






MONITORING AND MANAGING RECOVERY OF NOCTURNAL BURROW­

NESTING SEABIRD POPULATIONS ON RECENTLY PREDATOR-ERADICATED 

ALEUTIAN ISLANDS 

by 

©Rachel T. Buxton 

A thesis submitted to the 

School of Graduate Studies 

in partial fulfillment of the 

requirements for the degree of 

Master of Science 

Department of Biology 

Memorial University ofNewfoundland 

May 2010 

StJohn's, Newfoundland and Labrador, Canada 



ABSTRACT 

Few quantitative data exist measuring nocturnal burrow-nesting seabirds that were 

heavily affected by predator introductions in the Aleutian Islands, due to challenges 

associated with monitoring. I evaluated the feasibility of using automated recording and 

recognition of call activity as a way to examine restoration. I assessed recording quality 

and call recognition rate in the windy Aleutian environment, characteristic of remote 

seabird breeding islands. With only 3% of nights unusable due to wind noise, devices 

were extremely robust. I used this method to inventory call activity across the western 

Aleutian Islands and relate patterns to recovery rate. I found that nocturnal seabird 

activity is positively related to time since eradication, however a number of other factors 

render recovery rate complicated. In order to encourage re-colonization I performed a 

series of social attraction experiments. Continued acoustic monitoring and artificial 

attraction are required to promote population recovery throughout the Aleutian chain. 
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1.1 BACKGROUND 

1.1.1 Island Invaders. 

CHAPTER ONE 

INTRODUCTION 

Invasion of alien plants and animals is the most important cause of biodiversity 

loss in island ecosystems (Atkinson 1989, Moors and Atkinson 1984, Chapuis et al. 1994, 

Vitousek 1990). A biological invasion is defined as the expansion of any organism 

outside its previous known geographical range, and represents an important evolutionary 

process (Williamson 1996). However, because of humans, invasion of remote islands by 

species that could not have dispersed there naturally has become common. Introduced 

species, especially non-native mammals, have devastating effects on island ecosystem 

dynamics (Wardle 2002, Parker et al. 1999), have altered or destroyed natural island 

habitat, and have driven local fauna to extirpation or extinction (Blackburn et al. 2004). 

Oceanic islands are home to insular animal communities with high rates of endemism and 

relatively little diversification, resulting in disproportionate rates of extinction and 

extirpation caused by introduced species (Courchamp et. al. 2003, Aguirre-Munnoz eta/. 

2008). For example, 93% of 129 bird extinctions in the past 500 years have been island 

species (King 1985, Birdlife Intemational2000) and island birds constitute 67% of the 

world bird species currently threatened with extinction (Rauzon 2007). Introduced 

mammalian predators including foxes (Alopex lagopus, Vulpes vulpes), dogs (Canis 

familiaris), feral cats (Felis catus) and especially rats (Rattus spp.), are the primary driver 

of population reduction (McChesney and Tershy 1998, Courchamp et al. 2003, Aguirre-
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Munnoz et a!. 2008). Over 90% of all islands have been invaded by rats; at least 65 

major island groups have been invaded by cats; and cattle, rabbits and hares (Leporidae), 

goats (Capra hirca), sheep (Ovis aries), and other grazers have been introduced onto 

islands for farming (Atkinson 1989, Towns 2006, Jones eta!. 2008b). 

1.1.2 Seabird Vulnerability to Island Invaders. 

Approximately 30% of seabird species that nest on islands are listed as threatened, 

and 6% are listed as critically endangered by the IUCN, owing to fisheries by-catch 

(Lewison eta!. 2004), human-induced climate change (Smith eta!. 1999, Croxall eta!. 

2002), changes in prey supply (Boersma and Parrish 1998) and most importantly, the 

introduction of non-native species (Moors and Atkinson 1984, Atkinson 1989, 

McChesney and Tershy 1998, Rauzon 2007, Birdlife International 2008). Seabirds spend 

most of their lives on the open ocean, but must return to land to reproduce. Suitable 

nesting habitat close to optimal foraging grounds and free from disturbance by terrestrial 

mammals is therefore of the utmost importance. 

Introduced mammals can destroy nesting habitat through trampling and grazing 

(Cruz and Cruz 1987) however, the greatest threat to seabirds is direct predation and 

caching of eggs, chicks, and adults (Moors and Atkinson 1984). Seabirds are rendered 

vulnerable because they have evolved for millennia in the absence of terrestrial predators, 

leading to adaptations such as flightlessness (Diamond 1981, McNab 1994 ), lack of fear 

(Milberg and Tyrberg 1993), and conspicuous ground-nesting habits (Ebbert and Byrd 

2002). Furthermore, seabirds are long-lived and have low annual reproductive and 
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recruitment rates (Lack 1968, Warham 1990, 1996), meaning that individuals lost to 

predation cannot be quickly replaced (Moors and Atkinson 1984, Paulay 1994). When 

non-native mammals are introduced into island ecosystems, populations of seabirds are 

severely reduced, and small ground nesting seabirds are often extirpated (McChesney and 

Tershy 1998) or driven to extinction (e.g., Guadalupe Storm-petrel Oceanodrorna 

macrodactyla; Jehl and Everett 1985). 

1.1.3 Island Invaders in the Aleutians. 

The Aleutian Islands have been invaded by many different predators including: 

Norway Rats (Rattus norvegicus), Arctic Foxes (Alopex lagopus), House Mice (Mus 

musculus), and ground squirrel (Sciuridae) (Ebbert and Byrd 2002). Foxes were first 

introduced in the 1750s for the Russian fur trade, but the heyday for fox ranching 

occurred in the early 201
h century by American Enterprises when nearly every habitable 

island (over 450) was stocked with foxes (Bailey 1993, Ebbert and Byrd 2002, Byrd et al. 

2005). The highly adaptable Norway Rat has become established on 16 Aleutian Islands 

due to accidental introductions during military occupation or establishment of fox farms 

(Ebbert and Byrd 2002). Response has rarely been quantified, but anecdotal evidence 

indicates that insular seabird populations were decimated after predator introductions 

(Murie 1959, Bailey 1993, Byrd et al. 2005). 

1.1.4 Island Restoration. -

1.1.4.1 Eradication of Island Invaders. -
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Efforts to eradicate introduced predators are increasing due to widespread 

accounts of damage inflicted on island faunas (Jones et al. 2008b, Brooke et al. 2007, 

Clout 2001 ). Eradication technologies were pioneered in New Zealand in the 1970s, and 

since have become more streamlined and sophisticated with the advent of anti-coagulant 

toxins and bait-delivery systems, more cost-effective with the development of 

prioritization schemes, and more realistic on larger islands (Towns and Broome 2003, 

Clout and Russell 2006, Brooke et al. 2007, Baker et al. 2007). Eradication success 

stories are numerous, from the removal of Arctic Foxes in Alaska (Bailey 1983) to feral 

cats in Mexico (Keitt and Tershy 2003). Twenty-five invasive vertebrate species have 

been removed from over 775 islands world-wide (Keitt et al. 201 0). As of 2009, Arctic 

Foxes have been removed from 34 islands across the Aleutian chain and the first 

eradication of Norway Rats was recently deemed successful (J.C. Williams pers. comm.). 

In some cases, eradication has been beneficial for seabird populations. For 

example, increases in hatching success and nesting distribution have been observed in 

Xantus's Murrelet on Ancapa Island (Synthliboramphus hypoleucus; Whitworth et al. 

2005), Shags and Razorbills on Canna Island (Phalacrocorax aristotelis and Alca torda; 

Swann 2006), and petrel species on Marion Island (Cooper et a!. 1995), after eradication 

of rats and feral cats. In the Aleutian Islands, populations of Black Oystercatcher 

(Haematopus bachmani; Byrd et al. 1994) and Pigeon Guillemot (Cepphus calumba; 

Byrd et al. 1997) have increased 4- to 5-fold after Arctic Fox eradication. However, these 

types of quantitative accounts are rare, and there are many situations where eradication 

has not resulted in return or recovery of seabirds (e.g., Common Diving Petrels 
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Pelecanoides urinatrix on Mana Island, New Zealand 10 years after House Mice 

eradication; Miskelly and Taylor 2004). 

1.1.4.2 Translocation. 

Translocation involves moving chicks from their natal colony to a new site and 

hand-rearing them to fledging (Serventy 1989) utilizing a key social behaviour of colonial 

seabirds: imprinting to hatching site or natal philopatry (Thibault 1993, Ovenden et al. 

1991 ). Philopatric seabirds show low levels of dispersal from their natal site, a 

characteristic thought to have evolved along with social organization and coloniality 

(Stacey and Lignon 1991 ). When introduced predators extirpate philopatric seabirds, all 

chicks that would imprint on and return to that colony are destroyed, resulting in no return 

after eradication. In this case, seabirds can be translocated to re-establish populations 

(Parker 2008, Griffith 1989). If chicks are translocated early enough in the imprinting 

stage, they will recognize the new site as the natal colony and return to breed as adults. 

Translocation has been used for many avian species to re-establish populations at sites 

where they were obliterated by introduced predators (e.g., Aleutian Cackling Goose 

Branta hutchinsii leucopareia; Byrd and Springer 1976) or at new sites where the original 

population is threatened by introduced predators (e.g., Gould's Petrel Pterodroma 

leucoptera leucoptera; Pridell and Carlile 200 I). 

1.1.4.3 Social Attraction. 

Many prospecting or pre-breeding colonial seabirds use "public or social 

information", the auditory, visual, and olfactory cues provided by the presence of 
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breeding conspecifics, as information to signal safe nesting habitat (Ward and 

Schlossberg 2004, Danchin et a/. 2004). This strategy evolved due to the patchy nature of 

food resources and suitable island nesting habitat across the open ocean (Danchin et a!. 

1997, Danchin eta/. 1998). For seabirds that lack natal philopatry, sampling alternatives 

across long distances would become costly and energy demanding, making monitoring 

conspecifics (social information) a more parsimonious method of acquiring information 

about nest-site quality (Boulinier and Danchin 1997, Nocera eta/. 2006). At sites where 

seabird colonies have been extirpated or severely reduced by introduced predators, social 

cues that signal safe and suitable nesting habitat are destroyed. Therefore, prospecting 

individuals will no longer consider such places for nesting, and re-colonization will be 

slow or non-existent after eradication. If the abandoned site is still suitable for nesting, 

established colonies can be simulated artificially to attract birds (Parker eta/. 2007, Kress 

1997). The use of decoys, mirrors, and playbacks as artificial cues to simulate social 

information from active colonies is referred to as social attraction (Kress 1998). The goal 

of social attraction is to encourage enough prospecting-age birds to land among the 

decoys and playbacks and remain long enough to attract additional birds (Kress 1998). 

As more birds congregate at the site, potential breeders should have an increased chance 

of pairing and breeding and eventually colonies will result (Parker et a/. 2007, Kress 

1998). 

During the last 30 years, social attraction techniques pioneered by S. Kress have 

become widely used in island restoration projects (Rauzon 2007, Kress 1997). Social 

attraction has been used to restore colonies of Atlantic Puffins (Fratercula arctica; Kress 
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and Nettleship 1988), Common Murres ( Uria aalge; Parker et al. 2007), Short-tailed 

Albatross (Phoebastria albatrus; Hasegawa and DeGange 1982) and many other seabirds; 

it has also been used for at least 38 other colonial waterbirds and several species of 

territorial passerines (Ward and ScWossberg 2004). 

1.1.5 Monitoring Population Recovery after Restoration. 

Large restoration efforts suffer from a common problem: lack of long-term 

monitoring after eradication (Davis et al. 2004). Monitoring seabird population recovery 

after restoration efforts is essential to determine effectiveness and to refine methods for 

future projects. However, this becomes expensive and problematic with secretive species 

or at remote sites characteristic of seabird nesting habitat. Common monitoring 

techniques of seabird recovery include: boat surveys circumnavigating islands using band 

or strip transects to record the number of birds of each species observed at sea (Day et al. 

1978, Tasker et al. 1985), and beach counts using nest or burrow-sampling (Gaston el al. 

1988). For larger surface or cliff nesting species, counts can be done using aerial 

photographs (Nettleship 1976). 

1.2 STUDY SITES 

1.2. 1 The Aleutian Islands. 

The Aleutian Islands comprise approximately 150 isolated volcanic islands 

extending 1,800 km west from the Alaska Peninsula (Gibson and Byrd 2007). Formed by 

the highest peaks ofthe submerged Aleutian ridge (Jahncke eta/. 2005), the islands mark 

7 



the boundary between the Bering Sea and the Pacific Ocean. The Aleutians have a 

treeless and homogenous floral composition, characterized by unique Beringia! oceanic 

tundra, and dominated by Leymus/ Umbel subarctic grassland (Talbot et al. 1997, Gibson 

and Byrd 2007). Due to the lack of native terrestrial predators west of the Fox Islands 

(Bailey 1993 ), near absence of modem human settlements, proximity to feeding grounds 

(Byrd et al. 2005), and relatively uniform suitable nesting habitat, the islands are a haven 

for seabirds (Croll et al. 2005). The Aleutian Archipelago holds approximately 10 

million breeding seabirds of 26 different species (Byrd et al. 2005). The islands are 

extremely remote, barren, and windswept, with a harsh oceanic climate. So notorious are 

the gales, wind and rain, and dense fog that early Russian missionaries called the area 

"the place that God forgot" (Corbett and Swibold 2000). For this reason, it was believed 

that Alaskan islands were largely undisturbed by modem civilization, especially in 

comparison with temperate and tropical islands, many of which have been seriously 

affected by human activity (Bailey 1993). However, from the systematic introduction of 

Arctic Foxes (Alopex lagopus) for the fur trade in the 18th to 20th centuries (Bailey 1993), 

the accidental introduction ofNorway Rats (Rattus norvegicus) during military 

occupation (Major and Jones 2005), and heavy aerial bombing raids during World War II 

(Daines and McClellan 1987), the Aleutians are far from pristine. 

Historical distribution of seabird populations is only known from anecdotes by 

explorers such as Steller, yet by 1937, when the first surveys of the Aleutians were 

performed, it was clear that seabirds were in decline on islands used as fox farms (Murie 

1959). Soon after WWII in 1949, the first resident manager of the Aleutian Islands 
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National Wildlife Refuge began a fox eradication program and efforts accelerated after 

consolidation of the Alaska Maritime NWR in 1980 (Ebbert and Byrd 2002). 

Furthermore, the first successful rat eradication in the Aleutians occurred at Rat Island in 

2008 (Woods et al. 2009). This has resulted in a patchwork of islands with, without, and 

at different stages of recovery from introduced predators, making the Aleutians an ideal 

large-scale natural experiment to study the recovery of seabirds (Ebbert and Byrd 2002, 

Croll et al. 2005). 

1.2.2 Nizki and A laid Islands 

Shemya, Nizki and Alaid Islands comprise the Semichi group in the Near Islands 

among the western-most of the Aleutians (Fig. 1.1 ). Nizki and A laid are frequently 

joined by a sandbar at low tide, allowing access between islands (West 1987, Byrd et al. 

1994). These small islands are extremely low with rolling hills generally under 60 m. In 

the 1800s and 1900s Nizki/ A laid had a large and diverse population of breeding birds, 

including seven endemics and extensive waterfowl (Clark 1910, Murie 1937). Both 

islands were stocked with Arctic Foxes in 1911 and essentially all nesting bird 

populations were drastically reduced or extirpated by 1937 (Murie 1937, Murie 1959, 

Byrd et al. 1994). Foxes were removed from Nizki in 1969 and Alaid in 1975, among the 

first successful eradications executed by the refuge. 

1.2.3 Buldir Island 
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Buldir Island is the westernmost of the Rat Islands group and is the most isolated 

of the Aleutian Islands, providing the only landfall in a 220 km-wide pass (Byrd and Day 

1986), located about 100 km from Kiska to the east and 130 km from Semya to the west 

(Fig. 1.1 ). Characteristic features include boulder beaches backed by steep cliffs and 

coastal talus slopes (Byrd and Day 1986). Buldir has never had predators introduced and 

thus has a large population of breeding seabirds. It is the most diverse seabird colony in 

the northern hemisphere, with 21 different species, including the largest breeding colony 

of storm-petrels in the Pacific Ocean and the largest colony of Ancient Murrelets in the 

Aleutian Islands (Byrd et a/. 2005). 

1.2.4 Kiska Island 

Kiska is the second largest island in the Rat Islands group, with an active 

stratovolcano at the northern tip which erupted as recently as September 1990. An 

explosive eruption in 1962 extruded lava and created a new cinder cone about 30 meters 

high called Sirius point (Miller eta/. 1998), subsequently creating extensive new auklet 

habitat. In contrast to Buldir, Arctic Foxes were introduced in 1835 (Ashbrooke and 

Walker 1925), Norway Rats were introduced accidentally during military occupation 

(Deines and McClellan 1987), and during WWII Kiska was occupied by Japanese, 

American, and Canadian troops and heavily attacked and bombed. Besides large 

populations of Crested and Least Auklets, few birds currently breed at Kiska (Byrd et al. 

2005) likely due to predation by Norway Rats. 
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1.2.5 Little Sitkin Island 

Little Sitkin is an active stratovolcano (Miller eta/. 1998) in the Rat Island group 

of the western Aleutians. Its closest neighbours are David of and Khvostof about 10 km to 

the north-east (Fig. 1.1 ). Much of the island is lined with steep cliffs, particularly on the 

eastern and northern shores. Foxes were introduced in 1923, removed in 2000, and little 

is known about historic seabird colonies. In 1937, Murie (1959) found 8 different species 

of seabirds in over 45% of fox scat, suggesting that seabirds were heavily predated, but 

some managed to survive up to 14 years after predator introduction. 

1.2.6 Amatignak Island 

Experimental fieldwork was carried out in Ulva Cove to the east of Amatignak 

Island. Amatignak is in the Delarof Islands to the west of the Andreanof Islands and 

directly adjacent to Amchitka Pass (Fig. 1.1). Amatignak's southern tip, NitrofPoint, is 

the southernmost point in Alaska (Campbell 1995). Amatignak is an ancient, glacially 

eroded, densely vegetated island with extensive regions of peat bog at low elevations 

(Jones eta/. 2008a). The island was stocked with foxes in 1923 and had foxes removed 

in 1991. Although historic colony size of seabirds pre-dating foxes is unknown, Ulva 

Cove holds the largest Aleut midden site in the Delarofs Islands (D. Corbett pers. comm.) 

and seabirds were an important constituent in Aleut diet (Lefevre 1997). The island is 

thought to hold a current breeding population of 7 species of seabird (USFWS 2004, Byrd 

et a/. 2005). 
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1.2. 7 Kasatochi Island 

Kasatochi is located in the Central Aleutian Islands, separated from its nearest 

neighbour Atka to the southeast by 20 km and Koniuji (one of the largest active nocturnal 

seabird colonies in the Aleutians) to the east by 25 km. Kasatochi volcano erupted with 

little warning on August 7, 2008 and buried the island under up to 30m of tephra, 

covering or destroying all breeding and foraging habitat on and around the island 

(Williams et al. IN PRESS). Arctic Foxes were introduced in 1927 and removed in 1984 

and since then numbers of several seabird species have increased (Dummond 2006, 

2007). Pre-eruption, Kasatochi supported large colonies of auklets Fork-tailed Storm­

petrels, and as such was the site of extensive biological surveys (Drummond and Rehder 

2005). Because some seabirds, such as Crested Auklets (Aethia cristatella), in the 

geologically active environment of the Aleutians are adapted to rapidly exploit new 

habitat, depending on the rate of tephra erosion, recovery of many seabirds on Kasatochi 

should occur quickly (Byrd et al. 1980, Williams et al. IN PRESS). 

1.3 FOCAL SPECIES 

1.3.1 Nocturnal Burrow-nesting Seabirds 

All focal species are strictly nocturnal, foraging offshore during the day and 

visiting breeding colonies at night during complete darkness (Manuwal 1974, Simons 

1981 , Watanuki 1986, Gaston 1994a). As such, individuals cannot depend on visual 

communication and instead have developed conspicuous acoustic and chemical signals 

for homing, to distinguish between sexes, to interact with mates and rivals, and to attract 
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potential mates (Grubb 1974, Brooke 1986, Brooke 2004). All species have similar diet, 

feeding on a mix of amphipods, copepods, euphausiids, and myctophid fish (Vermeer et 

al. 1985, Vermeer et al. 1988). Adults nest in shallow earthen burrows in well drained 

soil (Stenhouse and Montevecchi 2000), grass hummock (Byrd and Trapp 1977, Vermeer 

and Lemon 1986), and occasionally talus slopes and rock crevices (Harris 1974, Boersma 

eta!. 1980, Drummond 2006), likely as an adaptation to avoid aerial predators and to 

insulate eggs and chicks from large temperature fluctuations (McKown 2008). All 

species have strong nest site and mate fidelity, but none are known to exhibit strong natal 

philopatry (Manuwal 1974, Gaston 1994b, Huntington eta!. 1996, Boersma and Silva 

2001 ). Therefore, to prospect for suitable nesting habitat, all species use social attraction 

cues, auditory and olfactory information provided by breeding conspecifics (Kress 1997). 

Most importantly to this study, all species were devastated by introduced predators in the 

Aleutians. On islands invaded by foxes or rats, colonies were extirpated or reduced to 

small remnant populations on offshore islets and other refugia (Murie 1959, Bailey 1993). 

Although there is some evidence of recovery (Nelson eta!. 1992, Willet 1915, Willet 

1917), few quantitative studies exist. 

1.3.2 Storr.n-J7elrels 

Two species of storm-petrel are known to breed in the Aleutians, Leach's 

( Oceanodror.na leucorhoa) and Fork-tailed ( 0. furcata) Storm-petrel, the most abundant 

and widespread storm-petrels breeding in the North Pacific (Boersma and Groom 1993). 

These birds live colonially on islands from California to Alaska to northern Asia 
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(Huntington eta!. 1996, Boersma and Silva 2001). Population estimates range from 10-

15 million Leach's Storm-petrel and 5-l 0 million Fork-tailed Storm-petrels (Sowls eta!. 

1978). All species have similar breeding biology: age at first breeding between 3-5 years; 

one egg is laid and incubated by both sexes; egg-laying and hatching are asynchronous; 

and both the egg and chick can withstand neglect during the long incubation period 

(Boersma and Wheelwright 1979, Vermeer et al. 1988, Warham 1990, 1996). Fork-tailed 

Storm-petrels feed closer to shore, have higher wing-loading, and have earlier fledging 

than Leach's Storm-petrel (Vermeer et al. 1988). Although subtle differences exist, in the 

Aleutian Islands, Leach's and Fork-tailed Storm-petrels are closely associated in mixed 

colonies. 

1.3.3 Small Alcids 

Two species of nocturnal burrow-nesting alcids breed in the Aleutian Islands: 

Cassin's Auklet (Ptychoramphus aleuticus) and Ancient Murrelet (Synthliboramphus 

antiquus). These species share many common characteristics including size, nesting, and 

diving behaviour (Sowls eta!. 1978, Manuwal 1974); but differ in their chick rearing 

strategies (Vermeer and Lemon 1986). Ancient Murrelet chicks are precocial; they are 

not fed within the burrow and instead depart to sea a few days after hatching 

accompanied by adults (Sealy 1976, Vermeer eta/. 1984, Jones eta!. 1987a). Cassin' s 

Auklets on the other hand feed chicks in burrows for six weeks until the young are 

fledged (Manuwal 1974, Vermeer 1981). Vermeer eta/. (1985) found that Ancient 

Murre let tend to take larger planktivorous and juvenile fish prey than Cassin's Auk let, but 
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no significant difference in diet was observed. Although these species have sympatric 

breeding ranges (Sowls et al. 1978), and nest in close proximity in the Aleutian Islands, 

Ancient Murrelets often avoid densely nesting Cassin's Auklets (Vermeer and Lemon 

1986). 

1.4 THESIS FRAMEWORK 

1.4.1 Purpose 

Gardmark eta!. (2003) stated that all populations are likely to have experienced or 

will come to experience reduction, crashes, or extirpations due to natural or human­

induced environmental changes. Anthropogenic alteration has spread to all ecosystems 

on earth' s surface and rates of population decline and biodiversity loss are accelerating 

(Vitousek el al. 1997). On the other hand, conservation research is growing, and 

successful restoration projects are increasing around the globe. With such high rates of 

population reduction and subsequent management, it is important to understand factors 

limiting and facilitating population recoveries. However, there is a large knowledge gap 

in restoration literature quantifying patterns in population recovery. Due to reproductive 

and social constraints, some animal populations re-bound slowly, if at all . In this case, 

rather than quantifying slow rates of recovery, management strategies incorporating 

population enhancing techniques may be needed. There exists now a need to monitor 

population recovery after restoration efforts and to effectively manage populations that 

are slow to recover naturally, two objectives that are addressed in this study. 
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For certain seabird species, quantitative recovery data is lacking due to the 

difficulty of monitoring populations. Most seabirds nest on remote islands that are 

difficult and expensive to access, and build nests in locations logistically challenging to 

measure like cliffs or burrows. Leach's and Fork-tailed storm-petrels, Ancient Murrelets, 

and Cassin's Auklets are the most challenging seabirds to census in the Aleutian Islands 

(Boersma and Groom 1993). These species visit breeding grounds (where 

conventionally, seabirds are the most accessible for monitoring) in the dark, have variable 

colony attendance depending on weather and light variables (Watanuki 1986, Mougeot 

and Bretagnolle 2000), and nest in earthen burrows which they occupy at a variable rate 

(Boersma and Groom 1993). On the other hand, these small seabirds were among the 

most affected by the introduction of non-native predators in the Aleutian Islands 

(McChesney and Tershy 1998). Considering the decimation of nocturnal burrow-nesting 

populations, an ideal measure for the success and value of eradication projects would be 

to measure their recovery. 

