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eter that predicts whe =r malaria will spread. Furthermore, a sufficient condition is
obtained to guarantee that the disease will stabilize at a positive steady state even-
tually in the case where  the parameters are spatially independent. Numerically,
we show that the use of the spatially averaged system may highly underestimate the
malaria risk. The spat ly heterogeneous framework in this chapter can be used to
design the spatial allo .ion of control resources.

At last, we summa the results in this thesis, and also point out some problems

for future research in  pter 6.
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Chapter

Preliminaries

In this chapter, we present some terminologies | known results which are going
to be used in the rest of this thesis. They are involved in monotone dynamical
systems, uniform pers ence and coexistence states, basic reproduction ratios for
compartmental epidemic models in periodic environments, and the theory of spreading

speeds and traveling waves for monotone periodic semiflows.

1.1 Monotone dynamics

Let E be an ordered I 1ach e with an order cone P having noncmpty interior
int(P). Forz,y € E,we writex > yifzr—ye Pz >yifr—y€ P\{0}andz >y
if z —y € int(P). If a < b, we define the order interval (a,b]:={z € E: a < z < b}.

Definition 1.1.1 Let U be a subset of E, and f : U — U a continuous map. The
map f is said to be monotone if x > y implies that f(z) > f(y); strictly monotone if

z > y implies that f(z) > f(y); strongly monotone if x > y implies that f(x) > f(y).
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Definition 1.2.1 A bounded. A is said to attract a bounded set B in X if
limsup {d(f*(z),A)} =0.
n—co, €B
A subset A C X s said to  an attractor for f if A is nonempty, compact and
invariant (f(A) = A), and A attracts some open neighborhood of itself. A global
attractor for f : X — X is an attractor that attracts every point in X. For a
nonempty invariant set M, :set W (M) = {z € X : limp0o d(f(2), M) = 0} is
called the stable set of M.

Recall that a continuous mapping f : X — X is said to be point dissipative if

there is a bounded set _ in X such that By attracts each point in X.

Theorem 1.2.1 [105, Thec n 1.1.3] If f : X — X is compact and point dissi-
pative, then there is a connected global attractor A that attracts each bounded set in

X.

Definition 1.2.2 f is said to be uniformly persistent with respect to (Xo, 0Xo) if
there exists an n > 0 such that lim inf,_, d(f*(z),0Xo) > n for all z € X,.

Definition 1.2.3 Let A C X be a nonempty invariant set for f. We say A is
internally chain-transitive if for any a, b € A and any € > 0, there is a finite sequence
Zy, ..., Tm in A with z, = a, T, = b such that d(f(z,),zi41) <€, 1 <i<m -1

The sequence {x|,...,Tn} is called an e-chain in A connecting a and b.

Definition 1.2.4 A lower semicontinuous function p: X — R, is called a general-
ized distance function for f: X — X if for every z € (X, Np~1(0)) Up~'(0, 00), we
have p(f*(z)) >0, Yn > 1.
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Theorem 1.2.3 [105, Theorem 8.1.1] Let ®(t) be a T-periodic semiflow on X with
O(t)Xo C Xo, Vt > 0. Assume that S := ®(T) is point dissipative in X and compact.
Then the uniform persistence of S with respect to (Xo, 8Xo) implies that of ®(t) :
X - X.

Recall that the Kuratowski measure of noncompactness, «, is defined by
a(B) := inf{r : B has a finite cover of diameter < r}

for any bounded set B of X. It is not hard to see that B is precompact if and only
if a(B) = 0. Let (X,d) be a complete space, and let p : X — R, be a continuous
function. We define My {z € X : p(z) > 0} and OM, := {z € X : p(z) = 0}.

Definition 1.2.5 A continuous map f: X — X is said to be p uniformly persistent
if there exists € > 0 such that liminf,_ p(f"(z)) > ¢, Vo € My. The map is said
to be a—condensing (a-contraction of order k, 0 < k < 1) if f takes bounded sets
to bounded set and a(f(B)) < a(B) (a(f(B)) < ka(B)) for any nonempty closed
bounded set B C X with a(B) > 0.

Theorem 1.2.4 [60, Theorem 8.7 and Remark 3.10] Let f : X — X be a continuous
map with f(My) C My. Assume that f : X — X is asymptotically smooth and p-
uniformly persistent, and that f has a global attractor A. Then f : My — My has a
global attractor Ag. Analogously, this result still holds for an autonomous semiflow

O(t) on X with ®(t)Xo C Xy, YVt 2 0.

Let {f*}2, be the d rete semidynamical system defined by a continuous map
f: X — X with f(Mp) C My. A pointed zo € X is called a coexistence state of
{fr}2, if zo is a fixed point of f in My, i.c., 7o € My and f(zo) = zo. Assume that

X is a closed and con  :su of a Banach space (E,| - ||), that p: X - Ry isa
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continuous function such that My := {z € X : p(z) > 0} is nonempty and convex,
and that f : X — X is a continuous map with f(My) C M,. Then, we have the

following two results on the stence of a coexistence steady state.

Theorem 1.2.5 [60, Theorem 4.1 and Theorem {.7] Assume that f : X — X 18
a-condensing. If f: My — My has a global attractor Ag C My, then f has a fized
point £y € Ag. The analogous result holds for an autonomous semiflow ®(t): let O(t)
be an autonomous semiflow on X with ®(t)(My) C My, ¥t > 0. Assume that ®(t)
is a—condensing for each t > 0, and that ®(t) : My — My has a global attractor A,.
Then ®(t) has an equilibrium z¢ € Ay, i.e., O(t)zg = 29, Vt > 0.

Theorem 1.2.6 (60, .20 n 4.5] Assume that
(1) f: X — X is point dissipative and p-uniformly persistent.
(2) fm is compact for some integer ng > 1.
(8) Either f is a—conder g or f is conver k-contracting.

Then [ : My — My admits a global attractor Ag, and f has a fized point in Ag.

1.3 Basicre,___d1 :t._n ratios in periodi. environ-

ments

A central concept in the udy of the spread of communicable diseases is the basic
reproduction number, denoted by Rg, which is defined as the expected number of sec-
ondary cases produced, in a completely susceptible population, by a typical infective

individual (see, e.g., [3,24]). In many cases, one may expect that such a disease can
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invade the susceptible popu on if Ry > 1. Thus, we need to reduce Rq to be less
than 1 in order to eradicate a disease. For a large class of autonomous compartmental
epidemic models, the explicit formula for Rq was obtained in [91]. This work has been
extended recently to the periodic case in [95].

In this section, we will introduce the theory of basic reproduction ratios for com-
partmental epidemic modelsin| iodic environments developed in [95]. We consider a
heterogeneous population whose individuals can be grouped into n homogencous com-
partments. Suppose t!  the compartments can be divided into two types: infected
compartments, labeled by 7 = 1,2,...,m, and uninfected compartments, labeled by

t=m+1,...,n. Define X, to be the set of all disease-free states
Xe={z>0:2;,=0,Vi=12,...,m}.

Let F;(t,z) be the input rate of newly infected individuals in the i-th compartment,
V¥ (t,z) be the input rate of individuals by other means (for example, births, immi-
grations), and V (¢, ) be the rate of transfer of individuals out of compartment 7 (for
example, deaths, recovery and emigrations). Thus, the disease transmission model in
a periodic environment is go ned by a periodic ordinary differential system:

dl‘i

T =. .tz -Vt z) = filt,z), i=1,...,n,

where V(t,z) = V7 (t,z) -V} (¢,z). Assume that the model (1.1) has an infection-free
periodic solution z%(t)  (0,...,0,2%,,(¢),....z2())T with z%(t) >0, m+1<i<n

for all t. Let f = (f1,..., fs)" , and define the following matrices

M(t) = (W) , F(t):= (.575(;;?0(0))1 ’
J m+1<i,j<n i <ij<m

and V(t) == (%%ED)K”%.
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Then
F(t Vit 0
preae) | T ), ey = VY
0 0 J(t) —M(¢)
where J(t) is an (n — m) x n matrix.
Denote Tp(t) be the >nodromy matrix for the periodic system % = P(t)z.

Assume that

(B1) Foreach 1 < i < n, the functions F;(t, z), V7 (t, z) and V" (¢, z) are nonnegative

and continuous on R x R} and continuously differential with respect to z.

(B2) There is a real m  er T > 0 such that for each 1 < i < n, the functions

Fi(t,z), VI (t,z) and (¢, z) are T-periodic in t.
(B3) If z; = 0, then V;7 0. In particular, if z € X,, then V] =0fort=1,...,m.
(B4) ., =0 fori>m.
(B5) If z € X, then (t,z) Vi(t,z)=0fori=1,...,m.
(B6) p(Tam(T)) < 1, where p(T (7)) is the spectral radius of T (T).
(B7) p(T-v(T)) < 1.
Let Y(¢,5), t > s,1 the evolution operator of the linear T-periodic system
% = -V (t)y.
That is, for each s € R, the  x m matrix Y (¢, s) satisfies

%Y(t,s) =-V()Y(t,s), YVt >s, Y(s,s) =1,
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Theorem 1.3.2 [95, Theorem 2.1] Let (B1)-(B7) hold. Then the following state-

ments are valid:

(1) If p(U(T,0,A)) 1 has a positive solution Ao, then Ao is an eigenvalue of L,

and hence Ry > 0.
(2) If Ry > 0, then Ao = Ro is the unique solution of p(U(T,0,A)) =
(3) Ry =0 if and only if p(U(T,0,))) <1 for all X > 0.

For a continuous periodic function g(t) with period T, we define its average as

The following result gives explicit formulae for Rg in two special cases.

Theorem 1.3.3 [95, Lemma 2] Let (B1)-(B7) hold. Then the following state-

ments are valid:

(1) If V(t) = diag(Vi(t), ..., Vm(t)) and F(t) = diag(Fi(t),..., Fn(t)), then Ry =
max {!2}.

1<icm Vi
(2) IfV(t) =V and F(t) = F are two constant matrices, then Ry = p(V~'F) =
p(FVTH.

1.4 Spreadir 1s and traveling waves

Let C be the set of all bou  »d 1d continuous functions from H to R*, where H = R
or Z. Clearly, every vector in * can be regarded as a function in C. We equip R*

with the positive cone ., - that R* is an ordered space. For u = (uy,...,ug), w =
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Theorem 1.4.1 /57, Theorem 2.11, Theorem 2.15 and Corollary 2.16] (or [56, The-
orem A]) Suppose that Q satisfies (A1)-(A5). Let ug € Cy and u, = Qlu,_,] for

n > 1. Then there is a real number ¢* such that the following statements are valid:

(i) For anyc > c¢*, if 0 < up < 3 and uo(z) = 0 for x outside a bounded interval,

then limn—oo,l:rlznc Un (.L‘) J.

(it) For any c < ¢* and any o € [0,r] with o > 0, there exists r, > 0 such that if
up(x) > o for x on an interval of length 2ry, then liM, oo zj<ne Un(z) = 3. If, in
addition, @ is subhomogeneous on Cg, then r, can be chosen to be independent

of o > 0.

We call ¢* in the above theorem the asymptotic speed of spread (in short, spreading
speed) of the map @ on Cgz. In order to cstimate the spreading spced ¢, a linear
operator approach was developed in [57]. Let M := C — C be a linear operator with

the following properties:
(C1) M is continuous with r ect to the compact open topology.
(C2) M is a positive operator, that is, Af[u] > 0 whenever u > 0.

(C3) M satisfies (A3) with Cj replaced by any subset of C consisting of uniformly

bounded functions.
(C4) MR[u]] = R[M[u]], T,[M[u]] = M[T,[u]}, Yu e C, y € H.

(C5) M can be extended to a linear operator on the linear space C of all of functions

u € C(H, R*) having the form

u(z) = vi(x)e"'™ + vo(x)er?® vy, 12 € C, w1, o € R, x € H,
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such that if u,, v € C and u,(z) — u(z) uniformly on any bounded set, then

Mlun}(z) — MJul(z) uniformly on any bounded set.

Note that hypothesis (C4)  plies that M is also a linear operator on R*. Define
the linear map B, : R¥  R* by

B,lo] = M{oe™](0), Vo € R*.

In particular, By = M on R*. If 0, 0 € R* and 0, — ¢ as n — 00, then g e " —
oe™#* uniformly on any bounded subset of H. Thus, B,[o,] = Mo.e™#*](0) —
Moe™#](0) = B,[o], dhence B, is continuous. Moreover, B, is a positive operator
on R*. Assume that

(C6) For any u > 0, B, isp tive, and there is an ng such that B}* = B,B, ... B,
No—— —

ng
is a compact and strongly positive linear operator on RF,

It then follows from [57, Lemma 3.1] that B, has a principal eigenvalue A(p) with a
strongly positive eigenfunction. Moreover, we have the following property for A(u).
Lemma 1.4.1 [57, Lemma 8.7] A(u) s log convez on R.
The following conc on is nceded for the estimate of the spreading speed c*.
(C7) The principal e nvalue A(0) of By is larger than 1.

Define ¥(u) := #}, Vi > 0. Then, we can use the following result to estimate

the spreading speed of map Q.
Theorem 1.4.2 [57, Theorem 3.10] Let Q be an operator on Cy satisfying (Al)-
(A5) and c* be the asymptotic speed of spread of Q. Assume that the linear operator

M satisfies (C1)-(C7), and that the infimum of ¥(u) is attained at some finite value
pu* and U (400) > W(u"). Then the following statements are valid:
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(1) If Qu) < M(u] for allu  Cg, then ¢* < inf 50 ¥(p).

(2) If there is some n € ', withn > 0, such that Qlu] > Mlu] for any u € C,,

then c* > inf,50 ¥(u).

Based on the theory of spreading spéeds and traveling waves for periodic semiflows
in the monostable case [56}, we have the following result on the existence of spreading

speeds for periodic semiflows.

Theorem 1.4.3 [56, Theorem 2.1] Let {Qi}i>0 be a T-periodic semiflow on C,
with two x-independent T-periodic orbits 0 € u*(t). Suppose that the Poincaré map
@ = Qr satisfies all hypoth. s (A1)-(A5) with § = w*(0), and Q. satisfies (A1)
for any t > 0. Let c* be the asymptotic speed of spread for Qr. Then the following

statements are valid:

1) Foranyc > %, ifv e Cg with0 < v <« 8, and v(z) = 0 for x outside a bounded
T e}

interval, then limy oo |z1>tc @:[v](x) = 0.

(2) For any ¢ < % and any o € [0,r] with g > 0, there ezists a positive number
ry > 0 such that if v~ and v(x) 3> o for £ on an interval of length 2r,,
then iMoo 2i<tc(Qe[v](z) — u*(t)) = 0. If, in addition, Qr is subhomogeneous

on Cg, thenr, can  chosen to be independent of o > 0.

