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Abstract

Pulsed ficld gradient nuclear magnetic resonance (NMR) experiments were
performed on hard-sphere-like colluidal suspensions. We syuthesized NMR-
visible colloidal particles and measured spectrally resolved diffusion coeth-
cients for monodisperse suspensions of i srent size particles.  Results of
these experiments show good agreement with theoretical expectation. We
also probed a bidisperse (binary) colloidal suspension successfully and ob-
tained the diffusion coeflicients of two species simultaneously. The colloidal
model svstem developed in this work wi allow the study of colloidal phase
behaviour in binary mixtures for different munber and size ratios.
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Chapt _r 1

IN1TROD J ON

1.1 Colloid

In 1861, Thomas Graham classified matter into two types known as eryvstal-
loids and colloids. The name colloid was d - ved from Greek (Kolla = glue)
[1]. Diffusibility was the basis of this classification. Crystalloids (example:
salt) were those substances that would di e through a membrane sepa-
rating water from an aqueous solution and colloids (example: gelatin) were
those that would not [2]. Colloids were later considered as a state of matter.

Colloidal suspensions are dispersions of particles (Huid or solicd) in a fluid
mediun. Fog (liquid particle, gascous medinm). milk (liquid particle. liquid
medium) and ink (solid particle, liguid mediuni) are all examples of colloids.
Sizes and shapes of the colloidal particles are very important to determiue tle
svstemn properties. Sizes of colloids vary from 1 nm to 10 gm [3]. While there
are many exauples of colloidal particle that are elliptical, rodlike. disclike or
random coils. the simplest colloids to study are spherical.

1.2 Interactions of Col iids

Different physical eflects give rise to colloidal interactions at different length
scales [4]. The interaction between colloidal particles includes long-range
clectrostatic interactions, short-ranged van der Waals interaction as well as
hyvdrodynamniic interacti 1e simplest interaction is the excluded volume
(hard-sphere) interaction. The excluded volume interaction is entropic iu
origin: the presence of one spliere at position (., y. =) and at time #. affeets
the possible configurations at that tinwe for all other spheres.






Figure 1.2: Each large sphere has a zone of "excluded volume™ around it that
represelnts the closest approach of the center of a small sphere. Overlapping of
the excluded volume ¢ large spheres (dott  contours) increases the volume
accessible to the small spheres.

cause an attractive interaction between the large spheres [5]. This was first
modeled by considering the presence of po mer chains in colloidal suspen-
sioln.

According to Asakura and Qovsawa [6]. in the mixture of colloid and poly-
mer, polymer acts like a hard sphere of 1 lius R (where R¢ is the radius of
gyration of the polymer chain). It simply means that when the separation
of colloid anc polymer is less than R, t wre is an overlap between themn.
But as shown in Figure 1.1, if the polyvier-colloid are far apart. the poly-
ner can have less conformations than v e the colloidal particles are close
together. Here two colloids of - ius R are at a distance whicl is more than
2(R + R¢&). So colloids excluded a volume %TT(H + Re)? to the centre of
niass of the polymer chains. The “depletion” region of thickness R, where
there 1s no colloid and a lower than av > concentration of polyier, cre-
ates an osiotic pressure (pressure caused by the different concentration of
solute usually in a system containing a semi-permeable membrane) due to
the concentration gradient of polymer chains inside and outside of the sphere.

Figure 1.2 shows a binary mixture where the vo'  around the spheres
that is the excluded volume for the small sphe 5 overlaps. thus reducing the
total excluded volume. and introducing an cffective (depletion) attraction.
Increasing smeall sphere concentration inereases the strength of attraction. It
also depends on the radius of the small  aeres. This interaction is strong







[7]. The surface ions and the cloud of cou ons form the clectrical double
laver. The thickness of the double laver is #71 known as the Debve-1lickel
screening lengtl. Charged colloidal spheres interact with the counterions of
the solvent by a screened CoulomD interaction that has the forn [8]

crnl —nr)

Uiry= 'S (1.3)

The potential decreases exponentially with distance around a spherical par-
ticle. The Debve-Hiickel screening length ¢ 1 be controlled experimentally
by controlling solvent parameters:

LoD jener (14)
Koo 2l
where ¢ is the electronic charge. ¢ is the molar concentration of salt, .\,
is the Avogadro’s nuniber, T is the temperature and Ly is the Boltzmann
constant. The Debve-Hiickel screening length, # ' is a keyv paraineter that
measures the contribution of valency. concentration aud dielectric constant
to the screening of interactions between ¢l es in solutions.

Now if two charged colloids of radius ¢ approach to each other. there is a re-
g Pl
pulsive force that push them apart. In this case the effect of the diffuse layver
plavs a dominant role.  According to Derjaguin-Landau-Verwev-Overbeck.
the repulsive interaction potential (known as DLVO potential) in SI units is
1 1 1

[9]:

. . ) . -
Ug(r) = 2reayi nfl + ex  —r(r —2a)}] (1.5)
a . . . .
where ¢y = —. the particle surface pot and o is the rface charge per

unit area. From Equation 1.5, for r > 2a, aen the Dely  screening length
/£ Uisshort. Le when v(r — 2a)  large. the repulsive potential goes to zevo.

1.2.3 Van der Waals Interaction

In molecules and atoms. electrons move are ud the nucleus and create an in-
stantaneous dipole. The rapidly changing dipole produces an induced dipole
noment to neighbouring atoms. In the vacuum, the induced dipole of the
neighbouring atom moves in phase with original dipole and hence there
exists an attractive atomic interactic  [10]. The nteraction of two atoms ¢
and j separated by a distance r; is [7]

(1.6)
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stabilizer. whicli both reduces the effective Hamaker constant. and incereases
the distance of closest approach between tw - spheres.

1.2.4 Hydrodynamic Interact »n

In a colloidal suspension. the movement of particles cause dviamical effects.
Wlhen a colloidal particle of radius a moves, it creates a How in the incom-
pressible liquid. Other particles in the suspension are influenced by the How
[12]. As an effect of flowing intervening liquid. all the particles in the suspen-

sion see eaclr other. This effect is knowi the liydrodynamic interaction.
There is no analogy of hyvdrodynamic in tion in atomic and molecular
svstems. The velocity of the Howing liquis ovs the Navier-Stokes equation

for an incompressible fuid [3] which is

Ae(r t . . > .
/)éT) + pt(r t)-NVo(r )= - v plr Yy + V- ir ) (1.9)
4
where 7(r 1) is the flow velocity at point r and time £, p is the density of the
solvent and p(r.#) is the hvdrostatic pressure. In dimensionless notation. the
Navier-Stokes equation has the form [13]

Jr'(r.t) , 1 T n )
———— ()N () = - - (o t) + BTN
ot ) ) (/)('-’)( Lo ! 7 ULp r?)
(1.10)
o O Ll T osenlos
Here ¢' = — . ['= —.p — where L. U are typical length scales and
U L nt '

. L. . : :
velocity scales and o is therefore a tvpical timescale in the systeni.

