scale rearrangements of lipids and stabilizing complex structures required at various 

stages of the breathing cycle. Unfortunately, the molecular basis of SP-B's function in the 

lung is still far from being understood, in part because the three-dimensional structure of 

SP-B has not yet been determined. 

SP-B belongs to the Saposin protein superfamily [Table 1.3], a unique family of small 

lipid-binding and membrane-perturbing proteins [54, 89, 90]. High-resolution structures are 

known for quite a few Saposin proteins such as Saposin A (PDB ID 2DOB) [91] , Saposin B 

(PDB ID 1N69) [92], Saposin C (PDB ID 1SN6) [93], NK-Lysin (PDB ID 1NKL) [94] , 

Amoebapore A (PDB ID 10F9) [95] and the saposin-like Granulysin (PDB ID 1L9L) [96]. 

All these proteins display a predominantly a-helical conformation, although the extent of the 

helices and the way the helices pack together vary from protein to protein. However, in all 

Saposins, three intra-protein disulfide bonds are formed by six conserved cysteines which 

define a characteristic fold that has been conserved for an estimated 300 million years [97]. 

Thus, SP-B is expected to possess four (or five) a-helical regions connected by loops and 
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bundled by three disulfide bonds (Figure 1.5). The helical structure of native SP-B has been 

verified by circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy m 

both lipid and organic solvent environments [98-1 00]. 

Table 1.3 : Amino acid sequence of Saposin family proteins [70]. Mini-S and Maxi-B, 
shown at the bottom, are peptide fragments of SP-B. 

Protein Amino acid sequence 

Sap A SLP-CDICKDVVTAAGDMLKDNAT-EEEILVYLEKTCDWLPKPNMSASCKEIVDSYLPVILDIIKGEMSRPGEVCSALNLCESLQ 

SapB GDVCQDCIQMVTDIQTAVRTNSTFVQALVEHVKEECDRLG-PGHADICKNYISQYSEIAIQMMMH--MQPKEICALVGFCD--E 

SapC SDVYCEVCEFLVKEVTKLIDNNKT-EKEILDAFDKMCSKLPKS-LSEECQEVVDTYGSSILSILLEEVS-PELVCSMLBLCSGT 

SapD DGGFCEVCKKLVGYLDRNLEKNST-KQEILAALEKGCSFLPDP-YQKQCDQFVAEYEPVLIEILVEVMD-PSFVCLKIGACPSAB 

NKL G-YFCESCRKIIQKLEDMVGPQPN-EDTVTQAASQVCDKL-K-ILRGLCKKIMRSFLRRISWDILTGK-KPQAICVDIKICK-E 

PFP GEILCNLCTGLINTLENLLTTK-G-ADKVKDYISSLCNKA-SGFIATLCTKVLDFGIDKLI-QLIEDKVDANALCAKIBAC 

SP-B FPIPLPYCWLCRALIKRIQAMIPKGA-----LAVAVAQVCRVVPLVA-GGICQCLAERYSVILLDTLLGRML-PQLVCRLVLRCS-M 

Mini-B -------CWLCRALIKRIQAMIPKG-------------------------------------------GRML-PQLVCRLVLRCS--

Maxi-B -------CWLCRALIKRIQAMIPKGA-----LAVAVAQVCRVVPLVA-GGICQSLAARYSVILLDTLLGRML-PQLVfRLVLRCS--
I I I I I 

I I 
..__ 

S-S __J I I Bonds 

SP-8 Maxi-8 

c 

N N 

N~c SP-8cTERM c 
Mini-8 

N ~ c SP-8NTERN N 

Figure 1.5 : Topology of SP-B predicted based on the known structures of Saposin family 
proteins. a-Helical regions are portrayed by cylinders and disulfide bonds connecting the 
helices are shown by dashed lines. Fragments covering the terminal helical regions that are 
known to exhibit some biological activity and a near-full proposed peptide are also shown. 
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1. 7 Activities and Structures of SP-B Fragments 

Fragments of SP-B containing individual helices or pairs of helices have been shown 

to retain significant biological activity when compared to the full-length protein (Figure 1.6). 

Surfactant preparations that include synthetic peptides representing either N- or C-terminal 

helical segments of SP-B enhance oxygenation and lung compliance in surfactant-deficient 

animal models [IOI, I02]. A 25-residue N-terminal segment of SP-B (SP-B 1_25) facilitates 

dynamic respreading [I 03] and improves lung function in premature rabbits and lavaged rats 

[104]. Peptides based on the C-terminal domain also induce in vitro and in vivo surfactant 

activities that, at least partially, simulate those of the native protein [10I, I05, I06]. The 

N-terminal half of SP-B consisting of residues I-37 promotes rapid liposome fusion, while a 

shorter peptide containing residues 7-22 is sufficient for liposome lysis [I07]. KL4 (a 

component of Surfaxin), a 21-residue peptide designed by use of the hydrophobic and 

hydrophilic repeats of SP-B57_63 as a molecular template, has shown some promise as a 

bronchoalveolar lavage for improving lung function in meconium aspiration syndrome [I 08]. 

Mini-B is another synthetic construct that includes both N- and C-terminal predicted 

helical regions of SP-B. This 34-residue peptide consists of SP-Bs-25 and SP-B63-78 covalently 

connected through the backbone [I 09]. Like the full-length protein, Mini-B possesses a net 

charge of +7. The proportion of hydrophobic amino acids is also similar, 44% in Mini-B as 

compared to 52% in SP-B. In addition, Mini-B possesses four of the six conserved cysteines 

that define the Saposin fold and thus, in its oxidized form, has two disulfide bridges linking 

the two helices. Surfactant deficient rats treated with synthetic surfactant preparations 

containing Mini-B attain oxygenation and lung compliance values as good as, or better than, 

those achieved in the presence of native SP-B [I 09] (Figure I.6). 

To date, structures of three peptide fragments representing SP-B's terminal regions 

have been determined at atomic resolution by solution NMR. The structure of anN-terminal 

peptide (SP-B 11_25) was determined in methanol (PDB ID 1KMR) [76]. The structure of a 

C-terminal peptide (SP-B63-?s) was determined in aqueous solution containing 40% 
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fluorinated alcohol hexafluoroisopropanol (HFIP) (PDB ID I RG4) and in lipid-mimicking 

sodiumdodecylsulfate (SDS) micelles (PDB ID IRG3) [77]. The structure of a reduced 

version of Mini-B, that lacks the two disulfide bonds between the helices, was determined in 

aqueous solution containing 40% HFIP (PDB ID 2JOU) during my M.Sc. work (Booth lab, 

Memorial University of Newfoundland) [110]. Figure 1.7 shows the high-resolution 

structures ofthese three SP-B-based peptides. 
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Figure 1.6 : Respiratory function related responses from rats subjected to removal of lung 
surfactant by in vivo lavage and then exogenously administered with synthetic surfactants 
prepared from lipids only and lipids plus native SP-B or Mini-B [I 09]. The lipid-based 
surfactant contained 35 mg of phospholipids (16 mg of DPPC, 10 mg of DOPC, 3 mg of 
POPG, 1 mg of POPE and 3 mg of POPS) and 2 mg of cholesterol in I mL of phosphate
buffered saline. The lipid-protein mixed surfactants contained an additional O.I !J.mol of 
protein or peptide. Arterial partial pressure of oxygen (Pa0 2) and dynamic lung compliance 
(calculated by dividing tidal volume/kg body weight by changes in airway pressure) are 
shown as a function of time after surfactant instillation. The plots are prepared using the 
published data of Ref. [I 09]. 
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SP-BNTERM (SP-811-25) in 
Methanol (PDB ID lKMR, [76]) 

SP-BcTERM (SP-863-78) in 
HFIP (PDB ID 1RG4, [77]) 

SP-BcTERM (SP-863-78) in SDS 
micelles (PDB ID 1 RG3, [77]) 

Mini-BREo (SP-88-25+63-78) in 
HFIP (PDB ID 2JOU, [11 0]) 

Figure 1.7 : Ensembles of the high-resolution structures (lowest energy 10 to 17) of the 
terminal fragments of SP-B determined by solution NMR. The fragments are SP-BNTERM 
(SP-8 11_25) in methanol (17 structures, PDB ID lKMR) [76] , SP-BcTERM (SP-863-78) in HFIP 
(10 structures, PDB ID 1RG4) [77], SP-BcTERM (SP-863-78) in SDS micelles (10 structures, 
PDB ID 1RG3) [77] and reduced Mini-B (SP-88_25 +63-78) in HFIP (15 structures, PDB ID 
2JOU) [ 11 0]. 

1.8 Outline and Objectives of Present Work 

A protein's biological function comes about due to the organization of its amino acid 

chain into a specific well-folded three-dimensional structure. Knowledge of the high

resolution structure of SP-B is thus essential for understanding its function at the molecular 

and submolecular levels. However, the production of an SP-B sample to pursue the structural 

studies, either in the form of a crystal to perform X-ray crystallography or appropriately 
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labeled with 13C/15N isotopes to perform solution NMR, has been very challenging and 

unsuccessful to date. For SP-B, solution NMR would be a suitable choice since using this 

method the protein can be studied in a physiologically relevant lipid-mimetic environment and 

its dynamics and interactions can also be probed. Unfortunately, attempts at recombinant 

expression of the full-length protein or chemical synthesis of a near-full protein have not 

succeeded yet, mainly due to its high degree of hydrophobicity and the presence of three 

intrachain disulfide bonds. Interestingly on the other hand, some of the successfully produced 

synthetic fragments of SP-B have shown substantial biological activity when compared to the 

full-length protein. Oxidized Mini-B tops this list and it likely encompasses the key functional 

regions of the full-length protein. The structure of reduced Mini-B was determined in 40% 

HFIP during my M.Sc. but the lack of disulfide bonds and the fluorinated organic solvent 

environment limit this structure's ability to explain SP-B's function in native lung conditions. 

Nevertheless, it was an important first step that aided in the structural studies of 

physiologically relevant oxidized Mini-B in a lipid-mimetic detergent micelle environment. 

This Ph.D. research was conducted with Mini-B and two other SP-B-based peptides 

to reveal the key structural features that underlie the functional mechanisms of SP-B in 

physiological conditions. The research was performed using solution NMR spectroscopy. 

The entire work was divided into six specific projects and thereby the findings are reported in 

six separate chapters of this Thesis. The research objectives were to : 

1. determine the high-resolution structure of oxidized Mini-B in SDS micelles, 

2. investigate the conformation of Mini-B in the presence of lung phospholipid analogues and 

probe its interactions with the model surfactant lipids, 

3. investigate the conformation of SP-A in the presence of lung phospholipid analogues and 

probe its interactions with the model surfactant lipids, 

4. probe the interaction between Mini-B and SP-A, if any, m the presence of lung 

phospholipid analogues, 

5. investigate the modifications to SP-B 's structure and lipid interactions brought about by 

tryptophan oxidation, that is common in ARDS, using theN-terminal fragment SP-88_25, and 

6. investigate the conformation of the C-terminal half of SP-B. 

19 



Chapter 2 

Protein N R Met ods 

20 



2.1 Protein Structure 

Proteins are molecular machines that perform numerous indispensable functions for 

life; enzymatic catalysis, immunity against pathogens, regulation of cellular conditions, 

information processing, transportation of cellular cargo, formation of body tissues and 

muscle movement are a few to name. Proteins are polymeric macromolecules composed of a 

long chain of chemical units called amino acids (also known as residues). While there are 

literally hundreds of amino acids known, only 20 are directly encoded by the universal 

genetic code and all of them are in the L isomeric form [Ill]. The backbone chemical 

structure, - N - Ca(H)- C(O) -, is the same for all 20 amino acids (Figure 2.1 (A)). The third 

substituent of Ca, an H, is also the same. However, the fourth substituent is represented by 20 

different side chains (or R groups) and this is what distingushies one amino acid from 

another. Individual atoms in an amino acid are referred to as HN, Ca, Ha, C~, Hp, etc. (Figure 

2.1 (B)). In a full-length protein, the constituent amino acids are linked into a linear sequence 

through peptide bonds between the carboxyl C of one residue and the amino N of the next 

residue [Ill]. The first and the last residues in the chain are termed as the N- and C-terminal 

residues, respectively [111]. 

Residue1 Residuel+1 Residuel+2 
Backbone 

0 
] Backbone 

Side-chain 

Figure 2.1 : Chemical structure of a protein. (A) A single amino acid. All 20 amino acids 
have the same backbone chemical structure(- N- Ca- C - ) but different side-chains (Rs). 
(B) Amino acids are connected by peptide bonds between Ci and Ni+J to form a full-length 
protein. A residue is shown with the names of the side-chain nuclei as an example. 
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Proteins do not have a uniform, standard structure, in part, because the 20 different 

amino acids from which they are made have widely varied chemical and physical properties. 

However, the function of any protein depends on how its linear chain of amino acids folds to 

assume a defined, three-dimensional (3D) structure. Like other polymeric biomolecules, 

proteins can be described in terms of levels of organization, in this case, their primary, 

secondary, tertiary and quaternary structures [112] (Figure 2.2). A protein's primary structure 

is the amino acid sequence of its polypeptide chain(s). Individual segments or regions of the 

chain may form local regular configurations, such as a-helices and/or ~-strands, that 

represent the protein's secondary structure. The tertiary structure refers to the overall 3D 

conformation of the entire chain formed by packing such regular structural elements. Many 

proteins are composed of two or more polypeptide chains, loosely referred to as subunits. 

The quaternary structure of a multi-chain protein represents the spatial arrangement of all 

folded subunits. 

AminoAcidi 

HN Ha 0 
I I I 

···· N- C..- C ···· 
I 

R1 

AI A2 A3 Ai 
DD-0-····000·····DD-D 
t t 
N-Ter-minus C -Terminus 

Primary Structure 

Quaternary Structure 

Alpha 
HelL~ 

Beta 
tr-and 

Secondary Structure 

j 

Tertiary Structure 

Figure 2.2 : Four levels of protein structure, from primary to quaternary. The figures used to 
demonstrate the tertiary and quaternary structures are taken from the Protein Data Bank 
(PDB) (PDB IDs 2X25 and 2X2C, respectively). 
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2.2 Methods for Protein Structure Determination 

A key to deciphering the function of a given protein is to understand its structure, 

since it is the distinct structure that leads to the chemical and physical properties of the 

protein and, ultimately, its mechanism of action in a living organism [113). To date, only two 

techniques are available for determining the structure of a protein at atomic resolution; X-ray 

crystallography and solution NMR spectroscopy [114). 

X-ray crystallography requires the protein to be grown as a well-ordered crystal [115). 

When the protein crystal is exposed to a collimated (parallel) beam of X-rays, the atoms 

scatter the X-rays and the resulting diffraction pattern is recorded. An electron density map is 

then generated from which the 3D image of the crystal structure is constructed by fitting the 

known sequence of the protein. This technique can calculate the atomic coordinates precisely. 

However, it only provides information about one of the low-energy conformations that the 

protein may adopt but nothing regarding the dynamics. Therefore, the crystal structure of a 

protein may sometime be misleading and may lack physiological relevance. Furthermore, for 

membrane and other lipid-associated hydrophobic proteins, it is very challenging to grow 

diffraction-quality crystals due to the problems caused by aggregation. 

Solution NMR spectroscopy has only been developed as a technique for protein 

structure determination in the last three decades [116). The first complete 3D structure solved 

using NMR was presented in 1986 [ 117]. The unique advantage of NMR spectroscopy over 

X-ray crystallography is that the protein structural studies can be performed in a 

physiologically relevant solution environment. The technique exploits the quantum 

mechanical property of any nuclei with nonzero spin, but predominantly works with spin 1/2 

nuclei eH, 13C, 15N, etc.). The NMR phenomenon derives from the fact that the energy levels 

of nuclei with nonzero spin become unequal when the nuclei are placed in a magnetic field. 

The energy of the nuclei are then perturbed (i.e., moved between levels) by the application of 

radiofrequency (RF) pulses whose wavelength corresponds to the gap between the energy 

levels. High-resolution structural data are generated by manipulating the magnetization of the 

nuclei using scalar (through bond) and dipolar (through space) couplings by application of 
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appropriate pulse trains, delays and phase cyclings. The data contain information on inter

nuclear distances and backbone dihedral angles which are used to compute the structural 

model of the protein. However, the inherent properties of solution NMR impose a limitation 

on the protein size that is amenable to NMR studies. The classical high-resolution NMR 

methods are limited to a molecular size (mass) typically up to about 20 kDa (i.e., - 175 

amino acids), provided the protein is appropriately 13C/15N-labeled and soluble in water [118]. 

In addition to obtaining high-resolution structural data, solution NMR can be used to 

study the flexibility of the proteins and their dynamics over a wide range of time scales [ 119]. 

The interactions between a protein and its ligand can also be probed using solution NMR 

methods. For a membrane or lipid-associated protein, such as SP-B, NMR is a suitable 

method since the protein can be studied in detergent/lipid micelles which mimic its 

physiological environment. However, this is very challenging because the large size of 

protein/micelle complex substantially reduces the spectral intensity. Only relatively small 

proteins or protein fragments (up to - 150 amino acids) are thus acquiescent to study in 

micelles using solution NMR. Although recently developed solid-state NMR methods 

provide useful information about the struc~ur~ and orientation of a membrane protein in lipid 

bilayers [120], the micelle-route using solution NMR is still the principal NMR technique to 

determine the high-resolution structure of a lipid-associated hydrophobic protein. 

2.3 Basic Principles of NMR 

All nuclei with an odd mass number (e.g., 1H, 15N) or an even mass number and an 

odd atomic number (e.g., 2H, 14N) possess spin angular momentum characterized by the spin 

quantum number I [121]. Nuclear magnetic resonance is a phenomenon which occurs when a 

group of nuclei with nonzero spin angular momentum is immersed in a static magnetic field 

inside the NMR spectrometer and exposed to RF pulses with appropriate energy [122]. 

Nuclei with zero spin (i.e., I = 0), such as 12C and 160, are thus not observable by NMR. 

Nuclei with spin 1 or more (i.e., I~ 1), such as 2H and 14N, are also not generally useful for 

structural studies in solution [123]. They possess electric quadrupole moments and the 
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lifetimes of their magnetic states are very short resulting in broad resonance lines which are 

difficult to observe. Nuclei with spin 112 (i.e., I = 112), such as 1H, 13C and 15N, are the most 

useful nuclei for solution NMR [123]. For protein structural studies, 12C and/or 14N nuclei of 

the molecule are often replaced by their isotopes 13C and/or 15N, respectively. 

In the absence of any external magnetic field, the spin 1/2 nuclei of a sample, which 

can be considered as tiny bar magnets, do not have any preferred orientation. However, when 

the sample is placed in the large static magnetic field of an NMR spectrometer, all spin 112 

nuclei assume one of the two orientations, either in the same direction as, or opposed to, the 

external field. This is characterized by the two allowed quantum mechanical states given by 

the magnetic quantum number m = ± 112. The two states have different energy levels known 

as Zeeman levels (Figure 2.3). In thermal equilibrium, these states are unequally populated, 

having some more nuclei in the lower energy state (ground state, m = I /2) than the higher 

energy state (excited state, m = - 112), as determined by the Boltzmann distribution. The 

small nuclear magnets may spontaneously flip from one orientation (energy state) to the 

other but the rate is extremely slow. However, when energy equal to the difference between 

the two states is applied, much more flipping is induced. This exemplifies a resonance 

phenomenon and is hence referred to as Nuclear Magnetic Resonance (NMR). 
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Figure 2.3 : Energy levels of a spin 112 nucleus in an external magnetic field. (A) The 
applied field Bo (the spectrometer field) causes the energy state of the nucleus to be split into 
two levels known as Zeeman levels. The energy difference between the levels is proportional 
to the external field strength. (B) The nucleus assumes one of the two quantum mechanically 
allowed energy states and a transition occurs by the absorption or emission of energy equal to 
the difference of the two states. 
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A nucleus with spin angular momentum I also possesses nuclear magnetic moment f.A. 

(both are vector quantities as indicated by the boldface), and the relation between the two is 

,.... = yl, (2.1) 

where y is the proportionality constant known as the gyromagnetic ratio of the nucleus. The 

magnitude of y, in part, determines the receptivity of a nucleus in NMR spectroscopy since 

nuclei with larger gyromagnetic ratios (e.g., 1H and 19F) generate stronger NMR signals. 

However, the magnitude ofthe z-component of I is specified by 

lz = mh, (2.2) 

where h = h!2:rt and h is Planck's constant. Therefore, the z-component of the nuclear 

magnetic moment is 

!-lz = ymh. (2.3) 

Now, in an external magnetic field B along the z-axis, the energy of a spin state is 

E = - f.A. • B =- ~-tzB. (2.4) 

The energy of a particular spin state m is then 

· Em=- mhyB. (2.5) 

Thus the energy difference between the two Zeeman levels of a spin 1/2 nucleus placed in an 

external static magnetic field B0 applied along the z-axis is 

~E = E-112 - E+112 = - [(- 1/2)hyBo - (1/2)hyBo], 

or ~E = yhBo. (2.6) 

This is also the irradiation energy required to cause transition between the two Zeeman states. 

Now, the Bohr condition, 

~E = hv, (2.7) 

enables the frequency of nuclear transition, known as the Larmor frequency, to be written as 

vo = (1/2:rt)yBo, (2.8) 

or wo = yBo. (2.9) 

in units of Hz or rad/s, respectively. Hence, the irradiation energy depends on both y and Bo. 

In practice, it is in the radiofrequency range and is typically applied as a short pulse. 

Table 2.1 lists the gyromagnetic ratios and the Larmor frequencies of selected NMR

active bio-nuclei in an 11.74 T field [119, 123]. 
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Table 2.1 : Properties of nuclei commonly used in bio-NMR [119, 123]. 

Nucleus Natural abundance(%) I y (Ts) - I Wo at Bo = 11.74 T (MHz) 
IH 99.98 1/2 2.68 X 108 500 
2H 0.02 1 4.11 X 107 77 
13c 1.11 1/2 6.73 X 107 125.7 
tsN 0.36 112 -2.72 X 107 50.7 
19F 100 1/2 2.52X108 488.4 
3lp 100 112 1.08 X 107 201.5 

In an external magnetic field, the Zeeman splitting of the magnetic states of a group 

of spin 1/2 nuclei at thermal equilibrium also leads to a net bulk magnetization M 0 since the 

two states are unequally populated. It is the bulk magnetization from the whole ensemble that 

determines the NMR signal, not the magnetic moment of any individual nucleus. 

Conventionally, the direction of the external field Bo is taken as the z-axis of the coordinate 

system. So, M 0 is also aligned along the z-axis. 

During NMR experiments, the bulk magnetization M0 is manipulated by an RF pulse, 

which is a time varying magnetic field, B1, oscillating at the same Larmor frequency w0 

(Figure 2.4). The pulse applies a torque on the longitudinal bulk magnetization and tips it 

from the z-axis. If B1 is a 90° pulse applied along the y-axis, the longitudinal magnetization 

converts to a transverse magnetization along the x-axis following a rotation in the ZX-plane. 

However, immediately after the pulse, the transverse magnetization starts precessing about 

the z-axis in the XY -plane with frequency w0 under the influence of the external field Bo. The 

precession induces an electric current in the detection coil of the spectrometer. In the absence 

of any further perturbing RF pulses, relaxation processes bring the spin system to thermal 

equilibrium over time with the magnetization oriented back along the z-axis. During this 

period, the transverse magnetization decays with time and consequently the induced current 

also decays. The free induction decay (FID) of the induced current is recorded as a function 

of time over a certain acquisition period. The FID is thus a time-domain signal with 

contributions typically from different nuclei with slightly different frequency caused by the 

variations of the local chemical environment surrounding each nucleus. The usual frequency 

-domain NMR spectrum is obtained by computing the Fourier transformation of the FID. 
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Figure 2.4 : Steps of a simple one-pulse 1 D NMR experiment. In a static external field Bo, 
the net bulk magnetization Mo lies along the z-axis at thermal equilibrium (A). A 90° RF 
pulse, applied along the y-axis, rotates M0 to the x-axis where it is renamed as M(n/2) (B). 
Immediately after the pulse, M(n/2) starts precessing in the XY-plane under the influence of 
Bo and relaxations also start. The time-varying magnetic field M(t) induces a current in the 
spectrometer coil (C). The induced current is measured as a function of time during the 
acquisition period following the pulse in the form of free induction decay (FlO) (D). The 
subsequent Fourier transformation of the FID gives the normal NMR spectrum with 
absorption peaks at frequencies corresponding to the energy differences between the ground 
and excited states of the nuclei at different chemical environments (E). 

2.4 Basic NMR Parameters 

2.4.1 Relaxation Times (T 1 and T 2) 

Relaxation is the process by which a nuclear spin system, perturbed by absorbing an 

RF energy, returns back to thermal equilibrium. There are two relaxation processes; spin

lattice or longitudinal relaxation, characterized by the time T1 and spin-spin or transverse 

relaxation, characterized by the time T2 [119, 123]. At equilibrium, the net magnetization 
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vector Mo lies along the z-axis, so there are no transverse components present and the 

longitudinal component represents the total magnetization, i.e., Mz = Mo and Mx = Mv = 0. 

A 90° RF pulse (of the order of 10 f.A.S) with appropriate energy and phase rotates the 

magnetization from the z-axis and diminishes Mz to zero. After the pulse, the spin system 

gradually (of the order of 1 s for a typical protein) returns back to the thermal equilibrium 

and Mz regains its original magnitude. The time constant which describes how Mz returns to 

its equilibrium value is called the spin-lattice relaxation time T 1• The equation governing this 

behavior as a function of time t after the displacement is 

Mz(t) = Mo (1 - e-trr1
). (2.1 0) 

Also, when the longitudinal bulk magnetization is rotated from the z-axis by the application 

of a 90° RF pulse, it evolves as transverse magnetization and starts precessing in the XY

plane under the influence of the static external field. However, the magnetizations of 

individual nuclei belonging to a particular ensemble immediately start to dephase (fan out) 

causing the net magnetization to gradually shrink. Fluctuating local fields which perturb the 

energy levels of the spin states cause the dephasing. The longer the elapsed time the greater 

the dephasing, till the transverse magnetization diminishes to zero upon saturation of the 

whole plane. The time constant that describes how the net transverse magnetization, Mxv, 

decays from its initial value Mxvo to zero over time is called the spin-spin relaxation time T2. 

This is governed by 

(2.11) 

There are actually two factors that contribute to the decay of transverse magnetization; 

mutual exchange of spin energies (leading to a pure T2 molecular effect) and variations in the 

static external field B0 (leading to an inhomogeneous T2 effect). The combination of these 

two factors is what actually results in the decay of the transverse magnetization. The 

combined time constant is called T2* and is expressed as 

(2. 12) 

In reality, both T 1 and T2 processes occur simultaneously, the only restriction being 

that T2 is always less than or equal to T 1• Following a pulse sequence that perturbs the spin 

system from the thermal equilibrium, T2 governs the length oftime during which the FID can 

be observed and T1 governs the minimum time required for equilibrium to be restored. 
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T2 plays a crucial role in protein NMR studies. It is inversely proportional to the overall 

rotational correlation time (tc) of the particle and thus depends on the mass and shape of the 

protein (or protein complex). Typical values of T 1, T2 and 'tc for proteins in solution are of 

the order of 1, 0.1 and 1 o-s s, respectively. 

2.4.2 Chemical Shift (~) 

In NMR spectroscopy, nuclei of different elements (e.g., 1H, 13C or 15N), because of 

their different gyromagnetic ratios, yield signals at completely different frequencies when 

placed in the same external magnetic field (Table 2.1 ). However, the observed resonance 

frequencies also depend on the local chemical environments of individual nuclei and hence, 

even for a single element, differ slightly from the frequencies predicted by Eq. 2.9. The 

difference between the predicted and observed resonance frequencies is referred to as a 

chemical shift. It provides the opportunity of distinguishing between nuclei that are identical, 

but for their location in different chemical environments. The phenomenon of chemical shift 

arises because the motions of electrons around nuclei, induced by the external magnetic field, 

generate secondary magnetic fields. The net local magnetic field experienced by a specific 

nucleus results from the combination of the external and the secondary fields. The effect of 

the secondary field, called nuclear shielding, can enhance or diminish the effect of the main 

field. Depending on the surrounding chemical environments, each nucleus experiences a 

slightly different degree of shielding causing a variation in the local magnetic fields [119, 

123]. Consequently, the resonance condition is modified to 

Wetr= yBlocal = yBo(l- a), (2.13) 

where Weer is the effective resonance frequency due to the actual local field, B1ocaJ, 

experienced by the nucleus and a is a 'dimensionless screening or shielding constant. 

However, it is difficult to determine the exact resonance frequency of a nucleus with absolute 

accuracy. It is rather much easier to determine the difference between the resonance 

frequencies of a nucleus of interest and a reference. Since the induced secondary field that 

causes the chemical shift is about a million times weaker than the applied main static field, 

the chemical shift is expressed in terms of parts per million (ppm) [119, 123]. This also 
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removes the dependence of the chemical shift on the applied field strength and makes it a 

dimensionless number {) (Figure 2.5) given by 

(2.14) 

where Wint and Wref are the frequencies of the nucleus of interest and the reference nucleus, 

respectively, and w0 is the operating frequency of the spectrometer. For 1H, the reference 

frequency is usually set to 0 ppm so that Wref = wo. The most commonly used reference 

compounds are tetramethylsilane (TMS) and sodium 2,2-dimethyl-2-silapentane-5-sulfonate 

(DSS). TMS is often used as an external reference while DSS is used as an internal reference. 

Coupling Constant Jac 
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Figure 2.5 : Basic NMR spectral parameters. The reference signal is assigned a chemical 
shift of 0 ppm. The chemical shifts of other signals are measured from the reference and 
referred to as &a, &b and so on. The height of a signal represents its amplitude and the area 
under the curve represents its intensity which is proportional to the number of nuclei 
contributing to the signal. The coupling constant represents the difference between two 
adjacent multiplets which results from scalar coupling. 

2.4.3 Linewidth (A v112) 

In an NMR spectrum, a series of absorption peaks or resonance signals representing 

resonance frequencies of various ensembles of nuclei belonging to different chemical 

environments are observed. Under ideal experimental conditions, the area of a signal (not the 
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height) is directly proportional to the number of nuclei contributing to the signal. The 

linewidth (~v 1 12) is defined as the full-width at half-height of a signal with Lorentzian 

lineshape (Figure 2.5) [119, 123]. The linewidth is a key factor affecting both resolution and 

signal to noise (SIN) ratio of the spectrum. It is exclusively dependent on the spin-spin or 

transverse relaxation time T 2 and represented by 

~v 112 = lhtT2. (2.15) 

The relaxation time T2, however, is inversely proportional to the overall rotational correlation 

time 'tc of the molecule in solution. Again, 'tc depends on mass (and shape) of the molecule. 

Thus, the lines are inevitably broader for larger proteins. The line broadening, caused by a 

fast T2 relaxation, is the main factor that limits the size of a protein amenable to NMR studies. 

For smaller proteins, observed linewidths substantially larger than expected primarily 

indicate an increase in the rotational correlation time, likely caused by a molecular 

aggregation. If aggregates are large enough, the lines become too broad to observe. 

2.4.4 Scalar Coupling (J) 

Scalar couplings between nuclei linked via a small number of covalent bonds in a 

chemical structure result in mutual splitting of the NMR signal from each nucleus into 

multiplets (Figure 2.5) [119, 123]. Scalar couplings arise from spin-spin interactions 

mediated by the electrons forming the chemical bonds between the nuclei. The coupling is 

ordinarily not important beyond three bonds. The two-bond coupling is termed geminal (e.g., 

H-C-H) while the three-bond coupling vicinal (e.g., H-C-C-H). To a first approximation, the 

relative intensities of the multiplets are given by binomial coefficients; 1:1 for a doublet (i.e., 

for a nucleus interacting with another nucleus), 1:2:1 for a triplet (i.e. , for a nucleus 

interacting with two other equivalent nuclei), 1 :3:3 :1 for a quartet (i.e. , for a nucleus 

interacting with three other equivalent nuclei), and so on. The difference between any two 

adjacent components of a multiplet is the same and yields the magnitude of the scalar 

coupling constant (J) in Hz. This is independent of the magnetic field strength. To simplify a 

protein spectrum and to improve the SIN ratio, selective decoupling is often employed by 

irradiating the coupled nuclei with a weak RF field. 
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2.4.5 Nuclear Overhauser Effect (NOE) 

The nuclear Overhauser effect (or enhancement) (NOE) is the fractional change in 

intensity of one NMR line when another resonance is irradiated in a double irradiation 

experiment [124]. It is customarily quoted in percent of the unperturbed resonance intensity. 

The NOEs are observed because of the dipolar cross-relaxation (through-space) between 

pairs of nuclei (proton-proton or proton-other spin 1/2) with sufficiently close spatial 

proximity (usually < 5 A). The intensity of an NOE is proportional to the inverse sixth power 

of the distance between the two nuclei and also depends on the dynamics of the molecule, 

NOE = f(dynamics) x llr6
. (2.16) 

Thus the NOEs observed between pairs of protons in a protein characterize inter-proton 

distances that are invaluable for the high-resolution structure determination. Another 

application of this effect is the information on a protein' s internal dynamics since the NOE 

intensity is a function of the dynamics too. The dynamics arise since proteins are not rigid 

molecules and have a certain degree of conformational freedom which is often essential to 

their biological functions. From an NOE experiment performed for individual amino acids of 

a protein in physiologically relevant conditions, the rigidity or flexibility of its local 

backbone conformation can be determined in a quantitative manner [125]. 

2.5 Protein NMR Experiments 

A suite of complex multi-dimensional NMR experiments, starting with a simple 1 D 

experiment, are performed to determine the high-resolution structure of a protein as well as 

to probe its dynamics and interactions. Proton (1H) is the most useful nucleus in protein 

NMR studies because of its high natural abundance and large gyro magnetic ratio (Table 2.1 ). 

However, spin 1/2 carbon and/or nitrogen nuclei (i.e., 13C and 15N) are also regularly used in 

NMR studies by replacement of their natural isotopes ( 12C and 14N). The structure 

determination process begins with identifying which resonance frequency belongs to which 

magnetic nucleus in the chemical structure of the protein. Afterwards, NOEs are used to 

identify pairs of protons that are close in space. The NOE data is combined with a restrained 
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molecular dynamics simulation to provide the 30 atomic coordinates of the protein. 

Protocols for many protein NMR experiments have been developed over the years with new 

pulse sequences being developed all the time. Only the experiments used for this Ph.D. work 

are briefly described here. 

In the simple ID 1H experiment, the sample magnetization that lies along the z-axis at 

thermal equilibrium is rotated into the XY -plane by a 90° RF pulse, applied for - 10 f.!S at the 

powers typical of solution NMR probes. After the pulse, the transverse magnetization 

precesses about the z-axis and decays over time. The time-domain data are acquired by 

recording the FID during the acquisition period. The FID is then Fourier-transformed to yield 

the final frequency-domain spectrum. Because the resonance frequency is modulated by the 

chemical environment that an ensemble of protons finds itself in, the 1 D spectrum shows a 

dispersion of signals resulted from protons at different sites in different amino acids. 

However, the protons in similar chemical groups (e.g., amide protons or a-protons) have 

characteristic ranges of frequencies and hence chemical shifts (Figure 2.6) [ 119, 123]. 

backbone HN Ha. 

aromatic 

side-chain HN 

10 8 6 4 2 
1H chemical shift (ppm) 

0 

Figure 2.6 : Schematic 
representation of the 
1 D 1 H NMR spectrum 
of a protein. Chemical 
shift ranges usually 
observed for the 
protons from different 
chemical groups are 
marked. 

The second basic experiment, the proton-detected 2D Heteronuclear Single Quantum 

Correlation (HSQC), uses a magnetization transfer mechanism. For this experiment, at least 

some of the 12C and/or 14N nuclei must have been replaced by their spin 112 isotopes 13C 

and/or 15N during the protein production. 13C will not be mentioned any further as only 15N 
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labels were used in this work. The magnetization is transferred from covalently linked 1H to 
15N during a part of the pulse sequence called the mixing time. The peaks in the Fourier

transformed 20 spectra are usually shown as contour plots correlating the resonance 

frequencies of 15N- 1H pairs (Figure 2.7) [119,123]. 

1H Chemical Shift (ppm)' 

Figure 2. 7 : Schematic 
representation of the 
20 15N-1H HSQC 
spectra of a protein 
with four 15N-labeled 
amino acids Ra, Rb, Rc 
and RJ. The peaks, 
represented as contour 
plots, correlate the 
resonance frequencies 
of the four covalently 
linked 15N-1H pairs. 

The 1D 1H and 20 HSQC experiments are routinely done to optimize the sample 

conditions (concentration, pH, temperature, etc.) and to check the status of the sample before 

and after any long multi-dimensional experiments. These spectra also provide indications of 

the protein' s structural homogeneity, molecular aggregation, dynamics and interactions. 

Furthermore, preliminary hints on the secondary structure (a-helix/P-sheet) may be obtained 

since nuclei belonging to such structures exhibit characteristic frequency shifts with respect 

to the random coil configuration [ 126-128]. 

To determine the structure of a protein, the resonance frequencies of its magnetic 

nuclei must be determined first. Thus, a number of multi-dimensional homonuclear and 

heteronuclear experiments are performed leading to the complete resonance assignments. 