We say that W(t,a  =t) periodic traveli.  wave of the T-periodic semiflow
{Q:}s>0 if the vector- ued function W(t, 2) is T-periodic in t and Q,[W(0,-)](z) =
W(t,z — ct), and that W(t,z — ct) connects u*(t) to 0 if W(t,—o0) = u*(t) and
W (t, +oc) = 0 uniformly for ¢ € [0,T].
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Theorem 1.4.4 /56, Theorem 2.2 and Theorem 2.3] Let {Q,}i>0 be an T-periodic
semiflow on C, with two z-independent T -periodic orbits 0 < u*(t). Suppose that the
Poincaré map Q = Qr satisfies all hypotheses (A1)-(A5) with § = u*(0). Let c* be
the asymptotic speed of spread for QQr. Then the following statements are valid:

(1) For any 0 < ¢ < %, { " }iso0 has no T-periodic traveling wave VW (t,z — ct)

connecting u*(t) to 0.

(2) If, in addition, Q. satisfies (A1) and (A4) for each t > 0, then for any ¢ > %,
{@:}i>0 has an T-periodic traveling wave W (t,z —ct) connecting u*(t) to 0 such

that W (t, z) ts continuous, and nonincreasing in z € R.

Remark: If the reflection invariance, i.e., Q[R[u]] = R[Q[u]], is not assumed in (A1),
then we have the existence of the rightward spreading speed ¢ and the leftward
spreading speed ¢’ , see [97]. These spreading speeds can also be estimated by the
linear operators approach. Fi 1er, both ¢} and ¢ are the minimum wave speeds

for monotone traveling war  in the right and left directions, respectively.
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where [ is the number of the infective population, S is the number of the susceptible
population and N(t) = S(¢) [(t). Here d > 0 is the death rate constant at the adult
stage, B(N) is a birth rate function, 7 is the maturation time, d; > 0 is the disease
induced death rate, v > 0 is the recovery rate (;1/- is the average infective time), and
d, is the death rate constant for the juvenile stage. The standard incidence function
is used with /3% giving t| & ge number of adequate contacts with infectives of
one susceptible per unit time. Typical examples of birth rate functions B(N) in the

biological literature are:

(B1) By(N) = with p,g,n >0 and £ > d.

_p_
g+Nm™?
(B2) By(N) =4 +c, withA>0,d>c>0.
(B3) B3(N) = be %", witha >0, b > d.

Functions B; with n = 1 and B are known as Beverton-Holt function and Ricker
function, respectively.

Their model was obtained under the following assumptions:

(1) Transmission of disease is sumed to occur due to contact between susceptibles

and infectives.
(2) There is no vertical tra  aission.

(3) The disease confers no immunity, thus upon recovery an infective individual

returns to the s eptible class (hence the name SIS model).

This type of model is appropriate for some bacterial infections. If the population does
not recover from the disease, the recovery rate constant is set to zero, giving an SI

model.
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5.2.1]. It is also easy to see that if ¢ = (¢1, ¢2) € C([~,0],RZ) with ¢,(0) > 0, then
I(t,¢) > 0 and S(¢,¢) > 0 for all ¢ > 0 in its maximal interval of existence. For any
function z : [-7,0) —» R™, 0 > 0, we define z, € C([—7,0],R™) by z,(4) = z(t + 9),
V0 € [-7,0]. In what folli i, we write & for the element of C([—7,0], R™) satisfying
£(0) = z for all 8 € [—7,0].

2.3 A single population growth mod
In this section, we consider the single-species population growth model:
N'(t) = a(t)B(t = 7,N(t = 7))N(t — 1) = d(t)N(t) £ F(t, N(t), N(t - 7)),

where a(t) = e~ Ji-- 4195 We will establish four sets of sufficient conditions under
which system (2.2) ac ts a globally attractive positive T-periodic solution, and
hence, the single population stabilizes eventually at an oscillating state.

For any ¢ € C([-7,0], .), there is a unique local solution N(¢,®) of (2.2) with
N(0,¢) = #(8), V8 € [—1,0] (see, e.g., [38, Theorem 2.3]). Moreover, we have
N(t,¢) > 0 in its maxi il interval of existence according to [80, Theorern 5.2.1].

Consider the linear uation with time delay 7:
w/(t) = alt)u(t) + bO)ult - 7),

where a(t), b(t) are T-periodic and continuous, b(t) > 0, V¢t > 0.

For any ¢ € C([-7,0],R), let u(t,¢) be the unique solution of (2.3) satisfying
up = ¢. Let P be the Poincaré map associated with (2.3) on C([-7,0],R), that is,
]5(¢) = ur(¢). The following r 1t comes from {101, Proposition 2.1}.
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monotone and FP;° is strongly monotone when ngT" > 27. By the theory of delay
differential equation (see, e.g., {38, Theorem 3.6.1]), P} is compact. Moreover, we
note that F (¢, u,v) is strictly subhomogeneous in (u,v). Using the similar arguments
as in {104, Theorem 3.3|, we can deduce that P, is strictly subhomogeneous in the
sense Py(ad) > aPy(p) for ¢ > 0 and 0 < @ < 1. Thus, Py is also strictly
subhomogeneous.

Note that 0 < Py(0). We claim 0 < P,(0). Suppose not, then P,(0) = 0. hence,
N(T+6,0) =0forall§ € [-7,0 1d N'(T,0) = 0. However, N'(T,0)=G(T—7,0)a(t)

> 0, a contradiction. Consequently, 0 < P5(0). Thus,
0 < Py(0) < P}(0) < -+ < PPo(0) <« PpotH(0) < -+ .

Therefore, for any ¢; € wy, (0), we have ¢; > PJot'(0) > 0. where w,,(¢) denotes
the omega-limit set of ¢ under Py°. Moreover, V¢ > 0 and Yy € wn (@), we have
¢ > PP*Y0) > 0 from the monotonicity of Py.

By Theorem 1.1.2 as applied to P3*°, there exists a ¢y > 0 with PJ%(¢0) = ¢ such
that ¢ = wy, () for all of  ~ 0. Regarding (2.2) as an nyT-periodic system, we then
see that (2.2) admits a ">l y tractive positive nyT-periodic solution N(t, ¢o). It

remains to prove that N(t, ¢o) periodic, that is, ¢y is a ed point of P,. Since
0 < Py(0) < PZQ(O) < < PR0) € Poti(0) < e

and Ppm(0) — ¢ as n — oo, it casily follows that PJ(0) — ¢ as n — oo, and
hence, ¢g is the fixed »>int of P,. Therefore, N(t,¢o) is a globally attractive T-
periodic solution for (2.2) in C([-7,0],R;)\ {0}. =

2.3.3 A general periodic form of B3(.V)

In this subsection, we take B(t, N) = p(t)e™9“" and assume that
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(S1) p(t), q(t), d(t), di(t) are nonnegative and T-periodic in ¢, and p(t) > 0, q(¢t) > 0
for all t € R;

(S2) r=r(P5) > 1, where r(Ps) is the spectral radius of P5, and P is the Poincaré

map of the following linear equation
N'(t) a®)plt—-7)N({Et—71)—=d(t)N(t).
Note that

N'(t) = a(t)p(t—r)e INED N — 1) — d(t)N(¢)

a(t)zgi — :;e—l —d(t)N(2).

Consider the periodic ordinary differential equation

U = a(t)zgi — 3 et —d()U(1).

It then follows that equation (2.6) has a unique periodic solution
U*(t) = e=hds

t nlm — ) w r,\Ta(w)Me‘lefow d(s)ds o)
[/ a(w) Tlelo A gy 4
0

QUU —T) elo @t8)as _ ]

and U*(t) is globally asymptotically attractive for (2.6) with U(0) > 0. By the
comparison theorem, we ha  N(t,¢) < U(t,¢(0)) for all ¢ in its maximal inter-
val of existence, where U(t,$(0)) is the solution of (2.6) with U/(0) = ¢(0). Since
tlin;(U(t,é(O)) —U*(t)) 0, e solution for (2.2) exists globally, and the periodic
solution semiflow for "~ 2) is point dissipative.

In addition to (51)-(S2), we further assume that

(53) U°(8) < -

1
q(t
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For any ¢ € [0, U3, we have

2 (6NN~ 7,9)
= (1= gt = TIN(t = 7, O)al)p(t ~ r)e~HeVr

>(1=-q(t— U (t—7))alt)p(t — ’r)e"q“‘T)N(t'T’q") > 0.

It then follows that P} is strongly monotone in [0, U}] when noT > 27. Note that
E(t, N(t), N(t — 7)) is strictly subhomogeneous. Using the same argument as in
(104, Theorem 3.3], we can deduce that Pj is strictly subhomogeneous. Thus, P
is also strictly subhomogeneous. It then follows from Theorem 1.1.2, as applied to
PP U = (0,0 — U, that P has a fixed point ¢ 3> 0 in [0,U;] such that
cvery nonempty compact invariant set of Py is in int(C([—7,0],Ry)). Since for
cach ¥ € C([-7,0],Ry) \ {0}, w(¥) is a nonempty compact invariant set of P}
in [0,07] and w(¥) C int(C([-7,0},Ry)), it follows that w(¥) = ¢p, and hence,
Py(do) = ¢o. Therefore, N(t, @) is a globally attractive T-periodic solution for (2.2)
in C([-7,0,R;)\ {0} m

Assume that

! _ -2 : 1
(83)" max {a(t)p(t —7)e™*} < min {—~rm )

Then, we have the following result.

Theorem 2.3.4 Assume that (S1),(52) and (S3) hold. Then (2.2) admits a globally
attractive positive T-periodic solution in C([~7,0],R4) \ {0}.

Proof. Note that

E(t,ug, v2) — E(t,uy,vy) > —d(t)(us — uy) — p(t — e 2a(t)(vy — v)).
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We use the exponential orderi: introduced in [81] to prove this theorem. For some

i1 > 0, we define
K,={¢p€C([-7,0] ,):¢>0and o¢(s)e” is nondecreasing on [—,0]},

and K, = K, N C, where Cy, is the Banach space of Lipschitz functions on [—7,0]
with the norm ||¢] 1, 1= [6] + sup{|b Wi:s#£t,ste|-70]}.
Denote the exponential ordering dcﬁned by K, as <,. Then if ¢ <, ¥, we have

e Y(=7) = o(=7)] S ¥(0) = #(0), e, Y(-7)—o(~7) < e [1(0) — ¢(0)].
Therefore,
p(¥(0) — ¢(0)) + E@t, N(t,¥), N(t — 7,¥)) — EQt, N(¢,9), N(t - 7,9))
= p(¥(0) — ¢(0)) + E(t, ¢(0), ¥(-7)) — £(t, #(0), ¢(—7))
)

r(¥(0) = 9(0)) — d(t)(¥(0) — #(0)) — a(t)p(t — T)e*(P(~7) — 6(-7))
[ = d(t) — a(t)p(t — 7)e"2e*T}(12(0) — 6(0)).

v

v

Since

_2 .
OT&XT{Q( Jplt e} < 0r<ntl<nT{ T€l+Td

7} and ¥(0) - ¢(0) > 0,
there is some g > 0 such that
o4 a(t)p(t—T)e %t >0,
and hence,
p(¥(0) — #(0)) + E(t, w(0), v(—7)) — E(t, ¢(0), (7)) > 0.

For every ¢ > 0, we have N(t,¢) > 0 and there exists M, > 0 such that ¢ <, M, and
E(t, My, My) <0. Th  N(t,¢) < My, N(t,$) exists for all t > 0. By [80, Theorem
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6.2.3], P{° is strongly monotone in the ordered space (Cr, K,) for ngT > 7, where Fs
is the Poincaré map of (2.2).

If >, 0in K,, th N(t,¢) > 0forallt>—7r. For0 <A< 1,let W(t) =
N(t, Ad) = AN(t, ), then W(0)=0. Since

W'(0) = N'(0, ) — AN'(0,¢)
= a(0)p(=T)e I=MTING(—7) — Aa(0)p(~T)e M TH T g(—r) > 0,

we have W(t) > 0 for all sufficiently small ¢ > 0.

We further claim W(t) > 0 for all ¢ > 0. Suppose not. Then there is to > 0
such that W(ty) = 0, W(t) > 0 for t < to, and d—gp < 0. Since A¢ <K, ¢,

to

Nty — 7, A¢) < N(to — 7,@). Then we have

dvdvt(t) i = E(to, N(to, Ad), N(to — 7, A¢)) — AE(to, N(to, ¢), N(to — 7,6))
= a(te)p(te — 7)e o™ INM=" I N (1, — 7 Ap) — d(to) N (to, Ad)
—[a(te)p(to — T)e~omTINW=TOAN (1, — 7, ¢) — Ad(to) N (to, ¢)] ,
> alty)p(te — 7)e It DN XA N (1, — T, ¢)
—a(te)p(te — T)e WoTINI=TENN (1, — 7, 0)

= a(ty)p(to — T)[e“’(tO_T)N(iO‘T‘A@ - e"q(LO'T)N(tO‘T"b)])\N(to -7,9) >0,

a contradiction. This proves that W (t) > 0 for all ¢ > 0.

For every ¢ 3, 0, let Z(t  N(t,Ad) — AN(t,8))' + u[N(t, Ad) — AN(t, 8)]. Then
Z(0) = W'(0) > 0, ! ce for sufficiently small t > 0, Z(t) > 0. We claim that
Z(t) > 0 for all t > 0. Suppose not, then there is a to > 0 such that Z(to) =0 and
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Z(t) > 0 for t < to. It then follows that
Z(to) = a(to)p(to — 7)e™ =TIV =TAIN (t5 — 7, A@) + u[N(to, Ad) — AN(to, ¢)]
—[Aa(to)p(to — T)e 4to=TINU=T@IN (1o — 7 &) — Ad(to) N (to, )] — d(to) N(to, Ao)
> alty)p(to — 7)e M TINt—TAI N (3 — 7 Agp) + [ — d(to)} [N (to, Ad) — AN (to, B)]
~a(to)p(to — 7)e~ITTINUITTEN (1o - 7, 9)
2 —afto)p(to — e 2[N(to — 7,Ad) — AN(to ~ 7,9)]
+[u = d(to)][N (o, A®) — AN(to, ¢)].
Since Z(t) > 0 for all t < to, we have N(tg — 7,A¢) — AN(tg — 7,¢$) < et
[N(to, A@) — AN (2o, ¢)], and hence

Z(to) > [—alte)p(to — T)e e + p — d(to)][N(to, Ad) — AN (tg, )] > 0,

a contradiction. Thus, t) > 0 for all ¢t > 0. It then follows from [80, Theorem 6.2.3)
that Vy(A@) >, AN(¢) for t > 7 and PJ°(A@) >, AP°(¢) in K, for ngT > 7.
Since for every ¢ € C([-7,0],R;) \ {0} and t > 0, we have

[‘N(tv ¢)], + ,UN(tv Cb)
= a(t)p(t — 7)e WEINETA Nt — 7 ¢) — d(t)N(t, ) + uN(t, ¢)

> [ = d(DIN(1,8) >0,

and hence, P'°(¢) € int(K,) for noT > 7. By using P;°(¢) if necessary, we may
therefore assume that ¢ € int(K,) to study the asymptotic behavior of ¢ > 0 under
P,

For any 3 > 1, choose Vj [0,,1350];(“ where hg is determined such that p(t — 7)
e~dt=Th o(t) < d(t) always holds for all t > 0 and h > hg. Then Vj is positively
invariant. First note that when noT > 7, P2 is order-compact in the sense that

Pi([u,v]k,) is precompact for | of u <, v. Moreover, Pg* is strictly subhomoge-

Q

neous and strongly monotone with respect to the exponential ordering.
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By the continuity and differentiability of solutions with respect to initial values, it
follows that the Psisdi rentiable at zero, and DPs(0) = P, where P; is the Poincaré
map of the linear equation of (2.5). Clearly, P;® is compact. Moreover, P is strongly
positive for the exponential ordering K,. Furthermore, D(P(0)) = (DP5(0))™ and
r{D(PM(0))} = r{(DPs(0))}™  [r(Ps)]™. By Theorem 1.1.3, P has a unique
positive fixed point ¢q in Vg, and ¢ is globally asymptotically stable with respect to
Vs \ {0}. This implies that wp,(6) = ¢ for all ¢ € Vj, where wy,(¢) is the w-limit
set of ¢ associated with FPJ°.