1.4.1 Objectives 

The first objective of this study (Chapter 2) was to assess a new method of 

monitoring nocturnal burrow-nesting seabirds on remote islands, using passive acoustic 

recording devices and associated call recognition software. Acoustic recording provides a 

consistent and standardized method of estimating abundance based on call activity and 

has been used to monitor secretive species from a range of taxa (Hasselmeyer and Quinn 

2000, Swiston and Mennill 2009). Nocturnal seabirds in particular lend themselves to 
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acoustic analysis due to their conspicuous vocal displays, which have been characterized 

and linked to context (e.g. Procellariidae; Robb et al. 2000). The ability of acoustic 

devices and call recognition software to function in exposed conditions characteristic of 

the Aleutians and most remote oceanic seabird colony sites was assessed. Activity levels 

of pre-defined calls were used to construct relative indices of abundance for Leach' s and 

Fork-tailed Storm-petrels, Cassin's Auklet and Ancient Murrelet among Aleutian Islands. 

In Chapter 3, acoustic recordings were used to compare recovery of nocturnal 

seabirds across the western Aleutian Islands. Relative indices of abundance were 

compared among islands with differing time periods since predator eradication in order to 

determine each species' rate of recovery. 

Finally, in Chapter 4, at a site where the recovery rate of nocturnal seabirds was 

found to be low, olfactory and auditory social attraction cues combined with artificial 

burrows were used in an attempt to enhance storm-petrel re-colonization. 

17 



• . • • 

• • • • 

.. • • •165°E 
• • . 

Nizki!Alaid 

~' ..... 

• # 
• 

• . 
J -. 

Buldir 

f 

Alaska 

Pacific Ocean 
• ~ . ·· .. .. 

1650W 

. . 
Kiska Little Sitkin 

I ~· 0~0 0 .... 