The 2D Total Correlation Spectroscopy (TOCSY) and Nuclear Overhauser Effect 
I 

Spectroscopy (NOESY) are the standard homonuclear experiments for identifying spin-spin 

coupling connectivities between pairs of protons. These experiments rely on magnetization 

transfer along the proton networks, which take place during the mixing period of the pulse 
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sequence [129]. In TOCSY, the magnetization is transferred from one proton to another 

through covalent bonds (up to 3 bonds) via scalar coupling. In NOESY, on the other hand, 

the magnetization transfer is achieved through space (up to - 5 A) via dipolar coupling. The 

diagonal peaks of these 2D spectra reproduce the complete 1 D 1 H spectrum. The off-diagonal 

or cross-peaks, however, correlate pairs of protons between which the magnetization transfer 

takes place (Figure 2.8, only a few selected peaks are shown and two are labeled for clarity). 
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Figure 2.8 : Schematic representations of the 2D homonuclear NMR spectra of a protein. In 
TOCSY, the cross-peaks result from the magnetization transfer between protons through 
covalent bonds (up to 3 bonds) (A). In NOESY, the cross-peaks result from the 
magnetization transfer between protons through space (up to - 5 A) (B). The NOESY spectra 
consist of peaks from both intra-residue and sufficiently close inter-residue proton pairs. The 
diagonal peaks reproduce the complete lD 1H spectrum in both. The spectra are symmetrical 
with respect to the diagonal. 

The NOEs (observed as the cross-peaks in the NOESY spectra) act as the primary 

source of structural information in protein NMR because they indicate the spatial proximity 

of protons within the molecule. The intensities of the NOEs vary approximately as the 

inverse sixth power of the inter-proton distances. However, there are difficulties in using the 

NOE intensity quantitatively since the intensity is also affected by spin diffusion, intra

protein motions and artifacts. Therefore, the intensities of all NOEs are classified into strong, 

medium and weak categories and, rather than being converted into discrete distances, are 
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given distance ranges large enough to allow for the effects of motion, etc. on NOE intensity. 

These distance restraints act as the most crucial inputs in the protein structure calculation. In 

addition to distance restraints, dihedral angle and hydrogen bond restraints are also generated 

for amino acids that can be clearly identified as having a particular secondary structure 

conformation by indicators such as selected NOEs (e.g., strong HNi-HNi+I indicates a-helix, 

strong Hai-HNi+I indicates B-sheet, etc.) and chemical shift perturbations of specific nuclei 

(e.g., Ha, Ca, etc.) based on the random coil chemical shifts [126]. 

As the 2D homonuclear spectra are crowded with cross-peaks (especially the 

NOESY), overlapping of peaks, that inevitably occurs in larger proteins, substantially hinders 

the resonance assignments. The 3D and 4D heteronuclear-edited NMR experiments resolve 

overlapped peaks according to the chemical shifts of the heteronuclei (e.g., 15N) bonded 

directly to the protons [130, 131]. In 3D experiments, the spectra are separated along a third 

dimension (' 5N or 13C), so that the 1H- 1H peaks are distributed throughout a cube instead of a 

plane. This spreading-out is achieved by combining an HSQC at the end of a TOCSY or 

NOESY in a single experiment. The FID data are collected after the HSQC instead of at the 

end of the TOCSY/NOESY [132]. The 4D experiments consist of the concatenation of a 

NOESY pulse sequence followed by two HSQC building blocks. The peaks in the 4D spectra 

are separated with respect to one heteronuclei first to generate 3D cubes which are then 

sliced further with respect to the other heteronuclei attached to the protons [133]. 

Diffusion-Ordered Spectroscopy (DOSY) provide a measure of the sizes of particles, 

such as micelles or protein-micelle complexes, undergoing free diffusion in solution by 

determining the translational diffusion coefficients (also known as diffusion constants) [134]. 

This method can be used to probe the proteip-lipid or protein-protein interactions as the size 

would change upon binding. The DOSY data are acquired by attenuating the final 1H signals 

to about 5% of the initial amplitudes using gradient pulses. The signals are attenuated 

gradually by increasing the gradient strength from ~ 2% to ~ 95% of maximum amplitude in 

16 or 32 steps. The conventional 2D DOSY spectra show approximate measures of the 

translational diffusion coefficients of various species present in the sample with respect to 

their 1H chemical shifts (Figure 2.9 A). The exact value of a diffusion coefficient is 

37 



determined from slope of the signal attenuation curve obtained from the underlying 1 D 1 H 

experiments (Figure 2.9 B). The equation for attenuation of the signal [135] is 

S = S(O)exp[ -Dy2g2&\~ - &/3)], (2.17) 

or ln[S(k)/S(O)] = -Dk, (2.18) 

(2.19) 

Here S [or S(k)] is the observed signal intensity, S(O) is the unattenuated signal intensity, D is 

the diffusion coefficient, y is the gyromagnetic ratio of the observed nucleus CH), g is the 

gradient strength, & is the gradient pulse length and ~ is the diffusion time. The size of the 

particles can then be calculated using the Stokes-Einstein equation for spherical particles 

undergoing free diffusion in solution, 

(2.20) 

where k8 is the Boltzmann constant, T is the absolute temperature, 11 is the viscosity of the 

solution and dH is the hydrodynamic diameter of the particle. The hydrodynamic diameter 

corresponds to the diameter of a sphere that would be diffusing at the same rate. 
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Figure 2.9 : Translational diffusion coefficients of the particles obtained from the DOSY 
data. (A) Schematic representation of the 2D DOSY spectra of a sample consisting of three 
species. Approximate measures of the diffusion coefficients Da, Db and De are obtained from 
the horizontal positions of the 1H peaks. (B) Exact values of the diffusion coefficients are 
obtained from the slopes of the signal attenuation curves plotted using Eq. 2.18. The peaks at 
chemical shifts H1, H3 and H4 each yield a single linear fit (i.e., a single diffusion coefficient), 
but the peak at chemical shift H2 yield two linear fits (i .e., two diffusion coefficients). The 
hydrodynamic diameters are calculated using the Stokes-Einstein equation (Eq. 2.20). 
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2.6 Protein Structure Calculation 

The high-resolution structure of a protein is calculated using computer programs that 

translate the NMR-derived proton-proton distances and the dihedral angle data into 3D 

molecular coordinates. The calculated structure reflects both the experimental data, as well as 

the restrictions on bond lengths, angles, etc. that are known from the chemical structure of 

the protein. Both the NMR data and the chemical structure data are implemented as empirical 

energy functions in a restrained molecular dynamics simulation. In practice, first an extended 

initial structure with ideal covalent geometry is generated using the known amino acid 

sequence. The computer program then refolds the initial structure in a way so that the 

experimentally determined distance and angle restraints are satisfied. To achieve this, each 

known parameter is assigned an energy potential. The program calculates a structure by 

minimizing the overall energy [136, 137]. 

Without the spatial restrictions imposed by the experimentally determined distance 

and dihedral angle restraints, the protein can adopt a huge number of conformations that are 

still consistent with the covalent geometry derived from its chemistry. It is therefore 

important to identify as many restraints from the NMR spectra as possible to restrict the 

conformational space to the subset of space actually sampled by the properly folded protein. 

Simulated annealing, combined with the molecular dynamics simulation, is the most 

commonly used method for calculating the NMR-based structure of a protein in solution. In 

this method, the initial extended structure is heated to a high temperature in a simulation 

giving the atoms a high thermal mobility. buring the subsequent cooling steps, the initial 

extended structure evolves towards the energetically favorable and properly folded final 

structure under the influence of a force field derived from the experimentally determined 

spatial restraints [136, 137]. In the calculation, the total energy is classified into two 

categories and given by, 

ETotal = EEmpirical + EExperimentaJ, 

where EEmpirical = Esond + EAngle + Evan-der-Waals + EEiectrostatic, 

and EExperimental = ENOE + Eoihedral + EH-bond· 
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The folded final structure is calculated using these energy functions and the simulated 

annealing protocol which finds the set of atomic coordinates that represents the minimum 

total energy [136, 137]. ENoE, the pseudo energy term corresponding to the NOEs, plays the 

most crucial role in the protein structure calculation. However, the NOE-derived inter-proton 

distances are imprecise and expressed by a range rather than a specific value. Therefore, 

many closely related structural models are consistent with the observations. Hence, an NMR

derived protein structure is usually reported as an ensemble of atomic coordinates. The 

conformational space sampled by the structural ensemble reflects the conformational space 

sampled by the protein in solution. It is thus beneficial if the experimental conditions match 

the native conditions. 

2. 7 Strategies for Studying SP-B Pep tides 

Despite the fact that approximately 30% of all proteins of currently sequenced 

genomes are associated with lipid membranes [138], structural information on these lipid

associated hydrophobic proteins lags far behind when compared to the water-soluble proteins 

[139]. This is largely due to the difficulties involved in expression, purification and 

preparation of physiologically relevant protein samples in lipid-like environments. SP-B is 

one such lipid-associated and water-insoluble hydrophobic protein which presents unique 

challenges to structure determination by solution NMR. Attempts for recombinant expression 

and chemical synthesis of the full-length or near-full SP-B have not succeeded yet. However, 

some of the successfully produced synthetic fragments have exhibited substantial biological 

activity when compared to the wild-type protein [1 09]. I have studied three such SP-B-based 

peptides in this Ph.D. work. I have used a variety of detergent and lipid micelles to mimic the 

lipid environment in which SP-B functions in the lungs. 

Micelles are self-assembled aggregates of amphiphilic molecules, such as certain 

detergents and lipids, in water or other polar solvents (Figure 2.1 0). These amphiphiles 

contain a polar (hydrophilic) head group and one long or two short nonpolar (hydrophobic) 
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hydrocarbon tail(s) (acyl chain(s)). If the concentration of these molecules in aqueous 

solution is greater than a certain value, known as the critical micelle concentration (CMC), 

hydrophobic interactions force them to spontaneously form micelle structures [ 140, 141]. 

Under most circumstances, pure micelles are spherical or near-spherical in shape. However, 

depending on the headgroup area and acyl chain volume/length, other shapes, e.g., 

cylindrical, can also be adopted. The sizes of micelles vary substantially with composition. 

Even for a single detergent or lipid, the micelle-size varies considerably with changes in 

concentration, pH and/or temperature. However, in all types of micelles, the polar 

headgroups remain exposed to the water molecules and the nonpolar acyl chains get buried 

inside the core. Small lipid-associated proteins or polypeptides, such as the fragments of 

SP-B, likely interact with both headgroups and acyl chains of the micelles and fold into 

physiologically relevant 3D structures (Figure 2.1 0). 

Figure 2.10 : Schematic representation of a 
micelle-protein complex. When mixed in 
water in excess of CMC, amphiphiles with 
one long acyl chain or two short acyl chains 
form micelles. These micelles function as 
lipid environment mimetics for membrane 
or lipid-associated proteins. The proteins 
interact with the micelles and likely take on 
physiologically relevant 30 structures. 

In general, the size of a micelle-protein complex is significantly larger than the size of 

the protein by itself. In aqueous solution, the larger complex tumbles more slowly because of 

the higher rotational correlation time and thus undergoes a more efficient transverse 

relaxation. The faster transverse relaxation rate in turn leads to broader lines in the NMR 

spectra and produces consequent decreases in both resolution and SIN ratio, as well as 

increases in peak overlap. Therefore, analysis of the NMR data of a micelle-bound protein is 

much more challenging when compared to a water-soluble protein consisting of the same 

number of amino acids. 
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To gain insight into the mechanisms of SP-B's essential roles in lung surfactant 

function, the conformations of the SP-B-based peptides, their interactions and consequences 

of oxidation were studied in both zwitterionic and anionic micelles. These micelles mimic the 

lung lipid environments created by the most abundant surfactant phospholipids with PC and 

PG headgroups. The work began with the structural studies of Mini-B in micelles composed 

of anionic detergent SDS. Mini-B ' s conformation and interactions were then investigated in a 

variety of micelle systems composed of surfactant phospholipid analogues, namely 

dodecylphosphocholine (DPC), lysomyristoylphosphatidylcholine (LMPC), lysomyristoyl

phosphatidylglycerol (LMPG) and an LMPCILMPG mixture. Interactions of the most 

abundant surfactant protein SP-A were also investigated in all these micelle systems to aid in 

the later studies of Mini-B/SP-A interactions in the presence of lipids. Next, the impacts of 

tryptophan oxidation on the structure of SP-Bs.25 were probed in water alone, organic solvent 

HFIP, and SDS and DPC micelles. Lastly, the conformation of Maxi-Bcr was investigated in 

HFIP and SDS micelles. Figure 2.11 shows the chemical structures of these lung lipid 

mimetics and the organic solvent. 
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Figure 2.11 : Chemical structures of the 
micelle-forming single acyl chain analogs of the 
most abundant lung surfactant phospholipids 
with the zwitterionic and anionic headgroups 
and the organic solvent HFIP. 
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Chapter 3 

Structure of Mini-B, an N-Terminal 
- C-Terminal Construct of SP-B, 

in Detergent M·ce les 

Note : Mini-B was synthesized and purified by Prof Alan J Waring and his group 

(Waring lab, Medicine, UCLA). The work presented in this chapter has been 

published as: Sarker, M, Waring, A. J, Walther, F. J, Keough, K. M W , and Booth, 

V (2007) Structure of Mini-B, a Functional Fragment of Surfactant Protein B, in 

Detergent Micelles. Biochemistry 46, 11047-11056. 
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3.1 Overview 

Fragments of SP-B containing predicted individual helices or pairs of helices have 

been shown to retain substantial activity when compared to the full-length protein [101-107]. 

Mini-B, a 34 residue construct based on the sequence of the N- and C-terminal predicted 

helices of SP-B (Figure 3.1), demonstrated the most significant biological function among 

these fragments [ 1 09]. Surfactant deficient rats treated with model surfactant preparations 

containing Mini-B attain oxygenation and lung compliance values as good as, or better than, 

those achieved in the presence of native SP-B [109]. However, for the study in Ref. [109], 

the surfactant material was added exogenously and so the findings cannot speak to any 

additional requirements that may be required for SP-B in naturally produced surfactant, 

which must somehow travel from the lamellar bodies secreted by type II alveolar cells to the 

air-water interface. Nevertheless, high resolution structural studies of Mini-B can be 

expected to unveil at least some of the critical structural features that underlie the activity of 

SP-B in native lung conditions. 

SP-B exhibits a strong cationic profile with nme positively charged and two 

negatively charged amino acids, yielding a net charge of + 7 at neutral pH. Seven of the nine 

positively charged amino acids are concentrated in the regions covered by Mini-B, giving the 

same net charge of +7 to this peptide at neutral pH. In addition, about half ( 44%) of Mini-B 

amino acids are hydrophobic, which compares well with the 52% hydrophobic amino acids 

of SP-B. Mini-B also includes the only tryptophan (Trp9) present in the SP-B sequence. 

Furthermore, Mini-B possesses four of the six conserved cysteines that define the Saposin 

fold and thus, in its oxidized form, has two disulfide bridges linking the two predicted helices. 

The function of SP-B is thought to relate to its positive charges, amphipathic helical structure 

and tryptophan anchor [83, 106, 142]. All these structural features are retained in Mini-Band 

presumably this is what makes the peptide so functional in model surfactants. 

For this part of my work, I have used solution NMR to determine the high resolution 

structure of Mini-B in the presence of micelles composed from anionic detergent SDS. These 
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micelles create an anionic, lipid-like environment that provides a reasonable mimetic for 

SP-B's physiological environment in the lungs. As expected, because of the large size of the 

peptide/micelle complex, the NMR spectra of Mini-B in SDS suffered from line broadening 

and signal overlap. However, with the help of NMR frequency assignments of a reduced 

version of Mini-B (i.e., without the disulfide bonds between the helices) in secondary 

structure promoting organic solvent HFIP (Sarker, M., M.Sc. Thesis, Booth lab [110]), it was 

possible to obtain the frequency assignments for this physiologically relevant oxidized 

version of Mini-B (i.e., including the native-like disulfide bonds between the helices) in SDS 

micelles. This allowed the definition of sufficient distance restraints, hydrogen bond 

restraints and dihedral angle restraints to determine the high resolution structure of the 

peptide in lipid-mimetic micelle-bound state. 
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Figure 3.1 : (A) Topology of SP-B predicted on the basis of the known structures of other 
Saposin proteins. The predicted helical regions are portrayed as cylinders and the disulfide 
bonds connecting the helices are shown by dashed lines. (B) Mini-B is constructed by 
connecting the helical segments at the termini of the full-length protein. The correspondence 
between Mini-B residue numbering and SP-B residue numbering is shown at the bottom. 

It should be noted that the correspondence between the Mini-B residue numbering 

and the full-length SP-B residue numbering is shown in Figure 3.1. In this chapter, residue 

numbers refer to Mini-B residue numbering. 
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3.2 Materials and Methods 

3.2.1 Peptide Synthesis and Purification 

Mini-B was synthesized and purified by the Waring lab (Medicine, UCLA). The 

peptide was produced by solid phase chemical synthesis using 0-fluorenylmethyloxycarbo

nyl (Fmoc) chemistry with nine 15N-labels. 1 ~-leucine was incorporated at positions 3, 7, 22, 

25, 29 and 31; 15N-alanine at positions 6 and 13; and 15N-glycine at position 18. The primary 

structure of Mini-B is shown below with gray shading on the 15N-labeled amino acids : 

Cy~ Trp-Leu-Cy~Arg-Ala-Lru-ll<>Ly~Arg-llt>Gln-Ala-Met-ll<>Pro-Lys-Gly- (represents SP-B 8-2s) 

Gly-Arg-Met-LeU-Pro-Gln-Leu-V al-Cy~Arg-Leu-V al-LeU-Arg-Cy~ (represents SP-B63-78) 

The peptide was produced with disulfide bonds between C1-C33 and C4-C27. Fmoc 

ammo acids and coupling agents were purchased from AnaSpec (Fremont, CA). The 
15N-labeled amino acids were purchased from Cambridge Isotope Laboratories (Andover, MA) 

and converted to their Fmoc derivatives by AnaSpec. Organic solvents and other reagents used 

for the synthesis and purification were high performance liquid chromatography (HPLC) 

grade or better and purchased from Fisher Scientific (Ottawa, ON) and Aldrich Chemical (St. 

Louis, MO). The peptide was synthesized at a 0.25 mmol scale in an ABI 431A peptide 

synthesizer configured for FastMoc double-coupling cycles of all residues for optimum yield 

[143]. A prederivatized N-Fmoc-0-tert-butylserine HMP resin (AnaSpec) was used to 

assemble the peptide during synthesis. Deprotection and cleavage of the peptide from the resin 

were carried out using a TF A/thioanisole/EDT/phenol/water mixture (1 0/0.5/0.25/0.5/0.5 by 

volume) followed by cold precipitation with tert-butyl ether. The disulfide linkages were 

directed by selective deprotection of the Cys residues at amino acid positions 1 and 33 using 

trityl side chain protecting protocols and at positions 4 and 27 using acetamidomethyl groups 

[109]. The disulfide linkages were formed by air mediated oxidation of the peptide in 

structure-promoting solvents [I 09]. The crude product was purified by preparative reverse 

phase HPLC in a Vydac C-18 column using a water/acetonitrile linear gradient with 0.1% 

trifluoroacetic acid as the ion-pairing agent. The molecular weight of the peptide was 
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confirmed by fast atom bombardment or MALDI-TOF mass spectrometry. The purity (> 95%) 

of the final product was determined by analytical HPLC. The purified peptide was lyophilized 

and stored at 4 °C. 

3.2.2 Sample Preparation 

The sample of Mini-B in SDS micelles was prepared by dissolving 1.5 rnM peptide 

and 150 mM detergent (98% deuterated) in 90% H20 and 10% D20 with 0.4 mM DSS and 

0.2 mM NaN3. The deuterated SDS was purchased from Cambridge Isotope Laboratories. 

The pH of the sample was set at 5.0 using NaOH and HCl solutions, without taking the 

isotope effects into account. This pH was chosen in order to obtain the NMR spectra in a 

region where the amide proton/deuteron exchange rate is relatively slow. 

3.2.3 NMR Data Collection 

Solution NMR experiments were performed on Bruker A vance 500 MHz and 600 

MHz spectrometers (at Memorial University of Newfoundland) and a Varian !NOVA 800 

MHz spectrometer (at NANUC, AB). All the spectrometers were equipped with z-gradients. 

The 1D 1H experiments used presaturation [144], 2D 15N-1H HSQC experiments used water 

flip-back [145], and 2D/3D TOCSY and NOESY experiments used water-gate [146] water 

suppression techniques. Initial lD 1H and 2D 1 ~- 1H HSQC experiments were done at three 

different temperatures (25, 35 and 45 oc using Bruker 500 MHz) to evaluate the temperature 

dependence of the peptide conformation. It was observed that the peptide exhibited improved 

conformational homogeneity and less signal overlap at 45 °C. Therefore, all subsequent 

NMR experiments were conducted at this temperature. Scalar-coupled spin systems were 

identified using 2D 1H- 1H TOCSY (mixing time 80 ms, Bruker 500 MHz). NOE data for 

structure restraints were obtained from 2D 1H- 1H NOESY (mixing time 200 ms, Bruker 500 

MHz). Three-dimensional 15N-edited TOCSY (mixing time 80 ms, Bruker 500 MHz) and 

three-dimensional 15N-edited NOESY (mixing time 200 ms, Varian 800 MHz) were used to 

resolve overlapped peaks. 
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3.2.4 Data Processing and Structure Calculation 

The NMR spectra were processed using NMRPipe 2.2 [147] and the frequency 

assignments were made using Sparky 3.110 [ 148]. The NOESY spectra were used for 

generating the distance restraints for the structure calculation. The NOEs were classified into 

strong, medium and weak categories depending on the peak intensities (heights) and assigned 

distance ranges accordingly (1.8-2.8 A for strong, 1.8-3.4 A for medium and 1.8-5.0 A for 

weak). Dihedral angle and hydrogen bond restraints were added for residues that could 

clearly be identified as a-helical from local NOE patterns, which were residues 3-14 and 23-

32. Hydrogen bond restraints were set to 1.7-2.4 A for Oi · · · HNi+4 and 2.5-3.5 A for 

Oi · · · Ni+4, and dihedral angles were set to <1> = - 60° ± 30° and 1.jJ = - 40° ± 40° for these 

residues. Table 3.1 summarizes the experimental restraints used in the structure calculation. 

Structures of Mini-B were calculated using the simulated annealing algorithm within CNS 

1.1 [149]. Although over halfofthe NOEs (339 out of638) were intraresidue, those were not 

added into the CNS input as they contribute little structural information but their inclusion 

tends to over-constrain the structure calculation. Structures of Mini-B were viewed by 

MOLMOL 2k.2 [150]. Whenever possible, stereospecific assignments were made using 

distances derived from a preliminary structure calculation. A total of 500 structures were 

calculated for Mini-B. Ensembles of the lowest energy 15 structures were retained for further 

analysis and deposited to the Protein Data Bank (PDB) [ID 2DWF]. 

Restraints 

Total NOE distance restraints 
Unambiguous 

Intra-residue 

Sequential (li-jl = 1) 
Medium-range (li-jl s 5) 

Long-range (li-jl ~ 5) 

Ambiguous (inter-residue) 

Dihedral angle restraints 

Hydrogen bond restraints 

Disulfide bonds 

Number 

638 
613 
339 
158 

110 

6 
25 

44 

28 

2 
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Table 3.1: Mini-B Structural 
Restraints. All restraints 
except for the intra-residue 
restraints were input in the 
structure calculation. 



3.3 Results 

Mini-B is based on theN- and C-terminal predicted a-helices of human SP-B and is 

composed of the human sequence residues 8-25 joined to 63-78 [ 1 09] (Figure 3.1 ). In full 

length SP-B, these two predicted helical segments are linked by a pair of cysteine-cysteine 

disulfide bonds. The structure of Mini-B with the two native-like disulfide bonds was 

determined in SDS micelles, which provide an environment similar to the lipid-water 

interfacial environment in which SP-B functions in the lungs. The peptide was produced by 

chemical synthesis and hence it was feasible to use only limited isotope labeling. Nine of 

Mini-B ' s 34 amino acids (6 leucines, 2 alanines and 1 glycine) had 15N labels. 

The 2D 15N-1H HSQC spectra obtained at a variety of temperatures indicated that 

conformational inhomogeneity and spectral overlap were minimized at a temperature of 45 °C. 

Therefore, this temperature was chosen for the structural analysis. As expected, the HSQC 

peaks for Mini-B in SDS micelles are broad, given the large complex size, but at 45 oc they 

are well-dispersed and resolved (Figure 3.2 A). Eight of the peaks have comparable intensity 

but there are also some weaker peaks present. One of the weak peaks was later assigned to L3 

and the other weak peaks likely arise from minor conformations ofL7, G18 and L22. To probe 

the possibility that protein-protein interactions were responsible for the weak peaks, HSQC 

spectra were also acquired at lower peptide/micelle concentrations. There was no reduction in 

the intensity of the weak peaks as compared to the major peaks in either the 0.5 mM Mini-B/ 

50 mM SOS sample or the 0.1 mM Mini-B/10 mM SDS sample (Figures 3.2 Band C). Hence, 

it does not appear that these weak peaks are the result of protein-protein binding. Rather, these 

are consistent with a degree of flexibility in SOS-bound Mini-B. 

Frequency assignments for Mini-B were made primarily using 20 1H- 1H TOCSY and 

NOESY spectra (Figures 3.3 A and B) with the help from 15N-edited 30 experiments for the 
15N-Iabeled amino acids. Although there was significant overlap in the spectra of the micelle

bound peptide, with the knowledge of side chain assignments of the reduced Mini-B in HFIP 

(Sarker, M., M.Sc. Thesis, Booth lab [110]), it was possible to identify the correlations to 
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confirm frequency assignments for all but Hy of L3, L 7 and L22 of the oxidized Mini-B in 

SDS. NOESY crosspeaks involving C1 , W2, L3, C4 and R5 were weak and displayed only a 

few inter-residue correlations. The relatively weak peak intensity for residues 1 through 5 is 

consistent with dynamics on an intermediate time scale involving the N-terminal region of 

the peptide. NOEs indicative of secondary structure and Ha chemical shift index (CSI) are 

shown in Figure 3.4. Hai-HNi+)!i+4 NOEs and generally negative CSI values indicate an 

a-helical conformation for residues 3-14 and 23-32 of Mini-B. 

The structures of Mini-B in SDS micelles (Figure 3.5) were calculated from 299 

inter-residue NOEs, plus 44 dihedral angle and 28 hydrogen bond restraints for the helical 

regions (Table 3.1). In the ensemble ofthe 15 lowest energy structures, 73% of the residues 

were found in the most favorable region of the Ramachandran plot, the overall backbone 

RMSD was 0.98 A and the backbone RMSD of the helical regions (residues 3-14 and 23-32) 

was 0.78 A. Unambiguous inter-helix NOEs were observed between residues R5 and R28, 

L7 and P23, 18 and C27, K9 and Q24 and W2 and S34. The two helices are packed close to 

each other and their relative positions are almost parallel. 
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Figure 3.2: 2D 15N-1H HSQC spectra ofMini-B in SDS at different concentrations (pH 5.0, 
temperature 45 °C). (A) 1.5 mM Mini-B in 150 mM SDS, acquired on a Bruker 500 MHz 
spectrometer with 16 scans. (B) 0.5 mM Mini-B in 50 mM SDS, acquired on a Bruker 600 
MHz spectrometer with 48 scans. (C) 0.1 mM Mini-B in 10 mM SDS, acquired on a Bruker 
600 MHz spectrometer with 240 scans. The base contour level shown in (A) is 3 and 4 times 
higher than that in (B) and (C), respectively. The number of increments acquired in the 15N 
dimension in (A) was half of that in (B) and (C) and hence the 15N lines are broader in (A). 
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Figure 3.3: Portions of2D 1H-1H NOESY spectra ofMini-B in SDS micelles, acquired on a 
Broker 500 MHz spectrometer with a mixing time of 200 ms and 128 scans. (A) Ha-HN 
region and (B) HN-HN region. Note, all of the peaks displayed were assigned, but for clarity, 
not all have been labeled in these figures. 
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Figure 3.4 : Secondary structure indicators for Mini-B in SDS micelles. Black bars represent 
unambiguously assigned NOEs and grey bars represent ambiguous NOEs. For sequential 
NOEs, the height of the bars corresponds to the intensity of the NOE. The chemical shift 
index (CSI) for the Ha. resonances are shown at the bottom. The CSI values were calculated 
using the random coil chemical shifts obtai~ed from Ref. [1511 . 
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Figure 3.5 : High resolution 
structure of Mini-B in SDS 
micelles. (A) Ensemble of 
the 15 lowest energy 
structures. The backbone 
(gray) and the side-chain 
heavy atoms (colored) are 
shown and the hydrogen 
atoms are omitted for clarity. 
(B) The representative 
structure (closest to the mean 
structure of the ensemble). 
(C) The molecular surface 
formed by the structure. 
Figures (A) and (B) were 
prepared using MolMol 
[ 150] and Figure (C) was 
prepared using PPG [152]. 



3.4 Discussion 

Although SP-B's contributions to lung function are clearly essential for life, the 

mechanism by which SP-B acts are still far from being understood. The current evidence 

points to SP-B-induced lipid restructuring, especially through interactions with anionic lipids, 

as being a key part of SP-B function [83, 86]. In order to help reveal the structural 

mechanisms that underlie SP-B's function, I have performed NMR structural studies of 

Mini-B, a SP-B based peptide that appears to retain much of the essential activities of native 

SP-B [1 09]. Mini-B is constructed from theN- and C-terminal helical regions of human SP

B (Figure 3.1).1t contains 34 ofSP-B's 79 amino acids and possesses the same net charge of 

+7 at neutral pH as full-length SP-B. Mini-Band native SP-B both contain a high proportion 

of hydrophobic residues (Ala, Val, Leu, Ile, Phe, and Trp ), 41% in Mini-B and 52% in SP-B. 

The distribution of the positively charged and hydrophobic residues is of high interest since 

this distribution defines how Mini-B and SP-B interact with lipids. One major finding of this 

structural study is that Mini-B possesses a strikingly amphipathic surface with most of the 

positively charged residues localized to one face of the peptide and a large hydrophobic patch 

on the opposite face (Figure 3.6 A). 

SP-B is a member of the Saposin superfamily of proteins whose common structural 

features are four to five helices and three internal disulfide bonds; two disulfide bonds 

between the terminal helices and the third one between the two middle helices [91-95]. 

Mini-B contains theN- and C-terminal predicted helical regions of SP-B and also four of the 

six cysteine residues that form two intrachain disulfide bonds as in native SP-B. The 

structure of Mini-B presented herein was determined in the presence of SDS micelles, which 

provide an anionic, lipid-like environment with a hydrophobic/hydrophilic interface. NMR 

data was also acquired for the reduced Mini-B in aqueous solution containing 40% HFIP (as 

part of my M.Sc. work, Booth lab) and used to guide in the spectral assignment of this 

native-like oxidized Mini-Bin SDS micelles. 

The experimental structures indicated that, in SDS, Mini-B folds into the predicted 

two a-helical segments (Figure 3.5). The two helices are packed tightly together, with 
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interhelical interactions stabilized by the two disulfide bonds, as well as by several 

hydrophobic contacts. Ile 8, Ile 11, Ile 15, Leu 22, Pro 23, Leu 25 and Leu 31 are largely 

buried and make interleaved contacts across the interhelix interface that appear to stabilize 

the interaction between the helices. Given the extensive hydrophobic contacts, it does seem 

plausible that some helix-helix association could occur in a native-like lipid environment, 

even in the absence of disulfide bonds. This is consistent with the observation that reduced 

SP-B mimics the behavior of native SP-B in lipid-protein films subjected to dynamic 

compression-expansion cycling, but only in the presence of phosphatidylglyercol [153]. 

In water, at concentrations higher than the critical micelle concentration, the anionic 

detergent SDS forms micelles. These micelles are spherical structures of about 5 nm in 

diameter [154], with the hydrophobic chains on the inside and the negatively charged 

headgroups on the outside. Such micelles provide a mimic of the lipid environment in which 

SP-B is thought to function in the lungs. When in association with SDS micelles, Mini-B 

takes on a strikingly amphipathic structure (Figure 3.6 A). Five of the seven positively 

charged amino acids (Arg 5, Lys 9, Arg 10, Arg 28 and Arg 32) cluster into a positively 

charged patch on one face of the peptide. The remaining two cationic amino acids (Lys 17 

and Arg 20) extend outwards from the loop connecting the two helices. A large hydrophobic 

patch, formed mainly by amino acids Leu 3, Leu 7, Val 26, Leu 29 and Val 30, is located on 

the face opposite to the positively charged patch. This marked partitioning of hydrophobic 

amino acids to one face and positively charged amino acids to the opposite face is likely key 

in the mechanism by which Mini-B, and presumably SP-B, functions. 

Tryptophan is an amino acid that typically either contributes to the hydrophobic core 

of a protein or, in lipid-associated proteins, it may "anchor" the protein to the polar/apolar 

interface. In Mini-B, the tryptophan side chain does not appear to take part in any interhelix 

interactions (Figure 3.5 B) and therefore its role is most likely in interacting with lipids to 

help anchor Mini-B at the lipid-water interface. This role is consistent with tryptophan' s 

location between the hydrophobic face and the charged face of the 3D structure of Mini-B. A 

critical role for this tryptophan in positioning Mini-B and SP-B at the lipid interface is 
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supported by previous studies that have found that Trp9 of SP-B is critical for optimal 

interface affinity [107, 142]. It should be noted that although this tryptophan is at position 9 

of SP-B, it is at position 2 of Mini-B and so it is conceivable, although unlikely, that it may 

take on a different structure when the first seven residues of SP-B are present. 

Figure 3.6 : Electrostatic potential surface of Mini-B (A) and the corresponding segments of 
NK-lysin (B) and Saposin C (C). NK-lysin and Saposin C segments are constructed from 
their PDB coordinates (lNKL [94] and 1SN6 [93], respectively). Positively charged regions 
are blue and the negatively charged regions are red. The orientation of Mini-B shown in the 
upper panel of Figure (A) is the same as the orientation used in Figure 3.5. These figures 
were prepared using MolMol [150]. 

The middle loop region of Mini-B is composed of part of the loop that connects 

helices I and 2 in full-length SP-B, and part of the loop that connects helices 3 and 4 in full

length SP-B. There are two positively charged amino acids in this loop of Mini-B (one from 

each of the parent loops of SP-B). The loop is unstructured in Mini-B, and it may be that 

these side chains are able to reconfigure in such a way as to interact optimally with lipid 
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molecules. Since the loop is unstructured in Mini-B, it is clear that the loop itself is not 

forcing any non-native contacts between the two helices. From the Mini-B structure it is not 

possible to draw any conclusions as to the characteristics of the corresponding loops in full

length SP-B; they may also be unstructured, or they may take on a more defined 

conformation than the Mini-Bloop. 

The NMR spectra showed evidence that the structure of some regions of Mini-B were 

dynamic on intermediate (on the order of milliseconds) and slower timescales. There were 

several weaker peaks in the HSQC spectra, likely representing minor conformations of amino 

acids L 7, G 18 and L22. These peaks did not change relative intensity as the concentration of 

Mini-B was reduced, and thus it appears that protein-protein binding is not responsible for 

the minor conformations. Additionally, the intensity of the peaks originating from residues 1 

to 5 was relatively low in the NMR spectra, in comparison to the peaks from other parts of 

the peptide. These spectral features likely indicate a certain degree of plasticity in the regions 

of Mini-B covering theN-terminus, theN-terminal segment of the first helix, and the loop 

that connects the two helices. It is possible that this flexibility has a functional role, i.e., to 

allow Mini-B to form different types of associations with lipids. 

Several high resolution structures have been determined for Saposin proteins, the 

family to which SP-B belongs. These are Saposin A [91] , Saposin B [92], Saposin C [93], 

NK-lysin [94] and Arnoebapore A [95], as well as the Saposin related protein Granulysin 

[96]. All these Saposin proteins form structures consisting of four to five helices, with 

interactions between the N- and C-terminal helices stabilized by two disulfide bonds and 

interactions between the middle helices stabilized by a third disulfide bond [Figure 3.1]. 

However, the structures differ significantly in how the termini helix-pair (which corresponds 

to the region covered by Mini-B) interacts with the middle helix-pair. In some proteins, such 

as Saposin A, NK-lysin, Arnoebapore A and Granulysin, the two helix-pairs pack together 

tightly into a "closed" overall structure (Figure 3.7 A). On the other hand, in Saposin B and 

Saposin C, the pairs of helices do not pack closely together and the overall tertiary structure 

is relatively "open" (Figure 3.7 B). In Saposin B, the open type structure results in the 

formation of a large hydrophobic cavity that is likely responsible for its ability to extract 
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target lipids from membranes [92]. Saposin C, in complex with SDS micelles, also possesses 

an exposed hydrophobic pocket that is implicated in interactions with lipids [93]. Figure 3.6 

shows the electrostatic surfaces for Mini-B and, for comparison, the corresponding regions of 

NK-lysin, as a representative of the closed type Saposin structure, and Saposin C, as a 

representative of the open type Saposin structure. The surfaces on the bottom row of Figure 

3.6 represent the face of the termini helix-pair that is positioned to interact with the middle 

part of the protein. M ini-B more resembles the Saposin C helix-pair, which exhibits primarily 

hydrophi lic (although negatively charged in this case) and hydrophobic opposite faces, than 

it does the NK-Iysin structure which exhibits far a less amphiphilic surface. 

- Mini-Box - Mini-Box 

- NK-Lysin - SaposinB 

- SaposinA Saposin C 

- Amoebapore A 

- Granulysin 

Figure 3.7 : Overlay of the backbone structures of Mini-B and other Saposin family proteins . 
(A) Mini-B and "closed-type" Saposins; NK-lysin [94], Saposin A [91], Amoebapore A [95] 
and Granulysin [96]. (B) Mini-B and "open-type" Saposins; Saposin B [92] and Saposin C 
[93]. This figure was prepared using VMD [ 155]. 