By the arbitrariness of 3, it then follows that (2.2) admits a globally attractive,
positive ngT-periodic solution N(t,¢q) in C([—7,0],R,)\ {0}. It remains to prove
that N(¢,o) is also T-periodic. For ¢ > 0, since Py™(¢) — ¢o as n — oo, it then
follows that Ps(P;™(¢)) — Ps(@o) as n — oo. On the other hand, P5(P™(¢)) =
P (Ps(0)) — ¢oasn — Thus, P5(¢o) = ¢o, and N (¢, ¢o) is a globally attractive
T-periodic solution for (2.2) in C([-7,0},R)\ {0}. =

2.4 Threshold dynamics

We now assume that a disease is invading the population, and the population is
divided into susceptible and i1  :tive classes. The disease transmission is modeled by

system (2.1). In this section, - will study the global dynamics of system (2.1). Let
M :=C([-7,0,R2), My  {(¢1,02) € M : $2(0) > 0} and OMy := M\ M.

Clearly, My is an open set relative to M. Note that (N*(t),0) is the disease-free
periodic solution of (2.1). By linearizing (2.1) at (N*(t).0), we obtain the following

linearized equation for the infective population variable I:

() = B&)I(t) = (d(t) + do(t) + V() (1) (20
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For € > 0, we can cho sufficiently small positive number §y, such that
at)B(t—m,N)>a(t)B(t —7,0%) —¢, Vt >0, 0 < N < 6.
Since gbiir%) Ny(#) — 0 uniformly for t € [0, T], there exists §; > 0 such that
IN(@)I| < 8o, Wt € [0,T], l|o]l < b1

Suppose, by contradiction, that limsup ||®(nT)¢| < ¢, for some ¢ € My. Then
there exists an integer Ny = 1 such that || ®(nT)¢|| < 6;, Yn > N;. For any t — 7 >
MT, we havet = nT+t' withn > Ny, ¢’ € [0,7] and |[®(¢)o]] = || P(¢)YP(nT)of < do.

Then,

N'() > at)B(t -1, Nt — TNt —  — (d(t) +da(t))N(2)

Y

(a(t)B(t —7,07) ~e)N(t — 1) — (d(t) + d2(t)) N (t).

Since N(t,¢) = S(t,¢) +I(t,¢) > 0, ¥Vt > 0, V¢ € My, we can choose a small number
k > 0 such that N(t,¢) > ku(¢),Vt € [N\T, N,T + 7|. By the comparison theorem
(80, Theorem 5.1.1], N(t,¢) > ku*(t),vt > N;T, and hence, tllrg N(t, ¢) =
0o, a contradiction to the  form boundedness of N (¢, ¢).

In the case where (C2) holds, we can choose € small enough such that
. _ +y ‘
rtnzlcr)l{a(t)B(t 7,07) —e} > erzlox{d(t) + dy(t)}.
For ¢ > 0, we can choose a sufficiently small positive number dp, such that
at)Bt— N)>a(®)B(t—7,0")—¢, Vt >0, 0< N < &,
Since glbin% Ni(¢) — 0 uniformly for t € [0, T], there exists d; > 0 such that

HNI(‘b)” < by, Vt € [O’T]’ “d’” < 51-
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Suppose, by contradiction, that limsup ||®(nT)dé|| < 4, for some ¢ € My. Then
there exists an integer N; > 1 such that [|®(nT)¢| < §;, Vn > N;. Forany t — 7 >
N T, wehavet =nT+t' withn > Np, t' € [0,T] and ||®(¢)d] = |2t )P (nT)o| < bo.

Thus

N'(t)

%

a(t)B(t —m,N({t —1))N(t — 1) — (d(t) + d2(t))N(t)
> (a(t)B(t—1,07) —e)N(t — 1) — (d(t) + d2()) N (t)
> min{a(t)B({t —7,0") —e}N({t—-71)— IT[I)%‘({d(t) + da(t)} N ().

t>0

Since

min{a(t)B(t - 7,0") ~ e} > max{d(t) + da(1)},

£20
it follows from [80, Theorem 5.1.1] that there is a solution u*(t) = e*u with s > 0

and u > 0 for the following equation:
u(t) = r}l)i(r)l{a(t,u@ -7,0") —clult —7) - r{l)&ox{d(t) + da(t) pu(t).

Hence, u*(t) » oo ast  oo. Since N(t,¢) = S(¢t,@)+1(t,$) > 0,Vt >0, ¢ € My, we
can choose a small number £ > 0 such that N(t, ¢} > ku*(t), Vt € [T, N\T +7]. By
the comparison theor  [80, Theorem 5.1.1], we have N(t, ¢) > ku*(t), V¢ > N\T + 7.
Thus tliglo N(t,¢) =00, a a contradiction. This completes the proof of claim 1.

In the case where Ry 1, we have foTﬂ(t)dt < fOT(d(t) + da(t) + ~(t))dt. If
I{(0) > 0, then N(¢t) > I(t) > 0, Vt > 0 and hence, we have

I'(t) < (3(t) = (d(t) + da(t) +7(8)))I(t), VE = 0.

Then
I(t) < 1(0)(3[0‘ Bls)=(dle)+da()+7(Nds i >
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Since lim ®(t)¢ = (Ng,0) uniformly for ¢ € [0, T, there exists 7, > 0 such that
$—(Ng,0)
1®(t)p — (N3, 0)]| < m, vt €[0,T], ll¢ — (Ng,0)]| <. Then we have the following

claim:
Claim 2. limsup ||®(r.. ,& — (N3, 0)|| > 1, for all ¢ € M.
Suppose, by contradiction, that lim sup ||®(nT)¢— (Ng,0)|| < n, for some ¢ € Mp.

n—oo

Then there exists an integer N, > 1 such that ||®(nT)é — (Ng,0)l| < n2,Vn > N,.
For any ¢t > N,T, we have t nT + ¢’ with n > N, and ¢’ € [0, T]. Thus, we have

[2(t)6 — (N5, 0) [ @(E)(@(nT)0) — (N5, 0)f < m, Vt = NoT.
Therefore, I(t) satisfies the following differential inequality
I'(t) > (B(t)mo — (d(t) + da(t) +¥(£)) (), vt = NoT.

By the comparison theorem, it follows that

1(8) 3 T(NyT)elar Gm—(ds)+aa(s)n()s

Since Rg > 1 and 75 € (721—0, 1), we have lim I(t) = oo, a contradiction.

t—oo

In the case where G(¢,0) 0, we choose
M, = (0,()) and M, = (Ng,0).

It then follows that M; and M, are disjoint, compact and isolated invariant set for
P in My, and Ag = U¢EBMO w(¢) = {M,, Mz}. Further, no subset of M, M, forms
a cycle in O0My. In v of two claims above, we see that .M, and M, are isolated
invariant sets for P in M, and W*¢(M;)NMy = 0, i = 1,2, where W*(M;) is the stable
sets of M; for P.

In the case where G(t,0) > O for all t > 0, M, is the only compact invariant set

for P in My, and hence we only choose i = 2 in the above argument.
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By the acyclicity theorem on uniform persistence for maps (see Theorem 1.2.2
or [105, Theorem 1.3.1 and Remark 1.3.1]), it follows that P : M — M is uniformly
persistent with respect to M. Thus, Theorem 1.2.3 implies that the periodic semiflow
d(t) : M — M is also uniformly persistent with respect to Mj. According to [106,
Theorem 3.1}, system = 1) has a T-periodic solution (S*(¢), [*(t)) with (S}, ;) € M,
for all t > 0. Clearly, S; > 0 and I} > 0 for all ¢ > 0.

It follows from Tl rem 1.2.6, with p(z) = d(x,0M,), that P: Mz — My has a
compact global attractor Ag. Since Ag = P(Ag) = ®(T) Ay, it follows that ¢,(0) >0
and @,(0) > 0 for all ¢ € Ap. Let BO:Uze[o,T] ®(t)Ag. We have By C My and
tlirg d(®(t)¢, Bg) = 0 for all ¢ € My. Definc a continuous function p : M — R, by

p(¢) = min(9;(0), 62(0)), Vo = (d1.02) € M.

Since By is a compact su  t of My, we have infyep, p(¢) = mingep, p(@) > 0.

Consequently, there exists n > 0 such that

litm inf min(S(t, ¢),I(t,9)) = liminfp(@(t)d)) >n, Yo € M,.

—+ 00

This completes the proof. m

2.5 Numerical simulations

In this section, we use ecific birth functions to verify our results in the previous two

sections by numerical simulations.

Example 1. In this example, we choose B(t, N)N = NALEees®) gy = 0.5, d,(t) =

+N
1, 7= 1. Then a(t) = e~! and the equation (2.2) becomes
')(1-Lnos(t—1\) -1 1

=N ().
L+ V{t—1) 2 (®)
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Figure 2.2: Time ser  for each compartment with B(t, V) taking a gencral periodic

form of By(V).
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becomes

6 1
N'(t) = =N - g)giteost)=cos(t=4) (] 4 gin(¢ — 4))e~ 2N _ =N,

[t is easy to see that (S1) and (S2) hold for this equation. In this case,
(2.6) becomes

1 9,
m-——2dnd

— n{ — T —
0'(t) = a(t)qkz - T;e'l — 40 (1)

—d4-cos(t)—~cos(t—4) 12(1 + sin(t — 4))

o 14
= € e 1—5 (&)(t)

[

IN

e x4.8— é(_](t).

Hence, U*(t) < gv“ < 2, and (S3) holds. Our numerical simulations in Fig.
2.3(a) and Fig. 2.3(b) show that there is a globally asymptotically attractive positive
periodic solution N*(t). Moreover, if we choose dy(t) = é, B(t) = 1 + sin(t) and
¥(t) = é, then Rg = 2 > 1. Then, we have Fig. 2.3(c), which shows that the
disease is uniform persistence 1d there is a positive periodic solution when Ry > 1.
On the other hand, if e choose dp(t) = 1, B(t) = 0.2(1 + sin(t)) and ~(t) = i
then Ro =1 < 1. We have F*  2.3(d) for this case. For other initial data, we have
similar simulations, which may imply that every solution converges to the disease-free
periodic state.

Example 4. In this example, we choose d(t) = 0.2, d,(t) = 14+0.2sin(¢), 7 = 0.1 and
B(t, N)N = N(1 + cos(t))e™?V, then a(t) = e~ 01+0-2cos{t)=cos(t=01)) 4nd the equation

(2.2) becomes

. 1
N'(t) = N(t — 0.1)(1 + cos(t — 0.1))e 2N (=0D) g5+ 5 (cos(t)—cos(t-0.1)) _ =N,

It is easy to see that (S1), (52) and (S3)" hold for this equation, our numerical

simulations in Fig. 2.4(a) and Fig. 2.4(b) show that there is a globally asymptotically
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Figure 2.3: Time series for each compartment with B(t, V) taking a general periodic

form of B3(N): Case 1.
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By applying the | :url ion theory of a globally stable fixed point (see (82,
Theorem 2.2]) and the theorem on uniform persistence uniform in parameters (see
[105. Theorem 1.4.2]) to the Poincaré map of system (2.1), we can further show that
if Ro > 1. 8(t) > 0, vt € [0,T), and ||da(:)|| := Jnax |dy(t)] is sufficiently small,
system (2.1) has a globally attractive positive T—perlodlc solution (S(t),1(t)). On

),

(2.3(c))

and (2.4(c))) suggest that in the case where R > 1, every solution with nontrivial

the other side, our numerical results (for example, see Figs.(2.1(c)), (2.2(c)

initial data is asymptotic to a periodic solution, while these periodic solutions may
be different. This implies that there may be no uniqueness of positive T-periodic

solution for some dy(t) > 0.
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vector population in the study of vector-borne diseases.

The second aspect is the climate effect on the dynamics of vector population
and the biting rate from mosquitoes to humans. Transmission and distribution of
vector-borne diseases are greatly influenced by environmental and climatic factors.
Seasonality and circadian rhythm of mosquito populations, as well as other ecological
and behavioral features, are strongly influenced by climatic factors such as temper-
ature, rainfall, humidity, wind, and duration of daylight [44, 71]. It is believed that
malaria epidemics cau by me  rological factors can be predicted from climatic in-
dicators and climate forec s. Moreover, the malaria cases may significantly increase
due to climate change [62, . _, 108], since it will induce the change of the population
dynamics and biting pattern of its mosquito vector. Therefore, it is important to un-
derstand the climate-based dynamics of malaria transmission well enough to predict
the malaria burden and manage control programs efficiently.

In this chapter, by t: 1 the key feature of climate/seasonality into account,
we derive a periodic model to describe the dynamics of malaria transmission. We
calculate the basic reproduction ratio Ry and prove a threshold dynamics result in
terms of Ry. Using the m y mean temperature for KwaZulu-Natal Province,
South Africa, we estimate the ;1  odic coeflicients for the model and carry out some
scnsitivity analysis on Rg in order to to study the effect of control strategy, vector
immature duration, and global warming on the basic reproduction ratio. Nunierical

simulations are carried out to illustrate the obtained results.
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where Njp(t) = Su(t) + En(t) + In(t) + Ru(t), and H(t) = I,(t) + oRx(t). It is a
time-delayed periodic differential system, allowing us to study the effect of seasonal
fluactuations on malaria transmission.

Note that the whole adult mosquito population N,(¢) = S,(t) + E.(t) + 1.(t)

satisfics the following time-delayed equation:

NI(8) = bt — 7. Na(t 7)) exp [— | dm)dn] 4 (N0).

In the biological literature, there are three types of time T-periodic birth functions

(see, e.g., [17,19,84] for the autonomous case):

(B1) by(t,N) = 2O with p(t) > 0, ¢(t) > 0 and n > 0.

g(t)y+N™?

(B2) by(t, N) = a(t) + c(t)N, with a(t) > 0, c¢(t) ~ 0.
(B3) bs(t,N) = b(t)e *®VYN with a(t) > 0, b(t) > 0.