Amatignak Kasatochi 

.~0 
~~~~-

Andreanof Islands 

Figure 1.1 Map of the Aleutian Islands, situated between the North Pacific Ocean and the 

Bering Sea. Inset shows the location of each study site and island group in relation to the 

Aleutian Archipelago. 

18 



CO-AUTHORSHIP STATEMENT: 

All chapters are written in first person plural because all were co-authored by Dr. Ian 

Jones, Department of Biology, Memorial University ofNewfoundland StJohn' s, 

Newfoundland A1B3X9. 

Chapter two was also co-authored by Heather Major, Centre for Wildlife Ecology, 

Department of Biological Sciences, Simon Fraser University, 8888 University Dr., 

Burnaby, BC, V5A 1S6 

and Jeff Williams Alaska Maritime NWR 95 Sterling Highway, Ste. 1, Homer, Alaska 

99603 

19 



CHAPTER TWO 

MONITORING NOCTURNAL SEABIRDS USING AUTOMATED ACOUSTIC 

RECORDING DEVICES: APPLICATIONS FOR ISLAND RESTORATION 

ABSTRACT 

Nocturnal burrow-nesting seabirds breeding on isolated oceanic islands pose challenges 

to conventional monitoring techniques, resulting in their frequent exclusion from 

population studies. These birds have been devastated by non-native predator 

introductions on islands worldwide. After predators are eradicated, recovery has been 

poorly quantified; yet evidence suggests that some seabirds have been slow to return. We 

evaluated the feasibility of using automated acoustic recorders and associated call 

recognition software to examine nocturnal seabird recovery after removal of introduced 

Arctic Foxes (Alopex lagopus) in the Aleutian Archipelago, Alaska by comparing call 

abundance among islands. We deployed a total of 13 acoustic recorders: four on 

Nizki/Alaid from which foxes were removed in 1969 and 1975 respectively, four on 

Amatignak which had foxes removed in 1991, four on Little Sitkin which had foxes 

removed in 2000, and one on Buldir, a predator free seabird colony. Despite frequent 

gales and precipitation, only 2.9% of 2,230 hours of nocturnal recordings from May to 

August of2008 and 2009 were unusable due to wind noise. Recording quality and call 

recognition model success were highest (83% of recordings clear of background noise 

obstruction, 65% of calls identified) when recording devices were placed at sites offering 

some wind protection. We detected high levels of vocal activity of Fork-tailed 
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(Oceanodromafurcata) and Leach's Storm-petrels (0. leucorhoa), and both activity and 

successful breeding of Ancient Murrelets (Synthliboramphus antiquus) on islands thought 

to be abandoned due to fox predation. Overall, acoustic monitoring provided an 

opportunity to quantify vocal behaviour of difficult-to-measure populations of seabird 

species in varying states of recovery on isolated islands. 

Key Words: Aleutian Islands, bioacoustics, nocturnal seabirds, population recovery, 

vocalizations 

2.1 INTRODUCTION 

There is a current need for protocols and consistent methods to monitor avian 

population recovery at remote sites where introduced predator eradication efforts have 

made advances in the past few decades (e.g., rats Rattus spp.: Clout 2001 , feral cats Felis 

catus: Nogales eta/. 2004). Conservation biology literature is replete with studies that 

outline the destructive effects of introduced predators on colonial seabirds and other 

island avifauna (Rauzon 2007, Jones eta/. 2008b). Nevertheless, eradication techniques 

have become more affordable and efficient. Removal of predators will have potentially 

large benefits to depleted avian populations, yet patterns and rate of recovery after 

eradication have gone largely unstudied, and development of monitoring techniques 

needs more attention. 

In the Aleutian Islands, Alaska, beginning in the l81
h century, non-native Arctic 

Foxes (Alopex lagopus) were introduced to over 450 islands for fur farming (Bailey 1993 

Croll eta/ .2005). Although the effects were not carefully quantified, it is clear that foxes 
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eliminated or reduced native Aleutian avifauna, especially surface- and burrow-nesting 

colonial seabirds (Murie 1959, Bailey 1993, Byrd eta!. 1994, Byrd et al. 2005). In the 

late 1940s, an Arctic Fox eradication program began across the Aleutians to restore 

seabird populations, and by the 1990s an intensive program was underway (Ebbert 2000, 

Ebbert and Byrd 2002). Foxes had been removed from 34 Aleutian Islands as of April 

2009 (J.C. Williams pers. comm.), resulting in a patchwork of islands with, without, and 

at different stages of recovery from introduced predators (Ebbert 2000). Research 

suggests that avian populations are recovering after non-native fox removal ; however, not 

all species have returned, the reasons for which are poorly understood (Byrd et al. 1994, 

Williams et al. 2003). The Aleutian archipelago thus provides an opportunity to study 

re-colonization patterns of seabirds adversely affected by fox farming. 

Nocturnal burrow-nesting seabird species were among the most affected by fox 

predation, and entire colonies were often extirpated on islands used as fox farms (Bailey, 

1993). Fork-tailed Storm-petrels (Oceanodromafurcata) , Leach' s Storm-petrels (0. 

leucorhoa), and small alcids such as Ancient Murrelets (Synthliboramphus antiquus) and 

Cassin' s Auklets (Ptychoramphus aleuticus) suffered intense predation by Arctic Foxes 

due to the accessibility of their breeding sites, small size, and lack of behavioural 

adaptations to terrestrial predators (Atkinson 1985, McChesney and Tershey 1998). 

Furthermore, due to lack of social facilitation (Podolsky and Kress 1989) and 

reproductive constraints (one egg per breeding season: Warham 1996) populations are 

often slow to return after introduced predators are eradicated. 
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Nocturnal burrowing-nesting seabird colonies are noisy places (Brooke 1986) and 

frequent conspicuous night-time vocalizations are characteristic of all Aleutian breeding 

sites. Vocalizations are considered to take on greater significance and replace visual 

displays due to the lack of light during social interactions (Brooke 1978). Vocal 

repertoires of many nocturnal species, including all Aleutian species, have been 

characterized and linked to behaviour (Simons 1981, Taoka et al. 1988, Jones eta/. 1989, 

Seneviratne et al. 2009). Call functions include mate attraction, burrow territoriality, 

nest-site prospecting and other social signalling (Danchin et al. 1998, Doliguez eta!. 

2003). Young nocturnal burrow-nesters also use sound cues associated with the presence 

of breeding conspecifics or "social information" to signal safe nesting habitat (Warham 

1996). In other words, prospecting individuals use vocalizations associated with active 

colonies when deciding where to breed. 

Limited opportunistic survey work in the Aleutians has confirmed the scarcity of 

nocturnal burrow-nesting seabirds on islands used as fox farms (Murie 1959, Bailey 1993, 

Byrd et al. 2005). However, such day-time vessel and beach surveys are inherently 

problematic, because detection rate of nocturnal seabirds is likely to be low. Both the 

nocturnal and burrow nesting habits of these species make them difficult to be seen and 

counted. Furthermore, most sites in the Aleutian Islands are remote and logistically 

difficult to reach, and islands are visited opportunistically and infrequently, for a day to a 

week at a time. We therefore address the need for a cost-effective and consistent method 

of monitoring nocturnal seabird recovery on remote islands using audio recording, 

targeting nocturnal vocal activity as an indicator of status and relative abundance. 
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Recording technology is advancing rapidly, with weatherproof, digital, 

multichannel recording devices with lengthy battery life available for general use. 

Automated acoustic recording systems have been used for a diverse array of taxa (e.g., 

anurans: Peterson and Dorcas 1994, cetaceans: Marques et al. 2009, woodpeckers: 

Swiston and Mennill 2009) and difficult applications, for example, high species richness 

in tropical habitats (Haselmayer and Quinn 2000). Acoustic recording is also useful for 

species that are secretive (e.g., nocturnal: Mills 2006); have a wide array of spatial 

distribution due to flocking, lekking, or coloniality; or whose activity from day to day is 

highly variable, leading to variance in census results (Karr 1981 ). Acoustic recording 

devices detect rare species and vocal behaviour, facilitate simultaneous recording at 

multiple sites, and can be deployed at remote or logistically problematic sites for entire 

seasons to capture variation in nightly or daily vocal activity. Recognition software can 

then be used to measure long-term trends in vocal activity represented in large volumes of 

recording data (Staiger 2004, Peterson and Dorcas 1994). This recording system is 

especially advantageous for nocturnal species due to their conspicuous and contextual 

night-time vocalizations. However, passive recording also has its challenges: recordings 

of individuals can be obscured by wind noise, multiple individuals calling at the same 

time in dense colonies interfere with detection, and some species' vocalizations can be 

highly variable and structurally complex, making recognition difficult (Agranat 2009). 

In summary, the objectives of our study were to: 1) test the ability of an 

automated recording device to make informative recordings in a harsh, windy, wet 

environment characteristic of the Aleutian Islands; 2) test whether call-recognition 
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software was able to identify a variety of seabird species of interest within digital 

recordings with varying background noise, numbers of birds present, and interference 

within and between species; 3) develop methods of processing recordings to provide a 

comparative index of abundance of nocturnal seabirds on four islands in the western 

Aleutians; and 4) generally, to consider how these methods can be applied to the current 

need for protocols to monitor nocturnal seabird recovery. 

2.2METHODS 

2.2.1 Autonomous Recording Device 

We used Song Meters (Wildlife Acoustics Inc. model SM1), a programmable, 

weatherproof, battery-operated, autonomous recording unit (ARU) with a built in data 

logger composed oftwo 16 GB memory card slots. In 2008 we used firmware version 

1.5.0 and in 2009 all Song Meters were updated to firmware version 1. 7.0. Gain on both 

left and right channel microphones was set to the default of +42.0 dB with a sensitivity of 

-35dBV /pa. Most seabird calls are below 7-8 kHz; therefore, Song Meters were set to a 

sample rate of 16 kHz in stereo. At a sample rate of 16 kHz in stereo, the available 32 

GB of memory and predicted battery life of 100 hr allowed for about 32 nights at 

3hr/night of recording. Each Song Meter was therefore programmed to record in 15 min 

on/off cycles from approximate dusk (00:30- Hawaii-Aleutian Standard Time) to 

approximate dawn (06: 15 HAST), and batteries were changed once every 30 days. In 

2009, we were unable to retrieve Song Meters from Nizki/Alaid Islands in order to 
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change the batteries; this Song Meter was programmed to record in 15 min increments 

from only 01:30 to 04:30, which was the peak activity time of nocturnal seabirds in 2008. 

2.2.2 Study Area 

We placed nine Song Meters in 2008 and nine in 2009 on four islands in the 

western Aleutian Islands, Alaska from May-August. Four Song Meters were placed each 

on Arnatignak, Little Sitkin, and Nizki/ Alaid, all relatively small islands lacking 

established field camps, and one Song Meter was placed on Buldir Island (Appendix A, 

Fig. 2.1 ). Arnatignak is an ancient, glacially eroded island from which Arctic Foxes were 

eradicated in 1991. Little Sitkin is a geologically younger island from which Arctic Foxes 

were eradicated in 2000. Nizki and Alaid Islands are low islands with gentle terrain, 

joined by a sandbar that washes out periodically (West 1987). Foxes were removed in 

1975 from Alaid and 1969 from Nizki (Byrd et al. 1994). Buldir was a control site, as it 

has dense colonies of nocturnal burrow-nesting seabirds and never had foxes introduced. 

All islands have habitat and climate characteristic of the western Aleutians: a treeless 

windswept landscape dominated by subarctic grass and scrub ecosystem (Byrd et al. 

2005). Characteristic weather included steady winds in excess of 30 krn/h, frequent fog 

and rain, average summer temperature of7.7 ·c, and frequent violent wind and rain 

storms. 

2.2.3 Deployment Protocol 
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In the field, Song Meters were placed according to criteria that included: 

proximity to shoreline (50- 150m, close enough to appropriate seabird habitat, far 

enough to avoid surf noise); elevation ( <400 m); suitability of habitat for burrow-nesting 

and other colonial seabirds; and shelter from wind. Song Meters were mounted on !­

meter wooden stakes that were placed in the ground on vegetated headlands near the four 

cardinal points of each island (Fig. 2.1 ). A large volcano blocked passage to the east side 

of Little Sitkin Island; the Song Meter here was instead placed to the northwest of the 

island (Fig. 2.1 ). In 2008 Song Meters were placed on Amatignak, Little Sitkin, and 

Buldir Islands from mid-June to early August (Appendix A). In 2009 Song Meters were 

placed on Nizki/Aiaid instead of Little Sitkin throughout June and July, and the five other 

Song Meters were placed in the same locations as 2008 on Amatignak and Buldir from 

late May to early August. After retrieving Song Meters from Amatignak and Little Sitkin 

in 2008, we calculated the average recording quality for each site, observed 

characteristics of sites with the best quality, and in 2009, placed Nizki/ Alaid Song Meters 

at sites with similar features. 

2.2.4 Processing of Recordings 

Recording files (.wav) were uploaded for review using recognition software Song 

Scope 2.3 (Wildlife Acoustics Inc.). Recording quality was evaluated and categorized 

based on visual scans of spectrograms. We scored each night on a scale from 1 to 5 based 

on the amount of continuous broad band 'white noise' or wind noise that obstructed the 

spectrograms. Categories for wind obstruction were: 1 - no background noise; 2 - light 
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noise that obscured low frequencies (0.1 - 2.0 kHz); 3 - bouts of noise completely 

obscuring (0.1 - 8.0 kHz) 1-5% of the recording time span; 4 - 5-50% of recording span 

completely obscured by noise. Recordings with more than 50% of their duration having 

all frequencies obscured were considered unusable or category 5. In order to assess the 

Song Meters' performance with known wind velocity, category assignments were 

compared with historical wind and rain data taken from the National Data Buoy Center 

(NDBC) of the National Oceanographic and Atmospheric Administration (NOAA), 

including wind speed in m/s and wind direction. Song Meter recording qualities on 

Amatignak and Little Sitkin were compared with data from the closest weather buoy, 

south of Amchitka Island (weather buoy 46071located at 51.16 °N, 179.00 °E, 

approximately 1 00 km from both islands) and recording qualities on N izki/ A laid were 

compared to data from a weather buoy in the south-west Bering Sea (weather buoy 46070 

located at 55.00 °N, 175.28 °E, approximately 250 km from Nizki/Alaid). 

We then built recognition models using Song Scope, to search lengthy field 

recordings for calls of interest. Song Scope allows classification algorithms to be built 

based on Hidden Markov Models (HMM) that will identifY different classes of calls 

(Agranat 2009). Recognition models were built using a set of typical examples of each 

different species' different call types as training data. Vocalizations of interest included 

Leach' s Storm-petrel Purr and Chuckle calls (Taoka eta!. 1988), Fork-tailed Storm-petrel 

flight and single-syllable male calls (Simons 1981 ), and Ancient Murrelet Chirrup call 

and Song (Jones eta!. 1989). 
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For Leach's Storm-petrel Chuckle call, Fork-tailed Storm-petrel flight call and 

Ancient Murrelet Chirrup call models, first a basic recognition model was built using 

training data from 3-4 high quality reference recordings. Storm-petrel reference 

recordings were obtained from Buldir and Egg Islands in 2006 using a Sony TCD­

DIOPROII Digital Audio Tape recorder or Fostex FR-2 solid-state recorder with 

Senheiser MKH 70 or MKH 816 directional microphones (see Seneviratne et al. 2009). 

Ancient Murrelet reference recordings were obtained from McPherson Point on Langara 

Island in 2006 using a recorder with Senheiser directional microphones (Chirrup 

recordings by H. Major; archived at Macaulay Library, Cornell Laboratory of 

Ornithology, Ithaca, New York). Using these basic models, field recordings from 

Amatignak, Nizki/Alaid, and Little Sitkin Song Meters were scanned for loud, clear, and 

typical calls, which were selected ("annotated" in Song Scope terminology) and saved. 

After about a dozen loud calls from field recordings with minimal background noise (no 

background wind, wave noise, or overlapping calls of other species) were annotated, a 

comprehensive recognition model was built for each call incorporating both reference 

recordings and annotations from Song Meter recordings as training data. We used model 

parameters optimal for each level of background noise, amount of interference by other 

species, and average energy of calls. Parameters included: frequency minimum, 

frequency range, sample rate, Fast Fourier Transform (FFT) window size, dynamic range, 

maximum syllable duration, maximum syllable gap, maximum song duration, maximum 

Hidden Markov Model (HMM) states and HMM feature vector size (Appendix B). To 

set parameters appropriately, a random group of field recordings were chosen and 
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reviewed in the split waveform and spectrogram view in Song Scope. Calls of varying 

quality were identified in the spectrogram view and parameters adjusted so that the 

strongest signal was visible in the log scale of the waveform view. 

To evaluate model success, Song Scope recognition models reviewed each night 

of hatched recordings to identify the call type of interest. Identified calls were then 

checked visually (by an observer) to remove false positives or background noise 

incorrectly identified as a call. Spectrograms were viewed at a frequency range of I 000-

7000 Hz, had a Fourier transform size of256, a sample rate of I6000 Hz, and a 

"Background Noise-reduction" feature setting of Is. An average false positive rate was 

calculated by subtracting the correctly identified calls (as determined by an observer) 

from the total number of identified sounds picked up by the recognition model on each 

night (including background noise). This gave the number of calls incorrectly identified 

by the recognition model, which was then divided by the total number of calls correctly 

identified. Recordings were also scanned visually to search for false negatives or calls 

skipped by recognition models. False negative calls were identified visually using the 

default settings of Song Scope's relative intensity signal power levels on a logarithmic 

scale in the spectrogram. Calls whose frequency components were fully visible in the -65 

to -60db range were noted. We did not note barely audible calls as false negatives 

because calls are never identified by recognizers below a certain energy level. A false 

negative rate was then calculated by dividing the number calls missed by recognition 

models by the total calls seen during the visual scan (total calls actually present in the 

recordings). 
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Recognition models could not be used at certain sites, for example at North Bight, 

Buldir (see Results). Instead, we counted calls on 16 random nights, by visually scanning 

spectrograms. Fork-tailed Storm-petrel flight calls and Leach's Storm-petrel Chuckle 

calls, which were especially abundant, were analyzed by subtracting periods of silence 

from a constant call rate. Both calls last for approximately I second each; resulting in a 

constant call rate of 900 ( 60 * 15 for each 15 minute recording period), minus any 

intermittent periods with no calling. 

To determine the number of nights a Song Meter would have to record in order to 

capture nightly variation in call activity (minimum device nights in a season), we graphed 

cumulative means for each of the most common call types (Leach's and Fork-tailed 

Storm-petrel Chuckle and flight call and Ancient Murrelet Chirrup call), at each site on 

Amatignak Island (the only island with two years of data). We used a random numbers 

table to select two nights (from a total of 92, 116, 95, and 106 nights at each site on 

Amatignak, see Appendix A), took an average between numbers of calls on these nights, 

and repeated this process 200 times (representing 200 nights or approximately 7 months 

of recordings), summing the cumulative means. We then observed on each graph, the 

number of units it took for random means to stabilize around the true mean (Figure 2.5). 

2.2.5 Identifying and indexing species 

To characterize each island's nocturnal seabird activity, we used a hierarchical 

classification scheme based on the frequency of each call type identified by the 

recognizers and noted during visual scans of recordings. We first identified simply 
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whether the following calls were present or absent: Leach' s Storm-petrel Chuckle, Purr, 

and Screech call; Fork-tailed Storm-petrel flight and three-syllable male call; Ancient 

Murrelet chick call, Chirrup, and Song; and Cassin' s Auklet kreer-er and kut-reeah call. 

We then calculated the percentage of nights each call was noted throughout the total 

recording period, the total number of calls noted throughout all recordings, and the mean 

number of calls per night ± standard error, and maximum calls per night (Table 2.2). 

2.2.6 Statistical Analysis 

Recording quality score was compared with wind speed and wind direction data 

using a generalized linear model (GzLM) with wind speed, wind direction, their 

interaction, year, and Song Meter site as the explanatory variables. An Ordinal GzLM 

with a logistic link was run in SPSS 16.0 (SPSS 2008), and we assessed the x2/df values 

to check for over-dispersion. False negative rates were compared among sites and 

recording qualities using a binomial GzLM with a log link. False negative calls, scored 

as a 1, and correctly identified calls, scored as a 0, formed the response variable, while 

Song Meter location and recording quality were explanatory variables. 

2.3 RESULTS 

In 2008, a total of 876 hr of recordings ( 459 hr from Amatignak Island, 240 hr 

from Little Sitkin Island, and 177 hr from Buldir) were collected. In 2009, a total of 1354 

hr of recordings (768 hr from Amatignak Island, 427 hr from Nizki/ Alaid, and 159 hr 

from Buldir) were collected (Table 1). 
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2.3.1 Recording Quality 

In 2008, only one night of 324 was considered unusable due to strong wind noise 

blocking out the frequency range where seabird calls are found for >50% of the night. In 

2009, 24 nights of 553 were considered unusable due to strong wind noise. In total, only 

25 nights of 877 or 2.9% were considered unusable due to wind noise obstruction. 

Wind speed had a significant negative relationship with recording quality across 

Song Meters and islands (G = 20.044 df = 1 P << 0.001). As recording quality worsened 

from a score of 1 to 5 (clear to unusable), mean wind speed per night increased from a 

gentle breeze 4.3 ± 0.2 m/s to a moderate gale force 13.7 ± 3.4 m/s (mean ± SE) on the 

Beaufort scale (Fig. 2.2). On the other hand, wind direction, the interaction between wind 

speed and wind direction, and year had no significant effect on recording quality (all P;:: 

0.248). Recording quality differed significantly among Song Meter sites and islands (G = 

27.049 df = 7 P = 0.043 and G = 9.021 df = 2 P = 0.011) so each Song Meter on each 

island was analyzed separately for effect of wind speed and direction (Table 2.1 ). 

Overall, Little Sitkin had the best average recording quality, followed closely by 

Nizki/ Alai d. 

Recording quality of Song Meters on Little Sitkin in 2008 was affected by wind 

speed, wind direction, and the interaction between wind speed and wind direction (all P 

<< 0). Recording quality did not differ significantly between sites. However, recordings 

were higher quality and had the highest percentage of nights with clear recordings 

(recording quality score I) at the north-west and west Song Meter sites (Table 2.1 ). 
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On Nizki/ A laid, both wind speed and wind direction were highly significant when 

the interaction term was eliminated from the model (P << 0.000). As recording quality 

worsened from clear to unusable, wind speed increased from 4.87 ± 0.38 to 17.1 ± 6.47 

(mean ± SE)(Fig 2.2). Song Meter site also had a significant effect on recording quality. 

The northern and western sites on Nizki/ Alaid had the poorest recording quality scores 

and highest percentage of nights with poor recordings, while the eastern and southern 

sites had the best recording quality scores and the highest percentage of nights with clear 

recordings (Table 2.1). 

On Amatignak, in 2008 and 2009, recording quality was significantly affected by 

wind speed (G = 53.40 df = 1 P << 0.001). As recording quality worsened from clear to 

unusable, average wind speed increased from 3.88 ± 0.14 m/s to 9.91 ± 0.73 m/s (mean ± 

SE)(Fig 2.2). There was also a difference in recording quality between Song Meter sites. 

Overall, the southern Song Meter had the highest recording quality and percentage of 

nights with clear recordings, while the western Song Meter had the lowest recording 

quality and highest percentage of nights with unusable recordings (Table 2.1 ). 

On Amatignak, recording quality had a different pattern between sites in 2009 

versus 2008. Although not significant (G = 2.431 df = 1 P = 0.119), there was a slight 

increase in recording quality from 2.33 ± 1.18 (mean± SE) in 2008 to 2.47 ± 1.27 in 2009 

and a significant increase in wind speed (G = 9356.649 df = 1 p << 0.00) from 4.85 ± 

1.89 rnls in 2008 to 5.94 ± 2.84 m/s in 2009. In 2008 the northern Song Meter had the 

best average recording quality ( 1.81 ± 0.22) and high percentage of nights with clear 

recordings, while the southern Song Meter had the worst average recording quality (2.69 
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± 0.24) and high percentage of nights with obscured recordings. In 2009 the opposite 

pattern was observed: the northern Song Meter had the poorest average recording quality 

(2. 74 ± 0.19) and the highest percentage of nights with near unusable recordings, while 

the southern Song Meter had the best average recording quality (2.07 ± 0.17) and highest 

percentage of nights with clear recordings. 

2.3.2 Recognition Model Quality 

Successful recognition models were built for Leach's Storm-petrel Chuckle calls, 

Fork-tailed Storm-petrel flight calls, and Ancient Murrelet Chirrup calls. Two models 

were built for Leach's Storm-petrel Chuckle calls and Fork-tailed Storm-petrel flight calls 

- for low and high background noise situations respectively (Appendix B). Models were 

built for Purr and Screech calls of Leach' s Storm-petrel, single-syllable male calls of 

Fork-tailed Storm-petrel, and Ancient Murrelet Song respectively; however, not enough 

of these call types were present throughout recordings to make recognition models 

efficient, due to high levels of false positives and negatives. These calls types were 

instead identified manually and noted during visual scans of recordings. 

False positive rates were very high across all recording types and model types. 

False positive rates were highest when the average call activity was low for all species. 

All three sites on each island with the lowest level of calling activity (Little Sitkin - west, 

Amatignak - south, Nizki/Alaid - north) had the highest rate of false positives. However, 

false positives are easily identified and removed using Song Scope software; therefore, 

these rates were not considered a relevant measure of model success. 
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Overall, false negative rates were significantly affected by recording quality, 

species, site, and year (all p << 0.00). As recording quality worsened from 1 (clear 

recordings) to 5 (unusable recordings) false negative rate went from very low (0.29 ± 

0.01) to very high (0.54 ± 0.02). Therefore, as recording quality worsened, calls went 

from being identified on average 71% of the time to on average 46 % of the time (Fig. 

2.3). 

Leach's Storm-petrel Chuckle call, Fork-tailed Storm-petrel flight call, and 

Ancient Murrelet Chirrup call recognition models successfully identified an average of 

67% (false negative rate 0.67 ± 0.003), 69% (0.69 ± 0.005), and 56% (0.56 ± 0.006) 

respectively, of the total number of calls observed in the recordings. However, false 

negative rates differed for each species between islands and sites. For example, Ancient 

Murrelet Chirrup call recognizers had a minimum false negative rate of 0.22 ± 0.03 at the 

northern Song Meter on Amatignak and a maximum false negative rate of 1 at the south 

site on Nizki/ Alaid (Table 2.3). In general, as the number of calls at each site increased, 

false negative rates decreased (Fig. 2.4); or rather, at sites with low activity the number of 

calls missed by recognizers was much higher. 

When all three species call recognizers were pooled, the northern Song Meter on 

Amatignak and the eastern Song Meter on Nizki/ A laid had the lowest false negative rates 

while the northern site on Little Sitkin had the highest false negative rate (Table 2.1 ). 

Overall, Little Sitkin had the highest false negative rates while Nizki/Alaid had the 

lowest. 
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We were unable to analyze recordings from the Song Meter at North Bight on 

Buldir Island using Song Scope recognition models. Recordings were of equal quality to 

those on Amatignak, Little Sitkin and Nizki/Alaid; however, the density of overlapping 

calls made analysis with recognition software problematic. Models recognized calls that 

were clear and close to the Song Meter, but constant background interference from other 

birds made these clear calls rare. We were unable to analyze the number of Fork-tailed 

Storm-petrel flight calls at the west Song Meter on Amatignak for the same reasons. 

Constant overlapping calls from 0130h - 0430h meant that the recognizers could not pick 

out individual calls. However, we were instead able to visually identify and count the 

presence/absence and relative abundance of nocturnal seabird calls. 