Lo
Also V= LV and — = — —
rooU ot
From L. {7 and the density po one can construct a dimensionless number
U'Lp
Re = ! . known as the Revunolds munber.
N
Now from the Equation 1.10 [2]
ar (.t = ~ -
¢ ——)%/—) + Tty L T —Np ) + NPE () (1.11)
P

Revnolds number is the ratio of inertial force to viscous force. When e <<
1. the viscous force dominates over i force. But for Re >> 1. inertial
force dominates. For example. for a polystyvrene sphere (radius. « = 0.570m)
moving at L /s in water (viscosity, 5 = 8.90 + 1074 Pa.s) has the Reyvnolds
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nunber & 107° Thus in the case of colloidal particles moving in liguid. the
inertia is very small. So the inertia term. #(rot) - Va(r 1), can be neglected
and Equation 1.10 hecomes
ATl 1) o
/ = =Vplrt)+ N f(r t) (1.12)
o1
This is the Stokes equation for a viscons fluid. In the case where the How is
Ac(r. t)
steady (——) =0
ot ’

This 15 known as the creeping-flow equation [1]. Flow around colloidal parti-
cles can be deseribed by nsing this equation. Thus. in a ¢uiescent suspension,
when a sphere moves under the influence of gravity, the hvdrodynamic foree
acting on it can be expressed as [14):

—

F o —=OGmyati(r.t) (L.11)

Hence ;0 = 67na 18 known as friction coefhicient. The Stokes-Einstein relation
relates the particle diffusion coefficient to the friction coetficient [8]:

KNgT
[

D

(1.15)

where N is Boltzinamn's constant and T absolute temperature. The friction
coeflicient increases with the increasing number of particles and as a result
the diffusion gets slower. The diffusion  flicient measured in a colloidal
suspension is thus dependent on the le density.  One characteristic
of colloidal systems approaching glass trausition is the breakdown of the
Stokes-Einstein relation. In our studies the Stokes-Einstein relation in dilute
suspensions will be o dmportant test of the validity of our experimental
metliods.

1.3 Sedimentation

Sedimentation is the settling of colloidal particles under the influence of grav-
ity. The settling velocity of a polvstyrene sphere of radius « is [7]

20 Apy

o 0 (1.16)

Ap is the deusity difference betv 1 the sphere and surrounding liquid. This
equation is valid only for a highly dilute systeni. In the case of a two particle
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system having a difference in settling velocity equal to AV, the How velocity
of each particle affects the other one. This perturbation is described by the
Peclet mumber for sedimentation [2]. which is given by

20 ATy

Pe
Dy

(L.17)

Dy is the diffusion coeficient at infiuite dilution. For a polystyrene sphere of
1 yan diameter in water, Pe = 0.05. For Pe < 1. the particles are exhibiting
Brownian motion while for Pe > 1. hydrodynamic interaction is dominant
over Brownian motion. But in the regime of concentrated suspension, the
settling velocity of eacli particle is affected by the otliers in a complicated
way. The concentration dependence of the sedimentation velocity is [15]

V(o) = Vi(l + Ao) (1.18)

In the presence of hyvdrodyvnamic interacti 1, for the zeroth order correc-
tion. 4 = —6.55 [16]. The magnitude and sign of 4 are due to the large
contribution from backfow.

1.4 Model Harc Sphere Colloids

Colloids have heen used as a model for atomic and molecular systeins as
they demonstrate many of the phases obs  red in such systems, The sim-
plest model is the hard sphere system in which the colloids are non interacting
at all separations beyond their radius and infinitely repulsive on contact [17].
In this case, the long-range electrostatic interaction effect becomes negligible.
Experimentally this is done by decreasing t + Debye-Hiickel screening length
of Equation 1.4, As w . discussed in this chapter. van der Waals interaction
are not weak for polystyrene spheres when interparticle separation is less
than one-tenth of particle diameter in an aqueous suspension.

We mentioned that in a true model hard-s;. re system there is only exeluded
volume interaction. Our system is not an cideal” hard spliere system. It is
‘hard-sphere-like’ hecause the dominant ¢ ctrostatic repulsive interactions
are screened sufliciently., Van der Waals  tractions are probably present.
but are reduced by the presence of s “actant stal 7 zer. Fhally, except in
the dilute limit. hyvdrodvnaniic interactions are alwayvs important in colloidal
dynamics.



Chapter °
COLLOI: A, IS "PRSIONS

The word colloidal dispersion” refers to colloids of different sizes and states
(eg. solid. liquid or gas) dispersed in a e wons phase of a different state
[18]. Depending on the size distribution of particles, the dispersion will e
either monodisperse (a size distribution that has a single narrow peak) or
polvdisperse (multiple peaks in the size distribution).

2.1 Monodisperse Hard Spheres: Phase Be-
havior & ynamics

2.1.1 Phase Transition of Mot disperse Hard Spheres

From a thermodynamic point of view. for microscopic svstems one can write
a free energy (F) in terms of an internal energy (I7) and an entropy (.5)

F=U-TS (2.1)

Thus increasing temperature increases the stability of phases that are more
disordered (have higher entropy). For a hard sphere system. the analogue
of internal energyv is the interaction between splieres (which is zero, with
the constraint that spheres do not overlap). In atomic systems, the inter-
nal energy is temperature-dependent an is lower for more ordered pliases,
while the entropic term (=75) is lower at high temperatures. Thus there
is a temperature-driven competition bhetween order and disorder. In harvd-
spliere colloids. the internal encrgy contr  ation is temperature independent.
so phase changes are driven by change in entropic term with increasing vol-
wne fraction, ¢. So. here. instead of temperature. the relevant thermody-
namic variable is the particle volume fract n (o) that determines the phase
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the Stokes-Einstein relation. the diffusion cocetlicient of spherical particles of

hvdrodynamic radius a suspended in a solvent of viscosity y is deseribed by
[\'/:

Dy=— (

Grnu

o
™

where A'g is Boltzmann's constant and T absolute temperature. This relation
is only valid for dilute dispersions. where interaction between Brownian
particles can be neglected. According to this relation at room temperature.
the diffusion coeflicient of a I g particle suspended in water is &= 5 x 1071
m?/s.

For interacting particles things are more complicated. In that case the trans-
lational self-diffusion of a laheled colloidal  article in an enviromnent of other
colloidal particles can e divided into three different reginles depending on
the timescale [14]. For ¢ < 7 particles” 1 tion is ballistic (not random).
The Brownian time, 7. equals to m/6mnpa. Another characteristic time 7|
is £2/Dy. € is the interparticle interaction  stance. The second regime de-
seribes the motion of the colloidal particles over distances much shorter than
the interparticle distance. So, in the tine scale 75 <<t << 7. the mean-
square displacement {(Jr(t) — r(0)]°) ix only influenced hy the hvdrodynamic
interaction, where r(f) denotes the mstantaneous displacenent at time ¢
Hence the diffusion of individual parricles can be defined by a short time
self-diffusion coefficient DY

(r(t) = r()?) = 6Dt when Ty <<t << 7y

For a particle of diameter equals to 1 yon in water. 75 = 6.5 x 10 ° s and
7 & HO0 ms.