Using the theory of monotone dynamical systems, we obtained in chapter 2 and [101]
four sets of sufficient conditions for system (3.2) to have a globally asymptotically
stable positive T-periodic solution N}(t) (sce [101, Theorem 2.1] and Theorems 2.3.1-
2.3.4 in chapter 2). In the e where b(t, N) = b(t) > 0 for all t > 0, equation (3.2)
reduces to a periodic ordinary differential equation, and the dynamics of tlie mosquito
population is governed by the following cquation:
t
V0 == rrep |~ [ dstaan| - (o)
t—71

It is easy to see that (3.3) has a globally asymptotically periodic solution

N(t) = e Jodola)ds [fo' b(s — 7) exp [_ e dJ(f?)dTI] o3 duw)dw g g

_+ w—r

4
esu du(s)ds_l

[ AW S S 1 dj(n)d‘n]ef(;U du(s)dsdw}
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through (0, #). Note that G;(t,1) > 0 whenever 1 > 0 and ;(0) = 0. It then follows
from (80, Remark 5.2.1] that C([—7,0], R%) is positively invariant.
For the whole host population Ny(t) = Sy(t) + En(t) + In(t) + Rx(t) and vector

population N,(t), we have

Pl = Ay — dpNi(t) = Sulin(t) < An — duNa(t),

Wl = b(t — 7, Ny(t — 7)) exp [— /t_ dJ(U)dTI} = du(t)-Vu(2).

By the comparison principle, it follows that the solution exists for all t > 0. Morcover,

we have

limsup(Sh(t) + En(t) + [n(t) + Rn(t)) < -

and

limsup(Sy(t) + Eu(t) + () — Nj(t)) <0,

t—o0
where N;(¢t) is the unique positive periodic solution to (3.2). This implies that all
solutions are ultimately bounded. Moreover, when N,(t) > max{ho, %ﬁ} and Ny(t) >

max{ho. ;n }, we have

Ny, N,

ANl o apa D g
dt

This implies that all solutions are uniformly bounded. .

3.3 Threshc 1 dynamics

We define the “diseased” classes as the human or mosquito populations that are either

exposed, infectious, or recovered but slightly infectious, i. e., Ey, I, Ex, Iy and Ry,
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To find the disease-free s e, letting B, = I, = E), = I, = R, = 0, we then get

dS;t(t) = —d,(t)S.(t) + b(t — 7, S,(t — 7)) exp [— /_t dJ(n)dn] ;
ds(;t(t) A — dnSh.

Hence, there is only one dise  -free state, (V;(t),0,0, N;,0,0,0), in the case where
0 is not an equilibrium of (3.2), where N;(¢) is the positive periodic solution of (3.4)
and V) = B In the ¢ where 0 is an equilibrium of (3.2), there cxists another
trivial equilibrium, (0, 0,0, NV;,0,0,0).

In what follows, we introdu  the basic reproduction ratio for the malaria trans-
mission system according to the theory devcloped in [95] (see also section 1.3), which
is a generalization of the work in [91] to the periodic case. Linearizing the system at
the discase-free periodic state (N;(t),0,0, N}, 0,0,0), we obtain the following system
(here we write down only the equations for the “diseased” classes):

;

) = _(dy(t) o ,(t)+c,5(t)#5,§21h(t)+cm3(t)¥5i;—>Rh(t),

dt

dL(t) _ aE,(t) — dy(8)1,(1),

dt
¢ ZEY = 4B 1L(t) — (pr + dn) En(2),

) — ppEn(t) — (o1 + 0n + di) In(t),

dt

dRy(t) — Pllh(t) — (pR + dh)Rh(t).

\ dt

- [0 0 o0 cd(t)l;;%l caa(t)l%ﬂ'
0 0 0 0 0
Flt)y=10 d3(t) 0 0 0
0 0 0 0 0

00 0 0 0 |




3.3 THRESHOLD DYNAMICS 59

and ) ;
dy(t) +a 0 0 0 0
’ —a  dy(t) 0 0 0
V() = 0 0 pe+ds 0 0
0 0 —pE  pr+on +dp 0

i 0 0 0 —pr pr+dn |

Then we can rewrite (3.6) as

where x(t) = (E,(t), I,(t), Ex(t), In(t), Ra(t))T.
Assume Y'(t,5), t > s, is the evolution operator of the linear-periodic system

dy

i -V (t)y.

That is, for each s € R, the 5 x 5 matrix Y(t,s) satisfies

%Y(t‘ _VO)Y(ts), V> Y(ss) =1,
where [ is the 5 x 5 identity matrix.

Let Cr be the Bar  h space of all T-periodic functions from R to R®, equipped
with the maximum norm. Suppose ¢ € Cr is the initial distribution of infectious indi-
viduals in this periodic env , then F(s)¢(s) is the rate of new infections pro-
duced by the infected individuals who were introduced at time s, and Y{t, s) F(s)¢(s)
represent the distribution of those infected individuals who were newly infected at

time s and remain in the in | compartments at time ¢ for { > s. Hence,

U(t) = /_ Y{(t, s)F(s)p(s)ds = /000 Y(t,t —a)F(t — a)d(t — a)da
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Su(t), Exn(t), In(t), Ru(t)) of the system in C([-7,0],R") with E,(0) > 0,1,(0) >
0, Ex(0) > 0, I4(0) > 0, R, (0) > 0 satisfies

lim lnf(Ev(t)’ ]1’(t)’ Eh(t) ]h(t)' Rh(t)) ..>_ (777 T 77)

t—oo

Proof. Let

X =C([-7,0],RY),

‘YO = {Q = (Ol:¢27¢3)¢4)@57¢61¢7) € X: ¢1(0) > Ov Vi € {253\57637}}3
and 0Xo:= X\Xo = {¢ € X : 9;(0) =0 for some i € {2,3,5,6,7}}.

Clearly, Xy is an open set relative to X. Let u(t,¢) be the unique solution of the
system (3.1) with ug(¢)  ¢. Let ®(t)v = w,(w) and P : X — X be the Poincaré
map associated with system (3.1), that is, P(¢) = ur(¢), V¢ € X. It is easy to see
that ®(¢)(Xy) C Xo, V¢ > 0. Note that Lemma 3.2.1 implies that the discrete-time
system P : X — X is point dissipative and P™ is compact whenever nyT > 7. It
then follows from Theorem 1.2.1 that P admits a global attractor A in X. We first
prove that P is uniformly persistent with respect to (Xo, 9Xp).

Let A7y := {(0,0,0,N;,0,0,0)} and M, := {(V}.0,0,N;,0,0.0)}, where N, (0) =
N (8), V8 € [—7,0]. Since V;(t) is a positive periodic solution, we can choose a small
positive number &, such that

360 < inf N3 (1)

Since lim (®(t)¢ — M,) 0 uniformly for ¢ € [0, T], there exists ; such that

b— My

|®(t)d — Ml <o, VE€[0,T], ¢ — Ml <d

\We have the followit claims:

Claim 1. limsup| nT)¢ — M| > &, for all ¢ € Xo.

n—oo




3.3 THRESHOLD DYNAMICS 62

Suppose, by contradiction, that limsup {|®(nT)y — M| < & for some ¢ € Xj.
Then there exists an integer N} > 1 snu_:l: that ||®(nT)y — M| < 6,,Vn > Ny. For
any t — 7 > N\T, we have t = nT +t' withn > N, ¢’ € [0,T] and ||®(t)¥ —
M| = |@{)2(nT)¥ — My|| < d. Hence Sy(t) < do, Eu(t) < o, [o(t) < & and
Ny(t) < 38y when t — 7 > NiT. Since N,(0) = ¢1(0) + v2(0) + 3(0) > 0, we have
lim (N,(t) — NX(t)) = 0, a contradiction.

t—oo

Let M.(t)=

_ —(dy(t) + @) 0 0 cd(t)(% — 6 Cgﬁ(t)(% Ly -
a —d, 0 0 0
0 a3(t)(1 —€) —(pe +dn) 0 0
0 0 PE —(p; +6n + dy) 0

i 0 0 0 pI —(pr + dn)

It then follows from Theorem 1.3.1 that Rg > 1 if and only if p(®p_y(T)) > 1. By
the continuity of solutions with respect to parameter €, we see that Cl_"1131+ Gy (T) =
$p_y(T). Moreovi  we have Gl_igk p(Par, (T)) = p(Pp_v(T)) by the continuity of the
spectrum for matrices [46, Section 1I.5.8]. Thus, there exists an e, > 0 such that
p(Par (T)) > 1, Ve € [0,€]. Since ¢l_i.r§1h<b(t)¢ — &(t)M; = 0 uniformly for ¢ € [0, T],

there exists n; such that

Su(t,6) _ No(t) (A

> —r — d >1—¢, Yte|0,T] — Mol < .
Moy = Ny 0 g 2T MEDTL oMl
Claim 2. limsup ||®(1.. ,¢ — M|l > m for all ¢ € X,.
Assume, by contradiction, that limsup {|®(nT)y — M| < ny for some ¢ € Xj.

n—oc

Then there exists an int Ny > 1 such that |®(nT)y — Me|| < m,¥Yn > Na.
For any t — > N,T, we have t = nT + t' with n > Ny, ¢’ € [0,7] such that
((t) — ®(t) M| = [[@{)P(nT )Y — (t')2(nT)Ma|| = [|P(t)P(nT )y — O(t') My,
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In the case where 0 is an equilibrium of (3.2), we claim that My = D, U D,. We first
prove that D, U Dy C Mp. For any ¢ € Dy, it is easy to see that u;(¢,%) = 0 for
i=1,2,3. Hence, D, C . For any ¥ € Dy, we can define V(¢) € C(R4,R") such
that Vi(t) =0, vt >0 for i = 2,3,5,6,7. Let Vi(t) satisfy the following equations:

dlzt(t) =b <t - T,;L:T it — T)) exp [— /t; dJ(T])dT]] —d,(t)V(t) for 0 <t < T,
dv'le(t) =bt—7W(t 1) p [— /H dJ(n)dn} — d, (Vi (t) for t > T,

with V1(0) = ¢,(0). Letting V4(t) be the solution of the equation:

Wal) — A, d,Va(t) for t > 0 with V,4(0) = 14(0).

Then V'(t) is a solution of system (3.1) through +. By the uniqueness of the solution,

we have u(t,v) = V(t), vt 0, and hence D, C Mpy. To prove this claim, it then
3

suffices to show My C 7| U D,. For any ¢ € 90X, \ (D1 U Dy), we have > ¥;(0) > 0,

3=
and hence tlg&hé u;(t,¥) — Ny(t)] 0. From (3.1a), there exists a to > 0 such that
u (¢, %) > 0 for all t > to. It is easy to see that u,(t,¢) > 0 for all ¢ > 0 from (3.1d).
It then follows from (3.1b-3.1c) that if 92(0) > 0, then uy(¢t, ¢) > 0 and u3(t, ¥) > 0,
vt > 0. In view of 1c¢,3.  }.1g), we see that if ¥3(0) > 0, then u;(t,¢) > 0,
Vi € {3,5,6,7}, Vi > 0. Mo wer, if y5(0) > 0 or ¥6(0) > 0, then u;(t,v) > 0,
Vj € {6,7} and ¥t > 0, wh' ~ can be deduced from (3.1e-3.1g). If ¢»7(0) > 0, then
(3.1b) and (3.1c¢) imply that us(t,%) > 0 and us(t, ¢) > 0 for all ¢t > t5. Therefore,
we have u(t,) € Xo, Vt > to. This implies that for any ¥ € 90X\ (D) U Dy), we
have some n with nT > tg such that P™(y) ¢ 0Xg, and hence My C DU Dy. It then
follows that M, and Mj are disjoint, compact and isolated invariant sets for P in Mj,

and Ay = Usenrr, w(@) = {M,, M>}. Further, no subset of {M,, M5} forms a cycle in
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t > 0. This implies that u(t,¢") is a positive T-periodic solution. n

Applying Theorem 1.3.1, we know that the disease-free periodic state is locally
stable when Ry < 1 and is unstable when Ry > 1. Next we show that the disecase
dies out if Ry < 1, provided that there is only a small invasion. For every K > 0,

denote Xk = C([—7,0],(0,K]"), then we have the following result.

Theorem 3.3.2 Let (A) hold. If Ry < 1, then for every K > max{hy, %ﬁl}, there ex-
ists a ¢ = ((K) > 0 such that for any ¢ € Xg\M; with (¢5(0),03(0),05(0),06(0),07(0))
€ [0,¢}°, the solution of system (3.1) through ¢, u(t,d), satisfies

tlim llu(t, @) — (N, (¢),0,0,N;,0,0,0)|| =0.

Proof. Let K > max{ho,g—":} be ven. By Lemma 3.2.1 and its proof, Xg is

positively invariant for the periodic solution semiflow of (3.1). We then have

®(t,¢) € [0,K]", Vt>0,6€ X,

Let M,(t)=
@@+ 00 BN ol |
o —d, 0 0 0
0 da(t) —(px + dn) 0 0
0 0 pE —(pr + 0n + dy) 0
i 0 0 0 pr —(pr + d)

It follows from Theorem 1.3.1 that Ry < 1 if and only if p(®r-v(T)) < 1. By
the continuity of solutio. with respect to parameter ¢, we see that El_i‘r& by (T) =
$p_y(T). Moreover, we have cl_i.r(% p(@y (T)) = p(®p-v(T)) from the continuity of
the spectrum for matrices [46, Section I1.5.8]. Thus, there exists an e > 0 such that

p(By; (T)) < 1.
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in KwaZulu-Natal Province can be approximated by

dy(t) = 3.18293 + 0.135362 cos(0.523599t) + 0.02495 cos(1.0472t)
+0.01925 cos(1.5708¢) + 0.0358 cos(2.0944t) + 0.00548754 cos(2.61799¢)
+0.0904893 sin(0.523599t) + 0.0338905 sin(1.0472¢) — 0.00476667 sin(1.5708t)
+0.0235848 5in(2.0944¢t) + 0.042194 sin(2.61799¢) Month™"

Estimation ofdy(t): 7 1 e mortality rate for mosquitoes dy(t) per month (Month™!)
can be expressed as an empiric ly function of temperature [61,86]:

- M4
d;(C) = Month™".

—4.4 + 1.01U — U.UaL”~
Here, C is the temperature in Celsius. Therefore, the immature mosquito mortality

rate in KwaZulu-Natal Province d,(¢t) can be approximated by

dy(t) = 3.16738 + 0.0827969 cos(0.523599¢) + 0.0154833 cos(1.0472t)
+0.0353 cos(1.571 ) + 0.0316 cos(2.0944t) — 0.00504691 cos(2.61799¢) |
+0.0424931¢ 0.7 7599¢t) + 0.063191sin(1.0472¢) — 0.00361667 sin(1.5708t)
+0.00502294 sin(2.0944¢) + 0.0463902sin(2.61799t) Month™".

The discrete data and its corr onding fitted curves for 3(t), d,(t) and d,(t) are
shown in Fig. 3.2.
FEstimation of the mosquito birth function: We suppose that the cgg-deposition rate
is a linear function of the bitit rate (scaled reciprocal of the gonotrophic cycle), i.
e., b(t,N) = b(t) = p x B(t) Mosquitoes x Month™!, where p is a positive constant
number. We estimate g = 5 x 9426017 to make sure that when there is no disease,
the stable mosquito population remains about 2.3 times more than that of the human

population.
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Figure 3.2: Fitting curves for 3(t), d,(t) and d,(t).
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Figure 3.4: Time series of infectious host population when Ry > 1 and Ry < L.
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or control measures) to control malaria. For example, to eradicate disease for the

epidemic period August 2003-January 2005, we should keep 7 > 75 = 14.96 days.
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Figure 3.5: Relationship between Ry and 7.
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Figure 3.6: Relationship between Ry and q.