SP-B has been observed to exhibit a number of in vitro behaviors relating to its 

interactions with lipids, such as promoting phospholipid vesicle aggregation, fusion and lysis, 
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promoting rapid adsorption of surfactant material to an air-water interface, and re-adsorption 

of surfactant material to the interface during compression-expansion cycling [82]. These in 

vitro activities relate to three important properties of lung surfactant activity in vivo: rapid 

interfacial absorption, surface tension reduction during compression and re-spreading of the 

surface film during subsequent expansion. A number of potential molecular mechanisms for 

SP-B's essential contributions to these critical lung surfactant properties have been proposed 

[27]. SP-B may act as a bridge between bilayers and/or between bilayers and monolayers to 

keep components that are squeezed out during compression in close association with the 

interface for rapid respreading. SP-B may stabilize high-energy intermediates required for 

phospholipids to pass into the interfacial monolayer. SP-B may induce lipid-packing 

perturbations leading to transfer of surfactant material to the interface. SP-B may act as a sort 

of carrier, taking associating molecules with it to the interface. The structure of Mini-B in 

SDS, with its strikingly amphipathic surface and projecting tryptophan anchor, appears very 

well suited for making strong interactions with lipids, especially anionic species, at an 

interface. The hydrophobic face provides a surface for interactions with several lipid acyl 

chains, the positively charged face provides a surface for interactions with negatively 

charged lipid headgroups, and the tryptophan side chain, which is itself amphipathic, extends 

out from the surface in a position to anchor Mini-B at the interface. The relatively large 

extent of the positively charged patch suggests that this surface may be able to interact with a 

second lipid layer through electrostatic interactions, or at least reduce the electrostatic 

repulsion between negatively charged lipid layers, allowing them to stay in closer association. 

Mini-B is considerably more effective in rat lung oxygenation and dynamic 

compliance assays than its unlinked N and C-terminal halves, even when they are added 

together [109]. This indicates that there is indeed extra functionality associated with Mini

B's relatively large hydrophobic and cationic surfaces. Now that Mini-B's structure and 

resonance frequency assignments are known, it will be possible in future studies to directly 

observe Mini-B's interactions with phospholipids and other proteins. In particular, it will be 

of interest to study Mini-B's structure and lipid interactions in more physiologically relevant 

systems than SDS micelles, such as phospholipid monolayers and bilayers. 
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Chapter 4 

Mini-B in Model Surfactant Lip·ds: 
Conformations and nteract·ons 

Note : Mini-B was synthesized and purified by Prof Alan J Waring and his group 

(Waring lab, Medicine, UCLA). 
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4.1 Overview 

Biophysical studies have produced a long list of SP-B in vitro activities including 

membrane binding, membrane lysis, membrane fusion, promotion of lipid adsorption to air

water surfaces, stabilization of monomolecular surface films and respreading of films from 

collapsed phases [82). Although it is not clear which of these activities, if any, underlies 

SP-B's essential roles in vivo, it is plausible that interactions between SP-B and 

phospholipids make crucial contributions to lung surfactant function. SP-B 's profile of 52% 

nonpolar amino acids, as well as nine positively charged and two negatively charged amino 

acids, enables the protein to engage in both electrostatic interactions with lipid headgroups 

and hydrophobic interactions with lipid hydrocarbon acyl chains. However, the lack of 

knowledge of the high-resolution structure of SP-B hinders direct probing of its interactions 

with lipids at molecular and submolecular levels. 

Mini-B, anN-terminal- C-terminal construct from SP-B, has been shown to provide 

excellent response in animal models (1 09]. Surfactant deficient rats treated exogenously with 

model surfactant preparations containing Mini-B attain oxygenation and dynamic lung 

compliance values as good as, or better than, those achieved in the presence of native SP-B 

(1 09). This indicates that Mini-B likely represents the most functionally active region of the 

full-length protein. Now that the high-resolution structure of Mini-B in SDS micelles and the 

resonance frequencies of its amino acid spin systems are determined (Chapter 3 and [ 156]), it 

is possible to directly probe Mini-B's interactions with surfactant phospholipids and other 

proteins. In particular, it is of interest to study Mini-B's conformation and lipid interactions 

in more physiologically relevant systems. Thus, in this part of my work, I have used solution 

NMR to investigate the conformation of Mini-B in dodecylphosphocholine (DPC), 

lysomyristoylphosphatidylcholine (LMPC) and lysomyristoylphosphatidylglycerol (LMPG) 

micelles and probe its interactions with these lipids, alongside the SDS micelles. DPC and 

LMPC are analogues of DPPC, an abundant zwitterionic surfactant phospholipid generally 

considered to be of paramount importance in attaining low surface tension at the alveolar air

water interface [24]. LMPG, on the other harid, is an analogue for PGs, the anionic surfactant 
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phospholipids that SP-B is thought to preferentially bind in surface monolayers of surfactant 

films [83, 84]. Also studied were Mini-B's interactions with a mixed LMPCILMPG micelle 

system containing approximately the physiological ratio of PC to PG (85% : 15%). 

Furthermore, the reduced version of Mini-B that lacks the two native-like disulfide bonds 

between the helices was studied in SDS and DPC micelles. The structure of this version was 

determined previously in organic solvent HFIP (Sarker, M., M.Sc. Thesis, Booth lab [11 OJ). 

Since the reduced Mini-B also retains a considerable portion of the biological activity of 

full-length SP-B [1 09], it was worth looking at its conformation in micelle environments and 

learning about Mini-B's interactions with lipid mimetics, even in the absence of disulfide 

bonds. Figure 4.1 shows the chemical structures of the detergent mimetics and phospholipid 

analogues of PC and PG used in these studies. 

In addition to observing Mini-B ' s conformation in physiologically relevant lipid 

systems and probing its interactions with model surfactant lipids, this part of my work 

provided a foundation for studying Mini-B/SP-A interaction in the presence of these 

surfactant phospholipid analogues that was carried out later (Chapter 6). 
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Figure 4.1 :Chemical structures of the micelle-forming detergent mimetics and phospholipid 
analogues of the two most abundant zwitterionic and anionic lung surfactant phospholipids 
DPPC and POPG. The headgroups of DPPC and LMPC are identical while the neck region 
of DPC is slightly different. The headgroups of POPG and LMPG are also identical but that 
of SDS is different. 
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4.2 Materials and Methods 

4.2.1 Peptide Synthesis and Purification 

Mini-B was synthesized and purified by the Waring lab (Medicine, UCLA). The 

peptide was produced by solid phase chemical synthesis using 0-fluorenylmethyloxy

carbonyl (Fmoc) chemistry and purified by preparative reverse phase HPLC in a Vydac C-18 

column as described previously (Chapter 3 and [ 156]). Two versions of Mini-B were 

synthesized. The oxidized version (termed as Mini-Box) contained two disulfide bonds as in 

the native protein [156]. The other version was in reduced form (termed as Mini-BRED) and 

thus lacked the disulfide bonds [110]. Both versions of Mini-B possessed nine backbone 
15N-labeled amino acids as shown with gray shading in Chapter 3 (Section 3.2.1, Page 46). 

4.2.2 Sample Preparation 

Mini-Box samples were prepared in DPC, LMPC, LMPG and mixed LMPC (85%)/ 

LMPG (15%) micelles, alongside SDS micelles. Mini-BRED samples were prepared in SDS 

and DPC micelles only. At least two Mini-B samples were prepared for each micelle system 

with varying peptide/lipid ratios. The exact composition of each sample is described in the 

results section. First, a stock buffer solution was prepared in H20 /D20 (90%11 0%) with 0.4 

mM DSS, 0.2 mM NaN3, and 4.5 mM Hepes (except for the Mini-BRED samples). The final 

NMR samples were then prepared by dissolving required quantities of Mini-B and 

detergent/lipid in the buffer. For each sample, the molar concentration of the detergent/lipid 

was kept at least 100 times higher than the peptide. Deuterated (98%) SDS and DPC were 

purchased from Cambridge Isotope Laboratories (Andover, MA). Non-deuterated LMPC and 

LMPG, purchased from Avanti Polar Lipids (Alabaster, AL) were used, as deuterated 

versions of these lipids were not available commercially to date. Hepes was also in the 

non-deuterated form. The pH of the samples was set to 7.0, 6.9 or 5.0 (the exact value for 
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each sample is reported in the results section) using NaOH and HCl solutions without taking 

the isotope effects into account. The pH values were chosen in order to either match the 

physiological condition(~ 6.9) or to match with the Mini-B structural studies (5.0). 

4.2.3 NMR Data Collection and Processing 

A set of ID 1H, 2D 15N- 1H HSQC and 2D DOSY experiments was performed for 

Mini-Bin each micelle system on a Bruker Avance II 14.1 Tesla (600 MHz) spectrometer 

(Billerica, MA) equipped with z-gradients and an inverse triple resonance TXJ probe. The 

NMR data were collected and processed using the Bruker Topspin 2.0 software. The pulse 

length (PI) and the transmitter offset (01) were optimized for each sample before running 

the full set of NMR experiments. The I D 1 H and 2D 15N- 1 H HSQC spectra were acquired at 

3 7 oc to match the physiological temperature. In 1 D 1 H experiments, data were collected 

with 64 to 320 scans (indicated in the figure captions) using the water-gate water suppression 

technique [ 146] and processed using an exponential apodization function with I Hz line 

broadening. The 2D 15N-1H HSQC spectra were acquired with 64 to 320 scans (indicated in 

the figure captions) using the flip-back water suppression technique [145] and processed 

using the Qsine apodization function with a sine bell shift of 2. The 2D DOSY experiments 

were performed using pulsed field gradient (PFG) NMR [157]. The pulse sequence used a 

stimulated echo with bipolar gradient pulses and one spoil gradient [158], followed by a 

3-9-19 pulse for water suppression [159]. The DOSY spectra of SDS and DPC samples were 

acquired at 37 °C. However, for LMPC and LMPG samples, the DOSY spectra were 

acquired at 25 oc to minimize the effect of thermal convection. The diffusion time was kept 

constant at 1 00 ms. The gradient pulse length was optimized for each sample and set between 

3 and 8 ms. The maximum amplitude of the gradient strength was 35 G/cm and the 1H 

signals were attenuated in 32 steps. The translational diffusion coefficient was determined 

from the slope of the signal attenuation curve plotted using Eq. 2.17. The hydrodynamic 

diameter was calculated using the Stokes-Einstein equation [Eq. 2.20]. The viscosity of pure 

water was used for the viscosity of solution in the calculation and the values were 8.91 x 10-4 

kg/m.s at 25 oc (298 K) and 6.92 x 10-4 kg/m.s at 37 oc (310 K). 
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4.3 Results 

4.3.1 Mini-Bin SDS Micelles 

The SDS micelles used in the structural studies of Mini-B (Chapter 3) provided a first 

approximation of the physiological lipid environment of SP-B in the lungs and thus this 

micelle system was included in the analysis of Mini-B/lipid interactions. However, the 

experimental conditions used in the structural studies were optimized for the structure 

determination rather than to best mimic the lung conditions. Therefore, to best probe the lipid 

interactions, these conditions were modified to better reflect the in vivo conditions, and thus 

most of the SDS spectra were re-acquired at lower protein concentrations and physiological 

pH and temperature. 

Figure 4.2 shows the 1 D 1H spectra of both oxidized and reduced versions of Mini-B 

in SDS micelles. The signals seen in the 6-9 ppm region, enlarged and shown in the bottom 

panel, correspond mostly to the backbone amide protons (HNs) of Mini-B. The spectral 

dispersion and intensity of these signals indicate that both versions of Mini-B are structured 

in SDS micelles even under conditions that are different from the structural studies (Chapter 

3 and [110]). 

The 2D 15N- 1H HSQC spectra, shown in Figure 4.3, also indicate a similar degree of 

structuring in more physiological conditions, as compared to the conditions used for the 

structural studies. The peaks seen in the HSQC spectra correspond to the backbone 15N-1H 

correlations. However, although Mini-B carries nine backbone 1 ~-labeled amino acids, there 

are eight strong peaks and about five additional weak peaks present for Mini-Box. As is 

known from the structural studies, the eight strong peaks and one weak peak correspond to 

the nine 15N-labeled amino acids and represent the major conformation of Mini-Box. The 

additional weak peaks likely represent minor conformations of some flexible regions of the 

peptide, as discussed in Chapter 3 (Section 3.4, Page 57). For Mini-BRED, nine strong peaks 
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are present only and there are no additional weak peaks seen. This suggests a homogeneous 

structuring of Mini-BRED in SDS micelles. Comparison of the HSQC spectra from the two 

Mini-B versions shows differences in chemical shift of at least two peaks (from Leu3 and 

Leu31) indicating a difference in the chemical environment for these amino acids between 

the oxidized and reduced versions. Thus, Mini-Box and Mini-BRED exhibit differences in the 

conformational homogeneity and structures. However, both versions of the peptide appear to 

take on similar a-helical secondary structures and the main difference is likely present in 

their tertiary structures. 

The effect of Mini-Box on the size or shape of SDS micelles is probed using the 

translational diffusion coefficients of pure SDS micelles and the Mini-B0 x/SDS complex 

obtained from the 2D DOSY spectra (Figure 4.4). The DOSY data are acquired using the 

same molar concentrations of SDS and Mini-Box as in the structural studies, i.e., 150 mM 

SDS and 1.5 mM Mini-Box. Two values of average diffusion coefficients are measured for 

SDS micelles alone and for the Mini-Box/SDS complex, from the attenuation of the two 

sharpest SDS peaks at 0.80 ppm (corresponding to CH3) and 1.22 ppm (corresponding to 

(CH2) 3_11). The excellent linear fits shown in the plots of Figure 4.4 indicate that each sample 

is dominated by a particle of one distinct size. The diffusion coefficients of pure SDS 

micelles are 1.388 x 10-10 and 1.385 x 10-10 rr/ls and those of the Mini-Box/SDS complex are 

0.900 X w-IO and 0.971 X w-IO m2/s, from the two peaks respectively. The corresponding 

hydrodynamic diameters, calculated using the Stokes-Einstein equation, are 4.73 and 4.74 

nm for the micelles alone and 7.29 and 6.76 nm for the peptide/micelle complex. 

The extraction of the hydrodynamic diameter of pure micelles from the translational 

diffusion coefficient is accurate only at low concentrations. Above CMC, the diffusion 

coefficients correspond to a weighted average of free and micelle-bound detergent/lipid 

molecules [218, 219]. Therefore, the measured hydrodynamic diameter corresponds to the 

lower size-limit for the micelles. In addition, at high concentrations, e.g., above ~ 100 mM 

for SDS, the micelles experience an obstructed diffusion as a result of crowding [218]. The 

crowding produces an opposite effect to the observed diffusion coefficients and the measured 

hydrodynamic diameters of the micelles tend to be larger. Thus, at 150 mM SDS 
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concentration, both effects will takes place simultaneously. A more complex behavior can be 

expected when Mini-Box is bound to the micelles. All the same, the apparent size of the 

micelles increases substantially upon the inclusion of the peptide. 

[ A. Mini-Box in SDS r B. Mini-BRED in SDS 
!I 

--1-_......____ - - -- ,-l 

10 o (ppm) 10 (ppm) 

C. Enlarged 6-9 ppm region D. Enlarged 6-9 ppm region 

8.5 8.0 7.5 7.0 1H (ppm) 8.5 8.0 7.5 7.0 1H (ppm) 

Figure 4.2 : 1 D 1H spectra of (A) 0.20 mM Mini-Box in 40 mM SDS in the presence of 4.5 
mM Hepes at pH 6.9 (acquired using 256 scans) and (B) 0.75 mM Mini-BRED in 75 mM SDS 
at pH 5 (acquired using 64 scans). Both experiments were performed at temperature 37 oc 
and the spectra were processed with 1 Hz line broadening. The intense peaks seen in the 
spectra are from DSS and Hepes. The 6-9 ppm regions, exhibiting the protein HN signals, are 
enlarged and shown in the bottom panels (C and D). 
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Figure 4.3 : 2D 15N- 1H HSQC spectra of (A) 0.20 mM Mini-Box in 40 mM SDS in the 
presence of 4.5 mM Hepes at pH 6.9 (acquired using 160 scans) and (B) 0.75 mM Mini-BREo 
in 75 mM SDS at pH 5 (acquired using 64 scans). Both experiments were performed at 
temperature 37 °C. The base contour level shown in (A) is two times higher than (B). 
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Figure 4.4 : SDS micelles (ooo) and Mini-Box/SDS 
complex (•••) sizes as indicated by translational 
diffusion. Upper panels show 2D DOSY spectra of 
(A) 150 mM SDS and (B) 1.5 mM Mini-Box + 150 
mM SDS, at pH 7 and temperature 37 °C. Linear fits 
(C and D) show the attenuation of the peaks at 0.80 
and 1.22 ppm obtained from the DOSY data. The 
observed diffusion coefficients, represented by the 
slopes of the curves, and the corresponding 
hydrodynamic diameters, calculated using the 
Stokes-Einstein equation (Eq. 2.20), are shown in 
the table (E). 
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4.3.2 Mini-Bin DPC Micelles 

The DPC micelles mimic the native lung condition created by the most abundant 

surfactant phospholipids which have zwitterionic PC headgroups. The 1D 1H and 2D 15N-1H 

HSQC spectra (Figures 4.5 and 4.6) indicate an overall similar level of structure of Mini-Box 

in DPC micelles, compared to the structure in SDS micelles. However, there exists a 

noticeable change in the HSQC spectra of Mini-Box in DPC. Although the peptide contains 

nine 15N -labeled amino acids, only eight peaks are seen and the peak for G ly 18 is missing as 

identified from the resonance frequency determined during the structural studies in SDS 

(Chapter 3). The position of Gly 18 in the loop region makes it likely that its disappearance is 

due to the exchange between multiple conformations of this region of Mini-Box occurring at 

an intermediate rate, i.e, of the order of chemical shift difference. On the other hand, all nine 

peaks, including the one for Gly18, are seen in the HSQC spectra ofMini-BRED indicating the 

conformational exchange is absent when the disulfide bonds are reduced. This view that the 

disulfide bonds are associated with increased conformational heterogeneity is also supported 

by the observation of much fewer weak peaks (indicative of additional conformations) in the 

HSQC spectra ofMini-BREo compared to Mini-Box. 

The structuring of cationic Mini-B in zwitterionic lipid environment is likely driven 

by its direct binding to DPC micelles. This is further indicated by the substantially slower 

translational diffusion of the micelles upon inclusion of Mini-Box, and hence an increased 

size, as obtained from the 2D DOSY experiments (Figure 4.7). Two values of average 

diffusion coefficients are measured for pure DPC micelles and the Mini-B0 x/DPC complex 

using the attenuation of the two sharpest DPC peaks at 0.80 ppm (corresponding to CH3) and 

1.22 ppm (corresponding to (CH2) 3.11 ). The diffusion coefficients for the micelles alone are 

3.35 x 10"10 and 3.37 x 10"10 m2/s and that for the peptide/micelle complex are 2.58 x 10"10 

and 2.65 x 10"10 m2/s, respectively. The corresponding hydrodynamic diameters, calculated 

using the Stokes-Einstein equation, are 1.96 and 1.95 run for pure micelles and 2.54 and 2.48 

run for the peptide/micelle complex. Although under same experimental conditions, the sizes 

ofDPC and SDS micelles are unlikely to be drastically different [160, 161], the sizes of pure 
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DPC micelles and the Mini-Box/DPC complex found in this study are substantially smaller 

than those found for pure SDS micelles and the Mini-Box/SDS complex, respectively. Since 

the DOSY data corresponds to a weighted average from the free and micelle-bound lipid 

r A. Mini-Box in DPC [ B. Mini-BRED in DPC 

1! -

---~~~ J~ 
10 0 IPPm) 10 0 (ppm) 

C. Enlarged 6-9 ppm region D. Enlarged 6-9 ppm region~ 

8.5 8.0 7.5 7.0 1H (ppm) 8.5 8.0 7.5 7.0 1H (ppm) 

Figure 4.5: lD 1H spectra of (A) 0.20 mM Mini-Box in 40 mM DPC in the presence of 4.5 
mM Hepes at pH 6.9 (acquired using 256 scans) and (B) 0.75 mM Mini-BREo in 75 mM DPC 
at pH 5 (acquired using 64 scans). Both experiments were performed at temperature 37 oc 
and the spectra were processed with 1 Hz line broadening. The intense peaks seen in the 
spectra are from DSS and Hepes. The 6-9 ppm regions, exhibiting the protein HN signals, are 
enlarged and shown in the bottom panels (C and D). 
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molecules, the smaller apparent size may be the result of a rapid exchange between the two 

DPC species. This is likely due to the lower DPC concentration of 20 mM used in this study, 

as opposed to 150 mM concentration used for the SDS study. 
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Figure 4.6 : 2D 15N-1H HSQC spectra of (A) 0.20 mM Mini-Box in 40 mM DPC in the 
presence of 4.5 mM Hepes at pH 6.9 (acquired using 160 scans) and (B) 0.75 mM Mini-BREo 
in 75 mM DPC at pH 5 (acquired using 64 scans). Both experiments were performed at 
temperature 37 °C. The base contour level shown in (A) is two times higher than (B). 
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Figure 4.7 : DPC micelles (ooo) and Mini-Box/DPC 
complex (•••) sizes as indicated by translational 
diffusion. Upper panels show 2D DOSY spectra of 
(A) 20 mM DPC and (B) 0.10 mM Mini-Box + 20 
mM DPC, at pH 7 and temperature 37 °C. Linear fits 
(C and D) show the attenuation of the peaks at 0.80 
and 1.22 ppm obtained from the DOSY data. The 
observed diffusion coefficients, represented by the 
slopes of the curves, and the corresponding 
hydrodynamic diameters, calculated using the 
Stokes-Einstein equation (Eq. 2.20), are shown in 
the table (E). 
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4.3.3 Mini-Bin LMPC Micelles 

To gain an insight into Mini-B ' s conformation in a more physiologically relevant 

lipid environment and to probe Mini-B's interactions with surfactant phospholipid analogues, 

only the oxidized version of Mini-B was used in the remaining studies for this chapter. First 

studied was Mini-Box in zwitterionic LMPC micelles. LMPC is a better mimetic for the most 

abundant surfactant phospholipid DPPC than DPC, as it contains identical head and neck 

regions to DPPC. The investigations were carried out at two different peptide/lipid ratios 

(indicated in the figure captions). The 1D 1H and 2D 15N-1H HSQC spectra look almost 

identical for both concentrations. The HN signals seen in the 1 D 1H spectrum are broader 

than SDS- or DPC-bound Mini-Box and likely more overlapped (Figure 4.8). The 15N- 1H 

correlations seen in the 2D HSQC spectra are also broader (Figure 4.9). This is consistent 

with a larger complex-size of Mini-BoxiLMPC than Mini-Box/SDS or Mini-Box/DPC. Like 

Mini-Box in DPC, eight strong HSQC peaks, along with some additional weak peaks, are 

seen and the Gly 18 peak is missing. Comparison with the spectra in SDS and DPC micelles 

indicates that Mini-Box is structured in LMPC micelle environment, along with additional 

minor conformations of some regions. However, some differences in the overall 

conformation of LMPC-bound Mini-Box and SDS- or DPC-bound Mini-Box are likely as the 

chemical shifts of most of the HSQC peaks are not exactly the same. 

The effects of Mini-Box on the structure of LMPC micelles are revealed from the 2D 

DOSY spectra (Figure 4.1 0). The- 7.2 nm hydrodynamic diameter of pure LMPC micelles, 

calculated using the observed translational diffusion coefficient of - 7.3 x 10-11 m2/s, is 

indeed much larger than the diameters of pure SDS and DPC micelles. Interestingly, in 

contrast to the SDS and DPC results, the inclusion of Mini-Box apparently decreases the 

diameter of LMPC micelles to - 6. 7 nm since the observed diffusion coefficient of the 

peptide/micelle complex is increased to - 6.7 x 10-11 m2/s. The faster diffusion of the 

complex may be a result of smaller size, changed shape and/or enhanced exchange between 

the free and micelle-bound LMPC molecules instigated by Mini-Box. 
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Figure 4.8 : 1 D 1H spectra of (A) 0.20 mM Mini-Box in 100 mM LMPC and (B) 0.25 mM 
Mini-Box in 50 mM LMPC, in the presence of 4.5 mM Hepes. The pH of both samples was 
6.9 and the experiments were performed at temperature 37 °C. The spectra were acquired 
using 160 scans and processed with 1 Hz line broadening. The intense peaks seen in the 
spectra are from LMPC, Hepes and DSS. The 6-9 ppm regions, exhibiting the protein HN 
signals, are enlarged and shown in the bottom panel (C). 
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Figure 4.9 : 2D 15N-1H HSQC spectra of (A) 0.20 mM Mini-Box in 100 mM LMPC and 
(B) 0.25 mM Mini-Box in 50 mM LMPC, in the presence of 4.5 mM Hepes. The pH of the 
samples was 6.9. The spectra were acquired at temperature 37 oc using 160 scans. 
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Figure 4.10 : LMPC micelles (ooo) and Mini-Box/ 
LMPC complex (•••) sizes as indicated by 
translational diffusion. Upper panels show 2D 
DOSY spectra of (A) 50 mM LMPC and (B) 0.25 
mM Mini-Box + 50 mM LMPC, at pH 6.9 and 
temperature 25 °C. Linear fits (C and D) show the 
attenuation of the peaks at 0.85 and 1.27 ppm 
obtained from the DOSY data. The observed 
diffusion coefficients, represented by the slopes of 
the curves, and the corresponding hydrodynamic 
diameters, calculated using the Stokes-Einstein 
equation (Eq. 2.20), are shown in the table (E). 
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4.3.4 Mini-Bin LMPG Micelles 

The studies of the conformation and lipid interactions of Mini-Box continued next 

with anionic LMPG micelles. LMPG contains an identical headgroup to surfactant PGs and 

hence is a much better mimetic than SDS. The NMR experiments were performed with two 

different peptide/lipid ratios (indicated in the figure captions) but the 1D 1H and 2D 15N- 1H 

HSQC spectra are almost identical (Figures 4.11 and 4.12). The signals are broader than 

SDS- and DPC-bound Mini-Box but similar to LMPC-bound Mini-Box. The Gly18 HSQC 

peak, absent in zwitterionic DPC and LMPC but present in anionic SDS, is present in LMPG 

as well. Comparison with the spectra from other micelle systems indicates an overall similar 

structure of Mini-Box in LMPG micelles. 

The findings about the change in the structure of LMPG micelles brought by the 

inclusion of Mini-Box, as obtained from the 2D DOSY experiments (Figure 4.13), are similar 

to the LMPC study. The observed translational diffusion coefficient of pure LMPG micelles 

increases from ~ 5.9 x 10-11 m2/s to ~ 6.8 x 10-11 m2/s when Mini-Box is added. Thus, the 

hydrodynamic diameter of the micelles apparently decreases from~ 8.3 nm to ~ 7.2 nm when 

bound to the peptide. 
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Figure 4.11 : 1D 1H spectra of (A) 0.20 mM Mini-Box in 100 mM LMPG and (B) 0.25 mM 
Mini-Box in 50 mM LMPG, in the presence of 4.5 mM Hepes. The pH of both samples was 
6.9 and the experiments were performed at temperature 37 °C. The spectra were acquired 
using 160 scans and processed with 1 Hz line broadening. The intense peaks seen in the 
spectra are from LMPG, Hepes and DSS. The 6-9 ppm regions, exhibiting the protein HN 
signals, are enlarged and shown in the bottom panel (C). 
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Figure 4.12 : 2D 15N-1H HSQC spectra of (A) 0.20 mM Mini-Box in 100 mM LMPG and 
(B) 0.25 mM Mini-Box in 50 mM LMPG, in the presence of 4.5 mM Hepes. The pH of the 
samples was 6.9. The spectra were acquired at temperature 37 oc using 160 scans. 
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Figure 4.13 : LMPG micelles (ooo) and Mini-Box/ 
LMPG complex (•••) sizes as indicated by 
translational diffusion. Upper panels show 2D 
DOSY spectra of (A) 50 mM LMPG and (B) 0.25 
mM Mini-B + 50 mM LMPG, at pH 6.9 and 
temperature 25 °C. Linear fits (C and D) show the 
attenuation of the peaks at 0.87 and 1.28 ppm 
obtained from the DOSY data. The observed 
diffusion coefficients, represented by the slopes of 
the curves, and the corresponding hydrodynamic 
diameters, calculated using the Stokes-Einstein 
equation (Eq. 2.20), are shown in the table (E). 
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4.3.5 Mini-Bin Mixed LMPC/LMPG Micelles 

Lastly for this Chapter, conformation of Mini-Box and its lipid interactions were 

investigated in a mixed LMPCILMPG micelle system. Again, two different peptide/lipid 

concentrations were used (indicated in the figure captions) but the 8.5 : 1.5 ratio of PC to PG 

was maintained in both samples to match the physiological condition. The 1 D 1 H and 2D 
15N-1H HSQC spectra indicate a structured Mini-Box in the mixed zwitterionic/anionic 

environment when compared to the spectra in individual micelle systems (Figures 4.14 and 

4.15). However, the HSQC spectra exhibit two more interesting features. Firstly, the Gly 18 

peak which was present in LMPG micelles but disappeared in LMPC micelles, reappears in 

the mixed micelles containing only 15% LMPG. Therefore, as little as 15% LMPG is enough 

to induce the same structure/dynamics of Mini-Box loop region as 100% LMPG. Secondly, 

for at least two cases, the two peaks representing a single 15N-labeled amino acid have 

similar intensities. This indicates the presence of multiple conformations of some regions of 

Mini-Box with similar populations. 

,/• I 

The 2D DOSY study confirms the formation of mixed micelles, containing both 

LMPC and LMPG molecules together, as there is only a single translational diffusion 

coefficient present for the LMPC/LMPG system (Figure 4.16). However, the change in the 

micelle structure caused by the inclusion of Mini-Box follows the same trend as of Mini-Box/ 

LMPC and Mini-Box/LMPG. The observed translational diffusion coefficient of micelles 

alone is ~ 5.9 X w - ll m2/s but that of the peptide/micelle complex is ~ 7.6 X 1 o-Il m2/s. Thus 

the hydrodynamic diameter of the mixed micelles apparently decreases from ~ 8.3 nm to 

- 6.5 nm when bound to Mini-Box. 
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Figure 4.14: ID 1H spectra of(A) 0.20 mM Mini-Box in 85 mM LMPC plus 15 mM LMPG 
and (B) 0.25 mM Mini-Box in 42.5 mM LMPC plus 7.5 mM LMPG, in the presence of 
4.5 mM Hepes. The pH of both samples was 6.9 and the experiments were performed 
at temperature 3 7 °C. The spectra were acquired using 160 scans and processed with 1 Hz 
line broadening. The intense peaks seen in the spectra are from LMPC, LMPG, Hepes and 
DSS. The 6-9 ppm regions, exhibiting the protein HN signals, are enlarged and shown in the 
bottom panel (C). 
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Figure 4.15: 2D 15N- 1H HSQC spectra of(A) 0.20 mM Mini-Box in 85 mM LMPC plus 15 
mM LMPG (acquired using 320 scans) and (B) 0.25 mM Mini-Box in 42.5 mM LMPC plus 
7.5 mM LMPG (acquired using 160 scans), in the presence of4.5 mM Hepes. The pH ofthe 
samples was 6.9 and the experiments were performed at temperature 37 °C. 
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Figure 4.16 : LMPCILMPG mixed micelles (ooo) 

and Mini-BoxiLMPC/LMPG complex sizes (•••) 
as indicated by translational diffusion. Upper 
panels show 2D DOSY spectra of (A) 42.5 mM 
LMPC + 7.5 mM LMPG and (B) 0.25 mM Mini-B 
+ 42.5 mM LMPC + 7.5 mM LMPG, at pH 6.9 and 
temperature 25 °C. Linear fits (C and D) show the 
attenuation of the peaks at 0.86 and 1.28 ppm 
obtained from the DOSY data. The observed 
diffusion coefficients, represented by the slopes of 
the curves, and the corresponding hydrodynamic 
diameters, calculated using the Stokes-Einstein 
equation (Eq. 2.20), are shown in the table (E). 
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4.4 Discussion 

SP-B's essential roles in lung surfactant function presumably come through its 

interactions with phospholipids [82-88]. A detailed mechanistic description of these 

interactions is still unavailable as the high resolution structure of full-length SP-B is not yet 

known. Biophysical studies suggest that SP-B facilitates large-scale rearrangements of lipids 

and stabilizes complex structures required for rapid adsorption of surfactant materials at the 

alveolar air-water interface, surface tension reduction during lung compression and 

respreading of the surface film during subsequent lung expansion [82-88]. Mini-B 1s a 

synthetic construct based on theN-terminal - C-terminal helical regions of SP-B that retains 

substantial biological activity of the full-length protein [1 09]. In this chapter, solution NMR 

was used to investigate the conformation of Mini-B and probe its interactions with a variety 

of micelle systems mimicking the lung lipid environment of SP-B. The micelles were 

composed of LMPC and LMPG, the analogues of the most abundant surfactant 

phospholipids with zwitterionic and anionic headgroups, as well as a mixture of both LMPC 

and LMPG at a physiological ratio. However, the studies began with smaller micelles 

composed of anionic detergent SDS and zwitterionic lipid DPC. Intriguing differences were 

found in how Mini-B interacts with the smaller DPC/SDS micelles compared to the larger 

LMPCILMPG micelles, suggesting that differences in the lipid structure can substantially 

impact Mini-B/lipid interactions. Interesting differences in the overall conformation and 

dynamics of Mini-B in zwitterionic versus anionic environments were also noticed. 

Moreover, despite the similarity in structuring of Mini-B in DPC to LMPC and SDS to 

LMPG, subtle differences in Mini-B's interactions were observed. 

Due to the high degree of hydrophobicity, SP-B and its peptide fragments are mostly 

insoluble and presumably unstructured in water alone. However, Mini-B takes on a well

defined and mostly homogeneous conformation, with two a-helices connected by a loop, in 

the presence of organic solvent HFIP and detergent micelles composed of SDS ([II 0] and 

Chapter 3). Comparison of the lD 1H and 2D 15N- 1H HSQC spectra acquired for this chapter 

with similar spectra from the previous structural studies indicates that Mini-B is structured in 
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all DPC, LMPC, LMPG and mixed LMPC/LMPG micelle systems. Although small 

differences in the overall conformation would not be unexpected, as chemical shifts of some 

HSQC peaks are not identical, Mini-B likely adopts a generic amphipathic helical folding in 

all these physiologically relevant lipid environments. It is conceivable that the structuring is 

driven by Mini-B's direct interactions with both polar headgroups and hydrophobic core of 

the micelles. In native lung conditions, the corresponding terminal regions of full-length 

SP-B probably interact with surfactant phospholipids in a similar manner and also fold as 

amphipathic helices. 

In addition to the dominant major conformation, some regions of Mini-Box possess 

additional minor conformations in all micelle systems as indicated by the additional weak 

HSQC peaks of some 15N-labeled amino acids. At least in SDS-bound Mini-Box, these 

regions include the N-terminus and the middle loop (Chapter 3). In mixed LMPC/LMPG 

micelles, two or three 15N-labeled amino acids each show two HSQC peaks with similar 

intensities. The regions containing these amino acids therefore exhibit two conformations 

with similar populations. There is likely a slow exchange taking place between these 

conformations. It is conceivable that this conformational heterogeneity allows Mini-Box to 

form different types of associations with lipids and thus plays a functional role. 

Mini-BRED, in contrast to Mini-Box, does not appear to exhibit any significant 

conformational heterogeneity in either of SDS or DPC micelles since there are no additional 

weak peaks present in the HSQC spectra. The reduced Mini-B is an interesting SP-B based 

peptide for clinical applications. It has been shown that this version of Mini-B also retains 

some biological functions of SP-B in surfactant lavaged rat models [1 09]. It thus possesses a 

substantial therapeutic potential since making multiple disulfide bonds in synthetic SP-B 

based peptides is very challenging. However, in rat models, Mini-BRED exhibits lower 

activity than Mini-Box (Figure 1.6 on Page 17 and [1 09]), which can probably be attributed 

to its different three dimensional conformation. The helices of Mini-BRED are not spatially 

constrained by disulfide bonds, as they are in Mini-Box. Hence, in the presence of 

detergent/lipid molecules, Mini-BRED, in contrast to taking on a "compact" tertiary structure 
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like Mini-Box, presumably takes on an entropically more favorable "open" tertiary structure 

through necessary reorientation of its helices. This assumption is favorably supported by the 

difference in chemical shifts of Leu3 and Leu31, two amino acids located at the interface 

between the helices and close to the termini, when the HSQC spectra of both versions are 

compared. Also, the lack of disulfide bonds likely allows Mini-BRED to form a more rigid 

association with both anionic and zwitterionic amphiphiles and thereby adopt a temporally 

stable homogeneous and single conformation. This further underscores Mini-B's ability, 

irrespective of the disulfide bonds between its helices, to bind different lipid types. 

Although the dynamics of Mini-Box are not directly probed in these studies, based on 

the spectral features of HSQC, some inferences can be drawn about the flexibility of its 

regions exhibiting multiple conformations. For the regions that contain amino acids each 

with two (or more) HSQC peaks, there is either no chemical exchange taking place between 

the conformations or if there is any exchange going on that must be occurring at a rate much 

slower than the chemical shift difference. On the other hand, for the regions that contain 

amino acids each with a single peak which is weak as a result of line broadening, probably 

multiple conformations are still present but a chemical exchange is taking place at a rate 

close to the chemical shift difference, i.e. at an intermediate rate (of the order of a thousand 

per second). The peak for Gly 18, which is located in the loop region connecting the helices, 

is completely missing from the HSQC spectra of Mini-Box in DPC and LMPC micelles. 