The third regime describes the self diffusion at times larger than 7, where
direct interactions between particles play an important role and hence the
meanl square displace eut can be defined by a long time self-diffusion coet-
ficient DF

(|r(t) = 1(0)]?) = 6DEt | when t > 7

Due to self-diffusion. a local fluctuation in concentration can oceur in the
dispersion when particles at higher con  tration diffuse t+ wds the lower
concentration region. This diffusion process is kinown as mutual diffusion.

The dependence of self-diffusion coefticients on the particle volue fraction
ofor ] 1Isp' res in an equilibrium cont  ration of other particles can be






2.2 Polydisy e liard £ heres: rhase Be-
havior & ynamics

2.2.1 Phase Tr asition of Poly isperse Hard Spheres

The entropic contribution to the colloid free energy can be coutrolled by
introducing polydispersity. It is found that inclusion of small spheres can
increase the entropy of the system of ordered large spheres [6]. Also it can
result in an attractive depletic  force hetween large spheres for tlie size ratio
greater than 6.7 [5]. Polvdispersity lias a significant i " 1ence on crystalliza-
tion [34].

The simplest form of polydispersity is bidispersity. A mixture of large and
small particles (labeled as 7 and j in what follows) is commonly referred to
as a binary mixture. Wlhere volunie fraction ¢ is the only parameter in-
volved with single particle dynamics, a bir v mixture requires, in addition,
the ratio of the radius «;/a; and the relative volume fraction ¢,/¢ of the
smaller particles. One can also alter the phase diagram by varying the parti-
cle shape (non-spherical objects pack differently from spherical objects) or by
introducing polydispersity in particle size. It general, polydigpersity inhibits
crystallization.  Therefore a control of polydispersity allows researchers to
study the colloidal glass transition. Exper 1eutally it was fouud that parti-
cles with a size distribution skewed to smaller sizes crystallized an order of
wagnitude more slowly than particles with a more symmetrical distribution
[35, 36]. So polydispersity introduces new control parameters, particle size
ratios and particle number ratios, to make quantitative tests to compare with
theory and shimulation.

2.2.2 Dynamics of . olydisperse Hard Spheres

The short time self diffusion coefficient a tracer particle & which is at
vanishingly low volume fraction of a gen il binary mixture of ¢ and j can
he written as [15].

Dy (k)

Dy(k)
Results for the diffusion coeflicients of i and j can be extracted front the
above equation by considering the tracer particle & that is identical to either
species 2 or j. If k is identical witl 7, then

] [\’A-j(f’j + I\—]\»j(j)j o T)
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investigated by extensive molecular dynamics simulation for the size ratio of

1.2 [39]. Other molecular dynamics simuli 15 of the size ratios of 0.60 and
0.83 were done to study the binary hard re liquids [40]. Mode-coupling

theory is also used extensively to study the glass transition [41].

Experimental study of the glass transition includes dynamic light scattering
(DLS). fluorescence recovery after photobleaching (FRAP) and confocal nii-
croscopy.  Investigation of DLS suggests t] t the wmetastable fluid or glass
states In binary mixtures persist long enough (because of exceedingly slow
crystallization compared to nmonodisperse suspensions) to study their dynam-
ical propertics [42]. A FRAP study found two different glassy states at high
volunie fractions [43]. Confocal microscopy confirms the increase in cluster
size near the glass transition [44]. A study of a binary system was performed
using b AP with the ratio of radius 1:9.3 [45]. Another study of a binary
colloidal suspension of PMMA spheres (size ratio 0.61 and number ratio >
0.66 of large spheres) was done via light s ttering [46] and found coexistence
of crystalline and fluid phase.

Experimental studies of phase behavior and dynamics as a function of particle
size ratios and number ratios would allow detailed comparisons with theory.

2.3 Previous wxperime tal Studies of Colloidal
vynamics

Among the techuiques used to study colloidal systews, the scattering of ra-
diation has proved to e one of the most useful since it allows measurements
to be made of both the spatial aud the temporal correlation between the
particles [47, 48]. Light and neutron beams appear to have been the forims of
radiation most widely used for these studies [49]. Dynamic light scattering
(DLS) experiments is a powerful tool to y the static and dynamical prop-
erties of colloidal suspensions. The following description of DLS technique
follows the discussion in Wagner, Hartl and Walderhaug [50] « isely. DLS
experiments on monodispe - and optically isotropic particles determine the
intermediate scattering function S(@,t).

Q) o e QURO) - Ry() (211

whicl is the spatial Fourier-tre  form of the pair-correlation function. (The
pair-correlation function is related to t.  probability of finding the center of
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a particle a given distance from the center of another particle [51] and is a
quantity calculable directly via computer si  ilations). Here, @ denotes the
scattering wave vector and R; the center of mass vector of the ith particle.
The dov le sum can be divided into two parts

1 N N
S(Q.t) = KKZ t‘l'P(’?Q(Rz‘(U_Rz‘((’))))HZ > expliQ(Ri(t) = R;(0))))]
And hience l -
S(Q, 1) = S.(Q.1) + S,(Q, 1) (2.12)

where S¢(Q, 1) is the self part and Sy(Q. t) is the distinet part of the interme-
diate scattering function. Here self part ¢ cribes the intensity correlation
of same particle at two different times (¢t = 0 to ). On the other hand, the
distinet part originates from the correlation of a particle i at a time t = 0
with a different particle j at a time ¢. In a svstem of N-particles, there are
N contributions from the self part but N(N — 1) contributions to the dis-
tinct part of the intermediate scattering function. Therefore, light scattering
experiments performed using suspensions cousisting of identical particles are
dominated by collective phenomena. Nev leless, self parts are accessible
by tracer experiments by means of light scattering [52]. To avoid the un-
wanted scattering of light partic : must be matched in refractive index with
the solvent.

Laser scanned confocal microscopy is also  powerful technique to study the
dynamics of colloidal suspensions [53] . The fundamental requirement is that
the index of refraction of the fluorescent labeled colloidal splieres must be
closely matched with that of the solvent. Otherwise heavy scattering of light
places restrictions on our ability to look ¢ p inside the sample. In confocal
microscopy, laser light excites fluorescence in the fHuorescent-dyed particles
(without the fluorescent dye excitation, the particle in a refractive-index
matched solvent would be invisible). The laser scans the sample along the
plane and from the emitted light a two-dimensional image can be obtained.
e information about third dimension is  chieved simply by looking at dif-
ferent depths of the sample. Developme  of image processing techniques
alle s one to track the motion of individual colloidal particles which in turn
provides information about the d; s f the system [54].