Prevention of host-vector contact: To simulate the effect of keeping humans from
mosquito bites causing the dise.  transmission, we replace J(t) with 3(t) = (1 —
q)3(t) in our model. Then F  re 3.6 shows the relationship between intervention

efficiency g and basic reproduction ratio, Ro. It admits our analytic result that R is
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in scale with (1 —¢). Moreover, this figure shows that we should keep ¢ > ¢y = 14.5%
to control malaria transm  on for August 2003—-January 2005 epidemic period.

Global warming effects on Ry: To simulate the effect of global warming, by the in-
creasing temperatures, we cl » the corresponding periodic temperature-dependent
coefficients 3(t), d,(t), d;(t) and b(t, N,(t)). Using Lemma 1.3.2, we can calculate

the correspondence R, for each increasing temperature. Fig. 3.7 shows the effects of

~

increasing temperature, 4, on Ry.
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Figure 3.7: Relationship between Ry and 4.

For the malaria epi  1ic period October 2005-October 2006, if the temperatures
have risen by 1°C, then Ry Il grow to 0.9596. If the temperatures have risen by
§ > 8y = 1.3°C, then Ry will larger than 1, which means that malaria resurgence

happens.
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3.5 Discussion

In this chapter, v have pre ted and analyzed a mathematical malaria model,
which was motivated by the compartmental models in [15,68,69]. The modifications
essentially address the age-structure of mosquitoes and the seasonal climate effects
on malaria transmission. Such a model provides a baseline against which climate
change scenarios (e.g., global warming) can be evaluated in the long term. From
the theoretical point of view, we have figured out the basic reproduction ratio and
showed that the infection will be cleared from the population provided there is only
a small invasion. Moreover, the disease free periodic state is globally asymptotically
stable if the disease ind 'd death rate is sufficiently small and Ry < 1, which is very
important for epidemiologists (and even for entomologists) to control a disease.

Although, Ry has! mevaluated for some autonomous malarial models (in homo-
geneous environments) using the next generation matrix/operator approach presented
in [25,91] (see also [16,53,70] for some examples), there is little work on estimating the
basic reproduction ratio for ma ia in the periodic time-dependent environment. Our
work shows that Rg provic an index of transmission intensity, and good estimates
of malaria transmission intensity are necessary to compare and interpret malaria in-
terventions condu :d in different places to objectively evaluate options for malaria
control. The prospects forthe: ¢ of .laria control depend, in part, on the basic
reproductive number for malaria, Rq [79)].

For our model, we picked feasible temperature-dependent coefficients for modeling
malaria cases in KwaZulu-Natal Province, South Africa. The basic reproduction
ratios of the model are computed numerically for two discase periods. For the October

2005-October 2006 period, since Ry 0.8199 < 1, the disease will be contained
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Since the temperature scenarios can be derived from global climate models (GCMs)
(e.g., the modeling experiments completed by the Hadley Center [45]), our model in

this chapter may provide an early warning system for malaria risk.
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4.2 Spreadir speeds and traveling waves

In this section, we study the spatial dynamics of system (4.1) in terms of spreading

speeds and traveling waves.

4.2.1 The periodic Rc V :donald model

We first study the  bi dynamics of the following periodic version of Ross-Macdonald

model:
2 = a(t)b L7 %u(t) — dah(t),
= alt)e M () — v(t) ~ dy(e)o(2).
We can rewrite sys 1 (4.2) as
dy
dt
h(t )iy, —d
with y= (© , G(t,y) A(0bTF v — dan . Denote D :=
v(t) a(t)ely (M(E) = y2) — du(t)y2
H
{(t,y) : 0 <y < g(t),t > 0} with g(¢t) = and Ly = max{H, r?;"t)x]b[(t)}.

M(t)
Let Dy :={y:0 <y < g(t)}. Clearly, Dy = {(h,v) : 0 < h < H,0<v<M(0)}

Lemma 4.2.1 For any (h(0),v(0)) € [0,1] x [0,]] with | > Lo, system (4.3) has a
unique solution (h(t),v(t)) [0,!] x (0,{] through (h(0),v(0)), Vt ~ 0. Furthermore,
(h(t),v(t)) € Dy, Vt 2 0, whenever (h(0),v(0)) € Dy.

Proof. Since for all y > 0, G(t,y) is continuous and locally Lipschitzian in y in any
bounded set, there is a unique solution for system (4.3) through (h(0),v(0)) € [0,{] x
[0,}. It then follows from [80, Remark 5.2.1] that for any initial value (h(0), v(0)) €
[0.1] x [0,!], the unique solution (h(t),v(t)) admits 0 < h(t) < [, 0 < v(t) <! on
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s and remain in the infected compartments at time ¢ for ¢t > s. Hence,
t o]
Y(t) = / Y(t,8)F(s)p(s)ds = / Y(t,t —a)F(t —a)p(t — a)da
oo 0

gives the distribution of accumulative new infections at time ¢ produced by all those
infected individuals ¢(s) introduced at previous time. As in section 1.3, we define the
next infection operator L : C, — C,, by

(Lo)(t) = / Y(t,t~a)F(t —a)p(t —a)da, VteR, ¢eCr

0
Then the basic reproduction ratio is Rg := p(L), the spectral radius of L.
Let p be the principal Floquet multiplier of the lincar system (4.4). According to

Theorem 1.3.1, Ry > 1 (< 1) ifand only if p > 1 (< 1}). We further have the following

result on the global dynamics of system (4.2).

Lemma 4.2.2 The following statements are valid:

(i) If Ro > 1, then system (4.2) admits a unique positive w-periodic solution
(h*(t),v*(t)), and it is globally asymptotically stable for (4.2) with initial values

(i) If Ro < 1, then (0,0) is globally asymptotically stable for system (4.2) in Dy.

Proof. Let y(yo) = y(t,50) t the solution map of system (4.2) through yo. Denote
X(t) = g;%(yo) and A(t, Dy(G(t,y(t,%))). Then, X(t) = (zi;(t))2x2 satisfics

X'(t) = A(t)X(t), X(0)=1.

Since %% >0,i# 7, V(t,y) € D, then 21, () > a;(t)zi(t), vVt > 0and i, k € {1,2}. If

to > 0 and z,(tg) > 0, it then follows that ;. (t) > 0 for all t > #;. Since z;;(0) = 1,
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we have z;;(t) > 0, Vt > 0, ¢ = 1,2. We further prove that z;;(¢;) > 0 for some
ti; € [0,w], Vi # 7, and hence z;;(t) > 0, Vt > w, i # j. Assume, by contradiction,
that there is an element x;;(t) 0 for all ¢ € [0,w] with ¢,j € {1,2} and ¢ # j. Then

2
0=a,(t) = Y au(t)ay(t) = ay()z,(), Wt € [0,w]
=1

Since z;;(t) > 0, it then follows from the above equality that a;;(¢) = 0, V¢t € [0,w].

Note that
—a(ft;)b?h(t,yo) — dy a([~t{)b(1 =yt y0))
A(t) - a(t)e a{t)e
7 (M) = yelt,v0)) —=gyi(t, vo) — du(?)
If aip(t) = 0, Vt € [0,w], then y1(¢,50) = H and ' u D= —dpy1(t,yo). Since
Wlvo) = 0 while —dpyi(t,y0) = —dnH, we get a contradiction. If ay(t) = 0,

Vt € [0,w], then yo(t, 4o, M(t) and le%yﬁ = —d,(t)y2(t, ¥o), which contradicts the
periodicity of M(t). Thus, we get gﬁ(yo) > 0, t > w. Furthermore, if yo,73 € Dy
satisfy ye < 3, then for all ¢ > w, we have

L A

Ye(y2) — welys) = / , ve+r(ys  y2))(yz — y2)dr > 0.

o VY
Hence, we have y:(v2)  ye(y3), ¥t > w, and in particular, y,, is strongly monotone.

It is easy to check that the fo. wing two conditions hold for system (4.3):
(B1) G(t,y) > 0 for every (t,y) e Dwithy; =0, =1,2;

(B2) For each t > 0, y € Dy, G(t,y) is strictly subhomogeneous on y in the sense
that G(t, ay) > aG(t,y), Vy € D; and y > 0, a € (0, 1).

Using the same proof as in [105, Theorem 2.3.4], as applied to the Poincaré map
associated with system (4.2) on Dy (see, e.g., [105, Theorem 3.1.2]), we see that two

statements are valid. =




4.2 SPREADING SPE WELING WAVES 90

4.2.2 Spatial dynamics

In the rest of this section, we always assume that Ry > 1. According to Lemma 4.2.2,
there exist two periodic solution, (0,0) and w*(t) = (h*(t),v*(t)), for the spatially

homogeneous system (4.2). We will consider system (4.1) with initial conditions
0<h(0,z) ¢1(z) < H 0<v(0,z)=d¢(z) < M(0), Vz € R.

Let X be the set of all bounded and continuous functions from R to R? and
X, = {¢ € X: ¢(z) > 0,Vz € R}. Clearly, any vector in R? can be regarded
as a function in X. .or u = (u,u0), w = (wy,wq), we write u > v (u > v)
provided u;(z) > wvi(z) (wi(z) > wv(x)), Vi = 1,2, € R, and v > v provided
u > vbut u # v. Forany r > 0, we define [0,r] == {u € R? : 0 < u < r}
and X, := {v € X : 0 < u < r}. Weequip X with the compact open topology,
i.e., u™ — u in X means that the sequence of u™(z) converges to u(z) as m — oo

uniformly for x in any ca it set in R. Define

oo max |u(z)|

llu]lx Z M(ka , YueX,
k=1
where | - | denotes the - 1al norm in R?. Then (X, | -]|) is a normed space. Let d(, )
be the distance induced by t! n [| < ]l. It follows that the topology in the metric
space (X,,d) is t the compact open topology in X,.. Moreover, X, is a

complete metric space.
Let E := {(t,¢) € [0,00) x X} : ¢ < §(t)} be the subset of [0,00) x X, and

H
E,:={¢ € X, : (t,0) € E} = Xy, where j(t) = . Assume Y is the set
M(t)

of all bounded and continuous functions from R to R. Let S(¢) and S,(¢) be the
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Integrating two equations of system (4.7) together with (4.5), we have

ur(t, - @) = T1(t,0)6, + [ Ti(t, s)Bi(s, u(s))ds,

,
uy(t, -, @) = Ta(t,0)¢2 + [, Ta(t, s) Ba(s, u(s))ds.
It follows that system (4.7) can be written as an integral equation
ot
w(t,d) = ;t,0)¢+/ T(t,)B(s, u(s))ds,
0

whose solutions are called mild solutions to system (4.7).

Definition 4.2.1 A function u(t,z) is said to be an upper (a lower) solution of (4.7)
if it satisfies

) 2 (ST, 0)u(0) + [ T(0,5)B(s,ulo))ds.

Theorem 4.2.1 For « ¢ € Xy, system (4.7) has a unique muld solution u(t, -, )
= (u(t, @), ug(t,,8)) € o with u(0,-,0) = ¢ € Xy, Vt 2 0, and u(t,z, P)
is a classical solution when t > 0. Moreover, if u(t,z) and a(t,x) are a pair of
lower and upper solutions of system (4.7), respectively, with u(0,-) < a(0,-), then
u(t,-) <uft,-), vt 2 0.

Proof. We first show that B is a quasi-monotone map from E to X in the sense that

Ui d(y = o +k[B(t ) - B(t,9)l: X4) =0,

—u

for all ¥, ¢ € Xy with ¢(z) < y(x), * € R. In fact, for any ¥,¢ € Xy with
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(1) Qi[Xy)] is precompact in Xy for allt > 0.
(2) {Q:i}e>0 is an w-periodic semiflow in the sense that

(1) Qo(v) = v, Yv € Xy(0).
(i) Quiwlv] = Q[Qu(v)], ¥t 2 0, v € Xy(q).

(i) Q(t,v) = Qi(v)  continuous in (t,v) € Ry x Xyq) with respect to the

compact open topology.

Proof. It is easy to see that (2)(i) and (ii) are satisfied for the solution map associated
with the periodic system. To prove the remaining parts, we just need to show that
T(t,s) is compact whenever t > s > 0, and then use a same argument as in [64,
Theorem 8.5.2] to prove that (1) and (2)(iii) hold.

In fact, we can write T\(t, s) and T;(t, s) explicitly as follows:

112

6_ 1Dyt

. mél(y)dyy

2

Tl (ta S)¢1 (.E) = e‘dh(t—s)

_(z—gt-y

t e 4Dyt
Tyt $)ga() = e evter [ €T

For any Yy = {¢ € Y: 0 < ¢(z) < M, Vz € R} with M > 0, it is easy to see that
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T1Y s C Yas. Moreover, for any ¢ € Yy, and z;,z; € R, we have

Ty(t,9)6(0) = Ti(t,s)o(z2)
o= dalt 2 -y)? (z2-v)?
. / oy - [ B o)
vV srresnv R
_dh(t 8) (z) - v)? (12—!/)2
= / |7 30 — ™ B | |6 (y)|dy
< € ht — nt Yy
\/_uh
—-dh t S (xy -z ) 2
= - -M/ le” R —e—‘_g’?!dy
= 9(171 — Tg),

e~dp(t=9) E i

where g(§) = = M Jrle Eo— e_d’?[dy. Clearly, %1_141(1)9({) = 0. Therefore,

T1Yys is a family of equicontinuous functions. It then follows from Arzela-Ascoli

theorem and a standard di: inal argument that 7,Y, is precompact with respect
to the compact open topology. Thus, T} is compact. Similarly, we can prove T is

compact. m

Lemma 4.2.4 (), is sub nogeneous and monotone from Xyq to Xy). Moreover,

for any ¢ € Xyo) with ¢ >0, u(t,z,¢) > 0 for alit >0, z € R.

Proof. Forany ¢ € X, letu z, ) be the solution of system (4.7) with u(0, z, ¢) =
o(z) for z € R. Since B(t,¢) strictly subhomogeneous in ¢, V(¢,¢) € E, then, for

any k € [0, 1], we have
t
ku(t,z, ) kT(t,0)¢ + k/ T(t,s)B(s,u(s))ds
0

= T(t,O)(kqb)—i—/() T(t,s)[kB(s,u(s))]ds

I

T(t,0) (ko) + /0 T(t, 5)[B(s, ku(s))lds.
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Proposition 4.2.1 ¢} = inf
u>0

Proof. Let (u;(¢,ug), Uy(t, %)) be the solution of system (4.12) satisfying (@;(0, @),

2(0, ) =tig € R% It is easy to see that
(ul (t, .’L‘), ’Ll,'z(t, I)) = 6_“1(111 (t, "L—LQ), fLQ (t, fLQ))

is a solution of the followi: linear parabolic system:

—0“10(:’1) = a(t)buy(t,z) — dyur(t,z) + Dh———z—ailgf‘”, 112
Jua(t,x a %uy(t,r ¢ :
ualla) = S eM (t)uy(t, z) — dy(t)ur(t,z) + D, 2252 — g Luy(t,z).