Thus, in zwitterionic environment, the middle loop of Mini-Box is most likely undergoing a 

conformational exchange at an intermediate rate very close to the chemical shift difference. 

In contrast, a strong Gly 18 peak (and an additional weak peak) is present in the HSQC 

spectra of Mini-Box in SDS, LMPG and mixed LMPC/LMPG micelles. Hence, the middle 

loop of Mini-Box, though exhibiting a conformational heterogeneity, is probably rigid or at 

most exchanging very slowly in pure anionic or mixed lipid environments. In DPC micelles, 

although the Gly 18 peak is missing for Mini-Box indicating an intermediate conformational 

exchange of the loop region, interestingly, it is present for Mini-BRED indicating no such 

exchange for this version. Mini-B thus exhibits a distinctive structural flexibility which not 

only varies with the lipid environments but also depends on its own tertiary conformation. 
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The diffusion NMR spectroscopy reveals that the translational diffusion of all types 

of micelles changes upon the inclusion of Mini-Box. This indicates a Mini-Box-induced 

change of the micelle structure and provides an evidence of direct interactions between the 

peptide and the detergent/lipid molecules. However, the observations for SDS and DPC 

micelles, where Mini-Box causes the micelles to diffuse more slowly, and the observations 

for LMPC, LMPG and mixed LMPC/LMPG micelles, where Mini-Box causes the micelles 

to diffuse more quickly, are opposite. LMPC and LMPG each contain a 14-carbon acyl chain 

and a large head group (Figure 4.1, Page 62). On the other hand, DPC contains a 12-carbon 

acy I chain and a slightly smaller headgroup, while SDS also contains a 12-carbon acy I chain 

but a much smaller headgroup. From the translational diffusion measurements, SDS and DPC 

micelles are found to be much smaller in size than LMPC, LMPG or mixed LMPC/LMPG 

micelles. Hence, when Mini-Box is added, the smaller SDS or DPC micelles are presumably 

substantially stretched to accommodate the peptide within them, which would explain the 

slower translational diffusion and increased size of the peptide/micelle complexes. However, 

the effects of Mini-Box's interactions are seemingly different for much larger LMPC, LMPG 

or mixed LMPC/LMPG micelles as these micelles diffuse faster when bound to Mini-Box. 

There are three plausible explanations for this behavior. First, Mini-Box may contract the 

surface of these large micelles and thereby yield more compact and smaller peptide/micelle 

complexes. The self-assembly of detergent/lipid micelles is primarily driven by the 

hydrophobic interactions of their nonpolar hydrocarbon acyl chains [140, 141]. As both 

LMPC and LMPG headgroups carry charges, inclusion of Mini-Box, which also carries 

charges, may add an extra electrostatic component of interactions. This may bring a 

contraction at the surface of these micelles and thus causing the complexes to decrease in 

size. Second, pure LMPC/LMPG micelles may adopt a largely non-spherical shape and Mini

Box may induce an increased curvature by restructuring these micelles to a more spherical 

shape that encounters decreased viscous drag in solution. This may be related to some 

predicted physiological functions of SP-B. One major proposed function depicts that SP-B 

squeezes out unsaturated phospholipids from the surface film during compression, which 

would require its association with highly curved lipid structures [86]. In addition, in vitro 

reconstitution of tubular myelin (TM) requires both SP-A and SP-B, where the positioning of 
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SP-B is likely in the highly curved comers ofTM [17]. Mini-Box, being a biologically active 

fragment of SP-B, may thus be involved in inducing an increased curvature to the micelle 

surfaces formed from surfactant phospholipid analogues. Third, Mini-Box, without changing 

the size or shape of the micelles substantially, may trigger a faster exchange between the free 

and micelle-bound LMPC/LMPG molecules present in these samples. Since the diffusion 

coefficient obtained from the DOSY data is a weighted average from the free and micelle

bound lipid molecules, the faster exchange would also result in a quicker translational 

diffusion of the peptide/micelle complex. All of these possibilities, whether it is the change 

of micelle size, micelle shape, or lipid exchange rate, suggest that Mini-Box is capable of 

instigating a large-scale rearrangement of the lipid structures. 

The interactions between Mini-B and micelles are likely both electrostatic and 

hydrophobic in nature. The electrostatic interactions likely occur between the anionic amino 

acids of the peptide and the cationic or zwitterionic headgroups of the micelles, while the 

hydrophobic interactions likely occur between the nonpolar amino acids of the peptide and 

the core of the micelles formed by the hydrocarbon acyl chains. Given the strikingly 

amphipathic structure of Mini-Box and consequently presumed strong electrostatic 

interactions between cationic amino acids of Mini-B and anionic headgroups of SDS and 

LMPG micelles, it is possible that Mini-Box is comparatively tightly bound to these anionic 

micelles. Thus the positioning of Mini-Box may be relatively deep inside the anionic 

micelles. On the other hand, the electrostatic interactions between the same anionic amino 

acids and zwitterionic headgroups of DPC and LMPC micelles are unlikely to be so strong, 

and hence Mini-Box may be relatively loosely bound to these zwitterionic micelles. 

Therefore, the positioning of Mini-Box may be relatively shallow in the zwitterionic micelles. 

This hypothesis is favorably supported by the observation that SP-B63-78, consisting of the 

C-terminal half of Mini-B, takes a deeper position inside anionic phopspholipid-containing 

bilayers than purely zwitterionic bilayers [162]. However, despite the differences in 

electrostatic component of peptide/micelle interactions, the helical secondary structure of 

Mini-Box is unlikely to be drastically different in two micelle environments. 
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The presence of Gly18 peak in the HSQC spectra of Mini-Box in pure anionic or 

mixed micelles, but its disappearance from the spectra in pure zwitterionic micelles may 

directly be attributed to Mini-Box's differential electrostatic interactions with different 

micelle types. It is conceivable that the two Gly18-flanking positively charged amino acids, 

Lys17 and Arg20, experience strong electrostatic attractions from negatively charged 

headgroups of SDS and LMPG micelles. As a result, although the middle loop may be 

structurally flexible, the exchange between the conformations in these micelles, if any, is 

very slow, as pointed out earlier. In contrast, since DPC and LMPC headgroups contain both 

positive and negative charges, their interactions with positively charged Lys17 and Arg20 

would be much weaker and hence the loop region may be much more flexibile. Thus, an 

exchange between conformations is likely occurring in these micelles at an intermediate rate 

which, due to substantial line broadening, causes the Gly 18 HSQC peak to disappear. 

An additional novel result from this part of my research is an indication about the 

formation of the mixed LMPCILMPG micelles. From the DOSY experiments, for each type 

of micelles and peptide/micelle complex, two separate values of translational diffusion 

coefficients are calculated using the attenuation of the two sharpest proton peaks. For LMPC, 

LMPG and LMPC/LMPG mixture, each signal attenuation curve constitutes a single linear 

fit with less than 0.05% standard deviation and hence yields a single diffusion coefficient. 

Also, the two diffusion coefficients for each micelle type, including the LMPC/LMPG 

mixture, vary by less than 1% and thus are virtually the same. Therefore, there is only one 

homogeneous micelle structure present for each of the LMPC, LMPG or mixed 

LMPC/LMPG systems. The hydrodynamic diameters of these micelles, calculated using the 

measured diffusion coefficients, are - 7.2, - 8.3 and - 8.3 nm, respectively. The diameters 

of pure LMPC and LMPG micelles are quite different, but interestingly, the diameters of 

LMPG micelles and LMPCILMPG mixture are equivalent, although the mixture only 

contains 15% LMPG. Hence, the mixture sample consists of micelles formed from LMPC 

and LMPG together rather than their own separate micelles. Reappearance of the strong 

Gly18 peak in the HSQC spectra of Mini-Box in LMPCILMPG mixture also indicates to the 

formation of a mixed micelle system. Had there been separate micelles in the mixture, the 
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Gly 18 peak would not be present or would be very weak, since in LMPC micelles, which 

would then represent 85% of the micelle population in the mixture, the peak is absent. 

The strong reappearance of Mini-Box's Gly18 HSQC peak in the mixed LMPC/ 

LMPG system has another important implication. It shows that as little as 15% LMPG is 

enough to induce the same structure/dynamics ofthe middle loop as is seen in 100% LMPG. 

This likely indicates Mini-B's specificity, or at least a preference of interaction, for anionic 

amphiphiles over zwitterionic amphiphiles: In native lung conditions, the full-length SP-B 

may also exhibit similar behavior and preferentially bind lipids with PG headgroup from a 

pool that includes lipids with PC headgroup too. However, Mini-B interacts with PC-type 

lipid molecules as well. The parent protein SP-B may thus bind DPPC or other PCs also and 

contribute to the large scale rearrangement of lipids and stabilization of complex structures 

required for optimum surfactant function. 

Given the amphipathic profile of Mini-B, it is not unusual that the peptide would 

interact with amphiphiles such as detergents or lipids and take on a folded conformation in 

micelle environments. What is more intriguing, the peptide interacts differentially with 

amomc and zwitterionic surfactant phospholipid analogues. The strength of cationic 

Mini-B's binding with the micelles apparently depends on the charge profile of the micelle 

headgroups. Due to the variation in electrostatic component of interactions, Mini-B is 

probably loosely bound to the zwitterionic micelles and stays close to the surface but tightly 

bound to the anionic micelles and lies much deeper. There also exist subtle differences in 

Mini-B's structures in various micelle systems. The tertiary structures of oxidized and 

reduced Mini-B, however, appear substantially dissimilar even in a particular micelle 

environment. Mini-BREo takes on a single structure but Mini-Box exhibits a degree of 

conformational heterogeneity in all micelle systems. Furthermore, the structural flexibility or 

dynamics of Mini-Box are quite different in anionic versus zwitterionic micelles, at least for 

the middle loop. These findings about Mini-B, the most biologically active fragment of SP-B 

produced so far, help in figuring out some key features of SP-B, such as its conformation in 

native lung conditions and its interactions with different surfactant phospholipids. 
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SP-A in 

Chapter 5 

odel Surfactan · Li , tds: 
Conformat·ons and In act"'ons 

Note: SP-A was collected from cow lungs supplied by Ray Bishop (Bishops Meat, 

Foxtrap, NL). Isolation and purification of the protein was performed by Donna 

Jackman (Booth lab, Biochemistry, MUN). 
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5.1 Overview 

Surfactant protein A (SP-A) is a glycoprotein and, by weight, the most abundant 

protein component of the lung surfactant system [163]. Under native conditions, SP-A is 

presumed to be an octadecamer constructed by six trimers [164] although other smaller 

oligomers also coexist [165]. The monomer of human SP-A, and also of the bovine SP-A 

used in this study, consists of 248 amino acids [56] but its molecular weight varies from - 28 

to - 36 kDa depending on the extent of post-translational modifications [166]. SP-A belongs 

to the structurally homologous family of innate immune defense proteins known as collectins, 

so named for their collagen-like and lectin domains. SP-A consists of four structural domains: 

(1) a short N-terminal domain involved in intermolecular disulfide bond formation, (2) a 

proline-rich collagen-like domain important for oligomerization, (3) an a-helical coiled coil 

neck domain involved in trimerization, and ( 4) a globular C-terminal carbohydrate 

recognition domain (CRD) [17, 53, 167]. Figure 5.1 shows a schematic diagram of the 

structural domains of SP-A and how its octadecameric structure is assembled. 

N-ter Collagen-like Neck Carbohydrate 
Segment domain region recognition domain 

Monomer 

Trimer 

Octadecamer 

Figure 5.1 : A model for SP-A monomer, 
trimer and octadecamer, based on Ref. [53]. The 
protein consists of four distinct structural 
domains [17, 53]. The neck domains of three 
monomers become associated as a rigid a
helical coiled-coil and the collagen-like domains 
fold into a staggered collagen triple-helix. A 
trimeric subunit is tethered by disulfide linkages 
in theN-terminal domains. Six trimeric subunits 
further assemble as an octadecamer by lateral 
association of the N-terminal halves of the 
triple-helices forming a stem. 
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Substantial evidence indicates that SP-A is a major player in innate host-defense and 

inflammatory immunomodulator processes of the lung [5, 57]. SP-A has been shown to bind 

to a broad range of microorganisms, including bacteria, fungi, viruses and mite extracts [ 168, 

169]. The binding neutralizes, agglutinates and/or enhances the uptake of pathogens by 

phagocytes of the innate immune system [17]. In vitro studies have also presented a long list 

of SP-A' s surfactant-related activities. SP-A mediates the formation of tubular myelin when 

added to DPPC, PO and SP-B mixtures in the presence of Ca2
+ [59, 170], enhances 

adsorption of phospholipids along the air-water interface in a concerted action with SP-B (62, 

171 ], induces Ca2
+ dependent aggregation of lipid vesicles with or without SP-B or SP-C 

(172, 173] and reduces inhibition of surfactant activity by foreign lipid binding proteins or 

serum lipoproteins [174, 175]. 

Several biophysical studies have indicated an in vitro interaction, either direct or 

indirect, between SP-B and SP-A [59, 62, 170, 171] that may be important in lung surfactant 

function. I have attempted to directly probe the interaction between Mini-B and SP-A in the 

presence of micelles composed of model surfactant lipids LMPC, LMPG and mixed 

LMPC/LMPG, alongside SDS and DPC (Chapter 6). In Chapter 4, I have reported the 

findings on Mini-B's interactions with these micelles along with its conformation. In this 

chapter, I report the findings on SP-A's conformation and lipid interactions under the same 

micelle conditions obtained using proton and diffusion NMR. These two chapters provide the 

foundation for investigating Mini-B/SP-A interaction, if any, in the presence of surfactant 

lipid analogues. 

5.2 Materials and Methods 

5.2.1 Protein Isolation and Purification 

The natural bovine SP-A used in these studies were collected from the lungs of young 

cows slaughtered at a local farm (Bishops Meat, Foxtrap, Newfoundland). Isolation and 

purification of SP-A were conducted by Donna Jackman (Booth lab, Biochemistry, Memorial 
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University of Newfoundland). The lungs were lavaged with 0.15 M NaCl solution and the 

lavage was centrifuged at 800g for 10 minutes. The supernatant was centrifuged at 7000g for 

60 minutes. The pellet was resuspended in 5 mM Tris-HCl/100 mM NaCl/1.64 M NaBr (pH 

7.4) and centrifuged overnight at 81500g. The pellicle was resuspended in 5 mM Tris

HCI/1 00 mM NaCl (pH 7.4) and centrifuged at 65000g for 2 hours. SP-A was purified from 

the surfactant pellet by the method of Haagsman et al. [176] as follows. The surfactant pellet 

suspended in water was injected into stirred !-butanol and then centrifuged at lOOOOg for 20 

minutes. The precipitate was dried under nitrogen and washed twice in 10 mM Hepes/1 00 

mM NaCl/20 mM octyl ~-D-glucopyranoside (pH 7.4). Each wash was followed by 

centrifugation at lOOOOOg for 30 minutes. The material that was insoluble in the above buffer 

was suspended in 5 mM Hepes (pH 7.4) and the solution was dialyzed against 5 mM Hepes 

(pH 7.4). The dialyzed material was centrifuged at lOOOOOg for 30 minutes and the 

supernatant, which contained the purified SP-A, was concentrated using Amicon ultra 

centrifugal filters (Fisher Scientific, Ottawa, ON) and stored at -20 °C. The molecular mass 

of the final product was confirmed by SDS-polyacrylamide gel electrophoresis (PAGE) or 

matrix-assisted laser desorption/ionization -'time-of-flight (MALDI-TOF) mass spectrometry 

performed at the CREAIT Network facility at Memorial University of Newfoundland. The 

concentration of SP-A in Hepes buffer was confirmed by spectrophotometric analysis. 

5.2.2 Sample Preparation 

The NMR samples used in these studies were prepared from different preparations of 

SP-A. First, samples of SP-A alone (i.e., without detergents/lipids) were prepared in aqueous 

solution (90% H20 plus 10% D20) containing 0.4 mM DSS, 0.2 mM NaN3 and 4.5 mM 

Hepes. SP-A/micelle samples were then prepared by adding the required amounts of 

detergents/lipids. At least two samples were prepared for each micelle system (except for 

SDS) with varying ratios of the protein and detergent/lipid using different SP-A preparations. 

However, for each sample, the molar concentration of the lipid was kept at least 200 times 

higher than the monomeric concentration of the protein. The exact composition of each 
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sample is described in the results section with SP-A molar concentration specified as if it 

were 100% monomeric. Deuterated (98%) SDS and DPC were purchased from Cambridge 

Isotope Laboratories (Andover, MA). Non-deuterated LMPC and LMPG, purchased from 

Avanti Polar Lipids (Alabaster, AL) were used, as deuterated versions of these lipids are not 

available commercially to date. Hepes was also in the non-deuterated form. The pH of the 

samples was set at 6.9 to match the physiological condition in the lung. The pH was set using 

NaOH and HCl solutions without taking the isotope effects into account. 

5.2.3 NMR Data Collection and Processing 

A set of ID 1H and 2D DOSY experiments were performed for SP-A alone, 

individual micelle systems and SP-A/micelle complexes on a Bruker A vance II 14.1 Tesla 

(600 MHz) spectrometer (Billerica, MA) equipped with z-gradients and an inverse triple 

resonance TXI probe. The NMR data were collected and processed using the Bruker Topspin 

2.0 software. The pulse length (PI) and the transmitter offset (01) were optimized for each 

sample before running the full set of NMR experiments. The 1 D 1H spectra were acquired at 

37 oc to match the physiological temperature. In 1 D 1H experiments, data were collected 

with either 256 or 160 scans (indicated in the figure captions) using the water-gate water 

suppression technique [146] and processed using an exponential apodization function with 1 

Hz line broadening. The 2D DOSY spectra of SP-A alone and SP-A in SDS/DPC micelles 

were acquired at 37 °C. However, the DOSY spectra of SP-A in LMPC/LMPG micelles were 

acquired at 25 oc to minimize the effect of thermal convection. The diffusion time was kept 

constant at 100 ms. The gradient pulse length was optimized for each sample and set between 

5 and 8 ms. The maximum amplitude of the gradient strength was 35 G/cm and the 1H 

signals were attenuated in 32 steps. The translational diffusion coefficient was determined 

from the slope of the signal attenuation curve plotted using Eq. 2.17. The hydrodynamic 

diameter was calculated using the Stokes-Einstein equation [Eq. 2.20]. The viscosity of pure 

water was used for the viscosity of solution in the calculation and the values were 8.91 x 10-4 

kg/m.s at 25 oc (298 K) and 6.92 X 1 o-4 kg/m.s at 37 oc (31 0 K). 
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5.3 Results 

5.3.1 SP-A Alone in Aqueous Solution 

Before studying the conformation of SP-A in lipid mimetic micelle environments and 

its interactions with surfactant lipid analogues, I first investigated its conformation when 

alone in the aqueous environment (90% H20 and 10% D20). Also, since SP-A was collected 

from a natural source (cow lungs) and the protein preparation (isolation and purification) was 

performed using different batches as required, acquisition of a 10 1H spectrum was routinely 

performed for each preparation of SP-A in aqueous solution to check the consistency of the 

samples. The 10 1H spectra of all SP-A preparations looked almost identical confirming the 

consistency among different protein preparations. Figure 5.2 shows one such 1 D 1 H spectrum 

of SP-A alone in 90% H20 and 10% D20 in the presence of 4.5 mM Hepes. The intense 

proton signals are mostly generated by Hepes and OSS. However, a few broad signals from 

SP-A, having a much lower intensity, are also present. The overall appearance of the 

spectrum is consistent with a high molecular mass protein specimen. The observed protein 

signals, including the 2 or 3 peaks in the amide proton region, are likely generated by some 

highly mobile region(s) of SP-A (e.g., a flexible loop) undergoing fast motion or 

conformational exchange. Therefore, under this condition, SP-A is likely present in a large 

oligomeric form, perhaps the long-presumed native octadecameric form with a molecular 

weight of- 550 kDa. If there are any smaller subunits also present, such as monomers or 

trimers, those are most probably associated with the large structures. 

The size(s) of SP-A particles in the aqueous solution, as determined from 

translational diffusion measurements, confirm the presence of a large structure of the protein. 

Two values of the diffusion coefficients of SP-A are determined from the 2D OOSY spectra 

(Figure 5.3) using the attenuation of the peak at 2.03 ppm and the HN region. The observed 

diffusion coefficients are 5.40 x 10"11 and 6.52 x 10"11 m2/s, respectively. The corresponding 

hydrodynamic diameters, calculated using the Stokes-Einstein equation (Eq. 2.20), are 12.15 
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and 10.06 run, respectively. The apparent faster diffusion implied by the HN region is likely 

a result of the exchange between the labile amide protons and the solvent protons/deuterons. 

Thus the translational diffusion measurements indicate that the hydrodynamic diameter of 

SP-A alone is greater than 12 nm under the conditions used in this study. 

10 tf-1 of SP-A (200 u!'i/1) + Hepes (4 5 mM) 
pH 6 9, Temp 37C 
Number of Scans 256 

- Line B:oao·en,ng 1 H:: 
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Figure 5.2: ID 1H spectrum of0.2 mM SP-A in 90% H20 and 10% D20 , in the presence of 
4.5 mM Hepes at pH 6.9 and temperature 37 °C. The molar concentration of SP-A 
corresponds to the monomeric form of the protein. The spectrum was acquired using 256 
scans and processed with I Hz line broadening. 
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Figure 5.3 : Size of SP-A as indicated by translational diffusion. Left panel (A) shows 2D 
DOSY spectra of 0.2 mM SP-A in aqueous solution (90% H20 plus I 0% D20), in the 
presence of 4.5 mM Hepes at pH 7 and temperature 37 °C. Linear fits in the right panel (B) 
show the attenuation of the peaks at 2.03 ppm and HN region obtained from the DOSY data. 
The observed diffusion coefficients, represented by the slopes of the signal attenuation 
curves, and the corresponding hydrodynamic diameters, calculated using the Stokes-Einstein 
equation (Eq. 2.20), are shown in the table (C). 
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5.3.2 SP-A in SDS Micelles 

Studies of SP-A's conformation in the micelle environments and its lipid interactions 

began with smaller anionic micelles composed from the detergent SDS. Figure 5.4 shows the 

1D 1H spectrum of SP-A in SDS micelles. Surprisingly, SP-A displays a major 

conformational change with the addition of SDS as the enlarged 6-9 ppm region shows a lot 

more signals from the backbone amide protons with increased intensity when compared to 

SP-A alone. The signals are broad and overlapped, as would be expected from a multimeric 

protein consisting of 248 amino acids and bound to a micelle, but well-dispersed. As 

elaborated in the discussion, the well-dispersed HN signals may arise from a subpopulation 

of the protein having a lower molecular mass and hence a smaller oligomeric form that 

dissociate from the higher molecular mass oligomers in the presence of SDS micelles. 

The translational diffusion coefficients, obtained from the 2D DOSY spectra (Figure 

5.5), confirm the presence of lower molecular mass SP-A species when the protein is bound 

to the micelles. The observed diffusion coefficient of SP-A/SDS complex, determined from 

the attenuation of the HN signals, is 1.166 x 10-10 m2/s, which represents a hydrodynamic 

diameter of 5.63 nm. Thus the apparent size of SP-A/SDS complex is substantially smaller 

than the size of SP-A alone (hydrodynamic diameter - 12.2 nm). The DOSY data also 

illustrates the effect of SP-A on the size or shape of SDS micelles. The diffusion coefficient 

of micelles, determined from the SDS peak at 1.22 ppm, decreases from 5.323 x 10-10 to 

1.670 x 10-10 m2/s upon binding to SP-A. Therefore the hydrodynamic diameter of SDS 

micelles apparently increases from 1.23 to 3. 93 nm as a result of SP-A binding. 

The apparent size of SDS micelles found in this study is substantially smaller than 

that of earlier study (Chapter 4, Page 69). Since the DOSY data corresponds to a weighted 

average from the free and micelle-bound molecules, the smaller apparent size may be the 

result of a faster exchange between the two SDS species. This is likely due to the lower SDS 

concentration of 40 mM used in this study, as opposed to 150 mM concentration used in the 

previous study. The faster exchange of SDS molecules may also be the reason for the 

difference in the apparent hydrodynamic diameter of SP-A/SDS complex, which is 5.63 nm 

when determined from the protein HN region, but 3.93 nm when determined from the SDS 
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1.22 ppm peak. Also, the signal attenuation curves of pure SDS micelles, plotted using either 

of the peaks at 0.80 or 1.22 ppm, are not fit well by a single linear fit (Figure 5.5). This likely 

indicates the presence of multi-size SDS assemblies at lower concentrations and a relatively 

r A. SP-A (0.2 mM) r B. SP-A (0.2 mM) 
~ + SDS (40 mM) 
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w ... , • • .. • ..... • A"' • C. Enlarged 6-9 ppm regions 

~ ---- -_________ /"-- A __ - --- -- -- ---
:D 
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Figure 5.4 : 1D 1H spectra of (A) 0.2 mM SP-A (alone) and (B) 0.2 mM SP-A in 40 mM 
SDS, in the presence of 4.5 mM Hepes. The pH of both samples was 6.9 and the experiments 
were performed at 37 °C. The spectra were acquired using 256 scans and processed with 
1 Hz line broadening. The intense peaks seen in the spectrum (B) are from DSS and Hepes. 
The 6-9 ppm regions, exhibiting the protein HN signals, are enlarged and shown in the 
bottom panel (C). 
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slower exchange between the species. However, the single linear fits for the SDS/SP-A 

complex indicate a single average size and a relatively fast exchange between the species. 
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Figure 5.5 : SDS micelles (ooo) and SP-A/SDS 
complex (•••) sizes as indicated by translational 
diffusion. Upper panels show 2D DOSY spectra of 
(A) 40 mM SDS and (B) 0.2 mM SP-A + 40 mM 
SDS, at pH 7 and temperature 37 °C. Linear fits (C 
and D) show the attenuation of the SDS peaks at 
0.80 and 1.22 ppm and the protein HN region 
obtained from the DOSY data. For SDS micelles, the 
fits correspond to the larger size only. The observed 
diffusion coefficients, represented by the slopes of 
the curves, and the corresponding hydrodynamic 
diameters, calculated using the Stokes-Einstein 
equation (Eq. 2.20), are shown in the table (E). 
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5.3.3 SP-A in DPC Micelles 

The conformation of SP-A and its lipid interactions were studied next in the 

zwitterionic DPC micelle system. The ID 1H spectra of two SP-A samples, with different 

protein/lipid concentrations (indicated in the figure captions), look almost identical (Figure 

5.6). As in SDS, SP-A displays a major conformational change in DPC micelles when 

compared to SP-A alone. The enlarged 6-9 ppm region shows well-dispersed signals with 

increased intensity, although, as expected, . the signals are broad and overlapped. Again, the 

proton signals are generated most probably by a subpopulation of lower molecular mass 

SP-A species that are dissociated from the large oligomers in the presence of DPC micelles. 

Furthermore, similar to SDS, the translational diffusion measurements support the 

presence of smaller molecular mass SP-A species and formation of a complex through 

interactions between SP-A and DPC micelles. The observed diffusion coefficient of pure 

DPC micelles, as determined from the attenuation of the DPC peak at 1.22 ppm, decreases 

from 3.37 x 10-10 to 1.92 x 10-10 m2/s upon binding to SP-A. This corresponds to an apparent 

increase of the micelle hydrodynamic diameter from 1.95 to 3.42 nm. The observed diffusion 

coefficient of the complex, when determined from the attenuation of the SP-A HN region, is 

1.62 x I o-10 m2/s and the corresponding hydrodynamic diameter is 4.05 nm. Thus the 

apparent size of the SP-A/DPC complex is much smaller than SP-A alone(~ 12.2 nm). 
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Figure 5.6 : 1D 1H spectra of (A) 0.20 mM SP-A in 40 mM DPC (acquired using 256 scans) 
and (B) 0.10 mM SP-A in 20 mM DPC (acquired using 160 scans), in the presence of 4.5 
mM Hepes. Samples were made from two different preparations of SP-A. The pH of both 
samples was 6.9 and the experiments were performed at 37 °C. The spectra were processed 
with 1 Hz line broadening. The intense peaks seen in the spectra are from DSS and Hepes. 
The 6-9 ppm regions, exhibiting the protein HN signals, are enlarged and shown in the 
bottom panel (C). 
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Figure 5.7 : DPC micelles (ooo) and SP-A/DPC 
complex (•••) sizes as indicated by translational 
diffusion. Upper panels show 20 DOSY spectra of 
(A) 20 mM DPC and (B) 0.10 mM SP-A + 20 mM 
DPC, at pH 7 and temperature 37 °C. Linear fits (C 
and D) show the attenuation of the DPC peaks at 
0.80 and 1.22 ppm and the protein HN region 
obtained from the DOSY data. The observed 
diffusion coefficients, represented by the slopes of 
the curves, and the corresponding hydrodynamic 
diameters, calculated using the Stokes-Einstein 
equation (Eq. 2.20), are shown in the table (E). 
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5.3.4 SP-A in LMPC Micelles 

To gain an insight into SP-A's conformation in a more physiologically relevant lipid 

environment and to probe SP-A's interactions with surfactant phospholipid analogues, the 

investigations continued with LMPC, LMPG and mixed LMPCILMPG micelles. First 

studied was SP-A in zwitterionic micelles composed of LMPC that mimic the lung lipid 

environment created by the most abundant surfactant phospholipid DPPC. Figure 5.8 shows 

the 1 D 1H spectra of two SP-A samples having two different protein/lipid ratios (indicated in 

the figure captions). The enlarged 6-9 ppm regions of both samples look almost identical. 

The HN signals of SP-A in LMPC are also not substantially different from those in DPC. 

However, the signals are slightly broader and likely more overlapped as SP-A is now bound 

to the larger LMPC micelles. The overall appearance of the 1 D 1 H spectrum further indicates 

the dominance of a lower molecular mass SP-A subpopulation in the LMPC micelle 

environment. 

The 2D DOSY experiments (Figure 5.9) confirm the presence of a smaller SP-A 

oligomer in LMPC micelles. The - 10.3 run hydrodynamic diameter of SP-A/LMPC 

complexes, calculated using the observed translational diffusion coefficient of- 4.8 x 1 o-tt 

m2/s, is much larger than the SP-A/SDS or SP-A/DPC complexes, but still smaller than SP-A 

alone (- 12.2 run). The increase from the - 7.3 run hydrodynamic diameter of pure micelles 

upon addition of SP-A, calculated using the observed diffusion coefficient of - 6.8 x 10-tt 

m2/s, confirms the binding ofLMPC micelles to SP-A molecules. 
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Figure 5.8 : 1 D 1H spectra of (A) 0.20 mM SP-A in 100 mM LMPC and (B) 0.25 mM SP-A 
in 50 mM LMPC, in the presence of 4.5 mM Hepes. Samples were made from two different 
preparations of SP-A. The pH of both samples was 6.9 and the experiments were performed 
at 37 oc. The spectra were acquired using 160 scans and processed with 1 Hz line broadening. 
The intense peaks seen in the spectra are from LMPC, Hepes and DSS. The 6-9 ppm regions, 
exhibiting the protein HN signals, are enlarged and shown in the bottom panel (C). 
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Figure S.9 : LMPC micelles (ooo) and SP-AILMPC 
complex (•••) sizes as indicated by translational 
diffusion. Upper panels show 2D DOSY spectra of 
(A) 50 mM LMPC and (B) 0.25 mM SP-A + 50 mM 
LMPC, at pH 6.9 and temperature 25 °C. Linear fits 
(C and D) show the attenuation of the peaks at 0.85 
and 1.27 ppm obtained from the DOSY data. The 
observed diffusion coefficients, represented by the 
slopes of the curves, and the corresponding 
hydrodynamic diameters, calculated using the 
Stokes-Einstein equation (Eq. 2.20), are shown in 
the table (E). 
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5.3.5 SP-A in LMPG Micelles 

The investigations on the conformation and lipid interactions of SP-A continued next 

with anionic micelles composed of LMPG that mimic the lung lipid environment created by 

the surfactant phospholipids with PG headgroups. Again, the 1 D 1H spectra were acquired 

for two different samples of SP-A having two different protein/lipid ratios (indicated in the 

figure captions) and both spectra look almost identical (Figure 5.1 0). Besides, as in the 

previously studied micelle systems, the dispersion and intensity of backbone HN signals 

indicate the presence of a smaller molecular mass species of SP-A in the LMPG micelle 

environment as well. 

The findings about the interactions between SP-A and LMPG micelles and the 

complex size, as obtained from the 2D DOSY experiments (Figure 5.11 ), are similar to the 

LMPC study. The observed translational diffusion coefficient of pure LMPG micelles 

decreases from - 5.9 X w-ll m2/s to - 4.4 X w-ll m2/s when SP-A is added. Thus, the 

hydrodynamic diameter of the micelles apparently increases from - 8.3 nm to - 11.2 nm 

when bound to the protein, which is still smaller than SP-A alone(- 12.2 nm). 
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Figure 5.10 : 10 1H spectra of (A) 0.20 mM SP-A in 100 mM LMPG and (B) 0.25 mM 
SP-A in 50 mM LMPG, in the presence of 4.5 mM Hepes. Samples were made from 
two different preparations of SP-A. The pH of both samples was 6.9 and the experiments 
were performed at 3 7 oc. The spectra were acquired using 160 scans and processed with 
1 Hz line broadening. The intense peaks seen in the spectra are from LMPG, Hepes and DSS. 
The 6-9 ppm regions, exhibiting the protein HN signals, are enlarged and shown in the 
bottom panel (C). 
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Figure 5.11 : LMPG micelles (ooo) and SP-A/LMPG 
complex (•••) sizes as indicated by translational 
diffusion. Upper panels show 2D DOSY spectra of 
(A) 50 mM LMPG and (B) 0.25 mM SP-A + 50 mM 
LMPG, at pH 6.9 and temperature 25 °C. Linear fits 
(C and D) show the attenuation of the peaks at 0.87 
and 1.28 ppm obtained from the DOSY data. The 
observed diffusion coefficients, represented by the 
slopes of the curves, and the corresponding 
hydrodynamic diameters, calculated using the 
Stokes-Einstein equation (Eq. 2.20), are shown in the 
table (E). 
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5.3.6 SP-A in Mixed LMPC/LMPG Micelles 
'' 

Lastly for this chapter, the conformation of SP-A and its lipid interactions were 

investigated in a mixed LMPCILMPG micelle system. As usual, two different protein/lipid 

concentrations were used (indicated in the figure captions) but 8.5 : 1.5 ratio of PC to PG 

was maintained to match the physiological conditions. The 1D 1H spectra of both SP-A 

samples look almost identical (Figure 5.1 2). The dispersion and intensity of the backbone 

HN signals, when compared to SP-A alone, indicate the presence of a lower molecular mass 

species of SP-A also in the mixed micelle environment. 

The smaller size of SP-A/micelle complex than SP-A alone is confirmed again by the 

2D DOSY experiments (Figure 5.13). The size-increase of mixed LMPCILMPG micelles, 

caused by the inclusion of SP-A, follows the same trend as of SP-A/LMPC and SP-A/LMPG. 

The observed translational diffusion coefficient of micelle alone is ~ 5.9 x 10- 11 m2/s but that 

of protein/micelle complex is ~ 4.6 X 1 o -I l m2/s. Thus the hydrodynamic diameter of the 

mixed micelles apparently increases from~ 8.3 nm to~ 10.7 nm when bound to SP-A. The 

size of SP-A/ LMPCILMPG complex still remains smaller than SP-A alone(~ 12.2 nm). 
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Figure 5.12 : 1 D 1H spectra of (A) 0.16 mM SP-A in 85 mM LMPC plus 15 mM LMPG and 
(B) 0.25 mM SP-A in 42.5 mM LMPC plus 7.5 mM LMPG, in the presence of 4.5 mM 
Hepes. Samples were made from two different preparations of SP-A. The pH of both samples 
was 6.9 and the experiments were performed at 37 oc. The spectra were acquired using 160 
scans and processed with 1 Hz line broadening. The intense peaks seen in the spectra are 
from LMPC, LMPG, Hepes and DSS. The 6-9 ppm regions, exhibiting the protein HN 
signals, are enlarged and shown in the bottom panel (C). 
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Figure 5.13 : LMPC/LMPG mixed micelles (ooo) 

and SP-A/LMPC/LMPG complex (•••) sizes as 
indicated by translational diffusion. Upper panels 
show 2D DOSY spectra of (A) 42.5 mM LMPC + 
7.5 mM LMPG and (B) 0.25 mM SP-A + 42.5 mM 
LMPC + 7.5 mM LMPG, at pH 6.9 and temperature 
25 °C. Linear fits (C and D) show the attenuation of 
the peaks at 0.86 and 1.28 ppm obtained from the 
DOSY data. The observed diffusion coefficients, 
represented by the slopes of the curves, and the 
corresponding hydrodynamic diameters, calculated 
using the Stokes-Einstein equation (Eq. 2.20), are 
shown in the table (E). 
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5.4 Discussion 

The innate host defense activity that SP-A performs in alveolar airspaces is essential 

to maintain the sterile condition of the respiratory surface [27, 177]. In addition, SP-A may 

also contribute to the surface activity of lung surfactant. The presence of SP-A is necessary 

for the formation of tubular myelin, considered one of the possible structural intermediates in 

constructing the surface film. Tubular myelin enhances surfactant adsorption although it is 

not essential for normal breathing in in vivo models [58]. SP-A has also been shown to 

improve the surface activity of the surfactant under several challenging conditions such as 

low surfactant concentrations [178] or presence of inhibitory plasma proteins [174] or 

oxidants [179]. The binding capabilities of SP-A to surfactant phospholipids, pathogen

associated molecular patterns and receptors on cell surfaces depend on its complex 

oligomeric structure [180]. As presumed by the current models, SP-A assembles as a 

hexamer of trimeric subunits, i.e., a total of 18 SP-A molecules join together to form the 

quaternary structure [53]. However, there is evidence that the protein also coexists as a 

tetramer of trimers (i.e., 12 molecules), dimer oftrimers (i.e. , 6 molecules), just dimer (i.e., 2 

molecules) and even monomer (i.e., a single molecule) [165]. According to the structural 

models, the trimerization of a subunit occurs through the collagen-like and neck domains and 

a lateral association at the N-terminal region stem to form higher octadecameric structures 

[17, 53]. The oligomers are further stabilized by interchain disulfide bonds formed at the 

short N-terminal domains [167]. Researchers believe that the oligomerization of SP-A occurs 

in a zipper-like fashion along the C-terminal toN-terminal axis [181]. The high-resolution 

crystal structures of trimeric carbohydrate recognition and neck domains of rat SP-A, in both 

native and ligand-bound forms, have been determined (PDB IDs 1R13 and 1R14, [73]) but 

the complete structures of the full protein or its higher oligomers are still unavailable. 