Flu scence Recovery After Photobleaching (FRAP) is another technique

whi * measures self-diffusion of fluorescent-labeled colloidal particles [55].
In the first step of FRAP, a well-defined part of the sample is illuminated

20



by an intense light pulse. This irreversibly photobleaches the fluorophores in
the region illuminated within the sample. After the short pulse the intensity
of the incident radiation is greatly reduced. The fluorescent intensity is then
monitored as a function of time. The bleach pattern gradually fades awayv
as a result of the Brownian motion of the . Heled species. The exchange of
bleached and unbleached particles gives rise to a change in measured fluo-
rescent intensity. The rate at which this process takes place is related to
species” diffusion coefficient.

Pulsed-Field Gradient (PFG) NMR is a ominent tool to measure self-
diffusion in complex fuids [56]. It is now a common method for the study of
diffusion in liquid surfactant and polymer svstems [57]. For Leterogencous
systems such as macroscopic emulsions. o droplet size distribution can be
investigated hy the PFG-NMR technique [11]. Due to the very rapid relax-
ation of solid materials, colloidal svstems where the dispersed phase is in a
solid state are dithicult to study with the PFG-NMR technique. Because of
high gyromagnetic ratio. the nucleus which is most suitable for PFG-NNR
measurements is *H. The polviier chains of latex colloidal particles have a
high content of 'H ideally suited for Pl -NMR experiments. However, it
turns out that in most widelv used latex spheres systeins, sucli as polystyrene
and polvinethyvlmethacrvlate, the local reorientational mobility of polyiner
segnents is very low. This low mobility causes a very fast decay of the NNR
signal 10 to relaxation. which makes I .« 3-NMR measurements on these
systems difficult. There are two reports of NMR studies of colloid diffusion
wlere polybutadiene or polvbutylacryvlate spheres with high molecular re-
orientational mobility (as compared witl other polymers) have been used
for diffusion measurements [50, 29]. But the problem with the use of even
such polymer spheres is that only a small fraction of the polviner chains
Liave enougl wmobility to give rise to aiw NMR signal. So if a larger part of
the particle volume contributed to the NMR signal. the PFG nreasurements
of colloidal diffusion could be significantly improved. For this purpose, la-
tex particles (polystyvrene) with a liquid core were studied for measuring the
translational particle dyne ies [30). PFG NMR results in suspensions of
these core-shell spheres were analyzed 1 dng into account diffusion of the
oil inside the splieres as well as the ov diffusion of the spheve itself. A
primary short-coming of this systeni. however, was the large and uncontrolled
polvdispersity in size. which prevented > study of colloidal phase hehavior.
Moreover no study has be 1 done so far on binary colloidal suspensions using

NMR.



2.4 A Model System for NMR Studies of Bi-
nary Co. oids

The primary advantage of using NMR are that it can be used on transparent
or opaque suspensions. and ¢ 1 in highly coneentrated suspensions.  Re-
ported in this thesis is a proof of princiy - for studying bidisperse colloids
in a model-independent way. something that is exceedingly challenging via
scatter ; teclmiques. While bidisperse colloids in transparent suspensions
can indeed be studied by confocal microscopy, this one is limited by practical
consideration to size ratios of & 3:1 or less. The FRAP technique can also
be used to study bidisperse colloids, but reports only on the long-time self
diffusion coefficient. The NMR techuique reported can provide information
on short- and long-time self diffusion coeflicients in opaque, concentrated col-
loidal suspensions.

In a study of binary colloids using DLS. the scattered light intensity las
information from both the particle species simultaneously. Also both the
particles and solvent have to be refractive index matched. Using the confocal
microscope. studyv of the small particles meter < 0.5 zan) is not possible
because of its limitation in spatial resolution. Tn this thesis we present PFG-
NMR measurements on polystyrene particles in water. The study includes
the dynamics of mono-disperse colloidal suspeunsions as well as that of binary
(bi-disperse) suspensions where two partic  species have different size. The
goal is to study both species simultaneously. This requires two species to
have distinet NMR signals. We have « vised a new model system where
one can measure the diffusion coc™ ients of all ¢ ponents of an opaque,
nmulti-component colloidal s1 ~nsion for any s ratios.
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Chapter 3

PULSED FIFLD R “DIENT
NN R SP CTRO COIY

Pulsed-field gradient NMR spectroscopy is an important tool for measure-
nent of molecular translational motion. In the preseuce of a field gradient,
the translational diffusion of molecules reduces the intensity of the NMR spin
echo signal. Careful measurement of this signal attenuation provides useful
information about the diffusion process. Pulsed-field gradient (PFG) NAR is
a powerful measurement technique that ca provide a quantitative nmeasure
of molecular motion over the millisecond to second time scale [58)].

3.1 Introduction to Nuclear Magnetic Reso-
nance

Nuclear Magnetic Resonance is a quantum echanical phenomenon whicl is
based on the magnetic properties of the nucleus. It occurs when the nuclei of
certain atoms are immersed in a static 1 1etic field and exposed to a sec-
ond oscillating magnetic field. In a nucl the proton possess  a property
called spin which can be thought of as a small magnetic field and will cause
the nucleus to produce an NMR signal.

The NMR spectrometer is basically an instrument capable of generating a
nuclear magnetization with a large apb 1 magnetic field, rotating the spin
pola = tion via radiofrequency produce a transverse mague -
tion, and detecting tinv electric currents induced by the precession of this
transverse magnetization [59].

In a system of randomly oriented nuclear spins. the effect of an external
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the precession of transverse magnetization is observed as the free-induction

decay (FID)(Figure 3.1).

3.2 Relaxation in NMR

Generally the term relaxation’ is used for the re-establishment of thermal
cquilibrinan of a perturbed system (a system that obeys the Boltzmann dis-
tribution function). In e presence of a me 1etic field, if a sample is undis-
turbed for a long time, it reaches a state of  2rmal equilibrinin. But a radio
frequency pulse perturbs the system to a non-equilibrium state. Relaxation
is the process of regaining the equilibrium of a spin system through interac-
tions with environment. Relaxation processes in NMR are roughly divided
into two types: spin-lattice relaxation and spin-spin interaction.