Let {M,}:>0 be the solution n ) associated with the system (4.14). Then we have
BL(¢) := M,(¢e™%)(0) = (ih(t, @), Ua(t, ¢)), Vo € R?, ¢ >0.

Therefore, B}, is also the solution map of the linear differential equations (4.12) on
R?. By [102, Lemma 2.1], t|  : exists a positive w-periodic function w(t) such that
u(t) = eMWity(t) isa  lution of (4.12), where Ay (1) = 2 Inry(u). Thus B (w(0)) =
e+ Wiy (t), and by the w-  Hdicity of w(t), it follows that B%(w(0)) = e*+*«w(0).
..lis implies that e*+*)~ is the principal eigenvalue of By with the positive eigen-

function w(0). Define the function

o, (1) ln(e,\+(y)w) _ A(w In r;(“)’ Y > 0.

7

T

When p 0, system (4.12) reduces to system (4.4). Since Ry > 1, we have r,.(0) > 1.

~—

Hence, condition (C7) in [57] (see also section 1.4) is satisfied. Now we prove that
¢, (c0) oo. Since v(t) = e*Wiy(t) is a solution of (4.12), we have v((t) >
(Dpu? — dp)vy(t). It then follc  that

anl (A

: > (D —dy, — .
wl(l)_( hid h /\+(N))
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Wy0) to Wy). Moreover, we can show that {Q;},>o is strongly monotone for ¢ > w
by similar arguments as in the proof of [80, Theorem 7.4.1 and Corollary 7.4.2]. Since
Qu : Wy0) — Wy(o) is compact (see, e.g., [42}), it then follows from Theorem 1.2.1

that the following lemma holds.

Lemma 4.3.1 The Poincaré map Q. admits a global attractor on Wy .

Consider the following linearized system of system (4.22)

€ = a(t)biy — dplh + Dy ZH,
U = MM (8 - dy(t)i + D,2R — g2,

B,‘ui =0 on (0,00) X BQ, 1= 1,2

Similarly, we can show that the solution 4(t,z,¢) exists for all ¢ € W3 and the
comparison principle holds for (4.23). Define the Poincaré map of system (4.23)
P W5 - Wy by Pi(¢) = a(w,, o) for all ¢ € Ws. Then P, is compact. Moreover,
P, is strongly p.ositive‘by_the standard parabolic maximum principle (see, e.g., [80,
Theorem 7.4.1]). Let ry = r(P;) be the spectral radius of P,. By the Krein-Rutman
theorem (see, e.g., (42, Theorem 7.2]), it follows that r; > 0 and P, has an eigenfunc-

tion q~5 € int(WE) correspondir  to 7y, that is, P1(<,5) =r¢.
Lemma 4.3.2 Let A ~£ln 7. Then there exists a positive w-periodic function
#(t, r) such that e™*¥(t,x) is a solution of system (4.23).

Proof. Let i(t,r,¢) be the solution of system (4.22) through é. Denote o(t,z) =
eMa(t, z,¢), then §(t,x) > 0 for all (t,z) € (0,00) x Q. Substituting alt,z, p) =

e~ Mo(t, z) into (4.23), we obtain the following linear periodic system with parameter
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Al
amai—t‘@_) = M0 (t, x) + a(t)bly(t, ) — dpth (¢, z) + Dhaﬂglzg;,z)’
2L = LeM()ni(t,2) + (A - du(1))3a(t, 2) + D TEEH - g2ip(t,z),

for all (¢,z) € (0,00) x Q2. Thus, 9(¢, z) is a solution of the w-periodic system (4.24)
with B;#; = 0 on 99 and 9(0,z) = ¢(z) for all z € Q. Since Pi(¢) = ri¢ and
ery = 1, we have t(w,z) = e’\”ﬂ(w,z,&) = e’\‘*’Pl((Z;)(:c) = e’\“’rlqz;(;r) = (Z)(a:) =
9(0,z). Therefore, the existence and uniqueness of solutions of (4.24) imply that

(t,z) = 0(t + w,x), ¥t > 0, z € Q, and hence, 9(¢,x) is an w-periodic solution of

(4.24) and e"*¥(t, ) isa lution of (4.23). =

Theorem 4.3.1 for any ¢ € Wy, let u(t,x,¢) be the solution of system (4.22)
with ©(0,z,¢) = ¢(z) for all z € Q. Then the following two statements are valid:

(i) If ri < 1, then Vim |lu(t,-, )]s = 0 for all ¢ € Wy).
(1i) If ri > 1, then system (4.22) admits a unique positive w-periodic solution
u*(t,z) and tlir?o flut,-, ¢) —u*(t, )]s =0 for all € Wy \ {0}.
Proof. In the case where r; < 1, we have A = —iln r1 > 0. Then the following
inequalities hold:
i ,I.' D <alt)buy(t, | —daui(t,z) + Dha—?r o

alta) < sOc, tyu(t,z) — dy(¢)ualt, z) + Dy Te2E2) — g8y, 1),

Ox2

Let u(t,z,¢) be the solution of (4.23) through ¢. Then the comparison theorem
implies that u(t,z,¢) < 4(t,z,0), ¥t > 0, z € . Since for any ¢ € Wy, we can
choose ¢ > 0 such that ¢ < (¢. Hence, 0 < u(t,z,¢) < alt,z, ((13) = Ce Mi(t, z).

Since tlim la(t, -, ¢P)leo = 0, we have Llim llu(t,, d)llo = 0. Next, we show that
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Therefore, we have

1Q¢(¢0) loo = |Qe (Qru{do))leo < &, Yt > now,
and u(t, z, ¢g) satisfies the following system

61“6(:‘1") >a(t)t  wtz) —do(t z) + Dh_02lé;(t’I)‘
D 2 a()e(M(6) - )25 — dy(t)ua(t,z) + D.IEED — gfus(t 2),

for all t > now, x € Q. Let <I~>5 be the positive eigenfunction of P. associated with

Oug

Y

v

re and A\, = —%ln re < 0. Then by Lemma 4.3.2, there is a solution u®(t,z..) =
ety (t, ), with v.(t,z) a pi Hdic positive function. Since u(t, z,¢o) > 0 for all
t > 0, z € Q, there exists n > 0 such that u(now,z,do) > n.. By (4.27) and the

comparison principle, we have
u(t,z,do) > nut(t — now,z,. ) = 776"\‘(""0“’)@5(t,z), V¢ > now, T € Q.

Since A, < 0, it then follov that u(¢,z, o) is unbounded, a contradiction. This
proves the claim.

By the claim above, @, is weakly uniform persistence with respect to (Wq, 0Wy).
Since @, admits a global attractor on Wy, it follows from [105, Theorem 1.3.3] that
Q., is uniformly persistent with respect to (Wy, 0Wp) in the sense that there exists
4, such that lim nlilgo Q7 (#)]la > 8, for all ¢ € Wy. Note that @, is compact, point
dissipative and uniformly pers ent. It follows from Theorem 1.2.6 (or [105, Theorem
1.3.6]) that @, : Wy — Wy ac  ts a global attractor iy and has a fixed point é in
Ap. Since @, is strongly monotone semiflow on Wy, we have 4y = Q. (o) > 0, and
hence cf) > 0.

By a similar argument as in the Lemma 4.2.4, it is casy to sce that for each t > 0,

Q, is strictly subhomogeneo:  Then [103, Lemma 1] implics that @, has at most one
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fitted by
a(t) = 0.16938 — 0.06043 cos(--t) — 0.00578 cos( )
- ' 365 ‘ 365
67 8 107
0.00547 cos( mt) — 0.00542 cos( —=t) — 0.00582 cos( —
+0.00 7008(365 ) — 0.005 cos(365 ) —0.0058 cos(365t)
—0.04509sin ") + 0.00975 sin(—4) + 0.00702 sin(-2t)
' soo 1 3657 " 365
0.00971sin " ) = 0.00664sin(2ort) day~!
' 300 ) 365 v

Suppose the mosquito density M(t) = 20 x H x a(t) mosquitoes/km, a linear
function of the biting rate, such that the average mosquito density is about three
times as that of the human . sity. The proportions of infected bites on humans and
mosquitoes that produce an infection are b = 0.011 and ¢ = 0.2. For illustration, we
choose D, = 1.25x 1072 km?/day, D), = 1 km?/day and g = 5.0x 1072 km/day. Using
the method introduced in [95] (see also section 1.3), we can numerically compute
the basic reproduction ratio , = 7.04. Fig. 4.1 shows the variation of the basic
reproduction ratio Ry as a function of the mosquito density and mosquito biting

rate.

4.4.2 The averag 1| system

For a continuous periodic function p(t) with the period w, we define its average as

[p] u—lj /Ow p(t)dt.

Then, the time averaged autonomous system for (4.1) can be represented as

M) = Wp(H — h)v — dyh + Dy,
8 o2y v
g M) = v)h=[d)v+ D5 - g,

e




mosquito density is kM (t).
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Figure 4.1: Graph for the basic reproduction ratio Rg. Here the biting rate is pa(t) and the whole
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where [a] = 0.1694 day™!, [d,] = 0.1047 day~!, and [M] = 369.292 mosquitoes/km.

Consider the linear autonomous system:

T = (albay(t) - dvma(6) + Dapm (1),
) = e(May(t) - [d)Ba(t) + DorPaa(t) + gutia(t),

where 4 > 0 is a parameter. Note that the fundamental solution matrix of system

(4.28) is e with

—dp + D,u? lalb
A(p) e ,
A M) =[d] + Dop® + gu

Thus, the spectral radius of the time one map associated with system (4.28) is e*#),
where A\(u) is the spectral radius of the matrix A(u), that is,

AMp)=3(Dnp? = dp + Do + qu — [d,)]

) (Dup? = dn + Dopi? + gu = [du])? — Al(Diss? — dn) (Dot + g — [d]) — 20,
Hence, ¢} = inf e ’\(—:1 Let u* be the positive root of (5%1)’ = 0. Then the

u>0 H u>0
rightward spreading speed for the time-averaged autonomous system is ¢} = M}j‘—l

Similarly, we can obtain the leftward spreading speed ¢*.. Two spreading speeds can

be numerically computed as ¢} = 0.0884 km/day and ¢ = 0.0866 km/day.

4.4.3 The per: lic system

For the periodic system, using Proposition 4.2.1, we can numerically get ¢ = 0.1019
km/day and ¢= = 0.0996 km/day. This implies that the spreading speeds of the
time-averaged autonomous system underestimate the real spreading speeds. Fig. 1.2
shows a plot of the spreadii speed ¢’ and ¢ as functions of the advection velocity
g. The downstream spreading speed increases with advection velocity, while the

upstream spreading speed decreases with advection velocity. Fig. 4.3 indicates that
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Figure 4.5: The spread of infectivus vector. The top plot shows the density of infectious vector at

different times ¢ year, with ¢t = 1,2,3,4,5,0,7,8.9 respectively.
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on parameters in the model, which permits the assessment of control strategies. Nu-
merically, we studied how advection increases the rightward spreading speed, whereas
decreases the leftward spreading speed. Since human movements are the source of
long-distance transmission of r aria, numerical simulations were also performed to
investigate the effect of human movements on disease propagation. Both the right-
ward and leftward spreading speeds incrcase with diffusion coefficient for humans,
which means that glol  traffic networks may deteriorate malaria situation. In the
case of the bounded domain, established a threshold result on the global attrac-
tivity of either zero or a positive periodic solution. Biologically, this result shows that
malaria disease stabilizes at a unique positive periodic solution when the zero solution
is linearly unstable; while it dies out when the zero solution is linearly stable.
Several authors have used reaction-diffusion systems to study the spatial dynamics
of vector-borne diseases (see, € , {32,52]). The authors of [52] proposed a reaction-
diffusion system to describe the spatial spread of West Nile virus, and simplified their

original model as the following one under some reasonable assumptions:

- 2
2 = aVﬁRT{;%(AV —Iy)—dvlv +€63—z15‘,

[

a1 Ng-1 21
S8 = arBp~EBly — vrip + DGE,

where Ay, Ng are constant. Further, they proved the existence of traveling waves and
calculated the spreadii s; 1 for system (4.29), and also showed that the spreading
speed for system (4.29) is an upper bound for that of the original model, provided
that the spreading speed for the latter exists. We should mention that the techniques
in our current chapter can be employed to study spreading speeds and traveling waves
for the time-periodic version of system (4.29) and other cooperative type vector-borne

diseases models with temporal and spatial heterogeneities.
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where ¢ is the transmission probability per bite from infectious mosquitoes to sus-
ceptible humans, 3(z) is the habitat dependent biting rate of female mosquitoes, and
I, is the density of infectious female mosquitoes. This cross-infection between hosts
and vectors is modeled as r  -action mechanism normalized by host-density, see,
e.g., [9,98]. It then follows that the density of infectious human population can be
described by

alh(t) 1')
ot

cd(x)

= DhAIh(t,:c) + H(J))

(H(z) = In(t, ) In(t, ) — (dn + p)In(t. ),

where d), is the human natural death rate, and p is the recovery rate, i.e., 1/p is the
human infectious period.

The susceptible adult m  uito population is increased via the recruitment of
aquatic mosquitoes, and diminished by infection and by natural death at a rate d,.
Suppose that u(z) denot the habitat dependent recruitment rate at which adult
female mosquitoes eme : from larval. As in [39, 78], here we assume that the emer-
gence of adults is not explicitly linked to the density of adult mosquitoes. Moreover,

the force of infection for mosquito population is

%sm(t,x)u(t,m,

where b is the transmission prol ility per bite from infectious humans to susceptible

squitoes. Thus, the dynami of susceptible adult mosquitocs can be described by

= D, ASy(t,z) + p(z) — %(;:))Sm(t,x)lh(t,x) — dmSi(t, ).

OSm(t, )

ot
To incorporate an extrinsic incubation period (EIP) into Ross's model (73], the
infected mosquito population is divided into two epidemiological categories: latent

(E.) and infectious (I,) clas . Since these latent mosquitoes can fly around during













5.3 THRESHOLD DYNAMICS 126

Let Y := C(Q,R) d Y+ := C(Q,R;). Suppose that .,{t), To(t): Y — Y,
t > 0, are the strongly continuous semigroups associated with Dy A — (dy, + p) and
D,,A —d,, subject to the Neumann boundary condition, respectively. It then follows
that for each t > 0, T;(¢t) : Y Y, i = 1,2, is compact and strongly positive (see,
e.g., (80, Section 7.1 and Corollary 7.2.3]). Clearly, for any p € Y, t > 0,
Ti(tholz) = 4" [ (it c, ol

and
Ty(t)p(z) =e“1m‘/F(Dmt,r,y)cp(y)dy-
9]

Moreover, T(t) = (T1(t), T2(t), T2(t)): X — X, ¢t > 0, is a strongly continuous semi-
group. Let A; : D(A;) — Y be the generator of T}, i = 1,2. Then T'(t) : X — X
is a semigroup generated by the operator A = (A4;, A2, A;) defined on D(A) =
D(A;) x D(Az) x D(A,).