The pnmary structure of mature SP-A is highly conserved among different 

mammalian species [ 182]. The 248-residue bovine SP-A, used in the present work, consists 

of 30 negatively charged and 26 positively charged amino acids, yielding a net charge of -4 

at neutral pH. The high proportion of charged amino acids, along with an abundance of other 
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polar amino acids, makes SP-A largely hydrophilic and hence soluble in water. However, in 

the lungs, approximately 90% of SP-A is lipid-associated, the bulk of which is within tubular 

myelin, and only 10% is in the fluid phase [183]. Therefore, interactions with phospholipids 

are presumably essential for SP-A's biological function(s). This work attempts to investigate 

the conformation of the wild-type SP-A in both aqueous and micelle environments and probe 

its lipid interactions using solution NMR. The studies start with a lipid-free simple aqueous 

solution, then proceed to the anionic and zwitterionic micelles composed of model surfactant 

lipids, and end in a mixed micelle system. The wide array of the micelle systems enable 

exploring the effects that different detergents/lipids have on the conformation of SP-A as 

well as the effects that SP-A has on the micelle structures. 

To my knowledge, this is the first attempt to study SP-A in detergent/lipid micelles 

using solution NMR. Since, there is no prior information available with which to compare the 

results obtained from my NMR experiments, theoretical values of some basic NMR 

parameters, calculated for different oligomeric forms of SP-A, help in interpreting the 

spectral features. Table 5.1 lists the predicted hydrodynamic diameter (dH), rotational 

correlation time ('tc), proton linewidth (~v 112) and relative intensity (I) for six different 

oligomeric forms of SP-A from monomer to octadecamer. The MALDI-TOF mass 

spectrometry of purified SP-A showed a monomeric molecular mass of - 29 kDa. In the 

calculation, the masses of oligomeric forms of SP-A are predicted from the number of 

molecules involved without taking the effects of post-translational modifications (e.g., 

glycosylation) into account. The hydrodynamic diameter (rH) is calculated from the equation 

(Eq. 1.45, Page 21, Ref. [123]), 

5.1 

where, V is the specific volume of the protein (taken to be 0.73 cm3.g-1
) , M is the molecular 

mass ofthe protein (29000 g.mor1 and its multiples), NA is Avogadro's number (6.022 x 1023 

mor1
) and rw is the thickness of one hydration shell (taken to be 3.2 A). The rotational 

correlation time ('tc) is determined from Stoke's law ((Eq. 1.44, Page 21, Ref. [123]), 

'tc = (4JtllwrH3)/(3KsT), 5.2 

in which llw is the viscosity of the solvent, K8 is the Boltzmann constant (1.38 x 10-23 J/K) 
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and T is the absolute temperature (31 0 K). The solvent is considered to be pure H20, 

ignoring the effect of 10% D20 , and the viscosity value used is 6.92 x 10-4 kg/m.s (at 310 K 

or 37 °C). The proton resonance linewidth (t1v 112) is determined from the equation, 

L1v112 = 1.2'tc + 0.3. 5.3 

This equation is developed using the linear fit representing the proton linewidth (in Hz) as a 

function of rotational correlation time (inns) (Figure 1.6, Page 20, Ref. [123]). The spin-spin 

or transverse relaxation time (T2) is determined from the equation (Page 18, Ref. [123]), 

i1Y1 12 = l /JtT2. 5.4 

The relaxation processes follow a first-order rate equation, characterized by a characteristic 

time constant (T) or a rate constant (R) (Page 16, Ref. [119]), 

l(t) = Ioexp(-t/T) = Ioexp(-Rt). 5.5 

Thus the relative signal intensity of SP-AMultimer 0Multimer) with respect to SP-AMonomer 

0Monomer) can be calculated from, 

IMultimerfiMonorner = T 2(MultirneryT 2(Monomer)· 5.6 

The theoretical calculation indicates, if SP-A is present in the octadecameric form, the 

proton signallinewidth would be~ 147Hz (i.e., 0.245 ppm on a 600 MHz spectrometer) and 

thus the weak signal intensity caused by the massive line-broadening would probably bury 

almost all signals under the noise. However, if SP-A is present in the monomeric form, the 

signallinewidth would be - 11 Hz (i.e., 0.018 ppm on the same 600 MHz spectrometer) and 

hence intense signals would appear in the lD 1H spectrum. For the intermediate oligomers of 

SP-A, the 1 D 1H spectra would probably contain a number of signals but they would likely 

be substantially broad and overlapped. The intensity of proton peaks would also decrease as 

SP-A oligomers become larger. For example, in comparison with SP-AMonomer, SP-Aoctadecamer 

would retain only 7% of the relative peak intensity. 

Since the 1 D 1H spectrum of SP-A alone in aqueous solution (Figure 5.2) contains 

only a few weak HN signals, the spectrum is consistent with a high molecular mass species 

of SP-A, presumably the wild-type octadecameric form. The observed signals are likely 

generated by some highly mobile regions of the protein (e.g., flexible loops) that are 

118 



exhibiting fast motions on the NMR time-scale due to conformational exchange or other 

internal dynamics. Prevalence of large assemblies of SP-A, when alone in water, is not 

unexpected as the protein is isolated and purified from a natural source and is not exposed to 

any denaturing treatment. It is difficult to comment on the degree of SP-A's structuring when 

alone in water from such low-signal 10 1H spectrum. However, since SP-A is known to be 

water-soluble and the protein preparation followed the same procedure as previously used in 

all kinds of functional studies, it is plausible that SP-A is properly folded in the aqueous 

environment but, as predicted from the theoretical calculation, the overall size of the 

oligomeric assembly is too large to yield any well-dispersed and intense HN signals. 

Table 5.1 : Estimates of rotational correlation times, proton linewidths and relative signal 
intensities for SP-A oligomers at 37 °C. The increase of SP-A' s mass due to post
translational modifications is not taken into account. The calculations are performed using 
the equations and plot from Refs. [123] and [119]. 

Oligomeric No. of Molecular Hydrodynamic Rotational Proton Relative 
Form SP-A Mass Diameter Correlation Time Linewidth Intensity 

of SP-A Molecules (Da) (nm) (ns) (Hz) (%) 
Monomer 1 29000 4.7 8.8 10.9 100 

Dimer 2 58000 5.8 16.2 19.7 55 

Trimer 3 87000 6.5 23.3 28.3 39 

Hexamer 6 174000 8.0 43 .8 52.9 21 

Dodecamer 12 348000 9.9 83.4 100.3 11 

Octadecamer 18 522000 11.3 122.0 146.7 7 

Much to my surprise, the 1D 1H spectra of SP-A in all types of micelles exhibit 

strikingly strong and dispersed HN signals when compared to SP-A alone (Figures 5.14 A 

and B). This implies that the protein/micelle complex is substantially smaller than the protein 

alone and tumbles much faster in the solution (Table 5.1). The spectra of micelle-bound 

SP-A are thus consistent with a lower molecular mass species, i.e., a smaller oligomeric form 

of the protein. However, the HN signals are still broad and severely overlapped. Again, this 

is not unexpected from a large micelle-bound protein, especially when the protein is likely 

present in multimeric forms. The spectral features also indicate that SP-A is structured in all 

micelle environments. 
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Figure 5.14 : Overlay of the HN (6-9 ppm) regions of I D 1H spectra of SP-A in different 
environments. The spectra are the same as presented in the Results section. The height of the 
top spectrum in each panel has been scaled to match the other(s). 

Translational diffusion measurements confirm a substantial reduction in the size of 

SP-A, and hence in its mass and oligomeric state, when the micelles are added. Table 5.2 

shows the molecular masses of in-water and in-micelle SP-A species, estimated from the 

experimentally determined translational diffusion coefficients (De), and the matching 
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oligomeric states of the protein. For the micelle-bound form, the molecular mass of SP-A is 

determined as follows. The structures of pure micelles, as well as SP-Nmicelle complexes, 

are considered to be perfectly spherical. The volume of the sphere (V) is determined from the 

hydrodynamic diameter ( dH) calculated from the translational diffusion coefficient (De), 

and 

dH = (Ks T)/(3nT]Dc), 

V = (4/3)n(dH12l 

5.6 

5.7 

The volume of SP-A (V SP-A) is determined from its contribution to the SP-Nmicelle complex, 

V SP-A = V SP-NMicelle - V Micelle· 5.8 

The molecular mass of SP-A (MsP-A) is calculated from its volume using the average protein 

density (PProtein, taken to be 1.37 g/cm\ 

MsP-A = PProtein X V SP-A· 5.9 

Table 5.2 : Molecular masses of SP-A species, calculated using the experimentally 
determined translational diffusion coefficients, and their matching oligomeric states. 

Sample Complex Micelle SP-A Estimated Matching 
Composition Volume Volume Volume SP-A Mass Oligomeric 

(cm3
) (cm3

) (cm3
) (g) (Da) State 

SP-A Alone 9.39E-19 XXX 9.39E-19 1.29E-18 774,799 18+ 
SP-NSDS 9.34E-20 9.74E-22 9.25E-20 1.27E-19 76,284 - 2-3 
SP-NDPC 3.48E-20 3.88E-21 3.09E-20 4.23E-20 25,493 - 1 

SP-NLMPC 5.64E-19 2.00E-19 3.63E-19 4.98E-19 299,892 - 6-9 
SP-AILMPG 7.36E-19 2.98E-19 4.37E-19 5.99E-19 360,789 - 6-9 

SP-AILMPCILMPG 6.43E-19 3.05E-19 3.38E-19 4.64E-19 279,185 - 6-9 

As per the estimation, SP-A, when alone in the aqueous solution, predominantly 

exists in an octadecameric or even larger form. However, when the smaller SDS/DPC 

micelles are added, the large SP-A assembly appears to dissociate and the protein takes on a 

much smaller form in the monomer to trimer range. In contrast to both extremes, when the 

larger LMPCILMPG micelles are added, SP-A apparently takes on an intermediate 

multimeric form between two and three trimers. Since this diffusion-based mass-estimation 

relies on many approximations, such as spherical structures of the particles, free diffusion 
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and the same number of detergent/lipid molecules in both pure micelles and protein/micelle 

complexes, as well as ignores the effects of post-translational modifications and exchanges 

between free and micelle-bound species, an exact measure of the molecular mass is not 

expected. However, the calculation clearly illustrates that the mass of SP-A species are 

reduced substantially when the micelles are added to the aqueous form of the protein. The 

reduction of SP-A mass, and hence its oligomeric state, is also verified by a non-reducing 

SDS-PAGE that demonstrates a large assembly of the protein when alone but between 

monomers and trimers in the presence ofSDS and DPC (data not shown). 

The question that immediately emerges is what is causing the larger SP-A species to 

dissociate when the micelles are added? Most likely not all of the monomers in the 

supramolecular SP-A assembly are covalently attached by disulfide bonds and many of the 

subunits are associated only through non-covalent protein-protein interactions. The addition 

of amphipathic lipids/detergents appears to disrupt these non-covalent interactions thus 

causing the sub-units to dissociate. It is plausible that the electrostatic interactions, and 

perhaps the hydrophobic interactions as well, between the protein and the lipid/detergent 

molecules overwhelm many of SP-A's inter-subunit non-covalent interactions and thus 

micelle complexes containing smaller SP-A oligomers are formed. However, the protein

micelle interactions may not dissociate all of the subunits and a subpopulation of 

octadecameric SP-A species may still prevail in the micelle environments but just that the 

complexes are too large to generate any observable NMR signals. Also, the oligomeric state 

of SDS/DPC-bound SP-A species (between a monomer and a trimer) appears to be 

substantially smaller than LMPC/LMPG-bound SP-A species (between two and three 

trimers). This indicates, the larger the size of micelles, the less affected the supramolecular 

assembly of the protein and, presumably, . the less affected the non-covalent interactions 

among the protein subunits. Despite the dramatic effects of the micelles on the degree of SP

A's oligomerization, it is extremely unlikely that SP-A monomers that are covalently 

attached through disulfide bonds also dissociate as a result of protein-micelle interactions. 

The next question that arises is why SP-A is present in smaller oligomeric forms in 

the micelles when its predominant conformation is widely referred to as octadecameric? The 
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long-presumed octadecamic structure of SP-A is elucidated by analytical methods such as gel 

filtration analysis and sedimentation equilibrium studies [ 184] and also verified by 

transmission electron microscopy (TEM) [185]. However, these studies are performed with 

purified SP-A and in lipid-free aqueous environments. In contrast, the gel filtration and 

sucrose density gradient centrifugation of unpurified SP-A show that the protein does not 

exist purely as fully assembled octadecamers but is consistently found in smaller oligomeric 

forms [ 165]. The TEM image of recombinant SP-A by itself also displays smaller aggregates 

like tetramers, trimers and dimers, and even monomers under mild reducing condition [185]. 

The TEM image of tubular myelin, on the other hand, shows X-shaped structures in the 

square lattice regions [61] which are modeled as SP-A octadecamers [17]. Thus the 

commonly referred pure octadecameric assembly of SP-A appears to be an over

simplification about the quaternary structure of the protein. 

Another question would be about the differences in SP-A's conformation and lipid 

interactions between the micelle systems. The HN signals seen in the I D 1H spectra of SP-A 

in DPC, LMPC and LMPG are quite similar but noticeably different from SDS (Figures 5.14 

C and D). Hence, SP-A likely takes on a similar tertiary structure in DPCILMPC/LMPG 

micelles that contain identical headgroups to surfactant PC and PG, but may take on a 

different structure in SDS micelles that contain a non-surfactant headgroup. Moreover, the 

DOSY data reveals that the oligomeric state of SP-A in the larger micelles (LMPC/LMPG) 

are substantially higher than the smaller micelles (SDS/DPC). SP-A's micelle interactions 

thus appear to be dependent on the size of the micelles. These intriguing differences in the 

conformation and mechanisms of lipid interactions may be important for SP-A's functions in 

the native lung environment. 

Many of SP-A's biological functions are thought to come about via its interactions 

with a broad range of amphipathic lipids present in lung surfactant and cellular membranes or 

bacterial envelopes [186]. Several studies indicate that SP-A binds avidly to DPPC but less 

strongly to unsaturated PCs [ 187, 188]. SM is also demonstrated as a preferred ligand of SP

A [189]. However, there are reports that claim SP-A does not bind to PG, except to DPPG, 

and to PI, PE or PS [53]. Morphological studies show that in vitro reconstitution of SP-A 
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with DPPC-rich phospholipid bilayers containing SP-B in the presence of calcium produces a 

lattice-like array of bilayer structures similar to that of the native tubular myelin [59, 60]. 

Other than phospholipids, SP-A binds to many carbohydrates, preferentially to mannose and 

fucose that are commonly found on fungal and microbial surfaces [190]. SP-A also interacts 

with rough lipopolysaccharide (Re-LPS) and permeabilizes bacterial membrane through self

aggregation [191]. In relation to the surface activity, interactions of SP-A with lipid extract 

surfactant (LES), an organic extract of lung surfactant containing all of the phospholipids and 

SP-B and SP-C, has been shown to reduce the minimum surface tension that the surfactant 

films can achieve when they are cyclically compressed and expanded [174]. 

SP-A's biological roles, in relation to either anti-microbial activities or surfactant 

biophysical activities, are almost always attributed to its octadecameric structure and 

preferential interactions with DPPC [17, 53, 56]. However, this part of my work 

demonstrates at least two novel features about SP-A's conformation and lipid interactions. 

First, the micelle-bound SP-A exists predominantly as smaller oligomers, in sharp contrast to 

octadecamers (or even larger) when alone in the aqueous environment. Second, SP-A binds 

not only to zwitterionic micelles but also to anionic micelles. The investigations are carried 

out in pure micelles composed of the analogues of surfactant PC and PO, as well as in a 

mixed micelle system where the ratio of two lipids is kept close to the physiological level. 

Moreover, the experimental conditions, such as the pH and the temperature, are appropriately 

matched with the real lung conditions. The findings thus appear to lead towards a new 

thinking on the in vivo properties of SP-A. Perhaps, the current octadecameric SP-A models 

require some modifications to portray how SP-A may function as smaller oligomers. 
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Chapter 6 

Interaction b , tween ini- and 
SP-A ·n · odel Surfactan Lipids 

Note : Mini-B was synthesized and purified by Prof Alan J Waring and his group 

(Waring lab, Medicine, UCLA). SP-A was collectedfrom cow lungs supplied by Ray 

Bishop (Bishops Meat, Foxtrap, NL). Isolation and purification of SP-A was done by 

Donna Jackman (Booth lab, Biochemistry, MUN). 
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6.1 Overview 

Several studies have indicated interactions, either direct or indirect, between SP-A, 

the most abundant protein of lung surfactant by weight [163], and SP-B, an indispensable 

protein for lung surfactant function [37, 38], in model surfactant systems. Although the 

presence of SP-A is not strictly required for the biophysical function of lung surfactant [58], 

SP-A improves the surface activity of lipid-protein preparations only if SP-B is present, and 

especially in the presence of anionic phospholipids [62, 192]. Synergy between SP-A and 

SP-B observed in the process of phospholipid membrane fusion has been attributed to 

specific calcium-dependent SP-A/SP-B interactions [193, 194]. The perturbation of model 

surfactant bilayers prepared using DPPC/DPPG mixtures by SP-A and SP-B together is 

different from that of individual proteins, which is likely an outcome of the two proteins' 

interactions [195]. The proteins demonstrate a cooperative calcium-dependent action in 

improving the resistance to surfactant inhibition by blood and plasma proteins [ 196]. 

Formation of specific SP-A/SP-B complexes has been observed in lipid-protein interfacial 

films [197]. However, probably the most dramatic exhibition of a concerted action of SP-A 

and SP-B is the in vitro reconstitution of tubular myelin when SP-A is added to the mixtures 

ofDPPC, PG and SP-B in the presence of calcium [59-61]. 

A direct examination of SP-A/SP-B interaction, even in laboratory experimental 

conditions, has long been hampered by the lack of a clear understanding regarding the 

structure-function relationships of both proteins, especially that of SP-B. Knowledge of the 

high-resolution structure of Mini-B, a synthetic construct that presumably corresponds to the 

key functional regions of full-length SP-B, provides an opportunity to directly probe 

Mini-B/SP-A interaction in the presence of model surfactant phospholipids. The findings 

from such a study may unveil critical features of SP-A/SP-B interactions and their 

consequences in native lung conditions. The conformations of Mini-B and SP-A and their 

lipid interactions have been characterized individually using an array of five different micelle 

systems. Based on those findings, I have attempted to investigate the interaction between 

Mini-Band SP-A, if any, in the presence of same model surfactant phospholipids. 
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6.2 Materials and Methods 

6.2.1 Protein Preparation 

The synthetic Mini-B was produced and purified by the Waring lab (Medicine, 

UCLA). The peptide was produced by solid phase chemical synthesis using 0-fluorenyl

methyloxycarbonyl (Fmoc) chemistry and purified by preparative reverse phase HPLC in a 

Vydac C-18 column as described previously (Chapter 3 and [156]). The natural bovine SP-A 

was collected from the lungs of young cows slaughtered at a local farm (Bishops Meat, 

Foxtrap, Newfoundland). The protein was isolated and purified by Donna Jackman (Booth 

lab, Biochemistry, Memorial University of Newfoundland) from the surfactant pellet by 

extraction with 1-butanol as described previously (Chapter 5). 

6.2.2 Sample Preparation 

No new NMR samples were prepared exclusively for this chapter but the 

corresponding Mini-B and SP-A samples, used for their individual studies presented in 

Chapters 4 and 5, were mixed together. Thus, like the individual proteins, at least two 

mixtures of Mini-B and SP-A were obtained for each micelle system with varying peptide/ 

lipid ratios. However, in all samples, molar concentrations of the detergents/lipids still 

remained at least 100 times higher than the proteins. The exact composition of each sample is 

described in the results section with protein molar concentrations specified as if they were 

100% monomeric. Mini-Box/SP-A samples were prepared with SDS, DPC, LMPC, LMPG 

and mixed LMPC(85%)/LMPG(l5%) micelles but Mini-BREo/SP-A samples were prepared 

with SDS and DPC micelles only. Consistent with the samples containing individual proteins, 

the pH of the Mini-Box/SP-A samples was found to be 6.9. However, the pH of the original 

Mini-BRED samples was 5.0 and hence that of Mini-BREo/SP-A samples was raised to 7.0 

using NaOH solution without taking the isotope effects into account. The pH of all samples 

thus closely matched the native condition of alveolar water hypophase. 
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6.2.3 NMR Data Collection and Processing 

A set of 1D 1H, 20 1 ~-1H HSQC and 2D DOSY experiments was performed for 

each ofthe Mini-B/SP-A samples on a Bruker Avance II 14.1 Testa (600 MHz) spectrometer 

(Billerica, MA) equipped with z-gradients and an inverse triple resonance TXI probe. The 

NMR data were collected and processed using the Bruker Topspin 2.0 software. The pulse 

length (P1) and the transmitter offset (01) were optimized for each sample before running 

the full set ofNMR experiments. The 1D 1H and 2D 15N- 1H HSQC spectra were acquired at 

37 oc to match the physiological temperature. In 1 D 1H experiments, data were collected 

with 128 to 320 scans (indicated in the figure captions) using the water-gate water 

suppression technique [146] and processed using an exponential apodization function with 1 

Hz line broadening. The 2D 15H-1H HSQC spectra were acquired with 160 to 640 scans 

(indicated in the figure captions) using the flip-back water suppression technique [145] and 

processed using the Qsine apodization function with a sine bell shift of 2. The 20 DOSY 

experiments were performed using PFG NMR [157]. The pulse sequence used a stimulated 

echo with bipolar gradient pulses and one spoil gradient [158] , followed by a 3-9-19 pulse for 

water suppression [159]. The OOSY spectra were acquired for SDS and OPC samples at 

37 °C. However, for LMPC and LMPG samples, the DOSY spectra were acquired at 25 oc 
to minimize the effect of thermal convection. The diffusion time was kept constant at 100 ms. 

The gradient pulse length was optimized for each sample and set between 3 and 8 ms. The 

maximum amplitude of the gradient strength was 35 G/cm and the 1H signals were attenuated 

in 32 steps. The translational diffusion coefficient was determined from the slope of the 

signal attenuation curve plotted using Eq. 2.17. The hydrodynamic diameter was calculated 

using the Stokes-Einstein equation [Eq. 2.20]. The viscosity of pure water was used for the 

viscosity of solution in the calculation and the values were 8.91 x 10-4 kg/m.s at 25 oc (298 

K) and 6.92 X 10-4 kg/m.s at 37 oc (310 K). 

Although NMR data were acquired for at least two separately prepared mixtures of 

Mini-B and SP-A in each micelle system, spectra of both samples essentially looked identical 

and hence only one is shown in the results section. For the ease of comparison, the spectra of 

individual proteins acquired under the same micelle condition are also included in the figures. 
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6.3 Results 

6.3.1 Mini-Band SP-A in SDS Micelles 

As previously done for studying the conformations and lipid interactions of the 

proteins individually, the examination of Mini-B/SP-A interaction began with smaller 

anionic micelles composed of the detergent SDS. The study was performed using both 

Mini-Box and Mini-BRED· SP-A was added to both versions of Mini-B at a monomeric ratio 

of I: I , calculated assuming SP-A as a monomer. Figures 6.I and 6.2 show the I D 1H spectra 

of Mini-Box and Mini-BRED, respectively, plus SP-A in SDS micelles, along with the 

corresponding spectra of the individual proteins. The signals seen in the 6-9 ppm region, 

enlarged and displayed in the bottom panels, correspond mostly to backbone amide protons 

(HNs) of the proteins. However, the signals from Mini-B/SP-A mixtures, for both Mini-B 

versions, look almost identical to that of SP-A alone. This is not unexpected as SP-A (248 

amino acids) is over 7 times larger than Mini-B (34 amino acids) and thus the signals of 

Mini-B are buried under the many signals of SP-A. A comparison of the spectral dispersion 

and intensity of HN signals indicates that the structure of SDS-bound SP-A remains 

essentially unchanged in the presence of SDS-bound Mini-B. 

The structures of SDS-bound Mini-Box and Mini-BRED also remain the same in the 

presence of SDS-bound SP-A. This is revealed by the 2D 15N- 1H HSQC spectra (Figures 6.3 

and 6.4) which show that all nine major peaks corresponding to the 15N-Iabeled amino acids 

of Mini-B, and even the additional weaker peaks in most cases, remain unaffected by the 

inclusion of SP-A. Addition of more SDS, followed by CaCh, does not change the position 

or intensity of Mini-B HSQC peaks either (Figure 6.3 C and D). 

The ID 1H and 2D HSQC spectra appear to provide no evidence of interactions 

between Mini-B and SP-A in SDS micelles. However, the 2D DOSY spectra of Mini-Box/ 

SP-A, when compared to the individual proteins, indicate a somewhat different scenario 
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(Figures 6.5 & 6.6 and Table 6.1 ). A total of four signal attenuation curves are produced, two 

from the SDS peaks at 0.80 and 1.22 ppm and two from the protein peaks at 0.92 ppm and 

HN region, but only two are shown in Figure 6.5 (from 1.22 ppm and HN region). 

Interestingly, the signal attenuation curve does not fit well with a single line (i.e., a single 

component). However, approximately the first and the last halves of the data are fit 

reasonably well with two lines having two different slopes. Thus, two observed translational 

diffusion coefficients are obtained and there are, at least, two distinct populations of 

protein/micelle complexes present in the solution. The apparent hydrodynamic diameters of 

the subpopulations are ~ 6.8 nm [from HN Fit 1 (~ first half of the data)] and ~ 19.4 nm 

[from HN Fit 2 ( ~ last half of the data)]. Although the first subpopulation is not substantially 

different in size from the SP-A/SDS complex ( ~ 5.6 nm), the second is much larger. A 

fraction of the total Mini-Box and SP-A molecules present in the mixture hence form large 

protein/micelle complexes. The approximate ratio of the small-to-large subpopulations is 

85%: 15%, as estimated from they-axis (relative signal intensity) intercepts of the two linear 

fits representing the two diffusion coefficients. The average hydrodynamic diameter, which 

is not an arithmetic average of the two sizes, but calculated from the average linear fit of the 

HN signal attenuation data, is ~ 9.3 nm. This apparent size is also larger than the sizes 

obtained for the individual proteins. For both Fit 1 and Fit 2 of the Mini-Box/SP-A mixture, 

the diffusion coefficients, and hence the corresponding hydrodynamic diameters, obtained 

from the SDS peaks are different from that obtained from the protein peaks. For Fit 2, the 

apparent hydrodynamic diameters calculated from the SDS peaks are ~ 13 nm while that 

from the protein peaks are ~ 20 nm. As observed previously for the individual proteins, the 

smaller apparent size of the complex when calculated from the detergent peaks is likely the 

result of a rapid exchange between the free and micelle-bound SDS species. 
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Figure 6.1 : 1D 1H spectra of (A) 0.2 mM Mini-Box, (B) 0.2 mM SP-A and (C) 0.1 mM 
Mini-Box+ 0.1 mM SP-A in 40 mM SDS, in the presence of 4.5 mM Hepes at pH 6.9 and 
temperature 37 °C. The spectra were acquired using 256 scans and processed with 1 Hz 
line broadening. The 6-9 ppm regions of all spectra are enlarged and shown in the 
bottom panel (D). 
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Figure 6.2 : 10 1H spectra of (A) 0.15 mM Mini-BRED in 30 mM SDS (acquired using 128 
scans), (B) 0.2 mM SP-A in 40 mM SDS (acquired using 256 scans) and (C) 0.075 mM 
Mini-BRED+ 0.08 mM SP-A in 15 mM SDS (acquired using 128 scans), in the presence of 
4.5 mM Hepes at pH 7.0 and temperature 37 °C. The spectra were processed with 1 Hz 
line broadening. The 6-9 ppm regions of all spectra are enlarged and shown in the 
bottom panel (D). 
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Figure 6.3 : 2D 15N- 1H HSQC spectra of (A) 0.2 mM Mini-Box in 40 mM SDS (acquired 
using 160 scans), (B) 0.1 mM Mini-Box+ 0.1 mM SP-A in 40 mM SDS (acquired using 640 
scans), (C) 0.1 mM Mini-Box+ 0.1 mM SP-A in I 00 mM SDS (acquired using 320 scans) 
and (D) 0.1 mM Mini-Box + 0.1 mM SP-A in 100 mM + 5 mM CaCh (acquired using 320 
scans), in the presence of 4.5 mM Hepes at pH 6.9 and temperature 37 °C. The base contour 
level shown in (B) is 2 times higher than others. 
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Figure 6.4:20 15N- 1H HSQC spectra of(A) 0.15 mM Mini-BREo in 30 mM SDS (acquired 
using 160 scans) and (B) 0.075 mM Mini-BRED+ 0.08 mM SP-A in 15 mM SDS (acquired 
using 320 scans), in the presence of 4.5 mM Hepes at pH 7.0 and temperature 37 °C. The 
base contour level shown in (B) is 1.5 times higher than (A). 
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Figure 6.5 : Translational diffusion measurements of Mini-Box and SP-A in SDS. Top 
panels show the 2D DOSY spectra of 0.2 mM Mini-Box (A), 0.2 mM SP-A (B) and 0.1 mM 
Mini-Box+ 0.1 mM SP-A (C) in 40 mM SDS, in the presence of 4.5 mM Hepes at pH 6.9 
and temperature 37 °C. The observed diffusion coefficients are determined from the slopes of 
the 1H signal attenuation curves using two SDS signals (at 0.80 and 1.22 ppm) and two 
protein signals (0.92 ppm and HN regions). Only two signal attenuation curves for the 
Mini-Box/SP-A/SDS complexes, obtained from the SDS peak at 1.22 ppm (D) and the 
protein HN region (E), are shown in the bottom panels. None of the signal attenuation 
curves for Mini-Box/SP-A/SDS complexes fit well with a single line. However, 
approximately the first and the last halves of the data are fit reasonably well with two lines 
having two different slopes. 
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Table 6.1 : Observed translational diffusion coefficients and the corresponding 
hydrodynamic diameters of pure SDS micelles and protein/SDS complexes. The diffusion 
coefficients are represented by the slopes of the 1H signal attenuation linear fits obtained 
from the 2D DOSY data. The hydrodynamic diameters are calculated using the Stokes
Einstein equation (Eq. 2.20). 

Micelle/Complex 

Composition 

Pure SDS 

Micelle 

Mini-Box/SDS 

Complex 

SP-A/SDS 

Complex 

Mini-Box/SP-A/ 

SDS (Average) 

Mini-Box/SP-A/ 
SDS (Fit I) 

Mini-Box/SP-A/ 
SDS (Fit 2) 
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± 0.016 ± 0.019 ± 0.006 ± 0.021 

0.521 0.481 0.318 0.338 
± 0.017 ± 0.021 ± 0.008 ± 0.010 

Hydro. Dia. (nm) from Peak at 
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Figure 6.6 : Bar graphs representing the apparent hydrodynamic diameters of pure SDS 
micelles and protein/SDS complexes, as presented in Table 6.1. 
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6.3.2 Mini-Band SP-A in DPC Micelles 

The interaction between Mini-B and SP-A was studied next in smaller zwitterionic 

micelles composed of DPC. Again, this was investigated for both versions of Mini-B. SP-A 

was added to Mini-BREo in one step at the monomeric ratio of 1:1 . However, Mini-Box was 

titrated with SP-A in three steps, starting with a monomeric ratio of 4:1 and ending at 1:1. 

Figures 6.7 and 6.8 show the 1D 1H spectra of Mini-Box and Mini-BRED, respectively, plus 

SP-A in DPC micelles, along with the corresponding spectra of the individual proteins. As in 

SDS, the backbone HN signals from Mini-B/SP-A mixtures in DPC are almost identical to 

that of SP-A alone. Therefore, the conformation of SP-A likely remains the same in the 

presence ofMini-B, even ifthe proteins interact with each other. 

Interestingly, the intensity of 2D 15N- 1H HSQC peaks of Mini-Box gradually decrease 

with the addition of SP-A but their positions (chemical shifts) do not change (Figures 6.9 

A-C). At the last step of titration, i.e., at 1:1 monomeric ratio of Mini-Box to SP-A, all of the 

Mini-Box peaks essentially disappear leaving much weaker traces of only one or two (Figure 

6.9 D). The HSQC peaks of Mini-BREo also disappear in the presence of SP-A (Figure 6.1 0). 

This likely indicates all or most of Mini-Bare bound in complexes, presumably complexes of 

SP-A plus DPC, which are too large to yield the HSQC signals. Since there are enough DPC 

present to provide about 7 times as many micelles as Mini-B molecules, it seems that Mini-B 

has a strong preference to interact with SP-NDPC complexes over DPC micelles without 

SP-A. This interpretation is supported by the absence of any changes in the HSQC spectra of 

Mini-Box when more DPC is added (Figure 6.9 E). However, a subsequent addition of CaC}z, 

at a concentration 50 times more than the proteins, causes the HSQC peaks of Mini-Box to 

reappear (Figure 6.9 F). In this condition, the large Mini-B0 x/SP-NDPC complexes likely 

disassemble and the smaller Mini-Box/DPC complexes reform. 

The translational diffusion measurements confirm the formation of larger particles in 

the mixture of Mini-Box and SP-A when compared to the individual proteins (Figures 6.11 & 

6.12 and Table 6.2). As in SDS, the signal attenuation curves of Mini-Box/SP-A/DPC, 

produced from the 2D DOSY spectra, do not fit well with a single line but reasonably well 
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with two lines based on approximately the first and the last halves of the data (Figure 6.11 ). 

Thus, two different observed translational diffusion coefficients are obtained. The 

hydrodynamic diameters calculated from both fits, - 12.8 nm [from HN Fit 1 (- first half of 

the data)] and - 20.4 [from HN Fit 2 (-last half of the data)], are much larger than SP-A/ 

DPC (- 4.1 nm) and Mini-B0 x/DPC (- 2.3 nm) complexes. The approximate ratio of small

to-large subpopulations of Mini-Box/SP-A/DPC is 62% : 38%, as estimated from they-axis 

(relative signal intensity) intercepts of the two linear fits. The average diameter of - 14.9 nm, 

calculated from the average linear fit, is also much larger than the individual protein/micelle 

complexes. Thus, the two proteins likely interact and form larger complexes, but with 

heterogeneous sizes. As in SDS, the apparent sizes of the complexes are smaller when 

calculated from the DPC peaks(- 12 nm, from Fit 2) than when calculated from the protein 

peaks (- 20 nm, from Fit 2). Again, this is likely the result of a rapid exchange between the 

free and micelle-bound DPC species. 
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Figure 6.7 : lD 1H spectra of (A) 0.2 mM Mini-Box, (B) 0.2 mM SP-A and (C) 0.1 mM 
Mini-Box+ 0.1 mM SP-A in 40 mM DPC, in the presence of 4.5 mM Hepes at pH 6.9 and 
temperature 37 °C. The spectra were acquired using 256 scans and processed with 1 Hz line 
broadening. The 6-9 ppm regions of all spectra are enlarged and shown in the bottom panel 
(D), including that from 0.16 mM Mini-Box + 0.04 mM SP-A and 0.133 mM Mini-Box + 
0.67 mM SP-A samples. 
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Figure 6.8 : 1D 1H spectra of (A) 0.075 mM Mini-BRED, (B) 0.08 mM SP-A and (C) 0.075 
mM Mini-BREo + 0.08 mM SP-A in 15 mM DPC, in the presence of 4.5 mM Hepes at pH 7.0 
and temperature 37 °C. The spectra were acquired using 256 scans and processed with 1 Hz 
line broadening. The 6-9 ppm regions of all spectra are enlarged and shown in the 
bottom panel (D). 
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Figure 6.9 : 20 15N-1H HSQC spectra of (A) 0.2 mM Mini-Box in 40 mM DPC (acquired 
using 160 scans), (B) 0.16 mM Mini-Box+ 0.04 mM SP-A in 40 mM DPC (acquired using 
240 scans), (C) 0.133 mM Mini-Box + 0.067 mM SP-A in 40 mM DPC (acquired using 352 
scans), (D) 0.1 mM Mini-Box+ 0.1 mM SP-A in 40 mM DPC (acquired using 640 scans), (E) 
0.1 mM Mini-Box + 0.1 mM SP-A in 100 mM DPC (acquired using 320 scans) and (F) 0.1 
mM Mini-Box + 0.1 mM SP-A in 100 mM DPC + 5 mM CaCh (acquired using 320 scans), 
in the presence of 4.5 mM Hepes at pH 6.9 and temperature 37 °C. 
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Figure 6.10 : 2D 15N- 1H HSQC spectra of (A) 0.075 mM Mini-BRED and (B) 0.075 mM 
Mini-BRED+ 0.08 mM SP-A in 15 mM DPC, in the presence of 4.5 mM Hepes at pH 7.0 and 
temperature 37 °C. Both spectra were acquired using 320 scans. 
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Figure 6.11 : Translational diffusion measurements of Mini-Box and SP-A in DPC. Top 
panels show the 2D DOSY spectra of 0.1 mM Mini-Box in 20 mM DPC (A), 0. 1 mM SP-A 
in 20 mM DPC (B) and 0.1 mM Mini-Box + 0.1 mM SP-A in 40 mM DPC (C), in the 
presence of 4.5 mM Hepes at pH 6.9 and temperature 37 °C. The observed diffusion 
coefficients are determined from the slopes of the 1H signal attenuation curves using two 
DPC signals (at 0.80 and 1.22 ppm) and two protein signals (0.92 ppm and HN regions). 
Only two signal attenuation curves for the Mini-Box/SP-A/DPC complexes, obtained from 
the DPC peak at 1.22 ppm (D) and the protein HN region (E), are shown in the bottom panels. 
None of the signal attenuation curves for Mini-Box/SP-A/DPC complexes fit well with a 
single line. However, approximately the first and the last halves of the data are fit reasonably 
well with two lines having two different slopes. 
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Table 6.2 : Observed translational diffusion coefficients and the corresponding 
hydrodynamic diameters of pure DPC micelles and protein/DPC complexes. The diffusion 
coefficients are represented by the slopes of the 1H signal attenuation linear fits obtained 
from the 2D DOSY data. The hydrodynamic diameters are calculated using the Stokes
Einstein equation (Eq. 2.20). 