3.2.1 Spin-lattice Relaxation

As shown in Figure 3.2(a). in the presence of a static maguctic ficld By, the
net magnetization vector is parallel to the direction of By and A, = A,. This
equilibrium svstem 1s perturbed by an oscillating radio-frequency magnetic
field (By) which is perpendicular to By. When a 90” vf X'-pulse is applied, the
magnetization is flipped (in the rotating reference frame) froni the Z-axis to
the ™ axis (Figure 3.2(b)) and hence M/, ) and My = A, But switching
the radio frequency pulse off causes the retization to relax back to its
equilibrium value (Mz = My, Ay = My ). This relaxation is well known
as spin-lattice relaxation or 17 relaxation. The relaxation time depends on
factors such as the type of nuclens. sample, temperature and the viscosity.
Experimentally 7, can be measured by a technicue known as inversion recov-
ery (Figure 3.3). In this sequence. a 180" pulse (a pulse of same amplitude
as the 90" pulse, but twice as long) is i applied. This rotates the net
magnetization down to the - 7 axis. The magnetization undergoes spin-
lattice relaxation and returns toward its equilibrium position along the +2
axis. Before it reaches equilibrium, a 9C pulse is applied which rotates the
longitudinal magnetization into the X'} plane. and the FID is measured.
This pulse sequence is repeated for several values of 7 and the signal can be
written as

S x (1 —=2exp(—=7/TY)) (3.2)

It should be noted at this time that the zero crossing of this function occurs
for 7 =Ty In2.

b



(c) (d)

Figure 3.2: (a) Magn zation vector pointing along the direction of applied
gradient (b) An oscillatory pulse rotates e magnetization into ZY" plane
(¢) In the rotating frame, local variation in Larmor frequency give rise to
dephasing of magnetization (d) Magnetization approaches the equilibrium
state.
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Figure 3.3: Inversion recovery pulse sequence.

3.2.2 Spin-spin Interac ion

The *spin echo” (Figure 3.4) can be used to measure the time constant b for
spin-spin relaxation. There are two mechanisis that give rise to broadening
of NNR peaks: homogeneous and inhome neous broadening. Hounogencous
broadening arises from the spin-spin interaction (fluctuation of local magnetic
fields). Inhomogeneous broadening arises from variation of macroscopic mag-
netic fields due to sample impertection or susceptibility inhomogeneities (or
because of By field uniformity, in spite of shinning, is never perfect).

[Tere a 90 pulse is frst applied to + in systom. Lae 907 do ce pulse
rotate  the magnetization down = o 7+ X'} plane. The transverse mague-
tization begins to depliase. At some point in time after the 90" pulse. at
time 7/2 a 180" pulse is applied. T° + 18 pulse iu the spin eclhio inverts the
inhomogeneous part of the signal decayv. Thus in the absence of T relax-
ation, there is at time 7. an "echo’ of the FID. Iu the presence of spin-spin
interaction. the echo is attenuated « _ onentially with a time constant 7. In
this case a signal can be written as

S x (exp  /Ty)) (3.3)

which is an exponential cecay.
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Figure 3.5: 1D NMR Spectra of p-xvlene. Here A and B are the phenyl
(CeHy) and methyl (CHy) peaks respectively.

intermolecular interaction. For isotopic liqq 1 quadrupole coupling averages
to zero while it has a finite contribution i the case of liquid crystal [59)].
In this thesis, the NMR-active nucleus is the proton (*H, spin %) therefore
quadrupolar coupling is not relevant.

3.3.3 Direct Dipole-Dipole Cc pling

Dipole-dipole coupling is the direct magne ¢ interaction of nuclear spins with
each other. Since each nuclear spin is magnetic. it generates a magnetic field
which interacts with - at of other nuclear spins. The interaction is known
as direct dipole-dipole coupling because the fields between the nuclear spins
propagate without involving the electron clouds. Figure 3.6 shows the dipole-
dipole interaction between two nuclear spins i and j in the presence of the
static magnetic field By. The interaction potential is

1 2
"';1([((')) X _1(3 cos™ 0 — 1) (34)
K

Here # is the angle between © ernuclear  ctor and the static field. » is the
distance hetween the nuclear spins i and j. 1 the case of lquids, due to rapid
motion of molecules <3 cos* @ — 1> 0. B for solid and anisotropic liguid.
dipole-dipole coupling causes pulse broad ng. The dipole-dipole coupling
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Figure 3.6: Dipole-dipole interaction.

may be either intramolecular or intermolecular. It is an interaction through
space.

3.3.4 J-coupling

J-coupling is an indirect magnetic interaction of uuclear spins with cach
other, through the involvement of the electrons. The chienical shift indicates
the local electronic environment while J Hupling provides the information
about the chemical bond. The J-coupling is exclusively intramolecular.

3.4 NMR a 1 Translat ' Motion

In the description of a one-dimensional single-pulse experiment. both By and
wy are homogeneous throughout the system. If in addition to By there is a
spatiallv dependent nmagnetic field gradie  ¢. the Larmor frequency hecomes
spatially dependent and

w B+ =z (3.5)

The phase shift in the time interval #is g1 1 by
Ot 3 Bat+1 / g(t)2(t") dt’ (3.6)
JU

The dephasiug due to the gradient pulse is a function of the gyvromagnetic
ratio of the nucleus and grad t streng . So a magnetic field gradient can
be used to label the position of the spins.
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Figure 3.7: Pulsed field gradient spin echo pulse sequence.

3.4.1 Pulsed Field Gradient Spin Echo

As discussed carlier. in a spin echo pulse sequence the precessional phase
shifts associated with the position of a molecule in a magnetic field gradient
in time 7 are exactly canceled at time 27 by a 180" pulse that reverses the
phase evolution giving rise to an echo of the FID. Any movement of molecule
in this time scale causes an attenuation reduction of the echo signal. Both
random and directed translational motion can be measured via a spin echo
[60)].

The mechanism of a spin echo pulse se 1ence with gradients (thus called
the pulsed-gradient spin echo or PGSE experiment) is showu in Figure 3.7.
A 90Y radio frequency pulse is applied which rotates the magnetization from
the Z axis to XY plane. During the first 7 period at time t) a gradient pulse
of duration ¢ and magnitude g is applied. At the end of the first 7 period,
the phase shift is

ty+4
o(T) =Byt + 1y / 2(t)dt (3.7)
Here g has a constant amplitude over tinie. At the end of the first 7 period. a
18()3 rf pulse is applied which reverses the sign of the precession. At time ¢, +

A, a second gradient pulse of equal magnit le and duration is applied. 1f the
spins have moved. the degree of dephasing is proportional to the displacement
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in the direction of the gradient in the duration © Now the total phase shift
is given by [61]

t1+d t A4
O(27) = ':“,B(,T+”,{j/ :(7‘)(/7‘} - [“,B(.TvLﬁ,y/ :(7")(/7"}
as! .

o+

ty+d HLAS (-58)
=7y [/ s(F)dt — / () ’]
Sty J+AN
The echo signal attenuation S(A. 4. ¢) at { = 27 can be written as [62]
X
S(Adg) = Sy / P(o.21)exp (io)do (3.9)
=N

where Sy is the signal in the absence of o ficl  gradient. P(¢. 27) is the phase
distribution function. Since for randomly varving quantities (as in diffusion),
the phase distribution function is given by a normalized gaussian function,
the signal can be written as

S(g) = So(exp (1A0)) = Sy{exp , ) (3.10)

In the short gradient pulse limit (the SGP approximation), i.e.. when d < A,
this equation can be written as

S(g) = Shexp (=3 ¢g70" (A = §/3)) (3.11)

where D is the self diffusion coefficient. ™ >fore in a pulsed-fHeld-gradient
experiment. one can vary a generalized gradient strength parameter k. where

k= ~2¢%8%(\ — §/3).