Define F = (F|, Fy, F3): Cy — X by

RO = SEH(E) - 61(0.2)60(0.2),
RO@) = ulo) - 3300.000(0,2). B

b8(y)
H(y)

Fiy(¢)(z) = e“”“’/nI“(DmT,z,y) G(—7.y)o1 - y)dy,

Vz e, éd= (¢, s ¢3)7 €C ..len system (5.6) can be rewritten as the following

abstract functional differential  uation:

’

‘fi—;‘ = Au+ F(u), t>0,

l’U0=¢ECH.
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Since the second equation of system (5.6) is dominated by equation (5.10), the
standard parabolic comparison theorem (see, e.g., [80, Theorem 7.3.4]) implies that
uy(t, ¢) is bounded on [0,04). Thus, there exists a positive number @ such that the

third equation of system (5.6) is dominated by the equation

22 poAw(t,z) - dpw(t,z) +Q, € Q, t >0,

v =0, z€0Q, t>0.

5.11

Again, from Lemma 5.3.1 1dt comparison principle, u3(t, ¢) is bounded on [0, o,).
It then follows that u(t,@) = (u1(t,9), ua(t, ¢), us(t,#))” is bounded on {0,04), and
hence o, = 400 for each ¢ € Cy. Therefore, system (5.6) defines a semiflow ®(¢):

Cy — Ci by
(®(t))(0,x2) wu(t+6,z,¢), Vo€ [-7,0], 2 €Q.

For any fixed ¢ € Cy, :have some t)(¢) such that us(t, ¢) < 2{: when t > t,

and

2usltd) < D, it x) — dmug(t,z) + 27T EbB, 2 € Q, t > ¢,

Ql‘£=0,x€89,t>t1.

It then follows from Lemma 5.3.1 that there is a t3(¢) > t; such that uz(t,¢) <
46“"“’;{%@?, YVt > tg. ° re, the solution semiflow ®(t): Cy — Cy is point
dissipative. Moreover, ®(t): Cy — Cy is compact for each t > 7 by [100, Theorem
2.1.8]. Thus, {37, Theorem 3 8] implies that ®(¢): Cy — Cy, t > 0, has a global
compact attractor. m

The following result is a consequence of the comparison principle for scalar parabolic

equations.
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By Lemma 5.3.1, it is easy to see that equation (5.12) has a positive steady state m*,
which is globally asymptoti stable. Linearizing system (5.6) at the disease-free
equilibrium (0, m*,0)T, we get the following time-delayed nonlocal and cooperative

system for the infectic compartments:

2 = DyAwn(t,z) + cpdh(z)wa(t, @) — (dn + p)wi (8, ),
) 22 = D, w(t,z) — dnwa(t, ) 513
+em 7 [o Tt 2.9)5 | m(y)un(t = 7. y)dy,
{ —'daﬂnl = -‘%‘;’fz(), Yz € 09,

with h(z) = H(z) and m(z) = m*(z).
Before defining the basic reproduction ratio, we need to study the following linear

nonlocal and cooperative system

) .
o = DyAw(tz) + %h(m)wz(t,x) — (dn + p)wi(t, ),
Jw;
{ ouy = Dmsz(?’I) - dmwz(t’b:;())
.+-e_d""r jﬂ F(DmTv:Ev y)H_(g)‘m(y)wl(t‘ y)dy’
du = @m0 vz 09,
\ n "

with h(z) > 0, m(z) > 0, Vz € .
Substituting w; (t,z) = eMy)(z) and w(t,z)  e*ia(z) into (5.14), we obtain

the following nonlocal all  problem

[ i(z) = Dud(z) L ue)da(z) — (da+ p)tn(2), TE D,

) Male) = Aty (z) = dmiba(z) 5 1E
+edn7 [ T(Dpr,z,y) 28 m(y) v (y)dy, = € Q,
oY - % =0, z € 0.

\ on

By a similar argument as in [80, Theorem 7.6.1], it follows that (5.15) has a

principal eigenvalue A(h, m) with a positive eigenfunction.
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Define E := C([~7,0], Y)xY and E* := C([-7,0], Y*)xY*. Forany ¢ € E*\ {0},
let w(t,¥), t > 0, be the solution of the system (5.13). We claim that w;(¢,¢¥)(z) > 0
forallz € Qand t > 7,7 =1,2. Indeed, if ¢,(0,-) # 0 or 93 # 0, then the parabolic
maximum principle implies that w, (t,)(z) > 0 and wy(t,¥)(z) > 0 for all x € 99,
t > 7. If there is a 6y € (0,7) such that ¢;(—6p,-) # 0, then we can show that

wa(T — bg,¥) # 0 as follon  Suppose, by contradiction, that wy(7 — 8, 1) = 0, then

Pualrofot) — g=dn7 [ D(Dpr, 2,y) 9 m(y) ¥ (—o,y)dy > 0, ¥z € Q.

Since woq(t, 1) > 0, t > , and wy(T — g, ¥)(x) = 0, Yz € Q, then M(T;M <0,
which is a contradiction. Thus, we have wo(t, )(z) > 0, Vt > 7 — 6y, z € Q. It then
follows that w,(t,¥)(z) > 0,Vt > 7 — 6, € L.

By similar arguments as in [90, Theorem 2.2], we have the following result for the

nonlocal eigenvalue pr  em ¢ sponding to (5.13):

[ Mu(@) = Dadt(e) + L h(x)ba(x) — (dn+ P (2), 2 € D,
Mpo(z) = Dmlip(z) — dntpe(z)

< 5.16
+€—me€_/\T fQ B \-DmTaxv y)%a—(%')lm(y)wl(y)dy> S Qv
\ at% = % =0, z €N

Lemma 5.3.3 There exists a principal eigenvalue M(h,m, ) of (5.16) associated with
a strongly positive eigenvector, and for any 7 > 0, A(h,m, ) has the same sign as

A(h, m).

Next, we use the same idea as in [96] to define the basic reproduction ratio for
system (5.6). Assume that both human and mosquito populations are near the disease
free equilibrium (0, m*,0)T. 1 (¥1(z),¥2(z))T be the spatial distribution of initial

infective humans and mosquitoes, and assume that the temporal distribution of this
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initial data is homogeneous. From system (5.14), with h(z) = H(z), m(z) = m*(z),
we then see that S(¢)y = (., (t)¥1, Ta(t)12)T represents the remaining distribution of
infective humans and mosquitoes at time t > 0. Let V' be the positive linear operator

on Y x Y defined by

V(®)(z) = (Vi(¥)(x), Va(w)(x)), VP €Y x Y, z€Q,

where
Vi(w)(z) = cB(z)ba(z),
and
Nroy L mdir NCE
Va(w)(z) = e~ L (Dnrz. ) ) 37 ).

Then, V(S(t)v) is the distribution of newly infected humans and mosquitoes at tiine

t. It follows that

Lw)i= [ VISt =V ( I S<t>wdt)

represents the distribution of t|  total infective humans and mosquitoes produced
during the infection period, and hence, L is the next infection operator. We define

the spectral radius of L as the basic reproduction ratio, that is,
RO = T‘(L)

for model (5.6).
By the general results in [89] and the same arguments as in [96, Lernma 2.2], we

have the following observation.

Lemma 5.3.4 Ry — 1 has the same sign as A(H, m*).
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By this lemma, combined with Lemma 5.3.3, we see that Ry is a threshold pa-
rameter for the stability of the the zero solution for system (5.13) with h(z) = H(z)
and m(z) = m*(z).

Now we are in a position to prove the main result of this section, which indicates

that Ry is also a threshold index for disease persistence.

Theorem 5.3.2 Let u(t,z,¢)  the solution of (5.6) withug = ¢ € Cy. Then the

following two statements are valid:
(i) If Ro < 1, then the disease  : equilibrium (0, m*,0)T is globally attractive.

(ii) If R > 1, then system (5.6) admuts at least one positive steady state u*(r), and
there exists an n > 0 such that for any ¢ € Cy with ¢;(0,) £0 fori=1,3, we
have

litminfui(t,l') >n, Vi=1,2,3,
uniformly for all z € 0.

Proof. (i) In the case where < 1, we have /\(H, m*) < 0. Since
lir% MH,m"+¢)=AH,m") <0,

there is an €y > 0 such that A\(H,m"* + ¢;) < 0. For fixed ¢y > 0, by Lemma 5.3.1,
there exists to = to(¢) such that uy(t, z) < m*(z) + €0, Vt > to, = € 2. Therefore, for

all t > ty, we have

ouy {t, )

et <Dt z) + ed(x)us(t, z) — (da + p)ua(t, ),
0”"’0:’3‘) < D,Aus(t,z) — dmus(t, )

+-e~dm" fn D(Dm7,2,y *\j)l(m,(y) + eo)u (t — 7.y)dy.




9.3 THRESHOLD DYNAMICS 135

By Lemma 5.3.3, A(H, m* + ¢, 7) < 0 and there is a strongly positive eigenfunction

Yo corresponding to A(H,m* + g, 7). It then follows that the linear system

.
iltt) = DyAvy +cB(z)va — (dn + p)vr, t >0, TE€Q,
Jua(t.x —dr PV .
20(: } = DnAvg +edm JoT(Dpnr 2, y) L (M (y) +eo)vi(t — 7, y)dy
—dnvg, t >0, z €1,
(1% — Ougp __ >
{ o= F2=0, €09,

ACHm*+eo.m)t 0 (). Since for any given ¢ € Cy. there

admits a solution v(t,z) = e
exists some a > 0 such that (u; (¢, ), us(t, -, 9))" < av(t,-), Vt € [to — 7, ty]. By the

comparison principle, it follows that

(ul(t,x,qﬁ),ug(t,z.d)))T < ae’\(H'm'“O’T)‘lﬁo(z), Yt > tp.

Thus, lim (u(t, 1, ), us(t,z,6))" = 0 uniformly for z € Q. Then, the equation for

t—oo

u, is asymptotic to the following reaction-diffusion equation
B_u,u "= DpAuw(t,z) + u(z) — duw(t, L),
C=0.
By the theory for asymptotically autonomous semiflows (see [88, Corollary 4.3]), we
have
' )Ug(t,l‘,(b) =m"(z)

uniformly for z € Q.

(ii) In the case where Ry > 1, we have A(H,m*) > 0. It then follows from Lemma

5.3.3 that A(H,m*,7) > 0. Let
Wo = {¢ € Cy : ¢1(0.) # 0 and ¢3(0,-) Z 0},

and

OWO = CH\WQ {¢ECH Z¢1(0,')EOOF ¢3((),) EO}
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Note that for any ¢ € Wy, Lemma 5.3.2 implies that u;(¢,-,¢) > 0,7 1,3, Vz € Q,
t > 0, that is, ®(t)Wy C Wy. Define

Mz = {(25 € oWy . <I>(t)¢ € 0W,, t > 0}

Let w(¢) be the omega limit set of the orbit v*(¢) := {®(t)¢ : Vt > 0}, and set
M = (0,m*,0)T. For any given ¥ € My, we have ®(t)y € OWy, V¢t > 0. It then
follows that for each ¢t > 0, either u,(¢,-,¢) = 0 or uz(t,+,%) = 0. In the case where
u(t,,¢) = 0 for all t > 0, we sce from Lemma 5.3.1 that Llir&ug(t,x,w) = m*(zx)
uniformly for z € 0. In view of the u3 equation in (5.6), we see that tllrg us(t,z,¢) =0
uniformly for z € Q. In the case where u;(to, -, %) # 0 for some t, > 0, Lemma 5.3.2
implies that u,(t,z,¢) > 0, ¥t > t5, = € Q. Thus, we have us(t,-,¢) = 0, Vt > to.
In view of the u, equation in (5.6), we see that tligloul(t,x,w) = ( uniformly for
z € 1. By the uy equation and the theory of asymptotically autonomous semiflows
(see [88, Corollary 4.3]), it t.  follows that tlir&w(t,z,w) = m*(x) uniformly for
z € §). Thus, we have w(y) = {M}, V¢ € M,.

Since A(H,m",7) > 0, there exists a sufficiently small positive number g, such
that M(H — &g, m* — &y, 7) > 0. We now prove the following claim.

Claim. M is a uniform weak repeller for Wy in the sense that

limsup ||®(¢)(¢) — M| > & for all ¢ € W.

t—o00
Suppose, by contr: ~ tion, that limsup ||®(t)(¢o) — M| < dy for some ¢o € Wy,
t—o0
Then, there exists ¢, > 0 such that u;(¢,z,¢0) < 8 and ua(t,z, do) > m*(x) — do,

vt > t,, z € Q. Hence, u(t, T, ¢o) satisfies

am'd(zt'z > D ult,z)+ C;Tﬁ((z—))(H(I) — do)us(t,z) — (dn + p)ui(t, z),
M) > DpAu(t z) - dpus(t, @) 5.17

e [oD(Dmr,2,9) 5 () = SoJuilt = T y)dy,
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for all ¢t > ¢, z € Q. Let wo be the positive eigenfunction associated with A(H —

89, m* — &g, 7). Then the linear system

)
s = DyAvy + P (H(z) - 6o)va — (dn + p)ua,
4 avga:,a:) = DmAv2 - de2+
e [ T(Dor, 2, y) B8 (m* (y) — do)ur (t — 7, y)dy,
| 2 =4, 0 zeon

admits a solution v(t, ) = eMNH~fom ~b Mty () Since u(t,z,¢g) > 0 for all t > 0
and z € (2, there exists £ > 0 such that (u)(t1,z, do), us(ty, z, ¢0))T > Ev(t,z),

Vt € [ty = 7,t1), £ € Q. According to (5.17) and the comparison principle, we have
(wi(t, z, d0), us(t, z, ¢))" > geMH=dom 6ot (1) Wi > by, z € Q.

Since A(H —dq, m* =8y, 7) > 0, it follows that u(t, z, o) is unbounded, a contradiction.
This proves the claim.

Define a continuous function p : Cy — Ry by
12¢0) min{mig (0, ), mi(_r21<153(0,a:)}, VYo € Cy.
T€

Clearly, p~'(0,00) C Wy. By Lemma 5.3.2, it then follows that p has the property
that if p(¢) = 0 and ¢ € Wy or p(@) > 0, then p(®(¢)¢) > 0 for all t > 0. Thus, p is
a generalized distance function for the semiffow ®(t) : Cy — Cpy (see Theorem 1.2.4
or [83]). Note that any forward orbit of ®(t) in My converges to M. Morcover, the
claim above implies that M lated in Cy and W*(M) N'Wy = 0, where W?*(M)
is the stable set of M. Further, there is no cycle in My from M to M. It then follows
from Theorem 1.2.2 (see [83, Theorem 3]) that there exists an > 0 such that

min{p(¥) : ¥ € w(@)} > nfor ¢ & Wy Hence,

liminfu,;(t,z) 2 n, i = 1,3,

t—oo
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For notational simplicity, we denote v = %?— and v = bﬁﬁ We choose a sufficiently
large number k > 0 such that the function ku; — (dy + p)u; +v(H — u;)uz is monotone

increasing in u; for all (uy, us)” € [0, H] x [0,4e7%" 4-b3]. It then follows that

t
wlte) = [ IOtz puOdy+ [ e [ 1Dz
Q 0 0
(kui(t = s,y) = (dn + pP)wr(t — s,y) +v(H —ui(t — s.9))us(t — s, y)|dyds.