Micelle/Complex 
Composition 

Pure DPC 
Micelle 

Mini-Box/DPC 
Complex 

SP-A/DPC 
Complex 

Mini-Box/SP-A/ 
DPC (Average) 

Mini-Box/SP-A/ 
DPC (Fit I) 

Mini-Box/SP-A/ 
OPC (Fit 2) 

21 

I 18 
... 
~ 15 
E 
"' 0 12 
u 
.E 9 

"' c 
~ 6 
e 
~ 3 
I 

Diff. Coeff. X 1 o -IO (m2/s) from Peak at 

0.80 1.22 0.90 HN 
ppm ppm ppm region 

3.356 3.367 
± 0.021 ± 0.010 

X X 

2.585 2.657 2.337 2.844 
± 0.023 ± 0.013 ± 0.015 ± 0.061 

1.759 1.915 1.511 1.620 

± 0.011 ± 0.004 ± 0.008 ± 0.011 

0.724 0.971 0.501 0.440 
± 0.018 ± 0.022 ± 0.010 ± 0.008 

0.922 1.214 0.610 0.511 
± 0.007 ± 0.011 ± 0.004 ± 0.007 

0.522 0.575 0.332 0.322 
± 0.009 ± 0.027 ± 0.013 ± 0.012 

Hydro. Dia. (nm) from Peak at 

0.80 1.22 
ppm ppm 

1.96 1.95 

2.54 2.48 

3.72 3.42 

9.06 6.76 

7. 11 5.40 

12.57 11.41 

0.90 HN 
ppm region 

X X 

2.81 2.31 

4.34 4.05 

13.09 14.91 

10.75 12.84 

19.76 20.37 

o 0 80 ppm (DPC) 

C3 1 22 ppm (DPC) 

t!l 0 90 ppm (Protem) 

I m HN Region (Protein) 

DPC Micelle Mlni-8/DPC SP-AIDPC Mini-8/SP-A/ Mlni-8/SP-A/ Mini-8/SP-A/ 
DPC {Avg.) DPC (Fit 1) DPC (Fit 2) 

Figure 6.12 : Bar graphs representing the apparent hydrodynamic diameters of pure DPC 
micelles and protein/DPC complexes, as presented in Table 6.2. 
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6.3.3 Mini-Band SP-A in LMPC Micelles 

To gain an insight into Mini-B/SP-A interaction in a more physiologically relevant 

lipid environment, the investigations continued with LMPC, LMPG and mixed LMPC/ 

LMPG micelles. For these micelles, the studies were performed using Mini-Box only. SP-A 

was added to Mini-Box in one step at a monomeric ratio of 1:1 . First studied were Mini-Box 

and SP-A in zwitterionic micelles composed of LMPC that mimic the lung lipid environment 

created by the most abundant surfactant phospholipid DPPC. Again, the 1D 1H spectrum of 

Mini-Box/SP-A in LMPC looks almost identical to SP-A in LMPC indicating that the 

Mini-Box signals are buried under the much stronger SP-A signals (Figure 6.13). The 

observed changes in the 2D 15N-1H HSQC spectra are quite similar to that of the smaller 

zwitterionic micelles ofDPC (Figure 6.14). The HSQC peaks of Mini-Box disappear with the 

addition of SP-A leaving behind just a few much weaker traces. 

The translational diffusion measurements in LMPC, however, demonstrate a result 

which is quite different from that of DPC or SDS (Figures 6.15 & 6.16 and Table 6.3). Again, 

four signal attenuation curves are produced from the 2D DOSY spectra, but now all are 

obtained from the lipid peaks since the protein signals are too weak to produce meaningful 

signal attenuation curves in the presence of nondeuterated LMPC (Figure 6.15). Unlike in 

SDS or DPC, each of the signal attenuation curves constitutes a single linear fit and hence 

yields a single translational diffusion coefficient. Thus, protein/lipid complexes of only a 

single homogeneous size are apparently present in the Mini-Box/SP-A mixture in LMPC. 

Interestingly, the hydrodynamic diameter of the mixed complexes, calculated using the 

observed translational diffusion coefficient, is - 8.5 nm, which is smaller than SP-A/LMPC 

complexes (- 10.3 nm) but larger than Mini-BoxiLMPC complexes (- 6.7 nm). As 

elaborated in the discussion, this may be an outcome of rearrangements of the protein/lipid 

structures induced by the protein-protein interactions. 
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Figure 6.13 : 1D 1H spectra of (A) 0.25 mM Mini-Box (acquired using 160 scans), (B) 0.25 
mM SP-A (acquired using 160 scans) and (C) 0.125 mM Mini-Box + 0.125 mM SP-A 
(acquired using 320 scans) in 50 mM LMPC, in the presence of 4.5 mM Hepes at pH 6.9 and 
temperature 37 °C. The spectra were processed with 1 Hz line broadening. The 6-9 ppm 
regions of all spectra are enlarged and shown in the bottom panel (D). 
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Figure 6.14: 2D 15N- 1H HSQC spectra of (A) 0.25 mM Mini-Box (acquired using 160 scans) 
and (B) 0.125 mM Mini-Box + 0.125 mM SP-A (acquired using 320 scans) in 50 mM LMPC, 
in the presence of 4.5 mM Hepes at pH 6.9 and temperature 37 °C. 
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Figure 6.15 : Translational diffusion measurements of Mini-Box and SP-A in LMPC. Top 
panels show the 2D DOSY spectra of 0.25 mM Mini-Box (A), 0.25 mM SP-A (B) and 0.125 
mM Mini-Box + 0.125 mM SP-A (C) in 50 mM LMPC, in the presence of 4.5 mM Hepes at 
pH 6.9 and temperature 25 °C. The observed diffusion coefficients are determined from the 
slopes of the 1H signal attenuation curves using four LMPC peaks (at 0.85, 1.27, 1.58 and 
2.36 ppm). Only two sets of signal attenuation curves for pure micelle and protein/micelle 
complexes, obtained from the peaks at 0.85 ppm (D) and 1.27 ppm (E), are shown in the 
bottom panels. 
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Table 6.3 : Observed translational diffusion coefficients and the corresponding 
hydrodynamic diameters of pure LMPC micelles and protein!LMPC complexes. The 
diffusion coefficients are represented by the slopes of the 1H signal attenuation linear fits 
obtained from the 2D DOSY data. The hydrodynamic diameters are calculated using the 
Stokes-Einstein equation (Eq. 2.20). 

Micelle/Complex 
Diff. Coeff. X I o -I l (m2/s) from Peak at 

Composition 

Pure LMPC 

Micelle 

Mini-BoxiLMPC 
Complex 

SP-A/LMPC 

Complex 

Mini-Box/SP-A/ 

LMPC Complex 

12 

I 10 
.... .. 
-.; 8 
E 
cG 

0 
.., 6 
·e 
cG 

~ 4 
'0 
0 

~ 2 
I 

0.85 
ppm 

6.790 

± 0.006 

7.364 

± 0.047 

4.774 

± 0.007 

5.762 

± 0.008 

LMPC Micelle 

1.27 1.58 2.36 
ppm ppm ppm 

6.741 6.578 6.735 
± 0.003 ± 0.014 ± 0.004 

7.332 7.390 7.373 

± 0.043 ± 0.055 ± 0.042 

4.783 4.580 4.755 

± 0.003 ± 0.015 ± 0.011 

5.760 5.609 5.764 

± 0.005 ± 0.013 ± 0.008 

Mini-B/LMPC SP-AILMPC 

Hydro. Dia. (nm) from Peak at 

0.85 1.27 
ppm ppm 

7.21 7.26 

6.65 6.68 

10.26 10.24 

8.50 8.50 

Mini-B/SP-A/LMPC 

1.58 2.36 
ppm ppm 

7.44 7.27 

6.63 6.64 

10.69 I 0.30 

8.73 8.50 

o 0 85 ppm (Lipid) 

liS'l 1 27 ppm (Lipid) 

i::l 1 58 ppm (Lipid) 

Iii 2.36 ppm (Lipid) 

Figure 6.16 : Bar graphs representing the apparent hydrodynamic diameters of pure LMPC 
micelles and protein!LMPC complexes, as presented in Table 6.3. 
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6.3.4 Mini-Band SP-A in LMPG Micelles 

The interaction between Mini-Box and SP-A was assessed next in anionic micelles 

composed of LMPG that mimic the lung lipid environment created by the surfactant 

phospholipids with PG headgroups. Again, in the lD 1H spectrum of Mini-Box/SP-A in 

LMPG, the signals from Mini-Box are buried under the intense signals of SP-A and the 

spectrum looks identical to SP-A in LMPG (Figure 6.17). The Mini-Box peaks in the 2D 
15N-1H HSQC spectra remain unchanged with the addition of SP-A (Figure 6.18), which is 

similar to Mini-Box/SP-A in SDS but different from Mini-Box/SP-A in DPC or LMPC. 

The translational diffusion measurements in LMPG, obtained using the 2D DOSY 

spectra, provide a similar result to that in LMPC (Figures 6.19 & 6.20 and Table 6.4). Each 

of the four signal attenuation curves constitutes a single linear fit and hence indicates a single 

particle size. Again, the apparent hydrodynamic diameter of the complexes in Mini-Box/ 

SP-A mixture, calculated using the observed translational diffusion coefficient, is - 9.1 run, 

which is smaller than SP-A/LMPG complexes(- 11.2 run) but larger than Mini-Box/LMPC 

complexes (- 7.2 run). As in LMPC, this may be caused by rearrangements of the protein/ 

lipid structures induced by the Mini-Box/SP-A interactions. 
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Figure 6.17: 10 1H spectraof(A) 0.25 mM Mini-Box (acquired using 160 scans), (B) 0.25 
mM SP-A (acquired using 160 scans) and (C) 0.125 mM Mini-Box + 0.125 mM SP-A 
(acquired using 320 scans) in 50 mM LMPG, in the presence of 4.5 mM Hepes at pH 6.9 and 
temperature 37 °C. The spectra were processed with 1 Hz line broadening. The 6-9 ppm 
regions of all spectra are enlarged and shown in the bottom panel (D). 
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Figure 6.18: 2D 15N- 1H HSQC spectra of(A) 0.25 mM Mini-Box (acquired using 160 scans) 
and (B) 0.125 mM Mini-Box+ 0.125 mM SP-A (acquired using 320 scans) in 50 mM LMPG, 
in the presence of 4.5 mM Hepes at pH 6.9 and temperature 37 °C. 
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Figure 6.19 : Translational diffusion measurements of Mini-Box and SP-A in LMPG. Top 
panels show the 2D DOSY spectra of 0.25 mM Mini-Box (A), 0.25 mM SP-A (B) and 0.125 
mM Mini-Box+ 0.125 mM SP-A (C) in 50 mM LMPG, in the presence of 4.5 mM Hepes at 
pH 6.9 and temperature 25 °C. The observed diffusion coefficients are determined from the 
slopes of the 1H signal attenuation curves using four LMPG peaks (at 0.87, 1.28, 1.60 and 
2.38 ppm). Only two sets of signal attenuation curves for pure micelle and protein/micelle 
complexes, obtained from the peaks at 0.87 ppm (D) and 1.28 ppm (E), are shown in the 
bottom panels. 
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Table 6.4 : Observed translational diffusion coefficients and the corresponding 
hydrodynamic diameters of pure LMPG micelles and protein!LMPG complexes. The 
diffusion coefficients are represented by the slopes of the 1H signal attenuation linear fits 
obtained from the 2D DOSY data. The hydrodynamic diameters are calculated using the 
Stokes-Einstein equation (Eq. 2.20). 

Micelle/Complex 
Diff. Coeff. x 10"1 1 (m%) from Peak at 

Composition 0.87 1.28 1.60 2.38 
ppm ppm ppm ppm 

Pure LMPG 5.907 5.909 5.861 5.891 

Micelle ± 0.004 ± 0.003 ± 0.003 ± 0.003 

Mini-Box/LMPG 6.841 6.849 6.744 6.85 1 

Complex ± 0.014 ± 0.009 ± 0.007 ± 0.013 

SP-A/LMPG 4.359 4.374 4.300 4.345 

Complex ± 0.005 ± 0.005 ± 0.008 ± 0.004 

Mini-Box/SP-A/ 5.441 5.367 5.274 5.390 

LMPG Complex ± 0.009 ± 0.006 ± 0.004 ± 0.006 

LMPG Micelle Mini-B/LMPG SP-AILMPG 

Hydro. Dia. (nm) from Peak at 

0.87 1.28 
ppm ppm 

8.29 8.29 
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11.23 11 .20 
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Mini-B/SP-AILMPG 

1.60 2.38 
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Figure 6.20 : Bar graphs representing the apparent hydrodynamic diameters of pure LMPG 
micelles and protein/LMPG complexes, as presented in Table 6.4. 
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6.3.5 Mini-Band SP-A in Mixed LMPC/LMPG Micelles 

Lastly for this chapter, the interaction between Mini-Box and SP-A was probed in a 

mixed LMPCILMPG micelle system. As usual, the l D 1H spectrum of Mini-Box/SP-A 

mixture looks almost identical to that of SP-A alone (Figure 6.21 ). Interestingly, the 

Mini-Box peaks in the 2D 15N-1H HSQC spectra remain unchanged with the addition of 

SP-A (Figure 6.22), which matches the result obtained in I 00% LMPG although only 15% 

LMPG is present in the mixed micelle system. 

The change in the size of the protein/micelle complexes in the mixed micelle system, 

as obtained from the 2D DOSY spectra, follows the same trend as that of individual LMPC 

and LMPG systems (Figures 6.23 & 6.24 and Table 6.5). The hydrodynamic diameter of the 

particles present in the Mini-Box/SP-A mixture, calculated using the observed translational 

diffusion coefficient, is ~ 9.0 nm, which 'is smaller than SP-AILMPC/LMPG complexes 

(~ 10.7 nm) but larger than Mini-BoxiLMPC/LMPC complexes (~ 6.5 nm). Again, the 

protein-protein interactions may be responsible for rearrangements of the protein/lipid 

structures. 

155 



A. Mini-Box B. SP-A 
in LMPC/LMPG in LMPCILMPG 

I. 

! 
II !I I 

I I "J 
·.... ~,.. 

.~L~~ 

~ ... L or'~"""''-""" ,(~'.L1u!i ) D. Enlarged 6-9 ppm regions ,"" 

8.5 8.0 7.5 7.0 

C. Mini-Box+ SP-A 
in LMPCILMPG 

R.l:'l"lLkl""t 

I I 

SP-A 

"------~---

Mini-Box+ SP-A 

6.5 1H (ppm) 

Figure 6.21 : 1D 1H spectra of (A) 0.25 mM Mini-Box (acquired using 160 scans), (B) 0.25 
mM SP-A (acquired using 160 scans) and (C) 0.125 mM Mini-Box + 0.125 mM SP-A 
(acquired using 320 scans) in 42.5 LMPC + 7.5 mM LMPG, in the presence of 4.5 mM 
Hepes at pH 6.9 and temperature 37 °C. The spectra were processed with 1 Hz line 
broadening. The 6-9 ppm regions of all spectra are enlarged and shown in the bottom 
panel (D). 
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Figure 6.22: 2D 15N- 1H HSQC spectra of(A) 0.25 mM Mini-Box (acquired using 160 scans) 
and (B) 0.125 mM Mini-Box + 0.125 mM SP-A (acquired using 320 scans) in 42.5 mM 
LMPC + 7.5 mM LMPG, in the presence of 4.5 mM Hepes at pH 6.9 and temperature 37 °C. 
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Figure 6.23: Translational diffusion measurements of Mini-Box and SP-A in LMPC/LMPG. 
Top panels show the 20 DOSY spectra of 0.25 mM Mini-Box (A), 0.25 mM SP-A (B) and 
0.125 mM Mini-Box+ 0.125 mM SP-A (C) in 42.5 mM LMPC + 7.5 mM LMPG, in the 
presence of 4.5 mM Hepes at pH 6.9 and temperature 25 °C. The observed diffusion 
coefficients are determined from the slopes of the 1H signal attenuation curves using four 
LMPC/LMPG peaks (at 0.86, 1.28, 1.59 and 2.37 ppm). Only two sets of signal attenuation 
curves for pure micelle and protein/micelle complexes, obtained from the peaks at 0.86 ppm 
(D) and 1.28 ppm (E), are shown in the bottom panels. 
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Table 6.5 : Observed translational diffusion coefficients and the corresponding 
hydrodynamic diameters of pure LMPCILMPG micelles and protein/LMPCILMPG 
complexes. The diffusion coefficients are represented by the slopes of the 1H signal 
attenuation linear fits obtained from the 2D DOSY data. The hydrodynamic diameters are 
calculated using the Stokes-Einstein equation (Eq. 2.20). 

Micelle/Complex 

Composition 

Pure LMPC/ 

LMPG Micelle 

Mini-Box/LMPC/ 

LMPG Complex 

SP-AILMPC/ 

LMPG Complex 

Mini-Box/SP-A/ 

LMPC/LMPG 

12 

E' 10 ..s ... ., 
..u 8 
E 
OJ 

Ci 
u 6 ·e 
OJ 

~ 4 
"0 
0 

i 2 
I 

Diff. Coeff. X I o-J I (m2/s) from Peak at 

0.86 1.28 1.59 2.37 
ppm ppm ppm ppm 

5.910 5.866 5.706 5.854 

± 0.003 ± 0.002 ± 0.012 ± 0.004 

7.635 7.504 7.134 7.541 

± 0.003 ± 0.003 ± 0.01 2 ± 0.005 

4.564 4.571 4.387 4.563 

± 0.006 ± 0.003 ± 0.019 ± 0.009 

5.436 5.427 5.252 5.415 

± 0.007 ± 0.004 ± 0.013 ± 0.006 

Hydro. Dia. (nm) from Peak at 

0.86 1.28 
ppm ppm 

8.29 8.35 

6.41 6.53 

10.73 10.7 1 

9.01 9.02 

1.59 2.37 
ppm ppm 

8.58 8.37 

6.86 6.49 

11.16 10.73 

9.32 9.04 

o 0 86 ppm (lipid) 

~ 1 28 ppm (Lipid) 

[;'j 1 59 ppm (Lipid) 

1n 2.37 ppm (Lipid) 

LMPC/LMPG Micelle Mlni-8/LMPC/LMPG SP-AILMPC/LMPG Mlni-8/SP-A/Micelle 

Figure 6.24 : Bar graphs representing the apparent hydrodynamic diameters of pure 
LMPCILMPG micelles and protein/LMPCILMPG complexes, as presented in Table 6.5 . 
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6.4 Discussion 

Protein-protein interactions play vital roles in many biological processes. For optimal 

function of surfactant materials in the lung, interactions between SP-B and SP-A may also 

play important roles. Although mechanistic descriptions of the events that take place at the 

molecular and submolecular levels in lung surfactant function are still unavailable, a few 

models have been proposed portraying the mechanisms of SP-B- and SP-A-induced 

rearrangement and stabilization of phospholipid structures on an individual basis [70, 17] as 

well as through their concerted actions [12, 23, 198]. Formation of tubular myelin [59-6 1 ], 

enhancement of lipid adsorption along the air-water interface [62, 63], fusion of lipid 

membranes [193 , 194] and inhibition of blood and plasma proteins [196] are well-established 

in vitro demonstrations of concerted actions between SP-A and SP-B. However, it is still 

unknown if the two proteins interact directly to accomplish these results or if these are 

achieved by their indirect interactions mediated through the lipids. Knowledge of the high

resolution structure of Mini-B provides a tool to probe its interactions with SP-A, if any, in 

model surfactant lipids and thus enhances our understanding of the ramifications of SP-8/ 

SP-A interactions in the lung. 

The interactions between Mini-B and SP-A are investigated by assessing the changes 

m the features of NMR spectra when the two proteins are mixed at equal molar 

concentrations. Like the individual proteins, these investigations are carried out in an array of 

five micelle systems mimicking various lipid components found in lung surfactant. Two of 

the micelle systems are anionic, composed from the detergent SDS and the surfactant 

PG-analogue LMPG, two are zwitterionic, composed from the lipid DPC and the surfactant 

PC-analogue LMPC, and the remaining one is a mixed micelle system composed of 85% 

LMPC and 15% LMPG, in keeping with the physiological ratio of PC to PG in the lung. 

For all micelle systems, the ID 1H spectra of Mini-B + SP-A look almost identical to 

SP-A alone (Figures 6.1, 6.2, 6.7, 6.8, 6.13 , 6.17 and 6.21). The 10 1H spectra ofthe mixed 

sample is expected to be dominated by the signals from SP-A since an SP-A monomer (248 
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amino acids) has more than 7 times the number of amino acids as a Mini-B monomer (34 

amino acids). Thus the signals from Mini-B are completely buried under the many more 

intense signals of SP-A. However, lack of any observable differences between the ID 1H 

spectra of SP-A and Mini-B + SP-A gives a primary indication that, in all micelle systems, 

the overall conformation of SP-A does not change with the addition of Mini-B. This, 

however, does not rule out an interaction between Mini-B and SP-A because the proton 

signals of SP-A are already very broad and overlapped and thus the SP-A signal intensity 

may not change much even if the relatively smaller Mini-B and SP-A are bound within the 

same micelle complex. 

Since Mini-B consists of nine 15N-labeled amino acids, the 2D 15N- 1H HSQC spectra 

provide an opportunity to assess the SP-A effects on the Mini-B conformation as a result of 

any interactions between the two proteins. Interestingly, upon addition of SP-A, the intensity 

of Mini-Box HSQC peaks decreases drastically for zwitterionic DPC and LMPC micelles 

(Figures 6.9 and 6.14) but remains mostly unaffected for anionic SDS and LMPG and mixed 

LMPC/LMPG micelles (Figures 6.3, 6.18 and 6.22). The same results are also observed for 

Mini-BRED + SP-A in DPC and SDS m,icelles (Figures 6.10 and 6.4). Therefore, in 

zwitterionic micelles, a much larger subpopulation of Mini-Box and the entire population of 

Mini-BRED appear to be bound in complexes that are too large to yield the HSQC signals, 

presumably complexes of SP-A-bound micelles. Since there are enough DPC/LMPC present 

to provide at least 4 times as many micelles as Mini-B molecules, it seems that Mini-B has a 

strong preference to interact with SP-A-bound DPC/LMPC complexes over SP-A-free 

DPC/LMPC micelles. This interpretation is supported by the absence of any changes in the 

HSQC spectra when more DPC is added (Figure 6.9 D and E). For the anionic micelles, the 

scenario appears to be substantially different. The absence of any apparent change in the 

HSQC peak intensity indicates that Mini-B does not interact with the SP-A/micelle complex 

and remains bound to its own micelle. Surprisingly, in mixed LMPC/LMPG micelles, 

Mini-B behaves similarly to that in pure LMPG micelles although the mixed micelles 

comprise 85% LMPC. It is, however, possible that even in the anionic and mixed micelle 

systems, a much smaller subpopulation of Mini-B interacts with SP-A and that does not 

cause an observable reduction in the overall HSQC peak intensity. 
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------ -- -----------------

Indeed, the 2D DOSY spectra indicate the presence of larger complexes in both DPC 

and SDS micelle systems although the overall results are different between DPC and SDS. In 

DPC, the Mini-Box/SP-A mixture contains two populations of different sizes as indicated by 

the two translational diffusion coefficients. The apparent hydrodynamic diameters are ~ 12.8 

and 20.4 nm as calculated from the attenuation of the protein HN signals. Both of these sizes 

are much larger than the apparent hydrodynamic diameters of the complexes containing the 

proteins individually, ~ 2.3 nm for Mini-B0 x/DPC and ~ 4.1 nm for SP-AIDPC. The 

approximate ratio ofthe small-to-large subpopulations ofMini-Box/SP-A/DPC is 62%: 38% 

as estimated from the y-axis (relative signal intensity) intercepts of the two linear fits 

representing the two diffusion coefficients (Figure 6.11 ). However, as both species of Mini

Box+ SP-A in DPC are much larger than Mini-Box alone, the intensity of the HSQC peaks 

decreases markedly (Figure 6.9). On the other hand, the mixed Mini-Box/SP-A sample in 

SDS also contains two species but the apparent hydrodynamic diameters are ~ 6.8 and 19.4 

nm. The approximate ratio of small-to-large subpopulations of Mini-Box/SP-A/SDS is 85% : 

15%. Moreover, the size of the predominant smaller species in this case is not very different 

from the~ 5.6 nm apparent hydrodynamic diameter of SP-A/SDS alone. Therefore, only a 

smaller fraction of the total number of Mini-B molecules present in the SDS sample seems to 

be bound to SP-A. This likely explains why the HSQC peaks of Mini-Box + SP-A do not 

noticeably lose intensity when compared to Mini-Box alone (Figure 6.3). The apparent sizes 

of the DPC- and SDS-bound protein(s) mentioned here are estimated from the attenuation of 

the protein HN signals. Although the numbers are different when the estimation is done from 

the attenuation of the micelle peaks, the trend of the size-change remains the same between 

the mixed and individual protein samples. Therefore, almost the entire population of Mini

Box presumably interacts with SP-A when in zwitterionic DPC micelles but only a 

subpopulation of Mini-Box interacts with SP-A when in anionic SDS micelles. 

In contrast to the results obtained for smaller DPC/SDS micelles, the 20 DOSY 

spectra of Mini-Box + SP-A in larger LMPC/LMPG micelles do not provide a clear 

indication about the formation of bigger complexes containing both proteins together. 

Surprisingly, the apparent sizes of the particles present in Mini-Box + SP-A samples, 
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calculated from the translational diffusion coefficients, consistently come in between the 

sizes of the particles present in individual protein samples (Figures 6.13, 6.16 and 6.19). For 

example, the apparent hydrodynamic diameter of Mini-Box/SP-A/LMPC is ~ 8.5 nm, 

whereas that of Mini-BoxiLMPC and SP-A/ LMPC are~ 6.7 and 10.3 nm, respectively. It 

should be mentioned that the apparent sizes of the protein/lipid complexes in these larger 

micelle systems are estimated from the lipid peaks only. As deuterated versions of LMPC 

and LPMG are not commercially available to date, the signals from the protonated lipids 

overwhelm the signals from the protein(s), as the lipid-protein ratio is 400 : 1, and hence the 

protein HN signals are too weak to produce meaningful signal attenuation curves. 

It is not clear why, in LMPC and LMPG samples, Mini-Box + SP-A diffuses more 

rapidly than SP-A alone (Figures 6.13, 6.16 and 6.19). However, my previous studies of 

Mini-Box alone show that Mini-Box induces either a size decrease, a shape change, or a 

faster exchange of free and micelle-bound amphiphiles for the larger micelles composed of 

LMPC or LMPG, which results in a faster diffusion of the Mini-Box/micelle complexes than 

pure micelles (Chapter 4). Perhaps something similar takes place even when SP-A is present. 

Also surprising is the observation that the excellent single fits of the signal attenuations 

curves for Mini-Box + SP-A in LMPC and LMPG indicate a single translational diffusion 

coefficient, and hence apparently one size, for each system. In comparison with SDS or DPC, 

large amphiphiles like LMPC and LMPG are much less used in the NMR studies of proteins. 

Many of the physical properties of these micelles, such as the shape and the size, are not well 

characterized to date. It is possible that the shape of pure LMPC and LMPG micelles is 

largely nonspherical and when bound to the protein(s) the shape may further deviate either 

way. This effect may be more prominent for a small amphipathic peptide like Mini-B and 

may result in an apparently unusual faster diffusion of the peptide/micelle complexes, even 

when the much larger SP-A is present. Another possibility is a Mini-Box induced further 

reduction of SP-A oligomeric states, e.g., from 2~3 trimers to single trimers or even smaller, 

in LMPC and LMPG systems causing the Mini-Box/SP-A/micelle complexes to diffuse more 

rapidly than the SP-A/micelle complexes. This may be a very interesting demonstration of 

Mini-Box-induced rearrangement of not only the lipid structures but also the SP-A structures. 
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How exactly Mini-B interacts with SP-A is a matter of discussion. Since, in all cases, 

the chemical shifts of the Mini-B HSQC peaks (or their much weaker traces) remain 

unchanged, most likely the interactions between the two proteins do not occur directly but 

are mediated through the micelles. It is plausible that the Mini-B/micelle complexes fuse 

with the SP-A/micelle complexes but the two proteins remain apart in the final assembly. 

However, it is also possible that Mini-B directly interacts with SP-A but the complexes 

representing the directly interacting subpopulation are so large that they are completely 

absent from the HSQC spectra and hence the corresponding chemical shift changes of the 

peaks can not be tracked. 

Electrostatic interaction between the positively charged Mini-B (net charge +7) and 

negatively charged SP-A (net charge -4) is most likely at the root of the fusion of the 

complexes containing the individual proteins. However, since both proteins are initially 

bound to their own micelles, the charges of lipid/detergent headgroups are expected to 

greatly influence the fusion process. Thus in the context of zwitterionic micelles, it is 

reasonable to think that electrostatic interaction between Mini-B and SP-A would be 

relatively strong, while in anionic micelles, the repulsion between micelles could 

substantially reduce the interaction between the two proteins. Moreover, as discussed in 

Chapter 4 (Page 90), Mini-B appears to be more compactly and deeply bound to anionic 

micelles than zwitterionic micelles. Therefore when within an anionic micelle, perhaps 

Mini-B does not experience a strong attraction toward SP-A which is bound to another 

anionic micelle. However, the Brownian motion and random collision in solution may bring 

instantaneous changes in the overall electrostatic profile of the individual protein complexes 

and thus a smaller subpopulation of the two proteins may become bound to the same anionic 

micelle complexes. In contrast, when bound to the zwitterionic micelles, whose own net 

charge is zero, the oppositely charged Mini-B and SP-A complexes likely experience a much 

stronger attraction and may easily fuse to form single Mini-B/SP-A/micelle complexes for 

the entire population, even if the two proteins do not directly bind each other. The apparent 

relatively superficial positioning of Mini-B in zwitterionic micelles may further enhance the 

complex formation process. 
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----- ---------------------~ 

Comparison of the apparent particle sizes containing Mini-Box and SP-A jointly and 

individually indicates that, at least in DPC and SDS, the protein-protein complexes are not 

formed as just one Mini-Box plus one SP-A. Both subpopulations of Mini-Box/SP-A/DPC 

and the larger subpopulation of Mini-Box/SP-A/SDS are presumably formed by binding 

multiple subunits ofthe two proteins in a single complex. 

In summary, the degree of interaction between Mini-B and SP-A appears to be 

dependent on the type of detergent/lipid headgroup. For the model surfactant lipids used in 

this study, most likely the interaction is not a direct protein-protein interaction, but rather is 

mediated via the detergent/lipid micelles. While the atomistic understanding of Mini-B/SP-A 

interaction is not complete, a lipid-dependent interaction between native SP-B and SP-A may 

have important implications in lung surfactant function. 
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Chapter 7 

odifications · o SP-Bs-2s St uc ure 
and Lipid In eractio - s upon 

Tryp · ophan Oxidation 

Note : Peptides used in this study were synthesized and purified by Donna Jackman 

(Booth lab, Biochemistry, MUN) . CD data were acquired and analyzed with help of 

Prof David H. Heeley (Heeley lab, Biochemistry, MUN) and Dr. Michael Hayley 

(Booth lab, Biochemistry, MUN). 
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7.1 Overview 

Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) can arise 

from a variety of insults of the lung including oxidative stress caused by an increase in 

reactive oxygen species (ROS) [199-202]. ROS-induced modifications result in dysfunction 

of lung surfactant (LS) and can lead to its complete inactivation [202-205]. Several studies 

have examined the disruptive effects of ROS on both individual LS components, namely 

lipids and proteins, and overall alterations of surfactant biophysical activity [ 179, 205-21 0]. 

However, the most deleterious effects are observed for ROS-induced modifications of SP-B, 

which appear to make the most severe contributions to surfactant inactivation [202, 206, 21 0]. 

In vitro studies have shown that the oxidation of SP-B involves modification of a maximum 

of three amino acids; the two methionines and the only tryptophan [211]. Analysis of 

fusogenic, lytic and surface tension reducing activities of SP-B-based peptides demonstrates 

that Trp9 is critical for optimal interface affinity ofSP-B [107, 142]. It is therefore crucial to 

characterize the changes to the structure and lipid interactions of SP-B caused by the 

oxidative modification of Trp9 which potentially leads to the loss of protein function. 

Tryptophan is an amino acid that typically either contributes to the hydrophobic core 

of a globular protein or anchors a lipid-associated protein to a polar/apolar interface [212]. 

From the structure of Mini-B, determined in detergent micelles composed of SDS, the 

sidechain ofTrp9 (W2 in Mini-B) does not appear to contribute to the interhelix hydrophobic 

contacts and therefore its role is most likely in interacting with the lipids to help anchor 

Mini-Bat the lipid/water interface (Chapter 3 and [156]). 

In this part of my research, I have studied the conformations of Wild-Type and 

Trp-Oxidized SP-B8_25, an 18 amino acid peptide that consists of the N-terminal helical 

segment of SP-B (i.e., the N-terminal half of Mini-B). The objectives were to investigate if 

the oxidation of Trp9 destroys the helical structure or makes the peptide unable to anchor 

inside lipids only, or results in both. The structural differences between the two peptide 

versions were probed in lung lipid mimetic SDS and DPC micelles, in organic solvent HFIP, 

as well as in water alone, using solution NMR and circular dichroism (CD). 
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7.2 Materials and Methods 

7.2.1 Peptide Synthesis and Purification 

SP-Bs-25 consists of human SP-B amino acids 8 to 25. Two versions of the peptide 

were synthesized and purified by Donna Jackman (Booth lab, Biochemistry, MUN). The 

wild-type version [SP-Bs-25 (Wild-Type)] retained the native tryptophan at position 2, which 

corresponds to position 9 in the natural protein. In the oxidized version [SP-B8_25 (Trp9Kyn)], 

tryptophan was replaced by one of its oxidized forms, kynurenine [Figure 7.1]. The amino 

acid sequences are : 

SP-Bs-25 (Wild-Type) : Cys-Trp-Leu-Cys-Arg-Ala-Leu-IIe-Lys-Arg-Ile-Gln-Ala-Met-Ile-Pro-Lys-Giy 

SP-Bs-25 (Trp9Kyn) : Cys-Kyn-Leu-Cys-Arg-Ala-Leu-IIe-Lys-Arg-IIe-Gin-Aia-Met-Ile-Pro-Lys-Giy 

H 
.,..,.,.,N 

0 

Tryptophan 

(Trp) 

0 

NH2 Figure 7.1 : Chemical structures 
of tryptophan (Trp) and one of its 
oxidized forms kynurenine (Kyn). 

Kynurenine 

(Kyn) 

Both versions of SP-B8_25 were synthesized in a CS336X peptide synthesizer (C S Bio 

Co., Menlo Park, CA) following manufacturer's instructions. The peptides were produced by 

solid phase peptide synthesis method employing 0-fluorenylmethyloxycarbonyl (Fmoc) 

chemistry. All Fmoc amino acids and coupling agents were purchased from C S Bio Co. with 

the exception of Fmoc kynurenine that was purchased from Advanced ChemTech (Louisville, 

KY). Organic solvents and other reagents used for the synthesis and purification were high 

performance liquid chromatography (HPLC) grade or better and purchased from Fisher 

Scientific (Ottawa, ON) and Aldrich Chemical (St. Louis, MO). The peptides were 
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synthesized at a 0.2 mmol scale using a single coupling. A prederivatized Rink amide resin 

was used to assemble the peptides during synthesis. At completion, deprotection and 

cleavage of the peptides from the resin were carried out with a TF A/Water (95/5 by volume) 

cleavage cocktail followed by cold precipitation with tert-butyl ether. The crude products 

were then purified by preparative reverse-phase HPLC in a Vydac C-8 column by use of a 

water/acetonitrile linear gradient with 0.1% trifluoroacetic acid as the ion-pairing agent. The 

molecular weight of the peptides were confirmed by matrix-assisted laser desorption/ 

ionization - time of flight (MALDI-TOF) mass spectrometry performed at the CREAIT 

Network facility (MUN). Finally, the purified peptides were lyophilized and stored at 4 °C. 