2.3.3 Minimum Song Meter Recording Period 

Comparing cumulative random mean values to true mean values to find the 

minimum time period Song Meters would have to record to capture nightly variation was 

both species and site specific (Fig. 2.5). The number of units it took to reach an 

asymptote (actual mean) by adding up random mean values was mostly dependent on 

level of call activity. For Leach's Storm-petrel Chuckle calls, sites with moderate levels 

of call activity (north: 80.4± 14.6 and east: 97.1 ± 9.2, mean calls/night ± SE) did not 

reach an asymptote after 200 units, whereas graphs of the sites with very low or very high 

levels of call activity (south: 6.7 ± 1.3 and west: 187.2 ± 23.9) reached an asymptote after 

95 and 75 units respectively (Fig. 2.5). At sites with low levels of activity, Song Meters 

would have to record for about 95 nights or 3 months; sites with high levels of activity for 
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75 nights or 2.5 months; and at sites with moderate levels of call activity for over 200 

nights or 6 months to capture nightly variation in Leach' s Storm-petrel Chuckle call 

activity. For Ancient Murrelet Chirrup calls graphs of sites with moderate to high levels 

of call activity (north: 7.4 ± 1. 7 east: 69.3 ± 7 .6) did not reach and asymptote after 200 

units, whereas graphs of sites with very low levels of call activity (south: 0.3 ± 0.1 and 

west: 4.9 ± 0.8) reached an asymptote after 95 and 75 units or approximately 3 and 2.5 

months respectively. Finally, Fork-tailed Storm-petrel Flight calls reached an asymptote 

before 200 units (1 00 units or approximately 3.3 months) only at the north site, which had 

a moderate level of activity (4.6 ± 0.7). We were not able to measure the site with the 

highest level of activity (west) due to extremely high density of overlapping calls. 

Species Indexed and Identified 

Leach's Storm-petrel Chuckle call were the most common call, present at all 13 

sites, followed by Fork-tailed Storm-petrel flight calls which were present at all sites 

except to the north ofNizki/Alaid (Table 2.2). Ancient Murrelet chick calls and Cassin's 

Auklet Kreer-er call were the least common calls among sites. Chick calls were present 

at the eastern site on Amatignak and Buldir, while kreer-er calls were present only at 

Buldir. 

Little Sitkin had the lowest call richness, only flight calls of storm-petrels were 

present. The western site on Amatignak Island had the highest call richness after the 

active colony of Buldir, all call types except Cassin' s Auk let kreer-er call were recorded. 
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Although some call types were present throughout many sites, they were not 

present on many nights. For example, Fork-tailed Storm-petrel flight calls were present 

at 10 out of 12 sites, but on average calls were recorded on only 25.2 ± 9.3% of nights. 

A total of 12666 and 11963 (not including the western site) Leach's Storm-petrel 

flight calls were recorded on Arnatignak in 2008 and 2009, 2329 were recorded on 

Nizki/Alaid, and 252 recorded on Little Sitkin. On Arnatignak in 2008, Leach's Storm­

petrel Purr calls were recorded only at the eastern, western, and northern Song Meter. In 

2009, Purr calls were recorded at all sites on Amatignak (Table 2.2). 

A total of 1373 and 4386 Fork-tailed Storm-petrel flight calls were recorded on 

Amatignak Island (not including the Western Song Meter) in 2008 and 2009, 1455 were 

recorded on Nizki/Alaid, and only 39 were recorded on Little Sitkin. At the western Song 

Meter on Amatignak, which was not analyzed using recognition models; we manually 

counted flight calls on 16 nights in 2009 and found a total of9328 calls. Single-syllable 

male calls were numerous at the eastern and western sites on Arnatignak; and were 

recorded occasionally at the northern, southern, and north-western sites on Little Sitkin 

and the southern and western sites on Nizki/ Alaid (Table 2.2). 

A total of 3891 and 5227 Ancient Murrelet Chirrup calls were recorded by Song 

Meters on Arnatignak in 2008 and 2009 respectively. The majority of these calls (91% in 

2008 and 77% in 2009) were recorded at the eastern site, where 1025 Songs and 266 

chick calls were noted between years. Chick departures, which included adults and 

chicks calling sequentially, were recorded on 25 separate nights in 2008 and 51 nights in 
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2009 on the eastern Song Meter. Only Ancient Murrelet Chirrup calls were recorded at 

Nizki/ Alaid, while no Ancient Murre lets were recorded at Little Sitkin (Table 2.2). 

Average number of calls of each type recorded per night and the maximum 

number of calls recorded per night followed similar patterns to the total number of calls 

heard throughout the season (Table 2.2). 

2.4 DISCUSSION: 

We assessed the use of automated acoustic recording devices and associated 

recognition software as a new technique to monitor nocturnal burrow-nesting seabirds on 

recently fox eradicated Aleutian Islands. During the summer seasons of 2008 and 2009, 

both the recording devices (Song Meter) and recognition software (Song Scope) 

successfully collected and analyzed recordings in the windy precipitous environment 

characteristic of the Aleutians and many other isolated oceanic islands. We identified 

limitations of this approach and future ways to alleviate these limitations. 

Wind noise is known to be the most significant challenge when collecting field 

recordings (Agranat 2009). With only 2.9% of the total recording time found to be 

completely unusable due to wind generated background noise throughout 2008 and 2009, 

our automated recording devices proved to be extremely robust. For 2008 and 2009 there 

were 11 gale warnings (forecasted wind> 17.5 m/s, NOAA marine forecast) and wind 

speed was greater than 12 m/s for 16% of recording nights. Nevertheless, Song Meters 
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collected suitable recordings on 97% of nights, suggesting that these devices could 

function usefully in harsh island habitats used by burrow-nesting seabirds. 

However, wind speed and in some cases wind direction negatively affected 

recording quality. Recording quality of Song Meters placed on Amatignak and 

Nizki/ A laid were negatively affected by wind speed. As wind speed increased from a 

gentle breeze to a gale force wind on the Beaufort scale, recording quality worsened from 

clear to un-usable. However, between a gentle breeze and strong breeze, recordings were 

less than 5 % obscured by wind noise. The recording quality on Little Sitkin Island was 

affected by an interaction between wind speed and wind direction, which made 

interpreting the effects of wind speed or wind direction individually problematic, but 

there was no observed worsening of recording quality with an increase in wind speed. 

These Song Meters had much fewer device nights than those on Amatignak and 

Nizki/ A laid, which may account for the lack of a consistent pattern in effect of wind 

variables on Little Sitkin recording quality. 

We identified sites with the best average recording quality including: the north­

west site on Little Sitkin, the south site on Nizki/ Alaid, and the south site on Amatignak. 

These sites were among the farthest from the shoreline, eliminating any possibility of 

wave noise, and adjacent to one or more large grassy slope, which may have provided 

wind shelter. The southern Song Meter on Amatignak, for example, was in a small 

stream gully with steep grassy cliffs that ran extremely high (>40 m) from south to north 

with a small bank offering protection from the shore. In order to obtain maximum 
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recording quality, Song Meter placement in the future can be modeled from these optimal 

sites. 

Song Meters were placed on Nizki/ Alaid in 2009 based on criteria of Song Meter 

sites with the best recording quality in 2008. Nizki/Alaid had similar recording quality to 

Little Sitkin. However, Nizki/Alaid islands are much more exposed (at the edge of the 

Near Island group in the Bering Sea) and Song Meters were placed in 2009 when the 

average wind speed was higher than 2008. We conclude that although recording quality 

is almost equal to Little Sitlun, it may in fact be better due to adverse weather conditions 

in the Near Islands. The strategic placement of these Song Meters was successful, as we 

achieved almost equal recording quality to the best average quality in 2008, at an island 

and in a year where wind speed was greater. 

We found a difference in recording quality at the same sites on Amatignak 

between 2008 and 2009. Two sites on Amatignak Island, the north and south Song 

Meters had the best and worst recording quality respectively in 2008. In 2009 this pattern 

was reversed, suggesting that recording quality will differ depending on the predominant 

seasonal wind speed and wind direction. Although some sites favour good recording 

quality, in order to find sites for optimal placement, Song Meters should be tested in a 

variety conditions. However, all of our Song Meters had a suitable average recording 

quality; therefore, we conclude that our placement protocol produced viable and useful 

recordings. 

Recording quality significant affected false negative rates of call recognition 

models. As recording quality worsened, recognition models went from identifying 71 % 
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to 46 % of calls present. A decline from over 70% to under 50% recognition rate is not 

trivial for studies interested in temporal patterns of vocalizations. For call models to have 

the highest success at identifying calls of interest, the number of un-obscured recordings 

should be maximized, further stressing the importance of appropriate Song Meter 

placement. Song Meters placed on Nizki/Alaid in 2009 (according to characteristics of 

the best Song Meters in 2008), resulted in the best average call recognition rate and a 

relatively high recording quality. Appropriate placement of Song Meters will therefore 

maximize recognition model success. 

Successful recognition models were built for the most commonly heard calls of 

Leach's Storm-petrels, Fork-tailed storm-petrels, and Ancient Murrelets. Call recognition 

models had an adequate false negative rate, on average over 50% of calls were correctly 

identified (Table 2.1). The most successful recognizer was the Fork-tailed Storm-petrel 

flight call model, which identified over 69% of flight calls present throughout recordings. 

The flight call is a loud, high energy, broadband screech call that can range between three 

to five syllables (Simons 1981 ). This call is distinctive and high energy, with frequencies 

in each syllable that span from low frequency fundamentals (1 kHz) to high frequency 

harmonics (8 kHz), often overpowering background noise or other species calls. Song 

Scope software operates by recognizing both the shape and energy of each sound. If 

structural aspects of the vocalization are lost to background noise, calls become more 

difficult to decipher and recognize. Therefore, the high energy and large frequency range 

of the flight call make it an excellent candidate for recognition models. The least 

successful recognizer was the Ancient Murrelet Chirrup call model, which identified 
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fewer than 55% of calls throughout recordings. The Chirrup is a high frequency trill 

between 3 and 7 kHz, and lasts for about 0.5 seconds (Jones eta/. 1989). High frequency 

calls dissipate energy in the air more rapidly than sounds in lower frequencies and hence 

die out more quickly (Wilson 2000). If Chirrup calls are vocalized at longer distances 

from the Song Meter, aspects of the call may be dissipating in the air, destroying the 

structural integrity of the call and making it harder for a model to recognize. 

Furthermore, Jones et a/. (1989) found that aspects of the Chirrup call are extremely 

variable, and can be incorporated into more complex displays, such as Song. The 

variable properties of the Ancient Murrelet Chirrup call made building suitable "all 

encompassing" recognition models challenging. 

Recognition model success was most affected by the amount of call activity at 

each site. False negative and positive rates were significantly higher at sites where there 

were very low numbers or very high numbers of calls per night. Sites on Little Sitkin had 

the highest false negative rates, approximately double that on other islands; these sites 

also had the lowest number of calls throughout the season, about 38 and 3 times Jess than 

Amatignak and Nizki/Alaid respectively. On Amatignak, the two highest false negative 

rates were at the southern site, with the fewest number of total calls, and the western site 

with the largest number of calls (Table 2.2). Furthermore, we did not run recognition 

models on rare calls (Leach' s Storm-petrel Purr and Screech call, Fork-tailed Storm-petrel 

single-syllable male call, or Ancient Murrelet chick call and Song) or extremely abundant 

calls (Fork-tailed Storm-petrels at western Amatignak) because it was more time 

consuming to tease out false positives and search for false negatives, rather than to search 
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for calls visually within spectrograms. We conclude that when calls of interest are rare 

( <5 calls/ night) or extremely abundant (> 250 calls/ night), due to elevated levels of false 

positives and negatives it may be more advantageous to look for calls manually rather 

than use recognition models. Other studies using automated methods of identifying target 

sounds have come to similar conclusions. Swinston and Menhill (2009) conclude that 

although automated scanning provides a fast alternative, scanning visual representations 

of recordings manually is a better method for studies involving birds with low or very 

high vocalization rates. 

High density Fork-tailed Storm-petrel flight calls (>250 calls/night) at 

Amatignak' s western Song Meter and all calls at Buldir's Song Meter (>500 calls/night) 

could not be analyzed using recognition models. When too many birds with calls at 

overlapping frequencies are vocalizing at the same time, the recognition models are 

unable to discern individual calls obscured among the interfering noise. Considering the 

seabird colony at Buldir Island has an estimated 10,000 Ancient Murrelets, 3,000,000 

storm-petrels, 300 Cassin' s Auklets, and 30,000 Whiskered Auklets (Byrd et al. 2005), 

counting each individual call at night is an impossible task, even for a human observer. 

We looked at how many nights Song Meters would have to record in order to 

capture the actual mean number of calls per night (defined as mean between 2008 and 

2009). Each site (with differing call activity) and species took a different number of units 

to reach an asymptote at the sample mean, suggesting that the minimum number of nights 

Song Meters must record depends on call type and activity level. Both Leach' s Storm­

petrel Chuckle and Ancient Murrelet Chirrup call reached an asymptote after 95 units 
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(about 3 months) at sites with low levels of call activity. However, Fork-tailed Storm­

petrel flight call reached an asymptote after 75 units (2.5 months) at sites with moderate 

levels of activity. We conclude that Song Meters should record for a minimum of 2.5 

months (1 summer season) in order to capture nightly variation in nocturnal seabird 

activity. 

Calls identified by recognition models confirmed species presence/absence and 

provided an opportunity to compare the relative abundance of three nocturnal seabirds 

between Little Sitkin, Amatignak, and Buldir islands. Recordings indicate that 

Amatignak Island, which had foxes removed nine years prior to Little Sitkin Island, is 

likely in a more advanced stage of seabird recovery. 49 times more Leach's Storm-petrel 

flight calls and 73 times more Fork-tailed Storm-petrel flight calls (not including call 

activity at the very busy site to the west of Amatignak) were recorded on Amatignak than 

Little Sitkin, while Ancient Murrelet and Cassin' s Auklet calls were only present on 

Amatignak. We also recorded much higher levels of mate advertizing calls on 

Amatignak, and occasionally the presence of territorial calls and chick calls. On the other 

hand, recordings also indicate that Amatignak is at a more advanced state of recovery 

than Nizki/ A laid which had foxes removed over 16 years prior. This strange pattern of 

call activity across islands cannot be explained by the number of years since fox 

eradication. Factors affecting nocturnal seabird recovery after introduced predators are 

eradicated are currently unknown, and further research should analyze more islands, with 

varying times since eradication. 
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Song Meters recorded vocalizations linked to behaviour of nocturnal seabirds that 

is usually overlooked by conventional monitoring techniques. In a study by Byrd et a!. 

(2005) examining seabird populations across the Aleutian Islands using data obtained 

from conventional monitoring techniques (boat and opportunistic beach surveys), no 

breeding populations of storm-petrels or Ancient Murrelets were detected on Amatignak 

Island. Using acoustic recording devices, we detected high numbers of Leach' s Storm­

petrel Purr and Screech calls and Fork-tailed Storm-petrel male calls, associated with 

attracting a mate to a burrow, courtship within a burrow, and territorial behaviour around 

a burrow (Simons 1981, Taoka 1988, Huntington eta!. 1996). Although these 

vocalizations do not confirm breeding of storm-petrels, they strongly suggest that 

prospecting or resident birds are advertising for potential mates and protecting burrows. 

At the high calling rate we observed, this may also suggest that small sub-colonies are 

forming or already exist. For example, at the western site on Amatignak, the site with the 

highest density of all types of storm-petrel vocalizations, grubbing revealed newly 

excavated burrows and individuals in burrows with brood patches (R TB pers. 

observation). We also recorded several Ancient Murrelet chick departures on the east 

side of Amatignak Island, confirming the presence of a small breeding population. 

Nocturnal seabirds were excluded from Byrd eta!. 2005 study likely due to the 

fact that most boat and beach surveys were performed during the day, which excludes 

accurate monitoring of nocturnal seabird activity (Bailey 1978). Five of the 26 seabird 

species that breed in the Aleutian Islands are nocturnal, including two species of storm­

petrel, Cassin' s Auklet, Ancient Murrelet, and Whiskered Auklet, all of which would be 
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inaccurately measured by such daytime surveys. Furthermore, beach surveys are often 

brief, lasting only a few days on islands that are visited infrequently (Byrd et al. 2005). 

High variability in number of nightly calls of each species (from zero Leach' s Storm­

petrel Chuckle calls to over 500 with Purr calls on the same Song Meter) indicates that 

population figures of opportunistic surveys would be extremely skewed (Bailey 1978). 

We therefore conclude that Song Meters can act as a powerful, affordable tool, 

complementing conventional monitoring techniques as a source of information to census 

and monitor nocturnal seabird populations on remote islands. 

Further work will be required to relate call activity to population numbers. It was 

not possible to separate individual callers; therefore, here we evaluated relative 

population status based on presence/absence and abundance of raw call counts to compare 

activity among islands. Additional approaches to be evaluated include: density functions, 

correcting for recording quality, and relating call frequency to known colony size (Borker 

et a/. 201 0). Advanced work should address the feasibility of quantifying numbers of 

individuals present based on the unique features of each bird's call. The calls of 

nocturnal seabirds characteristically show extreme individual stereotypy (e.g., Ancient 

Murrelet Chirrups, Jones eta/. 1989; Leach's Storm-petrel chatter calls, Robb et al. 

2008), that is apparent at the resolution of our recordings. As techniques become more 

refined and processing methods more efficient, it may be possible for analysis to achieve 

indexing at the individual level by recognition of stereotypical characteristics of each 

individual's call. 
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Nocturnal seabirds on Amatignak, Little Sitkin, and Nizki/ Alaid were at a 

completely unknown stage of recovery. Using acoustic recorders we shed some light on 

which nocturnal birds were present, and using the known context of each call type we 

attempted to interpret activity at each site. Whether numbers and diversity of nocturnal 

seabirds will recover to pre-introduced predator conditions is unknown. Our results 

indicate that these islands are recovering, because seabirds that were certainly excluded 

by foxes are now breeding. However the rate of re-colonization and the mechanisms 

behind it have, until now, gone unstudied. When introduced predators are eliminated, it 

provides an excellent opportunity to study patterns in re-colonization of affected 

populations; knowledge that is essential to island conservation strategies. Conventional 

monitoring techniques may not be sufficient to examine these recovery patterns, 

especially considering nocturnal and other secretive species characteristic of the Aleutian 

Islands. As recording technology and automated recognition software advances, acoustic 

monitoring can play an important role in studies of post-eradication island restoration on 

hard-to-reach islands. 

49 



Table 2.1 Mean recording quality (from 1 -clear to 5- unusable), false negative rate 

(calls skipped by recognition models as determined by visual scans of spectrograms made 

by a human observer), and percentage of nights with each recording quality at each site 

on each island. 

% nights recording quality 
Mean false 

Mean recording negative 
Island Site quality± SE rate± SE 2 3 4 5 

Nizki/Alaid 2.16 ±0.08 0.32 ± 0.01 
N 2.46 ± 0.17A 0.34 ± 0.05 26.8 35.7 12.5 16.1 8.9 
E 1.92 ± 0.17A 0.21 ± 0.02 51.0 29.4 0.0 15.7 3.9 
s 1.80 ± 0.13 A 0.37 ± 0.01 44.6 39.3 8.9 5.4 1.8 
w 2.45 ± 0.17A 0.32 ± 0.01 26.3 38.6 7.0 19.3 8.8 

Amatignak 2.42 ± 0.07 0.34 ± 0.01 
N 2.42 ± 0.16 B 0.22 ± 0.01 42.5 6.3 25.0 18.8 7.5 
E 2.35 ± 0.11 B 0.35 ± 0.01 25.2 34.0 22.3 17.5 1.0 
s 2.27 ± 0.14 B 0.48 ± 0.02 43.9 11.0 20.7 23.2 1.2 

w 2.64 ± 0.138 0.45 ± 0.01 23.3 22.2 25.6 24.4 4.4 
Little 
Sitkin 2.02 ± 0.16 0.60 ± 0.01 

N 2.23 ± 0.16c 0.76 ± 0.03 46.2 7.7 23.1 23.1 n/a 

NW 1.74 ± 0.22c 0.51 ± 0.03 63.0 14.8 7.4 14.8 n/a 

s 2.52 ± 0.28c 0.6 ± 0.02 33.3 14.3 19.0 33.3 n/a 
w 1.79 ± 0.26c 0.44 ± 0.08 50.0 28.6 14.3 7.1 n/a 

ADiffer significantly between sites G = 14.567 df = 3 P = 0.002, 

8 Differ significantly between sites G = 7.766 df = 3 P = 0.05 

c Did not differ significantly between sites G = 6.659 df = 3 P = 0.084 
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Table 2.2 Detections and abundances of nocturnal burrow-nesting species vocalizations at four Aleutian Islands during 2008 and 

2009. Abundances represented as percent of nights throughout the recording period the vocalization was detected, mean vocalizations 

detected per night ± standard error, maximum vocalizations per night, and total vocalizations detected throughout the recording 

period. 

Amatignak Little Sitkinu NizJAic Buldirc,t. 

N E s w N NW s w w N s E N Bight 

LESP %nights 

Chuckle present 91.0A 88.0A 54.3A 98.8A 84.6 38.7 31.8 42.9 82.0 57.4 86.9 95.1 100.0 

73.3 ± 96.4± 7.5 ± 236.6 ± 7.0 ± 5.5 ± 1.4 ± 2.2± 14.1 ± 2.0 ± 13.2 ± 9.6 ± 2727.8 ± 

mean± SE 20.3A 17.2A 2.0A 32.4A 0.4 1.2 0.6 1.3 2.5 0 .4 1.3 1.7 295.2 

Max 497A 537A 59. SA 975A 46 84 11 18 91 11 135 59 4916 

total calls 6238 
6 

10773 
6 

659
6 23493 6 

98 175 33 33 832 111 802 584 51828 

LESP %nights 

Burrow present 10. 7A 8.6A 30.7A 40.5A 0 0 0 0 9.8 1.6 19.7 13.1 96.2 

0.4 ± 0.2 ± 0.08 ± 0.2 ± 0.02 ± 0.6 ± 0.5 ± 231.5 ± 

mean± SE 0.2A 0.1A 0.01A 2.2 ± 0.6A 0 0 0 0 0.1 0.01 0.2 0.2 48.4 

Max gA 3.5A O.SA 23A 0 0 0 0 5 1 12 8 880 

total calls 40
6 

17 
6 16 247 

6 
0 0 0 0 11 1 9 28 4398 

LESP %nights 

Screech present 2.5A 0.7A OA 7.9A 0 0 0 0 0 0 0 0 88.7 
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0.03 ± 0.01 ± 

mean± SE 0.02A 0.01A 0 0.3 ± 0.1A 0 0 0 0 0 0 0 0 11.5± 2.7 

Max 1A O.SA OA 6A 0 0 0 0 0 0 0 0 39 

total calls 4 6 1 6 0 6 40
6 

0 0 0 0 0 0 0 0 219 

% nights 

FTSP Flight present 56.4A 57.3A 7.9A 100.0c,E 100.0 16.1 90.9 28.6 47.5 0.0 23.0 4.9 100.0 

4.6 ± 43.9± 0.1± 583.0 ± 7.0 ± 8.3 ± 32.2 ± 0.3 ± 16.4 ± 7.0 ± 0.08 ± 1516.1 ± 

mean ± SE l.OA 10.9A 0.1A 117.7C,E 0.4 2.0 9.5 0.1 4.4 0 2.8 0.04 172.9 

Max 27.5A 506A 2.5A 1419C,E 14 139 219 1 165 0 129 2 2575 

total calls 445 6 5189
6 19

6 9328C,E 98 265 741 4 1014 0 436 5 28804 

%nights 

FTSP Male present 9.1A 30.5A 0.8A 92.1c 7.7 6.5 50.0 0 14.8 0 18.0 0 92.5 

0.1 ± 5.6 ± 0.03 ± 0.1 ± 0.5 ± 7.7 ± 0.3 ± 1.0± 299.2 ± 

mean± SE 0.1A l.OA 0.03A 72.4 ± 7.6c 0.3 0.5 9.5 0 0.1 0 0.4 0 70.4 

Max 2.5A 65A 2A 256c 0.07 11 57 0 6 0 22 0 975 

total calls 14
6 554

6 46 4342c 1 15 741 0 19 0 63 0 6283 

ANMU %nights 

Chirrup present 36.8A 69.4A 14.2A 68.8A 0 0 0 0 34.4 4.9 3.3 9.8 92.3 

1.8± 70.3 ± 0.3 ± 1.4 ± 0.1 ± 0.03 ± 0.1 ± 

mean± SE 0.6A 11.4A 0.1A 5.3 ± 1.2A 0 0 0 0 0.5 0.03 0.02 0.1 86.4 ± 17.9 

Max 14.5A 318.5A 4A 32.5A 0 0 0 0 27 1 1 2 233 

total calls 1416 7561
6 236 4706 0 0 0 0 84 3 2 7 1468 

ANMU % nights 

Song present 0.8A 61.3A O.OA 5.6A 0 0 0 0 0 0 0 0 82.7 
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0.01 ± 8.5 ± 0.09 ± 

mean± SE 0.01A 1.7A OA 0.04A 0 0 0 0 0 0 0 0 15.2 ± 5.0 

Max 0.5A 47.5A OA 2A 0 0 0 0 0 0 0 0 86 

total calls 18 9198 08 12
8 

0 0 0 0 0 0 0 0 334 

ANMU % nights 

chick present 16.9A OA OA 0.8A 0 0 0 0 0 0 0 0 26.9 

2.5 ± 0.01 ± 

mean± SE OA 0.7A OA 0.06A 0 0 0 0 0 0 0 0 5.1 ± 1.2 

Max OA 22.5A OA 0 .5A 0 0 0 0 0 0 0 0 38 

total calls 08 2668 08 18 0 0 0 0 0 0 0 0 82 

CAAU % nights 

Kreer er present 8.5A 3.7A 4.0A 5.6A 0 0 0 0 3.3 1.6 1.6 3.3 92.3 

0.3 ± 0.1 ± 0.1 ± 0.03 ± 0.1 ± 0.03 ± 0.1 ± 

mean ± SE 0.2A 0.1A 0.1A 0.1 ± 0.1A 0 0 0 0 0.01 0.1 0.03 0.1 90.7 ± 1.9 

Max 6A 1.5A 1A 0 .5A 0 0 0 0 1 3 2 2 214 

total calls 41
8 78 68 88 0 0 0 0 2 4 2 3 1724 

A - mean between 2008 and 2009, B - sum between 2008 and 2009, C- 2009 only, D - 2008 only, E- based on 16 nights of data only 
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Table 2.3: False negative rates (number of calls missed by call recognition models versus 

total number of calls present throughout recordings, as determined by a human observer) 

for each call type at each site on Amatignak Island in 2009. 

False Neg Total 

Call type Site Rate calls SE 

ANMU Chirrup East 0.441038428 7555 0.006014 

FTSP flight East 0.218893505 5216 0.006115 

LESP chuckle East 0.351269584 10773 0.004962 

TOTAL 0.337067172 23544 0.003219 

ANMU Chirrup North 0.221556886 965 0.032233 

FTSP flight North 0.365333333 461 0.024899 

LESP chuckle North 0.211954993 7146 0.004847 

TOTAL 0.266281738 8572 0.004982 

ANMU Chirrup South 0.45 23 0.114133 

FTSP flight South 0.384615385 19 0.140442 

LESP chuckle South 0.484451718 658 0.020235 

TOTAL 0.439689034 700 0.019925 

ANMU Chirrup West 0.490291262 470 0.024659 

FTSP flight West * * * 

LESP chuckle West 0.448760187 6052 0.00655 

TOTAL 0.469525725 6522 0.006348 

*(high numbers of Fork-tailed Storm-petrel calls that could not be measured with 

recognition models) 

54 



. . . . . . . . . ' . .... 

Bering Sea 

Figure 2.1 Placement of recording devices (Song Meters) across the western Aleutian 

Islands. Dots represent individual devices. Song Meters were placed on Amatignak, 

Little Sitkin and Buldir in 2008 and 4 Song Meters were moved from Little Sitkin to 

Nizki/ Alaid in 2009. 
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Figure 2.2 Mean recording quality declined as wind velocity increased for Song Meters 

placed on Amatignak and Nizki/Alaid. Wind speed obtained from NOAA weather 

buoys. Wind categories (gentle breeze to gale) are measured on the Beaufort scale. 
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Figure 2.3 False negative rate (the number of calls missed by call recognition models, 

determined by human visual scans of spectrograms) increases with recording quality. 

Dashed line indicates 50% of calls identified by the call recognizers. 
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Figure 2.4 False negative rates increase (fewer calls identified by recognition models) as 

the total number of calls of nocturnal species per night decreases. 
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Figure 2.5 Distribution of cumulative means versus the true mean number of calls per 

night in 2008 and 2009. Only sites where the distribution reached an asymptote at the 

true mean within 200 nights are shown. Dashed lines indicate true means. 

58 



CHAPTER THREE 

EVALUATING NOCTURNAL SEABIRD RECOVERY AFTER PREDATOR 

ERADICATION IN THE WESTERN ALEUTIAN ISLANDS, ALASKA, USING 

ACOUSTIC MONITORING 

ABSTRACT 

On oceanic islands, where efforts to eradicate introduced predators have increased over 

the past few decades, there is an urgent need to identify factors affecting recovery of 

seabird populations. Introduced mammalian predators have had devastating effects on 

colonial seabirds and other island avifauna, and removal ofthese invasive species has 

potentially large benefits to extirpated or depleted populations. However, the rate and 

means by which avian populations recover on islands after predator eradication have 

gone largely unstudied. We used automated acoustic monitoring to study patterns of 

nocturnal seabird recovery on islands with different time periods since introduced fox and 

rat eradication in the western Aleutian Archipelago, Alaska. A total of 19 acoustic 

recorders were deployed on six islands during 2008 and 2009, comparing presence/ 

absence and call activity of different species. We found low nocturnal call activity at 

Kiska (9 calls/64 device nights), an island where rats are still present, in contrast to 

extremely high activity at the pristine colony of Buldir (approximately 95,140114 device 

nights). Also, we found increasing levels of call activity, from the lowest on Little Sitkin 

(foxes removed 2000), to Amatignak (foxes removed 1991), to the highest on Kasatochi 

(foxes removed 1984, volcanic eruption in 2008), but very low levels on Nizki/ A laid 
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(foxes removed 197511969). Using an information-theoretic approach, we found support 

for multiple factors, such as presence of breeding refugia and number of years since 

predator removal, as an explanation for recovery of Leach's Storm-petrel (Oceanodroma 

leucorhoa), Fork-tailed Storm-petrel ( 0. furcata), and Ancient Murre let 