Let

us®

2(z) ;= limsupu;(t, ), Uico(T) 1= litminfui(t,x), 1=1,2,3.
—00

t—o00

By the uniform persistence of (5.18), there exists an n > 0 such that
P> ,>n, Ve, i=1,23.
Using Fatou’s lemma, we then

2(z) < / ke /Q [(Dhs, 2, y) kU (y) -

(d + p)ut(y) + v(H — ui(y))us® (y)|dyds.

Let

a® pu®(z) and @ieo = Inf Ui ().
refl el
Clearly, a® > qino > 1 and a0 < o® < H. Since fn ['(Dps, z,y)dy = 1 for all

1

z € (2, s > 0, we have
[ o]
a < / e *kas® — (dy, + p)ai® +v(H — ai®)ay]ds
0

1 o0 o0 o0
= E[kacfC (dn + p)ai® + y(H — of®)as’},
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and hence,
0 < —(dn +p)af® +v(H — a®)as”.
Similarly, we have the following inequality,

0> —(dp + p)aieo + Y(H — 0100) X300

!

5.2

Using the second andt deq :ionsof (5.18), with arguments similar to those above,

we further obtain

'
0 < pu—7raxay —dnay’,
!
0 Z B =7 arlmailoo - dma2007
0 < e Yoo — dpaf,
0 ~ —dmT ! d
€ Y Aoo200 — UmQ3oc-

Inserting (5.23) into (5.19), we have

—dmT
0 < —(dn +p) +v(H = o) ——'a7".
Similarly, combining (5.24) with (5.20), we obtain
P——dmr ,
0> —(dn +p) +7(H = o) —7 02c0-

Inserting (5.21) and (5.  into (5.23) and (5.26), respectively, we get

-dmT

e 7
< —(d H—-af° ! ,
0< —(dn+p) +7(H — ) IS,
and
e—dm‘r [L

0> —(dn+p) Y(H—0) y 77/a°°+41'
m 1 m

o
N
—

o
)
(]

o
)
w

o
[}
=
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It then follows that
(H - aj"’)'y'y’e" .,U' - (ﬁ/laloo + dm)(dh + p)dm >0,

and

(H - aloo)')/'y/e—dmr:u - (,yla<1>o + dm)(dh + p)dm < 0.

Thus, we have
Y e T UAS + ¥ Qoo (dh + p)dim < Y ET I o0 + 7 @ (dh + p)ddin,

and hence,

(yYe ™ = ' (dn + p)dm) (@] — a100) < 0.

Since Ry > ab—f:, that is, yy'e ™"y — v'(dn + p)dm > 0, we must have a® = Qjo0.
Moreover, we see from (5.21-5.24) that a3° = age and of° = ase. It then follows
that

Jim u(t,z,¢) = (a0, aP)T, Ve Q. 5.29

Now we prove tlirn u(t,z, ) = (a$°, a3, a5°)T uniformly for all z € Q. For any
¥ € w(¢), there exists a sequel ¢, — oo such that ®(t,)¢ — ¢ in Cy as n — oo,
and hence,
lim y(t, +6,z,¢) = Y6, )
uniformly for (6, z) € [—7,0] ... In view of (5.29), we have (6, z) = (a$°, a5°, 03°)"

V8 € [-7,0], z € Q. Thisimpli that w(®) = (af°, 5%, a$®)7. Since w(¢) is invariant

b

for ®(t), it follows that (a°,as®,a3®)T is a positive constant equilibrium of system

(5.18), and hence, (o, 0P, oP)T  u'. =
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Figure 5.1: Long term behavior of the discased compartments.
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Figure 5.2: Ry as functions of Dy and 7.




5.5 NUMERICAL SIMUT.ATINNS 147

variation of human distribution H(z) for cxample. As more and more people lcave
villages and farms to livein citi  the distribution of whole human density will change,
and urbanization may have impact on malaria risk. Set H(z) = 100(1.1 — ¢ cos(2z)),
with § € [0,1] being a parameter. Note that when § = 0, humans distribute evenly
in space (H(z) = 110, Yz € Q), as § changing from 0 to 1, more and more people
leave the rural areas (near £ = 0 or z = w) and accumulate at the urban area
(around the middle point of 2, i.e., z = 7). However, the total human density on 2
remains unchanged since the spatial average of H(z) does not change for all 6 € [0, 1].
Thus, we can use ¢ € [0,1] to« cribe the urbanizing process. Figure 5.3 shows the

relationship between Ry and 6.

32 —

Basic reproduction ratio R(J
= NN NN
@ N N o D o w
. . : T . T

P

kS
YA

Figure 5.3: Relationship between Rq and §.

It indicates that urbanization may increase or decrease malaria risk depending on
other model parameters. However, rapid urbanization may deteriorate the disease

burden.
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To simulate the efficiency of spatial control strategies, we take vaccination pro-
grams for example. Sup that the unvaccinated population distribution for a
vaccination program is h(z), then the model with the vaccination program can be
modified from our earlier moc  (5.6) as follows:

(

el = Dplun(t, ) + G (h(z) — ui(t,z))us(t, 7) — (dn + pua(t,z),
urlbz) Dy Dus(t, 2) + () — Fua(t, @)ur(t,T) — dinua(t, ),
S @%(—:—1:2 DmAU3(t, .’IJ) - dmug(t,:v) 531
+€—me fQ F(DmTv Z, y)%“‘?(t - T y)ul(t - T, y)dyv
\ B 0, V€0, t>0,i=123.

Using the same idea as in section 3, we can define the basic reproduction ratio for sys-

tem (5.31). Assume that we have two vaccination programs, program 1 and program

2, which are shown in Figure 5.4.

220
PR
200 , .
’ [N
1801 ’ \
’ [N
160 H s \
unvaccinated A
§ 1401 ’ population \
3 ’ with vaccination
-‘ﬁn 120+ ’ program 1 \ ]
2
§ 1001
’ \
Z 80f 7 \
PR
60r . A
¢ < unvaccinated .
40r v population .
’ . with vaccination g
2 program 2 ¢
¢ . L N L . N
0 05 1 1.5 2 25 3
Location x

Figure 5.4: Two vaccination programs.
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The unvaccinated population distribution for program 1 is
1
hi(z) = 5 % 100 x (1.1 — cos2z),

while that for program 2 is

0.7036 x 100, fr<z<i

hg Tr) = )
0.7036 x (100 — cos2z), if z > T orz < I.

In program 1, people living in the rural areas have the same opportunity to get vacci-
nated (half of the rural ~ d urban populations is vaccinated). In program 2, people in
urban area are easier to get -  to the vaccination than those in rural areas. Note
that the spatial aver : of hy(z) and h,(z) are same, being 55. This implies that
the numbers of vaccinated population in these two vaccination programs are same.
Numerical computation shows that the basic reproduction ratio corresponding to the
first vaccination program is 2.1645 and that to the second program is 2.4979. Thus,

the first spatial vaccination strategy scems to be more efficient.

5.6 Discussion

As pointed out in {40], the m itude of Ry can be used to gauge the risk of an
epidemic or pandemic ine infectious disease. Our result shows that this risk
may be highly underestimated if we do just consider the model with spatially aver-
aged parameters. By numerica _ calculating the basic reproduction ratio, our work
suggests that spatial heterog ty does strongly affect Ry. As shown in Fig. 5.3, if 6,
an index describing urbaniz:ion process, varies from 0 to 1, then the corresponding
basic reproduction ratio chang from around 1.5 to 3.0, about two folds. It is worth

for the ficld workers to determine those habitat-dependent parameters in the model.
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With regard to application, the threshold result suggests that we should use chem-
ical or physical strategies to reduce the value of Rg to be less than unity. As shown in
the definition of the b.  : reproduction ratio, Rq also depends on spatial parameters
in this model, which permits the assessment of spatial control strategies. Perhaps
the most useful part of this framework would be to design an efficient spatial allo-
cation of financial resourr  for malaria control. For example, Figure 5.4 shows two
vaccination programs, and the numerical computation of Ry suggests that the first
vaccination program is more eflicient than the second one. In field work, with accu-
rate spatial-dependent parameters, appropriate spatial vaccination strategies should
be designed in the most efficient way. Analogously, we can study the effects of spatial
insecticide treated nets (ITN) distribution and spatial indoor residual spraying (IRS)

on the basic reproduction ratio.

5.7 Append : Numerical computation of R,

In order to compute the basic reproduction ratio Rg, we use the orthogonal projection
method in the comput: n of eigenvalues for compact linear operators (see, e.g., [14,
Section 3.1)).

From the definition of Rg, we have Ry = r(L), where L is define as
o) [ vister=v [ swed
where S(t) is the positive linear operator on Y x Y given by
S(t) = (Th(t)p1, - (t)d2), Vo = (d1,¢2) EY XY, z€, t >0

with
Ty(t)é1 () fW“ﬁ/quIwm(m%
9]
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and

Ty(t)pa(z) = e~ /Q D(Dut, 7. 3)b2(y)dy.

V is the positive linear operator on Y x Y defined by
V(9)(z) = (Vi(¢)(x), Va(¢)(2)), Vo € Y x Y, z € Q,

with

Vi(¢)(z) = cd(z)da(z),

and
Vlo)(@) = [ D(Darzpm ) o )y

To compute Rg, we need to determine all of A and p* such that Le* = Ap*. Since
L is compact, we have Ry = sup{|A|}. For convenience, we concentrate on a one
dimensional domain €2, which 1 be taken, without loss of generality, to be (0, 7).

It then follows that

[(t,z,y) ==+ e "tcosnzcosny.

ERR N
NE

SN

1

T

For every f € C(|0,7],R), f has the Fouricr cosine series

o0
Qg
T)=—+ E a,Co8Nx,

)7, et

with a, = | f()" f(z)eos(nx)dz,n  0,1,2,... Therefore, for any ¢* = (¢}, ¥;

and 7 can be expan Forier cosine serieses,
o0
* ap
£ = 5 + E anCOSNT,
n=1]

and

»’-1 >
Yy = + E A, cosnz.
Z
n=1
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We first compute

an,COSNT
L
Ancosmz
Since
LS &0 2
A, COSNT ane~ @ ¥At [T(L 4 2 52 =K Drteoskreosky)cosnydy
"
S(t) - ‘ d Trl 2 og—‘ 2 ?
Amcosmz £t [T(2 4 257 emF Pricoskacosky)cosmydy
k=1

by the orthogonality of the sine and cosine functions (see page 549 in [10]), we have
the following formulae.

If n=0and m =0, then

—(dp+plt
ag ap€
S(¢) =
AO Aoe—dmt
If m# 0 and n #0, then
S() anCO8 ane~{(@+a+n*Dadtcoon
Acosmz Ape~@mtm*Dmltensmy
Thus, for all m,n € N, we obtain
s() AnCOSTT ape~((dn+e)+n*Di)t poon ¢
Apcost Ape=dmttm*Dm)t o omy
and therefore
0 , a,CcOSNT
/ sy [ T Y= | @D
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Consequently, we get

a,CoSNT
L
A cosmzx
c3(x)ﬁmcosmx
= DTN 20 .
gdm7 N n*(y)[L + 2 3 e77*Pncos jzcosjy|cosnydy
AN I N o LA Y- ]=1
5.32
In view of
ot _+ anCOSNT ag o AnCOSNT
L =1L - =Ll * | +XL ,
5 A0 4 S Ancosnz %‘1 n=1 A,cosnz
n=1
we proceed in two steps.
ag
First step: Compute L :
It follows from (5.32) that
A
ap cf(x) 53
L : = d o 1 9 > 2p . .
%Q e IX . n*(y)s + 2 Zle‘J mTcosjrcosjy|dy
J:

Suppose we can express the following functions into Fourier Cosine serieses such

that -
cAly) = 2+3 Ficosiy,
=1

Ln/,) s

Cogmiy) = 43 bicosiy.

i=1

and e
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Then we have

212.1, 50 + Z Bicosiz)

!\JL? QQE

it Jo (3 + ; bicosiy) [+ + 2 J; e™7"PmT cosjzcossyldy

o0
%‘3—(5—[’ + 7 Bicosix)
«dm

=S
9.0. “JszT . ]
“Mﬂ,) 2+ st 2dh+P \; bjcosjzx

apCoSNT
Second step: Compute L

Ancosnz
According to (5.32), we have
a,cosnI

Ancosnz

oQ
(2 + Zl ﬁicosix)d—ﬁgﬁ-cosnm
— 1=

a T . 52 . .
gl ot hicosiy)(: + 2 Z e~3°PmTeosjrcosjylcosnydy
a1 ij=1

The first element of (5.33) can be expressed as

o0

£ w0Siz) ——ta
(% 08IT) 753 COSNT
= & R E B;cosizcosnx
2 dm+n¢Dy 1 U
1=

x
<n, A .
= 7 SSEe + 3D, Z Bicos(i + n)T

-I—Z@COS n—1i)zc+ E Bycos(i — )z + 3,).

i=1 i=l+n
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Solving these equations, we then obatin

It follows that

D) 1 b 1 Lo,
r = —_——_—— — — —_—
\/(dh+p) 2d, 2 dm \an + p)

which is consistent with Lemma 5.4.1.

—dmT

b3 u

——c

Hdy,

k)
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is strong. It was shown, even for some autonomous malaria models, that the stable
disease free equilibrium coex s with a stable endemic equilibrium when Ry < 1 {66].
If the backward bifurcation exists, the solution through some suitable initial data
may converge to the s sle endemic equilibrium ceven Ry < 1. This phenomenon is
called backward bifurcation (see, for instance [36,77,93] and the references therein for
further discussion on backward bifurcation). In this scenario, the classical requirement
of reducing basic reproduction : io to be less than unity becomes only a necessary,
but not sufficient condition, to control the disease. Bifurcation analysis of the periodic
malaria models—presumably using the framework in [50] and other analytical results-
is a desirable next step to en  1ce the mathematical understanding of epidemical

models.

6.2.3 Sophistication of HIV-malaria co-infection dynamics

As pointed out in [1], it as been shown that HIV increases the risk of malaria infection
and the development of clinical malaria, while malaria induces HIV-I replication in
vitro and in vivo. Dual infection with HIV and malaria fuels the spread of both
diseases in sub-Saharan Africa [1,11]. It may be important to incorporate HIV-
malaria coinfection into models, which always turn out to be high dimensional systems
(see, e.g., [1,66]). The model alysis would be mathematically challenging and the

complex dynamics may be biole :ally interesting.

6.2.4 Incorporation of additional drug-resistant phenomena

Antimalarial drugs are used for malaria treatment. However, the efficiency of anti-

malarial drugs has been decreasing dramatically over the past few decades, due to the
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