Observation of the signal attenuation with * creasing k vields the self-diffusion
coefhicient.

For the system in which we are interested. the spin-spin relaxation is very
short which causes a severe restriction on diffusion time A . This is because
there is a secoud ternl in the attenuation € tation

-A
15

S=S (DI /e

) (3.7

So we use a stimulated echo pulse sequence (Figure 3.8).






But in solids, cdue to slowness of molect 0 motion, dipole-dipole interactions
are not averaged out. Because of that HII NMR speetra have the linewidths of
tens of kHz. Due to this, the accuracy of gre  =nt labeling of spatial position
gets poor and, as a result, the PFG NMR technique proves ineflicient [63].
That is tlie reason why researchers rarelv I < at the dynamics of colloidal
microspheres using NMR.

Wassenius et al [30] have carried out studies  core-shell latex particles using
the pulsed field gradient spin-echo technique. Theyv measured the restricted
diffusion of oil in the particle cavity. However, no detailed studies of colloidal
phase behavior have been carried out by  FG NMR. In these experiments
colloids had uncontrolled and large polydispersities.

In the experimental section, we will discuss our method of designing a col-
loidal model svstem for PFG-NMR studies  colloidal phase transitions.
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quencies. As we were ohserving magnetic resonance of the I nueleus (proton
NMR). the radiofrequency (rf) coil for 'H was used which had an inner di-
ameter of 5 mmni.

In the beginning of everv experimental slot, we replaced the existing probes,
and inserted the Dift30 probe. Then we ¢ nected the gradient cable and
two tubes (one for water IN aud another for water OUT) with it. Switching
BTU on allowed the water to circulate ins: » the probe. We had to gently
turn the probe upside down a few times t make sure that there were no
air bubble inside the probe. Then we inserted the probe inside the mag-
net. As the control software (Topspin 1.3) is installed in Linux system. we
had to connect the data server and console just by changing the cables. In
the AQS/2 cabinet we had to confirm that the right cable (I1204360) was
connected. Then pushing the red button of AQS/2 would reset the systen.
Pressing the "Reset” button of Gradient unit made the gradient probe active.
When the change of probe was complete, we inserted our sample. Topspin
software was used for further experimental setup. First we had to check that
the software could recognize the probe. Then the next thing to check was
sample temperature. We could change the sample temperature by using the
software. Then we tuned the receiver mar lly to resonance with the oscil-
lating magnetic field produced by Larmor precession of the nuclear spins in
the sample. Homogeneity of the magnetic field is a very important issue for
NMR experiments. In the jargon of NMR., this is known as ‘shimming’. Poor
shimming causes an inhomogeneous broacdening of the NMR spectruni. As
soon as we reached the target temperature of the sample, we shimmed on the
fourier transform of FID (tlie NMR spec  un) to maximize peak intensity or
mininize peak width. All ex; iments were done at 25°C.,

After the adjustment of temperature, t o and shimming, we carried out
experiments to select the duration P, fi 90" pulse for our samples. This

was done by a series of experiments where the pulse duration P; was varied.
For a value of P, corresponds to 360° pulse. signal intensity was zero. Di-
viding the 360° pulse time by 4, we me:  wed the 907 pulse length. We then
setup a one-dimensional (1D) experiment.

Figure 4.6 and Figure 4.7 show the fourier transformed 1D spectrum for p-
xylene and tri-methyl phenyl silane inside 0.99 pm and 0.79 pm particles
respectively. In both we 4.6 and Figure 4.7 the large peak (marked B)
between 4 and 5 ppm is the water peak,  d the peaks near 7 ppm (marked
A) come from phenyl groups. The peaks marked C in Figure 1.6 and Fig-
ure 4.7, however at different ¢t nical sh s, are methyl peak. The methyl
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Figure 4.7: 1D spectrum of tri-methyl phenyl silane inside 0..J g colloids.
A, B and C are the phenyl. water and me vyl peaks respectively.
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e Determination of .

e 1D experiment.

o 7 and T5 measurements.

e Diffusion experiment.

All experimental results are presented in the next chapter.
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Chapter 5
rRESULTS AND = [ST'USSION

5.1 77 and 7> Relaxatio. Times

We measured 77 and 75 for all samples by using the pulse programs described
in Section 3.2.1 and Section 3.2.2. The results are shown in Table 5.1. The T
relaxation in all samples is of order 1 second. The T, relaxation varies widely
from one sample to another between 90 ms 1d 200 ms. At the present tine,
it appears that longer 75’s correlate with longer ultrasonication times during
colloid preparation. This is likely due to the fact that the oil slightly swells
the polystyrene matrix. Longer ultrasoni ionin it accelerate this process.
It was also observed that the 75 relaxation times measured immediately upon
sample preparation was smaller than in - ¢ same sample a week later.

5.2 Diffusion Coefficier of Single Species

In monodisperse suspeusions, one can obtain diffusion coeflicients for the
water peak and the methyl/phenyl peaks simultaneously. The signal attenu-
ation of the water peak yields the water diffusion coefficient in the colloidal
suspension according to the |uation (from Equation 3.11)

S(g) =S (=" D(A = 4/3)) (5.1)
Shown in Figure 5.1 is the sigual attenuation for the p-xylene spectrun for
gradient strengths (in G/cin) from 30 G/cw to 1000 G /e in 32 steps where
the water signal has been completely eliminated. This would not be the case
for bulk p-xylene which has a self diffusion coefficient of the same order of
nagnitude as water (= 2 x107% m*/s ). However, p-xylene in a polystyrene
colloid diffuses more slowly (= 1.4 x 107 m?/s).
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Figure 5.2: Nou-mono-expouent signal attenuation curve for 0.99 ;an
polystyrene suspension. Note that In(S™ 1al) is plotted. so single exponen-
tial behavior according to Equation 5.1 would result in a linear plot. Here
k is a gradient strength parameter where k= v2¢26%(A — §/3). The initial
slope &~ 1.4 x107'2 m?/s, is interpreted as the effective diffusion coefficient
of p-xylene in the porous polystyrene mat .

A signal attenuation for such an experimer  is shown in Figure 5.2. Here the
signal attenuation curve is not a mono-exponential curve. There are multiple
effects that are important:

e P-xylene is diffusing in a porous polystyrene medium.

e We hypothesized that on exponent  timescales, the porous medium
simply makes the effective diffusion cc lent smaller.

e Even so, the p-xvlene should see the effect of particle size (restricted
d siow).

e ~ addition, ' ere is the slow . 1sion of the colloid itself.