(Synthliboramphus antiquus). Twenty-one other species were detected at our study 

islands, including 5 Eurasian migrants and 4 species of conservation concern. Overall, 

our results demonstrated a complicated pattern of recovery of nocturnal seabirds 10-35 

years following predator eradication in the Aleutian Islands, with implications for island 

restoration. 

Key words: Population recovery, nocturnal seabirds, islands, introduced predators 

3.1 INTRODUCTION: 

Increasing rates of anthropogenic environmental change have resulted in severe 

population declines of island avifauna worldwide (Vitousek 1997, Bird life International 

2000). Due to conservation and management efforts, population crashes have been 

followed by island restoration efforts and in some cases, recovery of native species 

(Gadmark et al. 2003). Thus, understanding factors that limit or facilitate island bird 

recovery has become a conservation priority (Gadmark et al. 2003). Determining ways to 

consistently monitor the rate and patterns associated with recovery is important, not only 

to enhance the effectiveness of existing projects (Davis et al. 2004), but also to promote 

innovation of methods for increasingly challenging cases of avian biodiversity 

restoration. 
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Nowhere are population declines, followed by restoration efforts, better 

exemplified than with seabirds nesting on oceanic islands. Islands have suffered 

disproportionately in terms of extinction due to their unique and vulnerable avifauna) 

communities (Moors and Atkinson 1984, Atkinson 1985, Aguirre-Munoz et al. 2003). 

Human-introduced mammals, such as feral cats (Felis catus), foxes, and especially rats 

(Rattus spp.), are the primary mechanism of avian, especially seabird, population decline 

(Atkinson 1989, Groomsbridge eta/. 1992, Howald eta/. 2007). For this reason, 

numerous seabird conservation efforts have included attempts to eradicate invasive 

species from breeding islands (Veitch and Clout 2002). To date, twenty-five invasive 

vertebrate species have been removed from over 775 islands world-wide (Keitt et al. 

201 0), including large and complex island ecosystems such as Campbell Island, New 

Zealand (Towns and Broome 2003). In many cases, seabirds locally extirpated by 

invasive predators have benefited from eradication (e.g. Xantus' s Murrelet 

Synthliboramphus hypoleucus, Whitworth eta/. 2005; Manx Shearwater Puffinus 

puffinus, Lock 2006; Wedge-tailed Shearwater Puffinus pacificus, Smith et al. 2006). 

However, the species- and site-specific patterns by which seabirds return and recover 

have gone largely unstudied. A need now exists to invest in establishing criteria to 

measure restoration success by monitoring the process of recovery (Reay and Norton 

1999, Davis eta/. 2004). 

The Aleutian Islands, Alaska have suffered extensive ecological damage from the 

introduction of Arctic Foxes (Alopex lagopus) for the fur trade and accidental 

introduction ofNorway Rats (Rattus norvegicus) during military occupation in World 
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War II (Murie 1959, Bailey 1993, Ebbert 2000, Major and Jones 2005). Introduced 

predators have had negative effects on insular seabird populations by consuming large 

amounts of adults and eggs (Murie 1959, Sekora et al. 1979, Byrd et al. 2005). By 1937, 

a drastic decrease or total exclusion of seabirds at colonies on Aleutian Islands used as 

fox farms was noted (Murie 1959). Also, on the 16 Aleutian Islands where Norway Rats 

have become established, diversity and number of breeding seabirds are conspicuously 

low (Bailey 1993). Although all seabird species were affected, it is likely that small, 

nocturnal, easily-excavated burrow-nesting seabirds, such as storm-petrels (Leach' s 

Oceanodroma leucorhoa and Fork-tailed 0. furcata Storm-petrels) and small alcids 

(Ancient Murrelets Synthliboramphus antiquus and Cassin' s Auklets Ptychoramphus 

aleuticus) were the first to disappear after non-native mammalian introductions (Bailey 

1993, Hatch 1993). 

As the extent of ecological devastation in the Aleutians was realized, a fox 

eradication program began in 1949 and efforts accelerated after consolidation of the 

Alaska Maritime NWR in 1980 (Ebbert 2000). The first successful rat eradication in the 

Aleutians occurred at Rat Island in 2008 (Woods eta!. 2009). The Aleutians now 

represent a patchwork of islands with, without, and at different stages of recovery from 

introduced predators (Ebbert and Byrd 2002). Although not documented quantitatively, 

evidence suggests an increase in avian populations 4- to 5-fold after predator removal 

(e.g. Black Oystercatcher Haematopus bachmani, Byrd et al. 1994; Pigeon Guillemot 

Cepphus Columba, Byrd et a!. 1997). Nevertheless, there is little evidence of seabird re­

establishment on islands where they were completely extirpated, and few post-eradication 
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surveys of nocturnal burrow-nesting populations. More quantitative post-eradication 

studies are needed, especially regarding the most affected seabird group: nocturnal 

burrow-nesters. 

The Aleutians provide a unique opportunity for large-scale natural experiments to 

study the recovery of seabirds post-eradication for several reasons (Croll eta!. 2005): 

their homogenous floral , faunal , and weather patterns; lack of human settlements and 

associated disturbance; many small islands for sampling; and the widespread historical 

introduction and patchwork of eradication of rats and foxes (Kurle eta/. 2008). 

However, monitoring seabirds throughout the islands also poses challenges. Most sites 

are logistically difficult and expensive to reach. Also, seabird species most affected by 

introduced foxes and rats live in burrows and are active above ground only at night. 

Measuring populations of nocturnal burrow-nesting seabirds at Aleutian breeding sites, 

although important, is not feasible using conventional techniques. 

Here we used a novel approach to monitor nocturnal burrow-nesting seabird 

recovery in the Aleutian Islands: indices of vocal activity collected with automated 

acoustic recording devices. Bird sound is often the most efficient means for surveying 

birds, particularly nocturnal species that have conspicuous night-time vocalizations 

(Brooke 1986, Brandes 2008). Calls are easily quantified and, for all nocturnal Aleutian 

species, have been described and linked to behaviour (Simons 1981 , Taoka 1988, Jones et 

a!. 1989, Seneviratne eta/. 2009). Although measures of population size cannot be 

deduced from numbers of nightly calls, an index of abundance can be used to compare 

among sites (Haselmayer and Quinn 2000). 
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In summary, the objectives of our study were to: 1) use activity indices based on 

recorded vocalizations to survey the presence/absence of nocturnal burrow-nesting 

seabirds across the western Aleutians and evaluate patterns of recovery on islands with 

differing periods following predator eradication; 2) from observed patterns across sites, 

identify factors important to recovery; 3) examine the diversity of other avifauna 

recorded and compare recovery rate to that of nocturnal seabirds; and 4) derive from the 

combined results recommendations for island restoration and seabird population 

management. 

3.2 METHODS 

3.2.1 Study sites 

We assessed call activity of nocturnal seabirds across the western Aleutians with 

16 automated acoustic recorders on six different islands: three islands in 2008 

(Amatignak, Little Sitkin and Buldir) and five islands in 2009 (Amatignak, Nizki/Alaid, 

Kasatochi, Kiska, and Buldir) (Appendix A, Fig. 3.1 ). Islands were selected based on a 

range of time periods since introduced predator-eradication. All islands have typical 

Aleutian habitat: treeless, windswept, Leymus/ Umbel dominated sub-arctic grassland 

tundra (Byrd et al. 1994) and as a whole have a relatively uniform geologic, climatologic, 

and marine environment (Springer 1991, Croll et al. 2005). 

For comparative purposes, we placed one automated recording device in areas 

with dense, active, nocturnal seabird burrows at North Bight, Buldir Island (Appendix A). 

Unlike most of the Aleutians, Buldir (approximately 6.4 km long and 3.2 km wide, 657 m 
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Above Sea Level- ASL) has never had predators introduced and thus holds one of largest 

and most diverse seabird colonies in the northern hemisphere, with 21 species of breeding 

seabirds (Byrd et a/. 2005). 

Two automated recording devices were placed along the southern coast of Kiska 

Island (Fig. 3.1 , Appendix A), the second largest island in the Rat Islands group, with an 

active stratovolcano at the northern tip (1221 m). Foxes were introduced in 1835 

(Ashbrooke and Walker 1925) and removed in 1987, and Norway Rats were introduced 

during military occupation in World War II (Deines and McClellan 1987). Murie (1959) 

found Fork-tailed Storm-petrels in 5.2% offox droppings in 1937, yet rats were not 

observed preying on seabirds (auklets at Sirius Point) until after fox eradication in 1988 

(AMNWR unpubl. data, Major and Jones 2005). Currently, rats actively predate all 

seabirds on Kiska Island (Major and Jones 2005). 

We placed four automated recording devices at the north, south, west, and 

northwest headlands on Little Sitkin Island an active stratovolcano (1199 m ASL) in the 

Rat Island group (Miller eta/. 1998) (Appendix A). Foxes were introduced 1923, 

removed in 2000, and little is known about historic nocturnal seabird colony size. Yet, 

Murrie (1959) found Fork-tailed Storm-petrels in 5.4% of fox droppings in 1937, 

suggesting remnant populations were still present 14 years after fox introduction. 

Four automated recording devices were placed at the cardinal points of 

Amatignak Island, in the Delaroflslands of the Andreanoflsland group (Appendix A) . 

Amatignak (approximately 8 km long by 4 km wide, 515 m ASL ), was stocked with 

foxes in 1923 and had foxes removed in 1991. Similar to Little Sitkin, historic seabird 
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colony size pre-dating foxes is unknown, although Fork-tailed Storm-petrels were found 

in 13% of fox droppings in 1937 (Murie 1959). Furthermore, the largest Aleut midden 

site in the De1arofs is found in Ulva Cove on Amatignak (Corbett pers. comm.) and 

seabirds were an important constituent of Aleut diet (Lefevre et al. 1997). 

We placed two automated recording devices near a known nocturnal seabird 

colony site at Troll Talus, Kasatochi Island (Appendix A). Kasatochi is a volcanic 

caldera located in the central Aleutian Islands, which had foxes introduced in 1927 and 

removed in 1984 (Bailey 1993). Kasatochi erupted on 7 August, 2008, burying the island 

under 30 m of tephra, destroying all breeding and foraging habitat on and around the 

island (Williams et a!. IN PRESS). Pre-eruption, Kasatochi rose about 316 m ASL, had 

extensive rocky sloping talus at Troll Talus, and supported a large Aethia auklet colony 

and populations of stom1-petrels (Drummond and Lamed 2007). Post-eruption (when 

devices were placed) Kasatochi was covered in a layer of eroding fine ash. 

Two automated recording devices were placed on each of Alaid and Nizki Islands 

on south-facing slopes to the east and west of each island (Appendix A). Nizki/Alaid are 

joined by a sandbar that washes out occasionally and are relatively low with rolling hills 

and a maximum elevation of 190m (West 1987, Byrd et al. 1994). Both islands were 

stocked with foxes in 1911 and represent one of the first successful eradications executed 

by the refuge - in 1969 on Nizki and 1975 on Alaid. In the 191
h century Nizki/ A laid were 

considered excellent waterfowl breeding islands (Murie 1959); however, after foxes were 

introduced, essentially all nesting bird populations were reduced drastically or extirpated 

(Murie 1937, Byrd eta!. 1994). 
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3.2.2 Study Species 

We measured call activity of all nocturnal burrow-nesting species in our 

recordings: Leach' s and Fork-tailed Storm-petrel, Cassin' s Auklet, and Ancient Murrelet. 

All species are widespread around the rim of the North Pacific Ocean and breed in 

relatively large numbers in the Aleutian Islands (Byrd et al. 2005). All are planktivorous 

and forage offshore in oceanic habitat, have strictly nocturnal activity at breeding 

colonies characterized by conspicuous and contextual vocalizations, and nest in shallow 

earthen or grass tussock burrows on sloping vegetated hillsides (Manuwal and Thoresen 

1992, Gaston 1994a, Huntington et al. 1996, Boersma and Silva 200 I). 

We noted all three Leach' s Storm-petrel call types (Taoka et al. 1988 and 

Huntington et al. 1996): Chuckle calls used by adults and prospectors in flight, on the 

ground and from burrows; Purr calls vocalized inside or from the ground outside 

burrows, associated with mate advertizing, pair formation, and courtship; and Screech 

calls used during aggressive encounters associated with burrow defence. We also 

recognized chick calls based on spectrograms from Naugler and Smith (1992) and Robb 

et al. (2000). We noted two distinct call types of Fork-tailed Storm-petrels: a flight call 

given by both sexes and a 3-syllable male call used for mate advertizing (Simons 1981 ). 

Chick calls have not been described for this species. For Ancient Murrelets, we noted 

two of the most common adult call types: Chirrups given by both sexes in a variety of 

contexts, and Song used only by males as an advertising display (Jones et al. 1989 and 

Gaston 1994a). We also recognized chick calls and family departures from Jones et al. 
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( 1987 a,b ). Finally, we recognized two adult Cassin's auklet calls (Thoresen 1964, 

Seneviratne et al. 2009): the Kreer-er call given by both sexes in flight, and the less 

common Kut-reearh call, given from a burrow or crevice as an advertisement display. 

3.2.3 Acoustic Hardware 

We measured nocturnal seabird call activity using digital automated acoustic 

recorders called Song Meters (Wildlife Acoustics Inc.), model SM1 , firmware version 

1.5.0 in 2008 and version 1.7.0 in 2009. These waterproof autonomous devices were 

programmed and left to record for the entire summer season (late May -early August). 

Song Meter settings are outlined in Chapter Two. Song Meters placed on islands where 

batteries could be changed every 30 days (Amatignak, Little Sitkin, and Buldir) were 

programmed to record in 15 minute on/off increments from approximate dusk (0030h -

Hawaii-Aleutian Standard Time) to approximate dawn (0615h). Song Meters on islands 

we were unable to visit for the entire season (Nizki/ A laid and Kasatochi) were 

programmed to record in 15 minute increments from 0 130h to 0430h, when nocturnal 

seabird activity reached its peak (RTB pers. obs.). Song Meters programmed to monitor 

both nocturnal and diurnal birds (Kiska) recorded in 15 minute increments from 0 130h to 

0430h and for 30 minutes at approximate dusk and dawn. Devices were nailed to 1 meter 

plywood posts, which were dug 30 em into the ground and stabilized with soil or rocks. 

We deployed Song Meters according to a protocol that included a trade-off 

between appropriate burrow-nesting habitat and protection from wind noise. Song 

Meters were placed in characteristic nocturnal burrow nesting habitat, defined as sloping 
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Leymus/ Umbel dominated grassy headlands (Byrd and Trapp 1977) with well drained soil 

(Stenhouse and Montevecchi 2000), within 150 m of the shoreline, and under 400 m 

elevation. Wind shelter was attained by placing Song Meters in gullies or at sites 

adjacent to slopes or cliffs. In 2009 we placed Song Meters according to characteristics 

of sites with the best recording quality experienced in 2008 (Chapter 2). 

3.2.4 Measuring Call Activity 

To count calls described above, we reviewed recordings using a combination of 

automated methods and manual scanning in Song Scope 2.3 (Wildlife Acoustics Inc.). 

Recognition models were built using training data from high quality and 2008 

Song Meter recordings (Chapter 2), in order to scan recordings with moderate levels of 

call activity (average of 2-90 calls per night, maximum of 900 calls in a night). To filter 

false positives, or spurious calls identified by recognizer models, each point was 

reviewed in the corresponding spectrogram to ensure it was the call of interest. To 

identify false negatives, or calls that were missed by recognition models, recordings were 

scanned visuaJiy (See Chapter 2 for more detail). 

When call activity was very low or very high (average of less than 2 or greater 

than I 00 calls/night), calls were identified by scanning spectrograms visually. Sound 

spectrograms viewed in Song Scope were limited to a frequency range of 1000-8000 Hz 

(a range where all nocturnal seabird vocalizations were visible and low-frequency wind 

noise was excluded), had a Fourier transform size of 256, and a sample rate of 16000 Hz. 

The "Background Noise-reduction" feature was used at a setting of Is for recordings that 

69 



were :S 25% obstructed by broadband wind noise and disabled for recordings 25-50% 

obstructed, where high energy calls were often confused with high energy wind gusts and 

excluded from spectrograms. Recordings more than 50% obscured by wind noise were 

not analyzed, due to obstruction of seabird call frequencies not allowing for a reliable 

estimate of call activity. 

At sites with high call density, instead of counting individual calls, which would 

be impossible given the frequency of overlapping calls, a visual percent cover of each 15 

minute spectrogram was taken. Fork-tailed Storm-petrel flight calls are approximately 

1.2 seconds and Leach's Storm-petrel Chuckle calls 1 second in duration. Each 15 

minute recording period was multiplied by 50 (60 sec/1.2 calls per sec) for a total of 750 

Fork-tailed Storm-petrels calls, or 60 (60 sec/1 call per sec) for a total of900 Leach's 

Storm-petrel calls. Periods of silence were then subtracted from these totals. Due to high 

numbers of call activity, only 14 random nights were measured at Buldir, Kasatochi, and 

the west site on Amatignak (Fork-tailed Storm-petrels only). 

Each call was classified as present or absent at a site. Also, we report mean calls 

per night± standard error, total, and maximum calls pooled over the whole recording 

period. These values were used to compare activity between sites. 

We also noted and attempted to identify other calls recorded at Amatignak Little 

Sitkin, Nizki/ Alaid, and Kiska, sites where nocturnal seabirds activity was low enough to 

distinguish other species calls. Unusual species calls observed during visual scans were 

saved and uploaded to: http://www.mun.ca/serg/Aieutian unid birdcalls.html in order for 

experts to identify unknown calls. Most calls were identified using Birds of North 
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America accounts and example calls from the Cornell Macaulay Library. Important calls 

were then further analyzed using Raven Pro 1.3 software (Cornell Lab of Ornithology) 

where accurate spectrograms could be amplified and made to scale. 

3.2.5 Variables Affecting Recovery. -

To evaluate how call activity relates to patterns in seabird recovery after removal 

of introduced predators, nightly frequency of flight calls of the most common species 

(Leach's Storm-petrel, Fork-tailed Storm-petrel, and Ancient Murrelet) were compared to 

six factors (Table 3.4). 

1) Years since predator eradication, with fox eradication dates from Bailey 

(1993), between 0 on Kiska, 9 on Little Sitkin, 18 on Amatignak, 25 on Kasatochi, 34 on 

N izki/ A laid and an arbitrarily chosen 1 000 on B uldir (approximate time since last 

catastrophic volcanic eruption). Factors that affect historical rate of predation and 

subsequent extinction such as 2) presence of talus, cliff, or offshore island breeding site 

refugia (within 500 meters of Song Meter site) and 3) island size (from AMNWR 

Unpubl. data). Factors that affect current seabird distribution and determine suitability of 

nesting habitat; 4) dispersal distance from a large predator-free source colony such as 

Buldir or Chagulak for Kasatochi, or smaller subcolonies (data from Byrd eta!. 2005) 

obtained by measuring from the center of one island to the other on a map (to the nearest 

km); 5) marine habitat (oceanic habitat in the Rat and Andreanof Islands versus shelf 

habitat in the Near Islands, Springer et al. 1996); and 6) social facilitation, or cues 
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provided by the activity of conspecific and heterospecific species, as measured by each 

Song Meter (Kress 1997). 

We also included two factors that affect call activity on a nightly basis: 1) light 

intensity, as most nocturnal seabirds are less active on bright nights (Watanuki 1986), 

defined as the four moon phases (data from USNO) and 2) weather variables, such as 

wind speed and wind direction, which are known to interact and affect colony attendance 

by adult and prospecting individuals (Major et al. IN PREP). Data obtained from NOAA 

weather buoy 46071located at 51.16 °N, 179.00 °E and 46070 located at 55.00 °N, 

175.28 °E. 

3.2.6 Statistical Analysis 

We compared calls/night among islands and sites using a negative binomial 

GzLM with a log link in SPSS version 16.0 (SPSS 2008). Separate models for each 9 

call types were run, resulting in a total of 9 models. Although we obtained meaningful p­

values from this analysis, due to quasi-complete separation in the data (entire islands or 

sites with Os, e.g. Kiska) we could not examine parameter estimates. Instead, we 

examined presence/absence and abundance tables (Table 3.1-3.3) and calculations of 

standard error. We then used a negative binomial GzLM with a log link in order to 

compare calls/night between years (2008 and 2009) on Amatignak. 

To evaluate the relationship of call activity to various factors relating to recovery, 

(Table 3.4) we used a series of models in an information theoretic framework. A set of 

15 a priori models was constructed for the most common calls (using only data from 
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2009) with the most biologically relevant combinations of 11 variables (Table 3.5). 

Models were ranked using Akaike' s Information Criterion corrected for small sample 

sizes and overdispersed data (QAICc), and support for each model was evaluated using 

the difference between each candidate model's QAICc and the lowest QAICc to produce a 

~QAICc score. Models with ~QAICc <2 had substantial support, while those with 4-7 

had less support, and when ~QAICc > 10, there was no support for the model. QAICc 

weights were then calculated and used to evaluate model likelihood (Burnham and 

Anderson 1998). In order to examine each variables effect on call activity in the most 

parsimonious model, we used parameter estimates (continuous variables) or estimated 

marginal means (categorical variables) and their corresponding 95% confidence intervals. 

3.3 RESULTS 

We recorded on 292 nights in 2008 and 673 recording nights in 2009, for a total 

of2,520 recording hours on 965 nights (Appendix A). We recorded a total of206,502 

nocturnal burrow-nesting species calls (including only 14 nights of analysis of call 

activity from Buildir and Kasatochi). Of these, 100,697 were Leach' s Storm-petrel calls 

(95,681 Chuckle, 4752 Purr, and 264 Screech), 90,788 were Fork-tailed Storm-petrel 

calls (77,707 flight and 13,081 male), 13,220 were Ancient Murrelet calls (1 1,400 

Chirrup, 14 71 Song, and 349 chick), and 1797 were Cassin' s Auklet kreer-er calls. Of 

these total calls, 9 were recorded on Kiska, 2,204 on Little Sitkin, 4,022 on Nizki/Alaid, 

34,263 on Kasatochi (14 days of data only), 95,140 on Buldir (14 days of data only), and 

70,864 from Amatignak (2008 and 2009). 
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3.3.1 Nocturnal Call Activity 

Overall, the three most common nocturnal burrow-nesting species calls 

throughout recordings were Leach's Storm-petrel Chuckle calls (present at 16116 or 

100% of sites), Fork-tailed Storm-petrel flight calls (13116 or 81% of sites), and Ancient 

Murrelet Chirrup calls ( 11/16 or 69% of sites). The least common nocturnal species calls 

were Ancient Murrelet chick calls, present only at Buldir and the western site on 

Amatignak, and Cassin' s Auklet Kut-reearh calls, present only at Buldir. Due to low 

representation across sites, Kut-reearh calls were excluded from further analysis. 

Cassin's Auklet calls had the lowest presence throughout sites. Kreer-er calls were 

present only on Amatignak and Buldir and we recorded no Kut-I-er calls, another known 

vocal display (Seneviratne eta/. 2009). The lowest richness of calls present was at 

Kiska, with only Leach's Storm-petrel Chuckle call, and Ancient Murrelet Chirrup calls 

at Bukhti Point. Aside from the active colony on Buldir, the site with the highest 

diversity of calls present was the east of Amatignak where all call types, aside from 

Cassin' s Auklet Kut-reearh, were present (Fig. 3.2). 

The average nightly call activity of all 9 call types differed significantly among 

islands (all P << 0.001) and between sites (all P << 0.001). 

Leach' s Storm-petrel Chuckle calls were the only call type recorded at all sites on 

all islands, but abundance of calls varied significantly. For example, although calls were 

present at Kiska and Buldir, there were over 30,000 more calls per night at North Bight, 

Buldir then on both sites on Kiska (Table 3.1 ). Aside from Buldir, Chuckle calls were 
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most abundant on Amatignak Island (Table 3.1). Chuckle calls were also present at all 

sites on Little Sitkin and Nizki/ Alaid; however, the average number of calls per night was 

low (Table 3.1). Chuckle call activity was lowest on Kasatochi. Other Leach's Storm­

petrel calls, such as Purr and Screech calls, were much less numerous and specific to 

certain sites. These calls were present where Chuckle call activity was high, for example 

at the western site on Amatignak (Fig. 3.2). We recorded frequent Leach's Storm-petrel 

chick begging calls at Buldir, and on two occasions at the western site of Amatignak. 

Fork-tailed Storm-petrel flight calls were the second most numerous call type. 

Fork-tailed Storm-petrel flight calls were present throughout most recordings, except 

those on Kiska and at one site on Nizki/Alaid (Table 3.2). Average flight calls/night was 

highest on Kasatochi, followed by Buldir, and western Amatignak (Fig. 3.2, Table 3.2). 

Relatively high numbers of flight calls were also recorded at the eastern site on 

Amatignak, the southern site on Little Sitkin, and the western site on Nizki/ A laid. Male 

call activity was highest on Buldir, followed by Kasatochi, and western Amatignak. No 

male calls were recorded on Kiska, the northern site on Nizki/ Alaid, or the western site 

on Little Sitkin, which had the least amount of flight call activity (Table 3.2). 

High levels of Ancient Murrelet Chirrup call activity were recorded at Kasatochi, 

western Amatignak, and Buldir (Table 3.3). Sites with high levels of Chirrup call activity 

also had high numbers of Songs. We recorded low levels of Song at the northern site on 

Amatignak, where levels of Chirrup calls were also low. At sites with high levels of 

Chirrup calls and Songs (Buldir and western Amatignak), family departures or sequences 

of chick and Chirrup calls were recorded. No chick calls were recorded at Kasatochi 
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Island, despite high levels of Chirrup calls and Song. No Ancient Murrelet calls were 

recorded on Little Sitkin, while only one call was recorded on Kiska. 

3.3.2 AIC Analysis 

The best supported model from our candidate set explaining Leach' s Storm-petrel 

Chuckle call activity included all variables except Ancient Murrelet Chirrup call and 

Fork-tailed Storm-petrel flight call abundance. This model received 56.2 % of the total 

weight among models, indicating substantial support. This model was about 2.4 times 

more likely than the global model and 3.1 times more likely than a model excluding all 

other species calls (Table 3.5). There was a significant effect of all variables on rate of 

calling in the most parsimonious model, except distance from source colony and Purr call 

activity (Appendix C). Years since predator eradication and distance to Buldir had slight 

positive effects on call activity, while island size had a slight negative effect on call 

activity. There was less call activity on nights with a full moon and when offshore 

islands and cliffs were present, there were higher amounts of call activity (Appendix C). 

Finally, there was more call activity when sites were close to shelf habitat, however, 

confidence intervals on the estimated marginal means overlapped with the oceanic habitat 

(Appendix C). 

The best supported model explaining Fork-tailed Storm-petrel flight call activity 

was the global model with 66.1 %of the total weight among models, and was 4.5 and 5.3 

times more likely than the two other models that received weight or support (Table 3.5). 

There was a significant effect of all variables on calling rate in the global model: years 

since predator eradication, distance to Buldir, and island size had negative effects on call 
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activity, while Chirrup, Chuckle, and male calls and distance to source had a slight 

positive effect on call activity. There was more call activity when talus slopes or cliffs 

and offshore islands were present, less call activity when no refugia were present, and 

more activity when sites were close to oceanic habitat (Appendix C). Finally, similar to 

Leach' s Storm-petrel Chuckle calls, there was less call activity on nights with a full 

moon. 

Similar to Leach's Storm-petrel Chuckle call activity, the Ancient Murrelet 

Chirrup call model with the most support included all variables except Leach's Storm­

petrel Chuckle calls and Fork-tailed Storm-petrel flight calls with 60.4% of the total 

weight among models and was 1.5 times more likely than the global model. All variables 

in the most parsimonious model had a significant effect on call rate, except distance to 

Buldir (Appendix C). All continuous variables, including years since predator 

eradication, distance to source, and island size and Song activity had positive effects on 

call activity. Estimated marginal means could not be constructed due to maximum step­

halvings reached in the model producing inflated values. However, it appeared as though 

there was more activity at sites with cliffs present, and at sites close to oceanic habitat. 

3.3.3 Other Species Recorded. -

We recorded 22 other species (Table 3.6). Species such as Rock Sandpiper 

(Calidris ptilocnemis) and Glaucous-winged Gull (Larus glaucescens) were recorded at 

all sites. Lapland Longspur (Calcarius lapponicus) and Aleutian Cackling Goose 