7.2.2 Sample Preparation 

Four samples were prepared for each version of SP-88_25 . First a stock buffer solution 

was prepared in H20/D20 (90%110%) with 0.4 mM DSS and 0.2 mM NaN3. The final 

samples were then prepared by dissolving peptides and other contents in the buffer. For 

samples in water, 1 mM peptide was dissolved in the buffer. Samples in HFIP also contained 

1 mM peptide but the buffer was adjusted to have 40% HFIP (98% deuterated; Cambridge 

Isotope, Andover, MA) plus 50% H20 and 10% D20 . For samples in SDS or DPC, 1 mM 

peptide and 100 mM detergent (98% deuterated; Cambridge Isotope, Andover, MA) were 

dissolved in the buffer. One mM DTT was also added to all eight samples from a freshly 

prepared DTT stock solution. The pH of the samples was set to 7.0 by use ofNaOH and HCl, 

without taking the isotope effects into account. Only one sample of each composition was 

made and the same sample was used for both NMR and CD experiments. 

7.2.3 NMR Data Collection and Processing 

A set of 1D 1H, 2D 1H- 1H TOCSY, 2D 1H-1H NOESY and 2D DOSY experiments 

was performed for each SP-88_25 sample on a Bruker Avance II 14.1 Tesla (600 MHz) 

spectrometer (Billerica, MA) equipped with z-gradients and an inverse triple resonance TXI 
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probe. The NMR data were collected and processed using the Bruker Topspin 2.0 software. 

The pulse length (P 1) and the transmitter offset (0 1) were optimized for each sample before 

running the full set of NMR experiments. The 1D 1H, 2D 1H-1H TOCSY and 2D 1H- 1H 

NOESY spectra were acquired at temperature 37 octo match the physiological temperature. 

All these experiments used the water-gate water suppression technique [146]. In 1D 1H 

experiments, data were collected with 32 scans and processed using an exponential 

apodization function with 1 Hz line broadening. The 2D 1H- 1H TOCSY experiments used a 

60 ms mixing time and were run with 80 or 128 scans (indicated in the figure captions). A 

total of 2048/512 data points were collected in F2/F 1 dimensions and the processed spectra 

had 1024 points in both dimensions. The 2D 1H- 1H NOESY experiments used a 200 ms 

mixing time and were run with 128 scans. A total of 2048/512 data points were collected in 

F2/F1 dimensions and the processed spectra had 1024 points in both dimensions. All TOCSY 

and NOESY spectra were processed using the Qsine apodization function with a sine bell 

shift of 2. The 2D DOSY experiments were performed using PFG NMR [157]. The pulse 

sequence used a stimulated echo with bipolar gradient pulses and one spoil gradient [ 158], 

followed by a 3-9-19 pulse for water suppression [159]. The DOSY spectra were acquired for 

SDS samples at 37 °C. However, for DPC samples, the DOSY spectra were acquired at 

25 oc to minimize the effect of thermal convection. The diffusion time was kept constant at 

100 ms. The gradient pulse length was optimized for each sample and set between 4 and 6 ms. 

The maximum amplitude of the gradient strength was 35 G/cm and the 1H signals were 

attenuated in 32 steps. The translational diffusion coefficient was determined from the slope 

of the signal attenuation curve plotted using Eq. 2. 17. The hydrodynamic diameter was 

calculated using the Stokes-Einstein equation [Eq. 2.20]. The viscosity of pure water was 

used for the viscosity of solution in the calculation and the values were 8.91 x 10-4 kg/m.s at 

25 oc (298 K) and 6.92 x 10-4 kg/m.s at 37 oc (31 0 K). 
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7.2.4 CD Data Collection and Processing 

The CD spectra, in the far-ultraviolet (far-UV) region (from 260 to 190 nm), were 

recorded for all eight SP-B8•25 samples using a Jasco-81 0 spectrapolarimeter (Easton, MD). 

The CD data were acquired at 37 oc using a quartz cuvette with 0.1 mm path length. The 

NMR samples were transferred to the cuvette without making any changes in the sample 

conditions. The temperature was controlled by a CTC-345 circulating water bath. The 

scanning speed of the instrument was set at 100 run! min with normal sensitivity. Five 

accumulations were collected for each sample in 0.1 nm steps. The Molar ellipticity [8] was 

calculated using the equation suggested by Heeley et al. [213], 

[8] = 8obsl( 1 OLC), (7 .1 ) 

where Sobs is the observed ellipticity, L is the path length of the cell (0.0 1 em) and C is the 

number of amino acids multiplied by the molar concentration of the peptide (0.0 18 M). The 

secondary structural content was calculated from the molar ellipticity data using a computer 

program following the method of Yang et a/. [214]. Although the computer program 

calculated the structure percentages as a-helix, ~-sheet, ~-tum and random coil, SP-Bs-25 is 

unlikely to contain a ~-sheet which requires two or more strands hydrogen-bonded together. 

It is more plausible that the ~-sheet content indicated by the computer program actually 

represents an extended conformation and hence is reported as such in the CD results sections. 
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7.3 Results 

7.3.1 NMR Spectra of SP-B8_25 in SDS 

Figure 7.2 shows the lD 1H spectra of SP-Bs-25 (Wild-Type) and SP-Bs-25 (Trp9Kyn) 

in SDS micelles, a mimetic for the lung surfactant phospholipids with anionic headgroups. 

The signals seen for SP-Bs.25 (Wild-Type) in the enlarged 6-9 ppm region, corresponding to 

the backbone and sidechain amide protons (HNs), are broad and possibly overlapped in some 

cases but well dispersed. This level of line-broadening and overlap is not unexpected as the 

peptide is bound to a detergent micelle. The spectral dispersion and intensity of backbone 

HNs indicate SP-Bs-25 (Wild-Type) is structured in SDS. The 6-9 ppm region of SP-Bs-25 

(Trp9Kyn), on the other hand, looks substantially different. There are fewer signals present 

and the signals are less intense and less resolved, although the 7-7.5 ppm region has some 

peaks with greater intensity likely from sidechain HNs. Overall, the lD 1H spectrum of 

SP-Bs-25 (Trp9Kyn) is atypical for a structured peptide. 

Similarly, the HA-HN regions of 2D 1H- 1H TOCSY and 2D 1H-1H NOESY spectra 

(data not shown) show fewer cross peaks for SP-B8_25 (Trp9Kyn) than for SP-B8•25 (Wild

Type). The overall appearance of these spectra is consistent with Wild-Type peptide being 

well structured and Trp9Kyn peptide exhibiting far less structure. This interpretation is 

further supported by the examination ofHN-HN regions of2D 1H- 1H NOESY spectra ofSP

Bs.25 (Wild-Type) and SP-B8•25 (Trp9Kyn) in SDS (Figure 7.3). About 9 backbone HN-HN 

cross peaks and some sidechain HN-HN cross peaks are seen for SP-B8.25 (Wild-Type). The 

~ 9 intense backbone HN-HN correlations result from short HN-HN distances and indicate 

an a-helical folding of the peptide for about 10 amino acids (i.e., about 3 helical turns). 

However, for SP-B8.25 (Trp9Kyn), only ~ 2 backbone HN-HN cross peaks are seen. This 

indicates that SP-Bs-25 (Wild-Type) contains a helical region comprised of only about 3 

amino acids (i .e., approximately 1 helical tum). 
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Next, diffusion NMR spectroscopy is used to indicate differences in the 

peptide/micelle complex sizes. The 2D DOSY spectra of SP-Bs-25 (Wild-Type) and SP-Bs-25 

(Trp9Kyn) in SDS (Figure 7.4) display 1H signals resulted from translational diffusion. The 

~ A. SP-Bs-25 (Wild-Type) 
in SDS 

, . 0 (ppm] 