5.2.1 Restricted Diffusion

Diffusion of molecules inside a cavity is known as ‘restricted diffusion’. As
thie molecules inside the cavity are not diffusing freely. the beliavior of sig-
nal attenuation is ditferent from that of unrestricted diffusion. Murday and
Cotts [64] obtained the signal attenuation of  pulsed-field graclient spin echo
experiment for the diffusion within a reflecting spherical boundary of radius
a (note that this equation implies that the signal still has a mono-exponential
dependence, but that the relation of the slope to the diffusion coefficient is
more complicated)

S(9) = exp (=2+7¢*F) (5.

7
(S
~

where F = Z fla,,) and

m=1
22 o v 20 2+e a2, DA = 3)) = 2exp (—aZ, Dd)
f((-\m) ”m(“m”‘ - 2) {_ _ - 2 2
(1777U (077? )
R 2 i 9 yeos
_ Zexp(a;, DA) +exp (—a;, D77+ ))]
(a7, D)?
(5.3)
Here o, are the roots of the Bessel functi  equation
ot S5 (Qopa) — 5 apa) =10 (5.4)
Still the signal attenuation for restricted 1slon 1s an exponential decay hut
apart from o and A. it has a dependencc Lhe size (a) of the cavity as well.

Note that Equation 5.3 would reduce to the signal attenuation equation for
bulk diffusion (Equation 5.1) when the size of the spherical boundary become
very large. By using Mathematica we solved Equation 5.2 numerically for
2a= .99 g, A= 300 ms, d=2 ms and D= 1.0 x 10712 m?/s to 2 x 107
m?2/s. The dependence of F on D is shown in Figure 5.3.

Again a plot of signal attenuation of xylene inside 0.99 pan spheres is plotted
as a function of & where &’ = 24°%¢%. Fo  wing Equation 5.2, the slope of this
exponential curve is  ual to F. Figure 5.4 shows tlie plot where we obtained
F= (1.7 ~ 0.1) <10 ™ m? s, ..om Figure 5.3 it is quite clear that there is
no such value of F to get the diffusion coeflicient of oil inside the particle.
This is because the derivation of signal  tenuation formula has bheen carried
out only for the case of liquid contained in a sph - -al cavity.
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Figure 5.3: A numerical solution of Equation 5.3 for 2a= 0.99 pm. A= 300
ms, 6=2 ms and D= 1.4 x 107 m?/s to 2 x 107Y m?/s. The range of D
values used are experimentally reasonal - values. The high value (2 <107"
m?/s) is an upper limit corresponding to bulk p-xyvlene. The low value (1.1
x1072m?/s) get from initi  slope of Figure 5.2.

)
(8]



0.0
-0.5 1
-1.0 1
-1.5 - W

-2.0 u

In (Signal)

-2.54 L]
-3.0  a
-3.5 u

-4.C -
0.0 "5 50  7.5x10°°
K’
Figure 5.4: Signal attenuation curve for 0.99 g polystyrene suspension as
a function of A where &' = 272¢g°. Here in  al slope. F, is 1.7 » 1071
should correspond to the low-gradient as' iptotic value for effective xylene
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bulk diffusion in a polystyrene matrix.
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Figure 5.5 Experiments of large gradient show single slope hehavior.

Thus our hypothesis that the porous medit 1 simply made the effective dif-
fusion coefficient smaller appears not to be valid. In the present case, we
have oil diffusing within a polystyrene matrix which is a complex porous
structure.  Such diffusion i1 a porous structure can be simulated by using
molecular dynamies simulation which has ot done yvet. So currently it is
not possible to fit the entire data (for all gradient strengths) using a single
functional forn.

5.2.2 Relation of Diffusion Coefficient With Sphere Di-
ameter

For all of our analysis. we assume reasonably that regardless of the final
fit function for restricted diffusion. it should asymptotically approach the
colloid diffusion value at large gradic  strengths. It is shown in Figure 5.5
that the signal attenuation for large gre  ent show single slope belhavior.
Here the gradient strengths varied from »m 300 G/cim to 1000 G/cm in
32 steps. Using the asymptote to the  rve of In (Signal) vs.  gradient
strength parameter k and for monodisperse colloidal suspensions with particle
diameter .99 yan, 0.79 gan, 0.54 gan and 0.25 jan the diffusion measurement
results are as shown in Table 5.2. It is worth mentioning that the diffusion
coefficient. for 0.99 jun colloids (for bo  xylene and TPS infused colloids)
agrees. within error.

Figure 5.6 shows that onur assuiption (¢ asyviuptotic behavior at large gradi-
ents corresponding to colloid diffusion) for data analysis is indeed valid. The
measured colloid diffusion values for different particle sizes ave compared with
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Figure 5.8: A dependence of du.asion cor ient for 10% suspension of 0.99
an polyvstyrene spheres. Here the diffusion coefticient follows D = A 4+ B/A
where A=(6.13 £0.02) x 107" m?/s and B=(3.01 +£0.02) x 1t “*m* We
interpret the crossover from sharp A dependence to weak * dependence as
a crossover to true colloid diffusion.



diffusion coefficient represents the diffusion of oil inside the sphere. As the
random motion of oil is restricted by the boundary of the sphere. diffusion
coefficient of oil varies with *  So for A >300 s, we probe the colloidal
diffusion. For A =~ 500 ms, A = 71 (the interparticle interaction distance),
and the measured colloidal diffusion coefficic t is becoming more sensitive to
interparticle collisions.

5.3 A Binary Mixture

5.3.1 1D Spectrum

I the binary mixture we had tri-nethyl phenyvl silane in 0.99 gn particles
and p-xylene in 0.79 pm particles. The 1D spectrum is shown in Figure 5.9

5.3.2 Simultancous Mcasurement of Two Spccies

From the binary mixture, we obtained simultaneous signal attenuatious for
both large and small particles (Figure 5.10) and thus the diffusion coeflicients
of two species simultaneously. Diffusion coeflicients for 0.99 gm and 0.79 gm
are (4.11£ 0.1) x107% m?*/sec and (4.794 0.1) <107 m?/sec respectively
(Figure 5.10 and solid spheres in Figure 5.11). Comparison of these data with
hydrodynamic theory (Equation 2.8 and Equation 2.9) requires the value of
diffusion coeficients at dilute limit (Dy). Using the ideal Stokes-Einstein
alue rather than an experimentally meas  d Dy, we find that the ditffusion
cocfficients for the binary mixture are & . larger than that predicted by
hydrodynamic theory (Equation 2.8 and Equation 2.9). An experimental
measurement of diffusion coefficient at infinite dilution can be obtained by
measuring the volume fraction dependence of the diffusion coetlicient. which
is to be done in future. But the ratio of values of diffusion coeflicient for two
particles in the same binary suspeusion are close to the particle size ratio.
wlhicly is expectecl for dilute suspension.