(Bran/a hutchinsii leucopareia) were also recorded across most sites, although Lapland 
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Longspurs were not heard at Nizki/ A laid, due to the strictly nocturnal nature of the 

recording schedule. Eurasian migrant species such as Wood Sandpiper (Tringa glareola) 

and the Siberian Ruby-throat (Luscinia calliope) were recorded only on Amatignak 

Island. Song Meters at Nizki/ Alaid recorded the highest number of species mainly in the 

Scolopacid and Anatid families, followed by Amatignak, Kiska, and Little Sitkin. 

3.4 DISCUSSION 

To address a lack of data examining seabird recovery, we investigated patterns of 

nocturnal burrow-nesting seabird re-colonization after eradication of foxes in the western 

Aleutian Islands. Overall we found considerable evidence of recovery of affected species 

at multiple islands, with time elapsed after removal of introduced predators related to 

recovery rate. However, we found additional island and species characteristics that also 

contributed to patterns of re-colonization. 

As expected, there were striking differences in call activity between pristine 

islands (Buldir) and islands with introduced predators still present today (Kiska). At the 

nocturnal seabird colony on Buldir, there were extreme levels of vocal activity of all 

species, including calls used in mate advertising and by chicks. At Kiska, only nine calls 

of 2 species were recorded over 64 device nights of monitoring. Low activity was 

expected, as Kiska has been occupied for over 170 years by introduced predators, from 

fox introductions in the early 191
h century, to accidental rat introductions in the 1940's. 

Rats are well known to have extirpated colonies of small seabird species worldwide 

(Gaston 1994b, Towns 2006, Jones eta/. 2008b), and are likely responsible for the 
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current scarcity of nocturnal seabird activity on Kiska. Although we recognize that two 

Song Meters only cover a small area of the immensely large island of Kiska, other 

accounts (Byrd et al. 2005, USFWS reports) confirm the virtual absence of breeding 

nocturnal seabirds. The only known sign of such species was from a rat prey cache at 

Sirius Point on the northern end of Kiska. (7 Fork-tailed Storm-petrel, 122 Least Auk lets 

and a nest with rat pups; Major and Jones 2002). This was the last account of small 

nocturnal species at Sirius point, and at present storm-petrel call accounts are rare. We 

conclude, from the amount of call activity recorded on our Song Meters and anecdotal 

accounts, that few nocturnal burrow-nesting seabird species nest on Kiska Island, likely 

due to historic fox predation and current rat predation. Further research should focus on 

placement of recording devices at Sirius Point, where accounts of storm-petrel activity 

exist. 

Comparing calls between Little Sitkin, Arnatignak, and Kasatochi (foxes removed 

in 2000, 1991 , and 1984 respectively), a positive pattern emerged between number of 

years since predator eradication and call activity and number of different call types (Fig 

3.2). Presumably, nocturnal seabird activity increases the longer the recovery period 

from fox predation, as re-colonization occurs over time. Call activity and richness were 

relatively low on Little Sitkin: no Ancient Murrelet calls or Leach' s Storm-petrel purr and 

screech calls were recorded. Call activity and call types present were much greater at 

sites on Arnatignak, which had 9 years longer to recover from fox predation than Little 

Sitkin (Bailey 1993). Not only were flight calls extremely numerous but mate 

advertizing burrow calls, territorial calls, and at some sites chick calls were also recorded. 
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Call activity of Fork-tailed Storm-petrel and Ancient Murrelet was much higher at 

Kasatochi Island, with numbers often comparable to the pristine colony of Buldir. 

Kasatochi had foxes removed 7 years earlier than Amatignak. Extremely high levels of 

mate advertizing calls were also recorded at Kasatochi, but there was a lack of chick 

calls. This is likely due to the volcanic eruption that occurred during the previous season 

and destroyed breeding habitat at Troll Talus, covering the entire site with a thick layer of 

tephra (Williams et al. IN PRESS). Many of the breeding and prospecting adults present 

pre-eruption survived and returned to Kasatochi, but due to the destruction of nesting 

habitat, were unable to reproduce. However, activity in 2009 suggested the presence of 

pre-eruption populations were at a more advanced stage of recovery than at Amatignak. 

However, opposite to this positive trend between years since predator eradication 

and call activity, Nizki/Alaid, with foxes removed in 1975, had approximately the same 

call activity and diversity as Little Sitkin which had foxes removed 25 years later. Also, 

when we compared the activity level ofthe three main call types (Flight, Chuckle, and 

Chirrup) to years since eradication (Appendix C) in the AIC analysis, results were not 

straightforward and differed between species. Chirrup and Chuckle call activity had a 

positive relationship with years since eradication; yet Fork-tailed Storm-petrel flight call 

activity had a negative relationship. This suggests that mechanisms responsible for 

current nocturnal seabird activity and re-colonization are more complicated than simply 

being explained by time since predator eradication. Indeed, seabird re-colonization at a 

predator-free island is a product of many factors: presence and suitability of breeding 

habitat, the dispersal distance from the nearest viable colony site, historical escape from 
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predation (presence of refugia, island size), and social facilitation (Stephenson and Irons 

2003). 

We found, among all species, more activity at sites where refugia were present 

within 500 meters. Seabirds breed on sloping talus, steep cliffs and offshore islet refuges 

to avoid predation (Murie 1959, Larson 1960, Lack 1968, Birkhead and Nettleship 1995) 

and after predators are removed, remnant populations provide pioneering individuals to 

re-colonize the island. At islands without such refugia, no individuals remain to 

immediately re-colonize following predator eradication and recovery is delayed until 

prospectors arrive from distant source populations. At Nizki/Alaid, low lying islands 

lacking refugia, we found little sign of recovery. In contrast, at the western site on 

Amatignak with steep cliffs and offshore islet refugia, we confirmed breeding of Ancient 

Murre let and Leach's Storm-petrel, indicating an advance stage of recovery. Preference 

ofrefugia type was species specific. For example, Leach's Storm-petrel were most 

numerous at sites with nearby off-shore islets and steep cliffs (western Amatignak), while 

Fork-tailed storm-petrel were most numerous near talus (Kasatochi pre-eruption) that 

likely provided refuge from foxes. This may explain why Fork-tailed Storm-petrels 

recovered so quickly on Kasatochi, while Leach's Storm-petrel have not. The latter 

species nest only soil burrows while Fork-tailed Storm-petrels occassionally use rocky 

crevaces (Harris 1974, Drummond 2007), allowing them to take refuge from foxes in 

rock talus. 

The use of, and fast recovery close to refugia has important conservation 

implications. For example, a small population of Ancient Murrelets (approximately 175 
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individuals- Byrd et al. 2005) is believed to persist at Little Kiska Island near Kiska 

Harbor. If predation pressure by rats were removed from the larger island of Kiska, this 

sub-colony could provide individuals to re-colonize the main island. 

We found that island size was included in top models explaining patterns in call 

activity for all three species, suggesting that island size plays a role in nocturnal seabird 

recovery. According to the theory of island biogeography, extirpation is more likely on 

small islands, and therefore post-eradication re-colonization may take longer (MacArthur 

and Wilson 1967). Seabirds are less likely to re-colonize smaller islands (such as 

Nizki/ Alai d), due to higher chances of complete extirpation from these islands when 

predators are introduced. 

We found that distance from large predator-free source colonies (Buldir and 

Chagulak) and closest small sub-colonies (Gareloi, Rat, Agattu, and Koniuji- Byrd et al. 

2005) were included in the most parsimonious models for all three species. None of the 

nocturnal species tested are known to exhibit natal philopatry (Gaston 1994, Huntington 

et a!. 1996, Boersma and Silva 2001) so individuals are free to evaluate other islands for 

breeding, therefore, dispersal is expected play a major role in distribution. Dispersal 

distance and rate is unknown for nocturnal burrow-nesting species, but is likely affecting 

recovery rate. 

Social facilitation, or habitat selection based on information obtained from 

conspecifics or ecologically similar heterospecifics, also affected the recovery rate of 

some nocturnal species (Kress 1997, Monkkonen and Forsman 2002, Ward and 

Schlossberg 2004). Fork-tailed Storm-petrel flight calls were positively related to both 

82 



Ancient Murrelet Chirrup calls and Leach's Storm-petrel Chuckle calls, meaning that 

activity of Fork-tailed Storm-petrels was high at sites where activity of other species was 

also high. Yet this trend was not observed in the two other species tested. Although 

social facilitation is important and contributes to rate of recovery, it is clearly species 

specific. 

Finally, proximity of foraging areas is one of the main determinants of seabird 

breeding habitat and distribution (Lack 1968, Furness and Birkhead 1984, Birkhead and 

Nettleship 1995). Although the majority of the Aleutian Island marine habitat is 

relatively uniform, the Near Islands represent the only exception, as they sit on a shelf 

which results in a coastal type habitat (Springer eta/. 1996). Marine habitat (oceanic 

versus shelf) was included in all three species most parsimonious models, suggesting its 

importance in influencing seabird distribution. Fork-tailed Storm-petrel flight call 

activity was higher at oceanic habitat sites, whereas Leach' s Storm-petrel chuckle call 

activity was slightly higher at shelf habitat sites (although confidence intervals 

overlapped with oceanic sites). This outlines the subtle differences in foraging strategy 

between these two species. Wing-loading is significantly less for Leach' s than Fork­

tailed Storm-petrels, an energy saving device for a species which forages at greater 

distances from its nesting grounds (Vermeer eta/. 1988); meaning that Leach' s storm­

petrels are more adept to fly longer distances from breeding colonies. These differences 

in marine habitat could affect where colonies are located and prevent certain species 

(such as Fork-tailed Storm-petrel) from re-colonizing certain sites (such as the Near 

Islands). 
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All three nocturnal species had lower call activity on nights during moonlight 

periods. Storm-petrels and Ancient Murrelets are known to be lunar phobic, or less 

active on moonlit nights (Watanuki 1986, Jones et al. 1990). We also found that the 

interaction between wind speed and wind direction had negative effects on all three 

species of nocturnal seabirds call activity. Adverse weather conditions make returning to 

the colony or prospecting more energetically difficult and result in less site visitation 

under windy or stormy circumstances (Vermeer et al. 1988). Any interpretation of 

nightly call comparisons across seasons must take into account these significant light and 

weather factors that affect activity and will detract from actual numbers of calls present at 

a site. Here again, automated recording devices show their value by allowing 

simultaneous monitoring at multiple sites, allowing such environmental variable to be 

controlled for. 

Song Meters also recorded other species of conservation concern in the Aleutian 

Islands. Song Meters on Little Sitkin Island recorded Rock Ptarmigan (Lagopus mutus 

lownsendi), a surface-nesting bird that suffered severe population declines after fox 

introduction in the Aleutian Islands. In the western Aleutians, Rock Ptarmigan are 

divided into 4 subspecies (evermanni, townsendi, gabrielson, and sanfordi; Holder et al. 

2004, Montgomerie and Holder 2008). Small populations restricted to even smaller 

island ranges make Rock Ptarmigan of particular concern to wildlife biologists (Byrd and 

Anderson 1993). Song Meters successfully recorded the recovery of this particular 

subspecies of Rock Ptarmigan in the Rat Islands. Song Meters also detected Aleutian 

Cackling Goose (Branta hutchinsii leucopareia) calls, a species listed as endangered in 
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1967 due to fox predation, but now recovering due to eradication and translocation 

efforts. The population rebounded from about 800 in the mid-seventies to 22,000 in 

1991 , when they were downlisted to threatened (Byrd 1998). However little is known 

about how Cackling Geese are re-populating or recovering across the entire Aleutian 

chain. We recorded Cackling Geese on three of four islands, plus a gosling call at 

Nizki/Alaid (I.L. Jones pers. comm.). These birds may be breeding across the Western 

Aleutians, and future research should focus on placing Song Meters at possible sites of 

population expansion. Although Nizki/ Alaid had relatively low nocturnal seabird call 

richness, it had a high number of diurnal species calls, including many sandpipers. 

Kiska, which had the lowest call activity and richness of nocturnal species, had the third 

highest diversity of diurnal species (perhaps due to its recording schedule including dusk 

and dawn), including the presence of Aleutian Cackling Geese. This suggests that factors 

controlling nocturnal seabird recovery patterns and distribution are not the same for 

shorebirds, ducks, and other diurnal birds. 

We conclude that recovery of nocturnal burrow-nesting seabird populations in the 

Aleutians is not straightforward. The number of years since predator removal is an 

important factor in re-colonization, but many other variables contribute to the rate of 

recovery. Therefore, although eradication of predators is an essential first step in island 

restoration, it may not directly result in nocturnal seabird recovery. Also, it probably 

cannot be assumed that all nocturnal seabird species were present historically at all sites 

or on all islands in the absence of introduced predators, a factor that was not considered 

in this study. Paleoecological investigations at Aleut midden sites will likely provide the 
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best opportunity to quantify pre-fox and rat distribution of nocturnal seabirds on Aleutian 

Islands, more of which are needed to evaluate modem recovery patterns. Further Song 

Meter deployments should expand analysis to other islands across the Aleutians in order 

to tease out details and important factors impacting recovery. Also, at islands where site 

characteristics do not allow for fast rates of recovery for nocturnal species, for example 

on Nizki/Alaid, more extensive management may be required post-eradication. In this 

case, social attraction techniques or translocation could be used to encourage a faster rate 

of re-colonization. We suggest further study into the mechanisms of seabird re­

colonization in order to facilitate the recovery of historically damaged populations. 
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Table 3.1: Leach's Storm-petrel detections using automated acoustic recording devices 

during 2008-2009. Includes mean, maximum, and total calls per night in the western 

Aleutian Islands. 

Chuckle Burrow Screech 
total total total 

Site mean ± SE max calls mean ± SE max calls mean ± SE max calls 

Kasatochi 0.3 ± 0.1 4 14 0.0 0 0 0.0 0 0 

Amatignak N 

2008 65 .2 ± 21.0 176 1435 0.2 ± 0.2 4 4 0.0 0 0 

2009 81.4 ± 19.7 818 4803 0.6 ± 0.3 14 36 0.1 ± 0.04 2 4 

TOTAL 73.3 ± 20.3 497.0 6238.0 0.4 ± 0.2 9.0 40.0 0.0 1.0 4.0 

Amatignak E 

2008 93.6 ± 16.9 454 4025 0.1 ± 0.1 2 5 0.0 0 0 

2009 99.2 ± 17.5 620 6748 0.2 ± 0.1 5 12 0.0 I I 

TOTAL 96.4 ± 17.2 537.0 10773.0 0.2 ± 0.1 3.5 17.0 0.0 0.5 1.0 

Amatignak S 

2008 9.7±2.8 69 309 0.0 0 0 0.0 0 0 

2009 5.3 ± 1.3 50 350 0.0 I 0.0 0 0 

TOTAL 7.5 ± 2.0 59.5 659 0.0 0.5 0.0 0 0 

Amatignak W 

2008 181.5 ± 26.4 560 5989 0.8 ± 0.2 4 26 0.0 0 0 

2009 291.7 ± 38.3 1390 17504 3.7 ± 0.9 42 221 0.7 ± 0.2 12 40 

TOTAL 236.6 ± 32.4 975.0 23493 .0 2.2 ± 0.6 23.0 247.0 0.3 ± 0.1 6.0 40.0 

Little Sitkin N 7.0 ± 0.4 46 98 0.0 0 0 0.0 0 0 

Little Sitkin NW 5.5 ± 1.2 84 175 0.0 0 0 0.0 0 0 

Little Sitkin S 1.4 ± 0.6 II 33 0.0 0 0 0.0 0 0 

Little Sitkin W 2.2 ± 1.3 18 33 0.0 0 0 0.0 0 0 

Nizki/Alaid W 14.1 ± 2.5 91 832 0.2 ± 0.1 5 II 0.0 0 0 

Nizki/Alaid N 2.0 ± 0.4 II Ill 0.0 I 0.0 0 0 

Nizki/Alaid S 13.2 ± 1.3 135 802 0.6 ± 0.2 12 9 0.0 0 0 

~izki/Alaid E 9.6 ± 1.7 59 584 0.5 ± 0.2 8 28 0.0 0 0 

2727.8 ± 231.5 ± 11.53 ± 
Buldir N. Bight 295.2 4916 51828 48.4 880 4398 2.7 39 2 19 

Kiska Bukhti Pt 0. 15 ± 0.06 I 5 0 0 0 0 0 0 

Kiska West 0.10 ± 0.05 2 3 0 0 0 0 0 0 
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Table 3.2 Fork-tailed Storm-petrel detections, including mean, maximum and total calls, 

in the western Aleutian Islands, monitored using automated acoustic recording devices 

during 2008-2009. 

Flight Male 

Site mean± SE max total calls mean ± SE max total call 

Kasatochi 2239.9 ± 312.3 4985 3 1359 74.6 ± 12.7 169 1045 

Amatignak N 

2008 2.8 ± 0.9 17 61 0.03 ± 0.18 

2009 6.4 ± 1.0 38 384 0.2 ± 0.1 4 13 

TOTAL 4.6 ± 1.0 27.5 445.0 0.1 ± 0.1 2.5 14.0 

Amatignak E 

2008 30.1 ± 7.5 213 1269 8.4 ± 1.1 86 361 

2009 57.7 ± 14.4 799 3920 2.9 ± 0.9 44 193 

TOTAL 43.9 ± 10.9 506.0 5189.0 5.6 ± 1.0 65.0 554.0 

Amatignak S 

2008 0.0 0 0 0.0 0 0 

2009 0.3 ± 0.1 5 19 0.1 ± 0.1 4 4 

TOTAL 0.15 ± 0.1 2.5 19 0.03 ± 0.03 2 4 

Amatignak W 

2008 n/a n/a n/a n/a n/a n/a 

2009 583 .0 ± 117.7 1419 9328 72.4 ± 7.6 256 4342 

TOTAL 583.0 ± 117.7 1419.0 9328.0 72.4 ± 7.6 256.0 4342.0 

Little Sitkin N 7.0 ± 0.4 14 98 0.1 ± 0.3 0.07 

Little Sitkin NW 8.3 ± 2.0 139 265 0.5 ± 0.5 II 15 

Little Sitkin S 32.2 ± 9.5 219 741 7.7 ± 9.5 57 741 

Little Sitkin W 0.3 ± 0.1 4 0.0 0 0 

Nizki/Aiaid W 16.4 ± 4.4 165 1014 0.3 ± 0.1 6 19 

Nizki/Aiaid N 0.0 0 0 0.0 0 0 

Nizki/Aiaid S 7.0 ± 2.8 129 436 1.0 ± 0.4 22 63 

Nizki/Aiaid E 0.1 ± 0.04 2 5 0.0 0 0 

Buldir N. Bight 1516.1 ± 172.9 2575 28804 299.2 ± 70.4 975 6283 

Kiska Bukhti Pt 0 0 0 0 0 0 

Kiska W 0 0 0 0 0 0 
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Table 3.3 Ancient Murrelet detections, including mean, maximum and total calls, in the 

western Aleutian Islands, monitored using automated acoustic recording devices during 

2008-2009. 

ANMU ANMU ANMU 

chirru12 song chick 

total total mean ± total 

Site mean ± SE max calls mean ± SE max calls SE max calls 

Kasatochi 109.3 ± 35.8 429 1640 5.9 ± 2.4 53 205 0.0 0 0 

Amatignak N 

2008 2.1 ± 0.8 13 47 0.0 0 0 0.0 0 0 

2009 1.5 ± 0.4 16 94 0.02 ± 0.02 I I 0.0 0 0 

TOTAL 1.8 ± 0.6 14.5 141.0 0.0 0.5 1.0 0.0 0.0 0.0 

Amatignak E 

2008 82.6 ± 15.8 436 3553 9.9 ± 2.2 49 427 3.1 ± 1.0 29 133 

2009 58.1 ± 7.1 201 4008 7.13 ± 1.2 46 492 1.9 ± 0.5 16 133 
22. 

TOTAL 70.3 ± 11.4 318.5 7561.0 8.5 ± 1.7 47.5 919.0 2.5 ± 0.7 5 266.0 

Amatignak S 

2008 0.3 ± 0.2 5 II 0.0 0 0 0.0 0 0 

2009 0.2 ± 0.1 3 12 0.0 0 0 0.0 0 0 

TOTAL 0.3 ± 0.1 4 23 0.0 0 0 0.0 0 0 

Amatignak W 

2008 7.1 ± 1.6 42 233 0.0 0 0 0.0 0 0 

2009 3.6 ± 0.8 23 237 0.2 ± 0.1 4 12 0.0 I I 

TOTAL 5.3 ± 1.2 32.5 470.0 0.09 ± 0.04 2.0 12.0 0.0 0.5 1.0 

Little Sitkin N 0.0 0 0 0.0 0 0 0.0 0 0 

Little Sitkin NW 0.0 0 0 0.0 0 0 0.0 0 0 

Little Sitkin S 0.0 0 0 0.0 0 0 0.0 0 0 

Little Sitkin W 0.0 0 0 0.0 0 0 0.0 0 0 

Nizki/Alaid W 1.4 ± 0.5 27 84 0.0 0 0 0.0 0 0 

Nizki/Alaid N 0.1 ± 0.03 3 0.0 0 0 0.0 0 0 

Nizki/Alaid S 0.03 ± 0.02 I 2 0.0 0 0 0.0 0 0 

Nizki/Alaid E 0.1 ± 0.05 2 7 0.0 0 0 0.0 0 0 

Buldir N. Bight 86.4 ± 17.9 233 1468 15.2 ± 5.04 86 334 5.13 ± 1.22 38 82 

Kiska Bukhti Pt 0.03 ± 0.03 I 0 0 0 0 0 0 

Kiska West 0 0 0 0 0 0 0 0 0 
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Table 3.4 Variables used to explain flight call activity of three nocturnal species (Leach' s 

Storm-petrel, Fork-tailed Storm-petrel, and Ancient Murrelet) in AIC analysis. 

Variable 

YrsPred 

Ref 

IS 

DistB 

DistS 

Food 

LESP, FTSP, ANMU 

LESPp, FTSPm, ANMUs 

WS*WD 

Moon 

Description 

Years since predators removed (from 0 on Kiska to 1000 
on Buldir) 

Presence of refugia from introduced predators (scored as 0 
- no refugia, I - talus slopes, 2 - steep cliffs, 3 - offshore 
islets, 4 - cliffs and offshore islets) 

Island size (in hectares) 

Distance to closest large colony (Buldir, or Chagulak for 
Kasatochi) 

Distance to nearest sub-colony (Byrd el al. 2005) 

Type of marine habitat (scored as SH - shelf or OC ­
oceanic) 

Frequency of Leach' s Storm-petrel Chuckle, Fork-tailed 
Storm-petrel flight call, and Ancient Murrelet Chirrup calls 
per night. 

Frequency ofLeach's Storm-petrel Purr, Fork-tailed 
Storm-petrel male call, Ancient Murrelet Song per night. 

The interactive effect of wind speed and wind direction. 
Wind speed pooled into 4 categories: north, south, east, 
and west. 

Moon cycle divided into 4 categories (0 new, I first 
quarter, 2 third quarter, 3 full), scored from 2 days before 
to 2 days after each phase. 
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Table 3.5 Candidate model sets of three different species (Leach' s and Fork-tailed Storm-

petrel and Ancient Murrelet) call activity in relation to 11 different recovery related 

variables. 

Model 

LEACH'S STORM-PETREL CHUCKLE CALL 

LESP = YrsPred+WS*WD+Moon+ 

DistS+DistB+Ref+IS+Food+LESPp 

LESP = YrsPred+WS*WD+Moon+DistS+ 

DistB+Ref+IS+Food+FTSP+LESPp+ANMU 

LESP = YrsPred+WS*WD+Moon+DistS+ 

DistB+Ref+IS+Food 

K QAICc ~QA!Cc wi 

19 1736.934 0 0.56237 

21 1738.662 1.728158 0.237005 

18 1739.173 2.239371 0.183548 

LESP = YrsPred+WS*WD+Moon+DistS+DistB+ 20 1743.942 7.007834 0.016916 

Ref+IS+FTSP+LESPp+ANMU 

LESP = WS*WD+Moon+DistS+DistB+Ref+ 19 1754.977 18.04304 6.79E-05 

IS+FTSP+LESPp+ANMU 

LESP = WS*WD+Moon+DistS+Ref+IS+ 19 1755.383 18.44905 5.54E-05 

Food+FTSP+LESPp+ANMU 

LESP = WS*WD+Moon+DistS+DistB+Ref+IS+ 20 1756.083 19.14912 3.91 E-05 

Food+FTSP+LESPp+ANMU 

LESP = YrsPred+WS*WD+Moon+DistS+Ref+IS+ 20 1821.733 84.79915 2.17E-19 

Food+FTSP+LESPp+ANMU 

LESP = YrsPred+Ref+DistS 8 1901.962 165.0279 8.22E-37 

LESP = Ref 6 2034.122 297.1879 1.65E-65 

LESP = WS*WD+Moon+FTSP+LESPp+ANMU 12 2120.418 383.4844 3E-84 

LESP = FTSP+LESPp+ANMU 5 2198.961 462.0267 2.6E-IOI 

LESP = YrsPred 3 2255.717 518.7831 1.3 E-113 
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LESP = WS*WD+Moon 

intercept 

FORK-TAILED STORM-PETREL FLIGHT CALL 
FTSP = 
Y rsPred+ WS * WD+Moon+DistS+DistB+Ref+ 

IS+Food+FTSPm+LESP+ANMU 

FTSP = YrsPred+WS*WD+Moon+DistS+ 

DistB+Ref+IS+Food 

FTSP = YrsPred+WS*WD+Moon+OistS+DistB+ 

Ref+ I S+Food+FTSPm 

FTSP= 
WS*WD+Moon+DistS+DistB+Ref+IS+Food+ 

FTSPm+LESP+ANMU 

FTSP = 
YrsPred+WS*WD+Moon+DistS+DistB+Ref+ 

IS+FTSPm+LESP+ANMU 

FTSP = WS*WD+Moon+DistS+DistB+Ref+IS+ 

FTSPm+LESP+ANMU 

9 2543 .09 806.1558 5E- I 76 

2 2779.855 I 042.921 1.9E-227 

21 993.7495 0 0.66 I 808 

18 996.7569 3.007364 0.147127 

19 997.095 3.345434 0.124245 

20 998.3359 4.586303 0.066808 

20 1015.759 22.00927 I.IE-05 

19 I 020.624 26.87485 9.66E-07 

FTSP = YrsPred+WS*WD+Moon+DistS+Ref+IS+ 20 1042.319 48.5695 1.88E-11 

Food+FTSPm+LESP+ANMU 

FTSP = WS*WD+Moon+DistS+Ref+IS+ 

Food+FTSPm+LESP+ANMU 

FTSP = YrsPred+Ref+DistS 

FTSP = Ref 

FTSP = WS*WD+Moon+FTSPm+LESP+ANMU 

FTSP = FTSPm+LESP+ANMU 

FTSP = YrsPred 
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19 I 043.93 50. I 8017 8.4E-12 

8 1208.184 214.4347 1.81E-47 

6 1295.214 301.4641 2.28E-66 

12 1347.469 353.7193 1.03E-77 

5 1385.385 391.6356 6E-86 

3 1888.425 894.6757 3.5E-195 



FTSP = WS*WD+Moon 

intercept 

ANCIENT MURRELET CHIRRUP CALL 
LESP= 
YrsPred+WS*WD+Moon+DistS+DistB+Ref+IS+F 

9 1938.71 944.9605 4.2E-206 

2 1982.756 989.0065 1.2E-215 

ood+ANMUs 19 1222.294 0 0.603976 

LESP= 
YrsPred+WS*WD+Moon+DistS+DistB+Ref+IS+F 
ood+FTSP+LESP+ANMUs 21 1223.143 0.848919 0.395074 

LESP= 
YrsPred+WS*WD+Moon+DistS+DistB+Ref+IS+F 
ood 

LESP= 
YrsPred+WS*WD+Moon+DistS+Ref+IS+Food+F 
TSP+LESP+ANMUs 

LESP = 
YrsPred+WS*WD+Moon+DistS+DistB+Ref+IS+F 

18 1235.458 13.16353 0.000837 

20 1239.46 17.16548 0.000113 

TSP+LESP+ANMUs 20 1329.567 107.273 3.07E-24 

LESP= 
WS*WD+Moon+DistS+DistB+Ref+IS+FTSP+LES 
P+ANMUs 19 1335.689 113.3948 1.44E-25 

LESP = 
WS*WD+Moon+DistS+DistB+Ref+IS+Food+FTS 
P+LESP+ANMUs 20 1336.741 114.4466 8.5E-26 

LESP= 
WS *WD+Moon+DistS+Ref+l S+Food+FTSP+LES 
P+ 
ANMUs 

LESP = YrsPred+Ref+DistS 

LESP = Ref 

LESP = WS*WD+Moon+FTSP+LESP+ANMUs 

LESP = FTSP+LESP+ANMUs 
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19 1352.094 129.8003 3.94E-29 

8 1548.737 326.4428 7.85E-72 

3 1604.036 381.7415 7.71E-84 

12 2359.735 1137.44 1 6.1E-248 

5 2399.688 1177.394 1.3E-256 



LESP = WS*WD+Moon 

LESP = YrsPred 

intercept 

94 

9 3254.004 2031.71 

3 3221.24 1998.946 

2 3336.15 2113.856 

0 

0 
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Table 3.6 All species detected on four recording devices placed in the western Aleutians. 

Family Species Island 
Nizki/ Little 

Amatignak A laid Kiska Sitkin 

Accipitridae Bald Eagle X 

Haliaeetus leucocephalus 

Alcidae Whiskered Auklet X X 

Aethia pygmaea 

Anatidae Aleutian Cackling Goose X X X 

Branta hutchinsii leucopareia 

Common Eider X 

Somateria mollissima 

Green-winged Teal Anas crecca X X X 
Mallard Duck Anas 
platyrhynchos X 

Muscicapidae Siberian Ruby-throat X 

Luscinia calliope 

Emberizidae Lapland Longspur X X X 

Calcarius lapponicus 

Song Sparrow X X 

Melospiza melodia 

Gaviidae Common Loon Gavia immer X 

Red-throated Loon X 

Gavia stellata 

Haematopodidae Black Oystercatcher X X 

Haematopus bachmani 

Laridae Glaucous-winged Gull X X X X 

Larus glaucescens 

Charadriidae Semipalmated Plover X 

Charadrius semipalmatus 

Phasianidae Rock Ptarmigan X X X 

Lagopus mutus townsendi 
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Scolopacidae Bar-tailed Godwit X 

Limosa lapponica 

Common Sandpiper X 

Actitis hypoleucos 

Greenshank X 

Tringa nebularia 

Rock Sandpiper X X X X 

Calidris ptilocnemis 

Wandering Tattler X 

Tringa incana 

Wood Sandpiper X 

Tringa glareola 

Troglodytidae Winter Wren X X 

Troglodytes troglodytes 

Total species 13 14 9 4 
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Figure 3.1 Placement of acoustic recording devices (Song Meters) across the western 

Aleutian Islands. Song Meter sites are indicated by dots. 

97 



- ·---... _._......-

Figure 3.2 Patterns in recovery of nocturnal seabirds in the western Aleutians. Nightly 

call activity of Leach' s Storm-petrel, Ancient Murrelet, and Fork-tailed Storm-petrel on 6 

islands. Islands from left to right have increasing time periods since predator eradication 

(Kiska still has rats present; foxes removed from Little Sitkin in 2000, Amatignak in 

1991 , Kasatochi in 1984, and Nizki/ Alaid in 1969/1975; and Buldir never had introduced 

predators). 
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CHAPTER FOUR 

AN EXPERIMENTAL STUDY OF SOCIAL ATTRACTION IN TWO SPECIES OF 

STORM PETREL USING ACOUSTIC AND OLFACTORY CUES 

ABSTRACT 

The effects of introduced predators on island ecosystems represent one of the most acute 

threats to seabirds worldwide. Eradicating non-native predators and protecting islands 

from further anthropogenic disturbance is important, but represents only a first step in 

restoring extirpated seabird populations. Many seabirds use social information (the 

visual, auditory, and olfactory presence of breeding conspecifics) when selecting safe 

nesting habitat. When colonies are extirpated, cues that indicate nesting site quality are 

lost. We tested various social attraction techniques as a method to encourage re­

colonization of Leach's (Oceanodroma leucorhoa) and Fork-tailed Storm-petrels (0. 

furcata); two seabirds whose populations were destroyed by introduced fox predation and 

have been slow to return after eradication in the Aleutian Islands, Alaska. Attraction to 

conspecific calls was tested by broadcasting playback treatments adjacent to a mist net 

and attraction to conspecific odor was tested using at-maze design. We combined these 

two cues to test whether birds would be more likely to enter and inhabit artificial burrows 

depending on playback and odor treatment. Both species of storm-petrel were strongly 

attracted to conspecific and heterospecific call playback; Fork-tailed Storm-petrels were 

significantly attracted to conspecific odor while Leach' s Storm-petrels were repulsed by 

conspecific odor; and more artificial burrows were entered when combined with odor and 
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playback of both species. We discuss the implications of these results, including the 

development of protocols to encourage restoration of seabird colonies in the Aleutian 

Islands after eradication of introduced Arctic Foxes (Alopex lagopus) and Norway Rats 

(Rattus norvegicus). 

Key words: SoCial facilitation, island restoration, storm-petrel, playback, t-maze, odor, 

artificial burrows 

4.1 INTRODUCTION 

Historically, conservation strategies have focussed on habitat protection and 

management and although this is important and often effective, it may be inadequate in 

some cases, such as island habitats where colonial seabirds have been extirpated by 

introduced predators. There is an underlying assumption in avian conservation that, if 

suitable habitat structure and protection from anthropogenic disturbance can be provided, 

birds will return (" if you build it, they will come"; Ahlering and Faaborg 2006). For 

endangered or threatened avian species, safeguarding against biodiversity loss often 

depends on creation, enhancement, and protection of key habitats. However, this strategy 

is questioned because it fails to consider basic avian social behaviour that will indefinitely 

delay some bird' s recovery (e.g., colonial species), no matter how suitable the habitat 

appears to be (Muller et al. 1997, Clout 2001 , Doliguez eta!. 2002, Ward and 

Schlossberg 2004). 

There are many examples where eradication of introduced mammals or habitat 

management through protection from anthropogenic disturbance has not resulted in the 
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return of seabird populations. Common Murres (Uri a aalge) in California had not 

returned to breed 10 years after an oil spill and El Nifio event extirpated a large colony 

(Parker et al. 2007), Common Diving Petrels (Pelecanoides urinatrix) did not return to 

Mana Island in New Zealand over 10 years after the eradication of House Mice (Mus 

musculus) (Miskelly and Taylor 2004), and nocturnal seabirds have not returned to some 

Aleutian islands over 40 years since non-native foxes were eradicated (Chapter 3). 