~ B. SP-Bs-25 {Trp9Kyn) 
in SDS 

l 

~---..)..1 ~ ,1 L,Vl\ ,1'~ 
~~~1,1--~~~~~,--~~~~ .. o [ppm] 

... "~ ...... " .. ,,,,. C. Enlarged 6-9 ppm regions .. .. . 

~ 
.t:l 
:0 5 IA).3_ 1.~9_07.:J u~0~_9P -BC 8 25 ) (Tt:p Kyn)_S D S 

8.5 8.0 7.5 7.0 6.5 1H (ppm) 

Figure 7.2 : 1D 1H spectra of (A) mM SP-B8_25 (Wild-Type) and (B) 1 mM SP-Bs-25 
(Trp9Kyn) in 100 mM SDS at pH 7.0 and temperature 37 °C, acquired using 32 scans. The 
6-9 ppm regions of both spectra are enlarged and shown in the bottom panel (C). 
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translational diffusion coefficients are represented by the slopes of the signal attenuation 

curves, obtained from the underlying 1D 1H experiments, for the two sharpest SDS peaks at 

0.80 ppm (corresponding to CH3) and 1.22 ppm (corresponding to (CH2)3_11), as well as the 

SP-Bs-25 HN regions (6-9 ppm). The observed diffusion coefficients, along with the 

hydrodynamic diameters calculated using the Stokes-Einstein equation, are reported in the 

table of Figure 7.4. The diameters are 2.82, 2.85 and 2.71 nm, respectively, for SP-Bs-25 

(Wild-Type)/SDS complex and 3.93, 3.77 and 3.45 nm, respectively, for SP-B8_25 

(Trp9Kyn)/SDS complex. Therefore, the micelle complex containing SP-Bs-25 (Trp9Kyn) 

appears substantially larger than the micelle complex containing SP-B8_25 (Wild-Type). 
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Figure 7.3: HN-HN regions of2D 1H-1H NOESY spectra of(A) 1 mM SP-B8_25 (Wild-Type) 
and (B) 1 mM SP-B8_25 (Trp9Kyn) in 100. mM SDS at pH 7.0 and temperature 37 °C, 
acquired using 128 scans and 200 ms mixing time. The base contour level, level increment 
and number of levels are the same for both spectra. 
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Figure 7.4 : SP-B8•25/SDS complex sizes as 
indicated by translational diffusion. Upper panels 
show the 2D DOSY spectra of (A) I mM SP-Bs-25 
(Wild-Type) and (B) 1 mM SP-Bs-25 (Trp9Kyn) in 
I 00 mM SDS at pH 7.0 and temperature 37 °C. 
Linear fits (C, D and E) show the attenuation of the 
peaks at 0.80, I .22 and 6-9 ppm obtained from the 
DOSY data. The observed diffusion coefficients, 
represented by the slopes of the curves, and the 
hydrodynamic diameters, calculated using the 
Stokes-Einstein equation (Eq. 2.20), are shown in 
the table (F). 
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7.3.2 CD Spectra of SP-B8_25 in SDS 

CD spectroscopy provides an alternate measure of the secondary structural content of 

both versions of the peptide to complement the NMR data. Figure 7.5 shows the CD spectra 

of SP-Bs-25 (Wild-Type) and SP-Bs-25 (Trp9Kyn) in SDS at pH 7.0 and temperature 37 °C. It 

is observed that more than half of SP-B8_25 (Wild-Type) is helical (- 52%), with the 

remainder in random coil (- 18%) and extended (- 30%) conformation. However, the 

features for SP-Bs-25 (Trp9Kyn) are substantially different, with reduction of helical content 

to about one-fourth (- 27%) and a considerable increase in random coil (36%) along with 

some increase in extended (- 3 7%) conformation. 

In SDS 

50000~----------~----------------~ 

- SP-Ba-25 (Wild-Type) 
--- SP-Ba-25 (Trp9Kyn) 

~ 25000 
'C 

.E. 

-25000+---~--~----~--~--~--~--~ 
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Wavelength (nm) 
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52 __ 3Q_ J 18 I 
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Figure 7.5 : Far-UV CD spectra of 1 mM SP-B8_25 (Wild-Type) and 1 mM SP-Bs-25 
(Trp9Kyn) in 100 mM SDS at pH 7.0 and temperature 37 °C, acquired using 5 accumulations 
and a 0.1 mm light path. The molar ellipticity is calculated from the observed ellipiticity 
following the method described in Ref. [213]. The secondary structural contents are 
calculated from the molar ellipticities following the method described in Ref. [214] . 
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7.3.3 NMR Spectra of SP-B8_25 in DPC 

The results for both Wild-Type and Trp9Kyn versions of SP-B8_25 in DPC micelles, a 

mimetic for lung surfactant phospholipids with zwitterionic headgroups, were similar to 

those obtained in the anionic SDS micelles. Figure 7.6 shows the 1 D 1H spectra of SP-B8_25 

in DPC. For SP-Bs-25 (Wild-Type), well-dispersed signals from the backbone and sidechain 

amide protons (HNs) are seen in the enlarged 6-9 ppm region. The 6-9 ppm region of 

SP-Bs-25 (Trp9Kyn), on the other hand, looks substantially different. In spite of the signals in 

7.1-7.5 ppm region with greater intensity, likely from sidechain HNs, there are much fewer 

and less intense backbone HN signals present. Again, the dispersion and intensity of 

backbone HN signals indicate SP-Bs-25 (Wild-Type) is structured but that of SP-Bs-25 

(Trp9Kyn) are atypical for a structured peptide. 

This interpretation is supported further from the analysis of HN-HN regions of 2D 
1H- 1H NOESY spectra ofSP-Bs-25 (Wild-Type) and SP-Bs-25 (Trp9Kyn) in DPC (Figure 7.7). 

About eight backbone HN-HN cross peaks and some sidechain HN-HN cross peaks are seen 

for SP-B8_25 (Wild-Type). The intense backbone HN-HN correlations indicate an a-helical 

folding of the peptide for about 9 amino acids (i.e., 2.5 helical turns). However, for SP-Bs-25 

(Trp9Kyn), only two backbone HN-HN cross peaks are seen. This indicates that SP-B8_25 

(Wild-Type) contains a helical region ·comprised of only about 3 amino acids (i .e. 

approximately 1 helical turn). The HA-HN regions of 2D 1H- 1H TOCSY and 2D 1H- 1H 

NOESY spectra [data not shown] also indicate less structuring of SP-B8_25 (Trp9Kyn) when 

compared to SP-B8_25 (Wild-Type). 

Similarly to the study in SDS, differences in the complex sizes are also obtained for 

the peptides in DPC micelles using diffusion NMR spectroscopy (Figure 7.8). Again, three 

hydrodynamic diameters are calculated from the translational diffusion coefficients obtained 

for the signal attenuation of the two sharpest DPC peaks at 0. 79 ppm (corresponding to CH3) 

and 1.20 ppm (corresponding to (CH2)3_11 ) as well as the SP-B8_25 HN region (6-9 ppm). The 

diameters are 4.57, 4.51 and 4.19 nm, respectively, for SP-B8_25 (Wild-Type)/DPC complex 

and 3.83, 3.74 and 3.73 nm, respectively, for SP-B8_25 (Trp9Kyn)/DPC complex. The sizes of 
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the DPC micelle complexes, containing two different peptide versions, are not as dissimilar 

as for SDS complexes. Also, in contrast to SDS, the hydrodynamic diameter of the SP-B8•25 

(Trp9Kyn)/DPC complex is smaller than the SP-B8•25 (Wild-Type)/DPC complex. 

~ A. SP-Bs-25 (Wild-Type) 
inDPC 

0 (ppm) 

~ B. SP-Bs-25 (Trp9Kyn) 
in DPC 

10 

~· 117 "'·''"'" '" "'" C. Enlarged 6-9 ppm regions .. . . 

E 
:.0 
~ tn 8 J .Z I ::! 4•1'-l1 04 ~ p 6(8 .!':>) (T •· &-~""Kyn) _I •P 

8.5 8.0 7.5 7.0 

0 (ppm) 

6.5 1H (ppm) 

Figure 7.6 : 1D 1H spectra of (A) 1 mM SP-B8.25 (Wild-Type) and (B) 1 mM SP-Bs.25 

(Trp9Kyn) in 100 mM DPC at pH 7.0 and temperature 37 °C, acquired using 32 scans. The 
6-9 ppm regions of both spectra are enlarged and shown in the bottom panel (C). 
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Figure 7.7: HN-HN regions of(A) 2D 1H-1H NOESY spectra of 1 rnM SP-Bs-25 (Wild-Type) 
and (B) 1 mM SP-B8_25 (Trp9Kyn) in 100 mM DPC at pH 7.0 and temperature 37 °C, 
acquired using 128 scans and 200 ms mixing time. The base contour level, level increment 
and number of levels are the same for both spectra. 
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Figure 7.8 : SP-B8_25/DPC complex sizes as 
indicated by translational diffusion. Upper panels 
show the 2D DOSY spectra of (A) I mM SP-Bs-25 
(Wild-Type) and (B) 1 mM SP-Bs-25 (Trp9Kyn) in 
100 mM DPC at pH 7.0 and temperature 25 °C. 
Linear fits (C, D and E) show the attenuation of the 
peaks at 0.79, 1.20 and 6-9 ppm obtained from the 
DOSY data. The observed diffusion coefficients, 
represented by the slopes of the curves, and the 
hydrodynamic diameters, calculated using the 
Stokes-Einstein equation (Eq. 2.20), are shown in 
the table (F). 
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7.3.4 CD Spectra of SP-B8_25 in DPC 

To complement the NMR data and obtain an alternate measure of the secondary 

structural content, CD spectroscopy was also performed for both versions of SP-B8_25 in DPC 

at pH 7.0 and temperature 37 oc (Figure 7.9). The CD data indicate that about two-fifths of 

SP-Bs-25 (Wild-Type) is helical (~ 38%) with the remainder in random coil (~ 26%) and 

extended (~ 36%) conformation. However, the features for SP-B8_25 (Trp9Kyn) are 

substantially different, with the reduction of helical content to about one-fifth (~ 20%) and a 

considerable increase in random coil(~ 39%) along with some increase in extended(~ 4I%) 

conformation. Differences in the structures of the two peptide versions in DPC are similar to 

that observed in SDS. 
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40000~----------------------------~ 

- SP-Bs-25 (Wild-Type) 
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Figure 7.9 : Far-UV CD spectra of I mM SP-Bs-25 (Wild-Type) and I mM SP-Bs-25 
(Trp9Kyn) in IOO mM DPC at pH 7.0 and temperature 37 °C, acquired using 5 
accumulations and a O.I mm light path. The molar ellipticity is calculated from the observed 
ellipiticity following the method described in Ref. [2I3]. The secondary structural contents 
are calculated from the molar ellipticities following the method described in Ref. [2I4]. 
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7.3.5 NMR Spectra of SP-B8_25 in HFIP (40°/o) 

In contrast to the micelle systems, 40% HFIP m aqueous solution provides a 

secondary structure-inducing environment, but without a polar/apolar interface, which can be 

important in inducing native-like folding of amphipathic helices. For SP-Bs-25 in 40% HFIP 

(plus 50% H20 and 10% D20), likewise in the SDS and DPC micelle systems, the 1 D 1H, 2D 

1H- 1H TOCSY and 2D 1H- 1H NOESY spectra indicate SP-Bs-25 (Wild-Type) is much more 

structured than SP-Bs-25 (Trp9Kyn) (Figures 7.10 and 7.11). The numbers of intense cross 

peaks in the HN-HN regions of 2D 1H-1H NOESY spectra indicate an a-helix at least 8 

amino acid long for Wild-Type peptide, but only 3 amino acid long for Trp9Kyn peptide. 
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1 B. SP-Bs-25 (Trp9Kyn) 
in 40% HFIP 

0 ~- L-

10 

-I 

0 "'"'' 

.------- - -----------------------------~~-------------------. 
~ ". .. ..... , . ,. , , , _ C. Enlarged 6-9 ppm regions 

_ _ .. ____........._/t4 ____ ,.r"\.. ___ -.....__ --

--~---------

8.5 8.0 7.5 7.0 6.5 1H (ppm) 

Figure 7.10 : lD 1H spectra of (A) 1 mM SP-Bs-25 (Wild-Type) and (B) 1 mM SP-Bs-25 
(Trp9Kyn) in 40% HFIP (plus 50% H20 and 10% D20) at pH 7.0 and temperature 37 °C, 
acquired using 32 scans. The 6-9 ppm regions of both spectra are enlarged and shown in the 
bottom panel (C). 
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Figure 7.11 : HN-HN regions of (A) 20 1H-1H NOESY spectra of 1 mM SP-Bs-25 (Wild
Type) and (B) 1 mM SP-B8_25 (Trp9Kyn) in 40% HFIP (plus 50% H20 and 10% 0 20) at pH 
7.0 and temperature 37 °C, acquired using · l28 scans and 200 ms mixing time. The base 
contour level, level increment and number of levels are the same for both spectra. 
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7.3.6 CD Spectra of SP-B8_25 in HFIP (40°/o) 

The interpretation of NMR spectra in 40% HFIP is further supported by the CD 

spectroscopy of SP-B8.25 performed at pH 7.0 and temperature 37 oc (Figure 7.12). The 

secondary structure calculation shows that about two-fifths of SP-B8•25 (Wild-Type) is helical 

(~ 41 %) with the remainder in random coil (~ 29%) and extended (~ 30%) conformation. 

However, for SP-Bs-25 (Trp9Kyn), the helical content is reduced to about one-fifth(~ 19%) 

and the random coil is increased substantially (~ 44%) along with some increase of the 

extended ( ~ 3 7%) conformation. These features are similar to that of the micelle-bound 

Wild-Type and Trp9Kyn peptides. 
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Figure 7.12 : Far-UV CD spectra of 1 mM SP-B8•25 (Wild-Type) and 1 mM SP-Bs-25 
(Trp9Kyn) in 40% HFIP (plus 50% H20 and 10% D20) at pH 7.0 and temperature 37 °C, 
acquired using 5 accumulations and a 0.1 mm light path. The molar ellipticity is calculated 
from the observed ellipiticity following the method described in Ref. [213]. The secondary 
structural contents are calculated from the molar ellipticities following the method 
described in Ref. [214]. 
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7.3.7 NMR Spectra of SP-B8_25 in Water 

Unlike in surfactant phospholipid mimetic SDS and DPC micelles, or in structure

inducing organic solvent HFIP, the lD 1H, 2D 1H-1H TOCSY and 2D 
1
H-

1
H NOESY spectra 

indicate both version of SP-Bs.25 to be largely unstructured in water alone (90% H20 plus 

10% D20) (Figures 7.13 and 7.14). There are no cross peaks seen representing backbone 

HN-HN correlations in the corresponding regions of 2D 1H-1H NOESY. The cross-peaks 

seen for the Wild-Type are likely from the sidechain HNs. Overall features of the spectra 

suggest either aggregation or absence of an a-helical structure for both SP-Bs-25 (Wild-Type) 

and SP-Bs.25 (Trp9Kyn) in water alone. 

186 



r A. SP-88.25 (Wild-Type) 
in Water 

0 
N 

10 0 [ppm) 

; B. SP-Bs-25 (Trp9Kyn) 
in Water 

10 

...... ll . 1 ,., C. Enlarged 6-9 ppm regions ""·"" ft•k-• 

~ ...... 
:.0 
~ m i"J_ .L 2 0 _ 1 L•lo.A.l ('t';,O 3 P R (8· .:! o;,) (T&:p9l<yn) _ H 2 0 _ D Z O 

8.5 8.0 7.5 7.0 6.5 1H (ppm) 

Figure 7.13 : lD 1H spectra of (A) 1 mM SP-B8.25 (Wild-Type) and (B) 1 mM SP-Bs-25 
(Trp9Kyn) in water (90% H20 and 10% D20) at pH 7.0 and temperature 37 °C, acquired 
using 32 scans. The 6-9 ppm regions of both spectra are enlarged and shown in the 
bottom panel (C). 
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Figure 7.14 : HN-HN regions of (A) 2D 1H- 1H NOESY spectra of 1 mM SP-Bs-25 (Wild
Type) and (B) 1 mM SP-B8_25 (Trp9Kyn) in water (90% H20 and 10% D20) at pH 7.0 and 
temperature 3 7 oc, acquired using 128 scans ·and 200 ms mixing time. The base contour level, 
level increment and number of levels are the same for both spectra. 
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7.3.8 CD Spectra of SP-B8_25 in Water 

Complementing the NMR observation, the CD spectra of SP-Bs-25 in water at pH 7.0 

and temperature 37 oc indicates no considerable a-helical secondary structure for the Wild

Type peptide (only ~ 8%) but some helical structure for the Trp9Kyn peptide (~ 33%) 

(Figure 7 .15). The remainders, representing the majority portions of both peptides, are in 

random coil and extended conformation. These features are substantially different from what 

are observed for SP-Bs-25 either in detergent micelles or in organic solvent. 
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Figure 7.15 : Far-UV CD spectra of 1 mM SP-Bs-25 (Wild-Type) and 1 mM SP-Bs-25 
(Trp9Kyn) in water (90% H20 and 10% D20) at pH 7.0 and temperature 37 °C, acquired 
using 5 accumulations and a 0.1 mm light path. The molar ellipticity is calculated from 
the observed ellipiticity following the method described in Ref. [213]. The secondary 
structural contents are calculated from the molar ellipticities following the method 
described in Ref. [214]. 
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7.4 Discussion 

Inactivation of lung surfactant occurs in potentially fatal respiratory disorders like 

ARDS [33]. There are multiple biophysical and biochemical alterations of lung surfactant 

associated with ARDS [215]. However, several studies have confirmed that patients with 

ARDS show clear evidence of increased oxidative damage to surfactant lipids as well as 

proteins [179, 205-21 0]. Oxidative modification of SP-B, an essential component of lung 

surfactant, appears to be a major contributor to surfactant inactivation [202, 206, 21 0]. The 

modifications likely occur through the changes in the chemical structures of the two 

methionines and the only tryptophan of SP-B [211]. While oxidation of both residues hamper 

surfactant biophysical activity [211 ], modification of Trp9 likely produces the most 

deleterious effect as this amino acid is vital for SP-B function [1 07, 142]. 

SP-88_25, an 18 amino acid fragment comprising the N-teminal helical region of SP-B, 

has been shown to exhibit in vitro surface activity [ 103, 1 07] as well as to retain partial 

biological function when included in artificial surfactants [ 101]. This peptide carries a net 

charge of+4 (Arg12, Lys16, Arg17 and Lys24) at neutral pH as compared to the net change 

of +7 for the full-length SP-B monomer. It also includes the only tryptophan (Trp9) present 

in the SP-B sequence. The function of SP-B is thought to relate to its positive charges and 

amphipathic helical structure [83, 1 06], and thus the retention of these structural features by 

the fragment SP-88_25 is presumably what makes this peptide partially functional. 

The structure of SP-8 11 _25 in methanol was studied by Kurtz et al. and found to be 

a-helical for amino acids 13 to 21 [76]. However, this fragment did not include the 

functionally important Trp9. In my previous structural studies of Mini-B (Chapter 3 and 

M.Sc. Thesis), a larger peptide comprised of SP-Bs-25 joined to SP-B63-7s was found to 

consist of two helices. The N-terminal helix comprises amino acids 10 to 21 in SDS [ 156] 

and 11 to 22 in HFIP [ 11 0]. The experiments performed for this chapter indicated that 

SP-88_25 (Wild-Type), which corresponds to theN-terminal half of Mini-B, also took on an 

a-helical conformation in SDS and DPC micelles, as well as in HFIP, as indicated by NMR 
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and CD spectra. It is therefore reasonable to consider the corresponding segment of Mini-B 

(i.e., amino acids 1-18) as a reference structure for SP-B8_25 (Wild-Type) (Figure 7.16). 

However, as the other half of Mini-B is missing and interhelix interactions between the two 

halves were observed for Mini-B in SDS, small differences in the helical structure of 

SP-Bs-25 (Wild-Type) would not be unexpected. 
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Mini-B SP-B8_25 

Figure 7.16 : Topology and structure 
of SP-Bs-25 (Wild-Type) based on the 
structure of Mini-B in SDS (PDB lD 
2DWF). The numbers with sjngle 
letter amino acid codes represent the 
position within the peptides (not the 
full-length protein). 
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The objective of this part of my research was to directly probe the changes in the 

structure of SP-Bs_25 due to the oxidation of Trp9. Therefore, conformational features of both 

Wild-Type and Trp-oxidized SP-Bs-25 were studied under four different conditions; in SDS 

micelles that contain anionic headgroups, in DPC micelles that contain zwitterionic 

headgroups, in organic solvent HFIP ( 40%), and in water alone. The choices of detergents 

were made based on the requirements for mimicking the natural lung surfactant lipid 

environments. SDS is a mimetic for PGs, the anionic surfactant phospholipids that SP-B is 
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thought to preferentially bind in surface monolayers of surfactant films [83, 84]. DPC, on the 

other hand, is a mimetic for DPPC, the most abundant zwitterionic phospholipid generally 

considered to be of paramount importance in attaining low surface tension in the alveolar air

water interface [24]. HFIP is not a lung lipid mimetic but an organic solvent that induces the 

helical secondary structure of a peptide. Hence the features of SP-B8•25 in HFIP would reveal 

any generic changes in the helical structure due to tryptophan oxidation, even in the absence 

of an interfacial environment. Although the lipid-associated SP-B and its fragments are 

unlikely to be properly folded without any intervention of lipids or organic solvents, the 

features of SP-Bs.25 have still been studied in water alone to unveil any differences owing to 

the tryptophan oxidation under this condition. 

The NMR data reveal that SP-B8.25 (Wild-Type) adopts an a-helical conformation 

comprising 9 to 10 amino acids in both SDS and DPC micelles, as well as in HFIP. The rest 

of the peptide appears to be random and extended. These structural features are also well 

supported by the CD data. This structure of SP-B8.25 (Wild-Type) is not very different from 

the corresponding segment of Mini-B in SDS, in which the N-terminal helix comprises 12 

amino acids. However, the peptide seems to be unstructured and possibly aggregated in water 

alone. This is not unexpected since about half of SP-Bs.25 (Wild-Type) amino acids are 

hydrophobic and, therefore, the peptide is presumably insoluble in water. 

Assuming it takes on a similar structure alone to its structure within Mini-B, the 

SP-B8.25 (Wild-Type) helix is apparently strikingly amphipathic with three positively charged 

amino acids (Argl2, Lys16 and Argl7) clustering in one face and four non-polar amino acids 

(Leu1 0, Leu14, Ile15 and Ile18) grouping at the opposite face. Also, in light of the Mini-B 

structure, Trp9 is unlikely to be a part of the helix, rather it is located in between the charged 

and hydrophobic faces. This positioning is very suitable for its sidechain to interact with 

lipids and anchor the peptide at the lipid/water interface. It is conceivable that the 

amphipathic helical structure, along with the tryptophan anchor, provide the basis for the 

partial biological activity of SP-B8•25 (Wild-Type). Any disruption in the helix could alter the 

amphipathic nature of the peptide and thus potentially lead to its inactivation. 
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Indeed, the helical structure of SP-Bs_25 (Wild-Type) is drastically disrupted when 

tryptophan is replaced by one of its oxidized forms, kynurenine. The helical stretch of two 

and a half turns (or more) is reduced to less than one turn in both SDS and DPC micelles, as 

well as in HFIP. This confirms that the oxidative modification of tryptophan makes the 

SP-Bs-25 helix largely unstructured regardless of whether it is within a micelle environment 

or in an organic solvent. It is likely that the N-terrninus of the helix nearby Trp9 is the most 

affected part and the oxidation leads to an unwinding of the helix at this end. However, 

besides this disruption of the helix, there may be additional modifications to the SP-B8_25 

structure due to the replacement of tryptophan by kynurenine. 

Trp9 is likely involved in anchoring SP-B8_25 to the micelles. The oxidation reduces 

the hydrophobicity of its sidechain and presumably leads to a failure in the anchoring. As a 

result, the hydrophobic face of the helix near Trp9 may get more exposed to the surrounding 

water molecules which possibly triggers the partial unfolding. It is reasonable to consider the 

mechanism of partial unfolding of the SP-B8_25 (Trp9Kyn) helix to be similar in both SDS 

and DPC micelles. However, in organic solvent condition too, in the absence of any micelles, 

the folded SP-B8_25 (Wild-Type) exhibits similar disruption of the helix owing to the 

tryptophan replacement by kynurenine. This clearly indicates that tryptophan, not only plays 

an anchoring role inside the lipids but also contributes to the integrity of the peptide structure, 

and its oxidation brings about a generic change in the helical structure of SP-Bs-25. It appears 

likely that the oxidation causes substantial changes to the quadruple moment and/or the ring 

current of tryptophan sidechain thus triggering the peptide unstructuring. 

The DOSY data correlate with the surface area of the peptide/micelle complex and 

indicate that SP-Bs-25 (Trp9Kyn)/SDS complex is substantially larger than SP-Bs-25 (Wild

Type)/SDS complex (hydrodynamic diameters are - 3.7 and - 2.8 nm, respectively). The 

structure of SP-B8_25 (Wild-Type), with an intact amphipathic helix, is suitable to strongly 

interact with both negatively charged headgroups and hydrophobic acyl chains of the SDS 

micelle. These interactions apparently lead to a compact complex of the peptide and the 

micelle. Within the complex, SP-B8_25 (Wild-Type) is likely positioned with its helix parallel 
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to the surface of the micelle, with its hydrophobic face in contact with the acyl chains of SDS 

and its positively charged face in contact with the negatively charged headgroups of SDS and 

surrounding water molecules. When the tryptophan is replaced by kynurenine, a large portion 

of the helix appears to be unstructured. This likely disrupts the clustering of the positive 

charges and makes them spread over the peptide surface. The drastic reduction caused 

thereby to the peptide' s amphipathicity would substantially affect the interactions between 

the peptide and the micelle. Therefore, presumably SP-B8_25 (Trp9Kyn) is not as compactly 

bound to the SDS micelle as SP-B8_25 (Wild-Type) would be. The SDS micelle may be 

stretched to accommodate the partially unstructured SP-B8_25 (Trp9Kyn) within it, which 

would explain the increased size of the complex when tryptophan is replaced by kynurenine. 

The DOSY data of SP-Bs-25 in zwitterionic DPC micelles represent a somewhat 

different scenario. The sizes of the complexes with two versions of the peptide are not as 

different as in SDS. Also, the difference is opposite to the SDS results, i.e. , the SP-Bs-25 

(Trp9Kyn)/DPC complex is smaller than the SP-B8_25 (Wild-Type)/DPC complex 

(hydrodynamic diameters are - 3.7 and - 4.5 run, respectively). There are three plausible 

explanations for this. First, as DPC headgroups contain both positive and negative charges, 

the electrostatic component of the peptide/micelle interactions may not be as strong as it is in 

SDS. As a result, SP-B8_25 (Wild-Type) is probably not as compactly bound to the DPC 

micelle as it is with the SDS micelle. When tryptophan is replaced by kynurenine, the helix is 

disrupted but the overall electrostatic and hydrophobic interactions between the peptide and 

the DPC micelle do not change much and hence the sizes of the complexes may not be 

drastically different. Second, the position of the SP-Bs-25 (Wild-Type) in the DPC micelle 

may not be as deep inside the micelle as it is in the SDS micelle, again owing to the 

difference in the electrostatic part of the peptide/micelle interactions. Therefore, the 

disruption in the helix of SP-B8_25 (Trp9Kyn) may not bring a substantial change in the 

surface area of the DPC micelle within which the peptide positioning is relatively shallow. 

This hypothesis is favorably supported by the observation that SP-B63_78, the C-terminal half 

of Mini-B with a similar degree of amphipathicity (due to 3 clustered positive charges), takes 

a deeper position inside anionic phospholipids-containing bilayers (mimicked by SDS in this 
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study) than purely zwitterionic bilayers (mimicked by DPC in this study) [162]. 

Third, because of the loss of amphiphilicity, SP-B8.25 (Trp9Kyn) may not be able to bind as 

many DPC molecules in the complex as SP-B8.25 (Wild-Type) can. Hence, the size of the 

micelle complex containing the Trp-oxidized peptide is smaller than the complex containing 

the Wild-Type peptide. 

In water alone, contrary to the observations in micelles and organic solvent, the 

helical content of SP-Bs.25 is increased from 8% to 33% with the replacement of tryptophan 

by kynurenine as revealed by the CD spectra. However, this is not surprising since 

kynurenine is less hydrophobic than tryptophan because of the broken indole ring and 

exposed 0 and NH2 groups. Hence the oxidation of tryptophan may partially reduce the 

insolubility of the peptide in water and induce some helical folding in SP-Bs-25 (Trp9Kyn). 

However, SP-Bs-25 (Trp9Kyn) is still not so soluble that the backbone HA-HN correlations in 

the TOCSY or HN-HN correlations in the NOESY can be observed. Thus the partial helical 

folding does not change much the likely aggregation of the peptide in water alone. 

In summary, the findings from this part of my work reveal a substantial disruption in 

the helical structure of SP-Bs.25 induced by the oxidative modification of tryptophan. This 

disruption is generic and likely perturbs the amphipathic profile of the peptide. Therefore, 

tryptophan plays a crucial role in the proper helical folding and lipid interactions of SP-Bs-25 

and presumably ofthe full-length SP-B. 

The oxidative modification of tryptophan is a major source of lung surfactant 

dysfunction as it inactivates an essential component SP-B [202, 206, 21 0]. This is likely a 

leading factor in conditions like ARDS. This study indicates, in addition to preventing the 

protein from anchoring properly to the phospholipids, the oxidation causes a loss of helical 

structure and amphipathicity of the N-terminus of SP-B. These changes likely drastically 

affect the interactions between the native protein and surfactant phospholipids thus 

contributing to the lung surfactant dysfunction. 
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Chapter 8 

Conforma io o ~ ax" -BcT, 

t · ~ e C-T rminal Half of SP-B 

Note : Maxi-Bcr was synthesized and purified by Prof Alan J Waring and his group 

(Waring Lab, Medicine, UCLA). CD data were acquired and analyzed with help of 

Prof David H. Heeley (Heeley Lab, Biochemistry, MUN) and Dr. Michael Hayley 

(Booth Lab, Biochemistry, MUN). 
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8.1 Overview 

Despite many efforts, to my knowledge, no lab has yet succeeded in producing 

recombinant SP-B in the amounts needed for structural studies. Thus, our collaborator Prof. 

Alan Waring (Medicine, UCLA) has undertaken the challenging task of producing a near

complete version of SP-B, termed Maxi-B, by chemical synthesis. Maxi-B is based on SP-B 

amino acids 8 to 78. It contains all the helical regions of the SP-B predicted from the 

sequence alignment with known Saposin proteins and retains the three native-like disulfide 

bonds (Figure 8.1 ). Therefore, Maxi-B would be expected to provide significant structural 

information on full-length SP-B. However, initial attempts to synthesize Maxi-B did not 

succeed. A new synthesis strategy was planned afterwards which involves first synthesizing 

the N- and C-terminal halves of Maxi-B separately. Each of these fragments contains two 

predicted helices (one full and the other near-full) of SP-B. The attempt to synthesize the 

C-terminal peptide, Maxi-BeT, in the Waring lab was indeed successful. 

N 
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Figure 8.1 : Topology of SP-B, Maxi-B, truncated Maxi-B (Maxi-BTR) and Maxi-BeT, based 
on known Saposin protein structures. Maxi-B is a proposed synthetic protein based on amino 
acids 8 to 78 of full-length SP-B. The predicted helical regions are shown as cylinders. The 
disulfide bonds are shown as dashed lines. 
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As a step towards the determination of the structure of fu ll-length SP-B, the 

conformational features of Maxi-BeT in organic solvent HFIP and in SDS micelles were 

studied by solution NMR and CD. 

8.2 Materials and Methods 

8.2.1 Peptide Synthesis and Purification 

Maxi-BeT is a 33 amino acid synthetic peptide based on human SP-B amino acids 46 

to 78 with two mutations C48S and E51A (numbers refer to SP-B sequence positions). The 

two mutations were originally planned for full Maxi-B and have been retained in Maxi-BeT· 

The mutation C48S was proposed to avoid the intermolecular disulfide bond that makes the 

native SP-B a homodimer. The other mutation E51A was proposed in order to prevent the 

formation of any intermolecular salt bridge. The primary structure of Maxi-BeT is shown 

below with gray shading on the mutated amino acids : 

Cys-Gln-Ser-Leu-Ala-Ala-Arg-Tyr-Ser-Val-Ile-Leu-Leu-Asp-Thr-Leu-Leu

Gly-Arg-Met-Leu-Pro-Gln-Leu-Val-Cys-Arg-Leu-Val-Leu-Arg-Cys-Ser 

The peptide was produced by the Waring lab using solid-phase chemical synthesis via 

0-fluorenylmethyloxycarbonyl (Fmoc) chemistry. Fmoc amino acids and coupling agents 

were purchased from AnaSpec (Fremont, CA). Organic solvents and other reagents used for 

the synthesis and purification were HPLC grade or better and purchased from Fisher 

Scientific (Ottawa, ON) and Aldrich Chemical (St. Louis, MO). The peptide was synthesized 

at a 0.25 mmol scale in an ABI 431A peptide synthesizer configured for FastMoc double

coupling cycles of all residues to optimize yield [143]. A prederivatized N-Fmoc-0-tert

butylserine HMP resin (AnaSpec) was used to assemble the peptide during synthesis. 

Deprotection and cleavage of the peptide from the resin were carried out using a 

TFA/thioanisole/EDT A/phenol/water mixture (1 0/0.5/0.25/0.5/0.5 by volume) followed by 

cold precipitation with tert-butylether. The sidechains of the two cysteines in the sequence, 
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C71 and C77, were kept protected by tert-butyl groups to prevent any formation of 

inter/intra-molecular disulfide bonds. The crude product was purified by preparative reverse

phase HPLC in a Vydac C-18 column using a water/acetonitrile linear gradient with 0.1% 

trifluoroacetic acid as the ion-pairing agent. The molecular weight of the peptide was 

confirmed by fast atom bombardment or MALDI-TOF mass spectrometry. The purity of the 

final product was determined by analytical HPLC and found to be > 95%. The purified 

peptide was lyophilized and stored at 4 °C. 

8.2.2 Sample Preparation 

First, a stock buffer solution was prepared in H20 /D20 (90%/10%) with 0.4 mM DSS 

and 0.2 mM NaN3. The final samples were then prepared by dissolving peptide and other 

contents in the buffer. The sample of Maxi-BeT in HFIP contained 1 mM peptide in a buffer 

adjusted to have 40% HFIP (98% deuterated; Cambridge Isotope, Andover, MA) plus 50% 

H20 and 10% D20. For the sample of Maxi-BeT in SDS, 1 mM peptide and 100 mM 

detergent (98% deuterated; Cambridge Isotope, Andover, MA) were dissolved in the buffer. 

The pH of the samples was set to 5.0 by use of NaOH and HCl without taking the isotope 

effects into account. This pH was chosen in order to obtain the NMR spectra in a region 

where the amide proton/deuteron exchange rate is relatively slow. Only one sample of each 

composition was prepared and the same sample was used for both NMR and CD experiments. 

8.2.3 NMR Data Collection and Processing 

A set of 10 1H, 2D 1H- 1H TOCSY, 2D 1H- 1H NOESY experiments was performed 

for each Maxi-BeT sample on a Bruker Avance II 14.1 Tesla (600 MHz) spectrometer 

(Billerica, MA) equipped with z-gradients and an inverse triple resonance TXI probe. The 

NMR data were collected and processed using the Bruker Topspin 2.0 software. The pulse 

length (P 1) and the transmitter offset (0 1) were optimized for each sample before running 
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the full set of experiments. All NMR experiments were performed at 3 7 oc using the water

gate water suppression technique [146]. In 1D 1H experiments, data were collected with 32 

scans and processed using an exponential apodization function with 1 Hz line broadening. 

The 2D 1H-1H TOCSY experiments used a 60 ms mixing time and were run with 160 scans. 

A total of 2048/512 data points were collected in F2/F 1 dimensions and the processed spectra 

had 1024 points in both dimensions. The 20 1H- 1H NOESY experiments used a 200 ms 

mixing time and were run with 160 scans. A total of 2048/512 data points were collected in 

F2/F 1 dimensions and the processed spectra had 1024 points in both dimensions. All 

TOCSY and NOESY spectra were processed using the Qsine apodization function with a 

sine bell shift of 2. 

8.2.4 CD Data Collection and Processing 

The CD spectra, in the far-ultraviolet (far-UV) region (from 260 to 190 nm), were 

recorded for both Maxi-Bcr samples using a Jasco-81 0 spectrapolarimeter (Easton, MD). The 

CD data were acquired at 37 oc using a quartz cuvette with 0.1 mm path length. The NMR 

samples were transferred to the cuvette without making any changes in the sample conditions. 

The temperature was controlled by a CTC-345 circulating water bath. The scanning speed of 

the instrument was set at 100 nm/min with normal sensitivity. Five accumulations were 

collected for each sample in 0.1 run steps. The Molar ellipticity [8] was calculated using the 

equation suggested by Heeley et a/. [213 ], 

[8] = OobsiC 1 OLC), (8.1) 

where Sobs is the observed ellipticity, L is the path length of the cell (0.01 em) and C is the 

number of amino acids multiplied by the molar concentration of the peptide (0.0 18 M). The 

secondary structural content was calculated from the molar ellipticity data using a computer 

program following the method of Yang et al. [214]. 
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8.3 Results 

8.3.1 NMR Spectra of Maxi-BeT in HFIP (40°/o) 

Panel A in Figures 8.2 - 8.4 present the structure characterization of Maxi-BeT by 

NMR and CD. The spectra of Mini-B in 40% HFIP (from My M.Sc. work, Booth lab) 

provide convenient reference spectra due to the similarity in size and an a -helical content 

compared to Maxi-BeT and thus are presented in panel B of the figures. Unfortunately, that 

the Mini-B spectra were acquired at a lower temperature (15 °C) than Maxi-BeT (3 7 °C) sets 

a limitation on how much information can be gleaned from comparing the two sets of spectra. 

However, it is still valuable to compare Maxi-BeT data to data from a construct whose atomic 

resolution structure has been determined and for which the exact secondary structure is thus 

known. 

Figure 8.2 shows the 1D 1H spectra of Maxi-BeT acquired on a 600 MHz 

spectrometer at 37 oc and Mini-Bin HFIP acquired on a 700 MHz spectrometer 15 °C. The 

signals seen in the enlarged 6-9 ppm region of Maxi-BeT, corresponding to the backbone and 

sidechain amide protons (HNs), are more overlapped and less dispersed when compared to 

Mini-B, even when taking the difference in spectrometer field into consideration. The 

dispersion of backbone HN signals of Maxi-BeT appears to be intermediate between what are 

typically observed for a random coil and a folded peptide. 

The 2D 1H- 1H TOCSY spectra provides more insight into the structural features of 

Maxi-BeT. The TOCSY peaks in Figure 8.3 mostly correspond to the HA-HN correlations 

that result from the through-bond magnetization transfer between alpha and amide protons of 

the amino acid spin systems. There are 33 amino acids in Maxi-BeT, but more than 33 HA

HN crosspeaks are seen including some weak peaks in the panel A of Figure 8.3. The total 

count of 33-plus peaks and presence of weak peaks suggest some degree of conformational 

heterogeneity for Maxi-BeT· Also, the peaks are mostly grouped in two regions with one 
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region exhibiting a downfield shift (i.e., higher ppm) in the F2 (HN) dimension. The number 

of HA-HN crosspeaks present in the down-shifted region is higher when compared to the 

peaks from the same region of Mini-B shown in the panel B. This comparison of the general 

appearance of HA-HN crosspeaks likely indicates a decreased a-helical structure of 

Maxi-BeT in organic solvent environment. 

This interpretation is further supported by the examination of HN-HN region of 2D 
1H-1H NOESY (Figure 8.4). The downfield shifts of at least 3 backbone HN signals of Maxi

BeT are evident when compared to Mini-B. Besides, there are only about 15 intense 

backbone HN-HN crosspeaks present for Maxi-BeT while more than 21 such crosspeaks are 

observed for Mini-B. These correlations result from short HN-HN distances and indicate an 

a-helical folding for about half of Maxi-BeT as compared to at least two-thirds of Mini-B. 
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Figure 8.2 : 1 D 1H spectra of 
(A) 1 mM Maxi-BeT in 40% 
HFIP (plus 90% H20 and 
10% D20) at pH 5.0 and 
temperature 3 7 °C, acquired 
using Bruker 600 MHz 
spectrometer with 32 scans; 
and for comparison, (B) 1.5 
mM Mini-BREo in 40% HFIP 
(plus 90% H20 and 10% 
D20) at pH 5.0 and 

1H (ppm) temperature 15 oc, acquired 
usmg Bruker 700 MHz 
spectrometer with 16 scans. 
Maxi-BeT spectrum was 
collected using the water-gate 
water suppression technique 
and processed by Topspin. 
Mini-B spectrum was 
collected using 3-9-19 water 
suppression technique and 
processed by NMR.Pipe. The 
signal intensities are also 
not normalized between the 
two spectra. 
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Figure 8.3 : HA-HN regions of 2D 1H-1H TOCSY spectra of (A) 1 mM Maxi-BeT in 40% 
HFIP, acquired using Bruker 600 MHz spectrometer and processed by Topspin; and for 
comparison, (B) 1.5 mM Mini-BRED in 40% HFIP, acquired using Bruker 700 MHz 
spectrometer and processed by NMRPipe. Note, the peptide concentrations, temperatures, 
numbers of scans, mixing times and base levels are different for the two spectra. 
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Figure 8.4 : HN-HN regions of 2D 1H-1H NOESY spectra of (A) 1 mM Maxi-BeT in 40% 
HFIP, acquired using Bruker 600 MHz spectrometer and processed by Topspin; and for 
comparison, (B) 1.5 mM Mini-BRED in 40% HFIP, acquired using Bruker 700 MHz 
spectrometer and processed by NMRPipe. Both spectra were acquired using 200 ms mixing 
time. However, the peptide concentrations, temperatures and numbers of scans are different. 
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8.3.2 NMR Spectra of Maxi-BeT in SDS 

As for the HFIP studies described in the previous section, the 10 1H, HA-HN region 

of 2D 1H- 1H TOCSY, and HN-HN region of 2D 1H- 1H NOESY spectra of Maxi-BeT are 

compared to Mini-B in anionic lung lipid mimetic SDS micelles. However, unlike the 

version of Mini-B used in the HFIP studies, the version of Mini-B used in the SDS micelle 

studies was oxidized, i.e., it retained the two native-like disulfide bonds. It is known from my 

previous structural studies (Chapter 3 and [156]) that this version of Mini-B also adopts a 

well-defined a-helical conformation in SDS micelles. Comparing the spectra, despite the 

differences in spectrometer field and temperature at which data were acquired, should 

therefore provide insight on the extent of the Maxi-BeT structuring in lipid mimetic micelle 

environment. 

Figure 8.5 shows the lD 1H spectra of Maxi-BeT and Mini-B in SDS micelles. The 

signals seen from the backbone and sidechain amide protons (HNs) in the enlarged 6-9 ppm 

region are broad and/or overlapped for both peptides but dispersed. This level of line

broadening and overlapping is not unexpected as the peptides are bound to detergent micelles. 

However, the backbone HNs of Maxi-BeT exhibit decreased dispersion, which indicates, in 

SDS, Maxi-BeT is not as structured as Mini-B. 

The 2D 1H-1H TOCSY spectra demonstrate more differences in the folding patterns 

of Maxi-BeT in SDS when compared to Mini-B (Figure 8.6). More prominently than in HFIP, 

a larger group of Maxi-BeT HA-HN crosspeaks exhibits a downfield shift (i.e., higher ppm) 

in the F2 (HN) dimension as shown in the panel A. The number of peaks present in the 

down-shifted region is also significantly higher when compared to the same region of Mini-B 

shown in the panel B. Therefore, in SDS micelles, Maxi-BeT likely consists of a decreased 

a-helical structure than Mini-B. Furthermore, as in HFIP, the apparent count of 33-plus 

HA-HN crosspeaks and the presence of weak peaks suggest some degree of conformational 

heterogeneity of Maxi-BeT in the micelle environment too. 
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The examination of backbone HN-HN crosspeaks in the 2D 1H- 1H NOESY spectra 

further suggests that Maxi-BeT is less structured than Mini-B in SDS micelles (Figure 8.7). 

While there are many backbone HN-HN correlations present for Maxi-BeT, in contrast to 

Mini-B, they are relatively weak and largely obscured by the strong diagonal signals and thus 

hard to count. However, the downfield shifts for some HN signals are still evident. 

Furthermore, although it is difficult to draw an inference about the number of Maxi-BeT 

amino acids that belong to the a-helical structure in SDS micelles, overall the peptide seems 

to be less structured in the anionic detergent environment when compared to the organic 

solvent environment. 
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Figure 8.5 : 10 1H spectra of 
(A) 1 mM Maxi-BeT in 100 
mM SDS at pH 5.0 and 
temperature 37 °C, acquired 
using Bruker 600 MHz 
spectrometer with 32 scans; 
and for comparison, (B) 1.5 
mM Mini-Box in 150 mM 
SDS at pH 5.0 and 
temperature 45 °C, acquired 
using Bruker 500 MHz 
spectrometer with 8 scans. 
Maxi-BeT spectrum was 
collected using the water-gate 
water suppression technique 
and processed by Topspin. 
Mini-B spectrum was 
collected using pre-saturation 
water suppression technique 
and processed by NMRPipe. 
The signal intensities are also 
not normalized between the 
two spectra. 
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Figure 8.6 : HA-HN regions of 2D 1H-1H TOCSY spectra of (A) 1 mM Maxi-Bcr in 100 
mM SDS, acquired using Bruker 600 MHz spectrometer and processed by Topspin; and for 
comparison, (B) 1.5 mM Mini-Box in 150 mM SDS, acquired using Bruker 500 MHz 
spectrometer and processed by NMRPipe. Note, the peptide concentrations, temperatures, 
numbers of scans, mixing times and base levels are different for the two spectra. 
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Figure 8.7 : HN-HN regions of 2D 1H- 1H NOESY spectra of (A) 1 mM Maxi-Bcr in 100 
mM SDS, acquired using Bruker 600 MHz spectrometer and processed by Topspin; and for 
comparison, (B) 1.5 mM Mini-Box in 150 mM SDS, acquired using Bruker 500 MHz 
spectrometer and processed by NMRPipe. Both spectra were acquired using 200 ms mixing 
time. However, the peptide/detergent concentrations, temperatures, numbers of scans and 
base levels are different. 
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8.3.3 CD Spectra of Maxi-BeT in HFIP (40°/o) and SDS 

To complement the NMR data and obtain an alternate measure of the secondary 

structural content, circular dichroism spectra were acquired for Maxi-BeT in both HFIP and 

SDS at pH 5.0 and temperature 37 oc (Figure 8.8). Although the computer program used for 

the secondary structure calculation (following the method described in Ref. [214]) calculated 

the structure percentages as a-helix, P-sheet, P-turn and random coil, Maxi-BeT is unlikely to 

contain a P-sheet which requires two or more strands hydrogen-bonded together. It is more 

plausible that the P-sheet content calculated by the computer program actually represents an 

extended conformation and hence is reported as such in the table of Figure 8.8. Thus the CD 

data indicate, in HFIP, about half of Maxi-BeT is a-helical (~ 49%), with the remainder 

taking extended(~ 18%) and random coil (~ 33%) conformation. However, the features for 

Maxi-BeT in SDS are substantially different, with reduction of a-helical content to about one

third (~ 35%) and a considerable increase in extended (~ 38%) along with some decrease in 

random coil(~ 27%) conformation. 

50000~----------------------------~ 

~ 25000 

-In HFIP 
·--·In SDS 

-25000+----.---.----.---.----.---.--~ 

190 200 210 220 230 240 250 260 

Wavelength (nm) 

Seconda Structure % 

Pe tide I Extended I Random I 
Maxi-BeT in HFIP 49 I 18 I 33 I 
Maxi-BeT in SDS 35 I 38 I 27 I 
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Figure 8.8 Far-UV CD 
spectra of 1 mM Maxi-BeT in 
40% HFIP and in 1 00 mM SDS 
at pH 5.0 and temperature 37 
°C, acquired using 5 
accumulations and a 0.1 mm 
light path. The molar ellipticity 
is calculated from the observed 
ellipiticity following the method 
described in Ref. [213]. The 
secondary structural contents, 
shown in the table, are 
calculated from the molar 
ellipticities following the 
method described in Ref. [214]. 



8.4 Discussion 

Knowledge of the high-resolution three-dimensional structure of a protein IS an 

important step in understanding its functional mechanism. The structure of SP-B, an 

indispensable protein for air-breathing vertebrates, is not known yet which limits our 

understanding of its crucial contribution(s) to lung surfactant function. Determination of the 

high-resolution structure of SP-B is one major research goal of the Booth lab (Biochemistry, 

Memorial University of Newfoundland). However, this is very challenging and attempts to 

achieve recombinant expression of high levels of 13C/15N-labeled protein, required for 

solution NMR studies have not succeeded yet. As an alternative, the chemical synthesis of a 

protein based on SP-B amino acids 8 to 78, termed Maxi-B, was proposed by the Waring 

group (Medicine, UCLA). This synthetic Maxi-B is expected to provide significant structural 

information on full-length SP-B. However, difficulties were encountered in initial attempts to 

synthesize Maxi-B in a single step. This was not unexpected, as synthesis of a protein which 

contains 71 amino acids and 3 internal disulfide bonds is indeed very challenging. An 

alternate plan was devised, in which the N- and C-terminal halves of Maxi-B would be 

synthesized separately, and then connected by the three disulfide bonds (termed as truncated 

Maxi-B (Maxi-BrR) in Figure 8.1). The C-terminal fragment, Maxi-Bcr, was attempted first 

and successfully synthesized by the Waring group. This part of my work was conducted to 

obtain the first structural characterization of Maxi-Bcr in organic solvent and detergent 

micelles and lay down a foundation for future studies ofMaxi-B and/or Full-length SP-B. 

Maxi-B would contain all the predicted helical regions of full-length SP-B and retain 

the three native-like disulfide bonds between C8-C77, Cll-C71 and C35-C46. Two 

mutations, C48S and E51 A, were proposed to avoid the intermolecular disulfide bond and 

salt bridge, respectively. The first seven N-terminal amino acids of SP-B were clipped off in 

Maxi-B to eliminate the possibility of self-association. The C-terminal amino acid of SP-B, 

M79, was removed from Maxi-B sequence as it does not belong to the predicted C-terminal 

helix. Hydrophobic amino acid contents of the two proteins are similar, 52% in SP-B and 

54% in Maxi-B. The net charges carried by the proteins at neutral pH are also similar, +8 for 
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Maxi-Band +7 for SP-B, with the difference resulting from the mutation E51A. All these 

features render Maxi-B an interesting protein to learn about the structure, properties, 

lipid/protein interactions and functional mechanism of full-length SP-B. 

Maxi-BeT, a 33 residue peptide, is based on amino acids 46 to 78 from the C-terminal 

region of SP-B. Sequence homology with known Saposin proteins predicts this fragment to 

contain two a-helical segments, i.e., the C-terminal helix of SP-B, as well as the helix next to 

it. To obtain the first structural characterization of Maxi-BeT, I performed solution NMR and 

CD studies in organic solvent HFIP and anionic surfactant lipid mimetic SDS micelles. The 

NMR data are also compared to that of Mini-B, a 34 residue peptide comprised of SP-B 

amino acids 8 to 25 and 63 to 78. It is known from my previous structural studies (Sarker, M. , 

M.Sc. Thesis and Chapter 3 of this Ph.D. Thesis, Booth lab) that Mini-B adopts a 

well-defined conformation with two a-helices in both HFIP and SDS micelles. Thus, the 

NMR spectra of Mini-B were ideal to compare the extent of Maxi-BeT structuring in the 

same environments. 

The NMR data indicate approximately half of Maxi-BeT to be a-helical in organic 

solvent condition. The helical content of the peptide is reduced in detergent micelles. The 

NMR data also indicate that the peptide consists of some non-helical content, likely some 

extended conformation, in HFIP, and an even increased non-helical conformation in SDS 

micelles. These findings are well supported by the CD data of Maxi-BeT that show the 

structure in HFIP to be 49% helical with 18% extended and 33% random coil, while in SDS, 

it is 35% helical with 38% extended and . ·33% random coil. Overall, the peptide is Jess 

structured (i.e., Jess helical) in detergent micelles than in organic solvent. 

The relatively decreased helical structuring of Maxi-BeT in SDS micelles, when 

compared to the structuring in HFIP, is likely influenced by the physiochemical properties of 

the peptide. Maxi-BeT consists of four positively changed amino acids and one negatively 

charged amino acid. Three of the four positively charged amino acids (R64, R72 and R76) 

are localized in the C-terminal region of the peptide, which correspond to the C-terminal half 
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of Mini-B (amino acids 63 to 78) that contain an amphipathic a-helix. The other positively 

charged amino acid (R52) and the only negatively changed amino acid (059) make the N

terminal region of Maxi-BeT neutral. It is therefore possible that the electrostatic interactions 

between the positively charged C-terminal region of Maxi-BeT and the negatively charged 

SDS micelle induce an amphipathic helical conformation for this part of the peptide which 

may be similar to the C-terminal half of Mini-B. However, theN-terminal region of Maxi

BeT, because of the lack of a charge bias, may not interact strongly with the SDS micelle and 

hence may not adopt a well defined helical conformation. These electrostatic interactions, on 

the other hand, may not be required in inducing the secondary structure of Maxi-BeT in HFIP, 

and thus the peptide presumably adopts a more helical conformation in the organic solvent 

environment. 

Determination of the high-resolution structure of Maxi-BeT is not attempted in this 

study as the main goal is to check the amenability of the peptide to NMR studies and prepare 

a foundation for study of full Maxi-B. It is not possible to draw a clear inference about 

whether the peptide consists of a single helical stretch or two distinct helical segments in 

either of the environments without performing spectral assignments and a high-resolution 

structure calculation. However, considering the presence of a glycine (G63) and a proline 

(P67) in the middle region, it seems unlikely that Maxi-BeT consists of a single helix 

spanning this middle region. In light of the NMR data, well supplemented by the CD data, it 

is possible that, in HFIP, Maxi-BeT consists of two helices but in SDS, Maxi-BeT has a 

helical folding mainly at the C-terminus. 

Maxi-BeT is Jess helical in both HFIP and SDS micelles when compared to Mini-B. 

While Mini-B possesses two a-helices comprising two-thirds of the peptide in both 

conditions, only half of Maxi-BeT is helical in HFIP which reduces to just one-third in SDS 

micelles. The distribution of seven positively charged amino acids in the two regions, 

presence of two native-like disulfide bonds and inter-helix interactions likely play crucial 

roles in the overall helical folding of Mini-B. In contrast, Maxi-BeT has no disulfide bonds 

and has a far less net charge of + 3 that is localized in one region only. These properties, 
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therefore, are apparently essential for the physiologically relevant helical folding of SP-B 

based peptides. 

Although this study finds that Maxi-BeT exhibits decreased helical structuring, 

especially in SDS micelles, the inclusion of Maxi-BNT, the other Maxi-B fragment consisting 

of amino acids 8 to 35 of SP-B, would possibly bring a significant improvement m 

structuring and induce a more native-like conformation of Maxi-B or Maxi-BTR· 

In this study, the high resolution structure of Maxi-BeT was not attempted, as the 

main objectives were to gain an insight into the overall conformational features and check the 

amenability of the proposed Maxi-B/Maxi-BTR to future NMR studies. The NMR spectra of 

Maxi-BeT indicate that Maxi-B (or Maxi-BTR), if available with sufficient 13C/15N labels, 

would likely be suitable for a high-resolution structural characterization by solution NMR. 

The observations from Maxi-BeT would also aid in the future investigations of the near

complete or the full-length SP-B. 
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9.1 Summary and Remarks 

Lung surfactant is a complex mixture of lipids and proteins that enables normal 

breathing by reducing the surface tension created at the alveolar air-water interface and 

additionally provides the first line of defense against inhaled microbes in the lungs . SP-B, a 

protein component which accounts for not more than "' 1.5% of the total surfactant weight, is 

absolutely essential for the survival of mammals f37 , 38, 216]. Biophysical studies suggest 

that SP-B facilitates large-scale rearrangements of lipids and stabilizes complex structures 

required for interfacial adsorption , surfactant film stability and respreading capacity of 

surfactant materials [821. To understand the mechanistic basis for this ability and the 

physiological ramifications of lipid rearrangements , it is important to know the high

resolution structure of SP-B. Unfortunately , the 30 structure of SP-B has not yet been 

determined since, as is generally the case for membrane and other lipid-associated 

hydrophobic proteins, the production of an SP-B sample for structural studies has been very 

challenging and unsuccessful to date . Interestingly , synthetic fragments of SP-B retain 

substantial biological activity when compared to the full -length protein [109]. Oxidized 

Mini-B (Mini-B0 x) tops this list and it likely encompasses the key functional regions of the 

full -length protein [109]. This Ph.D. research has applied solution NMR methods to Mini-B 

and two other SP-B-based peptides to reveal at least some of the critical structural features 

and lipid/protein interactions that presumably underlie the functional mechanisms of SP-B in 

physiological conditions. 

I have determined the high-resolution structure of Mini-B in the presence of micelles 

composed of the anionic detergent SDS, which provides a reasonable mimetic of SP-B ' s 

physiological environment in the lung (Chapter 3). Mini-B consists of two a-helices 

connected by an unstructured loop. The helices are packed tightly together and interhelical 

interactions are stabilized by the two disulfide bonds as well as by several hydrophobic 

contacts. Mini-B possesses a strikingly amphipathic surface with a large positively charged 

patch on one face of the peptide and a large hydrophobic patch on the opposite face. The 

tryptophan side chain extends outward from the peptide in a position to interact with lipids 
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and anchor Mini-B at the lipid-water interface. Amino acids of Mini-B in theN-terminus and 

the loop regions appear to exhibit a certain degree of plasticity. All of these distinctive 

structural features likely contribute to the mechanism by which Mini-B, and presumably 

SP-B, functions. 

The structure of Mini-B in SDS, with its strikingly amphipathic surface and 

projecting tryptophan anchor, appears very well suited for making strong interactions with 

surfactant phospholipid analogues. Indeed, Mini-B binds both anionic and zwitterionic 

micelles composed of SDS, DPC, LMPC, LMPG and mixed LMPC/LMPG and induces 

substantial rearrangements of the micelle structures (Chapter 4). However, interesting 

differences are noticed in the overall conformation and dynamics of Mini-B in zwitterionic 

versus anionic environments. Despite the similarity in structuring of Mini-B in DPC to 

LMPC and SDS to LMPG, intriguing differences are found in how Mini-B interacts with the 

smaller SDS/DPC micelles compared to the larger LMPC/LMPG micelles. Thus, subtle 

differences in the lipid structure can substantially impact Mini-B/Iipid interactions. 

Presumably, in the native lung conditions, SP-B also adopts diverse conformations and forms 

different types of lipid-associations at various stages of the breathing cycle. 

To prepare a foundation for directly probing the interaction between Mini-B and 

SP-A, I have investigated the conformation and lipid interactions of SP-A in the presence of 

micelles composed from the same model surfactant lipids (Chapter 5). SP-A's biological 

roles, in relation to either anti-microbial activities or surfactant biophysical activities, are 

almost always attributed to its octadecameric structure and preferential interactions with 

DPPC (17, 53, 56]. However, my investigations unveil that SP-A binds not only to 

zwitterionic micelles but also to anionic micelles and that the micelle-bound SP-A exists 

predominantly as smaller oligomers, in sharp contrast to the octadecamers observed when in 

an aqueous environment, and the form in which SP-A has long been presumed to function. 

These findings demonstrate the necessity of developing new models to portray how the 

protein may function as smaller oligomers and interact with different lipid types in the 

native lung conditions. 
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Several biophysical studies have indicated an in vitro interaction, either direct or 

indirect, between SP-B and SP-A that may be important in lung surfactant function [59, 62, 

170, 171]. I have attempted to directly probe the interaction between Mini-B and SP-A, if 

any, in the presence of micelles composed of model surfactant lipids LMPC, LMPG and 

mixed LMPCILMPG, alongside SDS and DPC (Chapter 6). Mini-B appears to interact with 

SP-A in all micelle systems, although the degree of the interaction is dependent on the 

detergent/lipid headgroup. The entire population of Mini-B appears to interact with SP-A 

when in zwitterionic micelles (at least in DPC) but only a subpopulation of Mini-B interacts 

with SP-A when in anionic micelles (at least in SDS). Interestingly, in larger LMPC and 

LMPG micelles, there may occur a Mini-B-induced reduction of the SP-A oligomeric states. 

In all of these model surfactant lipids, however, the interactions between Mini-B and SP-A 

are most likely not direct protein-protein interactions but mediated via the micelles. 

Next, I have investigated the modifications to SP-B's structure and lipid interactions 

brought about by tryptophan oxidation using the N-terminal fragment SP-B8_25 (Chapter 7). 

Oxidative modification of SP-B, considered to be a major factor in conditions like ARDS, 

most deleteriously affects the biophysical activity of lung surfactant and can lead to its 

complete inactivation [202, 206, 21 OJ. Trp9, the only tryptophan present in SP-B sequence, is 

essential for optimal interface affinity of the protein [140] and is a prime site for oxidative 

damage [211]. Replacement of tryptophan by one of its oxidized forms, kynurenine, 

substantially disrupts the helical structure of SP-B8_25 . This likely perturbs the amphipathic 

profile of the peptide as well and thereby affects its interactions with the micelles. Thus, in 

the lung, tryptophan oxidation perhaps causes a loss of the helical structure of native SP-B 

and interrupts its interactions with surfactant phospholipids, which lead to lung surfactant 

dysfunction. 

Lastly, as a step towards the determination of the structure of full-length SP-B, the 

overall conformation of Maxi-BeT, the C-terminal half of Maxi-B (or SP-B), has been 

investigated in organic solvent HFIP and SDS micelles (Chapter 8). Although Maxi-BeT (33 

amino acids) exhibits a decreased helical structuring when compared to Mini-B (34 amino 
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acids), especially in SDS micelles, the inclusion ofMaxi-BNT, theN-terminal halfofMaxi-B, 

would possibly bring a significant improvement in the overall structure and induce a more 

native-like conformation of Maxi-B. The results obtained for Maxi-BeT indicate that the 

synthetic Maxi-B (or the recombinant full-length SP-B), if produced containing an 

appropriate number of 13C/ 1~ labels, would likely be suitable for high-resolution structural 

characterization by solution NMR. 

SP-B is indispensable for life, but the molecular basis for its activity IS not yet 

understood. The findings of my Ph.D. research contribute to the ongoing endeavor in 

characterizing SP-B's structure-function relationships and its mechanisms of lipid/protein 

interactions that are crucial for lung surfactant function. This work also provides a strong 

foundation for future studies on the conformations and interactions of near-complete or 

full-length SP-B. 

9.2 Future Work 

What role SP-B exactly plays in lung surfactant function is still a puzzle. A great tool 

to resolve this puzzle would be the high-resolution structure of full -length SP-B, or at least a 

near-full SP-B variant (e.g. Maxi-B), in a lipid-bound state . Knowledge of the high

resolution structure of SP-B will facilitate unveiling the mechanisms of its function in the 

lung and directly probing its interactions with surfactant lipids and other proteins. Production 

of a synthetic/recombinant sample to conduct the structural studies is the greatest hurdle to 

overcome in this regard. There are at least three labs currently working on this and hopefully 

the endeavor will be successful in the near future. In the mean time, further progress can still 

be achieved by characterizing biologically active fragments of SP-B that are now available . 

Mini-B has enormous potential from a therapeutic perspective. In my Ph.D. work , the 

high-resolution structure of Mini-B has been determined and its interactions with model 

surfactant lipids and SP-A have been probed. One interesting future study will be to 
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investigate if tubular myelin can be formed by adding Mini-B. instead of full -length SP-B, 

with mixtures of DPPC, PG and SP-A in the presence of Ca2
+ . 

Recently an extended version of Mini-B, called Super Mini-B, has been synthesized 

by the Waring group (Medicine, UCLA) which includes theN-terminal seven amino acids of 

native SP-B that are not part of Mini-B. Super Mini-B shows excellent surfactant activity , 

even better than Mini-Box• in ventilated rats with ARDS induced by in vivo lavage [217J . The 

first structural characterization using Attenuated Total Reflectance-Fourier Transform 

Infrared (ATR-FTIR) spectroscopy shows a similar degree of a-helical conformation of 

Super Mini-B when compared to Mini-B f217J. This is not unexpected since the first seven 

amino acids of SP-B represent a putative lipid insertion region of the protein 11421 and are 

unlikely to extend the span of its N-terminal helix. Nevertheless, it may be informative to 

determine the high resolution structure of Super Mini-B and investigate if it exhibits stronger 

interactions with model surfactant lipids than Mini-B. 

Chemical synthesis of Maxi-B (a near-complete versiOn of SP-B), first in the 

truncated form as Maxi-BTR (Figure 8.1, Page 197), will be attempted soon by the Waring 

group (Medicine, UCLA). Since it is not feasible to synthesize Maxi-B incorporating 15N/13C 

labels uniformly, I have developed a selective labeling scheme to incorporate an appropriate 

number of 15N backbone amide labels at strategic locations along the polypeptide chain of 

Maxi-B. If successfully synthesized, the first structural characterization of Maxi-BTR will be 

obtained in organic solvent HFIP by the Booth group using solution NMR. Although the 

absence of some of the native amino acids and the organic solvent environment will limit the 

structure's ability to explain SP-B ' s function in physiological conditions, helpful 

information, such as the span of the helices, distribution of hydrophobic and hydrophilic 

amino acids along the structure and extent of the positively charged patches on the surface, 

will be unveiled by this study. Identification of the resonance frequencies of proton spin 

systems from the HFIP data will also guide future NMR studies of Maxi-B/SP-B in a more 

physiologically relevant environment such as detergent/lipid micelles or oriented 

phospholipid bilayers. 
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Because the synthetic Maxi-B (or Maxi-BTR) will carry only a limited number of 
15N-labels, an attempt to determine its high-resolution structure in the presence of 

detergent/lipid micelles using solution NMR is unlikely to be successful. However, the 

internal dynamics of different Maxi-B regions and its interactions with model surfactant 

lipids/proteins can still be probed using solution NMR. In addition, with selected site

specific isotope ( 13C/15N/19F) labels, solid-state NMR studies can lead to some inferences on 

the overall tertiary conformation of Maxi-B in lipid environments. One possible option will 

be to use oriented samples and determine the orientations of the helices in phospholipid 

bilayers. Another option will be to directly investigate if Maxi-B folds with its two predicted 

pairs of helices tightly packed as in the closed-type Saposins or further apart as in the 

open-type Saposins. 

Recombinant expression of full-length SP-B in bacteria is currently underway in the 

Booth Lab. Protocols are being explored to resolve the problems that other labs have 

encountered in SP-8 production. However, given the difficulties in expressing and then 

purifying a properly folded protein that contains over 50% hydrophobic amino acids and 

three intrachain and one interchain disulfide bonds , this project still demands formidable 

efforts to get accomplished. Nevertheless, if successful, it will allow an incorporation of 

uniform 13C/15N labels in SP-B which will make the protein acquiescent to the structural 

studies in the presence of detergent/lipid micelles by solution NMR. The high-resolution 

three-dimensional structure of full-length SP-B will likely revolutionize the ongoing lung 

surfactant-related research and contribute significantly in developing a more accurate model 

for lung surfactant function. 
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