5.4 Discussion

We obtain spectrallv-resolved NNR signals for colloidal microspheres in aque-
ous suspension. The signal ar not from the colloid itself but from oil
absorbed within the porous colloid matrix. PFG-NMR studies exhibit a
non-mono-cxponential signal attenuati wve (Figure 5.2) indicating that
oil undergoes diffusion in a restricted g Iy,



[ "1e3|
i 1

10

JUU N J \\h___ __J \ J L

-L T T T T T T T T T T T T T

8 6 4 2 0 Ippml

Figure 5.9: 1D spectrum of binary mixture of 0.99 g and 0.79 g spheres
with tri-methyl phenvl silane and p-xvlene inside respectively. The peaks
are (A) Phenyl peaks from both p-xyvlene nd tri-methyl plienyl silane. (B)
Water peak, (C') Methyl peak of p-xvlene. (D) Methyl peak of silane. €' and
D peaks are separated by 2 ppui.

60)



1 6
8] .?\.. | e PS(0.99x10°m)
64 o, in a binary mixture
.l N . PS (0.79 x 10° m)
] in a binary mixture
b
- ‘e,
S .t
o 0.1+ " “e
8- ®e
6: L °
4+ ®e
- a
2- “u
a :
— . T T T T
2 4 6 8 10x10
k

Figure 5.10: Signal attenuation for both large 0.99 pan and small 0.79 yan
particles in a binary mixture.






We hypothesized a simple form of restricte  diffusion for the oilin - ¢ colloid.
We simply assumed that the oil had an effectively lower different. diffusion
coefficient in porous polystyrene but still experienced restrictions siniply due
to the spliere bhoundary (as in Equation 5.2 to Equation 5.4). Our simple
hypothesis for diffusion in a spherical cavity is not upleld by experiments
implyving that a more complicated theory is needed (simulation of xvlene
in porous medium that is itself a sphere executing a random walk). How-
ever at large gradient strengths, the signal attenuation appears to have an
asyuiptotic mono-exponential form (Figure 5.5). Using this asymptote we
get reasonably good agreement with thieoretical expectations. In particular,
all diffusion coeflicients are below the ideal value at infinite dilution, which
is an upper bound. Deviations from the hydrodynamic theory must be ad-
dressed with systematic experiments as a function of volue fraction. Owur
PFG-NMR measurements are signal-limited for volune fractions less than
10%. However at low volume volume fractious (1%) confocal microscopy ex-
periments can be carried out to vield diffusion coefficients of infinite dilution.
Dependence on A implies some form of restricted diffusion. Moreover, the
dependence on D at large A (A = 500 ms) suggests that we are probing the
slowing down of colloid diffusion due to interparticle interactions.

We are able to probe bidisperse colloidal suspensions successtully using PFG
NMR. and simultancously obtain ¢t on coethicients for cach species.




Chapter (

CONCLUSIONS

6.1 Summary

I this thesis we devised a syuthiesis schenie to make colloidal particles NN R-
visible as well as visible Dy fluorescence la  -scanning confocal microscopy.
This was done by making "oil’~infused colloidal particles, by mixing a water-
insoluble organic liquid - either p-xvlene or triphenvl methyl silane - with
a colloidal suspension of polystyvrene microspheres and ultrasonicating un-
til it was absorbed within the microspheres. A dissolved Huorescent dye in
the oil made the par les fluorescent. We used the fluorescence to charac-
terize the uniformity of the oil absorption v confocal microscopy. We used
measurements of conductivity to eusure tly - our system was hard-sphere like.

The synthesized suspensions of colloids were probed by PFG-NMR. Since we
probe diffusion of colloids via diffusion of the oil absorbed in it. the signal
attenuation has multiple effects. First. oil diffuses within the pores of the
polvstvrene that makes up the colloidal spheres. Second. the boundaries of
the spheres act as restrictious for collo  diffusion. Third, the (slower) mo-
tion of colloids contributes to the measured oil diffusion. The third eftect is
most important at high gradient field strengths.

Treating the polymer sphere as a simple spherical cavity, we attempted to
fit the entire signal i -cnuation curve at all gradient strengths. Such a fit s
not possible. suggesting a more complica | model for diffusion within the
polystyrene matrix. However, by extracting the asviuptotic behavior at high
gracient field strengths (the maximum value used was 1100 G/cm). we were
able to obtain true colloid diffusion coefficients for monocdisperse suspensions
at different particle sizes. The experimental results are in reasonable agree-
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ment with hvdrodynamic theory.

The dependence of diffusion coefficient on diftusion time A, displaved an ex-
pected slowing down at large diffusion times when colloid-colloid interaction
becontes more important. It also suggests thiat both short-tinie aud long-
time diffusion coefficients can be accessible in these studies.

We successtully measured diffusion coeffic  ats for two particle species (a "bi-
nary colloidal mixture’) simultancously by PFG-NMR whicli, as a result, will
allow studies of binary colloidal suspensic.  as a function of colloid sizes aud
uumber ratios for different vohune fractions.

The model svstem presented in this thesis establishes that the study of the
dyvunamics at colloidal phase transitions is possible using PFG-NMR.

6.2 Future vwork

Our goal is to study the dvioamics of har  sphere colloidal suspensions at
phase transitions. A svsteniatic study requires that we account for the re-
stricted diffusion of oil (xyles ?S) qua  atively so the entire signal atten-
uation curve can be fit. The urement of diffusion coeflicient as a function
of A, will allow us to extract both the short and long time self-diffusion coet-
ficients in one syvstem (as well as cross-over intermediate values). This would
be an importaut development in the study of colloidal dynamics.

Using PFG-NMR we can measure the d on cocflicient for a colloidal sus-
pension of volume fraction greater than 104, Confocal microscopy is. on
the other hand. limited to vo. 2 fractic  less than 3%. As our particles
are NMR-visible as well as Huorescent labeled, we will use particle tracking
confocal microscopy at low volune fractions to obtain single-species diffusion
coefficients to the dilute limit (this is an  xperimental alternative to using
the Stokes-Einstein relation). We also plan to study the volume fraction
dependence of diffusion coefficients botl for mono-disperse and bi-disperse
Lard sphere colloidal suspe idons. This will allow us to test the validity of
hivdrodyn: — ic theory for these systenms.

In the case of binary suspensions, on increasing volunme fraction one should

observe (for different size ratios and nw v ratios) a coupling of diffusion
coefficients leading eventually at Ligh par g to glassy beliavior. The onset
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of glassy behavior as a lunction of particle size ratios and volume fractions has
been probed theoretically but not in detail experimentally. We will approach
this regime on increasing particle volume fraction above 55%. The goal is
therefore to study binary mixtures for various particle size ratios and number
ratios in order to obtain detailed dyvnamics of concentrated colloidal plases
such as in concentrated colloidal Huid FCC and glass phases.
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