We conclude that facilitation of island restoration and recovery of extirpated 

seabird colonies cannot be limited to habitat management alone, but that social and 

behavioural factors must also be considered. Island-nesting seabirds are often colonial; 

strong mate and site fidelity, colony-site philopatry, and gregariousness are basic 

elements of their behaviour (Greenwood and Harvey 1982, Danchin and Wagner 1997, 

Parker et al. 2007). Young seabirds of philopatric species will simply return to their natal 

site to breed (Jenouvrier et al. 2008), while other dispersing colonial seabirds will assess 

the quality of existing active colonies rather than quality of nesting habitat, resulting in 

little pioneering or re-colonizing of unoccupied sites (Danchin et al. 1998, Parker et al. 

2007). These strategies are encompassed in the Public Information or Social Information 

hypotheses: "a strategy where prospecting or pre-breeding birds use the presence of 

breeding conspecifics (social information) as information to signal safe nesting habitat" 

(Ward and Schlossberg 2004). Seabirds, which feed at sea and come to land only to 

breed, chose a breeding site based on many criteria: absence of predators, topography, 

substrate, and proximity to feeding grounds (Birkhead and Furness 1985, Stephensen and 

Irons 2003). Gathering information about resources and sampling alternatives of each 
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small island dispersed across long distances of open ocean would be costly and energy 

demanding (Boulinier and Danchin 1997, Nocera et al. 2006), making monitoring 

conspecifics (social information) a more parsimonious method of acquiring information 

about nest-site quality. Social Information, such as the abundance of breeding 

conspecifics, the presence of chicks, and reproductive success of individuals with similar 

resource requirements can be used to assess nest-site quality (Valone 2007, Danchin el al. 

1998, Valone 1989). Prospecting birds can deduce social information from visual, 

auditory or olfactory cues, such as the visual presence of courting conspecifics or the 

auditory presence of calls associated with pair bonding. 

Storm-petrels (Procellariiformes: Hydrobatidae) are colonial nocturnal burrow­

nesting seabirds that are known to use social information, such as the vocalizations of 

conspecifics, when selecting nesting habitat (Warham 1990). They are also vulnerable to 

terrestrial predation due to their small size, lack of anti-predator behaviour, low 

reproductive rates, and ground nesting habits (Atkinson 1985, Warham 1990). Storm­

petrels' shallow earthen nesting burrows are easily entered by introduced predators either 

directly (mice and rats; Jones et al. 2008b) or by digging (foxes; Bailey 1993). 

Unattended chicks are especially vulnerable to predation during the lengthy nestling 

period, in which they are often left unattended (Warham 1990, Simons 1981 ). As a 

consequence of this enhanced vulnerability, the introduction of predatory mammals is a 

large threat to storm-petrels, and entire colonies or even species have been wiped out 

(e.g., Guadalupe Storm-petrel Oceanodroma macrodactyla; Jehl 1972). When colonies 

of storm-petrels are extirpated, populations often do not return, due to a combination of 
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social constraints (Podolsky and Kress 1989) and demographic factors (Warham 1990). 

Thus there is now an urgent need for information regarding cues used in petrels' colony 

formation behaviour. 

Few attempts have been made to attract petrels to new sites using social attraction 

and few projects have Jed to the establishment of a breeding colony at a new site 

(Miskelly and Taylor 2004). However, it is widely known that storm-petrels are attracted 

to artificial social cues and studies that have attempted to establish new colonies in this 

way have been successful. Podolsky and Kress (1989) lured Leach' s Storm-petrels to 

abandoned sites in Maine using call playbacks and, within one season, found individuals 

laying eggs in artificial burrows near speakers. Bolton et a/. (2004) attracted Madeiran 

Storm-petrels ( Oceanodroma castro) using audio cues and similarly found that 

individuals occupy artificial burrows closer to audio speakers. Grubb (1974) showed that 

breeding Leach's Storm-petrels navigate to their burrow using olfaction and are attracted 

to their own nesting material, but olfaction has not been used to date in social attraction 

experiments. 

The Aleutian Islands, Alaska are no exception to the trail of ecological devastation 

following introductions of mammalian predators on formerly pristine oceanic islands. 

Most islands were stocked with Arctic Foxes (Alopex lagopus) for the fur trade in the 19th 

and 20th centuries and Norway Rats (Rattus norvegicus) were accidentally introduced to 

several (Ebbert and Byrd 2002). Consequently, the elimination or severe reduction of 

Leach' s (Oceanodroma leucorhoa), and Fork-tailed Storm-petrel (Ofurcata) colonies on 

islands used as fox farms was noted as early as 1937 (Murie 1959, Bailey 1993, Bailey 
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and Kaiser 1993, Williams eta/. 1993). Eradication of introduced foxes from Aleutian 

Islands has been a priority of the Alaska Maritime NWR since the first successful 

eradication in 1949 (Ebbert and Byrd 2002). Some bird populations have responded 

positively to fox eradications, although their recovery has rarely been quantified. Storm­

petrel rate of re-colonization after fox removal has ranged from relatively fast (less than 

15 years for Fork-tailed Storm-petrels on Kasatochi Island; Drummond 2007) to non­

existent (Nizki/Alaid Island; Byrd 1994). 

In summary, the objectives of our study were to address the following questions: 

I) Are storm-petrels attracted to conspecific or heterospecific vocalizations and if so, are 

non-breeding prospectors or breeding birds more likely to be attracted? 2) Are non­

breeding storm-petrels attracted or repelled by conspecific odour? 3) With simultaneous 

auditory and olfactory cues, is it possible to attract storm-petrels to artificial burrows? and 

finally, 4) Can social attraction be used as a conservation technique to speed the rate of 

storm-petrel re-colonization in the Aleutian Islands? The general objective of this study 

was to consider whether social attraction techniques are suitable for attracting both 

species of storm-petrel common to the expansive environment of the Aleutian Islands. 

4.2 METHODS 

4.2.1 Study area 

We performed field experiments in Ulva Cove at Amatignak Island in the Delarof 

Islands group of the western Aleutian Islands (Fig. 4.1 ). Amatignak is an average sized 

Aleutian island ( 1433 ha, 8 km north-south and 4 km east-west) situated directly adjacent 
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to Amchitka Pass (97 km east of Amchitka Island). Like most Aleutian Islands 

Amatignak is treeless, characterized by lush subarctic tundra including patches of grasses 

(Leymus sp.) and Umbelliferae (Heracleum, Angelica), with hyperoceanic blanket-bogs at 

low elevations. Amatignak was selected for storm-petrel restoration studies based on its 

relatively long recovery time period since fox eradication (1991 ), its resemblance in 

vegetation and terrain to a large active storm-petrel colony site (Byrd and Trapp 1977), 

and its similarity in size to other storm-petrel inhabited islands. Although storm-petrels 

are not known to breed on Amatignak Island (Byrd eta!. 2005), night-time vocal activity 

at the experimental site in Ulva Cove was high in 2008-2009 (RTB pers. obs.). 

4.2.2 Playback 

We evaluated Leach's and Fork-tailed Storm-petrel response to conspecific 

auditory cues using various call playback treatments adjacent to a mist-net. Playback was 

broadcast between peak hours of storm-petrel activity throughout June and July of2008 

and 2009. Recordings of typical storm-petrel calls for playback were collected from 

North Bight, Buldir Island in 2006 using a Sony TCD-D 1 OPROII Digital Audio Tape 

recorder or Fostex FR-2 solid-state recorder with Senheiser MKH 70 or MKH 816 

directional microphones (Seneviratne et al. 2009) and in 2008 using a Song Meter 

(Wildlife Acoustics Inc. firmware version 1.5.0 model SM 1 ). A variety of recorded calls 

were combined and composed into 2 minute medleys using the application Garage Band 

(Apple Computer Inc.) and uploaded to an iPod shuffle (Apple Computers Inc.). To test 

response to a variety of sound cues, we used five playback treatments: silent control (no 
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sound), noise control (20 second on/5 second off increments of John Mellencamp' s ' Jack 

and Dianne', Riva Records, 1982), Leach's Storm-petrel playback (a combination of 

Chuckle and Purr calls, Taoka eta!. 1988), Fork-tailed Storm-petrel playback (a 

combination of three-syllable flight and single-syllable male calls, Simons 1981 ), and 

finally colony playback (a combination of all calls of both species of storm-petrel). A 

combination of both call types was used for each species, as Podolsky and Kress (1989) 

showed a higher hourly capture rate of Leach's Storm-petrel by using both Chuckle and 

Purr calls. In 2008, playback experiments were run for a total of 15 nights from 26 June -

2 August (each treatment played for 3 nights) and in 2009, experiments were run for a 

total of25 nights from 6 June to 26 July (each treatment played for five nights), with 

separate treatments played on each night according to a randomized schedule. 

To evaluate behavioural and vocal response to playback, we recorded storm-petrel 

captures in an 8 m by 2m mist net from 0130 h to 0430 h (HAST) each night. Playback 

from a TOA ER-2230 wireless megaphone was on a 30 minute on/30 minute off 

schedule, broadcast towards the ocean adjacent to the net. Vocal response was evaluated 

by an observer who sat 15 m inland of the net counting all call types up to approximately 

50 meters. The interspersed 30 min silence periods allowed the observer to evaluate 

general storm-petrel activity around Ulva Cove (up to 100 meters). Behavioural response 

(i.e., circling around playback source) was evaluated by counting storm-petrels caught in 

the net. In 2008, storm-petrels were marked using a spot of quick-dry nail polish on the 

outer rectrix to detect recaptures. In 2009, storm-petrels were banded with USGS BBL 

stainless steel bands. All birds were examined for a brood patch. Medial brood patches 
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were scored based on Pyle (2008): a complete lack of feathers on the abdomen was 

scored as l and incomplete feather loss or complete coverage of contour feathers was 

scored as 0. We recognize the variability and often, unreliability of medial brood patches 

in ageing long-lived seabirds (McFarlane Tranquilla et al. 2003) and the problems 

associated with linking brood patches to current breeding status. We had no other 

available methods to age individuals; therefore, we used swollen and vascularised brood 

patches of breeding birds found in burrows as a reference to score captured storm-petrels 

(RTB pers. obs.). 

To compare the responses of each species of storm-petrel to different playback 

treatments between years we used a Generalized Linear Model (GzLM) with Poisson 

error structure and a loglinear link in SPSS version 16.0. By calculating the model means 

or Estimated Marginal Means and standard error (EMM ± SE), the number of birds in the 

net (storm-petrel response) could be compared between treatments. To compare the 

number of birds caught in the net with and without brood patches on conspecific or 

colony playback nights we used a binomial test (Zar 1999). 

4.2.3 T-Maze 

To test for prospecting (non-breeding) storm-petrel response to conspecific odour 

cues, aT-maze experiment (e.g., Grubb 1974) was conducted from June 12 - 27 July 

2009 inside a 4 m by 5 m Weatherport shelter. The test maze was made of 1.5 em birch 

plywood and consisted of a clear acrylic top, a removable plastic start box ( 4 mrn 

corriboard), a 20 em by 20 em choice arena, and two removable corriboard boxes 
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containing the scented materials at either end of each 30 em arm (Fig. 4.2). The 12 em by 

12 em start box included a clear acrylic top to permit observation of the bird inside, a 

sliding divider on the maze-facing side, and 1 em plastic grill opposite, for ventilation. 

Other boxes containing scented materials were of the same design. The maze floors were 

lined with removable white corriboard that was washed with 70% methanol and water 

between trials. Air and odour cues were drawn through the maze, from the arm ends 

towards the choice area and start box, by a 12 volt battery powered CPU cooling fan 

(Thermaltake Inc.) set to its minimum of9 CFM or 243 I min-1 (Appendix C). 

Experimental subjects (Leach's and Fork-tailed Storm-petrels) were captured 

using an 8 m by 2m mist net set up 25m east of the Weatherport, with attraction via 

playback of conspecific calls from the TOA ER-2230 wireless megaphone. Captured 

storm-petrels lacking brood patches were given a 5-7 min acclimation period in the start 

box prior to experimental trials. At 1 min before trials began, odour cue boxes were 

inserted into the end of each arm and the fan activated, to draw odour evenly through the 

maze. After the acclimation period, the start box containing each subject was inserted 

into the maze and the divider opened. Blind to the location of the scent boxes, an 

observer (RTB) recorded the following: species (Leach's or Fork-tailed), stress level of 

the subject (see below), whether or not the bird had to be nudged (poked lightly with a 

pencil), the amount of time a light was used, the time (min) it took the bird to make a 

decision, and the bird's final decision (defined as >30 seconds spent in the scent box or 

arm of the maze). A bird was defined as "stressed" if they were exhibiting any 

combination ofthe following behaviour: scratching at the edges of the box, fluttering 
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wings, vocalizing, or pacing. Each bird was given 2 min to move, after which, if it was 

still in the start box it was nudged. If no reaction was observed the bird was recorded as 

' no-choice' . Between each trial each individual had a 5 min rest period while the maze 

walls were cleaned and control materials replaced. Each bird performed three different 

odour choice trials: 1) "Stomach oil" - paper towel saturated with regurgitation versus 

plain paper towel 2) "Feather odour" collected by rubbing 3-5 birds with a paper towel 

versus plain paper towel and 3) "Nesting material" made by putting 7-10 captured birds in 

a scent box on top of dry Leymus grass for 15 minutes each versus fresh dry Leymus 

grass. These materials were collected before each maze night during the mist­

net/playback experiments and kept in a sealed zip-lock bag. The order in which the trials 

were presented to each bird was randomized, as was the left/right position of the scented 

materials, to control for the possibility of multiple testing on the same subject influencing 

selection by learning (Minguez 1997). To control for the possibility of birds orienting to 

external or internal cues, the orientation of the maze facing north, south, east, or west was 

randomized for each successive trial. After completing three odour trials, each subject 

was banded with a USGS BBL stainless steel band and released. 

To analyze the effects of factors such as stress, nudging, species, and the use of 

light, on the birds' ultimate choice between odour and control, we ran a GzLM in SPSS 

version 16.0 with a binomial error structure and logit link. To examine response to 

different odour types (different scent trials), we ran a GzLM with a binomial error 

structure and logit link testing the effects oftrial type on the bird' s decision. Finally, we 

used a binomial test to assess choice preference between odour and control (Zar 1999). 
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4.2.4 Artificial Burrows 

To assess the possibility of auditory and olfactory cues attracting storm-petrels to 

artificial burrows, a series of artificial nest site study plots were set up within suitable 

storm-petrel nesting habitat in Ulva Cove. Two plots were located 50 m apart, on the 

north face ofthe valley around Ulva Cove (Plot 2:51.26045 °N, 179.07993 °W, Plot 3: 

51.26074 °N, 179.07878 °W). The substrate ofthese two plots was dominated by 

tussocks of Leymus sp. (Rye Grass) and Heracleum lanatum (Cow Parsnip). One plot 

was located 800 m away on the south face of the valley (Plot 1: 51.25761 °N, 179.07709 

0 W) and the substrate was dominated by poorly drained Lycopodium selago (Fir Club 

Moss) and Leymus sp. All plots were 5 m by 5 mat an elevation of 15m above sea level. 

In 2008, 15 plastic tubes 40 em long and 10 em in diameter were placed in grass tussocks 

or dug into the ground at each plot and in 2009, 5 more tubes were added to each site. At 

the end of each plastic tube, a small chamber (approximately 15 em by 15cm) was dug 

into the soil. The dimensions of the artificial burrows and chambers were based on a 

mean burrow length of 43 em and chamber depth of 13 em of Leach' s Storm-petrels 

nesting on islands in Newfoundland and Maine (Huntington 1996). 

Treatments included: 1) "Control" with no sound or manipulation of the burrows; 

2) "Ptayback" where recordings of both species of storm-petrel were broadcast adjacent 

to the plot; and 3) "Playback and nesting material" where recordings were broadcast and 

nesting material was placed inside each artificial burrow. One ofthree treatments was 

run per night at each consecutive site according to a randomized schedule. Experiments 
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were run for 21 nights in 2008 from 3 July - 6 August and for 34 nights in 2009 from 

June 6 - July 28. At 0030 h (approximate sunset) a toothpick was placed upright at the 

entry to each burrow. On "playback" nights, colony recordings (a medley of both storm­

petrel species calls) were broadcast on a TOA ER-2230 wireless megaphone from an ipod 

shuffle from 0030 h to 0500 h. On "playback and nesting material" nights, in addition to 

broadcasting calls, nesting material from the active storm-petrel colony on Buldir Island 

was placed in each burrow in 2008 and nesting material from the t-maze experiment was 

placed in each burrow in 2009. Between 0530 hand 1100 h after each night, burrows 

were checked for toothpick knockdowns or other signs of activity such as presence of 

feathers or evidence of digging. 

In order to analyze toothpick knockdowns as a function of years, sites, and 

treatments we ran a GzLM with a Poisson error structure and loglinear link. Data were 

then broken down by year and a GzLM with a Poisson error structure and loglinear link 

was run including only treatment as an explanatory variable. 

4.3 RESULTS 

4.3.1 Playback 

Both Leach' s and Fork-tailed Storm-petrels were strongly attracted to conspecific 

playback. Within 10-15 min of playback initiation, birds were actively circling and 

calling. In both species, significantly more birds were caught on conspecific call 

playback nights (Leach' s Storm-petrel, G = 317.9, df = 4, P << 0.001 ; Fork-tailed Storm­

petrel G = 105.5 df = 4 P << 0.001). On conspecific playback nights that were especially 
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dark (no moon present and heavy fog) reaction to playback was so dramatic that not only 

were many birds caught in the net, dozens of birds were circling and calling, bouncing out 

ofthe net, and hitting net poles, the banding shed and personnel. There were 

approximately 22 times more Leach's Storm-petrels caught in the net on Leach' s Storm­

petrel nights and 16 times more on colony playback nights compared to silent control and 

noise control nights (Table 4.1 ). More Leach' s Storm-petrels were also caught on Fork­

tailed Storm-petrel playback nights versus silent control nights; however, confidence 

intervals overlapped slightly between Fork-tailed playback nights and noise control nights 

(Table 4.1 ). Approximately 11 times more Fork-tailed Storm-petrels were caught on 

Fork-tailed playback nights and 3 times more on colony playback nights, compared to 

silent control and noise control nights. Fork-tailed Storm-petrels were not significantly 

attracted to Leach's Storm-petrel call playback (Table 4.1). 

On average, there were fewer Leach' s Storm-petrels caught per night in 2009 

(0.51 ± 0.07, EMM ± SE) than in 2008 (1.27 ± 0.16) (G = 113.9 = df = 1 P << 0.001 ) and 

more Fork-tailed Storm-petrels per night in 2009 (0.37 ± 0.057, EMM ± SE) than in 2008 

(0.18 ± 0.04)(G = 10.692 df = 1 P = 0.001) (Fig. 4.3). 

Among 346 Leach' s Storm-petrel and 28 Fork-tailed Storm-petrel captures in 

2008 there was 1 Leach' s Storm-petrel re-capture (retrix marked with nail polish), on 25 

July during Leach' s Storm-petrel playback. The polish was still slightly wet, suggesting 

this was a recapture from the same night. Among 228 Leach' s Storm-petrel and 97 Fork­

tailed Storm-petrel captures in 2009 there were 2 Leach' s Storm-petrel re-captures. The 

first was captured on 7 July during Leach' s Storm-petrel playback and the second was 
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captured on 20 July during Colony playback, both birds were recaptured within 35 

minutes of initial capture. There were no Fork-tailed Storm-petrel re-captures in 2008 or 

2009. 

There were significantly more Leach's Storm-petrels caught in the net on 

conspecific and colony playback nights that lacked brood patches (148 out of207, P << 

0.001 ). On the other hand, significantly more Fork-tailed Storm-petrels caught in the net 

on conspecific and colony playback nights had brood patches (77 out of95, P = 0.000). 

There was no evidence of brood patch swelling or vascularization in any individuals 

caught in the net. 

4.3.2 T-Maze 

No effect of trial type ("nest material" versus "feather odour" versus "stomach 

oil") on individual choice was observed (G = 0.879 df= 2 P = 0.644), therefore trials 

were pooled. When stressed subjects were removed from the analysis, 49 out of 79 

(62%) of Fork-tailed Storm-petrel subjects chose to approach conspecific odour 

(Binomial, P = 0.04), and 59 out of96 (62%) of Leach's Storm-petrel subjects avoided 

the conspecific odour cue (Binomial, P = 0.03; Fig. 4.4). Including all birds (stressed and 

unstressed subjects), 64 out of 135 Leach's Storm-petrels chose the experimental arm (P 

= 1.00) and 46 out of 87 Fork-tailed Storm-petrels chose the experimental arm (P = 0.69). 

Leach's Storm-petrels took an average of 17.7 ± 3.4 min each (total mean maze 

time± SO) or 2.6 min per trial and Fork-tailed Storm-petrels took an average of22.1 ± 

3.1 min each (total mean maze time± SD) or 3.7 min per trial. In total, only 3 Leach' s 
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Storm-petrel trials and no Fork-tailed Storm-petrels were recorded as ' no choice' . 16 

Leach' s Storm-petrels and 18 Fork-tailed Storm-petrels had to be nudged in order to start 

the maze. When the dividing gate was opened these subjects would sit in the start box 

quietly without moving. For both species, stress level had a significant effect on choice 

(G = 6.107, df = 1, P = 0.013) and were therefore removed from analysis. No other 

factors tested, such as use of a light, nudging, trial type, or any interaction terms had any 

effect on choice (P > 0.68). 

4.3.3 Artificial Burrows 

Data were broken down by year and tested for effect of treatment on entry of 

artificial burrows, as indicated by number oftoothpick knockdowns. Number of burrow 

entries was significantly affected by treatment type in 2009 (G = 6.418 df= 2 P = 0.04) 

but treatment had no effect in 2008 (G = 2.954 df = 2 P = 0.228). In 2009, when 

playbacks were broadcast and scented materials placed inside burrows, the average 

number ofburrow entries increased. The average number of toothpick knockdowns 

increased from 0.18 ± 0.102 (EMM ± SE) on control nights to 0.50 ± 0.22 on playback 

nights to 1.00 ± 0.38 on playback and nesting material nights. In 2008, knockdowns 

increased slightly from 1.29 ± 0.43 on control nights to 1.40 ± 0.53 on playback and 

nesting material nights, but this increase in mean was not significant. 

Both year and site also had a significant effect on burrow entries (Year G = 5.687 

df = 1 P = 0.017, Site G = 8.634 df = 2 P = 0.013). On average, there were more 
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knockdowns at site 2 (1.13 ± 0.26 EMM ± SE) and less at site 1 (0.23 ± 0.12) and more 

knockdowns in 2008 (0.83 ± 0.21) than in 2009 (0.37 ± 0.06). 

When toothpick knockdowns were checked the morning after both "playback" and 

"playback and material" nights in 2008, on five separate mornings (out of 9 playback 

nights and 5 playback and material nights) freshly deposited storm-petrel feathers and 

feces were observed on the plot. In 2009, evidence of freshly dug burrows (dirt displaced 

up to 15 em) was observed, one at plot 2 and one at plot 3. In 2009, on a "playback and 

material" night, at 0030 h when nesting material was placed inside a burrow on plot 1 an 

unidentified bird flew out. Except for this one occasion, no evidence was found of storm­

petrels inhabiting or taking up daytime residence in artificial burrows. 

4.4 DISCUSSION 

Pre-breeding storm-petrels in natural surroundings were strongly attracted to 

playback of conspecific and heterospecific calls, and Fork-tailed Storm-petrels were 

attracted to conspecific odour in an experimental maze. Attracting individuals to artificial 

burrows using these auditory and olfactory cues was not as straightforward, with 

significant results only in the second year of experimental attraction. Social attraction 

experiments on Amatignak Island were highly successful in attracting pre-breeding and 

prospecting storm petrels, but recruitment of these individuals as breeders was not 

achieved in our short-term experiment and deserves more discussion. 

Our results show a strong attraction of both Leach' s and Fork-tailed Storm-petrels 

to conspecific call playback, as in other storm-petrel species (Leach' s Storm-petrel ; 
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Podolski and Kress 1989, Dark-rumped Storm-petrel Pterodroma phaeopygia; Podolsky 

and Kress 1992, British Storm-petrels Hydrobates pelagicus; Furness and Baillie 1981 , 

and Wilson' s Storm-petrel Oceanites oceanicus; Bretagnole 1989). Furthermore, both 

species were attracted to colony call playback (recordings of both species) and weakly 

attracted to heterospecific call playback versus a noise control. Throughout most of their 

range, from northern California to the Gulf of Alaska and the Aleutian Islands (Boersma 

and Silva 2001), Fork-tailed Storm-petrel colonies are often mixed with large numbers of 

Leach ' s Storm-petrels (Boersma et al 1980, Vermeer et al 1988, and McChesney and 

Carter 2008). Fork-tailed and Leach' s Storm-petrels burrows are often associated with 

the same type of habitat, well drained soil or hummock (Stenhouse and Montevecchi 

2000). Although there are subtle differences throughout the breeding season, the main 

diet of both storm-petrel species (amphipod Paracallisoma coecus) is similar (Vermeer et 

al 1988). Furthermore, behaviour of both of these species is characterized by frequent 

loud night-time vocalizations around colonies. Prospecting individuals use these 

vocalizations as cues when selecting appropriate breeding sites (social information). 

Given the breeding habitat and food resource similarity between species, social 

information should be useful between both Leach's and Fork-tailed storm-petrels. Non­

breeding or prospecting birds should be able to listen for either conspecific or 

heterospecific storm-petrels in order to gather information about breeding habitat. 

Heterospecific attraction is a widely accepted concept in migratory passerine biology 

(Monkkonen and Forsman 2002), but our study provided the first piece of evidence for its 

use by colonial seabirds. 
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Differences in number of storm-petrels caught between years could be due to the 

difference in start time of the experiment. In 2009, mist-net experiments began in early 

June and were finished by late July, whereas in 2008 experiments began in late June and 

were finished by early August. At active storm-petrel colonies, Vermeer et al. (1988) 

found in June and July most activity was dominated by Fork-tailed Storm-petrels, by 

August however, Leach's Storm-petrels were more commonly caught in the net. This is 

consistent with our findings that Fork-tailed Storm-petrels were more numerous in 2009 

when experiments began and ended earlier in the summer, while Leach's Storm-petrels 

were more numerous in 2008 when experiments began and ended later in the summer. 

The increase in 2009 captures may also be due to the fact that there was a cumulative 

effect of repeating the attraction experiment two years in a row. This cumulative effect 

was also observed in the artificial burrow experiment, where significantly more birds 

entered burrows on playback nights in 2009 than 2008. 

Most Leach's Storm-petrels attracted to playback of conspecific calls lacked 

brood patches (non-breeders or prospectors). This is consistent with findings for British 

Storm-petrels, which showed breeding birds are generally not attracted to sound lures and 

most birds captured in nets adjacent to playback are second or third year pre-breeders 

(Fowler et al. 1982, Okill and Bolton 2005). Naive birds that have yet to recruit to a 

breeding population (prospectors) and birds whose nesting attempt was postponed or 

failed (non-breeders) would require more information about nesting habitat quality than 

birds that are established breeders. Leach's Storm-petrels have a high rate of nest-site 

fidelity (Warham 1990); therefore it would serve no function for breeding birds to be 
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attracted to calls of conspecifics, considering they have already established a suitable 

mate and nesting location. However, we found that a high proportion of Fork-tailed 

Storm-petrels attracted to conspecific playback had brood patches (breeders). We 

speculate that many of these birds with de-feathered brood parches were not actually 

breeding birds. Harris (1964) noted that non-breeding Fork-tailed Storm-petrel 

individuals that spend time with a mate in a burrow, or individuals that periodically spend 

days alone in a burrow may also develop brood patches. Pre-breeding birds may acquire 

brood patches and display vigorously for several years before their first breeding attempt 

(Warham 1990). Among our captures, no vascularized brood patches were observed in 

either species, suggesting that none of the birds captured were incubating eggs and all 

were non-breeders. McFarlane Tranquilla et al. (2003) showed that brood patches in 

some seabirds do not correspond to breeding attempt and often birds with brood patches 

were not nesters or even putative nesters. Therefore, in the future, other methods of 

assessing breeding status may be more reliable and may provide more consistent results. 

Procellariiformes have a well developed olfactory apparatus and excellent 

olfactory capabilities, which they use to find productive foraging areas in the open ocean 

(Warham 1990, Nevitt and Haberman 2003) and as a guidance system in colony and 

burrow location (Grubb 1974). Storm-petrels have a distinct, strong, and persistent 

musky odour that is present on their feathers and around their burrows, a smell which 

may be available as social information. Our results show that non-breeding Fork-tailed 

Storm-petrels were attracted to conspecific odour including ' nesting material', feather 

odour, and stomach oil. All odours would be associated with active colonies; where 
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smelly nesting material would signal active burrows, stomach oil would signal adults 

feeding chicks and detectable musky feather odour would signal a large presence of 

conspecifics. However, non-breeding Leach's Storm-petrels were significantly repulsed 

by conspecific odour. Leach' s Storm-petrels may have been repulsed by conspecific 

odour at a more confined level, due to its possible function as a burrow occupancy signal. 

The reason for such a distinct difference between species is unknown, but may be that 

Leach' s Storm-petrels are more territorial (Screech call used in territorial interactions, 

Taoka eta/. 1988) and less likely to enter strange unoccupied burrows (Huntington el a/. 

1996) than Fork-tailed Storm-petrels. This suggests that timid Leach's Storm-petrels use 

odour as an occupancy signal, while less timid Fork-tailed Storm-petrels use odour as 

social information when prospecting for safe nesting habitat. 

By combining auditory and olfactory cues, we examined the possibility of 

attracting both species of storm-petrel to enter and inhabit artificial burrows. In the first 

year of burrow experiments (2008) we found no significant increase in burrow entries 

between control and experimental treatments. On nights with playback or playback and 

scent treatments we observed many birds calling and circling and found evidence of birds 

landing on the plot (feathers and faeces on the plot); however, individuals were not 

entering burrows. In the second season (2009) we found a significant increase in burrow 

entries from control to playback to playback and nesting material. An increase in burrow 

entries from the first to second season suggests that artificial colonization experiments 

may be cumulative, and in order to encourage burrow use, more time may be required. 

Delayed breeding is a feature oftubenose reproduction; most storm-petrels recruit into the 
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breeding population at 3 to 5 years old (Huntington eta!. 1996, Warham 1990) while 

returning to prospect potential colonies after a year or two at sea (Okill and Bolton 2005). 

This means that storm-petrels prospecting on Amatignak could have 2 to 4 years before 

they finally decide to settle and breed. The relationship between prospecting behaviour 

and recruitment into a breeding population is not well understood (Bradley et al. 1999). 

However, it is clear from the lack of recaptures in our playback experiment there is a 

large population of pre-breeding birds. Huntington et al. ( 1996) found that during the 

prospecting period storm-petrels become progressively more faithful to a colony. 

Therefore, if this social attraction experiment were to continue for another 2 to 4 years, 

during which prospecting individuals would mature to breeding age, more storm-petrels 

may inhabit artificial burrows. 

On the other hand, Podolsky and Kress (1989) performed a similar experiment in 

Maine examining Leach's Storm-petrel colonization of artificial burrows using playback, 

and found dramatic and almost instant results. Within the first year of setting up social 

attraction experiments, adult storm-petrels occupied and laid eggs in artificial burrows 

near playback. However, this study focused on only one species of storm-petrel, all 

experiments were performed on small islands within a close range of active colonies, and 

the islands were rocky with only small amounts of suitable habitat available. Amatignak 

is a relatively large island (1433 ha), it is over 360 km east from the active colony on 

Buldir Island, and there is suitable storm-petrel habitat around the majority of the island. 

This is a much more diffuse situation than the environment in Maine, in both distance 

from natal site and large numbers of options for nesting habitat. Furthermore, at many 
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sites on Amatignak there are small sub-colonies of storm-petrels (Chapter 2) and the odds 

that prospecting individuals will chose a small artificial colony versus a small natural 

colony are very low (S. Kress pers. comm.). 

Storm-petrels were not observed inhabiting burrows and no evidence (feathers or 

faeces) was found supporting long-term burrow use. This lack of burrow use may have 

been due to microhabitat. The site with the fewest knockdowns, site 1, had a thick layer 

of peat with poor drainage, and during heavy rains the chamber at the end of the tube 

would become wet, or in some cases flood. Stenhouse and Montevecchi (2000) showed 

that burrow density was highest in areas of Great Island, Newfoundland with a steeper 

slope and therefore better drained, looser soil (Harris 1974). Call playback and scented 

materials may have attracted prospectors, but un-suitable microhabitat, especially of site 

1, may have deterred them from inhabiting plastic burrows. 

Burrows were checked between 0530h and 11 OOh in the morning, when diurnal 

songbirds such as Lapland Longspur (Calcarius lapponicus) and Song Sparrow 

(Melospiza melodia) are actively singing. Although these passerines would not 

necessarily inhabit plastic burrows, both species nest throughout Leymus-Umbel plant 

communities, especially near beaches (Byrd and Day 1986). Therefore, they may have 

set up territories on the plots and occasionally investigated burrows. Males of both 

passerine species were observed singing around plots when burrows were checked each 

morning. Considering the small number of knockdowns on most nights, their random 

pattern between treatments in 2008, and the time at which burrows were checked, some 

knockdowns may have been caused by diurnal songbirds. 
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---- ------- --

Although it may be possible to attract pre-breeding storm-petrels to abandoned 

sites in the Aleutians, whether or not social attraction is a suitable method of speeding re­

colonization is yet to be determined. Playbacks and scented materials attracted many 

birds, and after just two seasons encouraged individuals to enter artificial burrows. 

Considering storm-petrel ' s late age at first breeding and the large diffuse nature of 

suitable habitat across the Aleutian Islands, storm-petrel attraction as a conservation tool 

in the Aleutians may be more cost-effective on a longer time-scale. If this experiment 

were to continue to a point where all pre-breeding birds reached an age appropriate for 

recruitment, storm-petrels may have inhabited and bred in artificial burrows. There is 

now a need for research concerning restoration techniques for petrels, especially in the 

Aleutian Islands, where storm-petrel populations were decimated by introduced foxes. 

This study represents a first step working towards producing a protocol by which burrow­

nesting seabirds can be restored to their former breeding numbers across the Aleutian 

chain. 
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Table 4.1 Estimated Marginal Mean captures of Leach's and Fork-tailed Storm-petrel 

during five different playback treatments, showing higher captures during conspecific call 

playback (N control= 20 sec increments of music, S control= silence, Leach's = 

playback of Chuckle and Purr calls, Fork-tailed =playback of flight and male calls, and 

Colony= both Leach's and Fork-tailed calls mixed). 

95% Wald Confidence 
Interval 

Species Treatment Mean SE Lower Upper 

LESP Colony 4.81 0.321 4.18 5.44 

Fork-tailed 0.42 0.097 0.23 0.61 

Leach's 6.61 0.381 5.86 7.35 

N Control 0.30 0.079 0.14 0.45 

S Control 0.09 0.043 0.00 0.17 

FTSP Colony 0.43 0.092 0.25 0.61 

Fork-tailed 1.47 0.186 1.10 1.83 

Leach's 0.17 0.058 0.06 0.29 

N Control 0.14 0.052 0.04 0.25 

S Control 0.07 0.037 0.00 0.15 
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Figure 4.1 Map of experimental site, Ulva Cove (51.27 °N, 179.10 °W), in relation to the 

Aleutian Archipelago. Ulva Cove is on the east side of Amatignak Island, represented by 

a dot. 
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Figure 4.2 T-maze design used to test non-breeding storm-petrel attraction to conspecific 

odour. Includes three removable plastic 12 em by 20 em boxes, each with mesh at one 

end to allow for air circulation, and a sliding divider at the other to release the bird into 

the choice arena. (Inset: t-maze set-up in the field) 
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Figure 4.3 Average number of captures in net per night of Leach's (A) and Fork-tailed 

(B) Storm-petrels during various playback treatments including: S Control (no sound), N 

Control (20 sec on/5 sec off increments of music), LESP (Chuckle and Purr calls), FTSP 

(flight and male calls), and Colony (a combination of LESP and FTSP). 
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Figure 4.4 Proportion of Leach's and Fork-tailed Storm-petrels that chose scented 

materials in the t-maze experiment. Black bars show proportion of choices with stressed 

individuals included, and grey bars with stressed individuals removed. (*) indicate 

proportions that differ significantly (P < 0.05) from 0.5. 
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CHAPTER FIVE 

SUMMARY AND CONCLUSIONS 

The objectives of my study were to monitor the rate of nocturnal seabird re­

colonization in the western Aleutian Islands, Alaska, and at sites where re-colonization 

was slow, test ways to enhance recovery. This was accomplished in three ways: 

1) Assessing a new method to monitor nocturnal burrow-nesting seabirds, which are 

logistically difficult to census using conventional techniques. 

Little is known about recovery of the focal species in this study due to their nocturnal 

lifestyle and fossorial nesting strategy. I successfully tested a novel technique in the field 

of seabird ecology: passive acoustic monitoring and automatic call recognition. This 

unique method can be used to measure and compare species which are misrepresented by 

conventional monitoring techniques. 

Acoustic recorders (Song Meters) were found to be extremely robust, considering the 

windy precipitous environment of the Aleutian Islands. Although recording quality 

decreased as wind speed increased, if wind speed was below gale force, the majority of 

recordings were useful. Remarkably, despite frequent summer gales and strong winds, 

only 2.9% of all recordings between 2008 and 2009 were deemed unusable. Call 

recognition models successfully detected the most common nocturnal seabird calls, with a 

recognition rate well above 50%. However, when calls were infrequent or extremely 

dense and overlapping, simple visual scans of spectrograms were found to be more 
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efficient. Using acoustic recorders we confirmed breeding of seabirds on islands thought 

to be abandoned due to fox farming when surveyed using conventional monitoring 

techniques (boat surveys). Relative indices of abundance were constructed to compare 

call activity between islands and sites. 

Acoustic monitoring provided a cost and time effective way (placing devices to 

collect data, rather than setting up an expensive field camp for biologists to collect data) 

to collect large amounts of data that allowed comparison of relative nocturnal seabird 

abundance and in some cases, confirmed breeding. Limitations of this new monitoring 

system were recognized: primarily, although acoustic recording provides a comparative 

index of abundance, it does not give population estimates. The relationship between call 

activity and population size is currently unknown and caution should be taken not to 

confuse number of calls with number of individuals. Future research should focus on 

relating call activity to known population size or identifying individual birds based on 

differences in call features. 

2) Using this new acoustic survey method to compare nocturnal seabird activity in the 

western Aleutian Islands and relating differences in call activity to patterns and rates 

of recovery. 

Evidence that seabird populations recover after removal of anthropogenic sources of 

mortality (introduced predators) is often anecdotal. Most research has focused on the 

negative impacts of introduced mammalian species on seabird populations, such as 

decreasing hatching success and adult survival, and the likely positive impact eradication 
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will provide. My study differs from anecdotal accounts because I provide quantitative 

comparisons of seabird recovery. I consider patterns of recovery in four similar species 

among a series of islands, providing a range of comparisons. 

Not surprisingly, very few calls (8 calls throughout the entire recording period) were 

recorded at Kiska Island which is still inhabited by introduced rats. Activity was slightly 

higher, but still very low, at Little Sitkin Island, which has only had 9 years to recover 

from introduced predators. This trend continued with an increase in activity on 

Amatignak with 18 years since foxes were removed, and Kasatochi with 25 years. 

However, much less call activity was recorded on Nizki!Alaid, which had foxed removed 

16 years previous to Amatignak. This suggests that recovery is complex, and seabird 

return is not solely dependent on time. Other factors such as island biogeography, 

presence of refugia from predators, proximity to feeding grounds, and social information, 

were found to influence call activity and thus recovery of nocturnal seabirds. Recovery 

rate depends on the interaction between many factors pertaining to island nesting habitat, 

suggesting that simply eradicating predators may not be sufficient, that more management 

post-eradication is needed. 

This chapter was limited by a lack of historical seabird population data. Seabird 

distributions pre-dating foxes are unknown in the Aleutian Islands, however 

paleoecological research examining Aleut midden sites may provide clues in evaluating. 

modern recovery patterns. Future studies should focus on characterizing mechanisms by 
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which seabirds return to breeding sites in order to refine management strategies post­

eradication. 

3) Attempting to enhance slower rates of recovery using social attraction techniques. 

Conservation strategies tend to focus on habitat restoration and protection. This 

represents an important first step, but does not consider social or reproductive constraints 

that limit recovery. In this study, at sites where re-colonization of nocturnal seabirds was 

slow, I tested social attraction techniques in an attempt to speed recovery. 

Similar to previous studies, pre-breeding storm-petrels were strongly attracted to 

conspecific playback cues and interestingly, storm-petrels were also attracted to 

heterospecific playback cues. Although intuitive, as storm-petrels breed sympatrically in 

large mixed colonies, heterospecific attraction has never been tested in seabirds. Unique 

to my study, I tested pre-breeding storm-petrel attraction to conspecific olfactory cues. In 

an enclosed setting, Fork-tailed Storm-petrels were attracted to conspecific odour, but 

Leach's Storm-petrels were repulsed, suggesting that olfactory cues may be useful to 

attract Fork-tailed Storm-petrels but may have the opposite effect on Leach' s. A 

combination of acoustic playbacks and olfactory cues caused storm-petrels to enter 

artificial burrows, but only during the second year of experiments. Social cues clearly 

attract pre-breeding seabirds, but more time is needed to enhance re-colonization. Future 

projects using social attraction with seabirds should span longer than 2 seasons in order to 

obtain more conclusive results. 
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From a management perspective my study is practical. The tested techniques can 

be used with any hard-to-measure seabird in any island system around the globe. 

Acoustic recorders can be placed on islands before and after eradication to gather 

information about nocturnal seabirds, and for islands that have low recovery, social 

attraction can be used. This system represents a cheap and effective island conservation 

strategy. Considering 52% of nocturnal burrow-nesting petrel species (family 

Procellariidae) nesting on remote islands are threatened (Birdlife International 2008), 

innovative conservation and restoration techniques such as these are essential. 
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APPENDIX A: Specifications of each acoustic recording device (Song Meter) including recording start and end time, number of 

nights and hours recorded, and coordinates of each site and island between 2008 and 2009. 

Island Elevation Recording Recording Device Recording 
Island Site Foxes Size (ba) (m) Coordinates Year Start End Nights Hours 

Troll 1927- 52.169" N, 
Kasatochi Talus 1984 287 316 175.524" w 2009 16/06/2009 11 /08/2009 56 98 

1923- 51.293" N, 
Amatignak North 1991 3453 515 179.090" w 2008 27/06/2008 29/07/2008 32 96 

2009 04/06/2009 03/08/2009 60 180 

TOTAL 92 276 
51.264" N 

East 179.074" w 2008 17/06/2008 04/08/2008 48 144 

2009 28/05/2009 04/08/2009 68 204 

TOTAL 116 348 
51.230"N, 

South 179.01 o· w 2008 16/06/2008 18/07/2008 32 96 

2009 30/05/2009 01 /08/2009 63 189 

TOTAL 95 285 
51.262" N 

West 179.134" w 2008 15/06/2008 26/07/2008 41 123 

2009 31 /05/2009 04/08/2009 65 195 

TOTAL 106 318 

Little 1923- 51.975" N, 
Sitkin North 2000 6354 1199 178.457" E 2008 18/07/2008 31 /07/2008 13 39 

North- 51.955" N, 
West 178.452" E 2008 02/07/2008 02/08/2008 31 93 
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51.904° N, 

South 178.538° E 2008 I 0/07/2008 01/08/2008 22 66 

51.932° N, 

West 178.453° E 2008 19/07/2008 02/08/2008 14 42 

1911- 52.748° N, 

Niz/AI West 1969/75 1200 190 173.950° E 2009 31 /05/2009 31 /07/2009 61 106.75 

52.750° N, 

North 173. 898° E 2009 31 /05/2009 31 /07/2009 61 I 06.75 

52.750° N, 

South 173.928° E 2009 31/05/2009 31 /07/2009 61 106.75 

52.733° N, 

East 173. 96T E 2009 31 /05/2009 31 /07/2009 61 106.75 

1835- 51.919° N, 

Kiska Bukh Pt 1987 28177 1221 177.461 ° E 2009 22/06/2009 25/07/2009 33 115.5 

*rats 
51.940° N, 

West 177.430 OE 2009 02/07/2009 02/08/2009 31 108.5 

52.372° N, 

Buldir N Bight n!a 2000 657 175.894 OE 2008 29/05/2008 27/07/2008 59 177 

2009 07/06/2009 30/07/2009 53 159 

TOTAL 112 336 
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APPENDIX B: Call recognition model specifications in Song Scope. 

Spectrogram examples: 

Example of high quality reference call (Leach' s Storm-petrel Chuckle call, recorded on 

Buldir Island 2006 using a Sony TCD-DlOPROII Digital Audio Tape recorder) used to 

build a basic recognition model. 
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Screen capture of Song Scope output of Leach's Storm-petrel Chuckle call recognition 

model. 
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Parameters involved in creating recognition models: 

Sample Rate: number of audio samples taken per second. A sampling rate of twice the 

maximum frequency of calls of interest is all that is needed to resolve frequency ranges. 

Fast Fourier Transform (FFT): an algorithm that transforms a time domain signal into a 

frequency domain. 

Fast Fourier Transform (FFT) Size/Overlap: adjusts the number of samples (window size) 

and amount of overlap between samples of the FFT algorithm used to produce 

spectrograms. Larger FFT sizes will show more frequency resolution at the expense of 

detail on the time axis and vice versa. 

Frequency Minimum/Frequency Range: lowest frequency and range of frequencies 

displayed on the spectrogram and used in comparing vocalizations. Minimum 

frequencies should be set as high as possible without clipping the lowest frequency 

component of vocalizations of interest. Upper frequencies should be limited so as not to 

include redundant harmonics. 

Background Filter: reduces background noise and sharpens vocalization spectrograms by 

specifying the number of seconds over which to average background noise levels. A 

filter of one second is recommended. 

Max Syllable/Syllable Gap: used to specify the longest syllable and inter-syllable gaps 

likely to be encountered in the vocalization. 

Max Song: used to specify the longest vocalization likely to be encountered 

Dynamic Range: cuts off weaker vocalizations in favour of stronger ones as candidates 

(i.e. eliminating noise). If this value is too low, there will not be enough information to 
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detect important elements of the vocalization and if it is too high, recognizers will be 

more susceptible to background noise. 

Maximum Complexity: limits the size of a recognition model to a specified number of 

"states". If vocalizations of interest are highly varied, consisting of many syllable types, 

more complexity may be required. 

Maximum Resolution: limits the size of spectral "feature vectors" . Vocalizations rich in 

spectral complexity (broadband calls) may require more resolution. Low quality 

recordings may require low resolution to match poor spectral resolution. 

Recognition model results (in Song Scope): 

Cross Training/Total Training: shows the average and standard deviation of the "fit" of 

excluded annotation ids (calls or ' training data' included when building the model) and of 

all training data in the final model. A low score may indicate that the generated model 

may not accurately represent the vocalization. 

Model States: the size of the model. 

Feature Vector: same as the Max. Resolution. 

Syllable Types: the number of different syllable classes used to construct the final model. 

State Usage: indicates the average and standard deviation in the number of different states 

traversed by each vocalization 

Mean Symbols: indicates the average and standard deviation of the number of symbols 

contained within each vocalization 

Mean Duration: Indicates the average and standard deviation of the duration of each 

vocalization 
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Recognition model specifications (for nocturnal seabirds in the Aleutian Islands): 

Leach's Storm-petrel Chatter Call recognizer 1 (for low background noise situations) 

Sample rate: 1 O,OOOHz; FFT Size: 256; FFT Overlap: ~ 

Frequency Min: 10 FFT bins (390Hz); Frequency Range: 128 (390-5000 Hz) 

Background Filter: 1 s 

Max Syllable: 50 (0.5 sec); Max Syllable Gap: 50 (0.5 sec) 

Max Song: 30 (3 sec) 

Dynamic Range: 17dB 

Maximum Complexity: 48; Maximum Resolution: 4 

Recognizer Information -

Cross Training: 75.79% +/- 6.0% Total Training: 75.10 +/- 4.88% 

Model States: 27 State Usage: 20 +/- 6 

Feature Vector: 4 Mean Symbols: 37 +/- 12 

Syllable Types: 9 Mean Duration: 0.97 +/- 0.28s 

Total high quality calls used: 2 

Total Field annotated calls used (from Buldir Island recordings): 4 

Leach's Storm-petrel Chatter Call recognizer 2 (for high background noise situations) 

Sample rate: 16,000Hz; FFT Size: 256; FFT Overlap: ~ 

Frequency Min: 12 FFT bins (750Hz); Frequency Range: 60 (750-4500 Hz) 

Background Filter: 1 s 

Max Syllable: 50 (0.5 sec); Max Syllable Gap: 34 (0.34 sec) 

Max Song: 50 (5 sec) 
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Dynamic Range: 20dB 

Maximum Complexity: 48; Maximum Resolution: 4 

Recognizer Information -

Cross Training: 75.56% +/- 4.14% Total Training: 75.48 +/- 3.83% 

Model States: 45 State Usage: 27 +/- 8 

Feature Vector: 4 Mean Symbols: 63 +/- 14 

Syllable Types: 7 Mean Duration: 1.14 +/- 0.22s 

Total high quality calls used: 2 

Total Field annotated calls used: 15 from the Southern Song Meter, 2 from the Western 

Song Meter, and 2 from the Northern Song Meter 

Ancient Murrelet Chirrup recognizer 

Sample rate: 16,000Hz; FFT Size: 256; FFT Overlap: Y2 

Frequency Min: 45 FFT bins (2812Hz); Frequency Range: 60 (2812-5938 Hz) 

Background Filter: 1 s 

Max Syllable: 50 (0.5 sec); Max Syllable Gap: 30 (0.3 sec) 

Max Song: 30 (3 sec) 

Dynamic Range: 18dB 

Maximum Complexity: 48; Maximum Resolution: 4 

Recognizer Information -

Cross Training: 71.97% +/- 2.63% Total Training: 72.63 +/- 2.36% 

Model States: 46 State Usage: 24 +/- 8 

Feature Vector: 4 Mean Symbols: 44 +/- 10 
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Syllable Types: 7 Mean Duration: 0.45 +/- 0.10 s 

Total high quality calls used: 5 

Total Field annotated calls used: 1 from the Southern Song Meter, 13 from the Eastern 

Song Meter, and 2 from the Northern Song Meter 

Fork-tailed Storm-petrel Flight Call recognizer 1 (for low background noise 

situations) 

Sample rate: 12,000Hz; FFT Size: 256; FFT Overlap: 12 

Frequency Min: 30 FFT bins (1406.25 Hz); Frequency Range: 90 (1406.25-5625 Hz) 

Background Filter: 1 s 

Max Syllable: 60 (0.6 sec); Max Syllable Gap: 15 (0.15 sec) 

Max Song: 30 (3 sec) 

Dynamic Range: 13dB 

Maximum Complexity: 48; Maximum Resolution: 4 

Recognizer Information -

Cross Training: 76.02% +/- 4.09% Total Training: 75.18 +/- 4.28% 

Model States: 42 State Usage: 16 +/- 7 

Feature Vector: 4 Mean Symbols: 33 +/- 19 

Syllable Types: 8 Mean Duration: 0.85 +/- 0.42 s 

Total high quality calls used: 2 

Total Field annotated calls used: 3 from the Western Song Meter, 6 from the Eastern 

Song Meter, and 1 from the Northern Song Meter 
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Fork-tailed Storm-petrel Flight Call recognizer 2 (for high background noise 

situations) 

Sample rate: 12,000Hz; FFT Size: 256; FFT Overlap: ~ 

Frequency Min: 45 FFT bins (2812Hz); Frequency Range: 60 (2812-5938 Hz) 

Background Filter: 1 s 

Max Syllable: 50 (0.5 sec); Max Syllable Gap: 30 (0.3 sec) 

Max Song: 30 (3 sec) 

Dynamic Range: 18dB 

Maximum Complexity: 48; Maximum Resolution: 4 

Recognizer Information -

Cross Training: 71.97% +/- 2.63% Total Training: 72.63 +/- 2.36% 

Model States: 46 State Usage: 24 +/- 8 

Feature Vector: 4 Mean Symbols: 44 +/- 10 

Syllable Types: 7 Mean Duration: 0.45 +/- 0.10 s 

Total high quality calls used: 5 

Total Field annotated calls used: 3 from the Western Song Meter, 6 from the Eastern 

Song Meter, and 2 from the Northern Song Meter 

*all other settings were kept at default 
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APPENDIX C: Parameter estimates and Estimated Marginal Means for all variables in top AIC models for Leach's Storm-petrel, 

Fork-tailed Storm-petrel and Ancient Murrelet. 

Est. 
Std. 

Lower Upper Wald 
Species Parameter f3 Marg 

Error 
95% 95% Chi- df Sig. 

Mean C. I. C. I. Square 

LESP (Intercept) 3.676 2.866 4.485 79.155 0.000 

East Winds * WindS -0.107 0.027 -0.160 -0.055 15.965 1 0.000 

North Winds* WindS -0.075 -0.028 9.859 1 0.002 

South Winds * WindS -0.163 0.023 -0.207 -0.118 51.843 0.000 

West Winds* WindS -0.082 0.014 -0.110 -0.055 33.638 0.000 

New moon 0.879 15.277 2.999 21.155 9.399 24.290 0.000 

Crescent moon 0.855 14.910 2.526 19.861 9.959 34.163 0.000 

Gibbous moon 0.616 11.740 1.891 15.446 8.034 18.430 0.000 

Full moon oa 6.342 1.187 8.668 4.017 

No refugia -2.801 5.566 0.542 6.629 4.504 88.834 1 0.000 

Talus -5.648 0.323 0.176 0.669 -0.023 87.103 1 0.000 

Steep cliffs -1.078 31.165 5.206 41.369 20.961 13.496 1 0.000 

Offshore islets -0.888 37.707 5.571 48.626 26.789 9.994 0.002 

Steep cliffs + 
91.610 26.197 142.955 40.264 

Offshore islets oa 
Oceanic habitat -1.306 5.939 1.068 8.033 3.845 16.942 0.000 

Shelf habitat oa 21.928 5.613 32.930 10.926 

Distance to Buldir 0.007 0.002 0.002 0.011 7.561 0.006 

Distance to source 0.006 0.010 -0.012 0.025 0.465 0.495 

Years since eradication 0.006 0.001 0.005 0.008 74.082 0.000 
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Island size 0.000 0.000 0.000 0.000 13.948 0.000 

Purr calls 0.002 0.003 -0.003 0.007 0.921 0.337 

FTSP 

(Intercept) 9.15831 8.182 10.134 338.296 1 0.000 

East Winds * WindS -0.158 0.028 -0.213 -0.103 31.397 1 0.000 

North Winds* WindS -0.136 -0.086 28.895 1 0.000 

South Winds * WindS -0.411 0.030 -0.469 -0.352 188.226 1 0.000 

West Winds * WindS -0.350 0.029 -0.407 -0.293 146.728 1 0.000 

New moon 0.140 30.626 6.530 17.828 43.424 0.507 1 0.476 

Crescent moon 0.628 49.881 9.124 31.999 67.763 14.582 0.000 

Gibbous moon 0.972 70.387 11.970 46.925 93.848 38.286 0.000 

Full moon oa 26.632 5.252 16.338 36.926 

No refugia -5.861 0.930 0.125 0.684 1.176 299.452 0.000 

2.511 4020.409 1701.393 685.740 
7355.07 

29.090 0.000 
Talus 8 
Steep cliffs -4.228 4.757 0.976 2.845 6.669 187.022 1 0.000 

Offshore islets -2.778 20.293 3.565 13.307 27.280 85.917 0.000 
Steep cliffs + Offshore 

326.395 101.477 127.503 525.287 
islets oa 
Oceanic habitat 2.715 159.844 28.213 104.548 215.139 62.066 0.000 

Shelf habitat oa 10.587 3.022 4.663 16.511 

Distance to Buldir -0.028 0.002 -0.032 -0.023 131.100 0.000 

Distance to source 0.099 0.009 0.081 0.117 117.514 0.000 

Years since eradication -0.006 0.001 -0.008 -0.003 18.114 0.000 

Island size 0.000 0.000 0.000 0.000 106.271 0.000 

Chuckle calls 0.001 0.000 0.001 0.002 11.464 0.001 

Chirrup calls 0.004 0.002 0.001 0.007 6.101 0.014 

Male calls 0.005 0.002 0.002 0.009 9.481 0.002 
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ANMU 

(Intercept) -122.73 151.379 
-94.073 70.474 1 0.000 

East Winds * WindS -0.059 0.049 -0.155 0.037 1.446 1 0.229 

North Winds * WindS -0.096 -0.033 9.020 1 0.003 

South Winds * WindS -0.077 0.037 -0.150 -0.004 4.256 0.039 

West Winds* WindS -0.117 0.037 -0.189 -0.044 9.990 0.002 

New moon 1.052 n/a n/a n/a n/a 12.573 1 0.000 

Crescent moon 1.299 n/a n/a n/a n/a 24.521 1 0.000 

Gibbous moon 0.924 n/a n/a n/a n/a 14.494 1 0.000 

Full moon oa n/a n/a n/a n/a 
No refugia 12.689 0.000 0.000 0.000 0.012 49.878 0.000 

Talus 124.876 0.000 0.000 0.000 0.000 80.848 0.000 

Steep cliffs 23.147 212.031 135.416 -53.381 477.442 72.926 1 0.000 

Offshore islets 12.090 0.003 0.004 -0.004 0.011 116.085 1 0.000 
Steep cliffs + Offshore 

0.000 0.000 0.000 0.000 
islets oa 

Oceanic habitat -99.218 n/a n/a n/a n/a 60.131 1 0.000 

Shelf habitat oa n/a n/a n/a n/a 

Distance to Buldir 0.049 0.033 -0.016 0.113 2.208 0.137 

Distance to source 3.242 0.368 2.520 3.963 77.498 0.000 

Years since eradication 0.211 0.026 0.160 0.261 66.664 1 0.000 

Island size 0.001 0.000 0.001 0.002 12.773 1 0.000 

Song 0.037 0.009 0.019 0.055 16.034 0.000 

aThis parameter is set to 0 because it is redundant. 
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